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Abstract

Kernel methods have been among the most popular techniques in machine learning, where
learning tasks are solved using the property of reproducing kernel Hilbert space (RKHS).
In this paper, we propose a novel data analysis framework with reproducing kernel Hilbert
C∗-module (RKHM) and kernel mean embedding (KME) in RKHM. Since RKHM contains
richer information than RKHS or vector-valued RKHS (vvRKHS), analysis with RKHM
enables us to capture and extract structural properties in such as functional data. We show
a branch of theories for RKHM to apply to data analysis, including the representer theorem,
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and the injectivity and universality of the proposed KME. We also show RKHM generalizes
RKHS and vvRKHS. Then, we provide concrete procedures for employing RKHM and the
proposed KME to data analysis.

Keywords: reproducing kernel Hilbert C∗-module, kernel mean embedding, structured
data, kernel PCA, interaction effects

1. Introduction

Kernel methods have been among the most popular techniques in machine learning (Schölkopf
and Smola, 2001), where learning tasks are solved using the property of reproducing kernel
Hilbert space (RKHS). RKHS is the space of complex-valued functions equipped with an
inner product determined by a positive-definite kernel. One of the important tools with
RKHS is kernel mean embedding (KME). In KME, a probability distribution (or mea-
sure) is embedded as a function in an RKHS (Smola et al., 2007; Muandet et al., 2017;
Sriperumbudur et al., 2011), which enables us to analyze distributions in RKHSs.

Whereas much of the classical literature on RKHS approaches has focused on complex-
valued functions, RKHSs of vector-valued functions, i.e., vector-valued RKHSs (vvRKHSs),
have also been proposed (Micchelli and Pontil, 2005; Álvarez et al., 2012; Lim et al., 2015;
Minh et al., 2016; Kadri et al., 2016). This allows us to learn vector-valued functions rather
than complex-valued functions.

In this paper, we develop a branch of theories on reproducing kernel Hilbert C∗-module
(RKHM) and propose a generic framework for data analysis with RKHM. RKHM is a
generalization of RKHS and vvRKHS in terms of C∗-algebra, and we show that RKHM
is a powerful tool to analyze structural properties in such as functional data. An RKHM
is constructed by a C∗-algebra-valued positive definite kernel and characterized by a C∗-
algebra-valued inner product (see Definition 2.21). The theory of C∗-algebra has been
discussed in mathematics, especially in operator algebra theory. An important example of
C∗-algebra is L∞(Ω), where Ω is a compact measure space. Another important example is
B(W), which denotes the space of bounded linear operators on a Hilbert space W. Note
that B(W) coincides with the space of matrices Cm×m if the Hilbert space W is finite
dimensional.

Although there are several advantages for studying RKHM compared with RKHS and
vvRKHS, those can be summarized into two points as follows: First, an RKHM is a “Hilbert
C∗-module”, which is mathematically more general than a “Hilbert space”. The inner
product in an RKHM is C∗-algebra-valued, which captures more information than the
complex-valued one in an RKHS or vvRKHS and enables us to extract richer information.
For example, if we set L∞(Ω) as a C∗-algebra, we can control and extract features of
functional data such as derivatives, total variation, and frequency components. Also, if we
set B(W) as a C∗-algebra and the inner product is described by integral operators, we can
control and extract features of continuous relationships between pairs of functional data.
This cannot be achieved, in principle, by RKHSs and vv-RKHSs. This is because their inner
products are complex-valued, where such information degenerates into one complex value or
is lost by discretizations of function into complex values. Therefore, we cannot reconstruct
the information from a vector in an RKHS or vvRKHS. Second, RKHM generalizes RKHS
and vvRKHS, that is, it can be shown that we can reconstruct RKHSs and vvRKHSs from
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RKHMs. This implies that existing algorithms with RKHSs and vvRKHSs are reconstructed
by using the framework of RKHM.

The theory of RKHM has been studied in mathematical physics and pure mathemat-
ics (Itoh, 1990; Heo, 2008; Szafraniec, 2010). On the other hand, to the best of our knowl-
edge, as for the application of RKHM to data analysis, we can find the only literature by Ye
(2017), where only the case of setting the space of matrices as a C∗-algebra is discussed. In
this paper, we develop a branch of theories on RKHM and propose a generic framework for
data analysis with RKHM. We show a theoretical property on minimization with respect
to orthogonal projections and give a representer theorem in RKHMs. These properties
are fundamental for data analysis that have been investigated and applied in the cases of
RKHS and vvRKHS, which has made RKHS and vvRKHS widely-accepted tools for data
analysis (Schölkopf et al., 2001). Moreover, we define a KME in an RKHM, and provide
theoretical results about the injectivity of the proposed KME and the connection with uni-
versality of RKHM. Note that, as is well known for RKHSs, these two properties have been
actively studied to theoretically guarantee the validity of kernel-based algorithms (Stein-
wart, 2001; Gretton et al., 2006; Fukumizu et al., 2007; Sriperumbudur et al., 2011). Then,
we apply the developed theories to generalize kernel PCA (Schölkopf and Smola, 2001), an-
alyze time-series data with the theory of dynamical system, and analyze interaction effects
for infinite dimensional data.

The remainder of this paper is organized as follows. First, in Section 2, we briefly review
RKHS, vvRKHS, and the definition of RKHM. In Section 3, we provide an overview of the
motivation of studying RKHM for data analysis. In Section 4, we show general properties
of RKHM for data analysis and the connection of RKHMs with RKHSs and vvRKHSs. In
Sections 5, we propose a KME in RKHMs, and show the connection between the injectivity
of the KME and the universality of RKHM. Then, in Section 6, we discuss applications of the
developed results to kernel PCA, time-series data analysis, and the analysis of interaction
effects in finite or infinite dimensional data. Finally, in Section 7, we discuss the connection
of RKHMs and the proposed KME with the existing notions, and conclude the paper in
Section 8.

Notations Lowercase letters denote A-valued coefficients (often by a, b, c, d), vectors in a
Hilbert C∗-module M (often by p, q, u, v), or vectors in a Hilbert space W (often by w, h).
Lowercase Greek letters denote measures (often by µ, ν, λ) or complex-valued coefficients
(often by α, β). Calligraphic capital letters denote sets. And, bold lowercase letters denote
vectors in An for n ∈ N (a finite dimensional Hilbert C∗-module). Also, we use ∼ for
objects related to RKHSs. Moreover, an inner product, an absolute value, and a norm in a
space or a module S (see Definitions 2.12 and 2.13) are denoted as 〈·, ·〉S , | · |S , and ‖ · ‖S ,
respectively.

The typical notations in this paper are listed in Table 1.

2. Background

We briefly review RKHS and vvRKHS in Subsections 2.1 and 2.2, respectively. Then, we
review C∗-algebra and C∗-module in Subsection 2.3, Hilbert C∗-module in Subsection 2.4,
and RKHM in Subsection 2.5.
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Table 1: Notation table

A A C∗-algebra

1A The multiplicative identity in A
A+ The subset of A composed of all positive elements in A
≤A For c, d ∈ A, c ≤A d means d− c is positive.

<A For c, d ∈ A, c < d means d− c is strictly positive, i.e., d− c is positive and
invertible.

L∞(Ω) The space of complex-valued L∞ functions on a measure space Ω

B(W) The space of bounded linear operators on a Hilbert space W
Cm×m A set of all complex-valued m×m matrix

M A Hilbert A-module

X A nonempty set for data

C(X ,Y) The space of Y-valued continuous functions on X for topological spaces X
and Y

n A natural number that represents the number of samples

k An A-valued positive definite kernel

φ The feature map endowed with k

Mk The RKHM associated with k

SX The set of all functions from a set X to a space S
k̃ A complex-valued positive definite kernel

φ̃ The feature map endowed with k̃

Hk̃ The RKHS associated with k̃

Hv
k The vvRKHS associated with k

D(X ,A) The set of all A-valued finite regular Borel measures

Φ The proposed KME in an RKHM

δx The A-valued Dirac measure defined as δx(E) = 1A for x ∈ E and δx(E) = 0
for x /∈ E

δ̃x The complex-valued Dirac measure defined as δ̃x(E) = 1 for x ∈ E and
δ̃x(E) = 0 for x /∈ E

χE The indicator function of a Borel set E on X
C0(X ,A) The space of all continuous A-valued functions on X vanishing at infinity

G The A-valued Gram matrix defined as Gi,j = k(xi, xj) for given samples
x1, . . . , xn ∈ X

pj The j-th principal axis generated by kernel PCA with an RKHM

r A natural number that represents the number of principal axes

Dfc The Gâteaux derivative of a function f :M→A at c ∈M
∇fc The gradient of a function f :M→A at c ∈M
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2.1 Reproducing kernel Hilbert space (RKHS)

We review the theory of RKHS. An RKHS is a Hilbert space and useful for extracting non-
linearity or higher-order moments of data (Schölkopf and Smola, 2001; Saitoh and Sawano,
2016).

We begin by introducing positive definite kernels. Let X be a non-empty set for data,
and k̃ be a positive definite kernel, which is defined as follows:

Definition 2.1 (Positive definite kernel) A map k̃ : X × X → C is called a positive
definite kernel if it satisfies the following conditions:

1. k̃(x, y) = k̃(y, x) for x, y ∈ X ,

2.
∑n

i,j=1 αiαj k̃(xi, xj) ≥ 0 for n ∈ N, αi ∈ C, xi ∈ X .

Let φ̃ : X → CX be a map defined as φ̃(x) = k̃(·, x). With φ̃, the following space as a subset
of CX is constructed:

Hk̃,0 :=

{ n∑
i=1

αiφ̃(xi)

∣∣∣∣ n ∈ N, αi ∈ C, xi ∈ X
}
.

Then, a map 〈·, ·〉Hk̃ : Hk̃,0 ×Hk̃,0 → C is defined as follows:

〈 n∑
i=1

αiφ̃(xi),
l∑

j=1

βjφ̃(yj)

〉
Hk̃

:=
n∑
i=1

l∑
j=1

αiβj k̃(xi, yj).

By the properties in Definition 2.1 of k̃, 〈·, ·〉Hk̃ is well-defined, satisfies the axiom of inner

products, and has the reproducing property, that is,

〈φ̃(x), v〉Hk̃ = v(x)

for v ∈ Hk̃,0 and x ∈ X .

The completion of Hk̃,0 is called the RKHS associated with k̃ and denoted as Hk̃. It
can be shown that 〈·, ·〉Hk̃ is extended continuously to Hk̃ and the map Hk̃ 3 v 7→ (x 7→
〈φ̃(x), v〉Hk̃) ∈ CX is injective. Thus, Hk̃ is regarded to be a subset of CX and has the
reproducing property. Also, Hk̃ is determined uniquely.

The map φ̃ maps data into Hk̃ and is called the feature map. Since the dimension of
Hk̃ is higher (often infinite dimensional) than that of X , complicated behaviors of data in
X are expected to be transformed into simple ones in Hk̃ (Schölkopf and Smola, 2001).

2.2 Vector-valued RKHS (vvRKHS)

We review the theory of vvRKHS. Complex-valued functions in RKHSs are generalized to
vector-valued functions in vvRKHSs. Similar to the case of RKHS, we begin by introducing
positive definite kernels. Let X be a non-empty set for data and W be a Hilbert space. In
addition, let k be an operator-valued positive definite kernel, which is defined as follows:
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Definition 2.2 (Operator-valued positive definite kernel) A map k : X×X → B(W)
is called an operator-valued positive definite kernel if it satisfies the following conditions:

1. k(x, y) = k(y, x)∗ for x, y ∈ X ,

2.
∑n

i,j=1 〈wi, k(xi, xj)wj〉W ≥ 0 for n ∈ N, wi ∈ W, xi ∈ X .

Here, ∗ represents the adjoint.

Let φ : X → B(W)X be a map defined as φ(x) = k(·, x). With φ, the following space as a
subset of WX is constructed:

Hv
k,0 :=

{ n∑
i=1

φ(xi)wi

∣∣∣∣ n ∈ N, wi ∈ W, xi ∈ X
}
.

Then, a map 〈·, ·〉Hv
k

: Hv
k,0 ×Hv

k,0 → C is defined as follows:

〈 n∑
i=1

φ(xi)wi,

l∑
j=1

φ(yj)hj

〉
Hv
k

:=

n∑
i=1

l∑
j=1

〈wi, k(xi, yj)hj〉W .

By the properties in Definition 2.2 of k, 〈·, ·〉Hv
k

is well-defined, satisfies the axiom of inner

products, and has the reproducing property, that is,

〈φ(x)w, u〉Hv
k

= 〈w, u(x)〉W (1)

for u ∈ Hv
k,0, x ∈ X , and w ∈ W.

The completion of Hv
k,0 is called the vvRKHS associated with k and denoted as Hv

k.
Note that since an inner product in Hv

k is defined with the complex-valued inner product
in W, it is complex-valued.

2.3 C∗-algebra and Hilbert C∗-module

A C∗-algebra and a C∗-module are generalizations of the space of complex numbers C and
a vector space, respectively. In this paper, we denote a C∗-algebra by A and a C∗-module
by M, respectively. As we see below, many complex-valued notions can be generalized to
A-valued.

A C∗-algebra is defined as a Banach space equipped with a product structure and an
involution (·)∗ : A → A. We denote the norm of A by ‖ · ‖A.

Definition 2.3 (Algebra) A set A is called an algebra on a filed F if it is a vector space
equipped with an operation · : A × A → A which satisfies the following conditions for
b, c, d ∈ A and α ∈ F:

• (b+ c) · d = c · d+ c · d, • b · (c+ d) = b · c+ b · d, • (αc) · d = α(c · d) = c · (αd).

The symbol · is omitted when it does not cause confusion.

Definition 2.4 (C∗-algebra) A set A is called a C∗-algebra if it satisfies the following
conditions:

6
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1. A is an algebra over C, and there exists a bijection (·)∗ : A → A that satisfies the
following conditions for α, β ∈ C and c, d ∈ A:

• (αc+ βd)∗ = αc∗ + βd∗, • (cd)∗ = d∗c∗, • (c∗)∗ = c.

2. A is a normed space with ‖ · ‖A, and for c, d ∈ A, ‖cd‖A ≤ ‖c‖A‖d‖A holds. In
addition, A is complete with respect to ‖ · ‖A.

3. For c ∈ A, ‖c∗c‖A = ‖c‖2A holds.

Definition 2.5 (Multiplicative identity and unital C∗-algebra) The multiplicative iden-
tity of A is the element a ∈ A which satisfies ac = ca = c for any c ∈ A. We denote by 1A
the multiplicative identity of A. If a C∗-algebra A has the multiplicative identity, then it is
called a unital C∗-algebra.

Example 2.6 Important examples of (unital) C∗-algebras are L∞(Ω) and B(W), i.e., the
space of complex-valued L∞ functions on a compact measure space Ω and the space of
bounded linear operators on a Hilbert space W, respectively.

1. For A = L∞(Ω), the product of two functions c, d ∈ A is defined as (cd)(t) = c(t)d(t)
for any t ∈ Ω, the involution is defined as c(t) = c(t), the norm is the L∞-norm,
and the multiplicative identity is the constant function whose value is 1 at almost
everywhere t ∈ Ω.

2. For A = B(W), the product structure is the product (the composition) of operators, the
involution is the adjoint, the norm ‖ · ‖A is the operator norm, and the multiplicative
identity is the identity map.

In fact, by the Gelfand–Naimark theorem (see, for example, Murphy (1990)), any C∗-algebra
can be regarded as a subalgebra of B(W) for some Hilbert space W. Therefore, considering
the case of A = B(W) is sufficient for applications.

The positiveness is also important in C∗-algebras.

Definition 2.7 (Positive) An element c of A is called positive if there exists d ∈ A such
that c = d∗d holds. For a unital C∗-algebra A, if a positive element c ∈ A is invertible, i.e.,
there exists d ∈ A such that cd = dc = 1A, then c is called strictly positive. For c, d ∈ A,
we denote c ≤A d if d− c is positive and c <A d if d− c is strictly positive. We denote by
A+ the subset of A composed of all positive elements in A.

Example 2.8 1. For A = L∞(Ω), a function c ∈ A is positive if and only if c(t) ≥ 0
for almost everywhere t ∈ Ω, and strictly positive if and only if c(t) > 0 for almost
everywhere t ∈ Ω.

2. For A = B(W), the positiveness is equivalent to the positive semi-definiteness of oper-
ators and the strictly positiveness is equivalent to the positive definiteness of operators.

The positiveness provides us the (pre) order in A and, thus, enables us to consider opti-
mization problems in A.
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Definition 2.9 (Supremum and infimum) 1. For a subset S of A, a ∈ A is said to
be an upper bound with respect to the order ≤A, if d ≤A a for any d ∈ S. Then,
c ∈ A is said to be a supremum of S, if c ≤A a for any upper bound a of S.

2. For a subset S of A, a ∈ A is said to be a lower bound with respect to the order ≤A,
if a ≤A d for any d ∈ S. Then, c ∈ A is said to be a infimum of S, if a ≤A c for any
lower bound a of S.

We now introduce a C∗-module over A, which is a generalization of the vector space.

Definition 2.10 (Right multiplication) Let M be an abelian group with operation +.
For c, d ∈ A and u, v ∈M, if an operation · :M×A→M satisfies

1. (u+ v) · c = u · c+ v · c,

2. u · (c+ d) = u · c+ u · d,

3. u · (cd) = (u · d) · c,

4. u · 1A = u if A is unital,

then, · is called a (right) A-multiplication. The multiplication u · c is usually denoted as uc.

Definition 2.11 (C∗-module) Let M be an abelian group with operation +. If M has
the structure of a (right) A-multiplication, M is called a (right) C∗-module over A.

In this paper, we consider column vectors rather than row vectors for representing A-valued
coefficients, and column vectors act on the right. Therefore, we consider right multiplica-
tions. However, considering row vectors and left multiplications instead of column vectors
and right multiplications is also possible.

2.4 Hilbert C∗-module

A Hilbert C∗-module is a generalization of a Hilbert space. We first consider an A-valued
inner product, which is a generalization of a complex-valued inner product, and then, in-
troduce the definition of a Hilbert C∗-module.

Definition 2.12 (A-valued inner product) A map 〈·, ·〉M : M×M → A is called an
A-valued inner product if it satisfies the following properties for u, v, p ∈M and c, d ∈ A:

1. 〈u, vc+ pd〉M = 〈u, v〉M c+ 〈u, p〉M d,

2. 〈v, u〉M = 〈u, v〉∗M,

3. 〈u, u〉M ≥A 0,

4. If 〈u, u〉M = 0 then u = 0.

Definition 2.13 (A-valued absolute value and norm) For u ∈ M, the A-valued ab-
solute value |u|M on M is defined by the positive element |u|M of A such that |u|2M =
〈u, u〉M. The (real-valued) norm ‖ · ‖M on M is defined by ‖u‖M =

∥∥|u|M∥∥A.
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Since the absolute value | · |M takes values in A, it behaves more complicatedly. For
example, the triangle inequality does not hold for the absolute value. However, it provides
us with more information than the norm ‖ · ‖M (which is real-valued). For example, let
M = A =Cm×m, c = diag{α, 0, . . . , 0}, and d = diag{α, . . . , α}, where α ∈ C. Then,
‖c‖M = ‖d‖M, but |c|M 6= |d|M. For a self-adjoint matrix, the absolute value describes the
whole spectrum of it, but the norm only describes the largest eigenvalue.

Definition 2.14 (Hilbert C∗-module) Let M be a (right) C∗-module over A equipped
with an A-valued inner product defined in Definition 2.12. If M is complete with respect to
the norm ‖ · ‖M, it is called a Hilbert C∗-module over A or Hilbert A-module.

Example 2.15 A simple example of Hilbert C∗ modules over A is An for a natural number
n. The A-valued inner product between c = [c1, . . . , cn]T and d = [d1, . . . , dn]T is defined as
〈c,d〉An =

∑n
i=1 c

∗
i di. The absolute value and norm in An are given as |c|2An = (

∑n
i=1 c

∗
i ci)

and ‖c‖An = ‖
∑n

i=1 c
∗
i ci‖

1/2
A , respectively.

Similar to the case of Hilbert spaces, the following Cauchy–Schwarz inequality for A-valued
inner products is available (Lance, 1995, Proposition 1.1).

Lemma 2.16 (Cauchy–Schwarz inequality) For u, v ∈ M, the following inequality
holds:

| 〈u, v〉M |
2
A ≤A ‖u‖2M 〈v, v〉M .

An important property associated with an inner product is the orthonormality. The or-
thonormality plays an important role in data analysis. For example, an orthonormal ba-
sis constructs orthogonal projections and an orthogonally projected vector minimizes the
deviation from its original vector in the projected space. Therefore, we also introduce the
orthonormality in Hilbert C∗-module. See, for example, Definition 1.2 in (Bakić and Guljaš,
2001) for more details.

Definition 2.17 (Normalized) A vector q ∈M is normalized if 0 6= 〈q, q〉M = 〈q, q〉2M.

Note that in the case of a general C∗-valued inner product, for a normalized vector q,
〈q, q〉M is not always equal to the identity of A in contrast to the case of a complex-valued
inner product.

Definition 2.18 (Orthonormal system and basis) Let I be an index set. A set S =
{qi}i∈I ⊆M is called an orthonormal system (ONS) of M if qi is normalized for any i ∈ I
and 〈qi, qj〉M = 0 for i 6= j. We call S an orthonormal basis (ONB) if S is an ONS and
dense in M.

In Hilbert C∗-modules, A-linear is often used instead of C-linear.

Definition 2.19 (A-linear operator) Let M1,M2 be Hilbert A-modules. A linear map
L : M1 →M2 is referred to as A-linear if it satisfies L(uc) = (Lu)c for any u ∈ M and
c ∈ A.

Definition 2.20 (A-linearly independent) The set S of M is said to be A-linearly in-
dependent if it satisfies the following condition: For any finite subset {v1, . . . , vn} of S, if∑n

i=1 vici = 0 for ci ∈ A, then ci = 0 for i = 1, . . . , n.

For further details about C∗-algebra, C∗-module, and Hilbert C∗-module, refer to Mur-
phy (1990); Lance (1995).
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2.5 Reproducing kernel Hilbert C∗-module (RKHM)

We summarize the theory of RKHM, which is discussed, for example, in Heo (2008).

Similar to the case of RKHS, we begin by introducing an A-valued generalization of a
positive definite kernel on a non-empty set X for data.

Definition 2.21 (A-valued positive definite kernel) An A-valued map k : X × X →
A is called a positive definite kernel if it satisfies the following conditions:

1. k(x, y) = k(y, x)∗ for x, y ∈ X ,

2.
∑n

i,j=1 c
∗
i k(xi, xj)cj ≥A 0 for n ∈ N, ci ∈ A, xi ∈ X .

Example 2.22 1. Let X = C([0, 1]m). Let A = L∞([0, 1]) and let k : X × X → A be
defined as k(x, y)(t) =

∫
[0,1]m(t−x(s))(t−y(s))ds for t ∈ [0, 1]. Then, for x1, . . . , xn ∈

X , c1, . . . , cn ∈ A and t ∈ [0, 1], we have

n∑
i,j=1

c∗i (t)k(xi, xj)(t)cj(t) =

∫
[0,1]m

n∑
i,j=1

ci(t)(t− xi(s))(t− xj(s))cj(t)ds

=

∫
[0,1]m

n∑
i=1

ci(t)(t− xi(s))
n∑
j=1

(t− xj(s))cj(t)ds ≥ 0

for t ∈ [0, 1]. Thus, k is an A-valued positive definite kernel.

2. Let A = L∞([0, 1]) and k : X × X → A be defined such that k(x, y)(t) is a complex-
valued positive definite kernel for any t ∈ [0, 1]. Then, k is an A-valued positive
definite kernel.

3. Let W be a separable Hilbert space and let {ei}∞i=1 be an orthonormal basis of W.
Let A = B(W) and let k : X × X → A be defined as k(x, y)ei = ki(x, y)ei, where
ki : X ×X → C is a complex-valued positive definite kernel for any i = 1, 2, . . .. Then,
for x1, . . . , xn ∈ X , c1, . . . , cn ∈ A and w ∈ W, we have〈

w,

( n∑
i,j=1

c∗i k(xi, xj)cj

)
w

〉
W

=
n∑

i,j=1

∞∑
l=1

〈αi,lel, k(xi, xj)αj,lel〉W

=

∞∑
l=1

n∑
i,j=1

αi,lαj,lk̃l(xi, xj) ≥ 0,

where ciw =
∑∞

l=1 αi,lel is the expansion with respect to {ei}∞i=1. Thus, k is an A-
valued positive definite kernel.

4. Let X = C(Ω,Y) and W = L2(Ω) for a compact measure space Ω and a topologi-
cal space Y. Let A = B(W), and k̃ : Y × Y → C be a complex-valued continuous
positive definite kernel. Moreover, let k : X × X → A be defined as (k(x, y)w)(s) =

10
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∫
t∈Ω k̃(x(s), y(t))w(t)dt. Then, for x1, . . . , xn ∈ X , c1, . . . , cn ∈ A and w ∈ W, we

have〈
w,

( n∑
i,j=1

c∗i k(xi, xj)cj

)
w

〉
W

=

∫
t∈Ω

∫
s∈Ω

n∑
i,j=1

di(s)k̃(xi(s), xj(t))dj(t)dsdt ≥ 0,

where di = ciw. Thus, k is an A-valued positive definite kernel.

Let φ : X → AX be the feature map associated with k, which is defined as φ(x) = k(·, x)
for x ∈ X . Similar to the case of RKHS, we construct the following C∗-module composed
of A-valued functions by means of φ:

Mk,0 :=

{ n∑
i=1

φ(xi)ci

∣∣∣∣ n ∈ N, ci ∈ A, xi ∈ X
}
.

An A-valued map 〈·, ·〉Mk
:Mk,0 ×Mk,0 → A is defined as follows:〈 n∑

i=1

φ(xi)ci,
l∑

j=1

φ(yj)dj

〉
Mk

:=
n∑
i=1

l∑
j=1

c∗i k(xi, yj)dj .

By the properties in Definition 2.21 of k, 〈·, ·〉Mk
is well-defined and has the reproducing

property
〈φ(x), v〉Mk

= v(x)

for v ∈ Mk,0 and x ∈ X . Also, it satisfies the properties in Definition 2.12. As a result,
〈·, ·〉Mk

is shown to be an A-valued inner product.
The reproducing kernel Hilbert A-module (RKHM) associated with k is defined as the

completion of Mk,0. We denote by Mk the RKHM associated with k.
Heo (2008) focused on the case where a group acts on X and investigated corresponding

actions on RKHMs. Moreover, he considered the space of operators on Hilbert A-module
and proved that for each operator-valued positive definite kernel associated with a group
and cocycle, there is a corresponding representation on the Hilbert C∗-module associated
with the positive definite kernel.

3. Application of RKHM to functional data

In this section, we provide an overview of the motivation for studying RKHM for data
analysis. We especially focus on the application of RKHM to functional data.

Analyzing functional data has been researched to take advantage of the additional in-
formation implied by the smoothness of functions underlying data (Ramsay and Silverman,
2005; Levitin et al., 2007; Wang et al., 2016). By describing data as functions, we obtain
information as functions such as derivatives. Applying kernel methods to functional data
is also proposed (Kadri et al., 2016). In these frameworks, the functions are assumed to be
vectors in a Hilbert space such as L2(Ω) for a measure space Ω, or they are embedded in
an RKHS or vvRKHS. Then, analyses are addressed in these Hilbert spaces.

However, since functional data itself is infinite-dimensional data, Hilbert spaces are not
always sufficient for extracting its continuous behavior. This is because the inner products

11
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in Hilbert spaces are complex-valued, degenerating or failing to capture the continuous be-
havior of the functional data. We compare algorithms in Hilbert spaces and those in Hilbert
C∗-modules and show advantages of algorithms in Hilbert C∗-modules over those in Hilbert
spaces, which are summarized in Figure 1. We first consider algorithms in Hilbert spaces for
analyzing functional data x1, x2, . . . ∈ C(Ω,X ), where Ω is a compact measure space and X
is a Hilbert space. There are two possible typical patterns of algorithms in Hilbert spaces.
The first pattern (Pattern 1 in Fig. 1) is regarding each function xi as a vector in a Hilbert
space H containing C(Ω,X ). In this case, the inner product 〈xi, xj〉H between two functions
xi and xj is single complex-valued although xi and xj are functions. Therefore, information
of the value of functions at each point degenerates into a complex value. The second pattern
(Pattern 2 in Fig. 1) is discretizing each function xi as xi(t0), xi(t1), . . . for t0, t1, . . . ∈ Ω
and regarding each discretized value xi(tl) as a vector in the Hilbert space X . In this case,
we obtain the complex-valued inner product 〈xi(tl), xj(tl)〉X at each point tl ∈ Ω. However,
because of the discretization, continuous behaviors, for example, derivatives, total variation,
and frequency components, of the function xi are lost. Algorithms of both patterns in the
Hilbert spaces proceed by using the computed complex-valued inner products. As a result,
capturing features of functions with the algorithms in the Hilbert spaces is difficult. On
the other hand, if we regard each function xi as a vector in a Hilbert C∗-module M (the
rightmost picture in Fig. 1), then the inner product 〈xi, xj〉M between two functions xi
and xj in the Hilbert C∗-module is C∗-algebra-valued. Thus, if we set the C∗-algebra as a
function space such as L∞(Ω), the inner product 〈xi, xj〉M is function-valued. Therefore,
algorithms in Hilbert C∗-modules enable us to capture and extract continuous behaviors of
functions. Moreover, in the case of the outputs are functions, we can control the outputs
according to the features of the functions.

Since RKHM is a generalization of RKHS and vvRKHS (see Subsection 4.2 for fur-
ther details), the framework of RKHMs (Hilbert C∗-modules) allows us to generalize kernel
methods in RKHSs and vvRKHSs (Hilbert spaces) to those in Hilbert C∗-modules. There-
fore, by using RKHM, we can capture and extract features of functions in kernel methods.
The remainder of this paper is devoted to developing the theory of applying RKHMs to
data analysis and showing examples of practical applications of data analysis in RKHMs
(PCA, time-series data analysis, and analysis of interaction effects).

4. RKHM for data analysis

As we mentioned in Section 1, RKHM has been studied in mathematical physics and pure
mathematics. In existing studies, mathematical properties of RKHM such as the relation-
ship between group actions and RKHMs (see the last paragraph of Subsection 2.5) have
been discussed. However, these studies have not been focused on data and algorithms for
analyzing it. Therefore, we fill the gaps between the existing theory of RKHM and its
application to data analysis in this section. We develop theories for the validity to applying
it to data analysis in Subsection 4.1. Also, we investigate the connection of RKHM with
RKHS and vvRKHS in Subsection 4.2.

Generalizations of theories of Hilbert space and RKHS are quite nonobvious for general
C∗-algebras since fundamental properties in Hilbert spaces such as the Riesz representation
theorem and orthogonal complementedness are not always obtained in Hilbert C∗-modules.
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Therefore, we consider limiting C∗-algebras to an appropriate class of C∗-algebras. In fact,
von Neumann-algebras satisfy desired properties.

Definition 4.1 (von Neumann-algebra) A C*-algebra A is called a von Neumann-algebra
if A is isomorphic to the dual Banach space of some Banach space.

The following propositions are fundamental for deriving useful properties for data analysis
in Hilbert C∗-modules and RKHMs (Skeide, 2000, Theorem 4.16), (Manuilov and Troitsky,
2000, Proposition 2.5.4).

Proposition 4.2 (The Riesz representation theorem for Hilbert A-modules) Let A
be a von Neumann algebra. Let H =M⊗B(W)W (see Definition 4.12 for the definition of
the product M⊗B(W)W). Then, every v ∈M can be regarded as an operator in B(W,H),
the set of bounded linear operators from W to H. If M ⊆ B(W,H) is strongly closed (in
this case, we say that M is a von Neumann A-module), then for a bounded A-linear map
L :M→A (see Definition 2.19), there exists a unique u ∈ M such that Lv = 〈u, v〉M for
all v ∈M.

Let A be a von Neumann-algebra. We remark that the Hilbert A-module An for some
n ∈ N is a von Neumann A-module. Moreover, for an A-valued positive definite kernel
defined as k̃1A, where k̃ is a (standard) positive definite kernel, the RKHM Mk is a von
Neumann A-module. (Generally, the Hilbert A-module represented as H⊗A for a Hilbert
space H is a von Neumann A-module. Here, ⊗ represents the tensor product of a Hilbert
space and C∗-module. See Lance (1995, p.6) for further details about the tensor product.)

Proposition 4.3 (Orthogonal complementedness in Hilbert A-modules) Let A be
a von Neumann algebra and let M be a Hilbert A-module. Let V be a closed submodule of
M. Then, any u ∈ M is decomposed into u = u1 + u2 where u1 ∈ V and u2 ∈ V⊥. Here,
V⊥ is the orthogonal complement of V defined as {u ∈M | 〈u, v〉M = 0}.

Therefore, we set A as a von Neumann-algebra to derive useful properties of RKHM for
data analysis. Note that every von Neumann-algebra is unital (see Definitions 2.5).

Assumption 4.4 We assume A is a von Neumann-algebra throughout this paper.

C∗-algebras in Example 2.6 are also von Neumann algebras. As we noted after Example 2.6,
any C∗-algebra can be regarded as a subalgebra of B(W). Thus, this fact implies setting
the range of the positive definite kernel as B(W) rather than general C∗-algebras is effective
for data analysis.

4.1 General properties of RKHM for data analysis

4.1.1 Fundamental properties of RKHM

Similar to the cases of RKHSs, we show RKHMs constructed by A-valued positive definite
kernels have the reproducing property. Also, we show that the RKHM associated with an
A-valued positive definite kernel k is uniquely determined.

Proposition 4.5 The map 〈·, ·〉Mk
defined on Mk,0 is extended continuously to Mk and

the map Mk 3 v 7→ (x 7→ 〈φ(x), v〉Mk
) ∈ AX is injective. Thus, Mk is regarded to be the

subset of AX and has the reproducing property.
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Proposition 4.6 Assume a Hilbert C∗-module M over A and a map ψ : X → M satisfy
the following conditions:

1. ∀x, y ∈ X , 〈ψ(x), ψ(y)〉M = k(x, y)

2. {
∑n

i=1 ψ(xi)ci | xi ∈ X , ci ∈ A} =M

Then, there exists a unique A-linear bijection map Ψ :Mk →M that preserves the inner
product and satisfies the following commutative diagram:

Mk
Ψ //M

X
φ

aa

ψ

>>

�

We give the proofs for the above propositions in Appendix A.

4.1.2 Minimization property and representer theorem in RKHMs

We now develop some theories for the validity to apply RKHM to data analysis. First, we
show a minimization property of orthogonal projection operators, which is a fundamental
property in Hilbert spaces, is also available in Hilbert C∗-modules.

Theorem 4.7 (Minimization property of orthogonal projection operators) Let I
be an index set. Let {qi}i∈I be an ONS of M and V be the completion of the space spanned
by {qi}i∈I . For u ∈ Mk, let P : M → V be the projection operator defined as Pu :=∑

i∈I qi 〈qi, u〉M. Then Pu is the unique solution of the following minimization problem,
where the minimum is taken with respect to a (pre) order in A (see Definition 2.9):

min
v∈V
|u− v|2M. (2)

Proof By Proposition 4.3, u ∈ M is decomposed into u = u1 + u2, where u1 = Pu ∈ V
and u2 = u− u1 ∈ V⊥. Let v ∈ V. Since u1 − v ∈ V, the identity 〈u2, u1 − v〉M = 0 holds.
Therefore, we have

|u− v|2M = |u2 + (u1 − v)|2M = |u2|2M + |u1 − v|2M, (3)

which implies |u − v|2M − |u − u1|2M ≥A 0. Since v ∈ V is arbitrary, u1 is a solution of
minv∈V |u− v|M.

Moreover, if there exists u′ ∈ V such that |u− u1|2M = |u− u′|2M, then letting v = u′ in
Eq. (3) derives |u− u′|2M = |u2|2M + |u1 − u′|2M, which implies |u1 − u′|2M = 0. As a result,
u1 = u′ holds and the uniqueness of u1 has been proved.

Proposition 4.7 shows the orthogonally projected vector uniquely minimizes the deviation
from an original vector in V. Thus, we can generalize methods related to orthogonal pro-
jections in Hilbert spaces to Hilbert C∗-modules.

Next, we show the representer theorem in RKHMs.
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Theorem 4.8 (Representer theorem) Let x1, . . . , xn ∈ X and a1, . . . , an ∈ A. Let h :
X × A2 → A+ be an error function and let g : A+ → A+ satisfy g(c) ≤A g(d) for c ≤A d.
Then, any u ∈ Mk minimizing

∑n
i=1 h(xi, ai, u(xi)) + g(|u|Mk

) admits a representation of
the form

∑n
i=1 φ(xi)ci for some c1, . . . , cn ∈ A.

Proof Let V be the space spanned by {φ(xi)}ni=1. By Proposition 4.3, u ∈ Mk is decom-
posed into u = u1 + u2, where u1 ∈ V, u2 ∈ V⊥. By the reproducing property of Mk, the
following equalities are derived for i = 1, . . . , n:

u(xi) = 〈φ(xi), u〉Mk
= 〈φ(xi), u1 + u2〉Mk

= 〈φ(xi), u1〉Mk
.

Thus,
∑n

i=1 h(xi, ai, u(xi)) is independent of u2. As for the term g(|u|Mk
), since g satisfies

g(c) ≤A g(d) for c ≤A d, we have

g(|u|Mk
) = g(|u1 + u2|Mk

) = g
((
|u1|2Mk

+ |u2|2Mk

)1/2) ≥A g(|u1|Mk
).

Therefore, setting u2 = 0 does not affect the term
∑n

i=1 h(xi, ai, u(xi)), while strictly re-
ducing the term g(|u|Mk

), which implies any minimizer must have u2 = 0. As a result, any
minimizer takes the form

∑n
i=1 φ(xi)ci.

4.2 Connection with RKHSs and vvRKHSs

We show that the framework of RKHM is more general than those of RKHS and vvRKHS.
Let k̃ be a complex-valued positive definite kernel and let Hk̃ be the RKHS associated

with k̃. In addition, let k be an A-valued positive definite kernel and Mk be the RKHM
associated with k. The following proposition is derived by the definitions of RKHSs and
RKHMs.

Proposition 4.9 (Connection between RKHMs with RKHSs) If A = C and k =
k̃, then Hk̃ =Mk.

As for the connection between vvRKHSs and RKHMs, we first remark that in the case
of A = B(W), Definition 2.21 is equivalent to the operator valued positive definite kernel
(Definition 2.2) for the theory of vv-RKHSs.

Lemma 4.10 (Connection between Definition 2.21 and Definition 2.2) If A = B(W),
then, the A-valued positive definite kernel defined in Definition 2.21 is equivalent to the op-
erator valued positive definite kernel defined in Definition 2.2.

The proof for Lemma 4.10 is given in Appendix A.
Let A = B(W) and let Hv

k be the vvRKHS associated with k. To investigate further con-
nections between vvRKHSs and RKHMs, we introduce the notion of interior tensor (Lance,
1995, Chapter 4).

Proposition 4.11 Let M be a Hilbert B(W)-module and let M⊗W be the tensor product
of M and W as vector spaces. The map 〈·, ·〉M⊗W :M⊗W × M⊗W → C defined as

〈v ⊗ w, u⊗ h〉M⊗W = 〈w, 〈v, u〉M h〉W
is a complex-valued pre inner product on M⊗W.
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Definition 4.12 (Interior tensor) The completion of M ⊗ W with respect to the pre
inner product 〈·, ·〉M⊗W is referred to as the interior tensor betweenM and W, and denoted
as M⊗B(W)W.

Note thatM⊗B(W)W is a Hilbert space. We now show vvRKHSs are reconstructed by the
interior tensor between RKHMs and W.

Theorem 4.13 (Connection between RKHMs and vvRKHSs) If A = B(W), then
two Hilbert spaces Hv

k and M⊗B(W)W are isomorphic.

Theorem 4.13 is derived by the following lemma.

Lemma 4.14 There exists a unique unitary map U : Mk⊗B(W)W → Hv
k such that U(φ(x)c⊗

w) = φ(x)(cw) holds for all x ∈ X , c ∈ B(W) and w ∈ W.

Proof First, we show that〈 n∑
i=1

φ(xi)ci ⊗ wi,
l∑

j=1

φ(yj)dj ⊗ hj
〉
Mk⊗W

=

〈 n∑
i=1

φ(xi)(ciwi),
l∑

j=1

φ(yj)(djhj)

〉
Hv
k

holds for all
∑n

i=1 φ(xi)ci ⊗ wi,
∑l

j=1 φ(yj)dj ⊗ hj ∈ Mk ⊗B(W)W. This follows from the
straightforward calculation. Indeed, we have〈 n∑

i=1

φ(xi)ci ⊗ wi,
l∑

j=1

φ(yj)dj ⊗ hj
〉
Mk⊗W

=

n∑
i=1

l∑
j=1

〈
wi, 〈φ(xi)ci, φ(yj)dj〉k hj

〉
W

=

n∑
i=1

l∑
j=1

〈wi, c∗i k(xi, yj)djhj〉W =

n∑
i=1

l∑
j=1

〈ciwi, k(xi, yj)djhj〉W

=

〈 n∑
i=1

φ(xi)(ciwi),

l∑
j=1

φ(yj)(djhj)

〉
Hv
k

.

Therefore, by the standard functional analysis argument, it turns out that there exists an
isometry U : Mk ⊗B(W)W → Hv

k such that U(φ(x)c ⊗ w) = φ(x)(cw) holds for all x ∈ X ,
c ∈ B(W) and w ∈ W. Since the image of U is closed and dense in Hv

k, U is surjective.
Thus U is a unitary map.

5. Kernel mean embedding in RKHM

We generalize KME in RKHSs, which is widely used in analyzing distributions, to RKHMs.
By using the framework of RKHM, we can embed A-valued measures instead of probability
measures (more generally, complex-valued measures). We provide a brief review of A-valued
measures and the integral with respect to A-valued measures in Appendix B. We define a
KME in RKHMs in Subsection 5.1 and show its theoretical properties in Subsection 5.2.

To define a KME by using A-valued measures and integrals, we first define c0-kernels.
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Definition 5.1 (Function space C0(X ,A)) For a locally compact Hausdorff space X , the
set of all A-valued continuous functions on X vanishing at infinity is denoted as C0(X ,A).
Here, an A-valued continuous function u is said to vanish at infinity if the set {x ∈ X |
‖u(x)‖A ≥ ε} is compact for any ε > 0. The space C0(X ,A) is a Banach A-module with
respect to the sup norm.

Note that if X is compact, any continuous function is contained in C0(X ,A).

Definition 5.2 (c0-kernel) Let X be a locally compact Hausdorff space. An A-valued
positive definite kernel k : X × X → A is referred to as a c0-kernel if k is bounded and
φ(x) = k(·, x) ∈ C0(X ,A) for any x ∈ X .

In this section, we impose the following assumption.

Assumption 5.3 We assume X is a locally compact Hausdorff space and k is an A-valued
c0-positive definite kernel. In addition, we assume Mk is a von Neumann A-module (see
Proposition 4.2).

For example, we often consider X = Rd in practical situations. Also, we provide examples
of c0-kernels as follows.

Example 5.4 1. Let A = L∞([0, 1]) and k is an A-valued positive definite kernel defined
such that k(x, y)(t) is a complex-valued c0-positive definite kernel for t ∈ [0, 1] (see
Example 2.22.2). If ‖k(x, y)‖A is continuous with respect to y for any x ∈ X , then
the inclusion

{y ∈ X | ‖k(x, y)‖A ≥ ε} ⊆ {y ∈ X | k(x, y)(t0) ≥ ε}

holds for some t0 ∈ [0, 1] and any x ∈ X and ε > 0. Since k(·, ·)(t0) is a c0-kernel,
the set {y ∈ X | k(x, y)(t0) ≥ ε} is compact (see Definition 5.1). Thus, {y ∈
X | ‖k(x, y)‖A ≥ ε} is also compact and k is an A-valued c0-positive definite kernel.
Examples of complex-valued c0-positive definite kernels are Gaussian, Laplacian and
B2n+1-spline kernels.

2. Let W be a separable Hilbert space and let {ei}∞i=1 be an orthonormal basis of W.
Let A = B(W) and let k : X × X → A be defined as k(x, y)ei = ki(x, y)ei, where
ki : X × X → C is a complex-valued positive definite kernel for any i = 1, 2, . . . (see
Example 2.22.3). If ‖k(x, y)‖A is continuous with respect to y for any x ∈ X , then
k is shown to be an A-valued c0-positive definite kernel in the same manner as the
above example.

We introduce A-valued measure and integral in preparation for defining a KME in
RKHMs. They are special cases of vector measure and integral (Dinculeanu, 1967, 2000),
respectively. We review vector measure and integral as A-valued ones in Appendix B. The
notions of measure and the Lebesgue integral are generalized to A-valued.
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5.1 Kernel mean embedding of C∗-algebra-valued measures

We now define a KME in RKHMs.

Definition 5.5 (KME in RKHMs) Let D(X ,A) be the set of all A-valued finite regular
Borel measures. A kernel mean embedding in an RKHM Mk is a map Φ : D(X ,A)→Mk

defined by

Φ(µ) :=

∫
x∈X

φ(x)dµ(x). (4)

We emphasize that the well-definedness of Φ is not trivial, and von Neumann-A-module is
adequate to show it. More precisely, the following theorem derives the well-definedness.

Theorem 5.6 (Well-definedness for the KME in RKHMs) Let µ ∈ D(X ,A). Then,
Φ(µ) ∈Mk. In addition, the following equality holds for any v ∈Mk:

〈Φ(µ), v〉Mk
=

∫
x∈X

dµ∗(x)v(x). (5)

To show Theorem 5.6, we use the Riesz representation theorem for Hilbert A-modules
(Proposition 4.2).
Proof Let Lµ : Mk → A be an A-linear map defined as Lµv :=

∫
x∈X dµ

∗(x)v(x). The
following inequalities are derived by the reproducing property and the Cauchy–Schwarz
inequality (Lemma 2.16):

‖Lµv‖A ≤
∫
x∈X
‖v(x)‖Ad|µ|(x) =

∫
x∈X
‖ 〈φ(x), v〉Mk

‖Ad|µ|(x)

≤ ‖v‖Mk

∫
x∈X
‖φ(x)‖Mk

d|µ|(x) ≤ |µ|(X )‖v‖Mk
sup
x∈X
‖φ(x)‖Mk

, (6)

where the first inequality is easily checked for a step function s(x) :=
∑n

i=1 ciχEi(x) as
follows: ∥∥∥∥∫

x∈X
dµ∗(x)s(x)

∥∥∥∥
A

=

∥∥∥∥ n∑
i=1

µ(Ei)
∗ci

∥∥∥∥
A
≤

n∑
i=1

‖µ(Ei)‖A‖ci‖A

≤
n∑
i=1

|µ|(Ei)‖ci‖A =

∫
x∈X
‖s(x)‖Ad|µ|(x).

Thus, it holds for any totally measurable functions. Since both |µ|(X ) and supx∈X ‖φ(x)‖Mk

are finite, inequality (6) means Lµ is bounded. Thus, by the Riesz representation theorem
for Hilbert A-modules (Proposition 4.2), there exists uµ ∈Mk such that Lµv = 〈uµ, v〉Mk

.

By setting v = φ(y), for y ∈ X , we have uµ(y) = Lµφ(y)∗ =
∫
x∈X k(y, x)dµ(x). Therefore,

Φ(µ) = uµ ∈Mk and 〈Φ(µ), v〉Mk
=
∫
x∈X dµ

∗(x)v(x).

Corollary 5.7 For µ, ν ∈ D(X ,A), the inner product between Φ(µ) and Φ(ν) is given as
follows:

〈Φ(µ),Φ(ν)〉Mk
=

∫
x∈X

∫
y∈X

dµ∗(x)k(x, y)dν(y).
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Moreover, many basic properties for the existing KME in RKHS are generalized to the
proposed KME as follows.

Proposition 5.8 (Basic properties of the KME Φ) For µ, ν ∈ D(X ,A) and c ∈ A,
Φ(µ+ ν) = Φ(µ) + Φ(ν) and Φ(µc) = Φ(µ)c (i.e., Φ is A-linear, see Definition 2.19) hold.
In addition, for x ∈ X , Φ(δx) = φ(x) (see Definition B.2 for the definition of the A-valued
Dirac measure δx).

This is derived from Eqs. (4) and (5). Note that if A = C, then the proposed KME (4) is
equivalent to the existing KME in RKHS considered in Sriperumbudur et al. (2011).

5.2 Injectivity and universality

Here, we show the connection between the injectivity of the KME and the universality of
RKHM. The proofs of the propositions in this subsection are given in Appendix C.

5.2.1 injectivity

In practice, the injectivity of Φ is important to transform problems in D(X ,A) into those
in Mk. This is because if a KME Φ in an RKHM is injective, then A-valued measures
are embedded into Mk through Φ without loss of information. Note that, for probability
measures, the injectivity of the existing KME is also referred to as the “characteristic”
property. The injectivity of the existing KME in RKHS has been discussed in, for example,
Fukumizu et al. (2007); Sriperumbudur et al. (2010, 2011). These studies give criteria
for the injectivity of the KMEs associated with important complex-valued kernels such
as transition invariant kernels and radial kernels. Typical examples of these kernels are
Gaussian, Laplacian, and inverse multiquadratic kernels. Here, we define the transition
invariant kernels and radial kernels for A-valued measures, and generalize their criteria to
RKHMs associated with A-valued kernels.

To characterize transition invariant kernels, we first define a Fourier transform and
support of an A-valued measure.

Definition 5.9 (Fourier transform and support of an A-valued measure) For an A-
valued measure λ on Rd, the Fourier transform of λ, denoted as λ̂, is defined as

λ̂(x) =

∫
ω∈Rd

e−
√
−1xTωdλ(ω).

In addition, the support of λ is defined as

supp(λ) = {x ∈ Rd | λ(U) >A 0 for any open set U such that x ∈ U}.

Definition 5.10 (Transition invariant kernel and radial kernel) 1. An A-valued
positive definite kernel k : Rd × Rd → A is called a transition invariant kernel if it is
represented as k(x, y) = λ̂(y − x) for a positive A-valued measure λ.

2. An A-valued positive definite kernel k : Rd × Rd → A is called a radial kernel if it is
represented as k(x, y) =

∫
[0,∞) e

−t‖x−y‖2dη(t) for a positive A-valued measure η.

Here, an A-valued measure µ is said to be positive if µ(E) ≥A 0 for any Borel set E.
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We show transition invariant kernels and radial kernels induce injective KMEs.

Proposition 5.11 (The injectivity for transition invariant kernels) Let A = Cm×m
and X = Rd. Assume k : X × X → A is a transition invariant kernel with a positive A-
valued measure λ that satisfies supp(λ) = X . Then, KME Φ : D(X ,A) → Mk defined as
Eq. (4) is injective.

Proposition 5.12 (The injectivity for radial kernels) Let A = Cm×m and X = Rd.
Assume k : X × X → A is a radial kernel with a positive definite A-valued measure η that
satisfies supp(η) 6= {0}. Then, KME Φ : D(X ,A)→Mk defined as Eq. (4) is injective.

Example 5.13 1. If k : Rd × Rd → Cm×m is a matrix-valued kernel whose diagonal
elements are Gaussian, Laplacian, or B2n+1-spline and nondiagonal elements are 0,
then k is a c0-kernel (See Example 2.22.1). There exists a matrix-valued measure λ
that satisfies k(x, y) = λ̂(y−x) and whose diagonal elements are nonnegative and sup-
ported by Rd (c.f. Table 2 in Sriperumbudur et al. (2010)) and nondiagonal elements
are 0. Thus, by Proposition 5.11, Φ is injective.

2. If k is a matrix-valued kernel whose diagonal elements are inverse multiquadratic
and nondiagonal elements are 0, then k is a c0-kernel. There exists a matrix-valued
measure η that satisfies k(x, y) =

∫
[0,∞) e

−t‖x−y‖2dη(t), and whose diagonal elements

are nonnegative and supp(η) 6= {0} and nondiagonal elements are 0 (c.f. Theorem
7.15 in Wendland (2004)). Thus, by Proposition 5.12, Φ is injective.

5.2.2 Connection with universality

Another important property for kernel methods is universality, which ensures that kernel-
based algorithms approximate each continuous target function arbitrarily well. For RKHS,
Sriperumbudur et al. (2011) showed the equivalence of the injectivity of the existing KME
in RKHSs and universality of RKHSs. We define a universality of RKHMs as follows.

Definition 5.14 (Universality) An RKHM is said to be universal if it is dense in C0(X ,A).

We show the above equivalence holds also for RKHM in the case of A = Cm×m.

Proposition 5.15 (Equivalence of the injectivity and universality for A = Cm×m)
Let A = Cm×m. Then, Φ : D(X ,A) → Mk is injective if and only if Mk is dense in
C0(X ,A).

By Proposition 5.15, if k satisfies the condition in Proposition 5.11 or 5.12, then Mk is
universal.

For the case where A is infinite dimensional, the universality of Mk in C0(X ,A) is a
sufficient condition for the injectivity of the proposed KME.

Theorem 5.16 (Connection between the injectivity and universality for general A)
If Mk is dense in C0(X ,A), then Φ : D(X ,A)→Mk is injective.
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However, the equivalence of the injectivity and universality, and the injectivity for transi-
tion invariant kernels and radial kernels are open problems. This is because their proofs
strongly depend on the Hahn–Banach theorem and Riesz–Markov representation theorem,
and generalizations of these theorems to A-valued functions and measures are challenging
problems due to the situation peculiar to the infinite dimensional spaces. Further details of
the proofs of propositions in this section are given in Appendix C.

6. Applications

We apply the framework of RKHM described in Sections 4 and 5 to problems in data
analysis. We propose kernel PCA in RKHMs in Subsection 6.1, time-series data analysis in
RKHMs in Subsection 6.2, and analysis of interaction effects in finite or infinite dimensional
data with the proposed KME in RKHMs in Subsection 6.3. Then, we discuss further
applications in Subsection 6.4.

6.1 PCA in RKHMs

Principal component analysis (PCA) is a fundamental tool for describing data in a low
dimensional space. Its implementation in RKHSs has also been proposed (c.f. Schölkopf
and Smola (2001)). It enables us to deal with the nonlinearlity of data by virtue of the
high expressive power of RKHSs. Here, we generalize the PCA in RKHSs to capture more
information in data, such as multivariate data and functional data, by using the framework
of RKHM.

Applying RKHM to PCA In the existing framework of PCA in Hilbert spaces, the
following reconstruction error is minimized with respect to vectors p1, . . . , pr:

n∑
i=1

∥∥∥∥xi − r∑
j=1

pj 〈pj , xi〉
∥∥∥∥2

, (7)

where x1, . . . , xn are given samples in a Hilbert space and p1, . . . , pr are called princi-
pal axes. Here, the complex-valued inner product 〈pj , xi〉 is the weight with respect to
the principal axis pj for representing the sample xi. PCA for functional data (functional
PCA) has also investigated (Ramsay and Silverman, 2005). For example, in standard func-
tional PCA settings, we set the Hilbert space as L2(Ω) for a compact measure space Ω.
However, if samples x1, . . . , xn are finite dimensional vectors or functions, Eq. (7) fails
to describe their element wise or continuous dependencies on the principal axes. For d-
dimensional (finite dimensional) vectors, we can just split xi = [xi,1, . . . , xi,d] into d vectors
[xi,1, 0, . . . , 0], . . . , [0, . . . , 0, xi,d]. Then, we can understand which element is dominant for
representing xi by using the principal axis pj . On the other hand, for functional data, the
situation is completely different. For example, assume samples are in L2(Ω). Since delta
functions are not contained in L2(Ω), we cannot split a sample xi = xi(t) into discrete func-
tions. In this case, how can we understand the continuous dependencies on the principal
axes with respect to the variable t ∈ Ω? One possible way to answer this question is to
employ Hilbert C∗-modules instead of Hilbert spaces. We consider the same type of recon-
struction error as Eq. (7) in Hilbert C∗-modules. In this case, the inner product 〈pj , xi〉W
is C∗-algebra-valued, which allows us to provide more information than the complex-valued
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one. If we set the C∗-algebra as the function space on Ω such as L∞(Ω) and define a C∗-
algebra-valued inner product which depends on t ∈ Ω, then, the weight 〈pj , xi〉W depends
on t. As a result, we can extract continuous dependencies of samples on the principal axes.
More generally, PCA is often considered in an RKHS Hk̃. In this case, xi in Eq. (7) is

replaced with φ̃(xi), where φ̃ is the feature map, and the inner product and norm are re-
placed with those in the RKHS. We can extract continuous dependencies of samples on the
principal axes by generalizing RKHS to RKHM.

6.1.1 Generalization of the PCA in RKHSs to RKHMs

Let x1, . . . , xn ∈ X be given samples. Let k : X × X → A be an A-valued positive definite
kernel on X and let Mk be the RKHM associated with k. We explore a useful set of
axes p1, . . . , pr in Mk, which are referred to as principal axes, to describe the feature of
given samples x1, . . . , xn. The corresponding components pj 〈pj , φ(xi)〉Mk

are referred to
as principal components. We emphasize our proposed PCA in RKHM provides weights
of principal components contained in A, not in complex numbers. This is a remarkable
difference between our method and existing PCAs. When samples have some structures such
as among variables or in functional data, A-valued weights provide us richer information
than complex-valued ones. For example, if X is the space of functions of multi-variables
and if we set A as L∞([0, 1]), then we can reduce multi-variable functional data to functions
in L∞([0, 1]), functions of single variable (as illustrated in Section 6.1.4).

To obtain A-valued weights of principal components, we consider the following mini-
mization problem regarding the following reconstruction error (see Definition 2.18 for the
definition of ONS):

inf
{pj}rj=1⊆Mk: ONS

n∑
i=1

∣∣∣∣φ(xi)−
r∑
j=1

pj 〈pj , φ(xi)〉Mk

∣∣∣∣2
Mk

, (8)

where the infimum is taken with respect to a (pre) order in A (see Definition 2.9). Since the
identity |φ(xi) −

∑r
j=1 pj 〈pj , φ(xi)〉Mk

|2Mk
= k(xi, xi) −

∑r
j=1 〈φ(xi), pj〉Mk

〈pj , φ(xi)〉Mk

holds and 〈φ(xi), pj〉Mk
is represented as pj(xi) by the reproducing property, the problem (8)

can be reduced to the minimization problem

inf
{pj}rj=1⊆Mk: ONS

n∑
i=1

r∑
j=1

−pj(xi)pj(xi)∗. (9)

In the case of RKHS, i.e., A = C, the solution of the problem (9) is obtained by computing
eigenvalues and eigenvectors of Gram matrices (see, for example, Schölkopf and Smola
(2001)). Unfortunately, we cannot extend their procedure to RKHM straightforwardly.
Therefore, we develop two methods to obtain approximate solutions of the problem (9):
by gradient descents on Hilbert C∗-modules, and by the minimization of the trace of the
A-valued objective function.

6.1.2 Gradient descent on Hilbert C∗-modules

We propose a gradient descent method on Hilbert A-module for the case where A is com-
mutative. An important example of commutative von Neumann-algebra is L∞([0, 1]). The
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gradient descent for a real-valued function on a Hilbert space has been proposed (Smyrlis
and Zisis, 2004). However, in our situation, the objective function of the problem (9) is an
A-valued function in a Hilbert C∗-module An. Thus, the existing gradient descent is not
applicable to our situation. Therefore, we generalize the existing gradient descent algorithm
to A-valued functions on Hilbert C∗-modules.

Let A be a commutative von Neumann-algebra. Assume the positive definite kernel k
takes its values in Ar := {c−d ∈ A | c, d ∈ A+}. For example, for A = L∞([0, 1]), Ar is the
space of real-valued L∞ functions on [0, 1]. By the representer theorem (Theorem 4.8), if
there is a solution of the problem (9), it is represented as pj =

∑n
i=1 φ(xi)cj,i for some cj,i ∈

A. Moreover, since A is commutative, pj(xi)pj(xi)
∗ is equal to pj(xi)

∗pj(xi). Therefore,
the problem (8) onMk is equivalent to the following problem on the Hilbert A-module An
(see Example 2.15 about An):

inf
cj∈An, {

√
Gcj}rj=1: ONS

−
r∑
j=1

c∗jG
2cj , (10)

where G is the A-valued Gram matrix defined as Gi,j = k(xi, xj). For simplicity, we assume
r = 1, i.e., the number of principal axes is 1. We rearrange the problem (10) to the following
problem by adding a penalty term:

inf
c∈An

(−c∗G2c + λ|c∗Gc− 1A|2A), (11)

where λ is a real positive weight for the penalty term. For r > 1, let c1 be a solution
of the problem (10). Then, we solve the same problem in the orthogonal complement of
the module spanned by {c1} and set the solution of this problem as c2. Then, we solve
the same problem in the orthogonal complement of the module spanned by {c1, c2} and
repeat this procedure to obtain solutions c1, . . . cr. The problem (11) is the minimization
problem of an A-valued function defined on the Hilbert A-module An. We search a solution
of the problem (11) along the steepest descent directions. To calculate the steepest descent
directions, we introduce a derivative Dfc of an A-valued function f on a Hilbert C∗-module
at c ∈ M. It is defined as the derivative on Banach spaces (c.f. Blanchard and Brüning
(2015)). The definition of the derivative is included in Appendix D. The following gives the
derivative of the objective function in problem (11).

Proposition 6.1 (Derivative of the objective function) Let f : An → A be defined
as

f(c) = −c∗G2c + λ|c∗Gc− 1A|2A. (12)

Then, f is infinitely differentiable and the first derivative of f is calculated as

Dfc(u) = −2c∗G2u− 4λc∗Gu+ 4λc∗Gcc∗Gu.

Moreover, for each c ∈ An, there exists a unique d ∈ An such that 〈d, u〉An = Dfc(u) for
any u ∈ An. The vector d is calculated as

d = −2G2c− 4λGc + 4λGcc∗Gc. (13)
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Proof The derivative of f is calculated by the definition and the assumption that A
is commutative. Since Dfc is a bounded A-linear operator, by the Riesz representation
theorem (Proposition 4.2), there exists a unique d ∈ An such that 〈d, u〉An = Dfc(u).

Definition 6.2 (Gradient of A-valued functions on Hilbert C∗-modules) Let f :M→
A be a differentiable function. Assume for each c ∈ M, there exists a unique d ∈ M such
that 〈d, u〉An = Dfc(u) for any u ∈ M. In this case, we denote d by ∇fc and call it the
gradient of f at c.

We now develop an A-valued gradient descent scheme.

Theorem 6.3 Assume f : M → A is differentiable. Moreover, assume there exists ∇fc
for any c ∈M. Let ηt > 0. Let c0 ∈M and

ct+1 = ct − ηt∇fct (14)

for t = 0, 1, . . .. Then, we have

f(ct+1) = f(ct)− ηt|∇fct |2M + S(ct, ηt), (15)

where S(c, η) satisfies limη→0 ‖S(c, η)‖A/η = 0.

The statement is derived by the definition of the derivative (Definition D.1). The following
examples show the scheme (14) is valid to solve the problem (11).

Example 6.4 Let A = L∞([0, 1]), let at = |∇fct |2An ∈ A and let bt,η = S(ct, η) ∈ A. If
at ≥A δ1A for some positive real value δ, then the function at on [0, 1] satisfies at(s) > 0 for
almost everywhere s ∈ [0, 1]. On the other hand, since bt,η satisfies limη→0 ‖bt,η‖A/η2 = 0,
there exists sufficiently small positive real value ηt,0 such that for almost everywhere s ∈
[0, 1], bt,ηt,0(s) ≤ ‖bt,ηt,0‖A ≤ η2

t,0δ ≤ ηt,0(1− ξ1)δ hold for some positive real value ξ1. As a

result, −ηt,0|∇fct |2An + S(ct, ηt,0) ≤A −ηt,0ξ1|∇fct |2An holds and by the Eq. (15), we have

f(ct+1) <A f(ct) (16)

for t = 0, 1, . . .. As we mentioned in Example 2.8, the inequality (16) means the function
f(ct+1) ∈ L∞([0, 1]) is smaller than the function f(ct) ∈ L∞([0, 1]) at almost every points
on [0, 1], i.e.,

f(ct+1)(s) < f(ct)(s)

for almost every s ∈ [0, 1].

Example 6.5 Assume A is a finite dimensional space. If |∇fct |2A ≥A δ1A for some positive
real value δ, the inequality f(ct+1) ≤A f(ct)− ηtξ1|∇fct |2An holds for t = 0, 1, . . . and some
ηt and ξ1 in the same manner as Example 6.4. Moreover, the function f defined as Eq. (12)
is bounded below and ∇fct is Lipschitz continuous on the set {c ∈ An | f(c) ≤A f(c0)}. In
this case, if there exists a positive real value ξ2 such that ‖∇fct+1 −∇fct‖An ≥ ξ2‖∇fct‖An,
then we have

ξ2‖∇fct‖An ≤ L‖ct+1 − ct‖An ≤ Lηt‖∇fct‖An ,
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where L is a Liptschitz constant of ∇fct. As a result, we have

f(ct+1) ≤A f(ct)− ηtξ1|∇fct |2An ≤A f(ct)−
ξ1ξ2

L
|∇fct |2An ,

which implies
∑T

t=1 |∇fct |2An ≤A L/(ξ1ξ2)(f(c1)− f(cT+1)). Since f is bounded below, the
sum

∑∞
t=1 |∇fct |2An converges. Therefore, |∇fct |2An → 0 as t → ∞, i.e., the gradient ∇fct

in Eq. (14) converges to 0.

Remark 6.6 It is possible to generalize the above method to the case where the objective
function f has the form f(c) = c∗Gc for G ∈ An×n and A is noncommutative. In this
case, the derivative Dfc is calculated as

Dfc(u) = u∗Gc + c∗Gu.

Therefore, defining the gradient ∇fc as ∇fc = Gc results in Dfc(−η∇fc) = −2ηc∗G2c ≤A
0 for a real positive value η, which allows us to derive the same result as Theorem 6.3.

Remark 6.7 The computational complexity of the PCA in RKHMs is higher than the stan-
dard PCA in RKHSs. Indeed, in the case of RKHSs, the minimization problem is reduced
to an eigenvalue problem of the Gram matrix with respect to given samples. On the other
hand, we solve the minimization problem (8) by the gradient descent, and in each iteration
step, we compute the gradient d in Eq. (13). Since the elements of G and c are in A, the
computation of d involves the multiplication in A such as multiplication of functions. Even
though we compute the multiplication in A approximately in practice (see Subsection 6.1.4),
its computational cost is much higher than the multiplication in C.

6.1.3 Minimization of the trace

In the case of A = B(W), pj(xi) and pj(xi)
∗ in the problem (9) do not always commute.

Therefore, we restrict the solution to the form pj(xi) =
∑n

i=1 φ(xi)ci where each ci is a
Hilbert–Schmidt operator and minimize the trace of the objective function of the prob-
lem (9) as follows:

inf
cj∈F, {

√
Gcj}rj=1: ONS

− tr

( r∑
j=1

c∗jG
2cj

)
, (17)

where F = {c = [c1, . . . , cn] ∈ An | ci is a Hilbert–Schmidt operator for i = 1, . . . , n}.
If A = Cm×m, i.e., W is a finite dimensional space, then we solve the problem (17) by
regarding G as an mn×mn matrix and computing the eigenvalues and eigenvectors of G.

Proposition 6.8 Let A = Cm×m. Let λ1, . . . , λr ∈ C and v1, . . . ,vr ∈ Cmn be the largest
r eigenvalues and the corresponding orthonormal eigenvectors of G ∈ Cmn×mn. Then,

cj = [vj , 0, . . . , 0]λ
−1/2
j is a solution of the problem (17).

Proof Since the identity
∑r

j=1 c∗jG
2cj =

∑r
j=1(
√

Gcj)
∗G(
√

Gcj) holds, any solution

cj of the problem (17) satisfies
√

Gcj = vju
∗ for a normalized vector u ∈ Cm. Thus,
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pj =
∑n

i=1 φ(xi)ci,j , where ci,j is the i-th element of λ
−1/2
j [vj , 0, . . . , 0], is a solution of the

problem.

If W is an infinite dimensional space, we rewrite the problem (17) with the Hilbert–
Schmidt norm as follows:

inf
cj∈F, {

√
Gcj}rj=1: ONS

−
r∑
j=1

‖Gcj‖2F , (18)

where ‖c‖2F =
∑n

i=1 ‖ci‖2HS and ‖ · ‖HS is the Hilbert–Schmidt norm for Hilbert–Schmidt
operators. Similar to Eq. (11), we rearrange the problem (18) to the following problem by
adding a penalty term:

inf
c∈F
−‖Gc‖2F + λ

∣∣∥∥√Gc
∥∥2

F
− 1
∣∣, (19)

where λ is a real positive weight for the penalty term. Then, we can apply the standard
gradient descent method in Hilbert spaces to the problem in F (Smyrlis and Zisis, 2004)
since F is the Hilbert space equipped with the Hilbert–Schmidt inner product. Similar
to the case of Eq. (11), for r > 1, let c1 be a solution of the problem (19). Then, we
solve the same problem in the orthogonal complement of the space spanned by {c1} and
set the solution of this problem as c2. Then, we solve the same problem in the orthogonal
complement of the space spanned by {c1, c2} and repeat this procedure to obtain solutions
c1, . . . cr.

6.1.4 Numerical examples

Experiments with synthetic data We applied the above PCA with A = L∞([0, 1])
to functional data. We randomly generated three kinds of sample-sets from the following
functions of two variables on [0, 1]× [0, 1]:

y1(s, t) = e10(s−t), y2(s, t) = 10st, y3(s, t) = cos(10(s− t)).

Each sample-set i is composed of 20 samples with random noise. We denote these samples by
x1, . . . , x60. The noise was randomly drawn from the Gaussian distribution with mean 0 and
standard deviation 0.3. Since L∞([0, 1]) is commutative, we applied the gradient descent
proposed in Subsection 6.1.2 to solve the problem (8). The parameters were set as λ = 0.1
and ηt = 0.01. We set the L∞([0, 1])-valued positive definite kernel k as (k(xi, xj))(t) =∫ 1

0

∫ 1
0 (t − xi(s1, s2))(t − xj(s1, s2))ds1ds2 (see Example 2.22.1). Since (k(xi, xj))(t) is a

polynomial of t, all the computations on A result in polynomials. Thus, the results are
obtained by keeping coefficients of the polynomials. Moreover, we set c0 as the constant
function [1, . . . , 1]T ∈ An and computed c1, c2, . . . according to Eq. (14). For comparison,
we also vectorized the samples by discretizing yi at 121 = 11 × 11 points composed of
11 equally spaced points in [0, 1] (0, 0.1, . . . , 1) and applied the standard kernel PCA in
the RKHS associated with the Laplacian kernel on R121. The results are illustrated in
Figure 2. Since the samples are contaminated by the noise, the PCA in the RKHS cannot
separate three sample-sets. On the other hand, the L∞([0, 1])-valued weights of principal
components obtained by the proposed PCA in the RKHM reduce the information of the
samples as functions. As a result, it clearly separates three sample-sets.

27



Hashimoto, Ishikawa, Ikeda, Komura, Katsura, and Kawahara

Figure 2: The L∞([0, 1])-valued first principal components obtained by the proposed PCA
in an RKHM (left) and the real-valued first and second principal components
obtained by the standard PCA in an RKHS (right)

Figure 3: The convergence of the function f(ct) along t.

Figure 3 shows the convergence of the proposed gradient descent. In this example,
we only compute the first principal components, hence r is set as 1. For the objective
function f defined as f(c) = −c∗G2c + λcGcc∗Gc + λc∗Gc, functions f(ct) ∈ L∞([0, 1])
for t = 0, . . . , 9 are illustrated. We can see f(ct+1) < f(ct) and f(ct) gradually approaches
a certain function as t grows.

Experiments with real-world data To show the proposed PCA with RKHMs extracts
the continuous dependencies of samples on the principal axes as we insisted in Section 3,
we conducted experiments with climate data in Japan1. The data is composed of the max-
imum and minimum daily temperatures at 47 prefectures in Japan in 2020. The original
data is illustrated in Figure 4. The red line represents the temperature at Hokkaido, the
northernmost prefecture in Japan and the blue line represents that at Okinawa, the south-
ernmost prefecture in Japan. We respectively fit the maximum and minimum temperatures
at each location to the Fourier series a0 +

∑10
i=1(ai cos(it) + bi sin(it)). The fitted functions

1. available at https://www.data.jma.go.jp/gmd/risk/obsdl/
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Figure 4: Original climate data at 47 locations

x1, . . . , x47 ∈ C([0, 366],R2) are illustrated in Figure 5. Then, we applied the PCA with
the RKHM associated with the L∞([0, 366])-valued positive definite kernel (k(x, y))(t) =
e−‖x(t)−y(t)‖22 . Let F = {a0 +

∑10
i=1(ai cos(it) + bi sin(it)) | ai, bi ∈ R} ⊆ L2([0, 366]). We

project k(x, y) onto F . Then, for c, d ∈ F , c+ d ∈ F is satisfied, but cd ∈ F is not always
satisfied. Thus, we approximate cd with a0 +

∑N
i=1(ai cos(it) + bi sin(it)) for N ≤ 10 to

restrict all the computations in F in practice. Here, to remove high frequency components
corresponding to noise and extract essential information, we set N = 3. Figure 6(a) shows
the computed L∞([0, 366])-valued weights of the first principal axis in the RKHM, which
continuously depends on time. The red and blue lines correspond to Hokkaido and Oki-
nawa, respectively. We see these lines are well-separated from other lines corresponding to
other prefectures. For comparison, we also applied the PCA in RKHSs to discrete time
data. First, we respectively applied the standard kernel PCA with RKHSs to the original
temperature each day and obtained real-valued weights of the first principal components.
Here, we used the complex-valued Gaussian kernel k̃(x, y) = e−‖x−y‖

2
2 . Then, we connected

the results and obtained Figure 6(b). Since the original data is not smooth, the PCA ampli-
fies the non-smoothness, which provides meaningless results. Next, we respectively applied
the standard kernel PCA with the RKHS to the value of the fitted Fourier series each day
and obtained real-valued weights of the first principal components. Then, similar to the
case of Figure 6(b), we connected the results and obtained Figure 6(c). In this case, the ex-
tracted features somewhat capture the continuous behaviors of the temperatures. However,
the PCA in the RKHS amplifies high frequency components, which correspond to noise.
Therefore, the result fails to separate the temperatures of Hokkaido and Okinawa, whose
behaviors are significantly different as illustrated in Figure 4. On the other hand, the PCA
in the RKHM captures the feature of each sample as a function and removes nonessential
high frequency components, which results in separating functional data properly.

6.2 Time-series data analysis

The problem of analyzing dynamical systems from data by using Perron–Frobenius oper-
ators and their adjoints (called Koopman operators), which are linear operators express-
ing the time evolution of dynamical systems, has recently attracted attention in various
fields (Budǐsić et al., 2012; Črnjarić-Žic et al., 2020; Takeishi et al., 2017a,b; Lusch et al.,
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Figure 5: Fitted Fourier series

(a) PCA with RKHMs for the fitted Fourier
series

(b) PCA with RKHSs for the original data

(c) PCA with RKHSs for the fitted Fourier
series

Figure 6: Principal components of PCA for climate data

2018). And, several methods for this problem using RKHSs have also been proposed (Kawa-
hara, 2016; Klus et al., 2020; Ishikawa et al., 2018; Hashimoto et al., 2020; Fujii & Kawahara,
2019). In these methods, sequential data is supposed to be generated from dynamical sys-
tems and is analyzed through Perron–Frobenius operators in RKHSs. To analyze the time
evolution of functional data, we generalize Perron–Frobenius operators defined in RKHSs to
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those in RKHMs by using an operator-valued positive definite kernel describing similarities
between pairs of functions.

Defining Perron–Frobenius operators in RKHMs We consider the RKHM and
vvRKHS associated with an operator-valued positive definite kernel. VvRKHSs are associ-
ated with operator-valued kernels, and as we stated in Lemma 4.10, those operator-valued
kernels are special cases of C∗-algebra-valued positive definite kernels. Here, we discuss the
advantage of RKHMs over vvRKHSs. Comparing with vvRKHSs, RKHMs have enough
representation power for preserving continuous behaviors of infinite dimensional operator-
valued kernels, while vvRKHSs are not sufficient for preserving such behaviors. Let W be
a Hilbert space, let k : X × X → B(W) be an operator-valued positive definite kernel on a
data space X , and let Hv

k be the vvRKHS associated with k. Since the inner products in
vvRKHSs have the form 〈w, k(x, y)h〉 for w, h ∈ W and x, y ∈ X , if W is a d-dimensional
space, putting w as d linearly independent vectors in W reconstructs k(x, y). However, if
W is an infinite dimensional space, we need infinitely many w to reconstruct k(x, y), and
we cannot recover the continuous behavior of the operator k(x, y) with finitely many w. For
example, let X = C(Ω,Y) andW = L2(Ω) for a compact measure space Ω and a topological
space Y. Let (k(x, y)w)(s) =

∫
t∈Ω k̃(x(s), y(t))w(t)dt, where k̃ is a complex-valued positive

definite kernel on Y (see Example 2.22.4). The operator k(x, y) for functional data x and
y describes the continuous changes of similarities between function x and y. However, the
estimation or prediction of the operator k(x, y) in vvRKHSs fails to extract the continuous
behavior of the function k̃(x(s), y(t)) in the operator k(x, y) since vectors in vvRKHSs have
the form k(·, y)w and we cannot completely recover k(x, y) with finitely many vectors in
the vvRKHS. On the other hand, RKHMs have enough information to recover k(x, y) since
it is just the inner product between two vectors φ(x) and φ(y).

6.2.1 Perron–Frobenius operator in RKHSs

We briefly review the definition of the Perron-Frobenius operator on RKHS and existing
methods for analysis of time-series data through Perron–Frobenius operators and construc-
tion of their estimations (Kawahara, 2016; Hashimoto et al., 2020) . First, we define Perron–
Frobenius operators in RKHSs. Let {x0, x1, . . .} ⊆ X be time-series data. We assume it is
generated from the following deterministic dynamical system:

xi+1 = f(xi), (20)

where f : X → X is a map. By embedding xi and f(xi) in an RKHS Hk̃ associated with a

positive definite kernel k̃ and the feature map φ̃, dynamical system (20) in X is transformed
into that in the RKHS as

φ̃(xi+1) = φ̃(f(xi)).

The Perron–Frobenius operator K̃ in the RKHS is defined as a linear operator on Hk̃
satisfying

K̃φ̃(x) := φ̃(f(x))

for x ∈ X . If {φ̃(x) | x ∈ X} is linearly independent, K̃ is well-defined as a linear map in
the RKHS. For example, if k̃ is a universal kernel (Sriperumbudur et al., 2011) such as the
Gaussian or Laplacian kernel on X = Rd, {φ̃(x) | x ∈ X} is linearly independent.
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By considering eigenvalues and the corresponding eigenvectors of K̃, we can understand
the long-time behavior of the dynamical system. For example, let v1, . . . , vm be the eigen-
vectors with respect to eigenvalue 1 of K̃. We project the vector φ̃(x0) onto the subspace
spanned by v1, . . . , vm. We denote the projected vector by v. Then, for α = 1, 2, . . ., we
have

φ̃(xα) = K̃α(v + v⊥) = v + K̃αv⊥,

where v⊥ = φ̃(x0) − v. Therefore, by calculating a pre-image of v, we can extract the
time-invariant component of the dynamical system with the initial value x0.

For practical uses of the above discussion, we construct an estimation of K̃ only with
observed data {x0, x1, . . .} ⊆ X as follows: We project K̃ onto the finite dimensional sub-
space spanned by {φ̃(x0), . . . , φ̃(xT−1)}. Let W̃T := [φ̃(x0), . . . , φ̃(xT−1)] and W̃T = Q̃T R̃T

be the QR decomposition of W̃T in the RKHS. Then, the Perron–Frobenius operator
K̃ is estimated by projecting K̃ onto the space spanned by {φ̃(x0), . . . , φ̃(xT−1)}. Since
K̃φ̃(xi) := φ̃(f(xi)) = φ̃(xi+1) holds, we construct an estimation K̃T of K̃ as follows:

K̃T : = Q̃∗T K̃Q̃T = Q̃∗T K̃W̃T R̃−1
T = Q̃∗T [φ̃(x1), . . . , φ̃(xT )]R̃−1

T ,

which can be computed only with observed data.

6.2.2 Perron–Frobenius operator in RKHMs

Existing analyses (Kawahara, 2016; Hashimoto et al., 2020) of time-series data with Perron–
Frobenius operators are addressed only in RKHSs. In the remaining parts of this section,
we generalize the existing analyses to RKHM to extract continuous behaviors of functional
data. We consider the case where time-series is functional data. Let Ω be a compact
measure space, Y be a topological space, X = C(Ω,Y), A = B(L2(Ω)), and {x0, x1, . . .} ⊆
X be functional time-series data. Let k : X × X → A be defined as (k(x, y)w)(s) =∫
t∈Ω k̃(x(s), y(t))w(t)dt, where k̃ : Y × Y → C is a complex-valued positive definite kernel

(see Example 2.22.4 and the last paragraph of Section 3). The operator k(x, y) is the integral
operator whose integral kernel is k̃(x(s), y(t)). We define a Perron–Frobenius operator in
the RKHM Mk associated with the above kernel k as an A-linear operator satisfying

Kφ(x) = φ(f(x))

for x ∈ X . We assume K is well-defined on a dense subset ofMk. Then, for α, β = 1, 2, . . .,
we have

k(xα, xβ) = 〈φ(xα), φ(xβ)〉Mk
=
〈
Kαφ(x0),Kβφ(x0)

〉
Mk

.

Therefore, by estimating K in the RKHM Mk, we can extract the similarity between
arbitrary points of functions xα and xβ. Moreover, the eigenvalues and eigenvectors of
K provide us a decomposition of the similarity k(xα, xβ) into a time-invariant term and
time-dependent term. Since K is a linear operator on a Banach spaceMk, eigenvalues and
eigenvectors of K are available. Let v1, . . . , vm ∈ Mk be the eigenvectors with respect to
eigenvalue 1 of K. We project the vector φ(x0) onto the submodule spanned by v1, . . . , vm,
which is denoted by V. Let {q1, . . . , qm} ⊆ Mk be an orthonormal basis of V and let
v =

∑m
i=1 qi 〈qi, φ(x0)〉Mk

. Then, we have

k(xα, xβ) =
〈
Kα(v + v⊥),Kβ(v + v⊥)

〉
Mk

= 〈v, v〉Mk
+ r(α, β), (21)
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where v⊥ = φ(x0)−v and r(α, β) =
〈
Kαv,Kβv⊥

〉
Mk

+
〈
Kαv⊥,Kβv

〉
Mk

+
〈
Kαv⊥,Kβv⊥

〉
Mk

.

Therefore, the term 〈v, v〉Mk
provides us with the information about time-invariant simi-

larities.

Remark 6.9 We can also consider the vvRKHS Hv
k with respect to the operator-valued

kernel k. Here, we discuss the difference between the case of vvRKHS and RKHM. The
Perron–Frobenius operator Kv in a vvRKHS Hv

k (Fujii & Kawahara, 2019) is defined as a
linear operator satisfying

Kvφ(x)w = φ(f(x))w

for x ∈ X and w ∈ W. However, with finitely many vectors in Hv
k, we can only recover an

projected operator UU∗k(xα, xβ)UU∗, where N ∈ N, U = [u1, . . . , uN ], and {u1, . . . , uN} is
an orthonormal system on W as follows:

U∗k(xα, xβ)U =
[
〈φ(xs)ui, φ(xt)uj〉Hv

k

]
i,j

=
[〈

(Kv)αφ(x0)ui, (K
v)βφ(x0)uj

〉
Hv
k

]
i,j
. (22)

Furthermore, let v1, . . . , vm ∈ Mk be the eigenvectors with respect to eigenvalue 1 of Kv.
Let {q1, . . . , qm} ⊆ Hv

k be an orthonormal basis of the subspace spanned by v1, . . . , vm and
let ṽj =

∑m
i=1 qi 〈qi, φ(x0)uj〉Hv

k
. Then, we have

U∗k(xα, xβ)U =
[
〈(Kv)α(ṽi + ṽ⊥i ), (Kv)β(ṽj + ṽ⊥j )〉Hv

k

]
i,j

= [〈ṽi, ṽj〉Hv
k
]i,j + r̃(α, β), (23)

where ṽ⊥i = φ(x0)ui − ṽi and r̃(α, β) = [〈(Kv)αṽi, (K
v)β ṽ⊥j 〉Hv

k
+ 〈(Kv)αṽ⊥i , (K

v)β ṽj〉Hv
k

+

〈(Kv)αṽ⊥i , (K
v)β ṽ⊥j 〉Hv

k
]i,j. Therefore, with vvRKHSs, we cannot recover the continuous

behavior of the operator k(x, y) which encodes similarities between functions x and y.

6.2.3 Estimation of Perron–Frobenius operators in RKHMs

In practice, we only have time-series data but do not know the underlying dynamical sys-
tem and its Perron–Frobenius operator in an RKHM. Therefore, we consider estimating the
Perron–Frobenius operator only with the data. To do so, we generalize the Gram–Schmidt
orthonormalization algorithm to Hilbert C∗-modules to apply the QR decomposition and
project Perron–Frobenius operators onto the submodule spanned by {φ(x0), . . . , φ(xT−1)}.
The Gram–Schmidt orthonormalization in Hilbert modules is theoretically investigated
by Cnops (1992). Here, we develop a practical method for our settings. Then, we can
apply the decomposition (21), proposed in Subsection 6.2.2, of the estimated operator re-
garding eigenvectors. Since we are considering the RKHM associated with the integral
operator-valued positive definite kernel defined in the first part of Subsection 6.2.2, we
assume A = B(W) and we denote by M a Hilbert C∗-module over A throughout this
subsection. Note that integral operators are compact.

We first develop a normalization method for Hilbert C∗-modules. In C∗-algebras,
nonzero elements are not always invertible, which is the main difficulty of the normal-
ization in Hilbert C∗-modules. However, by carefully applying the definition of normalized
(see Definition 2.17), we can construct a normalization method.

Proposition 6.10 (Normalization) Let ε ≥ 0 and let q̂ ∈M satisfy ‖q̂‖M > ε. Assume
〈q̂, q̂〉M is compact. Then, there exists b̂ ∈ A such that ‖b̂‖A < 1/ε and q := q̂b̂ is normalized.
In addition, there exists b ∈ A such that ‖q̂ − qb‖M ≤ ε.
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Proof Let λ1 ≥ λ2 ≥ · · · ≥ 0 be the eigenvelues of the compact operator 〈q̂, q̂〉M, and
m′ := max{j | λj > ε2}. Since 〈q̂, q̂〉M is positive and compact, it admits the spectral
decomposition 〈q̂, q̂〉M =

∑∞
i=1 λiviv

∗
i , where vi is the orthonormal eigenvector with respect

to λi. Also, since λ1 = ‖q̂‖2M > ε2, we have m′ ≥ 1. Let b̂ =
∑m′

i=1 1/
√
λiviv

∗
i . By the

definition of b̂, ‖b̂‖A = 1/
√
λm′ < 1/ε holds. Also, we have

〈q̂b̂, q̂b̂〉M = b̂∗ 〈q̂, q̂〉M b̂ =

m′∑
i=1

1√
λi
viv
∗
i

∞∑
i=1

λiviv
∗
i

m′∑
i=1

1√
λi
viv
∗
i =

m′∑
i=1

viv
∗
i .

Thus, 〈q̂b̂, q̂b̂〉M is a nonzero orthogonal projection.

In addition, let b =
∑m′

i=1

√
λiviv

∗
i . Since b̂b =

∑m′

i=1 viv
∗
i , the identity 〈q̂, q̂b̂b〉 = 〈q̂b̂b, q̂b̂b〉

holds, and we obtain

〈q̂ − qb, q̂ − qb〉M = 〈q̂ − q̂b̂b, q̂ − q̂b̂b〉M = 〈q̂, q̂〉 − 〈q̂b̂b, q̂b̂b〉M

=
∞∑
i=1

λiviv
∗
i −

m′∑
i=1

λiviv
∗
i =

∞∑
i=m′+1

λiviv
∗
i .

Thus, ‖q̂ − qb̂‖M =
√
λm′+1 ≤ ε holds, which completes the proof of the proposition.

Proposition 6.10 and its proof provide a concrete procedure to obtain normalized vectors in
M. This enables us to compute an orthonormal basis practically by applying Gram-Schmidt
orthonormalization with respect to A-valued inner product.

Proposition 6.11 (Gram-Schmidt orthonormalization) Let {wi}∞i=1 be a sequence in
M. Assume 〈wi, wj〉M is compact for any i, j = 1, 2, . . .. Consider the following scheme
for i = 1, 2, . . . and ε ≥ 0:

q̂j = wj −
j−1∑
i=1

qi 〈qi, wj〉M , qj = q̂j b̂j if ‖q̂j‖M > ε,

qj = 0 o.w.,

(24)

where b̂j is defined as b̂ in Proposition 6.10 by setting q̂ = q̂j. Then, {qj}∞j=1 is an orthonor-
mal basis in M such that any wj is contained in the ε-neighborhood of the space spanned by
{qj}∞j=1.

Remark 6.12 We give some remarks about the role of ε in Propositions 6.10. The vector
q̂i can always be reconstructed by wi only when ε = 0. This is because the information of
the spectrum of 〈q̂i, q̂i〉M may be lost if ε > 0. However, if ε is sufficiently small, we can

reconstruct q̂i with a small error. On the other hand, the norm of b̂i can be large if ε is
small, and the computation of {qi}∞i=1 can become numerically unstable. This corresponds
to the trade-off between the theoretical accuracy and numerical stability.

To prove Proposition 6.11, we first prove the following lemmas.

Lemma 6.13 For c ∈ A and v ∈M, if 〈v, v〉M c = 〈v, v〉M, then vc = v holds.
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Proof If 〈v, v〉M c = 〈v, v〉M, then c∗ 〈v, v〉M = 〈v, v〉M and we have

〈vc− v, vc− v〉M = c∗ 〈v, v〉M c− c∗ 〈v, v〉M − 〈v, v〉M c+ 〈v, v〉M = 0,

which implies vc = v.

Lemma 6.14 If q ∈M is normalized, then q 〈q, q〉M = q holds.

Proof Since 〈q, q〉M is a projection, 〈q, q〉M 〈q, q〉M = 〈q, q〉M holds. Therefore, letting
c = 〈q, q〉M and v = q in Lemma 6.13 completes the proof of the lemma.

Proof of Proposition 6.11 By Proposition 6.10, qj is normalized, and for ε ≥ 0, there
exists bj ∈ A such that ‖q̂j−qjbj‖M ≤ ε. Therefore, by the definition of q̂j , ‖wj−vj‖M ≤ ε
holds, where vj is a vector in the space spanned by {qj}∞j=0 which is defined as vj =∑j−1

i=1 qi 〈qi, wj〉M − qjbj . This means that the ε-neighborhood of the space spanned by
{qj}∞j=1 contains {wj}∞j=1. Next, we show the orthogonality of {qj}∞j=1. Assume q1, . . . , qj−1

are orthogonal to each other. For i < j, the following identities are deduced by Lemma 6.14:

〈qj , qi〉M = b̂∗t 〈q̂j , qi〉M = b̂∗j

〈
wj −

j−1∑
l=1

ql 〈ql, wj〉 , qi
〉
M

= b̂∗j
(
〈wj , qi〉M −

〈
qi 〈qi, wj〉M , qi

〉)
= b̂∗j

(
〈wj , qi〉M − 〈wj , qi〉M

)
= 0.

Therefore, q1, . . . , qj are also orthogonal to each other, which completes the proof of the
proposition.

In practical computations, the scheme (24) should be represented with matrices. For
this purpose, we derive the following QR decomposition from Proposition 6.11. This is a
generalization of the QR decomposition in Hilbert spaces.

Corollary 6.15 (QR decomposition) For n ∈ N, let W := [w1, . . . , wn] and Q :=
[q1, . . . , qn]. Let ε ≥ 0. Then, there exist R,Rinv ∈ An×n that satisfy

Q = WRinv, ‖W −QR‖ ≤ ε. (25)

Here, ‖W‖ for a A-linear map W : An →M is defined as ‖W‖ := sup‖v‖An=1 ‖Wv‖M.

Proof Let R = [ri,j ]i,j be an n × n A-valued matrix. Here, ri,j is defined by ri,j =
〈qi, wj〉M ∈ A for i < j, ri,j = 0 for i > j, and rj,j = bj , where bj is defined as b in Propo-

sition 6.10 by setting q̂ = q̂j . In addition, let B̂ = diag{b̂1, . . . , b̂n}, B = diag{b1, . . . , bn},
and Rinv = B̂(I + (R − B)B̂)−1 be n × n A-valued matrices. The equality Q = WRinv

is derived directly from scheme (24). In addition, by the scheme (24), for t = 1, . . . , n, we
have

wj =

j−1∑
i=1

qi 〈qi, wj〉M + q̂j =

j−1∑
i=1

qi 〈qi, wj〉M + qjbj + q̂j − qjbj = Qrj + q̂j − qjbj ,
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where rj ∈ An is the i-th column of R. Therefore, by Proposition 6.10, ‖wj − Qrj‖M =
‖q̂j − qjbj‖M ≤ ε holds for j = 1, . . . , n, which implies ‖W −QR‖ ≤ ε.

We call the decomposition (25) as the QR decomposition in Hilbert C∗-modules. Although
we are handling vectors inM, by applying the QR decomposition, we only have to compute
Rinv and R.

We now consider estimating the Perron–Frobenius operator K with observed time-series
data {x0, x1, . . .}. Let WT = [φ(x0), . . . , φ(xT−1)]. We are considering an integral operator-
valued positive definite kernel (see the first part of Subsection 6.2.2 and the last para-
graph in Section 3). Since integral operators are compact, WT satisfies the assumption
in Corollary 6.11. Thus, let WTRinv,T = QT be the QR decomposition (25) of WT in
the RKHM Mk. The Perron–Frobenius operator K is estimated by projecting K onto
the space spanned by {φ(x0), . . . , φ(xT−1)}. We define KT as the estimation of K. Since
Kφ(xi) = φ(f(xi)) = φ(xi+1) hold, KT can be computed only with observed data as follows:

KT = Q∗TKQT = Q∗TKWTRinv,T = Q∗T [φ(x1), . . . , φ(xT )]Rinv,T .

Remark 6.16 In practical computations, we only need to keep the integral kernels to im-
plement the Gram–Schmidt orthonormalization algorithm and estimate Perron–Frobenius
operators in the RKHM associated with the integral operator-valued kernel k. Therefore, we
can directly access integral kernel functions of operators, which is not achieved by vvRKHS as
we stated in Remark 4.13. Indeed, the operations required for estimating Perron–Frobenius
operators are explicitly computed as follows: Let c, d ∈ B(L2(Ω)) be integral operators whose
integral kernels are f(s, t) and g(s, t). Then, the integral kernels of the operator c+d and cd
are f(s, t)+g(s, t) and

∫
r∈Ω f(s, r)g(r, t)dr, respectively. And that of c∗ is f(t, s). Moreover,

if c is positive, let c+
ε be

∑
λi>ε

1/
√
λivivi

∗, where λi are eigenvalues of the compact positive
operator c and vi are corresponding orthonormal eigenvectors. Then, the integral kernel of
the operator c+

ε is
∑

λi>ε
1/
√
λivi(s)vi(t).

6.2.4 Numerical examples

To show the proposed analysis with RKHMs captures continuous changes of values of kernels
along functional data as we insisted in Section 3, we conducted experiments with river flow
data of the Thames River in London2. The data is composed of daily flow at 10 stations.
We used the data for 51 days beginning from January first, 2018. We regard every daily
flow as a function of the ratio of the distance from the most downstream station and fit
it to a polynomial of degree 5 to obtain time series x0, . . . , x50 ∈ C([0, 1],R). Then, we
estimated the Perron–Frobenius operator which describes the time evolution of the series
x0, . . . , x50 in the RKHM associated with the B(L2([0, 1]))-valued positive definite kernel
k(x, y) defined as the integral operator whose integral kernel is k̃(s, t) = e−|x(s)−y(t)|2 for
x, y ∈ C([0, 1],R). In this case, T = 50. As we noted in Remark 6.16, all the computations
in A = B(L2([0, 1])) are implemented by keeping integral kernels of operators. Let F be
the set of polynomials of the form xi(s, t) =

∑5
j,l=0 ηj,ls

jtl, where ηj,l ∈ R. We project k̃

2. available at https://nrfa.ceh.ac.uk/data/search
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(a) RKHM (b) vvRKHS

Figure 7: Heat maps representing time-invariant similarities

onto F . Then, for c, d ∈ F , c + d ∈ F is satisfied, but cd ∈ F is not always satisfied.
Thus, we project cd onto F to restrict all the computations in F in practice. We computed
the time-invariant term 〈v, v〉Mk

in Eq. (22). Regarding the computation of eigenvectors
with respect to the eigenvalue 1, we consider the following minimization problem for the
estimated Perron–Frobenius operator KT :

inf
v∈AT

|KTv − v|2AT − λ|v|
2
AT . (26)

Here, −λ|v|2AT is a penalty term to keep v not going to 0. Since the objective function of
the problem (26) is represented as v∗(K∗TKT −K∗T −KT +(1−λ)I)v, where I is the identity
operator on AT , we apply the gradient descent on AT (see Remark 6.6). Figure 7(a) shows
the heat map representing the integral kernel of 〈v, v〉Mk

.

For comparison, we also applied the similar analysis in a vvRKHS. We computed the
time-invariant term [〈ṽi, ṽj〉Hv

k
]i,j in Eq. (23) by setting ui as orthonormal polynomials of

the form ui(s) =
∑5

j=1 ηjs
j , where ηj ∈ R. Let cinv = [〈ṽi, ṽj〉Hv

k
]i,j . In this case, we can-

not obtain the integral kernel of the time-invariant term of the operator k(xα, xβ), which
is denoted by k̃inv here. Instead, by approximating k(xα, xβ) by UU∗k(xα, xβ)UU∗ and

computing UcinvU
∗χ[0,t], we obtain an approximation of

∫ t
0 k̃inv(s, r)dr for s ∈ [0, 1]. Here,

χE : [0, 1] → {0, 1} is the indicator function for a Borel set E on [0, 1]. Therefore, by nu-
merically differentiating UcinvU

∗χ[0,t] by t, we obtain an approximation of k̃inv. Figure 7(b)

shows the heat map representing the approximation of k̃inv.

Around the upstream stations, there are many branches and the flow is affected by them.
Thus, the similarity between flows at two points would change along time. While, around
the downstream stations, the flow is supposed not to be affected by other rivers. Thus, the
similarity between flows at two points would be invariant along time. The values around
the diagonal part of Figure 7(a) (RKHM) become small as s and t become large (as going
up the river). On the other hand, those of Figure 7(b) (vvRKHS) are also large for large s
and t. Therefore, RKHM captures the aforementioned fact more properly.
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6.3 Analysis of interaction effects

Polynomial regression is a classical problem in statistics (Hastie et al., 2009) and analyzing
interacting effects by the polynomial regression has been investigated (for its recent im-
provements, see, for example, Suzumura et al. (2017)). Most of the existing methods focus
on the case of finite dimensional (discrete) data. However, in practice, we often encounter
situations where we cannot fix the dimension of data. For example, observations are ob-
tained at multiple locations and the locations are not fixed. It may be changed depending
on time. Therefore, analysing interaction effects of infinite dimensional (continuous) data is
essential. We show the KMEs of A-valued measures in RKHMs provide us with a method
for the analysis of infinite dimensional data by setting A as an infinite dimensional space
such as B(W). Moreover, the proposed method does not need the assumption that interac-
tion effects are described by a polynomial. We first develop the analysis in RKHMs for the
case of finite dimensional data in Subsection 6.3.1. Then, we show the analysis is naturally
generalized to the infinite dimensional data in Subsection 6.3.2.

Applying A-valued measures and KME in RKHMs Using A-valued measures, we
can describe the measure corresponding to each point of functional data as functions or
operators. For example, let X be a locally compact Hausdorff space and let x1, x2, . . . ∈
C([0, 1],X ) be samples. Let A = L∞([0, 1]) and let µ be the A-valued measure defined
as µ(t) = µ̃t, where µ̃t is the distribution which samples x1(t), x2(t), . . . follow. Then,
µ describes continuous behaviors of the distribution of samples x1(t), x2(t), . . . with re-
spect to t. Moreover, let A = B(L2([0, 1])) and let µ be the A-valued measure defined as
(µ(E)v)(s) =

∫
t∈[0,1] µ̃(E)s,tv(t)dt for a Borel set E, where µ̃s,t is the joint distribution of

the distributions which samples x1(s), x2(s), . . . and samples x1(t), x2(t), . . . follow. Then,
µ describes continuous dependencies of samples x1(s), x2(s), . . . and samples x1(t), x2(t), . . .
with respect to s and t. Using the KME in RKHMs, we can embed A-valued measures into
RKHMs, which enables us to compute inner products between A-valued measures. Then,
we can generalize algorithms in Hilbert spaces to A-valued measures.

6.3.1 The case of finite dimensional data

In this subsection, we assume A = Cm×m. Let X be a locally compact Hausdorff space
and let x1, . . . , xn ∈ Xm×m and y1, . . . , yn ∈ A be given samples. We assume there exist
functions fj,l : X → A such that

yi =
m∑

j,l=1

fj,l((xi)j,l)

for i = 1, . . . , n. For example, the (j, l)-element of each xi describes an effect of the l-th
element on the j-th element of xi and fj,l is a nonlinear function describing an impact of
the effect to the value yi. If the given samples yi are real or complex-valued, we can regard
them as yi1A to meet the above setting. Let µx ∈ D(X ,Cm×m) be a Cm×m-valued measure
defined as (µx)j,l = δ̃xj,l , where δ̃x for x ∈ X is the standard (complex-valued) Dirac measure
centered at x. Note that the (j, l)-element of µx describes a measure regarding the element
xj,l. Let k be an A-valued c0-kernel (see Definition 5.2), let Mk be the RKHM associated
with k, and let Φ be the KME defined in Section 5.1. In addition, let V be the submodule
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of Mk spanned by {Φ(µx1), . . . ,Φ(µxn)}, and let Pf : V → Cm×m be a Cm×m-linear map
(see Definition 2.19) which satisfies

PfΦ(µxi) =
m∑

j,l=1

fj,l((xi)j,l)

for i = 1, . . . , n. Here, we assume the vectors Φ(µx1), . . . ,Φ(µxn) are Cm×m-linearly inde-
pendent (see Definition 2.20).

6.3.2 Generalization to the continuous case

We generalize the setting mentioned in Subsection 6.3.1 to the case of functional data. We
assume Assumption 5.3 in this subsection. We set A as B(L2[0, 1]) instead of Cm×m in this
subsection. Let x1, . . . , xn ∈ C([0, 1] × [0, 1],X ) and y1, . . . , yn ∈ A be given samples. We
assume there exists an integrable function f : [0, 1]× [0, 1]×X → A such that

yi =

∫ 1

0

∫ 1

0
f(s, t, xi(s, t))dsdt

for i = 1, . . . , n. We consider an A-valued positive definite kernel k on X , the RKHM Mk

associated with k, and the KME Φ in Mk. Let µx ∈ D(X ,B(L2([0, 1]))) be a B(L2([0, 1]))-
valued measure defined as µx(E)v = 〈χE(x(s, ·)), v〉L2([0,1]) for a Borel set E on X . Here,
χE : X → {0, 1} is the indicator function for E. Note that µx(E) is an integral operator
whose integral kernel is χE(x(s, t)), which corresponds to the Dirac measure δ̃x(s,t)(E). Let
V be the submodule ofMk spanned by {Φ(µx1), . . . ,Φ(µxn)}, and let Pf : V → B(L2([0, 1]))
be a B(L2([0, 1]))-linear map (see Definition 2.19) which satisfies

PfΦ(µxi) =

∫ 1

0

∫ 1

0
f(s, t, xi(s, t))dsdt

for i = 1, . . . , n. Here, we assume the vectors Φ(µx1), . . . ,Φ(µxn) are B(L2([0, 1]))-linearly
independent (see Definition 2.20).

We estimate Pf by restricting it to a submodule of V. For this purpose, we apply the
PCA in RKHMs proposed in Section 6.1 and obtain principal axes p1, . . . , pr to construct
the submodule. We replace φ(xi) in the problem (8) with Φ(µxi) and consider the problem

inf
{pj}rj=1⊆Mk: ONS

n∑
i=1

∣∣∣∣Φ(µxi)−
r∑
j=1

pj 〈pj ,Φ(µxi)〉Mk

∣∣∣∣2
Mk

. (27)

The projection operator onto the submodule spanned by p1, . . . , pr is represented as QQ∗,
where Q = [p1, . . . , pr]. Therefore, we estimate Pf by PfQQ

∗. We can compute PfQQ
∗ as

follows.

Proposition 6.17 The solution of the problem (27) is represented as pj =
∑n

i=1 Φ(µxi)ci,j
for some ci,j ∈ A. Let C = [ci,j ]i,j. Then, the estimation PfQQ

∗ is computed as

PfQQ
∗ = [y1, . . . , yn]CQ∗.
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The following proposition shows we can obtain a vector which attains the largest transfor-
mation by Pf .

Proposition 6.18 Let u ∈ Mk be a unique vector satisfying for any v ∈ Mk, 〈u, v〉Mk
=

PfQQ
∗v. For ε > 0, let bε = (|u|Mk

+ ε1A)−1 and let vε = ubε. Then, PfQQ
∗vε converges

to
sup

v∈Mk, ‖v‖Mk
≤1
PfQQ

∗v (28)

as ε→ 0, where the supremum is taken with respect to a (pre) order in A (see Definition 2.9).
If A = Cm×m, then the supremum is replaced with the maximum. In this case, let |u|2Mk

=

a∗da be the eigenvalue decomposition of the positive semi-definite matrix |u|2Mk
and let

b = a∗d+a, where the i-th diagonal element of d+ is d
−1/2
i,i if di,i 6= 0 and 0 if di,i = 0. Then,

ub is the solution of the maximization problem.

Proof By the Riesz representation theorem (Proposition 4.2), there exists a unique u ∈
Mk satisfying for any v ∈ Mk, 〈u, v〉Mk

= PfQQ
∗v. Then, for v ∈ Mk which satisfies

‖v‖Mk
= 1, by the Cauchy–Schwarz inequality (Lemma 2.16), we have

PfQQ
∗v = 〈u, v〉Mk

≤A |u|Mk
‖v‖Mk

≤A |u|Mk
. (29)

The vector vε satisfies ‖vε‖Mk
≤ 1. In addition, we have

|u|2Mk
− (|u|2Mk

− ε21A) ≥A 0.

By multiplying (|u|Mk
+ ε1A)−1 on the both sides, we have 〈u, vε〉Mk

+ ε1A − |u|Mk
≥A 0,

which implies ‖|u|Mk
−〈u, vε〉Mk

‖A ≤ ε, and limε→0 PfQQ
∗vε = limε→0 〈u, vε〉Mk

= |u|Mk
.

Since 〈u, vε〉Mk
≤A d for any upper bound d of {〈u, v〉Mk

| ‖v‖Mk
≤ 1}, |u|Mk

≤A d
holds. As a result, |u|Mk

is the supremum of PfQQ
∗v. In the case of A = Cm×m, the

inequality (29) is replaced with the equality by setting v = ub.

The vector ubε is represented as ubε = QC∗[y1, . . . , yn]T bε =
∑n

i=1 Φ(µxi)di, where di ∈ A
is the i-th element of CC∗[y1, . . . , yn]T bε ∈ An, and Φ is A-linear (see Proposition 5.8).
Therefore, the vector ubε corresponds to the A-valued measure

∑n
i=1 µxidi, and if Φ is

injective (see Example 5.13), the corresponding measure is unique. This means that if we
transform the samples xi according to the measure

∑n
i=1 µxidi, then the transformation

makes a large impact to yi.

6.3.3 Numerical examples

We applied our method to functional data x1, . . . , xn ∈ C([0, 1]× [0, 1], [0, 1]), where n = 30,
xi are polynomials of the form xi(s, t) =

∑5
j,l=0 ηj,ls

jtl. The coefficients ηj,l of xi are
randomly and independently drawn from the uniform distribution on [0, 0.1]. Then, we set
yi ∈ R as

yi =

∫ 1

0

∫ 1

0
xi(s, t)

−α+α|s+t|dsdt

for α = 3, 0.5. We set A = B(L2([0, 1])) and k(x1, x2) = k̃(x1, x2)1A, where k̃ is a complex-
valued positive definite kernel on [0, 1] defined as k̃(x1, x2) = e−‖x1−x2‖

2
2 . We applied the
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(a) α = 3 (b) α = 0.5

Figure 8: Heat map representing the value the integral kernel of ν([0, 1])

PCA proposed in Subsection 6.1.3 with r = 3, and then computed limε→0 ubε ∈ Mk in
Proposition 6.17, which can be represented as Φ(

∑n
i=1 µxidi) for some di ∈ A. The param-

eter λ in the objective function of the PCA was set as 0.5. Figure 8 shows the heat map
representing the value related to the integral kernel of the A-valued measure

∑n
i=1 µxi(E)di

for E = [0, 0.1]. We denote
∑n

i=1 µxi(E)di by ν(E) and the integral kernel of the integral
operator ν(E) by k̃ν(E). As we stated in Section 6.3.2, if we transform the samples xi ac-
cording to the measure ν, then the transformation makes a large impact to yi. Moreover,
the value of k̃ν(E) at (s, t) corresponds to the measure at (s, t). Therefore, the value of k̃ν(E)

at (s, t) describes the impact of the effect of t on s to yi. To additionally take the effect of s
on t into consideration, we show the value of k̃ν(E)(s, t) + k̃ν(E)(t, s) in Figure 8. The values
for α = 3 are larger than those for α = 0.5, which implies the overall impacts to yi for α = 3
are larger than that for α = 0.5. Moreover, the value is large if s + t is small. This is be-
cause for xi(s, t) ∈ [0, 0.1], xi(s, t)

−α+α|s+t| is large if s+ t is small. Furthermore, the values
around (s, t) = (1, 0) and (0, 1) are also large since xi has the form xi(s, t) =

∑5
j,l=0 ηj,ls

jtl

for ηj,l ∈ [0, 0.1] and xi(s, t) itself is large around (s, t) = (1, 0) and (0, 1), which results in
xi(s, t)

−α+α|s+t| ≈ xi(s, t) being large.

6.4 Other applications

6.4.1 Maximum mean discrepancy with kernel mean embedding

Maximum mean discrepancy (MMD) is a metric of measures according to the largest differ-
ence in means over a certain subset of a function space. It is also known as integral prob-
ability metric (IPM). For a set U of real-valued bounded measurable functions on X and
two real-valued probability measures µ and ν, MMD γ(µ, ν,U) is defined as follows (Müller,
1997; Gretton et al., 2012):

sup
u∈U

∣∣∣∣ ∫
x∈X

u(x)dµ(x)−
∫
x∈X

u(x)dν(x)

∣∣∣∣.
For example, if U is the unit ball of an RKHS, denoted as URKHS, the MMD can be
represented using the KME Φ̃ in the RKHS as γ(µ, ν,URKHS) = ‖Φ̃(µ) − Φ̃(ν)‖Hk̃ . In
addition, let UK = {u | ‖u‖L ≤ 1} and let UD = {u | ‖u‖∞ + ‖u‖L ≤ 1}, where,
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‖u‖L := supx 6=y |u(x)− u(y)|/|x− y|, and ‖u‖∞ is the sup norm of u. The MMDs with UK

and UD are also discussed in Rachev (1985); Dudley (2002); Sriperumbudur et al. (2012).
Let X be a locally compact Hausdorff space, let UA be a set of A-valued bounded and

measurable functions, and let µ, ν ∈ D(X ,A). We generalize the MMD to that for A-valued
measures as follows:

γA(µ, ν,UA) := sup
u∈UA

∣∣∣∣ ∫
x∈X

u(x)dµ(x)−
∫
x∈X

u(x)dν(x)

∣∣∣∣
A
,

where the supremum is taken with respect to a (pre) order in A (see Definition 2.9). Let k
be an A-valued positive definite kernel and let Mk be the RKHM associated with k. We
assume Assumption 5.3. Let Φ be the KME defined in Section 5.1. The following theorem
shows that similar to the case of RKHS, if UA is the unit ball of an RKHM, the generalized
MMD γA(µ, ν,UA) can also be represented using the proposed KME in the RKHM.

Proposition 6.19 Let URKHM := {u ∈ Mk | ‖u‖Mk
≤ 1}. Then, for µ, ν ∈ D(X ,A), we

have
γA(µ, ν,URKHM) = |Φ(µ)− Φ(ν)|Mk

.

Proof By the Cauchy–Schwarz inequality (Lemma 2.16), we have∣∣∣∣ ∫
x∈X

dµ∗u(x)−
∫
x∈X

dν∗u(x)

∣∣∣∣
A

= | 〈Φ(µ− ν), u〉Mk
|A

≤A ‖u‖Mk
|Φ(µ− ν)|Mk

≤A |Φ(µ− ν)|Mk

for any u ∈ Mk such that ‖u‖Mk
≤ 1. Let ε > 0. We put v = Φ(µ − ν) and uε =

v(|v|Mk
+ ε1A)−1. In the same manner as Proposition 6.18, |Φ(µ − ν)|Mk

is shown to be
the supremum of |

∫
x∈X dµ

∗u(x)−
∫
x∈X dν

∗u(x)|A.

Various methods with the existing MMD of real-valued probability measures are gener-
alized to A-valued measures by applying our MMD. Using our MMD of A-valued measures
instead of the existing MMD allows us to evaluate discrepancies between measures regarding
each point of structured data such as multivariate data and functional data. For example,
the following existing methods can be generalized:

Two-sample test: In two-sample test, samples from two distributions (measures) are
compared by computing the MMD of these measures (Gretton et al., 2012).

Kernel mean matching for generative models: In generative models, MMD is
used in finding points whose distribution is as close as that of input points (Jitkrittum et al.,
2019).

Domain adaptation: In domain adaptation, MMD is used in describing the difference
between the distribution of target domain data and that of source domain data (Li et al.,
2019).

6.4.2 Time-series data analysis with random noise

Recently, random dynamical systems, which are (nonlinear) dynamical systems with random
effects, have been extensively researched. Analyses of them by generalizing the discussion
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mentioned in Subsection 6.2.1 using the existing KME in RKHSs have been proposed (Klus
et al., 2020; Hashimoto et al., 2020). We can apply our KME of A-valued measures to
generalize the analysis proposed in Subsection 6.2.2 to random dynamical systems. Then,
we can extract continuous behaviors of the time evolution of functions with consideration
of random noise.

7. Connection with existing methods

In this section, we discuss connections between the proposed methods and existing methods.
We show the connection with the PCA in vvRKHSs in Subsection 7.1 and an existing notion
in quantum mechanics.

7.1 Connection with PCA in vvRKHSs

We show that PCA in vvRKHSs is a special case of the proposed PCA in RKHMs.
Let W be a Hilbert space and we set A = B(W). Let k : X × X → B(W) be a
B(W)-valued positive definite kernel. In addition, let x1, . . . , xn ∈ X be given data and
w1,1, . . . , w1,N , . . . , wn,1, . . . , wn,N ∈ W be fixed vectors in W. The following proposition
shows that we can reconstruct principal components of PCA in vvRKHSs by using the
proposed PCA in RKHMs.

Proposition 7.1 Let Wj : X → W be a map satisfying Wj(xi) = wi,j for j = 1, . . . , N , let

W = [W1, . . . ,WN ], and let k̂ : X ×X → CN×N be defined as k̂(x, y) = W (x)∗k(x, y)W (y).
Let {q1, . . . , qr} ⊆ Fk̂ is a solution of the minimization problem

min
{qj}rj=1⊆Fk̂: ONS

n∑
i=1

tr
(∣∣φ(xi)−

r∑
j=1

qj 〈qj , φ(xi)〉Mk̂

∣∣2
Mk̂

)
, (30)

where Fk = {v ∈ Mk | v(x) is a rank 1 operator for any x ∈ X}. In addition, let
p1, . . . , pr ∈ Hv

k be the solution of the minimization problem

min
{pj}rj=1⊆Hv

k: ONS

n∑
i=1

N∑
l=1

∥∥∥∥φ(xi)wi,l −
r∑
j=1

pj 〈pj , φ(xi)wi,l〉Hv
k

∥∥∥∥2

Hv
k

. (31)

Then, ‖(〈qj , φ̂(xi)〉Mk̂
)l‖CN = 〈pj , φ(xi)wi,l〉Hv

k
for i = 1, . . . , n, j = 1, . . . , r, and l =

1, . . . , N . Here, (〈qj , φ̂(xi)〉Mk̂
)l is the l-th column of the matrix 〈qj , φ̂(xi)〉Mk̂

∈ CN×N .

Proof Let G ∈ (CN×N )n×n be defined as Gi,j = k̂(xi, xj). By Proposition 6.8, any

solution of the problem (30) is represented as qj =
∑n

i=1 φ̂(xi)ci,j , where j = 1, . . . , r and

[c1,j , . . . , cn,j ]
T = λ

−1/2
j vju

∗ for any normalized vector u ∈ CN . Here, λj are the largest
r eigenvalues and vj are the corresponding orthonormal eigenvectors of the matrix G.

Therefore, by the definition of k̂, the principal components are calculated as

〈qj , φ̂(xi)〉∗Mk̂
= λ

−1/2
j W (xi)

∗[k(xi, x1)W (x1), . . . , k(xi, xn)W (xn)]vju
∗.
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On the other hand, in the same manner as Proposition 6.8, the solution of the problem (31)
is shown to be represented as pj =

∑n
i=1

∑N
l=1 φ(xi)wi,lα(i−1)N+l,j , where j = 1, . . . , r and

[α1,j , . . . , αNn,j ]
T = λ

−1/2
j vj . Therefore, the principal components are calculated as

〈pj , φ(xi)wi,l〉Hv
k

= λ
−1/2
j Wl(xi)

∗[k(xi, x1)W (x1), . . . , k(xi, xn)W (xn)]vj ,

which completes the proof of the proposition.

7.2 Connection with quantum mechanics

Positive operator-valued measures play an important role in quantum mechanics. A positive
operator-valued measure is defined as an A-valued measure µ such that µ(X ) = I and µ(E)
is positive for any Borel set E. It enables us to extract information of the probabilities of
outcomes from a state (Peres and Terno, 2004; Holevo, 2011). We show that the existing
inner product considered for quantum states (Balkir, 2014; Deb, 2016) is generalized with
our KME of positive operator-valued measures.

Let X = Cm and A = Cm×m. Let ρ ∈ A be a positive semi-definite matrix with
unit trace, called a density matrix. A density matrix describes the states of a quantum
system, and information about outcomes is described as measure µρ ∈ D(X ,A). We have
the following proposition. Here, we use the bra-ket notation, i.e., |α〉 ∈ X represents a
(column) vector in X , and 〈α| is defined as 〈α| = |α〉∗:

Proposition 7.2 Assume X = Cm, A = Cm×m, and k : X × X → A is a positive definite
kernel defined as k(|α〉, |β〉) = |α〉〈α|β〉〈β|. If µ is represented as µ =

∑m
i=1 δ|ψi〉|ψi〉〈ψi| for

an orthonormal basis {|ψ1〉, . . . , |ψm〉} of X , then for any ρ1, ρ2 ∈ A, tr(〈Φ(µρ1),Φ(µρ2)〉Mk
) =

〈ρ1, ρ2〉HS holds. Here, 〈·, ·〉HS is the Hilbert–Schmidt inner product.

Proof Let Mi = |ψi〉〈ψi| for i = 1, . . . ,m. The inner product between Φ(µρ1) and Φ(µρ2)
is calculated as follows:

〈Φ(µρ1),Φ(µρ2)〉Mk
=

∫
x∈X

∫
y∈X

ρ∗1µ
∗(x)k(x, y)µρ2(y) =

m∑
i,j=1

ρ∗1Mik(|ψi〉, |ψj〉)Mjρ2.

Since the identity k(|ψi〉, |ψj〉) = MiMj holds and {|ψ1〉, . . . , |ψm〉} is orthonormal, we have
〈Φ(µρ1),Φ(µρ2)〉Mk

=
∑m

i=1 ρ
∗
1Miρ2. By using the identity

∑m
i=1Mi = I, we have

tr

( m∑
i=1

ρ∗1Miρ2

)
= tr

( m∑
i=1

Miρ2ρ
∗
1

)
= tr(ρ2ρ

∗
1),

which completes the proof of the proposition.

In previous studies (Balkir, 2014; Deb, 2016), the Hilbert–Schmidt inner product between
density matrices was considered to represent similarities between two quantum states. Liu
and Rebentrost (2018) considered the Hilbert–Schmidt inner product between square roots
of density matrices. Theorem 7.2 shows that these inner products are represented via our
KME in RKHMs.
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8. Conclusions and future works

In this paper, we proposed a new data analysis framework with RKHM and developed a
KME in RKHMs for analyzing distributions. We showed the theoretical validity for applying
those to data analysis. Then, we applied it to kernel PCA, time-series data analysis, and
analysis of interaction effects in finite or infinite dimensional data. RKHM is a generalization
of RKHS in terms of C∗-algebra, and we can extract rich information about structures in
data such as functional data by using C∗-algebras. For example, we can reduce multi-
variable functional data to functions of single variable by considering the space of functions
of single variables as a C∗-algebra and then by applying the proposed PCA in RKHMs.
Moreover, we can extract information of interaction effects in continuously distributed spatio
data by considering the space of bounded linear operators on a function space as a C∗-
algebra.

As future works, we will address C∗-algebra-valued supervised problems on the basis
of the representer theorem (Theorem 4.8) and apply the proposed KME in RKHMs to
quantum mechanics.
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Appendix A. Proofs of the lemmas and propositions in Section 2.5

Proof of Proposition 4.5

(Existence) For u, v ∈ Mk, there exist ui, vi ∈ Mk,0 (i = 1, 2, . . .) such that v = limi→∞ vi
and w = limi→∞wi. By the Cauchy-Schwarz inequality (Lemma 2.16), the following in-
equalities hold:

‖ 〈ui, vi〉Mk
− 〈uj , vj〉Mk

‖A ≤ ‖ 〈ui, vi − vj〉Mk
‖A + ‖ 〈ui − uj , uj〉Mk

‖A
≤ ‖ui‖Mk

‖vi − vj‖Mk
+ ‖ui − uj‖Mk

‖vj‖Mk

→ 0 (i, j →∞),

which implies {〈ui, vi〉Mk
}∞i=1 is a Cauchy sequence in A. By the completeness of A, there

exists a limit limi→∞ 〈ui, vi〉Mk
.

(Well-definedness) Assume there exist u′i, v
′
i ∈Mk,0 (i = 1, 2, . . .) such that u = limi→∞ ui =

limi→∞ u
′
i and v = limi→∞ vi = limi→∞ v

′
i. By the Cauchy-Schwarz inequality (Lemma 2.16),

we have

‖ 〈ui, vi〉Mk
−
〈
u′i, v

′
i

〉
Mk
‖A ≤ ‖ui‖Mk

‖vi − v′i‖Mk
+ ‖ui − u′i‖Mk

‖v′i‖Mk
→ 0 (i→∞),

which implies limi→∞ 〈ui, vi〉Mk
= limi→∞ 〈u′i, v′i〉Mk

.

(Injectivity) For u, v ∈ Mk, we assume 〈φ(x), u〉Mk
= 〈φ(x), v〉Mk

for x ∈ X . By
the linearity of 〈·, ·〉Mk

, 〈p, u〉Mk
= 〈p, v〉Mk

holds for p ∈ Mk,0. For p ∈ Mk, there
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exist pi ∈ Mk,0 (i = 1, 2, . . .) such that p = limi→∞ pi. Therefore, 〈p, u− v〉Mk
=

limi→∞ 〈pi, u− v〉Mk
= 0. As a result, 〈u− v, u− v〉Mk

= 0 holds by setting p = u − v,
which implies u = v.

Proof of Proposition 4.6

We define Ψ : Mk,0 → M as an A-linear map that satisfies Ψ(φ(x)) = ψ(x). We show
Ψ can be extended to a unique A-linear bijection map on Mk , which preserves the inner
product.

(Uniqueness) The uniqueness follows by the definition of Ψ.

(Inner product preservation) For x, y ∈ X , we have

〈Ψ(φ(x)),Ψ(φ(y))〉Mk
= 〈ψ(x), ψ(y)〉M = k(x, y) = 〈φ(x), φ(y)〉Mk

.

Since Ψ is A-linear, Ψ preserves the inner products between arbitrary u, v ∈Mk,0.

(Well-definedness) Since Φ preserves the inner product, if {vi}∞i=1 ⊆ Mk is a Cauchy se-
quence, {Ψ(vi)}∞i=1 ⊆M is also a Cauchy sequence. Therefore, by the completeness of M,
Ψ also preserves the inner product in Mk, and for v ∈ Mk, ‖Ψ(v)‖M = ‖v‖Mk

holds. As
a result, for v ∈Mk, if v = 0, ‖Ψ(v)‖M = ‖v‖Mk

= 0 holds. This implies Ψ(v) = 0.

(Injectivity) For u, v ∈Mk, if Ψ(u) = Ψ(v), then 0 = ‖Ψ(u)−Ψ(v)‖M = ‖u− v‖Mk
holds

since Ψ preserves the inner product, which implies u = v.

(Surjectivity) It follows directly by the condition {
∑n

i=0 ψ(xi)ci | xi ∈ X , ci ∈ A} =M.

Proof of Lemma 4.10

Let k be an A-valued positive definite kernel defined in Definition 2.21. Let w ∈ W. For
n ∈ N, w1, . . . , wn ∈ W, let ci ∈ B(W) be defined as cih := 〈w, h〉W / 〈w,w〉W wi for h ∈ W.
Since wi = ciw holds, the following equalities are derived for x1, . . . , xn ∈ X :

n∑
i,j=1

〈wi, k(xi, xj)wj〉W =

n∑
i,j=1

〈ciw, k(xi, xj)cjw〉W =

〈
w,

n∑
i,j=1

c∗i k(xi, xj)ciw

〉
W
.

By the positivity of
∑n

i,j=1 c
∗
i k(xi, xj)cj , 〈w,

∑n
i,j=1 c

∗
i k(xi, xj)cjw〉W ≥ 0 holds, which im-

plies k is an operator valued positive definite kernel defined in Definition 2.2.

On the other hand, let k be an operator valued positive definite kernel defined in Defi-
nition 2.2. Let v ∈ W. For n ∈ N, c1, . . . , cn ∈ A and x1, . . . , xn ∈ X , the following equality
is derived: 〈

w,
n∑

i,j=1

c∗i k(xi, xj)cjw

〉
W
=

n∑
i,j=1

〈ciw, k(xi, xj)cjw〉W .

By Definition 2.2,
∑n

i,j=1 〈ciw, k(xi, xj)cjw〉W ≥ 0 holds, which implies k is an A-valued
positive definite kernel defined in Definition 2.21.
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Appendix B. A-valued measure and integral

We introduce A-valued measure and integral in preparation for defining a KME in RKHMs.
A-valued measure and integral are special cases of vector measure and integral (Dinculeanu,
1967, 2000), respectively. Here, we review these notions especially for the case of A-valued
ones. The notions of measures and the Lebesgue integrals are generalized to A-valued. The
left and right integral of an A-valued function u with respect to an A-valued measure µ is
defined through A-valued step functions.

Definition B.1 (A-valued measure) Let Σ be a σ-algebra on X .

1. An A-valued map µ : Σ → A is called a (countably additive) A-vaued measure if
µ(
⋃∞
i=1Ei) =

∑∞
i=1 µ(Ei) for all countable collections {Ei}∞i=1 of pairwise disjoint

sets in Σ.

2. An A-valued measure µ is said to be finite if |µ|(E) := sup{
∑n

i=1 ‖µ(Ei)‖A | n ∈
N, {Ei}ni=1 is a finite partition of E ∈ Σ} <∞. We call |µ| the total variation of µ.

3. An A-valued measure µ is said to be regular if for all E ∈ Σ and ε > 0, there exist a
compact set K ⊆ E and an open set G ⊇ E such that ‖µ(F )‖A ≤ ε for any F ⊆ G\K.
The regularity corresponds to the continuity of A-valued measures.

4. An A-valued measure µ is called a Borel measure if Σ = B, where B is the Borel
σ-algebra on X (σ-algebra generated by all compact subsets of X ).

The set of all A-valued finite regular Borel measures is denoted as D(X ,A).

Definition B.2 (A-valued Dirac measure) For x ∈ X , we define δx ∈ D(X ,A) as
δx(E) = 1A for x ∈ E and δx(E) = 0 for x /∈ E. The measure δx is referred to as the
A-valued Dirac measure at x.

Similar to the Lebesgue integrals, an integral of an A-valued function with respect to an
A-valued measure is defined through A-valued step functions.

Definition B.3 (Step function) An A-valued map s : X → A is called a step function
if s(x) =

∑n
i=1 ciχEi(x) for some n ∈ N, ci ∈ A and finite partition {Ei}ni=1 of X , where

χE : X → {0, 1} is the indicator function for E ∈ B. The set of all A-valued step functions
on X is denoted as S(X ,A).

Definition B.4 (Integrals of functions in S(X ,A)) For s ∈ S(X ,A) and µ ∈ D(X ,A),
the left and right integrals of s with respect to µ are respectively defined as∫

x∈X
s(x)dµ(x) :=

n∑
i=1

ciµ(Ei),

∫
x∈X

dµ(x)s(x) :=
n∑
i=1

µ(Ei)ci.

As we explain below, the integrals of step functions are extended to those of “integrable
functions”. For a real positive finite measure ν, let L1

ν(X ,A) be the set of all A-valued ν-
Bochner integrable functions on X , i.e., if u ∈ L1

ν(X ,A), there exists a sequence {si}∞i=1 ⊆
S(X ,A) of step functions such that limi→∞

∫
x∈X ‖u(x)− si(x)‖Adν(x) = 0 (Diestel, 1984,
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Chapter IV). Note that u ∈ L1
ν(X ,A) if and only if

∫
x∈X ‖u(x)‖Adν(x) <∞, and L1

ν(X ,A)
is a Banach A-module (i.e., a Banach space equipped with an A-module structure) with
respect to the norm defined as ‖u‖L1

ν(X ,A) =
∫
x∈X ‖u(x)‖Adν(x).

Definition B.5 (Integrals of functions in L1
|µ|(X ,A)) For u ∈ L1

|µ|(X ,A), the left and
right integrals of u with respect to µ is respectively defined as

lim
i→∞

∫
x∈X

dµ(x)si(x), lim
i→∞

∫
x∈X

si(x)dµ(x),

where {si}∞i=1 ⊆ S(X ,A) is a sequence of step functions whose L1
ν(X ,A)-limit is u.

Note that since A is not commutative in general, the left and right integrals do not always
coincide.

There is also a stronger notion for integrability. An A-valued function u on X is said to
be totally measurable if it is a uniform limit of a step function, i.e., there exists a sequence
{si}∞i=1 ⊆ S(X ,A) of step functions such that limi→∞ supx∈X ‖u(x) − si(x)‖A = 0. We
denote by T (X ,A) the set of all A-valued totally measurable functions on X . Note that if
u ∈ T (X ,A), then u ∈ L1

|µ|(X ,A) for any µ ∈ D(X ,A). In fact, the continuous functions

in C0(X ,A) is totally measurable (see Definition 5.1 for the definition of C0(X ,A)).

Proposition B.6 The space C0(X ,A) is contained in T (X ,A). Moreover, for any real
positive finite regular measure ν, it is dense in L1

ν(X ,A) with respect to ‖ · ‖L1
ν(X ,A).

For further details, refer to Dinculeanu (1967, 2000).

Appendix C. Proofs of the propositions and theorem in Section 5.2

Before proving the propositions and theorem, we introduce some definitions and show fun-
damental properties which are related to the propositions and theorem.

Definition C.1 (A-dual) For a Banach A-module M, the A-dual of M is defined as
M′ := {f :M→A | f is bounded and A-linear}.

Note that for a right Banach A-module M, M′ is a left Banach A-module.

Definition C.2 (Orthogonal complement) For an A-submodule M0 of a Banach A-
module M, the orthogonal complement of M0 is defined as a closed submodule M⊥0 :=⋂
u∈M0

{f ∈ M′ | f(u) = 0} of M′. In addition, for an A-submodule N0 of M′, the

orthogonal complement of N0 is defined as a closed submodule N⊥0 :=
⋂
f∈N0

{u ∈ M |
f(u) = 0} of M.

Note that for a von Neumann A-moduleM, by Proposition 4.2,M′ andM are isomorphic.
The following lemma shows a connection between an orthogonal complement and the density
property.

Lemma C.3 For a Banach A-module M and its submodule M0, M⊥0 = {0} if M0 is
dense in M.
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Proof We first show M0 ⊆ (M⊥0 )⊥. Let u ∈ M0. By the definition of orthogonal
complements, u ∈ (M⊥0 )⊥. Since (M⊥0 )⊥ is closed, M0 ⊆ (M⊥0 )⊥. If M0 is dense in M,
M⊆ (M⊥0 )⊥ holds, which means M⊥0 = {0}.

Moreover, in the case of A = Cm×m, a generalization of the Riesz–Markov representation
theorem for D(X ,A) holds.

Proposition C.4 (Riesz–Markov representation theorem for Cm×m-valued measures)
Let A = Cm×m. There exists an isomorphism between D(X ,A) and C0(X ,A)′.

Proof For f ∈ C0(X ,A)′, let fi,j ∈ C0(X ,C)′ be defined as fi,j(u) = (f(u1A))i,j for
u ∈ C0(X ,C). Then, by the Riesz–Markov representation theorem for complex-valued
measure, there exists a unique finite complex-valued regular measure µi,j such that fi,j(u) =∫
x∈X u(x)dµi,j(x). Let µ(E) := [µi,j(E)]i,j for E ∈ B. Then, µ ∈ D(X ,A), and we have

f(u) = f

( m∑
l,l′=1

ul,l′el,l′

)
=

m∑
l,l′=1

[fi,j(ul,l′)]i,jel,l′

=

m∑
l,l′=1

[ ∫
x∈X

ul,l′(x)dµi,j(x)

]
i,j

el,l′ =

∫
x∈X

dµ(x)u(x),

where ei,j is an m ×m matrix whose (i, j)-element is 1 and all the other elements are 0.
Therefore, if we define h′ : C0(X ,A)′ → D(X ,A) as f 7→ µ, h′ is the inverse of h, which
completes the proof of the proposition.

C.1 Proofs of Propositions 5.11 and 5.12

To show Propositions 5.11 and 5.12, the following lemma is used.

Lemma C.5 Φ : D(X ,A) → Mk is injective if and only if 〈Φ(µ),Φ(µ)〉Mk
6= 0 for any

nonzero µ ∈ D(X ,A).

Proof (⇒) Suppose there exists a nonzero µ ∈ D(X ,A) such that 〈Φ(µ),Φ(µ)〉Mk
= 0.

Then, Φ(µ) = Φ(0) = 0 holds, and thus, Φ is not injective.

(⇐) Suppose Φ is not injective. Then, there exist µ, ν ∈ D(X ,A) such that Φ(µ) = Φ(ν)
and µ 6= ν, which implies Φ(µ− ν) = 0 and µ− ν 6= 0.

We now show Propositions 5.11 and 5.12.
Proof of Theorem 5.11 Let µ ∈ D(X ,A), µ 6= 0. We have

〈Φ(µ),Φ(µ)〉 =

∫
x∈Rd

∫
y∈Rd

dµ∗(x)k(x, y)dµ(y)

=

∫
x∈Rd

∫
y∈Rd

dµ∗(x)

∫
ω∈Rd

e−
√
−1(y−x)Tωdλ(ω)dµ(y)

=

∫
ω∈Rd

∫
x∈Rd

e
√
−1xTωdµ∗(x)dλ(ω)

∫
y∈Rd

e−
√
−1yTωdµ(y)

=

∫
ω∈Rd

µ̂(ω)∗dλ(ω)µ̂(ω).
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Assume µ̂ = 0. Then,
∫
x∈X u(x)dµ(x) = 0 for any u ∈ C0(X ,A) holds, which implies

µ ∈ C0(X ,A)⊥ = {0} by Proposition C.4 and Lemma C.3. Thus, µ = 0. In addition, by
the assumption, supp(λ) = Rd holds. As a result,

∫
ω∈Rd µ̂(ω)∗dλ(ω)µ̂(ω) 6= 0 holds. By

Lemma C.5, Φ is injective.

Proof of Theorem 5.12 Let µ ∈ D(X ,A), µ 6= 0. We have

〈Φ(µ),Φ(µ)〉 =

∫
x∈Rd

∫
y∈Rd

dµ∗(x)k(x, y)dµ(y)

=

∫
x∈Rd

∫
y∈Rd

dµ∗(x)

∫
t∈[0,∞)

e−t‖x−y‖
2
dη(t)dµ(y)

=

∫
x∈Rd

∫
y∈Rd

dµ∗(x)

∫
t∈[0,∞)

1

(2t)d/2

∫
ω∈Rd

e−
√
−1(y−x)Tω− ‖ω‖

2

4t dωdη(t)dµ(y)

=

∫
ω∈Rd

µ̂(ω)∗
∫
t∈[0,∞)

1

(2t)d/2
e
−‖ω‖2

4t dη(t)µ̂(ω)dω, (32)

where we applied a formula e−t‖x‖
2

= (2t)−d/2
∫
ω∈Rd e

−
√
−1xTω−‖ω‖2/(4t)dω in the third

equality. In the same manner as the proof of Theorem 5.11, µ̂ 6= 0 holds. In addition,
since supp(η) 6= {0} holds,

∫
t∈[0,∞)(2t)

−d/2e−‖ω‖
2/(4t)dη(t) is positive definite. As a result,

the last formula in Eq. (32) is nonzero. By Lemma C.5, Φ is injective.

C.2 Proofs of Proposition 5.15 and Theorem 5.16

Let R+(X ) be the set of all real positive-valued regular measures, and Dν(X ,A) the set
of all finite regular Borel A-valued measures µ whose total variations are dominated by
ν ∈ R+(X ) (i.e., |µ| ≤ ν). We apply the following representation theorem to derive Theo-
rem 5.16.

Proposition C.6 For ν ∈ R+(X ), there exists an isomorphism between Dν(X ,A) and
L1
ν(X ,A)′.

Proof For µ ∈ Dν(X ,A) and u ∈ L1
ν(X ,A), we have∥∥∥∥∫

x∈X
dµ(x)u(x)

∥∥∥∥
A
≤
∫
x∈X
‖u(x)‖Ad|µ|(x) ≤

∫
x∈X
‖u(x)‖Adν(x).

Thus, we define h : Dν(X ,A)→ L1
ν(X ,A)′ as µ 7→ (u 7→

∫
x∈X dµ(x)u(x)).

Meanwhile, for f ∈ L1
ν(X ,A)′ and E ∈ B, we have

‖f(χE1A)‖A ≤ C
∫
x∈X
‖χE1A‖Adν(x) = Cν(E)

for some C > 0 since f is bounded. Here, χE is an indicator function for a Borel set E.
Thus, we define h′ : L1

ν(X ,A)′ → Dν(X ,A) as f 7→ (E 7→ f(χE1A)).
By the definitions of h and h′, h(h′(f))(s) = f(s) holds for s ∈ S(X ,A). Since

S(X ,A) is dense in L1
ν(X ,A), h(h′(f))(u) = f(u) holds for u ∈ L1

ν(X ,A). Moreover,
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h′(h(µ))(E) = µ(E) holds for E ∈ B. Therefore, Dν(X ,A) and L1
ν(X ,A)′ are isomorphic.

Proof of Theorem 5.16 Assume Mk is dense in C0(X ,A). Since C0(X ,A) is dense
in L1

ν(X ,A) for any ν ∈ R+(X ), Mk is dense in L1
ν(X ,A) for any ν ∈ R+(X ). By

Proposition C.3, M⊥k = {0} holds. Let µ ∈ D(X ,A). There exists ν ∈ R+(X ) such
that µ ∈ Dν(X ,A). By Proposition C.6, if

∫
x∈X dµ(x)u(x) = 0 for any u ∈ Mk, µ = 0.

Since
∫
x∈X dµ(x)u(x) = 〈u,Φ(µ)〉Mk

,
∫
x∈X dµ(x)u(x) = 0 means Φ(µ) = 0. Therefore, by

Lemma C.5, Φ is injective.

For the case of A = Cm×m, we apply the following extension theorem to derive the
converse of Theorem 5.16.

Proposition C.7 (c.f. Theorem in Helemskii (1994)) Let A = Cm×m. Let M be a
Banach A-module, M0 be a closed submodule of M, and f0 : M0 → A be a bounded A-
linear map. Then, there exists a bounded A-linear map f : M → A that extends f0 (i.e.,
f(u) = f0(u) for u ∈M0).

Proof Von Neumann-algebra A itself is regarded as an A-module and is normal. Also,
Cm×m is Connes injective. By Theorem in Helemskii (1994), A is an injective object in
the category of Banach A-module. The statement is derived by the definition of injective
objects in category theory.

We derive the following lemma and proposition by Proposition C.7.

Lemma C.8 Let A = Cm×m. LetM be a Banach A-module andM0 be a closed submodule
of M. For u1 ∈ M \ M0, there exists a bounded A-linear map f : M → A such that
f(u0) = 0 for u0 ∈M0 and f(u1) 6= 0.

Proof Let q : M → M/M0 be the quotient map to M/M0, and U1 := {q(u1)c |
c ∈ A}. Note that M/M0 is a Banach A-module and U1 is its closed submodule. Let
V := {c ∈ A | q(u1)c = 0}, which is a closed subspace of A. Since V is orthogonally
complemented (Manuilov and Troitsky, 2000, Proposition 2.5.4), A is decomposed into
A = V + V⊥. Let p : A → V⊥ be the projection onto V⊥ and f0 : U1 → A defined as
q(u1)c 7→ p(c). Since p is A-linear, f0 is also A-linear. Also, for c ∈ A, we have

‖q(u1)c‖M/M0
= ‖q(u1)(c1 + c2)‖M/M0

= ‖q(u1)c1‖M/M0

≥ inf
d∈V⊥,‖d‖A=1

‖q(u1)d‖M/M0
‖c1‖A = inf

d∈V⊥,‖d‖A=1
‖q(u1)d‖M/M0

‖p(c)‖A,

where c1 = p(c) and c2 = c1 − p(c). Since infd∈V⊥,‖d‖A=1 ‖q(u1)d‖M/M0
‖p(c)‖A > 0, f0 is

bounded. By Proposition C.7, f0 is extended to a bounded A-linear map f1 :M/M0 → A.
Setting f := f1 ◦ q completes the proof of the lemma.

Then we prove the converse of Lemma C.3.

Proposition C.9 Let A = Cm×m. For a Banach A-module M and its submodule M0,
M0 is dense in M if M⊥0 = {0}.
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Proof Assume u /∈ M0. We show M0 ⊇ (M⊥0 )⊥. By Lemma C.8, there exists f ∈ M′
such that f(u) 6= 0 and f(u0) = 0 for any u0 ∈ M0. Thus, u /∈ (M⊥0 )⊥. As a result,
M0 ⊇ (M⊥0 )⊥. Therefore, if M⊥0 = {0}, then M0 ⊇M, which implies M0 is dense in M.

As a result, we derive Proposition 5.15 as follows.
Proof of Proposition 5.15 Let µ ∈ D(X ,A). Then, “Φ(µ) = 0” is equivalent to
“
∫
x∈X dµ

∗(x)u(x) = 〈Φ(µ), u〉Mk
= 0 for any u ∈ Mk”. Thus, by Proposition C.4,

“Φ(µ) = 0 ⇒ µ = 0” is equivalent to “f ∈ C0(X ,A)′, f(u) = 0 for any u ∈ Mk ⇒
f = 0”. By the definition of M⊥k and Proposition C.9, Mk is dense in C0(X ,A).

Appendix D. Derivative on Banach spaces

Definition D.1 (Fréchet derivative) Let M be a Banach space. Let f :M→ A be an
A-valued function defined on M. The function f is referred to as (Fréchet) differentiable
at a point c ∈M if there exists a continuous R-linear operator l such that

lim
u→0, u∈M\{0}

‖f(c + u)− f(c)− l(u)‖A
‖u‖M

= 0

for any u ∈M. In this case, we denote l as Dfc.
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