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Abstract

In modern machine learning, we observe the phenomenon of opaqueness debt, which man-
ifests itself by an increased risk of discrimination, lack of reproducibility, and deflated
performance due to data drift. An increasing amount of available data and computing
power results in the growing complexity of black-box predictive models. To manage these
issues, good MLOps practice asks for better validation of model performance and fairness,
higher explainability, and continuous monitoring. The necessity for deeper model trans-
parency comes from both scientific and social domains and is also caused by emerging
laws and regulations on artificial intelligence. To facilitate the responsible development
of machine learning models, we introduce dalex, a Python package which implements a
model-agnostic interface for interactive explainability and fairness. It adopts the design
crafted through the development of various tools for explainable machine learning; thus, it
aims at the unification of existing solutions. This library’s source code and documentation
are available under open license at https://python.drwhy.ai.
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1. Introduction

From the evolution of statistical modeling through data mining and machine learning to so-
called artificial intelligence (AI), we arrived at the point where advanced systems support, or
even surpass, humans in various predictive tasks. These algorithms are available for broad
user-bases through numerous machine learning frameworks in Python like scikit-learn
(Pedregosa et al., 2011), tensorflow (Abadi et al., 2016), xgboost (Chen and Guestrin,
2016) or 1lightgbm (Ke et al., 2017) to name just a few. Nowadays, there are increased con-
cerns regarding the explainability (Lipton, 2018; Miller, 2019) and fairness (Binns, 2018;
Holstein et al., 2019) of machine learning predictive models in research and commercial
domains. A growing number of stakeholders discuss various needs and features for frame-
works related to responsible machine learning (Barredo Arrieta et al., 2019; Gill et al., 2020).
For us, the primary objective is combining three aspects of model analysis: explainability,
fairness, and crucially for human-model dialogue, interactivity (Abdul et al., 2018).
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Related software most notably include Python packages from these three categories.
lime (Ribeiro et al., 2016), shap (Lundberg and Lee, 2017), pdpbox (Jiangchun, 2018),
interpret (Nori et al., 2019), alibi (Klaise et al., 2021), and aix360 (Arya et al., 2020)
implement various explainability methods; aif360 (Bellamy et al., 2018), aequitas (Saleiro
et al., 2018), and fairlearn (Bird et al., 2020) implement various fairness methods; more-
over, responsible Al tools for tensorflow (Abadi et al., 2016), e.g. witwidget (Wexler
et al., 2020), produce interactive dashboards supporting machine learning operations (this
is also partially addressed by interpret and fairlearn). All these leave room for im-
provement in terms of the combining of various methods, while also connecting them to
ever-growing modeling and data frameworks through a uniform abstraction layer.

Unlike many of the proposed solutions, we strongly emphasize the construction of end-
to-end software for facilitating a responsible approach to machine learning. To achieve
that, we focus on tabular data while there are frameworks specializing in other modalities,
e.g. innvestigate (Alber et al., 2019). The dalex package unifies various approaches and
bridges the existing gap separating black-box models from explainability methods. More-
over, dalex brings numerous fairness metrics and interactive model analysis dashboards
closer to the user. These factors motivate our article, in which we preview our previous
work in Section 2, introduce dalex in Section 3, and sketch the future work in Section 4.

2. Previous Work

This contribution builds upon the software for explainable machine learning presented by us
in “DALEX: Explainers for Complex Predictive Models in R” (Biecek, 2018). Since DALEX
version 0.2.5, there have been two major releases, which expanded the toolkit of explain-
ability methods, and performed a complete redesign of code, interface and charts for model
visualizations. Users provided us with a number of very valuable feature requests: (i) we
created a taxonomy of model-agnostic explanations for machine learning predictive models
(Biecek and Burzykowski, 2021); (ii) we prototyped modelStudio (Baniecki and Biecek,
2019), an extension of DALEX, which automatically produces a customizable dashboard al-
lowing for an interactive model analysis (Baniecki and Biecek, 2020); (iii) we added support
for multi-output predictive models and a growing number of machine learning frameworks
in a language-agnostic manner. Further, we noticed that the visual model analysis goes
beyond the area of explainability and also addresses such issues as fairness and interactive
model comparisons. Based on these experiences, we implemented a Python package.

3. A Unified Interface for Responsible Machine Learning

The dalex Python package implements the main dalex.Explainer class to provide an
abstract layer between distinct model API’s (e.g. scikit-learn (Pedregosa et al., 2011),
tensorflow (Abadi et al., 2016), xgboost (Chen and Guestrin, 2016), h2o (H20.ai, 2020))
and data API’s (e.g. numpy (Harris et al., 2020), pandas (Wes McKinney, 2010)), and
the explainability and fairness methods. In Figure 1, we present the architecture of a uni-
fied interface for model-agnostic responsible machine learning with interactive explainabil-
ity and fairness. These methods are divided into model-level techniques operating on a
whole dataset (or its subset) and predict-level techniques operating on distinct observa-
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A. Explainer: Uniform abstraction over predictive models B. Consistent grammar for model analysis
import dalex as dx
<+—» Model scikit-learn h2o explainer = dx.Explainer(model, X, y)
xgboost tensorflow explanation = explainer.model_parts()
explanation.result

+—>
Data numpy pandas explanation.plot()

Predict interface explainer.predict_parts(new_observation).result
<« Model metadata (label, type, info ) explainer.predict_parts(new_observation).plot()

C. Predict-level explanations D. Model-level explanations
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E. Fairness checks F. Arena: Interactive comparative model analysis
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Figure 1: The dalex package is based on six pillars that support responsible machine learn-
ing modeling: A. The main Explainer class object, which serves as a uniform
abstraction over predictive models and data API’s in Python; B. A unified set of
methods for model analysis with explanation objects that calculate results and
plot them in a consistent way; C. Predict-level (local) explainability methods;
D. Model-level (global) explainability methods; E. Fairness oriented methods;
F. Interactive dashboard for comparative model analysis.

tions from data (or their neighbourhoods). The binding of these methods to the one
dalex.Explainer class gives a favourable user experience, where one can conveniently com-
pute and return various explanation objects. All of them share the main result attribute,
which is a pandas.DataFrame, and the plot method, which produces visualizations with
the plotly package (Parmer and Kruchten, 2020). The latter takes multiple explanation
objects, which allows for an easy model comparison.

Model-level and predict-level explanations. Explainability methods referenced in
Figure 1 return different objects depending on the type parameter: model performance
and predict allow for easy interference with the model basics, predict_parts implements
iBreakDown local variable attributions and Shapley values estimation, model_parts imple-
ments permutational variable importance, predict_profile implements Ceteris Paribus
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profiles, model profile implements PDP, ALE and ICE profiles, model diagnostics im-
plements overall diagnostics of models’ residuals, model_surrogate implements surrogate
decision tree models, which are effective to plot. Additionally, the dalex.Explainer ab-
stract layer allows for the integration of other explanations, e.g. the shap (Lundberg and
Lee, 2017) explanations into predict_parts and model _parts methods, and 1lime (Ribeiro
et al., 2016) into predict_surrogate. All of these methods are described in detail in the
EMA book (Biecek and Burzykowski, 2021) with dalex Python code examples.

Fairness checks. The principles of responsible machine learning involve providing proper
model accountability and bias detection (Barredo Arrieta et al., 2019; Gill et al., 2020). Be-
cause of regulations and guidelines, we can see an increasing demand for easily accessible
methods to check model fairness (Binns, 2018; Holstein et al., 2019). Therefore, we imple-
mented the fairness_check method, which compares the most common fairness measures
based on the confusion matrix (Feldman et al., 2015; Verma and Rubin, 2018) and pro-
vides a detailed textual description of the group fairness analysis. It operates on a fairness
object available through the dalex.Explainer.model fairness method. In the same way
as explanation objects, it contains the result attribute and plot method, which provides
various visualizations depending on the type parameter.

Interactive and comparative model analysis. The user-centred design of explainable
(responsible) Al tools brings other emerging challenges discussed on the junction of AT and
HCI domains (Abdul et al., 2018; Miller, 2019). The dalex.Arena class creates an ad-
vanced live Arena dashboard (Piatyszek and Biecek, 2020) for model comparisons with all
features available in the dalex package, including model explainability and fairness, more-
over techniques for data exploration. These allow the juxtaposition of various visualizations
for model and data analysis, which gives a complete view of the various models’ behaviour.
Notably, the dashboard can be saved into a local state to be loaded later — this overcomes
the reproducibility crisis apparent in machine learning.

4. Conclusion and Future Work

In this article, we present dalex, which builds upon and extends the DALEX R package
to bring a unified interface for responsible machine learning into Python. This package is
continuously developed, while the current stable version 1.3 for Python 3.9 is available
at https://python.drwhy.ai. Due to the comprehensive design of a uniform abstraction
layer, dalex allows for the convenient addition of new machine learning frameworks into
the responsible realm, which is not the case for most of the existing solutions. Additionally,
with a clear-cut taxonomy of methods, there is the possibility to add new explanation
objects and metrics, which was well-proven within our previous work. We further discuss
such matters in the documentation and educational materials attached to this package.
We next aim to include into dalex explanations for groups of interacting variables, which
is a highly influential concept in modern machine learning algorithms. There is research
to be done towards adding a predict_fairness method, as the individual fairness field is
not that well established. Overall, the responsible machine learning domain aims to address
more principles than explainability and fairness (Barredo Arrieta et al., 2019); thus, the next
steps shall address the accountability, robustness, and safety of machine learning models.
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