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Abstract

Bayesian optimisation presents a sample-efficient methodology for global optimisation.
Within this framework, a crucial performance-determining subroutine is the maximisa-
tion of the acquisition function, a task complicated by the fact that acquisition func-
tions tend to be non-convex and thus nontrivial to optimise. In this paper, we under-
take a comprehensive empirical study of approaches to maximise the acquisition function.
Additionally, by deriving novel, yet mathematically equivalent, compositional forms for
popular acquisition functions, we recast the maximisation task as a compositional opti-
misation problem, allowing us to benefit from the extensive literature in this field. We
highlight the empirical advantages of the compositional approach to acquisition function
maximisation across 3958 individual experiments comprising synthetic optimisation tasks
as well as tasks from Bayesmark. Given the generality of the acquisition function max-
imisation subroutine, we posit that the adoption of compositional optimisers has the po-
tential to yield performance improvements across all domains in which Bayesian optimi-
sation is currently being applied. An open-source implementation is made available at
https://github.com/huawei-noah/noah-research/tree/CompBO/BO/HEBO/CompBO.
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1. Introduction

Bayesian optimisation is a method for optimising black-box objective functions (Kushner,
1964; Močkus, 1975; Jones et al., 1998). The black-box optimisation (BBO) problem de-
scribes the search for the global maximiser x∗ of an unknown objective function f(x). The
objective function is unknown in the sense that an analytical form is unavailable. How-
ever, the objective may still be evaluated pointwise at arbitrary query locations within the
bounds of the design space. A further characteristic of the BBO problem is that each query
is expensive in terms of time, and as such, it is desirable to query as few points as possible
in the search for the global maximiser.

Real world examples of BBO problems are ubiquitous. Illustrative examples include
hyperparameter tuning in machine learning (Falkner et al., 2018; Kandasamy et al., 2018;
White et al., 2019; Gabillon et al., 2020; Cowen-Rivers et al., 2020a; Turner et al., 2021),
where the black-box objective is the mapping between a set of model hyperparameters x
and the validation set performance f(x), as well as automatic chemical design (Gómez-
Bombarelli et al., 2018; Korovina et al., 2020; Moss and Griffiths, 2020; Griffiths and
Hernández-Lobato, 2020), where the black-box objective is the mapping between a molecule
x and its suitability as a drug candidate f(x). Further examples of BBO problems appear
as subroutines of optimisation algorithms such as immune optimisation (Zhang et al., 2015;
Mahapatra et al., 2015), ant colony optimisation (Yoo and Han, 2014; Speranskii, 2015)
and genetic algorithms (Peng and Li, 2015), in reinforcement learning when accounting for
safety (Cowen-Rivers et al., 2020b; Abdullah et al., 2019), in multi-agent systems to com-
pute Nash equilibria (Yang et al., 2020; Aprem and Roberts, 2018), in speech recognition
(Moss et al., 2020b) and more broadly across domains spanning architecture (Costa et al.,
2015), supply chain networks (Aziz et al., 2021), human motion prediction (Bourached
et al., 2020), the fine arts (Stork et al., 2021), astrophysics (Griffiths et al., 2021), chemical
engineering (Ploskas et al., 2018), materials science (Cheng et al., 2020) and biology (Shah
and Sahinidis, 2012; Moss et al., 2020a).
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Figure 1: Summary plot for 3100 synthetic
BBO experiments showing first-order compo-
sitional optimisers outperform others. Lower
regret indicates better performance.

Various strategies exist for optimis-
ing black-box objective functions includ-
ing zero-order methods (Valko et al., 2013;
Grill et al., 2015; Gabillon et al., 2020), re-
source allocation methods (Li et al., 2017;
Falkner et al., 2018) and surrogate model-
based methods (Snoek et al., 2012; Shahri-
ari et al., 2016; Frazier, 2018). In this pa-
per, we focus on Bayesian optimisation, a
sequential, data-efficient, surrogate model-
based approach that is particularly effec-
tive when function evaluations are costly.
The two core components of the Bayesian
optimisation algorithm are a probabilistic
surrogate model and an acquisition func-
tion. The probabilistic surrogate model fa-
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cilitates data efficiency by making use of the full optimisation history to represent the
black-box function and additionally leverages uncertainty estimates to guide exploration.
Given that the true sequential risk describing the optimality of a sequence of queries is com-
putationally intractable, an acquisition function is a myopic heuristic which acts as a proxy
to the true sequential risk. The acquisition function measures the utility of a query point x
by its mean value under the surrogate model (exploitation) as well as its uncertainty under
the surrogate model (exploration). At each round of the Bayesian optimisation algorithm,
the acquisition function is maximised to select the next query point.
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Figure 2: Bayesmark regression summary
amalgamating the results from 54 Bayesmark
regression tasks when we compare compo-
sitional and non-compositional optimisers.
Higher score is better. Boxplots show median,
lower and upper quartiles of the scores. Re-
sults show that compositional optimisers out-
perform non-compositional optimisers on half
of the tasks.

It has been argued that maximisation
of the acquisition function is an impor-
tant, yet neglected determinant of the per-
formance of Bayesian optimisation schemes
(Wilson et al., 2018b). The vast major-
ity of acquisition functions however, con-
stitute a serious challenge from the stand-
point of optimisation; a characteristic exac-
erbated in the batch setting, where acqui-
sition functions are routinely non-convex,
high-dimensional and intractable (Wilson
et al., 2018b). Many strategies exist for
optimising acquisition functions including
gradient-based methods (Duchi et al., 2011;
Hinton et al., 2012; Kingma and Ba, 2015),
evolutionary methods (Igel et al., 2006; Jas-
trebski and Arnold, 2006; Hansen, 2016)
as well as variations of random search
(Schumer and Steiglitz, 1968; Schrack and
Choit, 1976; Bergstra and Bengio, 2012). In
this work, we choose to focus on gradient-
based methods which were recently shown
to be highly effective for optimising a wide
class of Monte Carlo acquisition functions
(Wilson et al., 2018b).

The most commonly-used acquisition
functions in practical applications (Snoek et al., 2012) are Monte Carlo acquisition functions
in the sense that they are formulated as integrals with respect to the current probabilistic
belief over the unknown function f (Shahriari et al., 2016; Wilson et al., 2018b); these in-
tegrals are typically intractable and as such are approximated by the corresponding Monte
Carlo (MC) estimate. In order to admit gradient-based optimisation, a reparametrisation
trick (Kingma and Welling, 2014; Rezende et al., 2014), introduced first as infinitesimal
perturbation analysis (Cao, 1985; Glasserman, 1988), is applied to facilitate differentiation
through the MC estimates with respect to the parameters of the surrogate model. It was
shown in (Wilson et al., 2018b) that acquisition functions estimated via MC integration are
consistently amenable to gradient-based optimisation via standard first and second-order
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methods including SGA (Bottou and Bousquet, 2007), Adam (Kingma and Ba, 2015), RM-
Sprop (Hinton et al., 2012), AdaGrad (Duchi et al., 2011) and L-BFGS-B (Zhu et al., 1997).

In this work, we exploit the observation that most common acquisition functions exhibit
compositional structure and hence can be equivalently reformulated in a compositional form
(Wang et al., 2017a). Such a reformulation allows a broader class of optimisation techniques
to be applied for acquisition function optimisation (Tutunov et al., 2020; Ghadimi et al.,
2020; Wang et al., 2017b) and in practice can more often enable better numerical perfor-
mance to be achieved in comparison with standard first and second-order methods. The
compositional form is achieved for the expected improvement (EI), simple regret (SR), up-
per confidence bound (UCB) and probability of improvement (PI) acquisition functions by
first exposing the finite-sum form of the reparameterised acquisition functions derived by
(Wilson et al., 2018b) and second introducing a deterministic outer function when consider-
ing the problem from a matrix-vector perspective. It should be noted that reformulating the
acquisition function in a compositional form is distinct from the setting where the black-box
function has a compositional form (Astudillo and Frazier, 2019).
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Figure 3: Bayesmark classification summary
amalgamating the results from 54 Bayesmark
classification tasks, we compare compositional
and non-compositional optimisers. Higher
score is better. Boxplots show lower, median
and upper quartiles of the data. Results show
compositional optimisers outperforming non-
compositional optimisers across all tasks.

In order to both improve and anal-
yse the optimisation performance on the
compositional form of the acquisition func-
tion, we introduce several algorithmic adap-
tations. Firstly, we present (C)L-BFGS;
a modification to the L-BFGS algorithm
to enable the handling of nested com-
positional forms. Secondly, we develop
AdamOS, a variant of the Adam optimiser
(Kingma and Ba, 2015) which borrows the
hyperparameter settings of CAdam (Tu-
tunov et al., 2020) and facilitates perfor-
mance comparison between compositional
and non-compositional optimisers. Lastly,
we formulate a generalised iterative update
rule for first-order compositional optimisers
and show how the updates of a number of
first-order optimisers may be expressed in
this manner.

In our empirical study, we seek to iden-
tify the most effective means of optimising
the acquisition function under a range of
experimental conditions including input di-
mensionality, presence or absence of obser-
vation noise and choice of acquisition function. We investigate twenty-eight optimisation
schemes, spanning zeroth, first and second-order optimisers as well as both compositional
and non-compositional methods. Additionally, we seek to answer the following questions:
Are there benefits to the finite-sum formulation of the reparameterised acquisition functions
compared to the more frequently-encountered empirical risk minimisation formulation? Are
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compositional or non-compositional approaches to optimisation more effective and if so, un-
der what conditions are they more effective? What are the performance-related trade-offs
in memory-efficient implementations of compositional acquisition functions? How does the
wall-clock time of compositional optimisation methods compare to non-compositional opti-
misation methods, and how does this vary with the dimensionality of the input space? How
do compositional optimisers fare when faced with noisy observations?

In order to answer these questions, we first perform a set of experiments across five
noiseless synthetic function tasks. Using this set of noiseless experiments as a filter for the
most effective optimisers, we then perform a second set of experiments on the Bayesmark
data sets which are noisy and bear a closer resemblance to real-world problems than the
synthetic tasks. Our results for the synthetic experiments are summarised in Figure 1
whilst our results for the Bayesmark data sets are summarised in Figure 2 and Figure 3 for
the regression and classification challenges respectively. In sum total, our empirical study
comprises 3958 individual experiments.

The paper is organised as follows: First, we introduce the necessary background on the
Bayesian optimisation framework. Second, we hone in on the acquisition function max-
imisation subroutine of Bayesian optimisation with the intent to understand the efficacy
of compositional optimisation schemes. We provide a general overview of compositional
optimisation and derive compositional forms for the four most popular myopic acquisition
functions. Third, we discuss state-of-the-art compositional solvers, namely CAdam, NASA,
SCGA and ASCGA. Fourth, we detail our experimental setup and present the empirical re-
sults. Fifth, we analyse the experimental results, draw conclusions and indicate avenues for
future work as well as descriptions of open problems in acquisition function maximisation.

2. Bayesian Optimisation

We consider a sequential decision-making approach to the global optimisation of smooth
functions f : X → R over a bounded input domain X ⊆ Rd. At each decision round, i, we
select an input xi ∈ X and observe the value of the black-box function f(xi). We allow the
returned value to be either deterministic i.e., yi = f(xi) or stochastic with yi = f(xi) + εi,
where εi denotes a bounded-variance random variable. Our goal is to rapidly approach
the maximum x? = arg maxx∈X f(x) in terms of cumulative regret RT =

∑T
t=1 rt where

rt = f(x?)− f(x
(new)
t ) is the distance between maximum function value f(x?) and function

value at the algorithm’s best recommendation at round t denoted as x
(new)
t . Since both

f(·) and x? are unknown, solvers need to trade off exploitation and exploration during the
search process.

To reason about the unknown function, typical Bayesian optimisation algorithms assume
smoothness and adopt Bayesian modelling as a principle to carry out inference about the
properties of f(·) in light of the observations. Here, one introduces a prior to encode
beliefs over the smoothness properties and an observation model to describe collected data,
Di = {xl, yl}nil=1, up to the ith round with ni denoting the total acquired data so far. Using
these two components in addition to Bayes rule, we can then compute a posterior p(f(·)|Di)
to encode all knowledge of f(·) allowing us to account for the location of the maximum.
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2.1 Bayesian Optimisation with Gaussian Processes

A Gaussian process (GP) offers a flexible and sample-efficient procedure for placing priors
over unknown functions (Rasmussen and Williams, 2006). These models are fully specified
by a mean function m(x) and a covariance function, or kernel, k(x,x′) that encodes the
smoothness assumptions on f(·). Given any finite collection of inputs x1:ni , the outputs are
jointly Gaussian given by:

f(x1:ni)|θ ∼ N (m(x1:ni),Kθ(x1:ni ,x1:ni)) ,

where [m(x1:ni)]k = m(xk) denotes the mean vector, and Kθ(x1:ni ,x1:i) ∈ Rni×ni the
covariance matrix with its (k, l)th entry computed as [Kθ(x1:ni ,x1:ni)]k,l = kθ(xk,xl). Here,
kθ(·, ·) represents a parameterised kernel with unknown hyperparameters θ corresponding to
lengthscales or signal amplitudes for example. For ease of presentation following (Rasmussen
and Williams, 2006), we use a zero-mean prior in our notation here. In terms of the choice
of Gaussian process kernel, there are a wide array of options which encode prior modelling
assumptions about the latent function. Two of the most commonly-encountered kernels
in the Bayesian optimisation literature are the squared exponential (SE) and Matérn(5/2)
kernels

[KSE
θ (x1:ni ,x1:ni)]k,l = kSE

θ (xk,xl) = exp

(
−1

2
r2

)
[K

Matérn(5/2)
θ (x1:ni ,x1:ni)]k,l = k

Matérn(5/2)
θ (xk,xl) = exp

(
−
√

5r
)(

1 +
√

5r +
5

3
r2

)
,

where r =

√
(xk − xl)

T diag
(
θ2
)−1

(xk − xl) and θ ∈ Rd denotes the d-dimensional hyper-

parameters with θ2 executed element-wise. As noted in (Rasmussen and Williams, 2006),
both these kernels are suited for situations where little is known about the latent function in
question. The Matérn kernel, however, is arguably suitable for a broader class of real-world
Bayesian optimisation problems as it imposes less restrictive smoothness assumptions on
f(·) (Stein, 2012). Following initial experimentation with linear, cosine, squared exponen-
tial and various Matérn kernels, we chose the Matérn(5/2) kernel to perform all experiments
with.

Given the data Di, and assuming Gaussian-corrupted observations yi = f(xi) + εi with
εi ∼ N (0, σ2), we can write the joint distribution over the data and an arbitrary evaluation
input x as:

[
y1:ni
f(x)

] ∣∣∣∣∣ θ ∼ N
(

0,

[
K

(i)
θ + σ2I k

(i)
θ (x)

k
(i),T
θ (x) kθ(x,x)

])
,

where K
(i)
θ = Kθ(x1:ni ,x1:ni) and k

(i)
θ (x) = kθ(x1:ni ,x). With the above joint distribu-

tion derived, we can now easily compute the predictive posterior through marginalisation
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(Rasmussen and Williams, 2006) leading us to f(x)|Di,θ ∼ N
(
µi(x;θ), σi(x;θ)2

)
with:

µi(x;θ) = k
(i)
θ (x)T(K

(i)
θ + σ2I)−1y1:ni

σi(x;θ)2 = kθ(x,x)− k
(i)
θ (x)T(K

(i)
θ + σ2I)−1k

(i)
θ (x).

Of course, the above can be generalised to the case when a predictive posterior over q
arbitrary evaluation points, x?1:q, needs to be computed as is the case in batched adaptations
of Bayesian optimisation. In such a setting f(x?1:q)|Di,θ ∼ N (µi(x

?
1:q;θ),Σi(x

?
1:q;θ)) with:

µi(x
?
1:q;θ) = K

(i)
θ (x?1:q,x1:ni)(K

(i)
θ + σ2I)−1y1:ni

Σi(x
?
1:q;θ) = K

(i)
θ (x?1:q,x

?
1:q)−K

(i)
θ (x?1:q,x1:ni)(K

(i)
θ + σ2I)−1K

(i),T
θ (x?1:q,x1:ni).

The remaining ingredient needed in a GP pipeline is a process to determine the unknown hy-
perparameters θ given a set of observation Di. In standard GPs (Rasmussen and Williams,
2006), θ are fit by minimising the negative log marginal likelihood (NLML) leading us to
the following optimisation problem:

min
θ
J (θ) =

1

2
det
(
C

(i)
θ

)
+

1

2
yT

1:niC
(i),−1
θ y1:ni +

ni
2

log 2π, with C
(i)
θ = K

(i)
θ + σ2I. (1)

The objective in Equation 1 represents a non-convex optimisation problem making GPs
susceptible to local minima. Various off-the-shelf optimisation solvers ranging from first-
order (Kingma and Ba, 2015; Bottou and Bousquet, 2007) to second-order (Zhu et al., 1997;
Amari, 1998) methods have been rigorously studied in the literature. In our experiments,
we made use of a set of implementations provided in GPyTorch (Gardner et al., 2018) that
relied on a scipy (Virtanen et al., 2020) implementation of L-BFGS-B (Zhu et al., 1997)
for determining θ. It is also worth noting that gradients of the loss in Equation 1 require
inverting an ni × ni covariance matrix leading to an order of O(n3

i ) complexity in each
optimisation step. In large data regimes, variational GPs have proved to be a scalable
methodology through the usage of m << ni inducing points (Titsias, 2009; Hensman et al.,
2013).

In Bayesian optimisation however, data is typically sparse due to the expense of evalu-
ating even one query of the black-box function, which makes the application of sparse GPs
less attractive in these scenarios. While other scalable surrogate models such as Bayesian
neural networks (BNNs) and Random Forest have featured in the literature (Snoek et al.,
2015b; Hutter et al., 2011b), each come with disadvantages. Many BNN-based approaches
rely on approximate inference, and hence uncertainty estimates may deteriorate in quality
relative to exact GPs while the Random-Forest-based SMAC algorithm is not amenable to
gradient-based optimisation due to a discontinuous response surface (Hutter et al., 2011a;
Shahriari et al., 2016). As such, we restrict our focus to exact GPs and direct the reader to
external sources for discussion on alternative surrogate models such as sparse GPs (McIntire
et al., 2016), BNNs (Snoek et al., 2015a; Springenberg et al., 2016; Hernández-Lobato et al.,
2017), neural processes (Kim et al., 2018) as well as heteroscedastic GPs (Calandra, 2017;
Griffiths et al., 2019).
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2.2 Acquisition Functions

Having introduced a distribution over latent black-box functions and specified mechanisms
for updating hyperparameters, we now discuss the process by which novel query points are
suggested for collection in order to improve the surrogate model’s best guess for the global
optimiser x?. In Bayesian optimisation, proposing novel query points is performed through
maximising an acquisition function α(·|Di) that trades off exploration and exploitation by
utilising statistics from p(f(·)|Di), i.e., xi+1 = arg maxx α(x|Di). Acquisition functions
can be taxonomised into myopic and non-myopic forms (González et al., 2016). The former
class involves integrals defined in terms of beliefs over unknown outcomes from the black-box
function, while the latter class constitutes more complicated nested integrals. In this paper,
we focus on representative examples of standard myopic acquisitions whilst considering
entropy search as a widely-used non-myopic acquisition. We detail these acquisitions next.

Expected Improvement: One of the most popular acquisition functions is expected
improvement (Močkus, 1975; Jones et al., 1998), which determines new query points by
maximising expected gain relative to the function values observed so far. Formally, denote
by x+

i an input point in Di for which f(·) is maximised, i.e., x+
i = arg maxx∈x1:ni

f(x).

Given x+
i , we define an expected improvement acquisition to compute the expected positive

gain in function value compared to the best incumbent point in Di as:

αEI(x|Di) = Ef(x)|Di,θ
[
max{(f(x)− f(x+

i )), 0}
]

= Ef(x)|Di,θ
[
ReLU(f(x)− f(x+

i ))
]
,

where ReLU represents a rectified linear unit with ReLU(a) = max{0, a}. The above
can be generalised to support a batch form generating x1:q query points as introduced
in (Ginsbourger et al., 2008). Here, we first compute the multi-dimensional predictive
posterior f(x1:q)|Di,θ as described in Section 2.1 and then define the maximal gain across
all q-batches as:

αq-EI(x1:q|Di) = Ef(x1:q)|Di,θ

[
max
j∈1:q
{ReLU(f(x1:q)− f(x+

i )1q)}
]
, (2)

where 1q denotes a q-dimensional vector of ones and as such, the ReLU(·) is to be executed
element-wise. In words, Equation 2 simply computes the expected maximal improvement
across all q-dimensional predictions compared to the best incumbent point in Di. This
form of acquisition is termed joint parallel acquisition function maximisation in (Wilson
et al., 2018b) (other forms being greedy and incremental) and is chosen for the experiments
in this paper due to its usage in the BoTorch library (Balandat et al., 2020). In joint
parallel acquisition function maximisation, each query point is treated as a dimension of
the acquisition surface and the set of batch points is optimised on this surface cf. figure 2
of (Wilson et al., 2018b) for an illustration.

Probability of Improvement: Another commonly-used acquisition function in Bayesian
optimisation is the probability of improvement criterion which measures the probability of
acquiring gains in the function value compared to f(x+

i ) (Kushner, 1964). Such a probability
is measured through an expected Heaviside step function as follows:

αPI(x|Di) = Ef(x)|Di,θ
[
11{f(x)− f(x+

i )}
]
,

8
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with 11{f(x) − f(x+
i )} = 1 if f(x) ≥ f(x+

i ) and zero otherwise. Analogous to expected
improvement, we can extend αPI(x|Di) to a batch form by generalising the step function to
support-vectored random variables in addition to adopting maximal gain across all batches
as an improvement metric:

αq-PI(x1:q|Di) = Ef(x1:q)|Di,θ

[
max
j∈1:q

{
11{f(x1:q)− f(x+

i )1q}
}]
, (3)

where 11{f(x1:q) − f(x+
i )1q} returns a q-dimensional binary vector with [11{f(x1:q) −

f(x+
i )}]j = 1 if [f(x1:q)]j ≥ [f(x+

i )1q]j and zero otherwise for all j ∈ {1, . . . , q}.

Simple Regret: In simple regret, new query points are determined by maximising ex-
pected outcomes, i.e., αSR(x|Di) = Ef(x)|Di,θ[f(x)]. This, in turn, can also be generalised
to a batch mode by considering the maximal improvement across all q batches leading to:

αq-SR(x1:q|Di) = Ef(x1:q)|Di,θ

[
max
j∈1:q

{f(x1:q)}
]
.

Upper Confidence Bound: In this type of acquisition, the learner trades off the mean
and variance of the predictive distribution to gather new query points for function evalua-
tion (Srinivas et al., 2010). In the standard form, an upper-confidence bound acquisition can
simply be written as: αUCB(x|Di) = µi(x;θ) +

√
βσi(x;θ) with β ∈ R being a free tuneable

hyperparameter. Although widely used, such a form of the upper-confidence bound is not
directly amendable to parallelism. To circumvent this problem, the authors in (Wilson et al.,
2018b) have shown an equivalent form for the expectation by exploiting reparameterisation
leading to:

αUCB(x|Di) = µi(x;θ) +
√
βσi(x;θ) = Ef(x)|Di,θ

[
µi(x;θ) +

√
βπ/2|γi(x;θ)|

]
,

with γi(x;θ) = f(x) − µi(x;θ). Given such a formulation, we can now follow similar
reasoning to previous generalisations of acquisition functions and consider a batched version
by taking the maximum over all q query points:

αq-UCB(x1:q|Di) = Ef(x1:q)|Di,θ

[
max
j∈1:q

{
µi(x1:q;θ) +

√
βπ/2|γi(x1:q;θ)|

}]
,

where γi(x1:q;θ) = f(x1:q)− µi(x1:q;θ).

Entropy Search: In (Hennig and Schuler, 2012), an information-theoretic approach is
introduced to select novel query points based on an approximation of the posterior entropy
for the global optimiser x?. The next point xi+1 is chosen to minimise the posterior entropy
Ef(x|Di,),θ [H[p(x∗|Di ∪ {x, f(x)})]] and hence minimises the uncertainty over the location
of x+. In (Wilson et al., 2018b), a parallel implementation is introduced via a q−batch
form for the entropy search acquisition function

αq-ES(x1:q|Di) = −Ef(x1:q)|Di,θ

[
H

[
E
f
(
x
(g)
1:u

)
|Di∪{x1:q ;f(x1:q)},θ

[
11{f(x(g)

1:u)− max
j∈1:u

f(x
(g)
j )1u}

]]]
,
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where x
(g)
1:u is a grid of u discrete locations sampled from the input domain X

according to a discretisation measure U(·|Di), H[·] is the Shannon entropy and

11{f(x(g)
1:u) − maxj∈1:u f(x

(g)
j )1u} returns a u-dimensional binary vector with [11{f(x(g)

1:u) −
maxj∈1:u f(x

(g)
j )1u}]` = 1 if f(x

(g)
` ) = maxj∈1:u f(x

(g)
j ) and zero otherwise for all ` ∈

{1, . . . , u}
Following the introduction of GP surrogate models and acquisition functions, we are

now ready to present a canonical template for the Bayesian optimisation algorithm. The
main steps are summarised in the pseudocode of Algorithm 1.

Algorithm 1 Batched Bayesian Optimisation with GPs

1: Inputs: Total number of outer iterations N , initial randomly-initialised data set D0 =
{xl, yl ≡ f(xl)}n0

l=1, batch size q, acquisition function type
2: for i = 0 : N − 1:
3: Fit the GP model to the current data set Di by minθ J (θ) from Equation 1

4: Find q points by solving x
(new)
1:q = arg maxx1:q αq-type(x1:q|Di) )

5: Evaluate new inputs by querying the black-box to acquire y
(new)
1:q = f(x

(new)
1:q )

6: Update the data set creating Di+1 = Di ∪ {x(new)
l , y

(new)
l }ql=1

7: end for
8: Output: Return the best-performing query point from the data x? = arg maxx∈DN f(x)

First, a GP model is fit to the available data (see line 3 of Algorithm 1) enabling the
computation of the predictive distribution needed to maximise the acquisition function (line
4). Having acquired new query points, the learner then updates the data set Di after which
the above process repeats until a total number of iterations N is reached. At the end of the
main loop, Algorithm 1 outputs x?, the best performing input from all acquired data DN .

Clearly, maximising acquisition functions plays a crucial role in Bayesian optimisation
as this step constitutes the process by which the learner yields concrete exploratory actions
to improve the guess for the global optimum x?. The majority of acquisition functions, how-
ever, are often intractable, posing formidable challenges during the optimisation step in line
4 of Algorithm 1. In order to tackle these challenges, researchers have proposed a plethora
of methods that can generally be categorised into three main groups. Approximation tech-
niques, the first group, replace the quantity of interest with a more readily-computable
one e.g. (Cunningham et al., 2011) apply expectation propagation (Minka, 2001a,b; Opper
et al., 2001) as an approximate integration method while (Wang and Jegelka, 2017) apply a
mean field approximation to enable a Gumbel sampling approximation to their max-value
entropy search acquisition function. As noted in (Wilson et al., 2018b), these methods tend
to work well in practice but may not converge to the true value of the optimiser. On the
other hand, solutions provided in the second group (Chevalier and Ginsbourger, 2013) de-
rive near-analytic expressions in the sense that they contain terms such as low-dimensional
multivariate normal cumulative density functions that cannot be computed exactly but for
which high-quality estimators exist (Genz, 1992, 2004). As noted again by (Wilson et al.,
2018b), these methods rarely scale to high dimensions. Finally, the third group comprises
Monte Carlo (MC) methods (Osborne et al., 2009; Hennig and Schuler, 2012; Snoek et al.,
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2012) which provide unbiased estimators to α(·|Di). MC methods have been successfully
used in the context of acquisition function maximisation to the extent that they form the
backbone of modern Bayesian optimisation libraries such as BoTorch (Balandat et al., 2020).

As such, given their prevalence in present-day implementations, we restrict our at-
tention to MC techniques and note three classes of widely-used optimisers. Zeroth-order
procedures (Hazan, 2016; Gabillon et al., 2020), such as evolutionary algorithms (van Rijn
et al., 2016; Blank and Deb, 2020), only use function value information for determining
the maximum of the acquisition. First-order methods (Kingma and Ba, 2015; Bottou and
Bousquet, 2007), on the other hand, utilise gradient information during the ascent step,
while second-order methods exploit (approximations to) Hessians (Byrd et al., 1995; Zhu
et al., 1997; Boyd and Vandenberghe, 2004; Tutunov et al., 2015, 2019) in their update.
During the implementation of first and second-order optimisers, one realises the need for
differentiating through an MC estimator with respect to the parameters of the generative
distribution P(·). As described in (Wilson et al., 2018b), this can be achieved through
reparameterisation in two steps: 1) reparameterising samples from P(·) as draws from a
simpler distribution P̂(·), and 2) interchanging integration and differentiation by exploiting
sample-path derivatives. After reparameterisation, the designer faces two implementation
choices which we refer to as ERM-BO and FSM-BO akin to the distinction between em-
pirical risk minimisation (Gonen and Shalev-Shwartz, 2017) and finite sum (Schmidt et al.,
2017) optimisation forms1.

In an ERM-BO construction, samples from P̂(·) are acquired at every iteration of the
optimisation algorithm as needed. In contrast, in an FSM-BO setting, all samples from
P̂(·) are obtained upfront and mini-batched during gradient computations. Due to mem-
ory consideration, especially in high-dimensional scenarios, the ERM-BO version has been
mostly preferred and studied in the literature (Knudde et al., 2017; Balandat et al., 2020).

In this paper however, we are interested in both views and desire to shed light on
best practices when optimising acquisition functions. To accomplish such a goal, we care-
fully probe both settings and realise that an FSM-BO implementation enables a novel
connection to a compositional (nested expectation) formulation that sanctions new com-
positional solvers not previously attempted. Next, we derive such a connection, present
memory-efficient optimisation algorithms for FSM-BO, and demonstrate empirical gains in
large-scale experiments.

3. Acquisition Function Maximisation

The first step in investigating different implementations of BO is to derive relevant repa-
rameterised forms of the acquisition functions in Section 2.2. When reparameterising one
reinterprets samples yk ∼ P(y;θ) as a deterministic map λθ(·) of a simpler random variable
zk ∼ P̂(z), that is y = λθ(z). Under these conditions, the expectation of some loss L(·)
under y can be rewritten in terms of P̂(z) as Ey∼P(y;θ)[L(y)] = Ez∼P̂(z)[L(λθ(z))] allow-

1. Of course, an empirical risk and a finite sum formulation become equivalent as samples grow large. In
reality, infinite samples cannot possibly be acquired hence our two-class categorisation.
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ing us, under further technical conditions (Wilson et al., 2018b), to push gradients inside
expectations when needed.

Before diving into ascent direction computation, we first present reparameterised acqui-
sition formulations as derived in (Wilson et al., 2018b). First, we realise that all batched
acquisition functions in Section 2.2 involve an expectation over the GP’s predictive poste-
rior f(x1:q)|Di,θ ∼ N (µi(x1:q;θ),Σi(x1:q;θ)). Second, we recall that if a random variable
is Gaussian distributed, one can reparameterise by choosing z ∼ N (0, I) and then ap-
plying λθ(z) = µi(x1:q;θ) + Li(x1:q;θ)z with Li(x1:q;θ)LT

i (x1:q;θ) = Σi(x1:q;θ). Using
such a deterministic transformation λθ(z), the original random variable’s distribution re-
mains unchanged indicating a mean µi(x1:q;θ) and covariance Σi(x1:q;θ). Now, we can
easily replace λθ(z) in each of the expected improvement, simple regret, upper confidence
bound, and entropy search acquisitions leading us to the following batch-reparameterised
formulations:

αrq-EI(x1:q|Di) = Ez∼N (0,I)

[
max
j∈1:q

{
ReLU

(
µi(x1:q;θ) + Li(x1:q;θ)z− f(x+

i )1q
)}]

, (4)

αrq-SR(x1:q|Di) = Ez∼N (0,I)

[
max
j∈1:q

{µi(x1:q;θ) + Li(x1:q;θ)z}
]
, (5)

αrq-UCB(x1:q|Di) = Ez∼N (0,I)

[
max
j∈1:q

{
µi(x1:q;θ) +

√
βπ/2|Li(x1:q;θ)z|

}]
. (6)

When it comes to probability of improvement, the direct insertion of λθ(z) into Equa-
tion 3 is difficult due to the discrete nature of the utility measure that violates differen-
tiablity assumptions in reparameterisation (Jang et al., 2017). To overcome this issue, we
follow (Wilson et al., 2018b) and adopt the concrete (continuous to discrete) approximation
to replace the discontinuous mapping (Maddison et al., 2017) such that transformed and
original variables are close in distribution. Sticking to the formulation presented (Wilson
et al., 2018b), we loosen the indicator part of αq-PI(·) from Equation 3 and write:

max
j∈1:q

{
11{f(x1:q)− f(x+

i )1q}
}
≈ max

j∈1:q

{
Sig

(
f(x1:q)− f(x+

i )1q
τ

)}
,

where Sig(·) is executed component-wise and denotes the sigmoid function with τ ∈ R+

representing its temperature parameter that yields an exact approximation as τ → 0. Given
the approximation above and using a multivariate standard normal (instead of a uniform,
see (Maddison et al., 2017)) as P̂(z), we derive the following reparameterised form for the
probability of improvement acquisition:

αrq-PI(x1:q|Di) = Ez∼N (0,I)

[
max
j∈1:q

{
Sig

(
µi(x1:q;θ) + Li(x1:q;θ)z− f(x+

i )1q
τ

)}]
. (7)

Finally, for the entropy search acquisition function, the above reparametrisation
trick should be applied twice: for the outer posterior distribution f(x1:q)|Di,θ ∼
N (µi(x1:q;θ),Σi(x1:q;θ)) and for the inner posterior distribution f

(
x

(g)
1:u

)
|Di ∪
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{x1:q; f(x1:q)},θ ∼ N (µ
(g)
i (x

(g)
1:u; f(x1:q),θ),Σ

(g)
i (x

(g)
1:u;θ)) with:

µ
(g)
i (x

(g)
1:u; f(x1:q),θ) = K

(i)
θ (x

(g)
1:u,Di ∪ x1:q)︸ ︷︷ ︸
K

(g),(i)
θ

[
K

(i)
θ + σ2I K

(i)
θ (Di,x1:q)

K
(i),T
θ (Di,x1:q) K

(i)
θ (x1:q,x1:q)

]−1 [
y1:ni

f(x1:q)

]
,

Σ
(g)
i (x

(g)
1:u;θ) = K

(i)
θ (x

(g)
1:u,x

(g)
1:u)−K

(g),(i)
θ

[
K

(i)
θ + σ2I K

(i)
θ (Di,x1:q)

K
(i),T
θ (Di,x1:q) K

(i)
θ (x1:q,x1:q)

]−1

K
(g),(i),T
θ .

Due to the nested expectation structure of the entropy search acquisition function
αq-ES(x1:q|Di), in order to rewrite it in the reparametrised form we consider two deter-

ministic transformations λ
(i)
θ (z) = µi(x1:q;θ) + Li(x1:q;θ)z with Cholesky decomposition

Li(x1:q;θ)LT
i (x1:q;θ) = Σi(x1:q;θ) and %

(i)
θ (ω) = µ

(g)
i (x

(g)
1:u; f(x1:q),θ) + L

(g)
i (x

(g)
1:u;θ)ω with

Cholesky decomposition L
(g)
i (x1:u;θ)L

(g),T
i (x1:u;θ) = Σ

(g)
i (x

(g)
1:u;θ). Choosing random vec-

tors z ∼ N (0q, Iq×q) and ω ∼ N (0u, Iu×u)2 in the above transformations λ
(i)
θ (·), %(i)

θ (·)
respectively, and applying the following smooth approximation for the step function:

11{f(x(g)
1:u)− max

j∈1:u
f(x

(g)
j )1u} ≈ SM

(
µ

(g)
i (x

(g)
1:u;λ

(i)
θ (z),θ) + L

(g)
i (x

(g)
1:u;θ)ω

τ

)
with SM(·) being a softmax function and τ ∈ R+ a temperature parameter controlling the
approximation accuracy, we arrive to the batch-reparametrised form for the entropy search
acquisition function:

αrq-ES(x1:q|Di) = −Ez

[
H

[
Eω

[
SM

(
µ

(g)
i (x

(g)
1:u;λ

(i)
θ (z),θ) + L

(g)
i (x

(g)
1:u;θ)ω

τ

)]]]
(8)

Given reparameterised acquisitions, we now turn our attention to ERM- and FSM-BO
depicting both implementations and presenting novel compositional procedures that are
sample and memory efficient.

3.1 ERM-BO using Stochastic Optimisation

Mainstream implementations of BO cast the inner optimisation problem (line 4 in Algo-
rithm 1) in an empirical risk form maxx1:q Ez∼N (0,I)[L(x1:q; z)] with L(x1:q; z) dependent on
the acquisition’s type, e.g., maxj∈1:q {µi(x1:q;θ) + Li(x1:q;θ)z} in the simple regret case.
Such a connection enables tractable optimisation through the usage of numerous zero, first,
and second-order optimisers developed in the literature (van Rijn et al., 2016; Bottou et al.,
2018; Sun et al., 2019). Since such an implementation is fairly common in practice (Knudde
et al., 2017; Balandat et al., 2020) and not to burden the reader with unnecessary notation,
we defer the exact details of the optimisers used in our experiments to appendices B, C
and D. Here, we briefly mention that we surveyed three zero-order optimisers, eight first-
order algorithms and one well-known approximate second-order method.

2. Here 0a and Ia×a denote a−dimensional vector of zeros and a by a identity matrix respectively
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Zeroth-Order Optimisers in ERM-BO: Zeroth-order methods optimise objectives
based on function value information and have emerged from many different fields. In the
online learning literature, for example, development of zeroth-order methods is mostly the-
oretical aiming at efficient and optimal regret guarantees (Hazan, 2016; Lattimore and
Szepesvári, 2020; Gabillon et al., 2020) – a challenging topic in itself. Empirical successes
of such procedures have been achieved in isolated instances (Shalev-Shwartz and Singer,
2007; Viappiani and Boutilier, 2009; Contal et al., 2013; Chen et al., 2013; Bresler et al.,
2016; Ariu et al., 2020; Hallak et al., 2020). Mainstream implementation of zeroth-order
optimisers for BO, however, are of the evolutionary type updating generations of x through
a process of adaptation and mutation (Bentley, 1999).

In our experiments, we used three such strategies, varying from simple to advanced.
The most simple among the three was random search (RS) which acts as a low-memory,
low-compute baseline. The second, corresponds to a covariance matrix evolutionary strat-
egy (CMA-ES) that generates updates of the mean and covariance of a multivariate normal
based on average sample ranks gathered from function value information (Hansen and Oster-
meier, 1996; van Rijn et al., 2016). The third and final algorithm was differential evolution
(DE) which is widely considered a go-to in evolutionary optimisation (Price, 1996; Baioletti
et al., 2020), e.g., NSGA I and II (Deb et al., 2002) as implemented in (Blank and Deb,
2020). DE continuously updates a population of candidate solutions via component-wise
mutation performing selection according to a mutation probability pmutation. More details
are available in Appendix B.

First-Order Optimisers in ERM-BO: First-order optimisation techniques rely on gra-
dient information to compute updates of x. They are iterative in nature running for a total
of T iterations and executing a variant of the following rule at each step3:

x1:q,t+1 = δtx1:q,t + ηt

φ
(1)
t

(
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di),

{
β

(1)
k

}t
k=0

)
φ

(2)
t

(
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
,
{
β

(2)
k

}t
k=0

, ε

)
︸ ︷︷ ︸

(General update),

(9)

where δt is a weighting that depends on the type of algorithm used, ηt is a typically de-

caying learning rate, φ
(1)
t (·) and φ

(2)
t (·) are history-dependent mappings that vary between

algorithms with the ratio executed element-wise,
{
β

(1)
k

}t
k=0

and
{
β

(2)
k

}t
k=0

are history-

weighting parameters, and ε a small positive constant used to avoid division by zero. Ad-
ditionally, ∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di) represent sub-sampled gradient estimators that
are acquired using Monte-Carlo samples of z ∼ N (0, I). It is also worth noting that differ-
entiating through the max operator that appears in all acquisitions can be performed either
using sub-gradients or by propagating through the max value of the corresponding vector.

To elaborate our generalised form, we realise that one can easily recover Adam’s (Kingma

and Ba, 2015) update equation by setting δ1 = · · · = δT = 1, β
(1)
1 = · · · = β

(1)
T = β1,

3. For simplicity in the notation for acquisition functions α(x1:q,0|Di) we drop the subscript with the type.
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β
(2)
1 = · · · = β

(2)
T = β2, and φ

(1)
t and φ

(2)
t to:

φ
(1)
t

(
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di), β1

)
=

1− β1

1− βt1

t∑
k=0

βk1∇α(x1:q,t−k|Di),

φ
(2)
t

(
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
, β2, ε

)
=

√√√√1− β2

1− βt2

t∑
k=0

βk2∇α(x1:q,t−k|Di)
2

+ ε.

Of course, Adam is yet another special case of Equation 9. For notational con-
venience, we defer the detailed derivations of other optimisers including SGA (Rob-
bins and Monro, 1951), RProp (Riedmiller and Braun, 1993), RMSprop (Hinton et al.,
2012), AdamW (Loshchilov and Hutter, 2019), AdamOS (an Adam adaptation with new
hyperparameters that we propose in this paper), AdaGrad (Duchi et al., 2011), and
AdaDelta (Zeiler, 2012) to Appendix C.

Second-Order Optimisers in ERM-BO: Along with gradient information, second-
order optimisers utilise Hessian (sometimes the Fisher matrix instead (Amari, 1997; Pascanu
and Bengio, 2014)) information for maximising objective functions. The general iterative
update equation for a second-order method is given by:

x1:q,t+1 = x1:q,t − ηt
[
∇2α(x1:q,t|Di)

]−1
∇α(x1:q,t|Di)

(General update),

where ∇2α(x1:q,t|Di) is an approximation to the true Hessian ∇2α(x1:q,t|Di) as evaluated

on the current iterate x1:q,t, and ∇α(x1:q,t|Di) denotes a gradient estimate that is acquired
through Monte Carlo samples as described above. It is worth emphasising the need for
the approximation ∇2α(x1:q,t|Di) to ∇2α(x1:q,t|Di) due to the large size of the true Hessian
matrix (Rdq×dq in our case), as well as the necessity to compute an inverse at every iteration
of the update. Numerous approximation techniques with varying degrees of accuracy have
been proposed in the literature (Shanno, 1970; Mokhtari and Ribeiro, 2014, 2015; Byrd
et al., 2016). In this paper, however, we make use of L-BFGS (Zhu et al., 1997) due to
its widespread adoption in both GPs and BO (Rasmussen and Williams, 2006; Balandat
et al., 2020). Exact details and pseudocode for L-BFGS are comprehensively presented in
Appendix D.

3.2 FSM-BO & Connections to Compositional Optimisation

Rather than considering the problem of acquisition function maximisation as an instance
of empirical risk minimisation, we can follow an alternative route and focus on finite sum
approximations. To do so, imagine we acquire M independent and identically-distributed
samples from N (0, I), {zm}Mm=1, upfront before the beginning of any acquisition function
optimisation step. Assuming fixed samples for now, we can write finite-sum forms of the
reparameterised acquisition functions (those from Section 3) using a simple Monte Carlo
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estimator as follows:

α
(FSM)
rq-EI (x1:q|Di) =

1

M

M∑
m=1

max
j∈1:q

{
ReLU

(
µi(x1:q;θ) + Li(x1:q;θ)zm − f(x+

i )1q
)}
, (10)

α
(FSM)
rq-SR (x1:q|Di) =

1

M

M∑
m=1

max
j∈1:q

{µi(x1:q;θ) + Li(x1:q;θ)zm} , (11)

α
(FSM)
rq-UCB(x1:q|Di) =

1

M

M∑
m=1

max
j∈1:q

{
µi(x1:q;θ) +

√
βπ/2|Li(x1:q;θ)zm|

}
, (12)

α
(FSM)
rq-PI (x1:q|Di) =

1

M

M∑
m=1

max
j∈1:q

{
Sig

(
µi(x1:q;θ) + Li(x1:q;θ)zm − f(x+

i )1q
τ

)}
. (13)

As for the entropy search acquisition function given in Equation 8, due to its nested ex-
pectation form simply replacing both expectations with their corresponding MC estimates
leads to a biased estimate of αrq-ES(x1:q|Di). Instead, we use a collection of independent
random vectors {zm}Mm=1 sampled from N (0q, Iq×q) to construct a Monte Carlo estimate
for the outer expectation and write:

α
(FSM)
rq-ES (x1:q|Di) = − 1

M

M∑
m=1

H

[
Eω

[
SM

(
µ

(g)
i (x

(g)
1:u;λ

(i)
θ (zm),θ) + L

(g)
i (x

(g)
1:u;θ)ω

τ

)]]
.

(14)

At this stage, we can execute any off-the-shelf optimiser to maximise the finite sum
version of the acquisitions, i.e., Equations 9 to 12. Contrary to ERM-BO which samples
new z vectors at each iteration, the FSM formulation fixes {zm}Mm=1 and mini-batches
from this fixed pool to compute necessary gradients and Hessian estimates for first and
second-order methods respectively. At first sight, one might believe that ERM and FSM
are the only plausible approximation forms of acquisition functions in BO. Upon further
investigation, however, we realise that finite sum myopic acquisitions adhere to yet another
configuration that is still to be (well-) explored in the literature. Not only does this new
form allow for novel solvers not yet attempted in acquisition function maximisation, but
also seems to significantly outperform both ERM-and FSM-BO in practice, cf. Section 4.

3.2.1 Comp-BO: A Compositional Form for Myopic Acquisition Functions

Recently, the optimisation community has displayed an increased interest in developing
specialised algorithms for compositional (or nested) objectives due to their prevalence in
subfields of machine learning, e.g., in model-agnostic-meta-learning (Tutunov et al., 2020),
semi-implicit variational inference (Yin and Zhou, 2018), dynamic programming and rein-
forcement learning (Wang et al., 2017b). In each of these examples, compositional solvers
have demonstrated efficiency advantages when compared to other algorithms which begs
the question as to whether these improvements can be ported to Bayesian optimisation.
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From a definition perspective, compositional problems involve maximising an objective
that consists of a non-linear nesting of expectations of random variables:

max
x1:q

Eν [fν(Eω[gω(x1:q)])], (15)

where ν and ω are (not necessarily iid) random variables sampled from Pν(·) and Pω(·)
respectively (Wang and Liu, 2016), fν(·) a stochastic function, and gω(·) is a stochastic
map. Hence to benefit from such techniques, our first step consists of transforming the
finite-sum versions of the acquisition functions above into a composed (or nested) form that
abides by the structure in Equation 15. Interestingly, this can easily be achieved if we look

at the problem from a matrix-vector perspective. To illustrate, consider α
(FSM)
rq-EI (x1:q|Di)

and define g
(EI)
ω (x1:q) to be a q ×M matrix such that the ωth column is set to v

(EI)
ω =

ReLU
(
µi(x1:q;θ) + Li(x1:q;θ)zω − f(x+

i )1q
)
∈ Rq with ω uniformly distributed in [1 : M ],

and set the other columns to 0q:

g(EI)
ω (x1:q) = [0q, . . . ,v

(EI)
ω , . . . ,0q].

Clearly, if we consider the expectation with respect to ω ∼ Uniform([1 : M ]), we arrive at
the following matrix that sums all information across {zm}Mm=1:

Eω[g(EI)
ω (x1:q)] =

1

M
[v

(EI)
1 , . . . ,v(EI)

m , . . . ,v
(EI)
M ],

with v
(EI)
m = ReLU

(
µi(x1:q;θ) + Li(x1:q;θ)zm − f(x+

i )1q
)

being a q-dimensional vector.

To attain the original form of α
(FSM)
rq-EI (·), we further introduce a deterministic outer function

f (EI) : Rq×M → R as follows:

α
(Comp)
rq-EI (x1:q|Di) = f (EI)(Eω[g(EI)

ω (x1:q)]) =
1

M

M∑
m=1

max
j∈1:q

v(EI)
m = α

(FSM)
rq-EI .

Importantly, the above shows that a finite-sum expected improvement acquisition can be

written in a compositional (nested) form with α
(FSM)
rq-EI = f(Eω[gω(x)]). In our derivations, we

have considered a deterministic outer function f(·) leading us to a special case of Equation 15
where Pν(·) is Dirac. Such a consideration is mostly due to the fact that q is typically in
the order of tens or hundreds in BO allowing for exact outer summations. In the case of
large batch sizes, our formulation can easily be generalised to a stochastic setting exactly
matching a compositional form as shown in Appendix A.

Following the same strategy above, we can now reformulate all other acquisition func-
tions as instances of compositional optimisation. Next, we list these results and refer the
reader to Appendix A for a detailed exposition. First, we choose ω ∼ Uniform([1 : M ]) and
then consider the following inner matrix mappings:

g(PI)
ω (x1:q) = [0q, . . . ,v

(PI)
ω , . . . ,0q] ∈ Rq×M ,

g(SR)
ω (x1:q) = [0q, . . . ,v

(SR)
ω , . . . ,0q] ∈ Rq×M

g(UCB)
ω (x1:q) = [0q, . . . ,v

(UCB)
ω , . . . ,0q] ∈ Rq×M
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and for the entropy search acquisition ω ∼ N (0u, Iu×u):

g
(ES)
ω (x1:q) = [v

(ES)
1,ω ,v

(ES)
2,ω , . . . ,v

(ES)
M,ω] ∈ Ru×M .

where the q−dimensional vectors v
(PI)
m ,v

(SR)
m , and v

(UCB)
m are defined as (for m ∈ [1 : M ]):

v(PI)
m =

1

τ

[
µi(x1:q;θ) + Li(x1:q;θ)zm − f(x+

i )1q
]
,

v(SR)
m = µi(x1:q;θ) + Li(x1:q;θ)zm,

v(UCB)
m = µi(x1:q;θ) +

√
βπ/2 |Li(x1:q;θ)zm| .

and u−dimensional vector v
(ES)
m,ω is defined as (for m ∈ [1 : M ] and ω ∼ N (0u, Iu×u)):

v
(ES)
m,ω = SM

(
µ

(g)
i (x

(g)
1:u;λ

(i)
θ (zm),θ) + L

(g)
i (x

(g)
1:u;θ)ω

τ

)
.

Now, properly selecting the outer functions f (PI)(·), f (SR)(·), and f (UCB)(·) gives us:

α
(Comp)
rq-PI (x1:q|Di) = f (PI)(Eω[g(PI)

ω (x1:q)]) =
1

M

M∑
m=1

max
j∈1:q

{
Sig
(
v(PI)
m

)}
= α

(FSM)
rq-PI (x1:q|Di),

α
(Comp)
rq-SR (x1:q|Di) = f (SR)(Eω[g(SR)

ω (x1:q)]) =
1

M

M∑
m=1

max
j∈1:q

{
v(SR)
m

}
= α

(FSM)
rq-SR (x1:q|Di),

α
(Comp)
rq-UCB(x1:q|Di) = f (UCB)(Eω[g(UCB)

ω (x1:q)]) =
1

M

M∑
m=1

max
j∈1:q

{
v(UCB)
m

}
= α

(FSM)
rq-UCB(x1:q|Di).

Finally, properly selecting the stochastic outer function f
(ES)
ν (·) with ν ∼ Uniform([1 : M ])

gives us:

α
(Comp)
rq-ES (x1:q|Di) = Eν

[
f (ES)
ν

(
Eω
[
g

(ES)
ω (x1:q)

])]
=

− 1

M

M∑
m=1

H
[
Eω
[
v

(ES)
m,ω

]]
= α

(FSM)
rq-ES (x1:q|Di).

Clearly, the results above recover the formulations of the acquisition functions given
in Equations 11 - 13 while making them amenable to compositional solvers, a new class
of optimisers not yet well-studied in the Bayesian optimisation literature. We detail such
compositional optimisers next.

Zeroth-Order Compositional Solvers for BO: Of course, the compositional forms
presented above are still suitable for zeroth-order methods (Section 3.1). The distinguish-
ing factor from non-compositional forms is the evaluation process of nested objectives which
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requires careful consideration. In the case of α
(Comp)
rq-EI (x1:q|Di), for example, the inner expec-

tation Eω[g
(EI)
ω (x)] in Equation 15 can be evaluated using a Monte Carlo approximation:

Eω[g(EI)
ω (x1:q)] ≈

1

K

K∑
m=1

g(EI)
ωm (x1:q), with K < M being a mini-batch of {zm}Mm=1.

Furthermore, the outer function is estimated by f (EI)(Eω[g
(EI)
ω (x1:q)]) ≈

f (EI)
(

1
K

∑K
m=1 g

(EI)
ωm (x1:q)

)
, where such an estimate asymptotically (K → ∞) con-

verges to the true expectation due to the continuity of f (EI)(·):

lim
K→∞

f (EI)

(
1

K

K∑
m=1

g(EI)
ωm (x1:q)

)
= f (EI)(Eω[g(EI)

ω (x1:q)]).

Clearly, this observation allows us to straightforwardly apply any of the three considered
zero-order methods (CMA-ES, DE, and RS) for determining updates of x1:q. Certainly,

such Monte Carlo approximations are not distinctive for α
(Comp)
rq-EI (x1:q|Di), allowing us to

follow the same scheme for α
(Comp)
rq-PI (x1:q|Di), α(Comp)

rq-SR (x1:q|Di), and α
(Comp)
rq-UCB(x1:q|Di).

First-Order Compositional Solvers for BO: In contrast to zeroth-order composi-
tional methods, where the only difference between them and their non-compositional coun-
terparts is in the evaluation of the objective function, first-order compositional optimisers
require more sophisticated techniques due to the difficulty associated in acquiring unbiased
gradients of nested objectives. To elaborate, let us carry on with our running example and

consider the gradient of α
(Comp)
rq-EI (x1:q|Di) = f (EI)(Eω[g

(EI)
ω (x1:q)]). Using the chain rule, we

can easily see that such a gradient involves a product of the Jacobian of gω(x1:q) with the
gradient of f (EI)(·) that is to be evaluated around the inner mapping4:

∇vec(x1:q)α
(Comp)
rq-EI (x1:q|Di) = Eω[∇vec(x1:q)g

(EI)
ω (x1:q)]

T∇ζf (EI)(ζ) |
ζ=Eω [g

(EI)
ω (x1:q)]

,

where we use vec(x1:q) ∈ Rdq to denote an unrolled vector across all dimensions d and batch

sizes q. When attempting to acquire an unbiased estimate of ∇vec(x1:q)α
(Comp)
rq-EI (x1:q|Di), we

realise that the first term can be approximated by simple Monte Carlo:

Eω[∇vec(x1:q)g
(EI)
ω (x1:q)] ≈

1

K1

K1∑
m=1

∇vec(x1:q)g
(EI)
ωm (x1:q),

with K1 < M being a batch size. The second part, however, is tougher to es-
timate as it involves a gradient of a non-linear nesting of an expected value, i.e.,
∇ζf (EI)(ζ) |

ζ=Eω [g
(EI)
ω (x1:q)]

. To resolve this problem, in the compositional optimisation lit-

erature (Wang et al., 2017a; Tutunov et al., 2020), typically an auxiliary variable u is

4. Of course, a simple solution corresponds to a Nested Monte Carlo approach that approximates both inner
and outer mappings with samples from ω and ν and then executes standard off-the-shelf algorithms. In
our experiments, we make use of such a technique which we refer to as Adam-Nested (see Section 4) but
realise that dedicated first-order compositional solvers tend to outperform such a scheme.
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introduced and an exponentially-weighted average of ζ is used, resulting in asymptotically-
vanishing biases. To acquire such behaviour, not only do we need to update x1:q but we
also need to modify u and our estimation of ζ. As such, most compositional solvers execute
three subroutines (main x1:q, auxiliary u and ζ) between iterations t and t + 1 – the first
to generate x1:q,t+1, the second for ut+1 and the third for ζt+1. Rather than presenting
every subroutine for all utilised algorithms across all acquisition functions, here we keep
the exposition general and provide a set of unifying update rules, deferring exact details to

Appendix E. To that end, we introduce four history-dependent mappings φ
(1)
t (·), φ(2)

t (·),
φ

(3)
t (·) and φ

(4)
t (·). φ

(1)
t (·) and φ

(2)
t (·) act on sub-sampled gradient histories, and their

corresponding squares, for updating x1:q,t as follows:

Main variable update: (16)

x1:q,t+1 = x1:q,t + ηt

φ
(1)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
}t
k=0

,
{
γ

(1)
k

}t
k=0

)
φ

(2)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
2}t

k=0
,
{
γ

(2)
k

}t
k=0

, ε

) ,

where ηt is a learning rate, {γ(1)
k }tk=0 and {γ(2)

k }tk=0 are history-dependent weightings that

vary across algorithms. In Equation 16, we also use ∇vec(x1:q)α
(Comp)(x1:q,k, ζk|Di) to define

a compositional gradient estimate that can be written as:

∇vec(x1:q)α
(Comp)(x1:q,k, ζk|Di) =

[
1

K1

K1∑
m=1

∇vec(x1:q)g
(type)
ωm (x1:q,k)

]T
∇ζf (type)(ζk), (17)

with g
(type)
ωm and f (type) denoting the inner and outer mapping of a compositional formulation

where type ∈ {EI,PI,SR,UCB}. With x1:q,t+1 computed, the next step is to update ut and

ζt which can be achieved through φ
(3)
t (·) and φ

(4)
t (·) in the following manner:

ut+1 = φ
(3)
t+1

(
x1:q,0, . . . ,x1:q,t+1, {βk}tk=0

)
, (18)

ζt+1 = φ
(4)
t+1

(
g(type)(u1), . . . ,g(type)(ut+1), {βk}tk=0, ζ0,u0

)
, (19)

where {βk}tk=0 is a set of free parameters5, u0 and ζ0 are initialisations that in turn depend

on x1:q,0. Furthermore, in Equation 19 we used g(type)(·) to represent a Monte Carlo estimate
of the inner mapping, i.e.,

g(type)(·) =
1

K2

K2∑
m=1

g(type)
ωm (·),

where K2 < M is a batch size and type ∈ {EI,PI,SR,UCB}. As an illustrative example,
we note that one can recover CAdam (Tutunov et al., 2020) by instantiating the above as

5. It is worth noting that in Appendix H we provide a complete set of all hyperparameters used across all
28 optimisers.
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follows:

φ
(1)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
}t
k=0

,
{
γ

(1)
k

}t
k=0

)
=

t∑
k=0

(1− γ[1]
k )

t∏
j=k+1

γ
[1]
j ∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di),

φ
(2)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
2}t

k=0
,
{
γ

(2)
k

}t
k=0

, ε

)
=√√√√ t∑

k=0

(1− γ[2]
k )

t∏
j=k+1

γ
[2]
j ∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
2

+ ε,

φ
(3)
t

(
x1:q,0, . . . ,x1:q,t, {βk}t−1

k=0

)
= (1− β−1

t−1)x1:q,t−1 + β−1
t−1x1:q,t,

φ
(4)
t

(
g(type)(u1), . . . ,g(type)(ut), {βk}t−1

k=0, ζ0,u0

)
=

t∑
k=1

βk−1

t−1∏
j=k

(1− βj)g(type)(uk).

Of course, CAdam is just an instance of the generic update rules presented in Equations 16-
19. Other first-order compositional methods, such as NASA (Ghadimi et al., 2020), ASCGA
(Wang et al., 2017a), SCGA (Wang et al., 2017a) and Adam applied to a nested Monte
Carlo objective can all be derived from our general form as demonstrated in Appendix E.

Second-Order Compositional Solvers for BO: For a holistic comparison against
ERM-BO, we prefer to use the three same optimisation categories of zero-, first-, and
second-order methods in Comp-BO. Although significant progress towards first-order com-
positional optimisers has been achieved in the literature, second-order techniques tackling
the objective in Equation 15 are yet to be developed. In this paper, we take a first step
towards developing second-order compositional methods and propose an adaption of the
standard L-BFGS algorithm to handle nested compositional forms. To start, we note that
any second-order technique considers function curvature in its update through the usage of
Hessian information:

x1:q,t+1 = x1:q,t + ηt

[
∇2

vec(x1:q)vec(x1:q)
α(Comp)(x1:q,t|Di)

]−1
∇vec(x1:q)α

(Comp)(x1:q,t|Di),

where ∇2
vec(x1:q)vec(x1:q)

α(Comp)(x1:q,t|Di) and ∇vec(x1:q)α
(Comp)(x1:q,t|Di) are stochastic ap-

proximations of the Hessian and the gradient of α(Comp)(x1:q,t|Di) and ηt is a learning rate.
A compositional structure however, imposes practical limitations for the applicability of
any arbitrary second-order method due to two essential difficulties. The first relates to the
computation of the Hessian, while the second relates to calculating its inverse. When evalu-
ating ∇2

vec(x1:q)vec(x1:q)
α(Comp)(x1:q|Di), we encounter an expensive 3-tensor-vector product

– O(d2q3M) with d, q and M denoting the dimensionality, batch size of input queries and
z respectively – of the following form:

∇2
vec(x1:q)vec(x1:q)

α(Comp)(x1:q|Di) =

J(x1:q)
T∇2

ζζf(Eω[gω(x1:q)])J(x1:q) +∇vec(x1:q)J(x1:q)×1 ∇ζf(Eω[gω(x1:q)]),
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where J(x1:q) = E[∇vec(x1:q)gω(x1:q)] is the Jacobian of the inner mapping Eω[gω(x1:q)],
the 3-tensor ∇vec(x1:q)J(x1:q) is the Hessian of Eω[gω(x1:q)], and ×1 is a mode-1 prod-
uct between a 3-tensor and a vector. Apart from needing such expensive products –
a total of O(dq3M(d + M)) – the update rule introduced above further escalates the
computational burden by requiring an inverse that is generally cubic in the number of
dimensions, i.e., O(d3q3) in our case. Hence, a feasible approximation for computing
[∇2

vec(x1:q)vec(x1:q)
α(Comp)(x1:q|Di)]−1 plays a crucial role in the success of any second-order

method for compositional objectives. As introduced earlier, BFGS-type methods amelio-
rate the expense of the calculations by utilising the recursive Sherman-Morison formulae
that we also follow here (Riedel, 1992). For such an application, we require two curva-
ture pairs st and ht for recursively approximating the inverse of the Hessian. Namely if
st = x1:q,t − x1:q,t−1 and ht = ∇vec(x1:q)α

(Comp)(x1:q,t|Di) − ∇vec(x1:q)α
(Comp)(x1:q,t−1|Di),

one can show that

At =

[
I− sth

T
t

hT
t st

]
At−1

[
I− hts

T
t

hT
t st

]
+

sts
T
t

hT
t st

,

provides a valid approximation to the tth iteration Hessian inverse when initialising A0 = I.

That is At ≈
[
∇2

vec(x1:q)vec(x1:q)
α(Comp)(x1:q,t|Di)

]−1
and memory cost is reduced to O(Tdq),

with T being total number of update iterations. Hence, a BFGS-type update can now be
written as:

x1:q,t+1 = x1:q,t+1 + ηtAt∇vec(x1:q)α
(Comp)(x1:q,t|Di)︸ ︷︷ ︸

Gradient Monte-Carlo estimate

.

3.2.2 Memory-Efficient Implementations for Comp-BO

Although the ERM-BO and FSM-BO strategies discussed in Sections 3.1 and 3.2 share
commonalities such as the sampling of the reparametrisation variable z ∈ Rq and the use
of Monte Carlo estimates, one important difference between the approaches is memory
complexity - the total amount of space in storage (be that disk or cloud) needed for the
complete execution of an optimisation method. It is worthwhile mentioning that the key
difference between memory and time resources is that the former can be erased and reused
multiple times while the latter cannot, and this distinction plays an important role in the
analysis of applied optimisation algorithms.

For ERM-BO methods, the total amount of required memory is defined by the size of the
largest mini-batch sampled during the execution and the memory needed for the iterative
update. Since in all ERM-BO algorithms we use mini-batches of a constant size K = 128,
and at each iteration t we store only the current iterative value x1:q,t ∈ Rdq the overall
memory complexity is therefore bounded by O(Kq + dq).

Similarly to empirically-founded techniques, in FSM-BO methods we also store at each
step t the current value of the iterate x1:q,t ∈ Rdq and utilise a mini-batch of samplings
of size K � M . However in contrast to the ERM-BO case, the upfront sampling of M
reparameterisation random variables z used in the FSM-BO scenario leads to an O(Mq+dq)
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bound for the overall memory capacity. On one hand, large values of M are preferable as
they provide a better approximation to the true acquisition functions given in Equations 4
- 7, yet on the other hand, such values of M make finite-sum methods memory stringent.

To remedy this problem, we propose memory-efficient adaptations of compositional
methods: CAdam-ME, NASA-ME and Nested-MC-ME. In a nutshell, all these methods
exploit the observation that at any given iteration, stochastic compositional optimisers only
require uniform sub-sampling from the fixed collection of M reparametrisation variables z.
Hence instead of storing M samples upfront, one can draw K of them from N (0, I) at each
iteration resulting in an overall memory complexity given by O(Kq + dq). For a detailed
description of the memory-efficient methods CAdam-ME, NASA-ME and Nested-MC-ME,
we refer the reader to Appendix F.

4. Experiments & Results

Having presented a comprehensive set of optimisation techniques suitable for maximising
acquisition functions, we now wish to systematically evaluate their empirical performance.
Specifically, we design our experimental setup with the intention of answering the following
questions:

1. Do Finite-Sum Minimisation acquisition functions provide any benefits compared to
the more frequently-used Empirical Risk Minimisation versions?

2. Do compositional optimisers provide any advantages over non-compositional optimis-
ers?

3. What are the practical savings for using memory-efficient implementations of compo-
sitional acquisition functions?

4. Are compositional methods more computationally expensive than non-compositional
optimisation methods and how does runtime scale as a function of the input dimen-
sionality?

5. How do compositional optimisers perform when optimising real-world black-box func-
tions with noisy evaluations?

In order to answer Questions 1-4, we run twenty-eight optimiser variants on five synthetic,
noiseless BBO problems for which the true maxima are known. Knowing the true maxima
allows for exact computation of the normalised immediate regret

rt =
|f(x̃t)− f(x∗)|
|f(x̃0)− f(x∗)| , (20)

where f(x∗) is the function value at the global optimiser x∗, x̃t is the algorithm’s recom-
mendation at round t and f(x̃0) is the regret upon initialisation at round 0. The use of
analytic functions also facilitates the treatment of input dimensionality as an experiment
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variable. In order to answer question 5, we focus on the tasks from Bayesmark. These tasks
possess noise in the evaluations and are more representative of real-world BBO problems.
For these latter experiments we take forward the best-performing optimisers observed in the
synthetic function experiments. A pictorial summary of the experimental setup is provided
in Figure 4.

#-dimensions varied: (16 D, 40 D, 60D, 80 D, 100 D, & 120 D) 
Performance is measured by regret to the optimum

Levy Powell Ackley Dixon-Price Stybinski-Tang 

Synthetic Datasets & Accuracy Measures 

Boston-Housing Diabetes Dataset

DT & Random Forest Support Vector Machines Linear & LASSO ModelsK-Nearest Neighbours

Parameter tuning tasks involving 6 machine learning models 
Performance is measured by MSE, MAE, ACC, & NLL

Bayesmark Bayesian Optimisation Package 

Considered five widely used reparameterised acquisition functions 
Varied three acquisition forms between ERM, FSM, & Comp

Simple  
Regret

Probability of  
Improvement 

Expected  
Improvement

Upper Confidence  
Bounds

Thompson  
Sampling

Acquisition Function Forms & Settings 

αrq-SR(.|Di) αrq-PI(.|Di) αrq-EI(.|Di) αrq-UCB(.|Di) αrq-TS(.|Di)

Adapted second-order optimisers to compositional forms 
Varied zeroth, first & second order optimisers

Zero-Order 
Optimisers

First-Order 
Optimisers

Second-Order 
Optimisers

Compositional  
Optimisers

Optimisation Algorithms Order & Types 

CMA-ESRS DS 
Adam
AdamW
AdamOS

Rprop

RMSProp
SGDAdaGrad

ADADelta
L-BFGS

CAdam
NASA
CL-BFGS

SCGD
ASCGD
Adam-Nested

Experimental Tuple 

Data Acquisition Optimiser

#total exp: 3958 

Figure 4: Experiment Overview: Top Left: Synthetic functions (noiseless). Top Right:
Bayesmark data (noisy). Bottom Left: Five classes of acquisition function in ERM,
Finite-Sum, and Compositional forms. Bottom Right: Four classes of optimiser. Each
experiment tuple comprises a data set, an acquisition function and an optimiser. The study
comprises 3958 experiments in total.

Surrogate Model: For all tasks, we use a GP with constant mean function set to the
empirical mean of the data, and a Matérn(5/2) kernel with lengthscale parameter θ. At
each acquisition step k, the hyperparameters of the GP kernel are estimated based on the
current observed input-output pairs Dk by optimising the negative log marginal likelihood
with a Gamma prior over θ. To facilitate the fitting procedure of the surrogate model,
we standardise the outputs and apply an affine transformation to the inputs so that the
search domain lies in [0, 1]d. At the beginning of each experiment, three points are drawn
uniformly at random within the search domain to initialise the surrogate model.

Additionally, in order to provide some indication as to how the GP-based surrogate
model schemes, endowed with compositional optimisation of the acquisition function, per-
form against other surrogates, we also compare against the BOHB algorithm (Falkner et al.,
2018), a hybrid approach based on Bayesian optimisation and the Hyperband algorithm (Li
et al., 2017). BOHB has recently been demonstrated to outperform Bayesian optimisation
across a range of problems in the multi-fidelity setting, that is where multiple objective func-
tions exist possessing varying degrees of accuracy and cost associated with querying them
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(Song et al., 2019). In order to enable comparison in the single-fidelity contexts considered
in our experiments, we simply ignore the budget handling from Hyperband.

Acquisition Functions: We consider the batched versions of each acquisition function
presented in Section 2.2, namely EI, PI, SR and UCB under ERM, FSM and compositional
forms. Additionally, we employ Thompson sampling (Thompson, 1933) as a baseline in
order to provide an indication as to how the compositionally-optimised acquisition functions
perform against another popular batch acquisition function.

Optimisers: Acquisition function maximisation is carried out using the zero-order op-
timisers RS, CMA-ES and DE from the pymoo library (Blank and Deb, 2020), the non-
compositional first-order optimisers Adadelta, Adagrad, Adam, AdamW, RMSprop, Rprop
and SGA taken from PyTorch (Paszke et al., 2019), the second-order optimiser L-BFGS-
B from the SciPy library (Virtanen et al., 2020), as well as the compositional optimis-
ers ASCGA, CAdam, Nested-MC, NASA and SCGA that we implemented on top of the
BoTorch library (Balandat et al., 2020). Except when using non-memory-efficient compo-
sitional methods, we used quasi-MC normal Sobol sequences (Owen, 2003) instead of i.i.d.
normal samples in order to obtain lower variance estimates of the value and gradient of
the acquisition function as recommended by (Balandat et al., 2020). For the L-BFGS-B
optimiser, the minibatch of samples was fixed in all cases. To ensure fairness in performance
comparison, the same number of optimisation steps T (set to 64) and minibatch size m (set
to 128), is used for each method at each acquisition step. As acquisition function maximisa-
tion is a non-convex problem, it is sensitive to the initialisation set. As such, we use multiple
restart points (Wang et al., 2020) that we first obtain by drawing 1024 batches uniformly at
random in the modified search space [0, 1]q×d, and second using the default heuristic from
(Balandat et al., 2020) to select only 32 promising initialisation batches. Consequently, at
each inner optimisation step of BO, the Random Search optimisation strategy is granted
32× T ×m evaluations of the acquisition function at random batches. Similarly, CMA-ES
and DE are run for 64 evolution and mutation steps, and the aforementioned initialisation
strategy is used to generate the 32 members of the initial population.

It is known that first-order stochastic optimisers can be very sensitive to the choice of
hyperparameter settings (Balandat et al., 2020; Schmidt et al., 2020). Therefore, to limit
the effect of choice of hyperparameter settings for the different optimisers, we conducted
each experiment in two phases. An experiment in this instance is characterised by the
3-tuple consisting of a black-box function, an acquisition function and an optimiser.

In the first phase, we ran BO hyperparameter tuning to identify the best optimiser
hyperparameters, in the sense that these hyperparameters provide the lowest final regret
for the given task. This first phase allows us to compare optimisers in their most favourable
settings, and therefore we hope that under-performance cannot be the result of a poor choice
of hyperparameters but would reflect a real weakness of the considered method in tackling
BO’s inner optimisation problem.

In the second phase, we ran the black-box maximisation task using the acquisition
function and optimiser with hyperparameters fixed to be the best ones identified during
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Figure 5: Summary plot comparing the evolution of the normalised immediate regret aver-
aged over all tasks when using first-order methods with either the ERM or FSM formulation
of the acquisition function. The results of 960 experiments are summarised. We observe a
small advantage of the FSM formulation over the ERM formulation across every optimiser.
Statistical significance is discussed in Appendix G.2.

the first phase. The set and range of the considered hyperparameters are summarised in
Table 4 for non-compositional optimisers, and in Table 5 for compositional optimisers.

4.1 FSM vs. ERM

In the following experiment, we consider five non-separable, non-convex, synthetic black-box
functions chosen to have a variety of optimisation landscapes and that are commonly-used
benchmarks for optimisation algorithms (Jamil and Yang, 2013; Laguna and Marti, 2005).
We include the unimodal functions Dixon-Price and Powell as well as the multimodal Levy,
Ackley and Styblinski-Tang functions. We run experiments for (negative) versions of these
functions with search domain specified as in (Jamil and Yang, 2013; Laguna and Marti,
2005). We consider optimisation problems across dimensionalities in the set (16D, 40D,
60D, 80D, 100D and 120D) in order to observe the impact of the input space dimension on
the optimisers’ performance. At each acquisition step, a batch of q = 16 points is acquired
as a result of batch acquisition function maximisation. We run each BO algorithm with
32 acquisition steps and observe the normalised immediate regret from Equation 20 as the
performance metric.

Results Summary Figure 5 aggregates by optimiser category, (zero-order non-
compositional, first-order compositional,. . .), the results of 960 experiments involving each
combination of optimisation task, acquisition function and optimiser. The best perfor-
mances obtained inside each category are accounted for. Specifically, given a category and
an acquisition step, the lowest normalised immediate regrets obtained at this step by an
optimiser belonging to this category are included and the average and standard deviation
obtained over all optimisation tasks and all acquisition functions, are reported.
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In light of these results we will now answer Question 1:

Question 1

Do Finite-Sum Minimisation acquisition functions provide any benefits compared to
the more frequently-used Empirical Risk Minimisation versions?

When looking at the top four first-order non-compositional optimisers, Figure 5 shows in
all cases that the FSM version outperforms the ERM version when averaging the normalised
immediate regret scores over all optimisation tasks and acquisition functions. This can be
seen in an un-aggregated breakdown in both Figure 18 and Figure 6. This is an interesting
discovery, and to the best of our knowledge, we are the first to observe this. We now proceed
to our second question.

4.2 Compositional vs. Non-Compositional Optimisation

To synthesise the results obtained over all combinations of synthetic function (Levy, Ackley,
Powell, Dixon-Price, Styblinski-Tang), input dimensionality (16D, 40D, 60D, 80D, 100D and
120D), and acquisition function (EI, PI, SR, UCB), we show in Figure 1 the evolution of
the normalised immediate regret for each category of optimiser. We confirm the observation
of (Wilson et al., 2018b) that gradient-based approaches outperform zero-order methods.
Evolutionary strategies perform comparably to Random Search (which we exclude from its
category as a global baseline). The poor performance of zero-order methods can be explained
by the dimensionality of the acquisition function domain, ranging from 16× 16 to 16× 120
and the strict limitation on the number of optimisation steps. Results obtained with BOHB
are also similar to Random Search, although it is worth mentioning that the experimental
setting is single-fidelity and not multi-fidelity where BOHB has been observed to perform
well. The performance of Thompson sampling (TS) coincides with the observation in the
literature that TS has difficulty scaling beyond 8-10 dimensions (Wilson et al., 2020). We
run GPflow (De G. Matthews et al., 2017) implementations of function-space, weight-space
and decoupled TS with the default hyperparameters from (Wilson et al., 2020). We report
these results in our summary plots and note that scaling such information-based acquisition
functions constitutes an important direction for future work, see Section 5.

On examining gradient-based methods, we observe that quasi-Newton (C)L-BFGS-B
is consistently outperformed by first-order methods, which was not observed in (Balandat
et al., 2020) where only a small-dimensional experiment with no batch acquisition (i.e.
q = 1) was presented. From this global summary, our results favour first-order optimis-
ers, with a relative advantage being given to compositional methods associated with the
FSM approximation. On the other hand, non-compositional optimisers do not seem to be
amenable to ERM or FSM formulation.

To show a breakdown of all experiments, we present in Figure 6 the best performances
yielded by each category of optimiser for each input dimensionality and acquisition function
considered. From this figure, we can first observe that the dimensionality of the BO prob-
lem does not seem to have a significant impact on the relative performances between the
different types of methods, that is, for any dimension, the best first-order gradient method
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Order Optimiser Ref.

Non- 0 RS App. B.1 0 .33 0 .51 0 .60 0 .64 0 .68 0 .75 0 .59
Comp CMA-ES App. B.2 0 .30 0 .49 0 .76 0 .80 0 .81 0 .85 0 .67

DE App. B.3 0 .29 0 .45 0 .61 0 .66 0 .66 0 .70 0 .56

Subtot. 0 .31 0 .48 0 .66 0 .70 0 .72 0 .77 0 .61

1 SGA App. C.1 0 .18 0 .28 0 .33 0 .42 0 .35 0 .48 0 .34
Adagrad App. C.2 5 .36 5 .55 5 .66 5 .75 5 .87 10 .89 6 .68
RMSprop App. C.3 10 .29 5 .45 15 .47 0 .58 0 .53 15 .64 8 .49
Adam App. C.4 5 .35 15 .46 5 .51 5 .53 20 .61 10 .70 10 .52
Adadelta App. C.5 0 .20 0 .44 5 .32 0 .46 0 .45 0 .48 1 .39
Rprop App. C.6 0 .36 0 .49 10 .57 5 .61 0 .59 10 .66 4 .55
AdamW App. C.7 0 .18 0 .24 5 .22 5 .22 5 .25 5 .23 3 .22
Adamos App. C.8 0 .17 0 .26 0 .26 0 .28 5 .30 5 .34 2 .27

Subtot. 20 .26 25 .40 45 .42 20 .48 35 .49 55 .55 33 .43

2 L-BFGS-B App. D 0 .19 0 .29 0 .39 0 .45 0 .45 0 .51 0 .38

Subtot. 0 .19 0 .29 0 .39 0 .45 0 .45 0 .51 0 .38

Tot. 20 .27 25 .41 45 .48 20 .53 35 .55 55 .60 33 .47

Comp 0 CMA-ES App. B.2 0 .30 0 .49 0 .76 0 .82 0 .83 0 .87 0 .68
DE App. B.3 0 .30 0 .46 0 .61 0 .64 0 .67 0 .71 0 .57

Subtot. 0 .30 0 .47 0 .69 0 .73 0 .75 0 .79 0 .62

1 SCGA App. E.1 10 .12 0 .18 0 .33 0 .44 0 .52 0 .62 2 .37
ASCGA App. E.2 5 .11 5 .17 0 .34 0 .48 0 .53 0 .60 2 .37
CAdam App. E.3 20 .09 25 .12 35 .19 25 .14 20 .14 10 .22 22 .15
NASA App. E.4 45 .08 35 .21 15 .31 20 .39 10 .40 5 .55 22 .32
Nested-MC App. E.5 0 .17 10 .22 5 .23 5 .26 5 .29 0 .38 4 .26
CAdam-ME App. F.1 - - - - - - 20 .14 15 .16 20 .24 18 .18
NASA-ME App. F.2 - - - - - - 10 .35 10 .40 5 .52 8 .43
Nested-MC-ME App. F.3 - - - - - - 0 .28 5 .29 5 .32 3 .29

Subtot. 80 .12 75 .18 55 .28 80 .31 65 .34 45 .43 67 .28

2 CL-BFGS-B Sec. 3.2 0 .20 0 .28 0 .34 0 .36 0 .44 0 .50 0 .35

Subtot. 0 .20 0 .28 0 .34 0 .36 0 .44 0 .50 0 .35

Tot. 80 .17 75 .27 55 .39 80 .39 65 .43 45 .50 67 .36

Table 1: Marginal results over acquisition functions and synthetic black-box optimisation
tasks (i.e., 20 tasks per dimension). For each dimension, the first column, #Best (%),
indicates the percentage of tasks on which an optimiser yielded the lowest final regret, while
the second column reports normalised final regret (NFR). ERM and FSM versions of first-
order, non-compositional optimisers are grouped together. We mark the best percentage
across each dimension (dim.) in red. Clearly, in 16, 40, 60, 80 and 100 dims, compositional
solvers achieve the best performance in at least 55 % these tasks, with 80 % in 16 and 80
dims, while first-order non-compositional optimisers outperform others 55 % of the time in
120 dimensions.
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Figure 6: Detailed summary plot for synthetic black-box optimisation showing the best
relative improvement for each category of optimiser. Each row corresponds to a domain
dimension (16D, 40D, 60D, 80D, 100D and 120D) and each column is associated with an
acquisition function (EI, PI, SR and UCB). Relative improvements yielded by BOHB and
TS are also reported (there is no variation across columns as they do not depend on the
acquisition function), leading the number of experiments aggregated on this figure to be
3100. On each row, the graph corresponding to the acquisition function that achieved the
lowest regret for the given input dimension has a thick grey border. In 40, 60, 80 and 120
dimensions, the best performance is achieved using UCB with a first-order optimiser, while
in 16 and 100 dims, it is SR with a first-order compositional optimiser that led to the largest
relative improvement.
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Figure 7: Evolution of immediate log-regret using various acquisition functions and opti-
misers on 100D synthetic black-box minimisation tasks. Each row is associated with an
acquisition function, and each column corresponds to a black-box function. A total of 545
experiments have been carried out on 100 tasks to run BO with all combinations of op-
timisers, acquisition functions and black-box optimisation functions. We observe that the
lowest regret is always achieved with a first-order optimiser, and notably 25% of the best
performances are obtained when using CAdam.

outperforms the second-order methods, which achieve lower regret than zero-order ones.
Aside from this trend at the level of the optimiser order, we do not notice any lower-level
trend that may be driven by the input dimensionality.

An example of the most fine-grained level of analysis (all optimiser performances pre-
sented individually) is given in Figure 7. For each task-acquisition pair, we show the log
regret over acquisition steps for each optimisation method introduced. We can see that in
65% of the experiments that a compositional optimiser outperforms all non-compositional
optimisers. As shown in Table 1, the superior performance of compositional optimisers is
observed across all task input dimensionalities except for 120D for which the best optimiser
is compositional in only 45% of cases.

Moreover, Figure 6 provides some insight into the comparatively better performance
of first-order compositional optimisers observed in the global summary Figure 1. Lower
regrets are obtained when the PI acquisition function is used. Nevertheless, the shading of
the graphs corresponding to the best acquisition function for each dimensionality indicates
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Figure 8: (8a) Summary plot comparing the evolution of the normalised immediate regret
averaged over all considered acquisition functions, and optimisation tasks in 80, 100 and
120 dimensions, when using standard (Sd) and memory-efficient (ME) compositional first-
order optimisers. From this figure, aggregating the results of 360 experiments, we can see
that memory-efficient optimiser versions perform comparably to standard optimisers, thus
making it worthwhile to use memory-efficient implementations due to the large memory
savings. (8b) Execution time of UCB maximisation run on 4 CPUs. We report the time
it takes an optimiser to carry out a single UCB maximisation, and we show the mean
and standard deviation observed over 5 seeds, 32 acquisition steps and 2 synthetic black-
box functions in 16, 40, 80 and 120 dims. From this figure, aggregating results of 152
experiments, we observe that compositional methods take about 1.5-2x the CPU time taken
by non-compositional methods. We do not report the execution times measured for (C)L-
BFGS-B and CMA-ES as they are an order of magnitude greater than those observed for
non-compositional, first-order methods. We provide complementary results in Figure 19 in
Appendix G.

that PI yields consistently higher regrets than UCB or SR, which encourages the use of these
alternative acquisition functions in place of PI with a first-order compositional optimiser.

Returning to our second question:

Question 2

Do compositional optimisers provide any advantages over non-compositional optimis-
ers?

The global summary Figure 1 in addition to Figure 6 indicate that there are a significant
number of optimisation task and acquisition function pairs where a compositional optimiser
is preferable and as such, compositional schemes warrant much more attention than they
are currently receiving in the Bayesian optimisation community. We will now proceed to
answer our third question.

4.3 Memory Efficiency

Compositional acquisition function maximisation requires considerably larger memory rel-
ative to ERM. However, by introducing a simple trick whereby we do not store all the
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auxiliary variables and adopt an alternative sampling scheme, we can dramatically reduce
the memory requirements to be equivalent to those of ERM. In answer to question 3:

Question 3

What are the practical savings for using memory-efficient implementations of com-
positional acquisition functions?

Figure 8a, which aggregates results obtained on tasks in 80, 100 and 120 dimensions
using both memory-efficient and standard versions of CAdam, NASA and Nested-MC to
maximise the acquisition function, shows that CAdam is negatively impacted by the ME
implementation, whereas NASA and Nested-MC are positively impacted by memory effi-
ciency. In all cases, the impact on going from standard to memory-efficient implementations
is minor enough that we believe it warrants the use of the ME implementation as the de
facto standard. We now proceed to answer Question 4:

4.4 Runtime Efficiency

Runtime efficiency is of great importance for many applications. As such, we wish to see
how the execution time required for a single acquisition function optimisation varies across
compositional optimisers and input dimensionality. We fix the acquisition function to UCB
as this choice has negligible effect on overall timings and we run the BO algorithm for
32 acquisition steps on two black-box maximisation tasks using all available optimisers,
repeating each experiment five times. In answer to Question 4:

Question 4

Are compositional methods more computationally expensive than non-compositional
optimisation methods and how does runtime scale as a function of the input dimen-
sionality?

There is a marked difference between the execution times reported in Figure 8b for
compositional and non-compositional methods with compositional methods being slower
relative to non-compositional. Additionally, ME methods are faster than standard com-
positional methods. We can also see that as the input dimensionality increases, a steeper
incline in the execution time for compositional methods relative to non-compositional meth-
ods may be observed; a feature to be expected given the extra backward passes required by
compositional optimisers. Due to these additional backward passes, compositional methods
are 1.5-2 times slower per iteration in terms of wall-clock time. This being said, it should
be noted that compositional optimisers may require fewer iterations in total to converge to
a specified accuracy and in this case overall wall-clock time could be comparatively better
for them. Finally, if the black-box system evaluation wall-clock time is factors larger than
the optimisation wall-clock time, which is the case in many real-world problems such as
molecule synthesis where a single query can take 2-3 weeks (Thawani et al., 2020), then
the differences in runtime between compositional and non-compositional schemes becomes
negligible. We now proceed to answer our final question.
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4.5 Real-World Problems: Noisy Evaluations

We now examine the performance of optimisers on Bayesmark tasks. All tasks involve
hyperparameter tuning for machine learning models. In contrast to the synthetic functions,
the Bayesmark data sets possess noise in the evaluations of the black-box function, a feature
inherent in the vast majority of real-world BBO problems. As such, these experiments are
designed to assess whether the observations derived from the synthetic experiments are
relevant for noisy problems.

Hyperparameter Tuning Tasks: The Bayesmark tasks consist of both regression and
classification tasks on the Boston and Diabetes UCI data sets (Dua and Graff, 2017) re-
spectively. In terms of hyperparameter tuning the following six models are considered:
Decision Tree (DT), Random Forest (RF), K-Nearest Neighbours (kNN), Support Vector
Machine (SVM), Linear and Lasso models. the dimensionality of each task varies from 2
to 9. In contrast to the synthetic functions, we only have access to noisy evaluation of the
black-box functions in this instance. We apply Bayesian optimisation using 16 iterations of
8-batch acquisition steps, to optimise the validation loss, mean-squared error (MSE), mean
absolute error (MAE), negative log likelihood (NLL) or accuracy depending on the task,
plotting the normalised validation loss score (Eq 21) for performance comparison. We ran
all six models on regression tasks (both MAE and MSE objectives) and we run three models
(DT, RF and SVM) on classification tasks (both NLL and accuracy objectives) due to a
limited computation budget. The score achieved after t acquisition steps is given by:

scoret =
Lt − L∗
Lrand
t − L∗ (21)

where Lt is the best-achieved loss at batch t. L∗ is the estimated optimal loss for the task
and Lrand is the mean loss (across multiple runs) acquired from random search at batch t.

Optimisers: The top three non-compositional optimisers (Adam, RMSprop, Rprop) were
selected for performance comparison against compositional optimisers (NASA, CAdam,
Nested-MC).

Acquisition Functions: We show results for the four top-performing acquisition func-
tions (SR, EI, PI and UCB) from the synthetic function experiments.

Surrogate Model: We use the same GP surrogate model as in Sec 4.1, with rounding
of integer values when either integer or categorical variables are present. Although more
sophisticated methods exist to deal with categorical/integer variables (Ru et al., 2019;
Daxberger et al., 2020; Garrido-Merchán and Hernández-Lobato, 2020) we do not consider
them here as we are interested in solely in performance on acquisition function maximisation.
We sample 2×D points uniformly at random to initialise the model. We run the same form
of hyperparameter tuning for the initialisation as in the synthetic experiments, repeating
each experiment 5 times in order to compute the variance for individual tasks.

Results Summary: In answer to our final question:
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Figure 9: The boxplot shows the quartiles of compositional and non-compositional optimiser
performance on the regression hyperparameter tuning task, where the performance metrics
are MAE and MSE. For each model, we show a further split of the optimiser class for
different aggregation methods. This plot summarises all 672 experiments conducted on
regression tasks on the Bayesmark data set. We observe performance benefits for DT,
RF and AdaBoost when using a compositional optimiser, with SVM and kNN showing
performance benefits when using a non-compositional optimiser. When to use compositional
and when to use non-compositional?

Question 5

How do compositional optimisers perform when optimising real-world black-box func-
tions with noisy evaluations?

Figure 2 shows a high-level breakdown of compositional and non-compositional optimiser
performance on the Bayesmark regression tasks. The best final scores for the model under-
going tuning are pooled across optimisers, tasks, loss functions and acquisition functions.
We observe that compositional and non-compositional optimisers perform comparably, with
compositional methods performing slightly better for DT, RF and SVM. We see that the
mean scores are roughly equivalent for optimiser classes across the kNN, Lasso, linear and
AdaBoost models. In an analogous fashion, Figure 3 pools the scores for all classification ex-
periments. For the DT, and RF models, compositional methods achieve higher mean scores
wheraeas comparable performance is observed when tuning the SVM model. In conclusion,
compositional vs. non-compositional optimiser performance appears to vary depending on
both the model class undergoing tuning as well as the performance metric.

Detailed Results: Figure 9 depicts a finer-grained breakdown of the pooled results for
the Bayesmark regression tasks. Pooling in this case is carried out using the best, me-
dian and average optimiser performances across all intra-class optimisers and acquisition
functions, where for example the best compositional optimiser for a given model would be
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the top-scoring optimiser-acquisition pair. For DT and RF, the best results are produced
from compositional optimisers, whereas for SVM, AdaBoost, kNN and the linear model,
non-compositional methods exhibit better performance. For compositional optimisation of
the Lasso model we observe better median performance for a higher number of black-box
function evaluations, but deteriorating performance under the best grouping.
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Figure 10: The boxplot shows the quartiles of compositional and non-compositional opti-
miser performance on the classification hyperparameter tuning task, where the performance
metrics are NLL and accuracy. For each model, we show a further split of the optimiser
class against different aggregation methods. This plot summarises all 288 experiments
conducted on classification tasks for the Bayesmark data sets. We observe that for the
DT and RF models, compositional optimisers offer modest performance gains relative to
non-compositional optimisers, yet non-compositional optimisers perform better on SVM
hyperparameter tuning.

Figure 10 similarly shows a finer-grained breakdown of the Bayesmark classification
tasks. We observe that for certain models, such as RF, compositional methods perform
better in each of best, median and average groupings at all steps in the optimisation,
namely 8, 16 and 128 evaluations of the black-box system. In the DT experiments we
again observe that compositional optimisers perform better in the latter optimisation steps
(16 & 128 evaluations), but worse in the initial stages of the optimisation (8 evaluations).
In summary, compositional methods yield better performance in two-thirds of the cases
considered in Figure 10.
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5. Conclusions & Future Directions

In this paper, we presented an in-depth study of acquisition function maximisation in
Bayesian optimisation. Apart from conventional forms typically used in literature, we
demonstrated that acquisition functions adhere to a compositional structure enabling nu-
merous new algorithms that led to favourable empirical results. We verified our claims in
a rigorous experimental study involving 3958 tasks and twenty-eight optimisers. We used
both synthetic and real-world data gathered from Bayesmark. We demonstrated that com-
positional optimisers outperform traditional solvers in 67 % of the time. In the future,
we plan to extend our analysis to cover non-myopic acquisition functions, constrained and
safe BO, high-dimensional BO (Grosnit et al., 2021) as well as to investigate compositional
structures of causal BO.
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Appendix A. Compositional Construction of Acquisition Functions

Given a collection of M i.i.d samples {zm}Mm=1 and following finite sum approximations
for the acquisition functions given in Equations 10 - 13, we now provide detailed composi-
tional reformulations for them (see Section 3.2.1). Let ω be a random variable distributed
uniformly on a collection {1, . . . ,M}, i.e. ω ∼ Uniform([1 : M ]):

A.1 Expected Improvement

Consider an inner stochastic mapping g
(EI)
ω : Rdq → Rq×M , such that:

g(EI)
ω (x1:q) = [0q, . . . ,v

(EI)
ω , . . . ,0q].

where v
(EI)
m = ReLU

(
µi(x1:q;θ) + Li(x1:q;θ)zm − f(x+

i )1q
)
∈ Rq for m = 1 : M . Hence,

taking the expectation with respect to ω gives

Eω[g(EI)
ω (x1:q)] =

1

M
[v

(EI)
1 , . . . ,v

(EI)
M ]

Now let us consider an outer deterministic mapping f (EI) : Rq×M → R, such that for a
given q ×M input matrix:

f (EI)



a11 a12 . . . a1M

a21 a22 . . . a2M
...

...
...

...
aq1 aq2 . . . aqM


 =

M∑
m=1

max{a1m, . . . , aqm}.

Therefore,

f (EI)(Eω[g(EI)
ω (x1:q)]) =

1

M

M∑
m=1

max
j∈1:q

{
ReLU

(
µi(x1:q;θ) + Li(x1:q;θ)zm − f(x+

i )1q
)}

= α
(FSM)
rq-EI .

A.2 Probability of Improvement

Consider an inner stochastic mapping g
(PI)
ω : Rdq → Rq×M , such that:

g(PI)
ω (x1:q) = [0q, . . . ,v

(PI)
ω , . . . ,0q].

where v
(PI)
m = 1

τ

[
µi(x1:q;θ) + Li(x1:q;θ)zm − f(x+

i )1q
]
∈ Rq for m = 1 : M . Hence, taking

the expectation with respect to ω gives

Eω[g(PI)
ω (x1:q)] =

1

M
[v

(PI)
1 , . . . ,v

(PI)
M ]

Now let us consider an outer deterministic mapping f (PI) : Rq×M → R, such that for a
given q ×M input matrix:

f (PI)



a11 a12 . . . a1M

a21 a22 . . . a2M
...

...
...

...
aq1 aq2 . . . aqM


 =

1

M

M∑
m=1

max
j∈1:q

{Sig(M [a1m, . . . , aqm])}
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Therefore,

f (PI)(Eω[g(PI)
ω (x1:q)]) =

1

M

M∑
m=1

max
j∈1:q

{
Sig

(
µi(x1:q;θ) + Li(x1:q;θ)zm − f(x+

i )1q
τ

)}
= α

(FSM)
rq-PI .

A.3 Simple Regret

Consider an inner stochastic mapping g
(PI)
ω : Rdq → Rq×M , such that:

g(SR)
ω (x1:q) = [0q, . . . ,v

(SR)
ω , . . . ,0q].

where v
(SR)
m = µi(x1:q;θ)+Li(x1:q;θ)zm ∈ Rq for m = 1 : M . Hence, taking the expectation

with respect to ω gives

Eω[g(SR)
ω (x1:q)] =

1

M
[v

(SR)
1 , . . . ,v

(SR)
M ]

Now let us consider an outer deterministic mapping f (SR) : Rq×M → R, such that for a
given q ×M input matrix:

f (SR)



a11 a12 . . . a1M

a21 a22 . . . a2M
...

...
...

...
aq1 aq2 . . . aqM


 =

M∑
m=1

max {a1m, . . . , aqm} .

Therefore,

f (SR)(Eω[g(SR)
ω (x1:q)]) =

1

M

M∑
m=1

max
j∈1:q

{µi(x1:q;θ) + Li(x1:q;θ)zm} = α
(FSM)
rq-SR .

A.4 Upper Confidence Bound

Consider an inner stochastic mapping g
(UCB)
ω : Rdq → Rq×M , such that:

g(UCB)
ω (x1:q) = [0q, . . . ,v

(UCB)
ω , . . . ,0q].

where v
(UCB)
m = µi(x1:q;θ) +

√
βπ/2 |Li(x1:q;θ)zm| ∈ Rq for m = 1 : M . Hence, taking the

expectation with respect to ω gives

Eω[g(UCB)
ω (x1:q)] =

1

M
[v

(UCB)
1 , . . . ,v

(UCB)
M ]

Now let us consider an outer deterministic mapping f (UCB) : Rq×M → R, such that for a
given q ×M input matrix:

f (UCB)



a11 a12 . . . a1M

a21 a22 . . . a2M
...

...
...

...
aq1 aq2 . . . aqM


 =

M∑
m=1

max {a1m, . . . , aqm} .
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Therefore,

f (UCB)(Eω[g(UCB)
ω (x1:q)]) =

1

M

M∑
m=1

max
j∈1:q

{
µi(x1:q;θ) +

√
βπ/2|Li(x1:q;θ)zm|

}
= α

(FSM)
rq-UCB.

A.5 Entropy Search

Consider an inner stochastic mapping g
(ES)
ω : Rdq → Ru×M such that:

g
(ES)
ω (x1:q) = [v

(ES)
1,ω ,v

(ES)
2,ω , . . . ,v

(ES)
M,ω].

where v
(ES)
m,ω = SM

(
µ

(g)
i (x

(g)
1:u;λ

(i)
θ (zm),θ)+L

(g)
i (x

(g)
1:u;θ)ω

τ

)
for m = 1, . . . ,M and ω ∼

N (0u, Iu×u). Hence, taking expectation with respect to ω ∼ N (0u, Iu×u) gives:

Eω
[
g

(ES)
ω (x1:q)

]
=
[
Eω
[
v

(ES)
1,ω

]
,Eω

[
v

(ES)
2,ω

]
, . . . ,Eω

[
v

(ES)
M,ω

]]
Now let us consider an outer stochastic mapping f

(ES)
ν : Ru×M → R such that for any given

u×M input matrix:

f (ES)
ν



a11 a12 . . . a1M

a21 a22 . . . a2M
...

...
...

...
au1 au2 . . . auM


 = −H



a1ν

a2ν
...
auν


 =

u∑
j=1

ajν log ajν .

where H[·] is a Shannon entropy function. Taking expectation with respect to ν ∼
Uniform([1 : M ]) gives:

Eν
[
f (ES)
ν

(
Eω
[
g

(ES)
ω (x1:q)

])]
=

− 1

M

M∑
m=1

H

[
Eω

[
SM

(
µ

(g)
i (x

(g)
1:u;λ

(i)
θ (zm),θ) + L

(g)
i (x

(g)
1:u;θ)ω

τ

)]]
= α

(FSM)
rq-ES

Appendix B. Zero-Order Optimisation Algorithms for ERM-BO

B.1 Random Search

The most simple zeroth-order strategy we attempted in our experiments was random search
(RS), where a new batch of query points is constructed by sampling q candidates x1:q

uniformly at random from a bounded search domain. Though simple, RS has been shown to
be an effective optimisation scheme in certain settings (Bergstra and Bengio, 2012; Li et al.,
2017) and can serve as an essential low-memory, low-compute baseline for any acquisition
optimiser.

39



Grosnit, Cowen-Rivers, Tutunov, Griffiths, Wang, and Bou-Ammar

B.2 CMA-ES

In the covariance matrix adaptation evolution strategy (CMA-ES) (van Rijn et al., 2016;
Blank and Deb, 2020), a population of new search points is generated by sampling a mul-
tivariate normal distribution, which for generations g = 0, 1, . . . , can be written as:

vec (x)
(g+1)
l ∼ µ(g)

CMA-ES + σ
(g)
CMA-ESN

(
0,Σ

(g)
CMA-ES

)
for l ∈ [1 : #off-springs], (22)

where µ
(g)
CMA-ES, σ

(g)
CMA-ES and Σ

(g)
CMA-ES are the distribution’s hyperparameters that will be

updated based on function value information. Also, #off-springs > 2 represents the number
of individuals sampled from a population, e.g., the number of optimiser restarts in our case.
Moreover, the usage of the vec(x) ∈ Rdq notation denotes a vector of inputs across all
batches and dimensions.

Starting from an initialisation µ
(0)
CMA-ES, σ

(0)
CMA-ES and Σ

(0)
CMA-ES, CMA-ES updates each

of the hyperparameters based on fitness or function values to improve the guess of x?. At

some generation g+1, the algorithm first samples vec(x)
(g+1)
1 , . . . , vec(x)

(g+1)
#off-springs according

to Equation 22 and then ranks individual samples in a descending order based on their acqui-

sition evaluation such that6 αrq-type(vec(x)
(g+1)
1? |Di) ≤ · · · ≤ αrq-type(vec(x)

(g+1)
#off-springs? |Di),

where vec(x)
(g+1)
j? is the jth best sample vector (according to its acquisition value) from

vec(x)
(g+1)
1 , . . . , vec(x)

(g+1)
#off-springs. With samples ordered, the algorithm updates µ

(g+1)
CMA-ES

as an average of κ ≤ #off-springs selected points:

µ
(g+1)
CMA-ES = µ

(g)
CMA-ES + ηµCMA-ES

κ∑
i=1

wi

(
vec

(g+1)
i? − µ(g)

CMA-ES

)
, (23)

with ηµCMA-ES
< 1 being a learning rate, and wi ∝ κ−i+1. In words, Equation 23 attempts

to shift the distribution’s mean closer to a weighted average of the best samples seen so
far, which, in turn, can be reinterpreted as maximising a log-data-likelihood conditioned on

µ
(g)
CMA-ES as noted in (Hansen, 2016).

When it comes to σ
(g)
CMA-ES, a process of cumulative step-size adaptation (CSA) – also

referred to as path length control – is applied to derive σ
(g+1)
CMA-ES. First, CSA computes an

(isotropic) “evolutionary path” pathσ using:

pathσ = (1− cσ)pathσ +
√

1− (1− cσ)2
√
κwΣ

(g),− 1
2

CMA-ES

µ
(g+1)
CMA-ES − µ

(g)
CMA-ES

σ
(g)
CMA-ES

, (24)

where cσ is a constant typically set to d/3, and κw is a variance-related constant abiding

by 1 ≤ κw ≤ κ. Given Equation 24, CSA now updates σ
(g+1)
CMA-ES by executing7:

σ
(g+1)
CMA-ES = σ

(g)
CMA-ES exp

(
cσ
dσ

( ||pathσ||
E[||N (0, 1)||] − 1

))
, with dσ being a damping value.

6. Please note that we use αrq-type(·) to denote one of the reparameterised acquisitions (i.e., EI, PI, UCB,
and SR).

7. It is worth noting that the update of σ
(g+1)
CMA-ES requires the computation of E[||N (0, 1)||]. Such an

expectation can be approximated using a Gamma distribution as shown in (van Rijn et al., 2016)

40



CompBO: Compositional Bayesian Optimisation

Similarly, Σ
(g)
CMA-ES is adapted by following a two-step process, where an (anisotropic) evo-

lutionary path, pathΣCMA-ES
, is used to in Σ

(g+1)
CMA-ES as follows:

pathΣCMA-ES
= (1− cΣCMA-ES

)pathΣCMA-ES
+ 11[0,η

√
d](||pathσ||)

√
1− (1− cΣCMA-ES

)2
√
κw

µ
(g+1)
CMA-ES − µ

(g)
CMA-ES

σ
(g)
CMA-ES

Σ
(g+1)
CMA-ES = γΣ

(g)
CMA-ES + c1pathΣCMA-ES

pathT
ΣCMA-ES

,

+ ηΣCMA-ES

κ∑
i=1

wi

(
vec

(g+1)
i? − µ(g)

CMA-ES

σ
(g)
CMA-ES

)(
vec

(g+1)
i? − µ(g)

CMA-ES

σ
(g)
CMA-ES

)T

,

where γ is a discount factor, cΣCMA-ES
, c1, and ηΣCMA-ES

are tuneable hyperparameters.
Finally, we used 11[0,η

√
d](·) to denote the indicator function with η typically set to ≈ 1.5.

B.3 DE

In differential evolution (DE) (Blank and Deb, 2020), a new set of input probes is generated
from a previous population via component-wise mutation. The initial population D(0) =

{vec(x)
(0)
1 , . . . , vec(x)

(0)
#population} is given as a collection of K vectors, where each vec(x)

(0)
j ∈

Rdq. Each vector vec(x)
(g+1)
j in the next population D(g+1) undergoes a component-wise

random mutation process consisting of three sequential steps. First, for each vec(x)
(g)
j ∈

D(g), DE randomly picks a collection of three different candidates a,b, c ∈ Rdq that belong
to the current population D(g). These candidates will play the role of building blocks for a
component-wise mutation process generating a candidate C ∈ Rdq for the next population.

In the second step, DE randomly picks a component l ∈ [1, . . . , dq] of vec(x)
(g)
j which will be

deterministically mutated with others undergoing a mutation with some fixed probability
pmutation:

[C]l = [a]l + F([b]l − [c]j), and [C]i =

{
[a]i + F([b]i − [c]i), w. p. pmutation[
vec(x)

(g)
j

]
i

w. p. 1− pmutation

where F ∈ [0, 2] is a scaling mutation parameter, and [v]i is used to denote the ith component
of vector v. In the last step the algorithm makes a choice on whether to add C to the
new population based on the acquisition function value information. In case the mutated

vector achieves a better solution than vec(x)
(g)
j , then C is added to a the new population

D(g+1), otherwise vec(x)
(g)
j is preserved. After the algorithm terminates, DE reports the

best solution out of all constructed populations ∪g≥0D(g).

Appendix C. First-Order Optimisers for ERM-BO

First-order optimisation techniques rely on gradient information to compute updates of x.
They are iterative in nature, running for a total of T iterations and executing a variant of
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the following rule at each step:

x1:q,t+1 = δtx1:q,t+ηt

φ
(1)
t

(
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di),

{
β

(1)
k

}t
k=0

)
φ

(2)
t

(
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
,
{
β

(2)
k

}t
k=0

, ε

) (Generalised update),

(25)
where δt is a weighting that depends on the class of algorithm used, ηt is a (typically) de-

caying learning rate, φ
(1)
t (·) and φ

(2)
t (·) are history-dependent mappings that differ between

algorithms with the ratio between them computed element-wise.
{
β

(1)
k

}t
k=0

and
{
β

(2)
k

}t
k=0

are history weighting parameters, and ε is a small positive constant used to avoid division
by zero. Additionally, ∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di) represent sub-sampled gradient es-
timators that are acquired using Monte Carlo samples of z ∼ N (0, I). It is also worth
noting that differentiating through the max operator that appears in all acquisitions can
be performed either using sub-gradients or by propagating through the max value of the
corresponding vector.

C.1 SGA

Stochastic gradient ascent (SGA) is a cornerstone of the optimisation algorithm litera-
ture (Robbins and Monro, 1951), simply using gradients to ascend the objective function.
Though it requires a large number of iterations to converge, recent studies demonstrate
that stochastic gradients (Wilson et al., 2018a) exhibit better generalisation capabilities
when compared to other methods in machine learning applications. We can attain SGA’s

update from Equation 25 by setting constant weightings δ1 = · · · = δT = 1,
{
β

(1)
k

}t
k=0

= ∅,{
β

(2)
k

}t
k=0

= ∅, and defining φ
(1)
t (·) and φ

(2)
t (·) as:

φ
(1)
t

(
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di)

)
= ∇α(x1:q,t|Di),

φ
(2)
t

(
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
)

= 1dq.

C.2 AdaGrad

In adaptive gradients (AdaGrad), SGA is modified so as to exhibit per-parameter learning
rates (Duchi et al., 2011). Intuitively, AdaGrad increases learning rates for sparse parame-
ters and decreases them for denser ones. Such a strategy has been shown to be successful
in settings where the data is sparse, and where sparse parameters convey more informa-
tion (e.g., natural language processing (Pennington et al., 2014) and image recognition
tasks (Song et al., 2020)). AdaGrad’s update can also be extracted from Equation 25 by
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choosing δ1 = · · · = δT = 1,
{
β

(1)
k

}t
k=0

= ∅,
{
β

(2)
k

}t
k=0

= ∅, and:

φ
(1)
t

(
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di)

)
= ∇α(x1:q,t|Di),

φ
(2)
t

(
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
, ε
)

=

√√√√ t∑
k=0

∇α(x1:q,k|Di)
2

+ ε .

C.3 RMSprop

In root mean-square propagation (RMSprop), learning rates are also adapted to each of
the parameters. Here, the idea is to divide the learning rate for a parameter by a running
average of the magnitudes of recent gradients for that specific parameter (Tieleman and
Hinton, 2012). RMSprop has enjoyed considerable success in machine learning (Khosla
et al., 2020; Wu et al., 2020). To arrive at its update rule, we set δ1 = · · · = δT = 1,{
β

(1)
k

}t
k=0

= ∅, β(2)
1 = · · · = β

(2)
T = γ with γ denoting a forgetting factor. Furthermore,

a constant learning rate η is typically adopted in RMSprop, i.e., η1 = · · · = ηT = η, and

φ
(1)
t (·) and φ

(2)
t (·) defined as:

φ
(1)
t

(
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di)

)
= ∇α(x1:q,t|Di),

φ
(2)
t

(
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
, γ, ε

)
=

√√√√(1− γ)
t∑

k=0

γk∇α(x1:q,k|Di)
2

+ ε .

C.4 Adam

Adam (Kingma and Ba, 2015) is one of the most successful and widely-used algorithms
in machine learning applications. The method computes individual adaptive learning rates
for different parameters from estimates of the first and second moments of the gradients.
In terms of Equation 25, we can derive Adam’s update as a special case using the following

settings: 1) constant weightings δ1 = · · · = δT = 1, β
(1)
1 = · · · = β

(1)
T = β1, β

(2)
1 = · · · =

β
(2)
T = β2, and 2) φ

(1)
t and φ

(2)
t defined as:

φ
(1)
t

(
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di), β1

)
=

1− β1

1− βt1

t∑
k=0

βk1∇α(x1:q,t−k|Di),

φ
(2)
t

(
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
, β2, ε

)
=

√√√√1− β2

1− βt2

t∑
k=0

βk2∇α(x1:q,t−k|Di)
2

+ ε.

C.5 AdaDelta

The AdaDelta algorithm can be viewed as a robust extension of the AdaGrad method
(Zeiler, 2012). AdaDelta adapts learning rates based on a moving window of gradient up-
dates. This window-based modification is implemented in an efficient manner by recursively
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defining the sum of the gradients as a decaying average of all past squared gradients. Fol-
lowing the general update rule introduced in Equation 25, AdaDelta can be formulated by

setting δ1 = · · · = δT = 1, β
[1]
1 = ε, β

[1]
2 = η, β

[1]
3 = · · · = β

[1]
T = β

[2]
1 = · · · = β

[2]
T = γ,

η1 = · · · = ηT = η, and

φ
(1)
t

(
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di), γ, η, ε

)
=

∇α(x1:q,t|Di)

√√√√ t−1∑
k=0

γk∇α(x1:q,t−k−1|Di)
2∑t−k−1

j=0 γj∇α(x1:q,t−k−1−j |Di)
2

+ ε
(1−γ)

+
ε

η2
,

φ
(2)
t

(
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
, γ, ε

)
=

√√√√(1− γ)
t∑

k=0

γk∇α(x1:q,t−k|Di)
2

+ ε.

C.6 RProp

To overcome the inherent disadvantages of pure gradient descent/ascent techniques in terms
of tuning the learning rate, (Riedmiller and Braun, 1993) propose RProp, an algorithm that
takes into account only the sign of the corresponding partial derivative value. In terms of

Equation 25, RProp can be defined by choosing δ1 = · · · = δT = 1,
{
β

(1)
k

}t
k=0

= ∅,{
β

(2)
k

}t
k=0

= ∅, and φ
(1)
t (·) and φ

(2)
t (·) as:

φ
(1)
t

(
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di)

)
= sign

(
∇α(x1:q,t|Di)

)
,

φ
(2)
t

(
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
)

= 1dq.

C.7 AdamW

(Loshchilov and Hutter, 2019) propose a variation of Adam optimisation algorithm with
decoupled weight decay regularisation to improve its generalisation properties. AdamW can

be written in the form of Equation 25 by specifying δt = (1 − ληt), β[1]
1 = · · · = β

[1]
T = β1,

β
[2]
1 = · · · = β

[2]
T = β2, and

φ
(1)
t

(
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di), β1

)
=

(1− β1)
∑t

k=0 β
k
1∇α(x1:q,t−k|Di)

1− βt1
,

φ
(2)
t

(
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
, β2, ε

)
=

√
(1− β2)

∑t
k=0 β

k
2∇α(x1:q,t−k|Di)

2

1− βt2
+ ε.

C.8 AdamOs

To isolate the effect of our compositional reformulation, we consider a variation of the stan-
dard Adam optimiser with the parameter setup adopted from its compositional counterpart
CAdam. In terms of Equation 25, AdamOs can be formulated by setting δ1 = · · · = δT = 1,

44



CompBO: Compositional Bayesian Optimisation

β
[1]
t = O(µt), β

[2]
t = 1− (1−O(µt))2

tηγ , ηt = O
( √

1−β[2]
t

(1−O(µt))tηη

)
, and

φ
(1)
t

(
∇α(x1:q,0|Di), . . . ,∇α(x1:q,t|Di), β1

)
=

1− β1

1− βt1

t∑
k=0

βk1∇α(x1:q,t−k|Di),

φ
(2)
t

(
∇α(x1:q,0|Di)

2
, . . . ,∇α(x1:q,t|Di)

2
, β2, ε

)
=

√√√√1− β2

1− βt2

t∑
k=0

βk2∇α(x1:q,t−k|Di)
2

+ ε.

Appendix D. Second-Order Optimisers in ERM-BO

Second-order optimisation methods along with gradients utilise second-order information
of the objective function, typically8 encoded in the Hessian matrix ∇2α(·|Di). The general
iterative update for second-order methods is given by:

x1:q,t+1 = x1:q,t − ηt
[
∇2α(x1:q,t|Di)

]−1
∇α(x1:q,t|Di) (Generalised update),

where ∇2α(x1:q,t|Di) is an approximation for the Hessian matrix evaluated at a current
iterate x1:q,t. This approximation is needed due to the size of the real Hessian matrix (in

our case ∇2α(x1:q,t|Di) ∈ Rdq×dq) as well as the necessity to compute its inverse at each
iteration of the above generalised update.

The BFGS algorithm (Kelley, 1999) and its memory-efficient version (Byrd et al., 1995)
are the most commonly-used second-order techniques for high-dimensional, non-convex op-
timisation and are based on the Sherman-Morison formulae for recursive computation of
the approximated Hessian inverse:

[
∇2α(x1:q,t|Di)

]−1
=

[
I− sth

T
t

hT
t st

] [
∇2α(x1:q,t−1|Di)

]−1
[
I− hts

T
t

hT
t st

]
+

sts
T
t

hT
t st

,

where
[
∇2α(x1:q,0|Di)

]−1
= I and curvature pairs ht = ∇α(x1:q,t|Di) − ∇α(x1:q,t−1|Di),

st = x1:q,t − x1:q,t−1. The recursive expression is beneficial for two reasons: 1) it admits
computation of the Hessian inverse approximation while avoiding the inversion of large
matrices and 2) it is formulated in terms of curvature pairs st,yt and hence permits com-
putation of the descent direction efficiently with respect to both time and memory.

Appendix E. First-Order Compositional Optimisers

As discussed in Section 3.2.1, first-order compositional methods depend on a stochastic ap-
proximation of the gradient of a compositional function α(Comp)(x1:q|Di) = f(Eω[gω(x1:q)])

8. An alternative is the Fischer Information Matrix (Amari and Nagaoka, 2007) used in the natural gradient
decent update equation (Amari, 2012).
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given by:

∇vec(x1:q)α
(Comp)(x1:q|Di) =

[
1

K2

K2∑
m=1

∇vec(x1:q)gωm(x1:q)

]T
∇ζf(ζ)

where y is an iterative auxiliary variable introduced to approximate the expectation of the
inner mapping Eω[gω(x1:q)] in a momentum-based fashion. Generalised update rules for
first-order compositional optimisers are iterative in nature and have the following form:

Main variable update:

x1:q,t+1 = x1:q,t + ηt

φ
(1)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
}t
k=0

,
{
γ

(1)
k

}t
k=0

)
φ

(2)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
2}t

k=0
,
{
γ

(2)
k

}t
k=0

, ε

) ,
The second auxiliary variable update:

ut+1 = φ
(3)
t+1

(
x1:q,0, . . . ,x1:q,t+1, {βk}tk=0

)
,

The first auxiliary variable update:

ζt+1 = φ
(4)
t+1

(
g(u1), . . . ,g(ut+1), {βk}tk=0, ζ0,u0

)
.

where g(u) = 1
K1

∑K1
m=1 gωm(u) is a Monte Carlo approximation of Eω[gω(x1:q)]. Next, we

show how different first-order compositional optimisers can be formulated in terms of the
above generalised iterative updates.

E.1 SCGA

Stochastic Compositional Gradient Ascent (Wang et al., 2017a) is the first algorithm which
focuses on a quasi-gradient computation and a momentum-based approximation of the inner
mapping Eω[gω(x)]. Following the generalised update scheme, SCGA can be accessed by
setting:

φ
(1)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
}t
k=0

,
{
γ

(1)
k

}t
k=0

)
= ∇vec(x1:q)α

(Comp)(x1:q,t, ζt|Di),

φ
(2)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
2}t

k=0
,
{
γ

(2)
k

}t
k=0

, ε

)
= 1dq,

φ
(3)
t

(
x1:q,0, . . . ,x1:q,t, {βk}t−1

k=0

)
= x1:q,t,

φ
(4)
t

(
g(u1), . . . ,g(ut), {βk}t−1

k=0, ζ0,u0

)
=

t∑
k=1

βk−1

t−1∏
j=k

(1− βj)g(uk).
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E.2 ASCGA

(Wang et al., 2017a) propose an accelerated stochastic compositional gradient algorithm
by evaluating compositional gradients via two-timescale iteration updates. We can attain

ASCGA from the generalised update equations by defining φ
(1)
t , φ

(2)
t , φ

(3)
t , φ

(4)
t as:

φ
(1)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
}t
k=0

,
{
γ

(1)
k

}t
k=0

)
= ∇vec(x1:q)α

(Comp)(x1:q,t, ζt|Di),

φ
(2)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
2}t

k=0
,
{
γ

(2)
k

}t
k=0

, ε

)
= 1dq,

φ
(3)
t

(
x1:q,0, . . . ,x1:q,t, {βk}t−1

k=0

)
= (1− β−1

t−1)x1:q,t−1 + β−1
t−1x1:q,t,

φ
(4)
t

(
g(u1), . . . ,g(ut), {βk}t−1

k=0, ζ0,u0

)
=

t∑
k=1

βk−1

t−1∏
j=k

(1− βj)g(uk).

E.3 CAdam

As mentioned in the main body of the paper, one can recover CAdam (Tutunov et al.,
2020) by instantiating the above as follows:

φ
(1)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
}t
k=0

,
{
γ

(1)
k

}t
k=0

)
=

t∑
k=0

(1− γ[1]
k )

t∏
j=k+1

γ
[1]
j ∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di),

φ
(2)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
2}t

k=0
,
{
γ

(2)
k

}t
k=0

, ε

)
=√√√√ t∑

k=0

(1− γ[2]
k )

t∏
j=k+1

γ
[2]
j ∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
2

+ ε,

φ
(3)
t

(
x1:q,0, . . . ,x1:q,t, {βk}t−1

k=0

)
= (1− β−1

t−1)x1:q,t−1 + β−1
t−1x1:q,t,

φ
(4)
t

(
g(type)(u1), . . . ,g(type)(ut), {βk}t−1

k=0, ζ0,u0

)
=

t∑
k=1

βk−1

t−1∏
j=k

(1− βj)g(type)(uk).

E.4 NASA

Nested Averaged Stochastic Approximation (Ghadimi et al., 2020) is a single time-
scale stochastic approximation algorithm whereby the problem is transformed to a high-
dimensional space and together with the main variable x, the behaviour of the gradient
of the compositional function ∇vec(x1:q)α

(Comp)(x1:q|Di) as well as the value of the inner
mapping Eω[gω(x)] are studied. In terms of generalised update rules, the NASA algorithm
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can be formulated by the following setup:

φ
(1)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
}t
k=0

, {ρτk}tk=0

)
=

ρ
t−1∑
k=0

τk−1

t∏
j=k

(1− ρτj)∇vec(x1:q)α
(Comp)(x1:q,k, ζk|Di),

φ
(2)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
2}t

k=0
,
{
γ

(2)
k

}t
k=0

, ε

)
= 1dq,

φ
(3)
t

(
x1:q,0, . . . ,x1:q,t, {βk}t−1

k=0

)
= x1:q,t,

φ
(4)
t

(
g(u1), . . . ,g(ut), {βk}t−1

k=0, ζ0,u0

)
= β

t∑
k=1

τk−1

t−1∏
j=k

(1− βτj)g(uk).

E.5 Nested-MC

To emphasise the effect of a momentum-based update for the auxiliary variable y, we also
consider a compositional variation of the Adam optimiser, where all involved expectation
operators are approximated by corresponding Monte Carlo estimates. In terms of the
generalised update scheme, Nested-MC can be formulated as follows:

φ
(1)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
}t
k=0

, β1

)
=

(1− β1)

1− βt1

t∑
k=0

βk1∇vec(x1:q)α
(Comp)(x1:q,t−k, ζt−k|Di),

φ
(2)
t

({
∇vec(x1:q)α

(Comp)(x1:q,k, ζk|Di)
2}t

k=0
, β2, ε

)
=√√√√(1− β2)

1− βt2

t∑
k=0

βk2∇vec(x1:q)α
(Comp)(x1:q,t−k, ζt−k|Di)

2
+ ε,

φ
(3)
t

(
x1:q,0, . . . ,x1:q,t, {βk}t−1

k=0

)
= x1:q,t,

φ
(4)
t

(
g(u1), . . . ,g(ut), {βk}t−1

k=0, ζ0,u0

)
= g(ut).

Appendix F. Memory-Efficient Adaptations for Compositional
Optimisers

As described in Section 3.2.2, the necessity of storing all M samples of the reparameterisa-
tion random variables z ∼ N (0, I) makes compositional optimisers cumbersome with respect
to memory capacity. For example, an inner mapping g(type)(x1:q) = Eω

[
g(type)(x1:q)

]
∈

Rq×M , where type ∈ {EI,PI,SR,UCB} and each stochastic instance g
(type)
ω (x1:q) is defined
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as:

g(type)
ω (x1:q) = [0q, . . . ,v

(type)
ω , . . . ,0q] ∈ Rq×M

where each v
(type)
ω ∈ Rq is formulated in terms of an associated vector z sampled uniformly

from a fixed collection, as described in Section 3.2.1. As a result, the construction of a
Monte Carlo estimate for g(type)(x1:q) involves storing all {z1, . . . , zM} and therefore gives
rise to high memory consumption. In the memory-efficient adaptation however, we remedy
this problem by sampling a set of reparameterisation random variables z1, . . . , zK directly
from a distributionN (0, I) rather then from a large fixed collection. As a result, a stochastic
instance of the inner mapping can be written as a q by K matrix:

g(type),(ME)(·) =
[
v

(type)
z1 (·), . . . ,v(type)

zK (·)
]
∈ Rq×K

where the jth column is defined via the associated v
(type)
zj (·) in an analogous fashion to

Section 3.2.1. This adjustment immediately allows us to compute stochastic estimates
for the Jacobian ∇vec(x1:q)g

(type),(ME)(·) = ∇vec(x1:q)g
(type),(ME)(·) of the inner mapping in a

memory-efficient manner. Finally, the gradient of the compositional objective α(Comp)(?|Di)
can be estimated as follows:

∇vec(x1:q)α
(Comp),(ME)(?, ∗|Di) =

[
∇vec(x1:q)g

(type),(ME)(?)
]T
∇ζf (type)(∗).

where ∗ represents the value of the first auxiliary variable ζ obtained via the exponentially-
weighted average of estimates g(type),(ME)(·) (see Section 3.2.1). The generalised iterative
update equations for memory-efficient compositional optimisers already have a familiar
form:

Main variable update:

x1:q,t+1 = x1:q,t + ηt

φ
(1)
t

({
∇vec(x1:q)α

(Comp),(ME)(x1:q,k, ζk|Di)
}t
k=0

,
{
γ

(1)
k

}t
k=0

)
φ

(2)
t

({
∇vec(x1:q)α

(Comp),(ME)(x1:q,k, ζk|Di)
2}t

k=0
,
{
γ

(2)
k

}t
k=0

, ε

) ,
The second auxiliary variable update:

ut+1 = φ
(3)
t+1

(
x1:q,0, . . . ,x1:q,t+1, {βk}tk=0

)
,

The first auxiliary variable update:

ζt+1 = φ
(4)
t+1

(
g(type),(ME)(u1), . . . ,g(type),(ME)(ut+1), {βk}tk=0, ζ0,u0

)
.

Next, we show how memory-efficient compositional optimisers can be formulated in terms
of the above generalised iterative updates.
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F.1 CAdam-ME

A memory-efficient version of the CAdam optimiser in terms of the generalised update:

φ
(1)
t

({
∇vec(x1:q)α

(Comp),(ME)(x1:q,k, ζk|Di)
}t
k=0

,
{
γ

(1)
k

}t
k=0

)
=

t∑
k=0

(1− γ[1]
k )

t∏
j=k+1

γ
[1]
j ∇vec(x1:q)α

(Comp),(ME)(x1:q,k, ζk|Di),

φ
(2)
t

({
∇vec(x1:q)α

(Comp),(ME)(x1:q,k, ζk|Di)
2}t

k=0
,
{
γ

(2)
k

}t
k=0

, ε

)
=√√√√ t∑

k=0

(1− γ[2]
k )

t∏
j=k+1

γ
[2]
j ∇vec(x1:q)α

(Comp),(ME)(x1:q,k, ζk|Di)
2

+ ε,

φ
(3)
t

(
x1:q,0, . . . ,x1:q,t, {βk}t−1

k=0

)
= (1− β−1

t−1)x1:q,t−1 + β−1
t−1x1:q,t,

φ
(4)
t

({
g(type),(ME)(uk)

}t
k=1

, {βk}t−1
k=0, ζ0,u0

)
=

t∑
k=1

βk−1

t−1∏
j=k

(1− βj)g(type),(ME)(uk).

F.2 NASA-ME

The NASA algorithm also has a memory-efficient adaptation:

φ
(1)
t

({
∇vec(x1:q)α

(Comp),(ME)(x1:q,k, ζk|Di)
}t
k=0

, {ρτk}tk=0

)
=

ρ

t−1∑
k=0

τk−1

t∏
j=k

(1− ρτj)∇vec(x1:q)α
(Comp),(ME)(x1:q,k, ζk|Di),

φ
(2)
t

({
∇vec(x1:q)α

(Comp),(ME)(x1:q,k, ζk|Di)
2}t

k=0
,
{
γ

(2)
k

}t
k=0

, ε

)
= 1dq,

φ
(3)
t

(
x1:q,0, . . . ,x1:q,t, {βk}t−1

k=0

)
= x1:q,t,

φ
(4)
t

({
g(type),(ME)(uk)

}t
k=1

, {βk}t−1
k=0, ζ0,u0

)
= β

t∑
k=1

τk−1

t−1∏
j=k

(1− βτj)g(type),(ME)(uk).

F.3 Nested MC-ME

Finally, the Nested MC optimiser can also be converted to its memory-efficient form:

φ
(1)
t

({
∇vec(x1:q)α

(Comp),(ME)(x1:q,k, ζk|Di)
}t
k=0

, β1

)
=

(1− β1)

1− βt1

t∑
k=0

βk1∇vec(x1:q)α
(Comp),(ME)(x1:q,t−k, ζt−k|Di),
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φ
(2)
t

({
∇vec(x1:q)α

(Comp),(ME)(x1:q,k, ζk|Di)
2}t

k=0
, β2, ε

)
=√√√√(1− β2)

1− βt2

t∑
k=0

βk2∇vec(x1:q)α
(Comp),(ME)(x1:q,t−k, ζt−k|Di)

2
+ ε,

φ
(3)
t

(
x1:q,0, . . . ,x1:q,t, {βk}t−1

k=0

)
= x1:q,t,

φ
(4)
t

({
g(type),(ME)(uk)

}t
k=1

, {βk}t−1
k=0, ζ0,u0

)
= g(type),(ME)(ut).

Appendix G. Extended Results

G.1 Non-myopic acquisition function: Entropy Search

Although our main focus was set on myopic acquisition functions, we showed that compo-
sitional optimisation can also be applied to maximise non-myopic acquisition functions as
illustrated with Entropy Search. As noted in Section 2.2 and contrary to myopic acquisi-
tion functions, Entropy Search directly comes in a compositional form making it naturally
amenable to compositional optimisation, but can also be optimised via nested-MC approach
as the other compositional forms we derived for myopic acquisition functions. Nonethe-
less, this compositional structure requires, for the inner expectation, the evaluation of GP
posteriors on a set of points covering the search space, making this information-efficient
acquisition function scale poorly with the dimensionality of the problem.

Owing to poor scalability, we adapted the experimental setup described in Section 4
for synthetic experiments, considering bayesian optimisation of the 3D versions of Levy and
Ackley synthetic functions. We compare the use of zero’th, first and second-order optimisers
for the acquisition function optimisation (with a budget of 64 optimisation steps, similar to
other experiments). At each inner BO step, three points are acquired until reaching a total
of 60 evaluations (on top of the three initial random ones). To reduce memory usage we
applied memory-efficient strategy for compositional optimisation and also followed (Hennig
and Schuler, 2012) for the discretisation strategy, sampling 100 points based on Expected
Improvement values (avoiding the burden of considering a regular grid over the search
space which would require taking more points to get a good approximation of the entropy
as discussed in (Hennig and Schuler, 2012)).

The evolution of immediate log-regrets shown on Figure 11 have been obtained after ap-
plying the hyperparameter tuning procedure presented in Section 4 to assess performance of
each optimiser in a favourable setting. We see that for this non-myopic acquisition function,
first-order optimisers outperforms second and zeroth-order approaches that are comparable
to Random Search. These observations aligns with the ones made when studying myopic
cases. Nevertheless, this set of experiments fails to establish a clear advantage of the use
of compositional optimisers compared to nested-MC approach (based on Adam optimiser
in this case) as NASA permits the lowest regret when minimising Levy while nested-MC
permits the lowest regret for Ackley minimisation. We believe that this preliminary result
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should open the door to a more in-depth study of non-myopic acquisition functions, which
would be beyond the scope of this paper.
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Figure 11: Evolution of immediate log-regret obtained when running Bayesian optimisation
with Entropy Search to minimise Levy (left) and Ackley (right) functions. Each line is
associated with an optimiser used to perform the acquisition function maximisation step
that produces a new batch of 3 points to evaluate. The immediate log-regret averaged over
10 seeds appears in solid (Random Search), dotted (0-order optimisers) or dashed (order-1
and order-2 optimisers) line and the standard deviation appears as shaded area. We see
that first-order optimisers tend to attain lower regrets.

G.2 Results presentation

When comparing acquisition function optimisation approaches on synthetic BBO tasks,
we showed regret evolutions aggregating results obtained across several synthetic objective
functions, acquisition functions and optimisers and plotted the mean surrounded by one
standard deviation. Due to the variability of the tasks over which we aggregated the re-
sults this variance is usually very large (see Figures 1, 5) leading to uncertainty as whether
the discrepancies observed between the mean curves corresponds to statistically significant
performance gaps. On the other hand, we note that we could alternatively aggregate these
experiments by first averaging regrets across the BBO tasks and therefore taking into ac-
count solely the variability induced by the random seeds. We compare these two aggregation
methods in Figure 12, which shows normalised regrets across all synthetic tasks, and in Fig-
ure 12m which reports performances achieved when using ERM and FSM formulations of
the acquisition functions. In both cases the variability is drastically reduced when only
randomness from the seeds is considered, which indicates that most of the variability comes
from the variety of the tasks.

From the summary results of Figure 12 we can make several observations regarding the
final normalised log-regret achieved by each type of optimisers, notably that (c.1) on average
the best first-order compositional optimiser outperforms best first-order non-compositional
optimiser. Secondly, we observe that (c.2) the latter achieves lower regrets than second-
order optimisers. We test the statistical significance of these claims along with similar
comparisons between categories of optimisers by conducting one-tailed Z-test when we take
into account task variability and one-tailed t-test when we only take seed variability into
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Figure 12: Summary plots for 3100 synthetic BBO experiments. On the left, the variability
across the BBO tasks is taken into account to compute the standard deviation inducing
a large shaded areas (showing ±1 std). On the right, normalised immediate regrets are
averaged across all the tasks and only the variability across the 5 random seeds is shown as
a shaded area surrounding the mean curve.

H0 Ha p-value p-value
(w/ task var.) (w/o task var.)

1-Comp = 1-Non-Comp 1-Comp < 1-Non-Comp 8.28e-03 4.45e-08
1-Non-Comp = 2-Comp 1-Non-Comp < 2-Comp 2.14e-07 6.69e-10
2-Comp = 2-Non-Comp 2-Comp < 2-Non-Comp 2.62e-01 1.51e-02
2-Non-Comp = 0-Comp 2-Non-Comp < 0-Comp 4.74e-06 2.75e-07
0-Comp = 0-RS 0-Comp < RS 2.28e-01 5.71e-02

Table 2: Statistical significance of the observations made on summary Figures 12: the
p-values computed from upper-tailed Z-test when task variability is considered and from
upper-tailed t-test when only seed variability is measured. The null-hypothesis H0 (resp.
alternative hypothesis Ha) formulated as Categorya = Categoryb (resp. Categorya <
Categoryb) reads “On average, final normalised log-regrets achieved using best optimiser of
Categorya is equal (resp. is lower) than the one obtained using best optimiser of Categoryb”.
We highlight the p-values lower than 0.05 in bold font denoting rejection of H0.

account, as we only observe 5 samples for each category). The p-values are reported in
Table 2 for several hypotheses and allow to conclude to the statistical significance of the
claims (c.1) and (c.2) even when task variability is considered.

Similarly we assess statistical significance of the outperformance of FSM over ERM
versions of the acquisition functions which we studied in Section 4.1. Again, we perform
one-tailed Z-tests and t-tests on hypotheses comparing final regrets achieved when using
ERM and FSM forms with four first-order optimisers (Adam, Adagrad, RMSprop, and
Rprop) and reports the associated p-values in Table 3. Based on the 960 synthetic BBO
experiments carried out, we can conclude that for half of the optimisers (Adagrad and
Rprop) when we include task variability in the analysis. For all optimisers, if we focus on
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Figure 13: Summary plots comparing the evolution of the normalised immediate regret
obtained across all synthetic tasks when using first-order methods with either the ERM or
FSM formulation of the acquisition function. First column displays the standard deviation
obtained when considering the variability across the BBO tasks, while on the second column,
normalised immediate regrets, is averaged across tasks and only the variability across the 5
random seeds is shown as a shaded area surrounding the mean curve. Normalised regret is
plotted as a function of the number of evaluations on the top row, while on the bottom row
the x-axis corresponds to the execution time. The plot highlights that FSM incurs lower
execution runtime than its ERM counterpart.

the average performance across tasks, FSM allows achieving significantly lower log-regret
than ERM. Nevertheless, this significant benefit of FSM over ERM may be mitigated by a
longer execution time.

To address this potential concern, we showed evolution of normalised log-regret as a
function of the execution time on the two bottom plots of Figure 13. We notice that using
FSM form does not induce any penalty in terms of run-time and even allows to marginally
speed-up the optimisation process, making the case for FSM form even stronger.
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Optimiser H0 Ha p-value p-value
(op.) (w/ task var.) (w/o task var.)

Adam op-ERM = op-FSM op-ERM > op-FSM 2.53e-1 3.14e-02
Adagrad op-ERM = op-FSM op-ERM > op-FSM 1.25e-03 3.42e-05
RMSprop op-ERM = op-FSM op-ERM > op-FSM 8.27e-02 3.15e-03

Rprop op-ERM = op-FSM op-ERM > op-FSM 3.57e-02 3.86e-04

Table 3: Statistical significance of the observations made on summary Figures 13: the p-
values are computed from lower-tailed Z-test when task variability is considered and from
lower-tailed t-test when only seed variability is measured. The null-hypothesis H0 (resp.
alternative hypothesis Ha) formulated as op-ERM = op-FSM (resp. op-ERM < op-FSM)
reads “On average, final normalised log-regrets achieved using best optimiser of op-ERM
is equal (resp. is greater) than the one obtained using best optimiser of op-FSM”. We
highlight the p-values lower than 0.05 in bold font denoting rejection of H0

G.3 Synthetic tasks

G.3.1 Immediate log-regret across tasks

We provide in Figures 14, 15, 16, 17 and 18 the evolution of immediate regrets obtained
using each optimiser and acquisition function on synthetic black-box maximisation tasks in
16, 40, 60, 80 and 120 dimensions. These results are summarised in Table 1.

G.3.2 Inner optimisation

Despite our interest in acquisition function optimisation, we compare performance based
on the evolution of immediate regrets achieved in the course of BO rather than focusing
on the visualisation of the acquisition function optimisation trajectories. This choice is
motivated by the fact that this interest for the BO inner optimisation step is meaningful
when it is intimately linked to the global BO process, since in practice the goal will always
be to achieve the lowest possible regret for a given black-box function. Therefore analysing
regret curves when using different inner optimisation processes allows to make comparisons
in line with the core motivation of this work — that is to shed light on the impact of the
choice of the inner optimisation process to get the best BO performance (which of course
should be highly correlated to the quality of the inner optimisation). Moreover, having this
objective in mind, it then becomes difficult to compare inner optimisation performances
directly, since a valid comparison requires sharing similar initial points which is generally
not possible beyond the first acquisition step. An alternative consists in probing some
points in the search space on which we fit one surrogate model that is used to test all
acquisition optimisation methods. We provide an example of such experiment on Figure 20
showing acquisition values trajectories across 64 optimisation steps when taking 3, 50, 250
and 500 initial random points (we use Powell test function in 16D to get the corresponding
blackbox values and fit the surrogate model common to all optimisers). As 32 starting
points have been used for each optimisation, only the trajectories leading to the highest
acquisition values are shown. Although some observations can be made from this figure
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Figure 14: Evolution of immediate log-regret for various acquisition functions and optimisers
on 16D synthetic function maximisation tasks. Results of 490 experiments are shown on
this graph.

as we notice that compositional first-order forms tend to outperform when working with
PI (which corroborates former observations, e.g. regret curves of Figure 6) and achieve
highest acquisition values half of the time when optimising EI. We believe that no solid
conclusions can be drawn from such graph, as the surrogate models built from random
points are certainly not representative of the surrogate models encountered in the course of
BO where evaluated points have been properly selected.

G.4 Hyperparameter tuning tasks

As described on Section 4.5, we compared optimisers performances on a set of real-world
tasks taken from the Bayesmark data sets. Figures 21, 22, 23, 24 show show the evolution
of the scores obtained by each optimiser for all tasks.

Appendix H. Hyperparameter Settings

As explained in Section 4, the performances of first-order optimisers that are reported
have been obtained after a hyperparameter tuning phase. We show in Table 4 and 5 the
hyperparameters that have been tuned for each optimiser, along with their tuning domains.
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Figure 15: Evolution of immediate log-regret for various acquisition functions and optimisers
on 40D synthetic function maximisation tasks. Results of 490 experiments are shown on
this graph.
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Figure 16: Evolution of immediate log-regret for various acquisition functions and optimisers
on 60D synthetic function maximisation tasks. Results of 485 experiments are shown on
this graph.
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Figure 17: Evolution of immediate log-regret for various acquisition functions and optimisers
on 80D synthetic function maximisation tasks. Results of 545 experiments are shown on
this graph.
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Figure 18: Evolution of immediate log-regret for various acquisition functions and optimisers
on 120D synthetic function maximisation tasks. Results of 545 experiments are shown on
this graph.
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Tuning has been performed using the BO library GPyOpt with a total of 33 configurations
tested for each optimiser.

Optimiser Reference Parameters Tuning domain Scheduled

Adam App. C.4 lr LU(10−5, 0.3) 3

β1 U(0.05, 0.999)
β2 LU(0.9, 1− 10−6)
wd LU(10−8, 0.1)

AdamW App. C.7 lr LU(10−5, 0.3) 3

β1 U(0.05, 0.999)
β2 LU(0.9, 1− 10−6)
wd LU(10−8, 0.1)

Adadelta App. C.5 lr LU(10−5, 0.3) 3

ρ LU(0, 0.999)
wd LU(10−8, 0.1)

Adagrad App. C.2 lr LU(10−5, 0.3)
lrd LU(10−7, 10)
δ LU(10−8, .3)
wd LU(10−8, 0.1)

SGA App. C.1 lr LU(10−5, 0.3) 3

ρ U(0, 1)
∆ U(0, 1)

nesterov U {0, 1}
wd LU(10−8, 0.1)

Rprop App. C.6 lr LU(10−5, 0.3) 3

η1 U(0, 1)
η2 U(1, 3)

RMSprop App. C.3 lr LU(10−5, 0.3) 3

ρ U(0, 1)
α LU(10−6, .3)

centering U {0, 1}
wd LU(10−8, 0.1)

Adamos App. C.8 lr LU(10−5, 1.)
µ LU(0.1, 0.999)
Cγ U(0.5, 1)
αd U(0.02, 0.5)
µd U(0.8, 1.2)
γ2d U(0.2, 0.8)

Table 4: Selected first-order non-compositional optimisers used in our experiments together
with their tuning domains. Searches in a log-uniform domain are denoted by LU , while
searches in a uniform continuous (resp. discrete) domain is denoted by U() (resp. U{}).
The learning rate scheduling, marked with the X sign in the last column, is an exponential
decay schedule with a multiplicative factor γ tuned in LU(10−7, 0.3) along with the other
optimiser hyperparameters.
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CompBO: Compositional Bayesian Optimisation
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Optimiser Reference Parameters Tuning domain Scheduled

CAdam (Tutunov et al., 2020) lr LU(10−5, 1.)
β LU(0.001, 0.999)
µ LU(0.1, 0.999)
Cγ U(0.5, 1)
αd U(0.02, 0.5)
µd U(0.8, 1.2)
γ2d U(0.2, 0.8)

NASA (Ghadimi et al., 2020) a U(0.1, 10)
b U(0.1, 10)
β U(0.1, 10)
γ U(0.5, 1.)

SCGD (Wang et al., 2017a) lr LU(−4, 1)
lrd U(0.4, .95)
β LU(0.1, 0.999)
βd U(0.2, 0.8)

ASCGD (Wang et al., 2017a) lr LU(−4, 1)
lrd U(0.4, .95)
β LU(0.1, 0.999)
βd U(0.25, 0.85)

Table 5: Selected first-order non-compositional optimisers used in our experiments together
with their tuning domains.
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