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River: machine learning for streaming data in Python
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Abstract

River is a machine learning library for dynamic data streams and continual learning.
It provides multiple state-of-the-art learning methods, data generators/transformers, per-
formance metrics and evaluators for different stream learning problems. It is the result
from the merger of two popular packages for stream learning in Python: Creme and scikit-
multiflow. River introduces a revamped architecture based on the lessons learnt from the
seminal packages. River’s ambition is to be the go-to library for doing machine learning
on streaming data. Additionally, this open source package brings under the same um-

∗. Co-first authors.

c©2021 Jacob Montiel, Max Halford, Saulo Martiello Mastelini, Geoffrey Bolmier, Raphael Sourty, Robin Vaysse,
Adil Zouitine, Heitor Murilo Gomes, Jesse Read, Talel Abdessalem, Albert Bifet.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-1380.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-1380.html


Montiel, Halford, Mastelini, Bolmier, Sourty, Vaysse, Zouitine, et al.

brella a large community of practitioners and researchers. The source code is available at
https://github.com/online-ml/river.

Keywords: stream learning, online learning, data stream, concept drift, supervised
learning, unsupervised learning, Python.

1. Introduction

In machine learning, the conventional approach is to process data in batches or chunks.
Batch learning models assume that all the data is available at once. When a new batch of
data is available, these models have to be retrained from scratch. The assumption of data
availability is a hard constraint for the application of machine learning in multiple real-
world applications where data is continuously generated. Additionally, keeping historical
data requires dedicated storage and processing resources, which in some cases might be
impractical, e.g. storing the network logs from a data center. A different approach is to
treat data as a stream, in other words, as an infinite sequence of items; data is not stored
and models continuously learn one data sample at a time (Bifet et al., 2018).

Creme (Halford et al., 2019) and scikit-multiflow (Montiel et al., 2018) are two open-
source libraries to perform machine learning in the stream setting. River is the merger
of these projects, combining their strengths while leveraging the lessons learnt during their
development. More than a simple merge of code, River includes a revamped architecture and
expands functionality, e.g. support for mini-batches, processing time improvements, more
metrics for classification, regression and clustering, more clustering methods, etc. River
supersedes its parent packages and unifies continuous development under a single project.
River is mainly written in Python, with some core elements written in Cython (Behnel et al.,
2011) for performance. Supported applications are generally as diverse as those found in
traditional batch settings, including: classification, regression, clustering, representation
learning, multi-label and multi-output learning, forecasting, and anomaly detection.

2. Architecture

River’s architecture is the result from the lessons learned during the development of its parent
packages Creme and scikit-multiflow. Machine learning models in River are extended classes
of specialized mixins that mirror the different type of learning tasks, e.g. classification,
regression, clustering, etc. This ensures compatibility across the library and eases the
extension/modification of existing models, as well as the creation of new models compatible
with the rest of the API.

All predictive models perform two core functions: learn (also referred to as training or
fitting) and predict. Learning takes place via the learn_one method (updates the internal
state of the model). Depending on the learning task, models provide predictions via the
predict_one (classification, regression, and clustering), predict_proba_one (classification),
and score_one (anomaly detection) methods. Note that River also contains transformers,
which are stateful objects that transform an input via the transform_one method. The
suffix *_one indicates that the input is a single data sample.

In the following example, we show a complete machine learning task (learning, prediction
and performance measurement) easily implemented in a couple lines of code:
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1 from river import evaluate, metrics, synth, tree

2

3 stream = synth.Waveform(seed=42).take(1000)

4 model = tree.HoeffdingTreeClassifier()

5 metric = metrics.Accuracy()

6 evaluate.progressive_val_score(stream, model, metric)

7 # >>> Accuracy: 77.58%

2.1 Data structure

The de facto container for multidimensional, homogeneous arrays of fixed-size items in
Python is the numpy.ndarray (van der Walt et al., 2011). However, in the stream setting,
data is available one sample at a time. Accordingly, dictionaries are the default data
structure in River as they efficiently store one-dimensional data with O(1) lookup and
insertion (Gorelick and Ozsvaldl, 2020)1. Additional advantages of dictionaries include:
1. Accessing data by name rather than by position is convenient from a user perspective.
2. The ability to store different data types. For instance, the categories of a nominal feature
can be encoded as strings alongside numeric features. 3. The flexibility to handle new
features that might appear in the stream (feature evolution) and sparse data.

River provides an efficient Cython-based extension of dictionary structures that sup-
ports operations commonly applied to unidimensional arrays. These operations include, for
instance, the four basic algebraic operations, exponentiation, and the dot product.

2.2 Pipelines

Pipelines are an integral part of River. They are a convenient and elegant way to “chain”
a sequence of operations and warrant reproducibility. A pipeline is essentially a list of
estimators that are applied in sequence. The only requirement is that the first n− 1 steps
are transformers. The last step can be a regressor, a classifier, a clusterer, a transformer,
etc. For example, some models such as logistic regression are sensitive to the scale of the
data. A best practice is to scale the data before feeding it to a linear model. We can chain
the scaler transformer with a logistic regression model via a | (pipe) operator as follows:

1 from river import linear_model, preprocessing

2

3 model = (preprocessing.StandardScaler() |

4 linear_model.LogisticRegression())

2.3 Instance-incremental and batch-incremental

Instance-incremental methods update their internal state one sample at a time. Another
approach is to use mini-batches of data, known as batch-incremental learning. River offers
some limited support for batch-incremental learning. Some models have dedicated meth-

1. The actual performance of this operations can be affected by the size of the data to store. We assume
that samples from a data stream are relatively small.
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Table 1: Benchmark accuracy (%) for the Elec2 data set.

model scikit-learn Creme scikit-multiflow River

GNB 73.22 72.87 73.30 72.87
LR 68.01 67.97 NA 67.97
HT NA 74.48 75.82 75.55

Table 2: Benchmark processing time (seconds) for the Elec2 data set.

scikit-learn Creme scikit-multiflow River

model learn predict learn predict learn predict learn predict

GNB 10.94 ± 0.26 5.43 ± 0.10 0.32 ± 0.01 3.22 ± 0.09 1.39 ± 0.02 2.91 ± 0.03 0.32 ± 0.01 3.27 ± 0.13
LR 8.72 ± 0.14 3.15 ± 0.06 2.03 ± 0.04 0.42 ± 0.01 NA NA 0.95 ± 0.06 0.18 ± 0.01
HT NA NA 2.66 ± 0.06 0.48 ± 0.02 2.95 ± 0.06 2.21 ± 0.03 0.99 ± 0.04 0.65 ± 0.03

ods to process data in mini-batches, designated by the suffix _many instead of _one, e.g.
learn_one() — learn_many(). These methods expect pandas.DataFrame (pandas develop-
ment team, 2020) as input, a flexible data structure with labeled axes. This in turn allows
a uniform interface for instance-incremental and batch-incremental learning.

3. Benchmark

We benchmark the implementation of 3 algorithms2 available in scikit-learn (Pedregosa
et al., 2011), Creme and scikit-multiflow: Gaussian Naive Bayes (GNB), Logistic Regression
(LR) (Hastie et al., 2009), and Hoeffding Tree (HT) (Hulten et al., 2001). Table 1 shows
similar accuracy between implementations (as expected) for all models. Table 2 shows the
processing time (learn and predict). River models perform at least as fast but overall faster
than the rest. Tests are performed on the Elec2 data set (Harries and Wales, 1999) which
has 45312 samples with 8 numerical features. Reported processing time is the average
of running the experiment 7 times on a system with a 2.4 GHz Quad-Core Intel Core i5
processor and 16GB of RAM. Additional benchmarks for other data sets, machine learning
tasks and packages are available in the project’s repository.

4. Summary

River is a machine learning package for data streams in Python. It is the merger of Creme
and scikit-multiflow and supersedes said packages. The architecture is designed for both
flexibility and ease of use, with the goal of facilitating the deployment of stream learning in
diverse domains, both in industrial applications and in academic research. One of our next
steps is to propose a canonical way to deploy online models in production. This will most
likely result in another open source library, which we plan to work on in parallel of River’s
development.

2. These methods are selected for illustrative purposes only; scikit-learn has many other batch learning
methods. On the other hand, River has a substantial set of streaming learning methods including those
available in Creme and scikit-multiflow.
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