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Abstract
We develop and analyze a new family of nonaccelerated and accelerated loopless variance-
reduced methods for finite-sum optimization problems. Our convergence analysis relies on a
novel expected smoothness condition which upper bounds the variance of the stochastic
gradient estimation by a constant times a distance-like function. This allows us to handle
with ease arbitrary sampling schemes as well as the nonconvex case. We perform an in-
depth estimation of these expected smoothness parameters and propose new importance
samplings which allow linear speedup when the expected minibatch size is in a certain
range. Furthermore, a connection between these expected smoothness parameters and
expected separable overapproximation (ESO) is established, which allows us to exploit data
sparsity as well. Our general methods and results recover as special cases the loopless SVRG
(Hofmann et al., 2015) and loopless Katyusha (Kovalev et al., 2019) methods.
Keywords: L-SVRG, L-Katyusha, Arbitrary sampling, Expected smoothness, ESO

1. Introduction

In this work we consider the composite finite-sum optimization problem

min
x∈Rd

P (x) :=
1

n

n∑
i=1

fi(x) + ψ(x), (1)

where f := 1
n

∑
i fi is an average of a very large number of smooth functions fi : Rd → R,

and ψ : Rd → R ∪ {+∞} is a proper closed convex function. We assume that problem (1)
has at least one global optimal solution x∗ and we denote by P ∗ = P (x∗) the optimal value
of problem (1).

Variance reduction. Variance reduced methods for solving (1) have recently become
immensely popular and efficient alternatives of SGD (Nemirovski et al., 2009; Robbins and
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Monro, 1951). Among the first such methods proposed were SAG (Schmidt et al., 2017),
SAGA (Defazio et al., 2014), and SVRG (Johnson and Zhang, 2013; Xiao and Zhang, 2014),
all with essentially identical theoretical complexity rates, but different practical use cases
and different analysis techniques. While the first approaches to this were indirect and
dual in nature (Shalev-Shwartz and Zhang, 2013), it later transpired that variance reduced
methods can be accelerated, in the sense of Nesterov, directly. The first such method,
Katyusha (Allen-Zhu, 2017)—an accelerated variant of SVRG—has become very popular
due to its optimal complexity rate, versatility, and practical behavior. Both SVRG and
Katyusha have a two-loop structure. In order for SVRG to obtain the best convergence rate,
the inner loop must be terminated after a number of iterations proportional to the condition
number of the problem. However, this is often unknown, or hard to estimate, and this has
led practitioners to devise various heuristic strategies instead, departing from theory.

Loopless methods. This problem was remedied by the so-called loopless SVRG (L-
SVRG) (Hofmann et al., 2015; Kovalev et al., 2019) and loopless Katyusha (L-Katyusha) (Ko-
valev et al., 2019). These methods dispense off the outer loop, replacing it with a biased
coin-flip to be performed in each step. This simple change makes the methods easier to under-
stand, and easier to analyze. The worst-case complexity bounds remain the same. Moreover,
for L-SVRG the optimal probability of exit to the outer loop can be made independent of
the condition number, which resolves the problem mentioned above, and makes the method
more robust and markedly faster in practice. L-SVRG was analyzed in (Hofmann et al.,
2015) and (Kovalev et al., 2019) for the strongly convex and smooth case (ψ ≡ 0); rates in
the non-strongly convex and nonconvex case are not known.

Arbitrary sampling. The arbitrary sampling paradigm to developing and analyzing
stochastic algorithms allows for a simultaneous study of countless importance and minibatch
sampling strategies, thus leading to a tight unification of two previously separate topics. It
was first proposed in (Richtárik and Takáč, 2016) in the context of randomized coordinate
descent methods. Since then, many stochastic methods were studied in this regime. Methods
already endowed with arbitrary sampling variants and analysis include, among others, the
primal-dual method Quartz (Qu et al., 2015), accelerated randomized coordinate descent
(Qu and Richtárik, 2016a,b; Hanzely and Richtárik, 2019), stochastic primal-dual hybrid
gradient method (Chambolle et al., 2017), SGD (Gower et al., 2019), and SAGA (Qian et al.,
2019). All these methods were studied in a convex or strongly convex setting only. In the
nonconvex case, an arbitrary sampling analysis was performed only recently in (Horváth and
Richtárik, 2019), for the SAGA, SVRG and SARAH methods, where an optimal sampling
was developed.

1.1 Contributions

In this paper, we study L-SVRG and L-Katyusha with arbitrary sampling for the composite
problem (1) in the case where f is convex, and L-SVRG with arbitrary sampling for the
smooth problem (ψ ≡ 0) when f is nonconvex. We define two expected smoothness constants
L1 and L2 (see Assumptions 5 and 6), which essentially help to upper bound the variance of
the stochastic gradient estimation through the Bregman distance associated with f . With
the aid of these two constants, the proof of L-SVRG and L-Katyusha can be completely
detached from the sampling strategy as well as the convex and smooth properties of each
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sample function fi. We then reduce the algorithm parameter setting and complexity bound
analysis for L-SVRG (resp. L-Katyusha) to the computation of the constant L1 (resp. L2).
In the same spirit, we define in Assumption 7 a third expected smoothness constant L3,
which plays a central role in the analysis of L-SVRG when f is nonconvex but smooth and
ψ ≡ 0.

Our approach allows us to deal with many different cases in a unified way and also
clarifies how sampling influences the stepsize choice and the overall complexity bound. We
give computable upper bounds of L1, L2, and L3 under various scenarios, including the
sum-of-convex, and nonconvex cases, and for arbitrary sampling strategies, see Section 6. It
should be noticed that we estimate L1, L2, and L3 under the smoothness (and convexity)
of each fi which is commonly used in stochastic optimization. It is possible to estimate
these expected smoothness parameters under weaker conditions. However, the main goal of
this paper is to study the influence of arbitrary sampling strategies. Hence, we leave this as
future research. We now summarize a few important special cases covered by our results.

Strongly convex case. For L-SVRG, the iteration complexity is at least as good as
that of SAGA-AS (Qian et al., 2019) and Quartz (Qu et al., 2015). Assume f is Lf -smooth
and fi is Li-smooth. For the importance sampling, we can obtain linear speed up with
respect to the expected minibatch size τ until τ = n or until the iteration complexity becomes
O
(
(n/τ + Lf/µ) log 1

ε

)
, where µ is the strongly convexity constant of P . For L-Katyusha, the

iteration complexity is essentially the same with that of Katyusha (Allen-Zhu, 2017), and
has linear speed up with respect to the expected minibatch size τ until τ = n or until the
iteration complexity becomes O((n/τ +

√
Lf/µ) log 1/ε). While in minibatch setting, Katyusha

(Allen-Zhu, 2017) is only studied for the sampling with replacement. The estimation of
L2 also gives the convergence result of Katyusha with arbitrary sampling. Furthermore,
L-Katyusha is simpler and faster considering the running time in practice.

Nonconvex and smooth case. The first arbitrary sampling analysis in a nonconvex
setting was performed in (Horváth and Richtárik, 2019). Our iteration complexity of L-SVRG
with the importance sampling is at least as good as that of SAGA and SVRG with the
optimal sampling in (Horváth and Richtárik, 2019), and could be better if Lf is smaller than
L̄ :=

∑
i∈[n] Li/n. Moreover, we can obtain linear speed up with respect to τ until τ = n or

until the iteration complexity becomes O (Lf/ε), while the results in (Horváth and Richtárik,
2019) holds for τ ≤ O(n2/3) only.

Sparsity All our convergence results rely on some expected smoothness parameters such
that we can analyze the algorithms with arbitrary sampling and sampling with replacement
in a unified framework. We establish the connection between these expected smoothness
parameters and ESO (Richtárik and Takáč, 2016), which allows us the explore the sparsity
of data as well.

1.2 Organization

In Section 2, we introduce the concepts of sampling and related notions. In Sections 3 and 4,
we study L-SVRG and L-Katyusha in the strongly convex case and the non-strongly convex
case, respectively. In Section 5, we study L-SVRG in the smooth and nonconvex case. In
Section 6, we give the estimations of L1, L2, and L3, and propose the importance sampling.
The numerical experiments are given in Section 7. We conclude this paper in Section 8. All
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the missing proofs and the efficient implementations for L-SVRG, L-Katyusha, and Katyusha
for sparse data can be found in the Appendix.

2. Preliminaries

2.1 Sampling

Let F : Rd → Rn be defined by F (x) := (f1(x), . . . , fn(x))> and let

G(x) := [∇f1(x), . . . ,∇fn(x)] ∈ Rd×n

be the transpose of the Jacobian of F at point x. At each step of L-SVRG and L-Katyusha,
a multiset S taking values from [n] := {1, 2, . . . , n} is randomly generated and the vector

g =
1

n
(G(x)−G(w)) ΘSISe+

1

n
G(w)e, (2)

is computed as a stochastic gradient estimator of ∇f(x). Here x is the current iterate and w
is the current reference point. IS ∈ Rn×n denotes the diagonal matrix whose i-th diagonal
entry is the number of copies of i in the multiset S and ΘS ∈ Rn×n is a diagonal matrix
associated with S such that (e is vector of all ones in Rn)

E[ΘSIS ]e = e, (3)

which ensures that g in (2) is an unbiased estimator of ∇f(x).
We next introduce some special samplings that we shall consider later and give examples

of {ΘS} satisfying (3).

Definition 1 (Sampling without replacement, i.e., set sampling) A set sampling S
is a random set-valued mapping with values being the subsets of [n].

A set sampling is uniquely characterized by the choice of probabilities pC := P[S = C]
associated with every subset C of [n]. An example of set sampling for n = 4 can be
generated by choosing p{1,2} = 0.3, p{2,3,4} = 0.5, p{1,4} = 0.2. Given a sampling S, we let
pi := P[i ∈ S] =

∑
C:i∈C pC . We say that S is proper if pi > 0 for all i. We consider proper

sampling only. S is a uniform sampling if pi = pj for all i, j ∈ [n]. A serial sampling refers to
the case when |S| = 1 with probability one. For an integer τ ∈ [n], a τ -nice sampling refers
to the case when |S| = τ with probability one and each subset of size τ is selected with equal
probability, see (Richtárik and Takáč, 2016).

Let Θi
S be the ith diagonal element of the matrix ΘS . If S is a proper set sampling and

Θi
S = p−1

i , ∀i ∈ [n], S ⊆ [n],

then (3) holds.
We now introduce a new type of set sampling, called group sampling. As we shall see, group

sampling will be useful to construct a set sampling S with prescribed (p1, . . . , pn) ∈ (0, 1]n.

Definition 2 (Group sampling) Given (p1, . . . , pn) ∈ (0, 1]n and a partition {Cj : j =
1, . . . , t} of [n] such that

∑
i∈Cj pi ≤ 1 for all j ∈ {1, . . . , t}, a group sampling S is formed

as follows.
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1. For each j = 1, . . . , t, let Sj = {i} with probability pi for all i ∈ Cj and let Sj = ∅ with
probability 1−

∑
i∈Cj pi.

2. S = ∪jSj.

It is easy to see that P[i ∈ S] = (pi/
∑

s∈Cj ps) ·
∑

s∈Cj ps = pi.
For example, for n = 4, given (p1, p2, p3, p4) = (0.3, 0.6, 0.4, 0.6) and a partition

{{1, 2}, {3, 4}}, we can get a group sampling with p{3} = 0.04, p{4} = 0.06, p{1,3} = 0.12,
p{1,4} = 0.18, p{2,3} = 0.24, and p{2,4} = 0.36. Group sampling contains independent sam-
pling as a special case. The latter is a goup sampling with t = n groups so that each Cj
contains only one element. It was studied in the arbitrary sampling paradigm (Hanzely
and Richtárik, 2019; Horváth and Richtárik, 2019). A severe drawback of independent
sampling is that the cost for each sample is O(n), whereas group sampling has the fol-
lowing nice property. The following property shows that when the expected cardinality
E[|S|] =

∑
C⊆[n] |C|pC =

∑
C⊆[n]

∑
i∈C pC =

∑
i∈[n]

∑
C:i∈C pC =

∑
i∈[n] pi = τ ≥ 1, there

exists a group sampling such that the cost for generating each sample is O(τ log n).

Lemma 3 For any set {pi}ni=1 ⊂ (0, 1] such that 1 ≤ τ =
∑

i∈[n] pi ≤ n, there exists a group
sampling S such that P[i ∈ S] = pi and the number of groups t < 2τ + 1. If τ is an integer,
then the number of groups can be reduced to t ≤ 2τ − 1.

Apart from set sampling, we also consider a special multiset sampling where S is consisted
of τ independent copies of a random integer in [n], a.k.a. sampling with replacement.

Definition 4 (Sampling with replacement) Let {p̃i}ni=1 ⊂ (0, 1] satisfy
∑

i∈[n] p̃i = 1.
Let τ ∈ [n] and s1, . . . , sτ ∈ [n] be τ independent random integers with identical distribution so
that s1 equals to i with probability p̃i > 0 for all i ∈ [n]. Then the multiset S := {s1, . . . , sτ}
is a sampling with replacement of size τ with respect to the distribution vector (p̃1, . . . , p̃n).

A sampling with replacement S may contain multiple copies of a same index. For instance,
for n = 3, given (p̃1, p̃2, p̃3) = (0.2, 0.3, 0.5) and τ = 2, we can get a multiset sampling with
p{1,1} = 0.04, p{2,2} = 0.09, p{3,3} = 0.25, p{1,2} = 0.12, p{1,3} = 0.2, and p{2,3} = 0.3. In
particular the diagonal matrix IS may contain elements larger than 1. If S is a sampling with
replacement of size τ with respect to the distribution vector (p̃1, . . . , p̃n) , then (3) holds for

Θi
S = (τ p̃i)

−1, ∀i ∈ [n].

2.2 Assumptions

Throughout the paper, we always assume that (3) holds and make the following assumptions
on f and ψ.

Assumption 1 There are Lf > 0 and µf ∈ R such that for all x, y ∈ Rd

f(y) + 〈∇f(y), x− y〉+
µf
2
‖x− y‖2 ≤ f(x) ≤ f(y) + 〈∇f(y), x− y〉+

Lf
2
‖x− y‖2.

Assumption 2 There is µψ ≥ 0 such that for all x, y ∈ Rd and v ∈ ∂ψ(y)

ψ(x) ≥ ψ(y) + 〈v, x− y〉+
µψ
2
‖x− y‖2.
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We shall also need to assume that the following standard proximal operator of ψ

proxηψ(x) := arg miny∈Rd

{
1

2
‖x− y‖2 + ηψ(y)

}
, ∀η > 0, x ∈ Rd,

is easily computable. Note that Assumption 1 implies

‖∇f(x)−∇f(y)‖ ≤ max (Lf , |µf |) ‖x− y‖, ∀x, y ∈ Rd. (4)

The proof of (4) can be found in Appendix B. If in addition f is convex, it’s well known
that (Nesterov, 2004, Theorem 2.1.5)

‖∇f(x)−∇f(y)‖2 ≤ 2Lf (f(x)− f(y)− 〈∇f(y), x− y〉), ∀x, y ∈ Rd. (5)

3. Strongly Convex Case

In this section, we develop loopless SVRG and loopless Katyusha for the composite prob-
lem (1). Throughout this section, we make the following assumptions on the functions f and
ψ.

Assumption 3 f is convex, i.e., µf ≥ 0.

Assumption 4 Either f or ψ is strongly convex, i.e., µ := µf + µψ > 0.

It should be noticed that the results in this section do not require the convexity of each
individual function fi. Instead, we provide convergence guarantees under some expected
smoothness assumptions.

3.1 Loopless SVRG (L-SVRG)

The loopless SVRG algorithm with arbitrary sampling is described in Algorithm 1. Loopless
SVRG was first proposed in (Hofmann et al., 2015) for smooth problems (ψ ≡ 0) and in
the serial and uniform sampling case. Algorithm 1 extends the work of (Hofmann et al.,
2015) to the composite case and the arbitrary sampling regime. The same as in (Hofmann
et al., 2015), we use a factor p ∈ (0, 1] to control the frequency of updating the reference
point wk. In contrast with (Hofmann et al., 2015) which picks up one sample each iteration,
Algorithm 1 generates a sequence of i.i.d. random multisets S0, S1, . . . , and the stochastic
gradient estimator gk at step k is computed from {∇fi : i ∈ Sk}. The common distribution
of the random multisets is required as an input S of the algorithm. At each iteration, the
expected number of gradient evaluations is bounded by O(ES∼S [|S|] + np). The parameter
η determines the stepsize and is related to the expected smoothness constant L1 defined as
follows.

Assumption 5 (Expected smoothness) There is a constant L1 > 0 such that for any
x ∈ Rd and S ∼ S

E

[∥∥∥∥ 1

n
(G(x)−G(x∗)) ΘSISe

∥∥∥∥2
]
≤ 2L1

(
f(x)− f(x∗)− 〈∇f(x∗), x− x∗〉

)
.
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Algorithm 1 Loopless SVRG (L-SVRG)

Require: stepsize η > 0; probability p ∈ (0, 1]; multiset sampling distribution S
Ensure: x0 = w0 ∈ Rd
1: for k = 0, 1, 2, . . . do
2: Sample Sk ∼ S independently from each other
3: gk = 1

n

(
G(xk)−G(wk)

)
ΘSkISke+ 1

nG(wk)e
4: xk+1 = proxηψ

(
xk − ηgk

)
5: wk+1 =

{
xk with probability p
wk with probability 1− p

6: end for

When ψ ≡ 0, we have ∇f(x∗) = 0 and Assumption 5 reduces to Assumption 2.1 in (Gower
et al., 2019), which was an essential condition to obtain a general analysis of stochastic
gradient descent for the nonconvex and smooth problem. Following (Gower et al., 2019),
we say that the finite-sum function f is L1-smooth with respect to the sampling S if
Assumption 5 holds. A closely related notion is the expected separable overapproximation
(ESO) property, developed in the context of parallel coordinate descent methods with arbitrary
sampling (Richtárik and Takáč, 2016; Qu and Richtárik, 2016a), see Section 6.4.

For each iteration k, denote by Ek[·] the conditional expectation given wk and xk. By (3)
it is clear that gk in Algorithm 1 is an unbiased estimator of ∇f(xk), i.e.,

Ek[gk] = ∇f(xk), ∀k ≥ 0. (6)

For each iteration k, denote

Dk := Ek

[∥∥∥∥ 1

n

(
G(wk)−G(x∗)

)
ΘSISe

∥∥∥∥2
]
, (7)

where S ∼ S and S is independent of wk and xk.

Lemma 5 Under Assumption 5, we have for all k ≥ 0

Ek[Dk+1] ≤ (1− p)Dk + 2pL1

(
f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉

)
,

Ek[‖gk −∇f(x∗)‖2] ≤ 4L1(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉) + 2Dk.

To analyze the convergence of Algorithm 1, we shall consider the following stochastic Lyapunov
function

Ψk := ‖xk − x∗‖2 +
4η2

p(1 + ηµψ)
Dk.

Theorem 6 (Linear convergence of L-SVRG) Consider Algorithm 1. Under Assump-
tions 3, 4 and 5, if the stepsize η satisfies η ≤ 1

6L1 , then

Ek
[
Ψk+1

]
≤
(

1− ηµ

1 + ηµψ

)
‖xk − x∗‖2 +

(
1− p

2

) 4η2

p(1 + ηµψ)
Dk, ∀k ≥ 0.
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In particular, if we choose η = 1
6L1 , then

E
[
Ψk
]
≤
(

1−min

(
µ

6L1 + µψ
,
p

2

))k
Ψ0, ∀k ≥ 0. (8)

Proof Since x∗ is the solution of problem (1), we have x∗ = proxηψ(x∗ − η∇f(x∗)). Then

Ek
[
‖xk+1 − x∗‖2

]
= Ek

[
‖ proxηψ(xk − ηgk)− proxηψ(x∗ − η∇f(x∗))‖2

]
≤ 1

1 + ηµψ
Ek
[
‖xk − ηgk − (x∗ − η∇f(x∗))‖2

]
=

1

1 + ηµψ

(
‖xk − x∗‖2 − 2η〈∇f(xk)−∇f(x∗), xk − x∗〉

)
+

η2

1 + ηµψ
Ek
[
‖gk −∇f(x∗)‖2

]
≤

(1− ηµf )

1 + ηµψ
‖xk − x∗‖2 − 2η

1 + ηµψ
(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉)

+
η2

1 + ηµψ
Ek[‖gk −∇f(x∗)‖2].

Here the first inequality is due to the contraction property of the proximal operator. The
second equality follows from (6) and the last inequality uses Assumption 4. Hence, by
Lemma 5 we have

Ek
[
Ψk+1

]
≤

(1− ηµf )

1 + ηµψ
‖xk − x∗‖2 +

4η2(1− p)
p(1 + ηµψ)

Ek[Dk] +
η2

1 + ηµψ
Ek[‖gk −∇f(x∗)‖2]

− 2η

1 + ηµψ
(1− 4ηL1)(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉)

≤
(1− ηµf )

1 + ηµψ
‖xk − x∗‖2 +

4η2(1− p/2)

p(1 + ηµψ)
Ek[Dk]

− 2η

1 + ηµψ
(1− 6ηL1)(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉).

Now if the step size η ≤ 1
6L1 , then by µ = µf + µψ, we obtain the desired inequality.

From (8), in order to gurantee E[Ψk] ≤ ε ·Ψ0, it suffices to let η = 1
6L1 and

k ≥ O
((

1

p
+
L1

µ

)
log

1

ε

)
.

If the sampling S ∼ S has expected size τ , then the expected iteration cost is O(τ+np) and the
expected batch complexity is O

((
n+ τ

p + L1(τ+np)
µ

)
log 1

ε

)
, which is O

((
n+ L1τ

µ

)
log 1

ε

)
for any p between τ/n and µ/L1. In the serial and uniform sampling case, i.e., when τ = 1
and pi = 1/n, Algorithm 1 and Theorem 6 recovers the loopless SVRG algorithm and
convergence result given in (Hofmann et al., 2015) and (Kovalev et al., 2019), where can be
found a detailed comparison with the original SVRG method.
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3.2 Loopless Katyusha (L-Katyusha)

In this section, we present loopless Katyusha with arbitrary sampling in Algorithm 2,
which covers the work of (Kovalev et al., 2019) when ψ ≡ 0 and S is a serial and uniform
distribution. When S ∼ S is sampling with replacement, Algorithm 2 is similar to the
original Katyusha method (Allen-Zhu, 2017) but can be more efficient in practice. We defer
a detailed comparison to Remark 14. As in many accelerated methods, Algorithm 2 operates

Algorithm 2 Loopless Katyusha (L-Katyusha)

Require: stepsize parameters η > 0, L > 0, σ1 ≥ 0, θ1, θ2 ∈ (0, 1); probability p ∈ (0, 1];
multiset sampling distribution S

Ensure: y0 = z0 = w0 ∈ Rd
1: for k = 0, 1, 2, . . . do
2: xk = θ1z

k + θ2w
k + (1− θ1 − θ2)yk

3: Sample Sk ∼ S independently from each other
4: gk = 1

n

(
G(xk)−G(wk)

)
ΘSkISke+ 1

nG(wk)e

5: zk+1 = prox η
(1+ησ1)L

ψ

(
1

1+ησ1
(ησ1x

k + zk − η
Lg

k)
)

6: yk+1 = xk + θ1(zk+1 − zk)

7: wk+1 =

{
yk with probability p
wk with probability 1− p

8: end for

on three sequences {xk}k, {yk}k, {zk}k. At each iteration k, the reference point wk+1 is
updated to yk with probability p. The convergence of Algorithm 2 relies on the following
assumption on the expected smoothness of f with respect to the input distribution S.

Assumption 6 There is a constant L2 > 0 such that for all x, y ∈ Rd and S ∼ S

E

[∥∥∥∥ 1

n
(G(x)−G(y)) ΘSISe−

1

n
(G(x)−G(y)) e

∥∥∥∥2
]
≤ 2L2(f(x)− f(y)− 〈∇f(y), x− y〉).

In this section, Ek[·] denotes the conditional expectation given (xk, yk, zk, wk). By (3) it
is immediate that gk in Algorithm 2 is an unbiased estimator of ∇f(xk), i.e.,

Ek[gk] = ∇f(xk), ∀k ≥ 0. (9)

The following lemma is a direct consequence of Assumption 6.

Lemma 7 Under Assumption 6, we have

Ek
[
‖gk −∇f(xk)‖2

]
≤ 2L2(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉). (10)

We shall also need the next Lemma which can be proved in the same way as Lemma 5.3
in (Kovalev et al., 2019).

Lemma 8 [see Kovalev et al., 2019, Lemma 5.3] If L ≥ Lf , then

1

θ1
(f(yk+1)− f(xk))− 1

4Lθ1
‖gk −∇f(xk)‖2 ≤ L

2η
‖zk+1 − zk‖2 + 〈gk, zk+1 − zk〉. (11)

9
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For any q ∈ (0, 1), we define the stochastic Lyapunov function

Φk := Zk + Yk +Wk,

where

Zk =
L+ ηµ

2η
‖zk − x∗‖2, Yk =

1

θ1
(P (yk)− P ∗), Wk =

θ2

pqθ1
(P (wk)− P ∗).

It should be noticed that the definition of Zk is the same as that of (Kovalev et al., 2019),
but that of Yk and Wk are different. It is easy to check that

Ek[Wk+1] = (1− p)Wk +
θ2

q
Yk, ∀k ≥ 0. (12)

Lemma 9 If σ1 = µf/L, then we have

〈gk, x∗−zk+1〉+
µf
2
‖xk−x∗‖2 ≥ L

2η
‖zk−zk+1‖2 +Zk+1− LZk

L+ ηµ
+ψ(zk+1)−ψ(x∗). (13)

Theorem 10 (Accelerated linear convergence of L-Katyusha) Consider Algorithm 2.
Under Assumptions 3, 4 and 6, if the stepsize parameters are set as follows

L = max (L2, Lf ) , σ1 =
µf
L
, θ2 =

L2

2L
, θ1 =


min

(√
µ
L2pθ2, θ2

)
if Lf ≤ L2p

min

(√
µ
Lf
, p2

)
otherwise

, η =
1

3θ1
,

(14)

then we have

E
[
Φk
]
≤
(

1−min

(
µ

µ+ 3θ1L
, θ1 + θ2 −

θ2

q
, p(1− q)

))k
Φ0, ∀k ≥ 0. (15)

Proof It is easy to check that we always have θ1 + θ2 ≤ 1. By the µf -strong convexity of f ,
we have

f(x∗) ≥ f(xk) + 〈∇f(xk), x∗ − xk〉+
µf
2
‖xk − x∗‖2

= f(xk) +
µf
2
‖xk − x∗‖2 + 〈∇f(xk), x∗ − zk + zk − xk〉

= f(xk) +
µf
2
‖xk − x∗‖2 + 〈∇f(xk), x∗ − zk〉+

θ2

θ1
〈∇f(xk), xk − wk〉

+
1− θ1 − θ2

θ1
〈∇f(xk), xk − yk〉

≥ f(xk) +
θ2

θ1
〈∇f(xk), xk − wk〉+

1− θ1 − θ2

θ1
(f(xk)− f(yk))

+Ek
[µf

2
‖xk − x∗‖2 + 〈gk, x∗ − zk+1〉+ 〈gk, zk+1 − zk〉

]
,

10
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where the last inequality follows from the convexity of f and (9). For the last term in the
above inequality, we have

Ek
[µf

2
‖xk − x∗‖2 + 〈gk, x∗ − zk+1〉+ 〈gk, zk+1 − zk〉 − ψ(zk+1) + ψ(x∗)−Zk+1

]
(13)

≥ − LZk

L+ ηµ
+ Ek

[
〈gk, zk+1 − zk〉+

L

2η
‖zk − zk+1‖2

]
(11)

≥ − LZk

L+ ηµ
+ Ek

[
1

θ1
(f(yk+1)− f(xk))− 1

4Lθ1
‖gk −∇f(xk)‖2

]
(10)

≥ − LZk

L+ ηµ
+ Ek

[
1

θ1
(f(yk+1)− f(xk))− L2

2Lθ1
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

]
= − LZk

L+ ηµ
+ Ek

[
1

θ1
(f(yk+1)− f(xk))− θ2

θ1
(f(wk)− f(xk)− 〈∇f(xk), wk − xk〉)

]
.

Therefore

Ek
[
f(x∗)− ψ(zk+1) + ψ(x∗)−Zk+1

]
≥ f(xk) +

1− θ1 − θ2

θ1
(f(xk)− f(yk))− LZk

L+ ηµ

+Ek
[

1

θ1
(f(yk+1)− f(xk))

]
− θ2

θ1
(f(wk)− f(xk))

= − LZk

L+ ηµ
− 1− θ1 − θ2

θ1
f(yk) +

1

θ1
Ek
[
f(yk+1)

]
− θ2

θ1
f(wk).

Moreover, since ψ is convex and

yk+1 = xk + θ1(zk+1 − zk) = θ1z
k+1 + θ2w

k + (1− θ1 − θ2)yk,

we have
ψ(zk+1) ≥ 1

θ1
ψ(yk+1)− θ2

θ1
ψ(wk)− 1− θ1 − θ2

θ1
ψ(yk).

Hence, we arrive at

f(x∗) ≥ Ek[Zk+1]− LZk

L+ ηµ
− 1− θ1 − θ2

θ1
P (yk) +

1

θ1
Ek
[
P (yk+1)

]
− θ2

θ1
P (wk)− ψ(x∗).

After rearranging, we get Ek
[
Zk+1 + Yk+1

]
≤ LZk

L+ηµ + (1 − θ1 − θ2)Yk + pqWk. In view
of (12), we deduce that

Ek
[
Zk+1 + Yk+1 +Wk+1

]
≤ LZk

L+ ηµ
+ (1− θ1 − θ2)Yk + pqWk + (1− p)Wk +

θ2

q
Yk

=

(
1− ηµ

L+ ηµ

)
Zk +

(
1−

(
θ1 + θ2 −

θ2

q

))
Yk + (1− p(1− q))Wk.

Finally we note that with η = 1/(3θ1) we have ηµ/(L+ ηµ) = µ/(µ+ 3θ1L).

It should be noticed that q ∈ (0, 1) has no impact on the parameter choice of Algorithm 2.

11



Qian, Qu and Richtárik

However, it defines the Lyapunov function Φk and thus appears in the linear convergence
rate in (15). We further study the rate in four different cases with specific values of q and
obtain the following results.

Corollary 11 Under the premise of Theorem 10, we have

E
[
Φk
]
≤



(
1− p

4

)k
Φ0 if Lf ≤ L2p ,

µ
L2 ≥ p and q = 2

3(
1−

√
µp

16L2

)k
Φ0 if Lf ≤ L2p ,

µ
L2 < p and q = 1−

√
µ

9L2p(
1− p

7

)k
Φ0 if Lf >

L2
p ,

µ
Lf ≥

p2

4 and q = 2
3(

1−
√

µ
16Lf

)k
Φ0 if Lf >

L2
p ,

µ
Lf <

p2

4 and q = 1−
√

4µ
9L2p2 .

(16)

Therefore, with some q ∈ [2
3 , 1), E[Φk] ≤ εΦ0 for k ≥ O

((
1
p +

√
Lf
µ +

√
L2
µp

)
log 1

ε

)
.

Corollary 12 Under the premise of Theorem 10, we have

E
[
P (wk)− P ∗

]
≤



6
(
1− p

4

)k (
P (x0)− P ∗

)
if Lf ≤ L2p ,

µ
L2 ≥ p

6
(

1−
√

µp
16L2

)k (
P (x0)− P ∗

)
if Lf ≤ L2p ,

µ
L2 < p

12pLf
L2

(
1− p

7

)k (
P (x0)− P ∗

)
if Lf >

L2
p ,

µ
Lf ≥

p2

4

12pLf
L2

(
1−

√
µ

16Lf

)k (
P (x0)− P ∗

)
if Lf >

L2
p ,

µ
Lf <

p2

4 .

(17)

Corollary 13 Define

T (µ,L2, Lf , p) :=



13
p if Lf ≤ L2p ,

µ
L2 ≥ p

13
√
L2
µp if Lf ≤ L2p ,

µ
L2 < p

7
p ln(

48pLf
L2 ) if Lf >

L2
p ,

µ
Lf ≥

p2

4

4 ln(
48pLf
L2 )

√
Lf
µ if Lf >

L2
p ,

µ
Lf <

p2

4 .

(18)

Under the premise of Theorem 10, we have

E
[
P (wk)− P ∗

]
≤ 1

4

(
P (x0)− P ∗

)
, ∀k ≥ T (µ,L2, Lf , p).

Remark 14 There are two major differences between L-Katyusha (Algorithm 2) and the
original Katyusha algorithm (Allen-Zhu, 2017).

1. We here consider both arbitrary sampling and sampling with replacement while
Katyusha (Allen-Zhu, 2017) only considered the second case. Note however that our As-
sumption 6 allows us to easily extend the original Katyusha method (Allen-Zhu, 2017) into
arbitrary sampling schemes as well, by simply replacing everywhere the L̄/b in their proof
by the constant L2. This also yields a direct extension of Katyusha when each fi is not
necessarily convex.

2. Our method is loopless and the reference point wk is set to be yk−1 with probability
p. Recall that in the original Katyusha method, the reference point x̃s for each outer loop

12
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s is set to be a weighted average of past iterates of yk. Not only does this difference bring
a simplified algorithm and proof, but also a non-negligible practical convergence speed up.
Indeed, the number of epochs of the two methods are essentially the same (see Section 6), but
the computation overhead caused by the calculation of x̃s makes Katyusha slower than our
loopless variant, especially in the case when a sparse implementation is needed. We provide
in Appendix A further details. In Section 7 we show through numerical evidence the better
convergence speed of our loopless variant.

4. Non-Strongly Convex Case

In this section, we consider the non-strongly convex case. In the first subsection, we show an
ergodic sublinear convergence rate O(1/k) of L-SVRG. In the second subsection, we show
how to combine L-Katyusha with the black-box reduction technique proposed in (Allen-Zhu
and Hazan, 2016) to obtain an improved sublinear convergence rate.

4.1 Sublinear Convergence of L-SVRG

Consider the Lyapunov function

Ξk :=
1

2η
‖xk − x∗‖2 +

6η

5p
Dk,

with Dk defined in (7). The following Lemma can be proved similarly as the second formula
in Lemma 5.

Lemma 15 Under Assumption 5, we have for all k ≥ 0

Ek[‖gk −∇f(xk)‖2] ≤ 4L1(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉) + 2Dk.

We shall also need the following well-known inequality.

Lemma 16 [see e.g. Tseng, 2008] We have

〈gk, x∗ − xk+1〉 ≥ ψ(xk+1)− ψ(x∗) +
1

2η
‖xk − xk+1‖2 +

1

2η
‖xk+1 − x∗‖2 − 1

2η
‖xk − x∗‖2.

Since x∗ is an optimal solution, we have −∇f(x∗) ∈ ∂ψ(x∗), which along with the convexity
of ψ implies that

f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉 ≤ P (xk)− P ∗. (19)

Theorem 17 (Sublinear convergence of L-SVRG) Consider Algorithm 1. Under As-
sumptions 3 and 5, if η ≤ min

(
1

8L1 ,
1

6Lf

)
, then

E
[
P (xk+1)− P ∗

]
− 3

5
E
[
P (xk)− P ∗

]
≤ E

[
Ξk
]
− E

[
Ξk+1

]
, ∀k ≥ 0. (20)

Let x̃k = (x0 + · · ·+ xk)/(k + 1). Then

E
[
P (x̃k)− P ∗

]
≤ 1

k + 1

(
5

4η
‖x0 − x∗‖2 +

(
5

2
+

6ηL1

p

)(
P (x0)− P ∗

))
.

This implies that E[P (x̃k)− P ∗] ≤ ε as long as k ≥ O
((

1
p + L1 + Lf

)
1
ε

)
.

13
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Proof Let β = 5
6η . Since f is convex and Ek[gk] = ∇f(xk), we have

f(x∗) ≥ f(xk) + 〈∇f(xk), x∗ − xk〉

= f(xk) + Ek
[
〈gk, x∗ − xk+1〉

]
+ Ek[〈gk −∇f(xk), xk+1 − xk〉]

+Ek[〈∇f(xk), xk+1 − xk〉]

≥ Ek
[
f(xk+1)

]
−
Lf
2
Ek
[
‖xk+1 − xk‖2

]
+ Ek

[
〈gk, x∗ − xk+1〉

]
+Ek[〈gk −∇f(xk), xk+1 − xk〉]

≥ Ek
[
f(xk+1)

]
−
Lf
2
Ek
[
‖xk+1 − xk‖2

]
+ Ek

[
〈gk, x∗ − xk+1〉

]
− 1

2β
Ek
[
‖gk −∇f(xk)‖2

]
− β

2
Ek
[
xk+1 − xk‖2

]
,

where the second inequality comes from that f is Lf -smooth and the third inequality comes
from Young’s inequality. Moreover, from Lemmas 15 and 16, we can obtain

P ∗ ≥ Ek
[
P (xk+1)

]
+

(
1

2η
− β

2
−
Lf
2

)
Ek
[
‖xk+1 − xk‖2

]
+

1

2η
Ek
[
‖xk+1 − x∗‖2

]
− 1

2η
‖xk − x∗‖2 − 2L1

β
(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉)− 1

β
Dk.

Since β = 5
6η and η ≤ 1

6Lf
, we have 1

2η −
β
2 −

Lf
2 ≥ 0. Therefore

1

2η
Ek
[
‖xk+1 − x∗‖2

]
+ Ek

[
P (xk+1)− P ∗

]
≤ 1

2η
‖xk − x∗‖2 +

2L1

β
(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉) +

1

β
Dk.

Let α = 6η
5p . In view of Lemma 5, we have

Ek
[
Ξk+1

]
+ Ek

[
P (xk+1)− P ∗

]
≤ 1

2η
‖xk − x∗‖2 +

(
2L1

β
+ 2αpL1

)
(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉)

+
1

β
Dk + α(1− p)Dk

= Ξk +
4L1

β
(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉)

≤ Ξk +
3

5
(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉)

(19)
≤ Ξk +

3

5

(
P (xk)− P ∗

)
.

Taking expectation on both sides we obtain (20). Summing up (20) from iteration 0 to
iteration k we obtain

E
[
P (xk)− P ∗

]
+

2

5

k−1∑
i=0

E
[
P (xi)− P ∗

]
≤ P (x0)− P ∗ + Ξ0 − E

[
Ξk
]
, (21)

14
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By Assumption 5, we have

Ξ0 ≤ 1

2η
‖x0 − x∗‖2 + 2αL1(f(x0)− f(x∗)− 〈∇f(x∗), x0 − x∗〉),

which with (21) yields

2

5

k∑
i=0

E[P (xi)− P ∗] ≤ 1

2η
‖x0 − x∗‖2 +

(
1 +

12ηL1

5p

)(
P (x0)− P ∗

)
.

This along with the convexity of P implies the result.

Theorem 17 can be compared with Theorem 3 in (Shang et al., 2018). However, note
that the reference point in our loopless SVRG is simply chosen to be xk without the need for
an extra averaging step. As discussed in Remark 14, the loopless variant has both simpler
implementation and faster convergence speed.

4.2 Accelerated Sublinear Convergence

We propose to apply the black-box oracle in (Allen-Zhu and Hazan, 2016) in order to obtain
an accelerated sublinear rate in the non-strongly convex case. We recall this oracle in
Algorithm 3. The idea is to adaptively add a strongly convex term on the non-strongly

Algorithm 3 AdaptReg(A) (Allen-Zhu and Hazan, 2016)

Require: µ0 > 0 ; x0 ∈ Rd
1: x̂0 = x0

2: for t = 0, 1, 2, . . . do
3: Define P (µt) := P (x) + µt

2 ‖x− x
0‖2

4: x̂t+1 = A(P (µt), x̂t,
1
4)

5: µt+1 = µt/2
6: end for

convex function P and minimize approximately the strongly convex function P (µt):

min
x

[
P (µt)(x) ≡ P (x) +

µt
2
‖x− x0‖2

]
. (22)

The fourth lines x̂t+1 = A(P (µt), x̂t,
1
4) in Algorithm 3 refers to applying algorithm A to

solve (22) so that

E
[
P (µt)(x̂t+1)

∣∣∣ x̂t]−min
x
P (µt)(x) ≤ 1

4

(
P (µt)(x̂t)−min

x
P (µt)(x)

)
. (23)

The following property can be found in (Allen-Zhu and Hazan, 2016).

Proposition 18 [Allen-Zhu and Hazan, 2016] Consider Algorithm 3. If P is convex, then

E
[
P (x̂t)− P ∗

]
≤ 1

4t
(
P (x0)− P ∗

)
+

9µ0

2t+1
‖x0 − x∗‖2, ∀t ≥ 0.

15
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According to Corollary 13, if A is L-Katyusha, then (23) can be achieved within

kt = T (µt,L2, Lf , p)

iterations where T : R4 → R>0 is the function defined as in (18) and p is the reference
point updating probability in Algorithm 2. For completeness we give in Algorithm 4 the full
description of Algorithm 3 with A being L-Katyusha (Algorithm 2).

Algorithm 4 AdaptReg-L-Katyusha

Require: µ0 > 0; x̂0 = x0 ∈ Rd; L2 > 0; probability p ∈ (0, 1]; multiset sampling
distribution S

1: L = max(L2, Lf ), θ2 = L2
2L

2: for t = 0, 1, 2, . . . do
3: if Lfp ≤ L2 then
4: θ1 = min

(√
µt/(L2p)θ2, θ2

)
5: else
6: θ1 = min

(√
µt/Lf , p/2

)
7: end if
8: ηt = 1/(3θ1), kt = T (µt,L2, Lf , p)
9: y0

t = z0
t = w0

t = x̂t

10: for k = 0, 1, . . . , kt − 1 do
11: xkt = θ1z

k
t + θ2w

k
t + (1− θ1 − θ2)ykt

12: Sample Sk ∼ S independently from each other
13: gkt = 1

n

(
G(xkt )−G(wkt )

)
ΘSkISke+ 1

nG(wkt )e

14: zk+1
t = prox ηt

L+ηtµt
ψ

(
1

L+ηtµt
(ηtµtx

0 + Lzkt − ηtgkt )
)

15: yk+1
t = xkt + θ1(zk+1

t − zkt )

16: wk+1
t =

{
ykt with probability p
wkt with probability 1− p

17: end for
18: x̂t+1 = wktt , µt+1 = µt/2
19: s = s+ kt, x̄s = x̂t+1

20: end for

Theorem 19 (Accelerated sublinear convergence) Consider Algorithm 4. Under As-
sumptions 3 and 6, we have

E[P (x̄s)− P ∗] ≤ C4
0

(s− T0)4

(
P (x0)− P ∗

)
+

9µ0C
2
0

2(s− T0)2
‖x0 − x∗‖2.

Here C0 and T0 are two positive constants defined as follows.

T0 =

{
13
p dmax(log2

µ0
L2p , 0)e if Lf ≤ L2p

7
p ln

(
48pLf
L2

)
dmax(log2

4µ0
Lfp2

, 0)e otherwise.
(24)

C0 =

 32
√
L2
µ0p

if Lf ≤ L2p
10 ln

(
48pLf
L2

)√
Lf
µ0

otherwise.
(25)
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Proof Case 1. Suppose Lf ≤ L2p . Let t̄ := dmax(log2
µ0
L2p , 0)e ≥ 0. Then

t∑
i=0

ki =

t̄−1∑
i=0

13

p
+

t∑
i=t̄

13

√
L2

µip
≤ 13

p

⌈
max

(
log2

µ0

L2p
, 0

)⌉
+ 32

√
2t+1L2

µ0p
, ∀t ≥ 0.

Case 2. Suppose Lf > L2
p . Let t̄ := dmax(log2

4µ0
Lfp2

, 0)e ≥ 0. Then

t∑
i=0

ki =

t̄−1∑
i=0

7

p
ln

(
48pLf
L2

)
+

t∑
i=t̄

4 ln

(
48pLf
L2

)√
Lf
µi

≤ 7

p
ln

(
48pLf
L2

)⌈
max

(
log2

4µ0

Lfp2
, 0

)⌉
+ 10 ln

(
48pLf
L2

)√
2t+1Lf
µ0

, ∀t ≥ 0.

Hence
1

2t+1
≤ C2

0

(
∑t

i=0 ki − T0)2
,

with T0 and C0 defined in (24) and (25). According to Proposition 18, we know that

E
[
P (x̂t+1)− P ∗

]
≤ 1

4t+1

(
P (x0)− P ∗

)
+

9µ0

2t+2
‖x0 − x∗‖2

≤ C4
0

(
∑t

i=0 ki − T0)4

(
P (x0)− P ∗

)
+

9µ0C
2
0

2(
∑t

i=0 ki − T0)2
‖x0 − x∗‖2.

Then it suffices to note that x̄s = x̂t+1 where s =
∑t

i=0 ki is the number of L-Katyusha
iterations.

Note that x̄s is obtained after s L-Katyusha iterations. Hence, in view of Theorem 19, to
obtain E[P (x̄s)− P ∗] ≤ ε, the total number of iterations is bounded by

O
(
T0 +

C0

ε1/4
+

√
µ0C0√
ε

)
(26)

=


O
(

1
pε1/4

+
√
L2
pε

)
if Lf ≤ L2p and µ0 = L2p

O
((

1
pε1/4

+

√
Lf
ε

)
ln

pLf
L2

)
if Lf >

L2
p and µ0 = Lfp

2/4.

5. L-SVRG in the Nonconvex and Smooth Case

In this section, we consider L-SVRG (Algorithm 1) with ψ ≡ 0 and f being possibly
nonconvex.

Assumption 7 There is a constant L3 > 0 such that

E

[∥∥∥∥ 1

n
(G(x)−G(y)) ΘSISe−

1

n
(G(x)−G(y)) e

∥∥∥∥2
]
≤ L3‖x− y‖2, ∀x, y ∈ Rd.
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5.1 Two Lemmas

We first state and prove two auxiliary results.

Lemma 20 Under Assumption 7, we have

Ek
[
‖gk‖2

]
≤ 2‖∇f(xk)‖2 + 2L3‖xk − wk‖2.

Lemma 21 For any β > 0, we have

Ek
[
‖xk+1 − wk+1‖2

]
≤ η2Ek

[
‖gk‖2

]
+ (1− p)(1 + ηβ)‖xk − wk‖2 + (1− p) η

β
‖∇f(xk)‖2.

5.2 The Main Result

We are now ready to state the main result of this section.

Theorem 22 (Sublinear convergence of L-SVRG in nonconvex and smooth case)
Consider Algorithm 1. Under Assumption 7, consider the Lyapunov function Υk := f(xk) +
α‖xk − wk‖2, where α = 3η2LfL3/p. Let β = p/3η. If stepsize η satisfies

η ≤ min

{
1

4Lf
,

p
2
3

36
1
3 (LfL3)

1
3

,

√
p

√
6L3

}
, (27)

then Ek
[
Υk+1

]
≤ Υk − η

4‖∇f(xk)‖2.

Proof Since f is Lf -smooth, we have f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ Lf
2 ‖x

k+1 −
xk‖2, which implies Ek

[
f(xk+1)

]
≤ f(xk)− η‖∇f(xk)‖2 +

Lfη
2

2 Ek
[
‖gk‖2

]
. Hence, we have

Ek
[
Υk+1

]
= Ek

[
f(xk+1) + α‖xk+1 − wk+1‖2

]
≤ f(xk)− η‖∇f(xk)‖2 +

Lfη
2

2
Ek
[
‖gk‖2

]
+ αEk

[
‖xk+1 − wk+1‖2

]
Lemma 21
≤ f(xk)− η‖∇f(xk)‖2 + η2

(
Lf
2

+ α

)
Ek
[
‖gk‖2

]
+α(1− p)(1 + ηβ)‖xk − wk‖2 + α(1− p) η

β
‖∇f(xk)‖2

Lemma 20
≤ f(xk)− η

(
1− α(1− p)

β

)
‖∇f(xk)‖2 + α(1− p)(1 + ηβ)‖xk − wk‖2

+η2

(
Lf
2

+ α

)(
2‖∇f(xk)‖2 + 2L3‖xk − wk‖2

)
= f(xk)− η

(
1− α(1− p)

β
− Lfη − 2αη

)
‖∇f(xk)‖2

+α

(
(1− p)(1 + ηβ) + η2

(
Lf
α

+ 2

)
L3

)
‖xk − wk‖2.
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Since α = 3η2LfL3/p and β = p/3η, we have

(1− p)(1 + ηβ) + η2

(
Lf
α

+ 2

)
L3 ≤ 1− p

3
+ 2L3η

2.

Let

2L3η
2 ≤ p

3
,

α

β
=

9η3LfL3

p2
≤ 1

4
, Lfη ≤

1

4
, 2αη =

6η3LfL3

p
≤ 1

4
,

which implies

η ≤ min

{
1

4Lf
,

p
2
3

36
1
3 (LfL3)

1
3

,

√
p

√
6L3

}
.

Then (1− p)(1 + ηβ) + η2(
Lf
α + 2)L3 ≤ 1 and 1− α(1−p)

β − Lfη − 2αη ≥ 1
4 , which indicate

that
Ek
[
Υk+1

]
≤ Υk − η

4
‖∇f(xk)‖2.

Corollary 23 Let xa be chosen uniformly at random from {xi}ki=0 and the stepsize η satisfy
(27). Then E

[
‖∇f(xa)‖2

]
≤ 4

η ·
f(x0)−f(x∗)

k+1 . If the stepsize η is equal to the upper bound in
(27), then E

[
‖∇f(xa)‖2

]
≤ ε as long as

k ≥ O

((
Lf +

(LfL3)
1
3

p
2
3

+

√
L3

p

)
f(x0)− f(x∗)

ε

)
.

6. Estimations of Expected Smoothness Parameters

In the previous sections, we have shown that the stepsize control and convergence analysis
of stochastic variance reduced methods rely on the constants L1, L2, and L3 satisfying
Assumption 5, Assumption 6 and Assumption 7 respectively. In this section, we study the
constants L1, L2, and L3 under the following assumption.

Assumption 8 For each i ∈ [n], there is Li > 0 such that for all x, y ∈ Rd

‖∇fi(x)−∇fi(y)‖ ≤ Li‖x− y‖.

Recall that under the above assumption, if in addition fi is convex, then (Nesterov, 2004,
Theorem 2.1.5)

‖∇fi(x)−∇fi(y)‖2 ≤ 2Li(fi(x)− fi(y)− 〈∇fi(y), x− y〉). (28)

First we give the estimations of these expected smoothness parameters for arbitrary set
sampling S. Let P ∈ Rn×n be defined by Pij = P [{i, j} ⊂ S]. Note that

Pij =
∑

C⊂[n]:i,j∈C

pC . (29)
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Recall that Θi
C denotes the ith diagonal entry of ΘC . Let fS := 1

nFΘSISe, and the
Lipschitz smoothness constant of fS be LS . Obviously LS ≤ 1

n

∑
i∈S LiΘ

i
S . Let Lmax :=

maxi∈[n]

∑
C:i∈C pCLCΘi

C . Then we have the following lemma.

Lemma 24 Let S be a proper set sampling. Suppose that each fi is convex and Assumption 8
holds. Then Assumption 5 and Assumption 6 hold with

Li ≤ Lmax ≤
1

n
max
i∈[n]

∑
j∈[n]

∑
C:i,j∈C

pCΘi
CΘj

CLj

 , i = 1, 2.

Specifically, if Θi
C = 1

pi
for all i and C, then

Li ≤ Lmax ≤
1

n
max
i∈[n]

∑
j∈[n]

Pij

pipj
Lj

 , i = 1, 2.

Lemma 25 Let S be a proper set sampling. Suppose that Assumption 8 holds. Then
Assumption 7 holds with

L3 ≤
1

n2

n∑
i,j=1

∑
C:i,j∈C

pCΘi
CΘj

CLiLj .

Specifically, if Θi
C = 1

pi
for all i and C, then

L3 ≤
1

n2

n∑
i,j=1

Pij

pipj
LiLj .

Next, we consider the following assumption on the sampling distribution S.

Assumption 9 There exist constants Ai ≥ 0 for each i ∈ [n] and 0 ≤ B ≤ 1 such that for
any matrix M ∈ Rd×n and S ∼ S

E
[
‖MΘSISe‖2

]
≤

n∑
i=1

Ai ‖M:i‖2 + B ‖Me‖2 , (30)

where M:i denotes the ith column vector of M.

Assumption 9 appeared in (Qian et al., 2019) for the convergence analysis of SAGA. As we
shall see, the constants Ai, B and Li jointly determine the constants L1, L2 and L3.

Theorem 26 Under Assumption 8 and Assumption 9, we have

L3 ≤
1

n2

n∑
i=1

AiL2
i + max(B − 1, 0) max (Lf , |µf |) .

If in addition fi is convex for each i ∈ [n], then

L1 ≤
1

n
max
i
AiLi + BLf ,

L2 ≤
1

n
max
i
AiLi + max (B − 1, 0)Lf .
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Theorem 26 reduces the estimations of the constants L1, L2 and L3 to the computation
of constants Ai and B satisfying (30). We next provide computation formula of Ai and B for
different types of sampling distribution S.

6.1 Sampling Without Replacement

In this subsection, we consider the case where S ∼ S is a set sampling.

Lemma 27 [Qian et al., 2019] For an arbitrary set sampling S, Assumption 9 is satisfied
for B = 0 and

Ai =
∑

C⊆[n]:i∈C

pC |C|(Θi
C)2, ∀i ∈ [n].

Lemma 27 provides an estimation for arbitrary set sampling S and {ΘC : C ⊂ [n]}. Next we
consider the special case where Θi

C = p−1
i for all i ∈ [n] and all subset C ⊂ [n]. In this case,

E
[
‖MΘSISe‖2

]
=

n∑
i,j=1

∑
C⊂[n]:i,j∈C

pC

〈
Θi
CM:i,Θ

j
CM:j

〉 (29)
=

n∑
i,j=1

Pij

pipj
〈M:i,M:j〉 . (31)

Based on (31), we now provide explicit bounds for two specific set samplings.

6.1.1 τ -Nice Sampling

Lemma 28 [Qian et al., 2019] For τ -nice sampling S and Θi
S = p−1

i , Assumption 9 is
satisfied for B = n(τ−1)

τ(n−1) and

Ai =
n(n− τ)

τ(n− 1)
, ∀i ∈ [n].

6.1.2 Group Sampling

We consider the group sampling associated with a partition {C1, . . . , Ct} of [n]. We have
Pij = 0 if i, j are in the same group, and Pij = pipj if i, j are in different groups. Denote by
I the subset of indices which are in a group of one single element.

Lemma 29 For group sampling S and Θi
S = p−1

i , Assumption 9 is satisfied for B = 1 and

Ai =

(
1

pi
− 1

)
, ∀i ∈ I, Ai =

1

pi
, ∀i /∈ I.

6.2 Sampling With Replacement

In this subsection, we consider the special case when S ∼ S is sampling with replacement of
size τ with respect to the distribution vector (p̃1, . . . , p̃n). We let Θi

S = (τ p̃i)
−1. Then

E
[
‖MΘSISe‖2

]
= E

∥∥∥∥∥
τ∑
k=1

1

τ p̃ik
M:ik

∥∥∥∥∥
2
 ,
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where i1, . . . iτ are i.i.d. random integers and equal to i ∈ [n] with probability p̃i. Hence

E
[
‖MΘSISe‖2

]
= E

[
τ∑
k=1

1

τ2p̃2
ik

‖M:ik‖
2

]
+
∑
k 6=`

1

τ2

〈
E
[

1

p̃ik
M:ik

]
,E
[

1

p̃i`
M:i`

]〉

=
1

τ

n∑
i=1

1

p̃i
‖M:i‖2 +

τ2 − τ
τ2
‖Me‖2.

Lemma 30 For sampling with replacement S of size τ with respect to the distribution vector
(p̃1, . . . , p̃n), Assumption 9 is satisfied for B = 1− 1

τ and

Ai =
1

τ p̃i
, ∀i ∈ [n].

6.3 Constants Estimations

Combining Theorem 26 with the estimations of constants Ai and B in Lemma 27, Lemma 28,
Lemma 29, and Lemma 30, we obtain the following bounds on L1, L2, and L3.

Corollary 31 1. For arbitrary set sampling S,
Upper bounds Assumptions

L1
1
n maxi

∑
C⊆[n]:i∈C pC |C|(Θi

C)2Li all fi are convex, Assumption 8
L2

1
n maxi

∑
C⊆[n]:i∈C pC |C|(Θi

C)2Li all fi are convex, Assumption 8
L3

1
n2

∑n
i=1

∑
C⊆[n]:i∈C pC |C|(Θi

C)2L2
i Assumption 8

2. For τ -nice sampling S and Θi
C ≡ p

−1
i ,

Upper bounds Assumptions
L1

n−τ
τ(n−1) maxi Li + n(τ−1)

τ(n−1)Lf all fi are convex, Assumption 8
L2

n−τ
τ(n−1) maxi Li all fi are convex, Assumption 8

L3
n−τ

τn(n−1)

∑n
i=1 L

2
i Assumption 8

3. For group sampling S and Θi
C ≡ p

−1
i ,

Upper bounds Assumptions

L1
1
n max

{
maxi∈I(

1
pi
− 1)Li, maxi/∈I

Li
pi

}
+ Lf

all fi are convex,
Assumption 8

L2
1
n max

{
maxi∈I(

1
pi
− 1)Li, maxi/∈I

Li
pi

} all fi are convex,
Assumption 8

L3
1
n2

∑
i∈I

(
1
pi
− 1
)
L2
i + 1

n2

∑
i/∈I

L2
i
pi

Assumption 8

4. For sampling with replacement S and Θi
C ≡ (τ p̃i)

−1,

Upper bounds Assumptions
L1

1
nτ maxi

Li
p̃i

+ (1− 1
τ )Lf all fi are convex, Assumption 8

L2
1
nτ maxi

Li
p̃i

all fi are convex, Assumption 8

L3
1
n2τ

∑n
i=1

L2
i
p̃i

Assumption 8
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6.4 ESO

In this subsection, we give the estimations of these expected smoothness parameters under the
ESO inequality. Consider fi(x) = φi(A

>
i x), where Ai ∈ Rd×m, φi : Rm → R is 1/γ-smooth.

The parameters v1, . . . , vn are assumed to satisfy the following expected separable over-
approximation (ESO) inequality, which needs to hold for all hi ∈ Rm

ES

∥∥∥∥∥∑
i∈S

Aihi

∥∥∥∥∥
2
 ≤ n∑

i=1

pivi‖hi‖2. (32)

Lemma 32 If φi is 1/γ-smooth and convex, then for any x, y ∈ Rd, we have∥∥∥∇φi(A>i x)−∇φi(A>i y)
∥∥∥2
≤ 2

γ
(fi(x)− fi(y)− 〈∇fi(y), x− y〉) .

Lemma 33 Let S be a proper sampling, and Θi
S = 1/pi. Let φi be 1/γ-smooth and convex.

If the ESO inequality (32) holds, then the expected smoothness constants L1 in Assumption 5
and L2 in Assumption 6 satisfy

Li ≤
1

nγ
max
i

{
vi
pi

}
, i = 1, 2.

Lemma 34 Let S be a proper sampling, and Θi
S = 1/pi. Let φi be 1/γ-smooth. If the ESO

inequality (32) holds, then the L3 in Assumption 7 satisfies

L3 ≤
1

n2γ2

n∑
i=1

vi‖Ai‖2

pi
.

6.5 Importance Sampling

Since the complexity bounds of the algorithms increase with the constants L1, L2, and L3.
It is natural to choose the sampling strategy minimizing those constants. In this subsection,
we consider group sampling and sampling with replacement and study the influence of the
importance sampling. Let τ = E[|S|] be the expected cardinality of S, counting multiplicity.
We denote L̄ := 1

n

∑n
i=1 Li. Note that Lf ≤ L̄.

6.5.1 Group Sampling

Let

qi =
Liτ∑n
i=1 Li

, ∀i ∈ [n], (33)

and T = {i|qi > 1}. If for each i ∈ [n]

pi =

{
qi + δi if i /∈ T
1 otherwise
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for some δi ∈ [0, 1− qi] such that
∑n

i=1 pi = τ , then

max

{
max
i∈I

(
1

pi
− 1

)
Li, max

i/∈I

Li
pi

}
≤ max

i∈[n]

Li
qi

=
nL̄

τ
,

and ∑
i∈I

(
1

pi
− 1

)
L2
i +

∑
i/∈I

L2
i

pi
≤
∑
i∈[n]

L2
i

qi
=
n2L̄2

τ
.

Here we used the fact that if pi = 1, then necessarily i ∈ I, otherwise pi ≥ qi. Hence for this
group sampling we can achieve

L1 ≤
L̄

τ
+ Lf , L2 ≤

L̄

τ
, L3 ≤

L̄2

τ
. (34)

We call this sampling importance group sampling. If instead we replace (33) by

qi =
τ

n
, ∀i ∈ [n],

then the bounds are

L1 ≤
maxi Li

τ
+ Lf , L2 ≤

maxi Li
τ

, L3 ≤
∑

i L
2
i

τn
. (35)

6.5.2 Sampling With Replacement

If for each i ∈ [n]

p̃i =
Li∑n
i=1 Li

, (36)

then

max
i

Li
p̃i

= nL̄,
n∑
i=1

L2
i

p̃i
= n2L̄2.

Hence for this sampling with replacement we can achieve the same bounds as in (34). We
call this sampling importance sampling with replacement. If instead we replace (36) by

p̃i =
1

n
,

then the we can only achieve the same bounds as in (35).

From (34) and (35), we know importance group sampling and importance sampling with
replacement are preferable to uniform sampling in general. In order to construct importance
sampling, we need to know the ratio Li/Lj for i, j ∈ [n]. For instance, if fi(x) = φi(A

>
i x) as

in Section 6.4, we have

Li ≤
1

γ
‖AiA

>
i ‖ ≤

1

γ
tr(AiA

>
i ),

where tr(AiA
>
i ) means the trace of AiA

>
i . Therefore, we can estimate Li/Lj by computing

‖AiA
>
i ‖ or tr(AiA

>
i ) for i ∈ [n]. On the other hand, if we could not get a good estimation

of Li/Lj , we can use uniform sampling instead.
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6.6 Iteration Complexity Bounds

Next, we insert the bounds (34) into previous results to get explicit complexity bounds for
each algorithm. Although our theory allows arbitrary changing probability p, for simplicity
we consider p = τ/n in this section. In this case, the expected cost of each iteration is 2τ .

L-SVRG.

1. When f or ψ is strongly convex, by Theorem 6 and (34), the iteration complexity of
L-SVRG can be bounded by

O
((

n

τ
+
Lf
µ

+
L̄

µτ

)
log

1

ε

)
. (37)

Such complexity bound is comparable with that of SAGA-AS with importance mini-
batch sampling (Qian et al., 2019). Note that as SAGA-AS, L-SVRG does not need
to know the strong convexity parameter µ. From (37) we see that linear speedup is
achieved when τ ≤ L̄

Lf
.

2. When f is convex, by Theorem 17 and (34), the iteration complexity of L-SVRG can
be bounded by

O
((

n

τ
+ Lf +

L̄

τ

)
1

ε

)
,

which suggests a linear speedup up to τ ≤ L̄
Lf

.

3. When f is nonconvex and ψ ≡ 0, by Corollary 23 and (34), the iteration complexity of
L-SVRG can be bounded by

O

((
Lf +

n
2
3 (Lf L̄

2)
1
3

τ
+

√
nL̄

τ

)
1

ε

)
.

In (Horváth and Richtárik, 2019), the iteration complexity for SVRG and SAGA with
the optimal sampling is proved to be bounded by

O

(
(1 + n−τ

n )L̄n
2
3

τε

)
,

for τ ≤ O(n2/3). We can see our bound is at least as good as theirs, and could be better
if Lf is smaller than L̄. Furthermore, our bound holds for any 1 ≤ τ ≤ n, while the
one in (Horváth and Richtárik, 2019) only holds for τ ≤ O(n2/3).

L-Katyusha. When f or ψ is strongly convex, by Corollary 11 and (34), the iteration
complexity of L-Katyusha can be bounded by

O

n
τ

+

√
Lf
µ

+
1

τ

√
nL̄

µ

 log
1

ε

 .

This is the same iteration complexity bound of the original Katyusha with importance
sampling with replacement in (Allen-Zhu, 2017). The numerical experiments also confirm
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the similarity of the two methods in terms of iteration complexity, see Figure 7 and Figure 9.
Note that linear speedup is achieved for τ ≤

√
nL̄/Lf .

AdapReg-L-Katyusha. When f is convex, by (26) and (34), the iteration complexity
of AdapReg-L-Katyusha can be bounded by

O
(

n
τε1/4

+ 1
τ

√
nL̄
ε

)
if τ ≤

√
nL̄
Lf

and µ0 = L̄
n

O
((

n
τε1/4

+

√
Lf
ε

)
ln

τ2Lf
nL̄

)
if τ >

√
nL̄
Lf

and µ0 = Lf
τ2

4n2 .

Clearly linear speedup is achieved for τ ≤
√
nL̄/Lf .

7. Numerical Experiments
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Figure 1: L-SVRG V.S. L-Katyusha, w8a
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Figure 2: L-SVRG V.S. L-Katyusha, cod-rna

We tested L-SVRG (Algorithm 1) and L-Katyusha (Algorithm 2) on the logistic regression
problem

min
x∈Rd

n∑
i=1

log(1 + ebiA
>
i x) + λ1‖x‖1 + λ2

2 ‖x‖
2, (38)

with fixed λ1 = 10−4 and different values of λ2. The data sets that we used are all
downloaded from https://www.csie.ntu.edu.tw/$\sim$cjlin/libsvmtools/datasets/.
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In all the plots, L-SVRG and L-Katyusha refer respectively to Algorithm 1 and Algorithm 2
with the uniform sampling strategy. L-SVRG IP and L-Katyusha IP mean that importance
sampling with replacement as described in Section 6.5 is used. Katyusha refers to the original
Katyusha algorithm proposed in (Allen-Zhu, 2017). Since in practice group sampling and
sampling with replacement have similar convergence behaviour, here we only show the results
obtained with sampling with replacement. In all the plots, the y-axis corresponds to the
primal-dual gap of the iterates {xk}. The x-axis may be the number of epochs, counted as
kτ/n plus the number of times we change wk, or the actual running time. The experiments
were carried out on a MacBook (1.2 GHz Intel Core m3 with 16 GB RAM) running macOS
High Sierra 10.13.1.

Comparison of L-SVRG and L-Katyusha: In Figure 1 and Figure 2 we compare
L-SVRG with L-Katyusha, both with the importance sampling strategy for w8a and cod_rna
and three different values of λ2. In each plot, we compare three different minibatch sizes τ .
The numerical results show that the number of epochs of L-SVRG generally increases with
τ (since L̄/Lf is not large in these examples), while that of L-Katyusha is stable and thus
achieves a linear speedup in terms of the number of epochs, as predicted in Section 6.6.
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Figure 3: cod-rna
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Figure 4: w8a

Comparison of Uniform and Importance Sampling: Figure 3(a) and Figure 4(a)
compare the uniform sampling strategy and the importance sampling strategy with three
different values of τ , respectively, for the data set cod_rna and w8a. As predicted by theory,
the importance sampling is better than the uniform sampling if L̄ is smaller than maxi Li.
Note that for cod_rna, L̄ = 259, 158 and maxi Li = 3, 506, 320.
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The updating probability p: Figure 3(b) and Figure 4(b) compare the performance
of L-Katyusha for different choices of updating probability p of the reference point wk, with
x-axis being the number of epochs. Figure 3(c) and Figure 4(c) show the actual running
time. Although the total number of epochs does increase with p ≥ τ

n , the running time can
be significantly reduced by taking p larger than τ/n.

Comparison with Katyusha: Figure 5 to Figure 12 compare our loopless Katyusha
with the original Katyusha proposed in (Allen-Zhu, 2017) for three different values of τ , based
on the importance sampling strategy. We tested four data sets: w8a, real-sim, astro_ph,
and a9a. While the performance of the two algorithms are similar in terms of epochs
(Figure 5, 7, 9, 11), the actual running time of the loopless variant can be 20% to 50% less
than that of Katyusha (Figure 6, 8, 10, 12). This is due to the additional averaging step in
the original Katyusha method at the end of every inner loop, see Appendix A for further
details.
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Figure 5: L-Katyusha V.S. Katyusha, epoch plot, w8a
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Figure 6: L-Katyusha V.S. Katyusha, time plot, w8a

8. Conclusion

We presented loopless SVRG and loopless Katyusha for finite-sum optimization problems
under the arbitrary sampling regime. We studied these algorithms in the strongly convex
case and the non-strongly convex case, respectively, for composite objective functions. We
analyzed loopless SVRG for the nonconvex and smooth case. The expected smoothness
assumptions were used to detach the convergence analysis from the sampling strategy as well
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Figure 7: L-Katyusha V.S. Katyusha, epoch plot, real-sim
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Figure 8: L-Katyusha V.S. Katyusha, time plot, real-sim
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Figure 9: L-Katyusha V.S. Katyusha, epoch plot, astro_ph
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Figure 10: L-Katyusha V.S. Katyusha, time plot, astro_ph
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Figure 11: L-Katyusha V.S. Katyusha, epoch plot, a9a
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Figure 12: L-Katyusha V.S. Katyusha, time plot, a9a

as the convex and smooth properties of each fi. Under the smoothness (and convexity) of each
fi, we estimated these expected smoothness parameters for arbitrary sampling strategies and
established the connection between these expected smoothness parameters and ESO. Based
on these estimations, we proposed importance group sampling and importance sampling
with replacement which are preferable to uniform sampling generally. The linear speedup
was also obtained when the expected minibatch size is in a certain range.
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Appendix A. Efficient Implementation

The delayed update is a standard technique in stochastic variance reduced type methods for
more efficiency when the Jacobian matrix G(x) is sparse. For the sake of completeness, we
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provide details in the case when

ψ(x) ≡ λ2

2
‖x‖2 + λ1‖x‖1,

for some λ2 > 0. For Algorithm 1, the ith coordinate of the iterates {xk} satisfies

xk+1
i = arg min

a∈R

{
λ2

2
a2 + λ1|a|+

1

2η

(
a− xki + ηgki

)2
}
. (39)

Let t0 < t1 be two positive integers. Suppose that

gki = ĝi, ∀k = t0, . . . , t1 − 1,

then the value of xt1i can be obtained without explicitly computing the value of xt0+1
i , . . . , xt1−1

i .
The details of computation can be found in (Zhang and Xiao, 2017). For convenience we
give the pseudocode in Algorithm 5, so that

xt1i = delayed_update(t0, t1, ĝi, x
t0
i , η).

Note that the complexity of Algorithm 5 is O(log(t1 − t0)) (Zhang and Xiao, 2017) while
direct computation of xt1i from xt0i yields a time complexity O(t1 − t0). This is how the
computation load can be reduced when G(x) is sparse.

A.1 Efficient Implementation for L-Katyusha

For Algorithm 2, the ith coordinate of the iterates {xk, yk, zk} satisfy
xki = θ1z

k
i + θ2w

k
i + (1− θ1 − θ2)yki

zk+1
i = arg mina∈R

{
λ2
2 a

2 + λ1|a|+ (1+ησ1)L
2η

(
a− ησ1xki +zki

1+ησ1
+

ηgki
(1+ησ1)L

)2
}

yk+1
i = xki + θ1(zk+1

i − zki )

We eliminate xki and obtain
zk+1
i = arg mina∈R

{
λ2
2 a

2 + λ1|a|+ (1+ησ1)L
2η

·
(
a− (ησ1θ1+1)zki +ησ1θ2wki +ησ1(1−θ1−θ2)yki

1+ησ1
+

ηgki
(1+ησ1)L

)2
}

yk+1
i = θ1z

k+1
i + θ2w

k
i + (1− θ1 − θ2)yki .

• If λ1 = 0, then the above system can be written as
zk+1
i = (ησ1θ1+1)L

ηλ2+L(1+ησ1)z
k
i + ησ1(1−θ1−θ2)L

ηλ2+L(1+ησ1) y
k
i +

ησ1θ2Lwki −ηgki
ηλ2+L(1+ησ1)

yk+1
i = θ1(ησ1θ1+1)L

ηλ2+L(1+ησ1)z
k
i +

(
1− θ1 − θ2 + θ1ησ1(1−θ1−θ2)L

ηλ2+L(1+ησ1)

)
yki + θ2w

k
i

+
θ1(ησ1θ2Lwki −ηgki )
ηλ2+L(1+ησ1) .

Then if
gki = ĝi, w

k
i = ŵi ∀k = t0, . . . , t1 − 1,
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Algorithm 5 x̃ =delayed_update(t0, t1, u, x, η)
1: if t1 = t0 then x̃ = x; return;
2: end if
3: α = (1 + ηλ2)t0−t1

4: if x = 0 then
5: if λ1 + u < 0 then x̃ = αx− (1− α)(u+ λ1)/λ2

6: else
7: if u− λ1 > 0 then x̃ = αx− (1− α)(u− λ1)/λ2

8: else
x̃ = 0

9: end if
10: end if
11: else
12: if x > 0 then
13: if λ1 + u ≤ 0 then x̃ = αx− (1− α)(u+ λ1)/λ2

14: else t = t0 + log
(

1 + λ2x
λ1+u

)
/ log(1 + ηλ2)

15: if t < t1 then
16: t′ = btc
17: α′ = (1 + ηλ2)t0−t

′

18: x′ = α′x− (1− α′)(u+ λ1)/λ2

19: x′′ = arg mina∈R

{
λ2
2 a

2 + λ1|a|+ au+ 1
2η (a− x′)2

}
20: x̃ = delayed_update(t′ + 1, t1, u, x

′′, η)
21: else
22: x̃ = αx− (1− α)(u+ λ1)/λ2

23: end if
24: end if
25: else
26: x̃ = −delayed_update(t0, t1,−u,−x, η)
27: end if
28: end if
29: Output x̃

zt1i and yt1i can be computed by

(
zt1i
yt1i

)
= At1−t0

(
zt0i
yt0i

)
+

(
t1−t0−1∑
s=0

As

)
b, (40)

with

A =

(
(ησ1θ1+1)L

ηλ2+L(1+ησ1)
ησ1(1−θ1−θ2)L
ηλ2+L(1+ησ1)

θ1(ησ1θ1+1)L
ηλ2+L(1+ησ1) 1− θ1 − θ2 + θ1ησ1(1−θ1−θ2)L

ηλ2+L(1+ησ1)

)
, b =

 ησ1θ2Lwki −ηgki
ηλ2+L(1+ησ1)

θ1(ησ1θ2Lwki −ηgki )
ηλ2+L(1+ησ1)

 .

It is clear that (40) can be computed in O(log(t1 − t0)) time.
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• If λ1 > 0, we need to require σ1 = 0 to have reduced computation load. In this case,
we have a simplified recursive relation zk+1

i = arg mina∈R

{
λ2
2 a

2 + λ1|a|+ L
2η

(
a− zki +

ηgki
L

)2
}

yk+1
i = θ1z

k+1
i + θ2w

k
i + (1− θ1 − θ2)yki .

Suppose that
gki = ĝi, w

k
i = ŵi ∀k = t0, . . . , t1 − 1.

Since the zki follows the same recursive formula as (39), we can apply Algorithm 5 to
compute zt1i , i.e.,

zt1i = delayed_update(t0, t1, ĝi, z
t0
i , η/L).

Let θ3 = 1− θ1 − θ2. Then for any integers k ≥ t0 and 0 < s ≤ t1 − k

yk+s
i = θ1

(
zk+s
i + θ3z

k+s−1
i + · · ·+ θs−1

3 zk+1
i

)
+ θ2

(
1 + θ3 + · · ·+ θs−1

3

)
wki + θs3y

k
i .

If

zk+l
i = ql(zki + h)− h, ∀l = 1, . . . , s, (41)

for some q > 0 and h ∈ R, then

yk+s
i = θ1

(
s∑
l=1

θs−l3

(
ql(zki + h)− h

))
+
θ2(1− θs3)

1− θ3
wki + θs3y

k
i (42)

= θ1θ
s
3(zki + h)

s∑
l=1

(
qθ−1

3

)l
+

(θ2w
k
i − θ1h)(1− θs3)

1− θ3
+ θs3y

k
i .

Based on the above computation we can write down the efficient implementation for
L-Katyusha, given in Algorithm 6, and we have

(yt1i , z
t1
i ) = delayed_update2(t0, t1, ĝi, y

t0
i , z

t0
i , ŵi, η/L).

It is easy to check that the computational complexity of Algorithm 6 is O(log(t1 − t0)).

A.2 Efficient Implementation for Katyusha

As mentioned, one major difference between the original Katyusha (Allen-Zhu, 2017) and our
loopless variant is in the update of the reference point. Let m be the size of the inner loop in
Katyusha. After s outer loops, Katyusha requires to compute a convex combination of yk

x̃s+1 =

∑m−1
j=0 θjysm+j+1∑m−1

j=0 θj
,

for some θ > 1. For any 1 ≤ t ≤ m, define

x̂t =

∑t−1
j=0 θ

jysm+j+1∑t−1
j=0 θ

j
.
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Algorithm 6 (ỹ, z̃) =delayed_update2(t0, t1, u, y, z, w, η)
1: if t1 = t0 then z̃ = z; ỹ = y; return;
2: end if
3: α = (1 + ηλ2)t0−t1

4: q = 1/(1 + ηλ2)
5: if z = 0 then
6: if λ1 + u < 0 then z̃ = αz − (1− α)(u+ λ1)/λ2; h = (u+ λ1)/λ2

7: else
8: if u− λ1 > 0 then z̃ = αz − (1− α)(u− λ1)/λ2; h = (u− λ1)/λ2

9: else
z̃ = 0; q = 0; h = 0

10: end if
11: end if
12: ỹ = θ1θ

t1−t0
3 (z + h)

∑t1−t0
l=1

(
qθ−1

3

)l
+

(θ2w−θ1h)(1−θt1−t03 )
1−θ3 + θt1−t03 y.

13: else
14: h = (u+ λ1)/λ2

15: if z > 0 then
16: if λ1 + u ≤ 0 then
17: z̃ = αz − (1− α)(u+ λ1)/λ2

18: ỹ = θ1θ
t1−t0
3 (z + h)

∑t1−t0
l=1

(
qθ−1

3

)l
+

(θ2w−θ1h)(1−θt1−t03 )
1−θ3 + θt1−t03 y.

19: else t = t0 + log
(

1 + λ2z
λ1+u

)
/ log(1 + ηλ2)

20: if t < t1 then
21: t′ = btc
22: α′ = (1 + ηλ2)t0−t

′

23: z′ = α′z − (1− α′)(u+ λ1)/λ2

24: y′ = θ1θ
t′−t0
3 (z + h)

∑t′−t0
l=1

(
qθ−1

3

)l
+

(θ2w−θ1h)(1−θt
′−t0

3 )
1−θ3 + θt

′−t0
3 y.

25: z′′ = arg mina∈R

{
λ2
2 a

2 + λ1|a|+ au+ 1
2η (a− z′)2

}
26: y′′ = θ1z

′′ + θ2w + (1− θ1 − θ2)y′

27: (ỹ, z̃) = delayed_update2(t′ + 1, t1, u, y
′′, z′′, w, η)

28: else
29: z̃ = αz − (1− α)(u+ λ1)/λ2

30: ỹ = θ1θ
t1−t0
3 (z + h)

∑t1−t0
l=1

(
qθ−1

3

)l
+

(θ2w−θ1h)(1−θt1−t03 )
1−θ3 + θt1−t03 y.

31: end if
32: end if
33: else
34: (ỹ, z̃) = −delayed_update2(t0, t1,−u,−y,−z,−w, η)
35: end if
36: end if
37: Output (ỹ, z̃)

Suppose that
gsm+k
i = ĝi, ∀k = t0, . . . , t1 − 1.1

1. Recall that our gk corresponds to ∇̃k in Katyusha (Allen-Zhu, 2017).
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In order to compute x̂t1 from x̂t0 in O(log(t1 − t0)), we consider the case when σ1 = 0. First
note that

x̂t1 =

(
1− θt1 − θt0

θt1 − 1

)
x̂t0 +

ysm+t0+1 + θysm+t0+2 + · · ·+ θt1−t0−1ysm+t1

θt1−t0−1 + · · ·+ θ−t0
.

Assume that

zsm+t0+l
i = ql(zsm+t0

i + h)− h, ∀l = 1, . . . , t1 − t0. (43)

The same as (42) we have

ysm+t0+1 + θysm+t0+2 + · · ·+ θt1−t0−1ysm+t1

=

t1−t0∑
k=1

θk−1

(
θ1θ

k
3(zsm+t0

i + h)
k∑
l=1

(
qθ−1

3

)l
+

(θ2w
k
i − θ1h)(1− θk3)

1− θ3
+ θk3y

sm+t0
i

)
. (44)

After rearranging, we can compute (44) and then x̂t1 from x̂t0 in O(log(t1−t0)) time when (43)
holds. Then we can update x̂t in the same efficient way as we update the three inner iterates
{xk, yk, zk} in Algorithm 6. We omit further details as this is not the main topic of our paper.
However, the above discussion shows that the implementation of the original Katyusha is
more complicated than our loopless variant, due to the use of the weighted average as the
reference point.

Appendix B. Proofs of Lemma 3 and Inequality (4)

B.1 Proof of Lemma 3

Proof If τ = 1, then every i ∈ [n] can be in the same group [n], and the number of groups
is equal to 1. Next we consider the case where τ > 1. We construct a group sampling S
as follows. We partition [n] into groups as follows. For the ordered sequence p1, . . . , pn, we
add them from p1 consecutively, until the summation is greater than one at pi1 . We collect
{1, . . . , i1 − 1} as a group C1. In such way,

∑
i∈C1

pi is less than or equal to one. Next we
repeat this procedure to the ordered sequence pi1 , . . . , pn until every index is divided into
some group. The rest of the formation of the sampling is the same as the final step in the
definition of group sampling.

Assume the number of the groups is t, and the groups we get from the above construction
are ordered sets C1, . . . , Ct. According to the construction, we know∑

i∈Cj

pi +
∑

i∈Cj+1

pi > 1,

for any 1 ≤ j < t. Next, we consider two cases.
Case 1. Suppose t is even. Then t

2 < τ . If τ is an integer, then t ≤ 2τ − 2, otherwise,
t < 2τ .

Case 2. Suppose t is odd. Then t−1
2 < τ . If τ is an integer, then t ≤ 2τ − 1, otherwise,

t < 2τ + 1.
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B.2 Proof of Inequality (4)

Proof Let Lm = max(Lf , |µf |) and g(x) = f(x) + Lm
2 ‖x‖

2, ∀x ∈ Rd. Notice that for any
x, y ∈ Rd

Lm
2
‖x‖2 =

Lm
2
‖y‖2 + Lm〈y, x− y〉+

Lm
2
‖x− y‖2.

Then from Assumption 1, we have

g(y) + 〈∇g(y), x− y〉+
Lm + µf

2
‖x− y‖2 ≤ g(x) ≤ g(y) + 〈∇g(y), x− y〉+ Lm‖x− y‖2,

for any x, y ∈ Rd. Since Lm + µf ≥ 0, we know g is convex. Then we arrive at

‖∇f(x)−∇f(y)‖2 + 2Lm〈∇f(x)−∇f(y), x− y〉+ L2
m‖x− y‖2

= ‖∇f(x)−∇f(y) + Lm(x− y)‖2

= ‖∇g(x)−∇g(y)‖2
(5)

≤ 4Lm (g(x)− g(y)− 〈∇g(y), x− y〉)

= 4Lm

(
f(x)− f(y)− 〈∇f(y), x− y〉+

Lm
2
‖x− y‖2

)
≤ 4Lm (f(x)− f(y)− 〈∇f(y), x− y〉) + 2L2

m‖x− y‖2,

for any x, y ∈ Rd. Cancelling the term L2
m‖x− y‖2, we can obtain

‖∇f(x)−∇f(y)‖2 + 2Lm〈∇f(x)−∇f(y), x− y〉
≤ 4Lm (f(x)− f(y)− 〈∇f(y), x− y〉) + L2

m‖x− y‖2,

and by changing the positions of x and y, we also have

‖∇f(x)−∇f(y)‖2 + 2Lm〈∇f(x)−∇f(y), x− y〉
≤ 4Lm (f(y)− f(x)− 〈∇f(x), y − x〉) + L2

m‖x− y‖2.

Adding the above two inequalities yields the desired result.

Appendix C. Strongly Convex Case: Proof of Theorem 6

C.1 Proof of Lemma 5

Proof By definition, we have

Ek[Dk+1] = E

[
E

[∥∥∥∥ 1

n

(
G(wk+1)−G(x∗)

)
ΘSISe

∥∥∥∥2
∣∣∣∣∣ wk+1

] ∣∣∣∣∣ (xk, wk)

]
,
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where S ∼ S is independent of wk+1, xk and wk. Therefore

Ek[Dk+1] = pE

[∥∥∥∥ 1

n

(
G(xk)−G(x∗)

)
ΘSISe

∥∥∥∥2
∣∣∣∣∣ (xk, wk)

]

+(1− p)E

[∥∥∥∥ 1

n

(
G(wk)−G(x∗)

)
ΘSISe

∥∥∥∥2
∣∣∣∣∣ (xk, wk)

]

= pE

[∥∥∥∥ 1

n

(
G(xk)−G(x∗)

)
ΘSISe

∥∥∥∥2
∣∣∣∣∣ (xk, wk)

]
+ (1− p)Dk.

Finally, because of the independence between xk and S and Assumption 5, we deduce that

E

[∥∥∥∥ 1

n

(
G(xk)−G(x∗)

)
ΘSISe

∥∥∥∥2
∣∣∣∣∣ (xk, wk)

]
≤ 2L1(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉).

Similarly, since Sk is independent of xk and wk, we have

Ek[‖gk −∇f(x∗)‖2]

= E

[∥∥∥∥ 1

n

(
G(xk)−G(wk)

)
ΘSkISke+

1

n
G(wk)e−∇f(x∗)

∥∥∥∥2
]

≤ 2Ek

[∥∥∥∥ 1

n

(
G(xk)−G(x∗)

)
ΘSkISke

∥∥∥∥2
]

+2Ek

[∥∥∥∥ 1

n
G(wk)e− 1

n
G(x∗)e− 1

n

(
G(wk)−G(x∗)

)
ΘSkISke

∥∥∥∥2
]

≤ 4L1(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉) + 2Ek

[∥∥∥∥ 1

n

(
G(wk)−G(x∗)

)
ΘSkISke

∥∥∥∥2
]

= 4L1(f(xk)− f(x∗)− 〈∇f(x∗), xk − x∗〉) + 2Dk.

Appendix D. Strongly Convex Case: Proof of Theorem 10

D.1 Proof of Lemma 9

Proof By the computation formula of zk+1 in Algorithm 2, there is g ∈ ∂ψ(zk+1) such that

zk+1 − 1

1 + ησ1

(
ησ1x

k + zk − η

L
gk
)

+
η

(1 + ησ1)L
g = 0.

Together with µf = Lσ1, we obtain

gk =
L

η
(zk − zk+1) + µf (xk − zk+1)− g. (45)
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Therefore, we have

〈gk, zk+1 − x∗〉 = µf 〈xk − zk+1, zk+1 − x∗〉+
L

η
〈zk − zk+1, zk+1 − x∗〉 − 〈g, zk+1 − x∗〉

=
µf
2

(
‖xk − x∗‖2 − ‖xk − zk+1‖2 − ‖zk+1 − x∗‖2

)
+
L

2η

(
‖zk − x∗‖2 − ‖zk − zk+1‖2 − ‖zk+1 − x∗‖2

)
− 〈zk+1 − x∗, g〉

≤
µf
2
‖xk − x∗‖2 +

L

2η

(
‖zk − x∗‖2 − (1 + ησ1)‖zk+1 − x∗‖2

)
− L

2η
‖zk − zk+1‖2 + ψ(x∗)− ψ(zk+1)−

µψ
2
‖zk+1 − x∗‖2

=
µf
2
‖xk − x∗‖2 +

L

2η

(
‖zk − x∗‖2 −

(
1 +

ηµ

L

)
‖zk+1 − x∗‖2

)
− L

2η
‖zk − zk+1‖2 + ψ(x∗)− ψ(zk+1),

where the last inequality comes from −‖xk − zk+1‖2 ≤ 0 and ψ is µψ-strongly convex, the
last equality comes from σ1 = µf/L and µ = µf +µψ. By the definition of Zk, we can obtain
the result.

D.2 Proof of Corollary 11

Proof We consider two cases:
Case 1. Suppose Lf ≤ L2p . In this case, θ1 = min

(√
µ
L2pθ2, θ2

)
and θ2 = L2

2 max(Lf ,L2) ≥
p
2 .

Case 1.1. Suppose µ
L2p ≥ 1. In this subcase, θ1 = θ2 and thus µ

3θ1L+µ = 2µ
3L2+2µ ≥

2p
3+2p ≥

2p
5 . By choosing q = 2

3 , we have θ1 + θ2 − θ2
q = θ2

2 ≥
p
4 and p(1− q) = p

3 .

Case 1.2. Suppose µ
L2p < 1. In this subcase, θ1 =

√
µ
L2pθ2 and µ

3θ1L+µ = 2µ

3
√
µL2/p+2µ

≥
2
5

√
µp
L2 . By choosing q = 1 − 1

3

√
µ
L2p ≥

2
3 so that 3θ2(1 − q) = θ1, we have θ1 + θ2 − θ2

q =

θ1(1− 1
3q ) ≥ θ1

2 = θ2
2

√
µ
L2p ≥

1
4

√
µp
L2 and p(1− q) = 1

3

√
µp
L2 .

Case 2. Suppose Lf > L2
p . In this case, θ1 = min

(√
µ
Lf
, p2

)
, L = Lf , and θ2 = L2

2Lf
< p

2 .

Case 2.1. Suppose
√

µ
Lf
≥ p

2 . In this subcase, θ1 = p
2 and µ

3θ1L+µ = 2µ
3pLf+2µ ≥

p
6+p ≥

p
7 .

Let q = 2
3 . Then θ1 + θ2 − θ2

q = θ1 − θ2
2 > p

4 and p(1− q) = p
3 .

Case 2.2. Suppose
√

µ
Lf

< p
2 . In this subcase, θ1 =

√
µ
Lf

and µ
3θ1L+µ = µ

3
√
µLf+µ

≥
1
4

√
µ
Lf

. Let q = 1− 2
3p

√
µ
Lf

> 2
3 so that 1− q = 2

3pθ1. Then θ1 + θ2 − θ2
q = θ1 − 2

3pqθ1θ2 >

(1− 1
3q )θ1 >

θ1
2 = 1

2

√
µ
Lf

and p(1− q) = 2
3

√
µ
Lf

.
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D.3 Proof of Corollary 12

Proof By Theorem 10, after running k iterations L-Katyusha, we can get a vector wk

satisfying

θ2

pqθ1
E
[
P (wk)− P ∗

]
≤ ρk

(
L+ ηµ

2η
‖x0 − x∗‖2 +

(
1

θ1
+

θ2

pqθ1

)(
P (x0)− P ∗

))
,

with ρ := 1−min
(

µ
µ+3θ1L

, θ1 + θ2 − θ2
q , p(1− q)

)
. Consequently

E
[
P (wk)− P ∗

]
≤ ρk

(
(L+ ηµ)pqθ1

ηµθ2
+
pq

θ2
+ 1

)(
P (x0)− P ∗

)
= ρk

(
3Lpqθ2

1

µθ2
+
pqθ1

θ2
+
pq

θ2
+ 1

)(
P (x0)− P ∗

)
.

Case 1. Suppose Lf ≤ L2p . In this case, L2pθ
2
1 ≤ µθ2

2, θ1 ≤ θ2 and thus

3Lpqθ2
1

µθ2
≤ 3Lqθ2

L2
=

3q

2
,

pqθ1

θ2
≤ p.

In addition,
p

θ2
=

2Lp

L2
≤ max

(
2p,

2Lfp

L2

)
≤ 2.

Hence
3Lpqθ2

1

µθ2
+
pqθ1

θ2
+
pq

θ2
+ 1 ≤ 3p

2
+ p+ 2 + 1 ≤ 6.

Case 2. Suppose Lf > L2
p . In this case, L = Lf , θ1 ≤

√
µ
Lf

and thus

3Lpqθ2
1

µθ2
=

3Lfpqθ
2
1

µθ2
≤ 3p

θ2
.

In addition, θ2 = L2
2Lf

< p
2 and hence

3Lpqθ2
1

µθ2
+
pqθ1

θ2
+
pq

θ2
+ 1 ≤ 6p

θ2
=

12pLf
L2

.

Then we conclude from Corollary 11.

D.4 Proof of Corollary 13

Proof It suffices to note that for any β ∈ (0, 1) and α > 0, we have

α(1− β)k ≤ 1

4
, ∀k ≥ ln(4α)

β
.
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Appendix E. Nonconvex and Smooth Case: Proof of Theorem 22

E.1 Proof of Lemma 20

Proof We have

Ek
[
‖gk‖2

]
= Ek

[
‖gk −∇f(xk) +∇f(xk)‖2

]
≤ 2‖∇f(xk)‖2 + 2Ek

[
‖gk −∇f(xk)‖2

]
Assumption 7

≤ 2‖∇f(xk)‖2 + 2L3‖xk − wk‖2.

E.2 Proof of Lemma 21

Proof First, note that

Ek
[
‖xk+1 − wk+1‖2

]
= pEk

[
‖xk+1 − xk‖2

]
+ (1− p)Ek

[
‖xk+1 − wk‖2

]
= pη2Ek

[
‖gk‖2

]
+ (1− p)Ek

[
‖xk+1 − wk‖2

]
.

For Ek
[
‖xk+1 − wk‖2

]
, we have

Ek
[
‖xk+1 − wk‖2

]
= Ek

[
‖xk − ηgk − wk‖2

]
= ‖xk − wk‖2 + η2Ek

[
‖gk‖2

]
− 2ηEk

[
〈xk − wk,∇f(xk)〉

]
≤ ‖xk − wk‖2 + η2Ek

[
‖gk‖2

]
+ η

(
1

β
‖∇f(xk)‖2 + β‖xk − wk‖2

)
= (1 + ηβ)‖xk − wk‖2 + η2Ek

[
‖gk‖2

]
+
η

β
‖∇f(xk)‖2,

where the inequality is from |2〈a, b〉| ≤ 1
β‖a‖

2 + β‖b‖2 for any β > 0. Combining all the
above results, we can obtain the result.

E.3 Proof of Corollary 23

Proof If the stepsize η satisfies (27), then from Theorem 22, we have

E
[
‖∇f(xk)‖

]
≤ 4

η

(
E
[
Υk
]
− E[Υk+1]

)
,
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which implies that

E
[
‖∇f(xa)‖2

]
=

1

k + 1

k∑
i=0

E
[
‖∇f(xi)‖2

]
≤ 1

k + 1
· 4

η

(
Υ0 − E

[
Υk+1

])
=

1

k + 1
· 4

η

(
f(x0)− E

[
f(xk+1)

]
− αE

[
‖xk+1 − wk+1‖2

])
≤ 4

η
· f(x0)− f(x∗)

k + 1
.

Appendix F. Proofs in Section 6

F.1 Proof of Lemma 24

Proof From ‖∇fS(x)−∇fS(y)‖2 ≤ 2LS(fS(x)− fS(y)− 〈∇fS(y), x− y〉), we have

E

[∥∥∥∥ 1

n
(G(x)−G(y))ΘSISe

∥∥∥∥2
]
≤ 2

∑
C

pCLC(fC(x)− fC(y)− 〈∇fC(y), x− y〉)

= 2
∑
C

pCLC
∑
i∈C

Θi
C

n
(fi(x)− fi(y)− 〈∇fi(y), x− y〉)

=
2

n

∑
i∈[n]

∑
C:i∈C

pCLCΘi
C(fi(x)− fi(y)− 〈∇fi(y), x− y〉)

≤ 2

n
Lmax

∑
i∈[n]

(fi(x)− fi(y)− 〈∇fi(y), x− y〉)

= 2Lmax(f(x)− f(y)− 〈∇f(y), x− y〉).

Hence L1 ≤ Lmax = maxi∈[n]

∑
C:i∈C pCLCΘi

C . For all i, since LS ≤
1
n

∑
i∈S LiΘ

i
S , we have∑

C:i∈C
pCLCΘi

C ≤
∑
C:i∈C

pCΘi
C

1

n

∑
j∈C

LjΘ
j
C =

1

n

∑
j∈[n]

∑
C:i,j∈C

pCΘi
CΘj

CLj ,

which implies

Lmax ≤
1

n
max
i∈[n]

∑
j∈[n]

∑
C:i,j∈C

pCΘi
CΘj

CLj

 .

Furthermore, if Θi
C = 1

pi
for all i and C, then

Lmax ≤
1

n
max
i∈[n]

∑
j∈[n]

∑
C:i,j∈C

pCΘi
CΘj

CLj

 =
1

n
max
i∈[n]

∑
j∈[n]

Pij

pipj
Lj

 .
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For L2, since E
[
‖X − E[X]‖2

]
≤ E

[
‖X‖2

]
, we have

E

[∥∥∥∥ 1

n
(G(x)−G(y))ΘSISe−

1

n
(G(x)−G(y))e

∥∥∥∥2
]
≤ E

[∥∥∥∥ 1

n
(G(x)−G(y))ΘSISe

∥∥∥∥2
]
.

(46)
Then we get the same upper bound for L2.

F.2 Proof of Lemma 25

Proof First, we have

E

[∥∥∥∥ 1

n
(G(x)−G(y))ΘSISe

∥∥∥∥2
]

=
1

n2
E

∥∥∥∥∥∑
i∈S

Θi
S(∇fi(x)−∇fi(y))

∥∥∥∥∥
2


=
1

n2

∑
C

pC

〈∑
i∈C

Θi
C(∇fi(x)−∇fi(y)),

∑
i∈C

Θi
C(∇fi(x)−∇fi(y))

〉

=
1

n2

∑
C

pC
∑
i,j∈C

Θi
CΘj

C 〈∇fi(x)−∇fi(y),∇fj(x)−∇fj(y)〉

=
1

n2

n∑
i,j=1

∑
C:i,j∈C

pCΘi
CΘj

C 〈∇fi(x)−∇fi(y),∇fj(x)−∇fj(y)〉 (47)

≤ 1

n2

n∑
i,j=1

∑
C:i,j∈C

pCΘi
CΘj

CLiLj‖x− y‖
2.

This along with (46) implies the result. If Θi
C = 1

pi
, then∑

C:i,j∈C
pCΘi

CΘj
C =

Pij

pipj
.

F.3 Proof of Theorem 26

Proof Let any x, y ∈ Rd. For ease of notation, we denote X = 1
n (G(x)−G(y)) ΘSISe. In

view of (3), we have

E[X] =
1

n
(G(x)−G(y)) e = ∇f(x)−∇f(y),

and therefore

E

[∥∥∥∥ 1

n
(G(x)−G(y)) ΘSISe−

1

n
(G(x)−G(y)) e

∥∥∥∥2
]

= E
[
‖X − E[X]‖2

]
.
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Applying (30) with M = G(x)−G(y), we obtain directly

E
[
‖X‖2

]
≤

n∑
i=1

Ai
∥∥∥∥ 1

n
(∇fi(x)−∇fi(y))

∥∥∥∥2

+ B ‖∇f(x)−∇f(y)‖2 ,

and thus

E
[
‖X‖2

]
−‖E[X]‖2 ≤

n∑
i=1

Ai
∥∥∥∥ 1

n
(∇fi(x)−∇fi(y))

∥∥∥∥2

+ max (B − 1, 0) ‖∇f(x)−∇f(y)‖2 .

Then by Assumption (8) and (4), we deduce

E
[
‖X − E[X]‖2

]
≤

(
1

n2

n∑
i=1

AiL2
i + max(B − 1, 0) max (Lf , |µf |)

)
‖x− y‖2.

If in addition, fi is convex for each i ∈ [n], then by (5) and (28),

E
[
‖X‖2

]
≤

n∑
i=1

2AiLi
n2

(fi(x)− fi(y)− 〈∇fi(y), x− y〉)

+ 2BLf (f(x)− f(y)− 〈∇f(y), x− y〉)

≤ 2

(
1

n
max
i
AiLi + BLf

)
(f(x)− f(y)− 〈∇f(y), x− y〉) .

Similarly, we have

E
[
‖X − E[X]‖2

]
≤ 2

(
1

n
max
i
AiLi + max (B − 1, 0)Lf

)
(f(x)− f(y)− 〈∇f(y), x− y〉) .

F.4 Proof of Lemma 29

Proof By (31) we have

E[‖MΘSΠSe‖2] =
n∑

i,j=1

Pij

pipj
〈M:i,M:j〉 =

∑
i 6=j

Pij

pipj
〈M:i,M:j〉+

n∑
i=1

1

pi
‖M:i‖2

=

n∑
i,j=1

〈M:i,M:j〉 −
t∑

k=1

∑
i,j∈Ck

〈M:i,M:j〉+

n∑
i=1

1

pi
‖M:i‖2

≤ ‖Me‖2 −
∑
i∈I
‖M:i‖2 +

n∑
i=1

1

pi
‖M:i‖2.
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F.5 Proof of Lemma 32

Proof Since φi is 1/γ-smooth, we have

‖∇φi(x̃)−∇φi(ỹ)‖2 ≤ 2

γ
(φi(x̃)− φi(ỹ)− 〈∇φi(ỹ), x̃− ỹ) .

Letting x̃ = A>i x, and ỹ = A>i y in the above inequlity yields

∥∥∥∇φi(A>i x)−∇φi(A>i y)
∥∥∥2
≤ 2

γ

(
φi(A

>
i x)− φi(A>i y)− 〈∇φi(A>i y),A>i x−A>i y

)
=

2

γ
(fi(x)− fi(y)− 〈∇fi(y), x− y〉) .

F.6 Proof of Lemma 33

Proof First, we have

E

[∥∥∥∥ 1

n
(G(x)−G(y))ΘSISe

∥∥∥∥2
]

=
1

n2
E

∥∥∥∥∥∑
i∈S

Θi
S(∇fi(x)−∇fi(y))

∥∥∥∥∥
2


=
1

n2
E

∥∥∥∥∥∑
i∈S

1

pi
Ai(∇φi(A>i x)−∇φi(A>i y))

∥∥∥∥∥
2


(32)

≤ 1

n2

n∑
i=1

pivi ·
1

p2
i

∥∥∥∇φi(A>i x)−∇φi(A>i y)
∥∥∥2

(48)

Lemma 32
≤ 1

n2

n∑
i=1

vi
pi
· 2

γ
(fi(x)− fi(y)− 〈∇fi(y), x− y〉)

≤ 2

nγ
max
i

vi
pi
· 1

n

n∑
i=1

(fi(x)− fi(y)− 〈∇fi(y), x− y〉)

=
2

nγ
max
i

vi
pi

(f(x)− f(y)− 〈∇f(y), x− y〉) .

This along with (46) implies the results.
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F.7 Proof of Lemma 34

Proof From (48), we have

E

[∥∥∥∥ 1

n
(G(x)−G(y))ΘSISe

∥∥∥∥2
]

≤ 1

n2

n∑
i=1

pivi ·
1

p2
i

∥∥∥∇φi(A>i x)−∇φi(A>i y)
∥∥∥2

≤ 1

n2

n∑
i=1

vi
pi
· ‖Ai‖2

γ2
‖x− y‖2.

This along with (46) implies the result.
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