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Abstract

This paper focuses on stochastic proximal gradient methods for optimizing a smooth non-
convex loss function with a non-smooth non-convex regularizer and convex constraints.
To the best of our knowledge we present the first non-asymptotic convergence bounds for
this class of problem. We present two simple stochastic proximal gradient algorithms, for
general stochastic and finite-sum optimization problems. In a numerical experiment we
compare our algorithms with the current state-of-the-art deterministic algorithm and find
our algorithms to exhibit superior convergence.
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1. Introduction

In this paper we consider optimization problems of the form

min
w∈Rd

Φ(w) := f(w) + g(w) + h(w), (1)

where f(w) has a Lipschitz continuous gradient and h(w) is a proper closed convex func-
tion. The functions f(w) and g(w) can be non-convex, and g(w) and h(w) can be non-
differentiable, but we assume that g(w) and h(w) have efficiently computable proximal
operators. In addition, we assume that

f(w) := Eξ[F (w, ξ)] (2)

is the expectation of a stochastic function F (w, ξ), where ξ ∈ Rp is a random vector following
a probability distribution P from which i.i.d. samples can be generated. We will also
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consider the finite-sum problem with

f(w) :=
1

n

n∑
j=1

fj(w), (3)

where each fj(w) = F (w, ξj) has a Lipschitz continuous gradient.

First-order stochastic methods for the case where the non-smooth non-convex function
g(w) = 0 is an active research area. Non-asymptotic convergence bounds were first achieved
in (Ghadimi et al., 2016). For finite-sum problems, Reddi et al. (2016) were the first to
develop a proximal stochastic variance reduced gradient algorithm with an improved con-
vergence complexity. The current state-of-the-art in terms of gradient call complexity (see
Section 2) for the finite-sum problem is found in (Pham et al., 2019) using the ProxSARAH
framework.

For the problem of solving (1) where h(w) = 0, the current body of research is lim-
ited given the non-convexity of g(w). The first non-asymptotic convergence results for a
non-smooth non-convex function g(w) is found in (Xu et al., 2019b), where it is assumed
that f(w) = f1(w)− f2(w), where both f1(w) and f2(w) are convex, f1(w) is smooth, and
f2(w) has a Hölder continuous gradient. The current best convergence complexity results
are by Xu et al. (2019a), which are also state-of-the-art for the case of minimizing f(w) as
a general expectation (2) with g(w) = 0 and h(w) 6= 0. We are unaware of any existing
non-asymptotic convergence results for the general problem setting of (1).

Given our generalized formulation, a wide range of applications can be dealt with. In
many of which, a sparse solution is desirable as it avoids overfitting to sampled data, and
simplifies the interpretation of the result and its implementation. Our motivation for g(w)
is to act as a non-smooth non-convex regularizer, such as SCAD (Fan and Li, 2001), MCP
(Zhang et al., 2010), the log-sum penalty (Candes et al., 2008), or the capped l1 norm, which
are able to approximate the l0 norm better than their convex or smooth counterparts. The
function h(w) allows us to include convex constraints to our problem through the use of an
indicator function of the convex feasible region.

The function f(w) is intended to model the objective of our optimization problem, such
as a loss function in empirical risk minimization, an agent’s utility function in portfolio
optimization, or a statistical method performed on sample data, where non-convex smooth
functions arise naturally. In order to show the importance of problem setting (1), three
applications which fit our model’s assumptions are investigated in Section 7, highlighting
our proposed algorithms’ usefulness in practice.

The subdifferential of sums of smooth and convex functions is well understood, as is the
subdifferential of the sum of a smooth and a non-convex non-differentiable function. We
have to contrast this with our problem setting, which is the sum of three functions where
two are non-differentiable and two are non-convex. The subdifferential of this function does
not have good calculus rules, and so it is not evident what form of convergence can be
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obtained. In order to analyze the convergence of algorithms for (1), we introduce a new
convergence measure called the subdifferential mapping, for which we prove results bound-
ing its distance to zero.

We present and analyze a mini-batch stochastic proximal algorithm (MBSPA) for gen-
eral stochastic objectives of the form (2), and a variance reduced stochastic proximal al-
gorithm (VRSPA) for finite-sum problems of the form (3). Convergence complexities for
our algorithms, as well as the current best complexities for particular cases of our problem
are summarized in Table 1. We are not aware of any other works proving non-asymptotic
convergence bounds for our general problem setting. We implemented both algorithms and
show superior convergence in practice compared to a state-of-the-art deterministic algo-
rithm, the Successive Difference-of-Convex Approximation Method (SDCAM) (Liu et al.,
2019).

Table 1: State-of-the-art convergence complexities for particular cases of (1). The conver-
gence is measured in terms of the gradient mapping in (Pham et al., 2019), the
subdifferential in (Xu et al., 2019a) and the subdifferential mapping in this paper.
We note that the convergence complexities of SPGA for the non-finite-sum case
are also state-of-art for when h(w) 6= 0 and g(w) = 0.

Algorithm Reference
Finite
-sum

h(w) = 0 g(w) = 0
Gradient

Call
Complexity

Proximal
Operator
Complexity

ProxSARAH
(Pham et al., 2019)
Theorem 6

√
×

√
O(n1/2ε−2) O(n1/2ε−2)

SPGA
(Xu et al., 2019a)
Corollary 3

×
√

× O(ε−3) O(ε−2)

(Xu et al., 2019a)
Corollary 4

√ √
× O(n1/2ε−2 + n) O(ε−2)

MBSPA Corollary 10 × × × O(ε−5) O(ε−3)

VRSPA Corollary 15
√

× × O(n2/3ε−3) O(ε−3)

2. Background

We assume that f(w) has a Lipschitz continuous gradient with parameter L,

||∇f(w)−∇f(x)||2 ≤ L||w − x||2,

which we will denote as being an L-smooth function. In the finite-sum case, we assume that
each fj(w) is L-smooth. Given a sample ξk ∼ P , generated in iteration k of an algorithm,
we assume we can generate an unbiased stochastic gradient ∇F (w, ξk) such that

E[∇F (w, ξk)] = ∇f(w), (4)
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and for some constant σ,

E||∇F (w, ξk)−∇f(w)||22 ≤ σ2. (5)

Let ∂Φ(w) denote the limiting subdifferential of our objective, defined as

∂Φ(w) := {v : ∃wk Φ−→ w, vk ∈ ∂̂Φ(wk) with vk → v},

where ∂̂Φ(w) := {v : lim inf
x→w,x6=w

Φ(x)−Φ(w)−〈v,x−w〉
||x−w||2 ≥ 0} and wk

Φ−→ w signifies the sequence

wk → w and Φ(wk)→ Φ(w). The limiting subdifferential is equal to the gradient and sub-
differential when the function is continuously differentiable and proper convex, respectively.
We also assume the proximal operators of g(w) and h(w) are nonempty for all w, and that
they can be computed efficiently,

proxλg(w) := argmin
x∈Rd

{
1

2λ
||w − x||22 + g(x)

}

proxγh(w) := argmin
x∈Rd

{
1

2γ
||w − x||22 + h(x)

}
, (6)

for λ, γ > 0. In particular, we denote an element of proxλg(w) as

ζλ(w) ∈ proxλg(w). (7)

We note that proxγh(w) maps to a singleton since h(w) is proper, closed, and convex, see
for example (Beck, 2017, Theorem 6.3).

We will measure algorithm complexity in terms of the number of gradient calls and
proximal operations. A gradient call is either computing ∇F (w, ξk) given a sample ξk, or
in the finite-sum case, returning ∇fj(w) for a given j.

3. Subdifferential Mapping

For the analysis of non-asymptotic convergence bounds, the problem setting of (1) is of a
more general form compared to objective functions previously studied. In order to prove
bounds for our proposed algorithms, we introduce a new convergence measure, which we
call the subdifferential mapping,

Pγ(w,S) :=

{
1

γ

(
w − proxγh(w − γs)

)
: s ∈ S

}
,

where S ⊆ Rd is the subdifferential of a function, which is a closed set wherever the function
is finite (Rockafellar and Wets, 2009, Theorem 8.6). Defining

Gγ(w) := Pγ(w,∇f(w) + ∂g(w)),
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we are interested in algorithm solutions w̄, with accompanying γ̄ > 0, which satisfy

E [dist(0,Gγ̄(w̄))] ≤ ε, (8)

which we will call an ε-accurate solution. We will also use the notation Pγ(w,G), when
G ∈ Rd is the gradient or a particular subgradient of a function in our analysis. Gγ(w)
generalizes the gradient mapping Pγ(w,∇f(w)) which has been used in the convergence
criterion for proximal stochastic gradient methods for solving (1) with g(w) = 0, such as
in (Ghadimi et al., 2016; Reddi et al., 2016; Li and Li, 2018). To motivate the measure of
convergence (8), consider the case where

dist(0,Gγ̄(w̄)) = 0.

This implies that there exists an element sg(w̄) ∈ ∂g(w̄) such that

0 = Pγ̄(w̄,∇f(w̄) + sg(w̄)), (9)

and in particular

w̄ = proxγ̄h(w̄ − γ̄(∇f(w̄) + sg(w̄))). (10)

From the first order optimality condition of proxγ̄h(w̄ − γ̄(∇f(w̄) + sg(w̄))) in (6),

0 ∈ − Pγ̄(w̄,∇f(w̄) + sg(w̄)) +∇f(w̄) + sg(w̄) + ∂h(proxγ̄h(w̄ − γ̄(∇f(w̄) + sg(w̄)))).

Applying (9) and (10),
0 ∈ ∇f(w̄) + ∂g(w̄) + ∂h(w̄).

We also note that in the case g(w) = 0, considering w̄+ := proxγ̄h(w̄ − γ̄∇f(w̄)), it follows
that (Drusvyatskiy and Paquette, 2019, Equation 4.1)

dist(0, ∂Φ(w̄+)) ≤ (1 + Lγ̄)||Gγ̄(w̄)||2.

If (8) holds, then in expectation, w̄ is a distance γ̄ε away from a point which is an (1+Lγ̄)ε-
stationary point.

4. Auxiliary Functions of Φ(w)

The convergence analysis of our algorithms relies on a sequence of majorizing functions of

Φ̃λ(w) := f(w) + eλg(w) + h(w),

where g(w) has been replaced by its Moreau envelope,

eλg(w) := inf
x∈Rd

{
1

2λ
||w − x||22 + g(x)

}
.

The Moreau envelope dates back to the 1960’s, see for example (Rockafellar and Wets,
2009) for a thorough treatment of its mathematical properties and as well as its history. It
has played a critical role in regularized optimization models, as well in the approximation
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of non-smooth non-convex functions. We recall in this section how the Moreau envelope
can be decomposed into a difference of convex functions, which was first used in (Liu et al.,
2019), as well as in (Xu et al., 2019b). For further theoretical developments and applications
of the Moreau envelope for non-smooth non-convex sparse optimization, we refer readers
to the papers (Laude et al., 2018; Liu and Yin, 2019; Shen et al., 2016) and the references
therein.

Taking x = w, we note that

eλg(w) ≤ g(w). (11)

Expanding 1
2λ ||w − x||

2
2, the Moreau envelope can be written as

eλg(w) =
1

2λ
||w||22 −Dλ(w), (12)

where Dλ(w) = supx∈Rd
(

1
λw

Tx− 1
2λ ||x||

2
2 − g(x)

)
. As the supremum of a set of affine

functions, Dλ(w) is convex, and we see from (7) that ζλ(w) attains the supremum of Dλ(w).
Given iteration wk, a smooth majorizing function of f(w) + eλg(w) can be written as

Ekλ(w) := f(w) + Ukλ (w), (13)

where

Ukλ (w) =
1

2λ
||w||22 −

(
Dλ(wk) +

1

λ
ζλ(wk)>(w − wk)

)
.

We will only need to evaluate the gradient of Ekλ(w), which is simply

∇Ekλ(w) = ∇f(w) +
1

λ
(w − ζλ(wk)). (14)

The following property shows that Ekλ(w) +h(w) is a majorization of Φ̃λ(w). The mini-
mization a sequence of majorizations is a well established solution technique for difference of
convex functions including DCA (Le Thi and Dinh, 2018) as well as CCCP (Sriperumbudur
and Lanckriet, 2009).

Property 1 The following holds for Ekλ(w):

Ekλ(w) + h(w) ≥ Φ̃λ(w) for all w ∈ Rd (15)

Ekλ(wk) + h(wk) = Φ̃λ(wk) (16)

Ekλ(w) is Lλ :=

(
L+

1

λ

)
− smooth. (17)

Proof As what differs between Ekλ(w) + h(w) and Φ̃λ(w) is only Ukλ (w) and eλg(w), we
will show that (15) and (16) hold between these two terms.
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(15): As found in (Liu et al., 2019), for any w, z ∈ Rd,

Dλ(w)−Dλ(z)= sup
x∈Rd

(
1

λ
w>x− 1

2λ
||x||22 − g(x)

)
− sup
x∈Rd

(
1

λ
z>x− 1

2λ
||x||22 − g(x)

)
≥ 1

λ
w>ζλ(z)− 1

2λ
||ζλ(z)||22 − g(ζλ(z))−

(
1

λ
z>ζλ(z)− 1

2λ
||ζλ(z)||22 − g(ζλ(z))

)
=

1

λ
ζλ(z)>(w − z).

Setting z = wk,

eλg(w) =
1

2λ
||w||22 −Dλ(w)

≤ 1

2λ
||w||22 − (Dλ(wk) +

1

λ
ζλ(wk)>(w − wk))

= Ukλ (w).

(16): Ukλ (wk) = 1
2λ ||w

k||22 −Dλ(wk) = eλg(wk) from (12).

(17):
∥∥∥∇Ekλ(w)−∇Ekλ(w′)

∥∥∥
2
=

∥∥∥∥∇f(w) +
1

λ

(
w − ζλ(wk)

)
−
(
∇f(w′) +

1

λ

(
w′ − ζλ(wk)

))∥∥∥∥
2

≤(L+
1

λ
)‖w − w′‖2.

5. Mini-Batch Stochastic Proximal Algorithm

The algorithm MBSPA presented in this section makes use of

∇Akλ,M (w, ξk) :=
1

M

M∑
j=1

∇F (w, ξkj ) +
1

λ
(w − ζλ(wk)), (18)

which is a stochastic version of ∇Ekλ(w), replacing ∇f(w) with an unbiased estimate using
M samples ξkj , j = 1, ...,M in iteration k. The optimal values for parameters α and θ of
MBSPA in terms of convergence complexity are given in Corollary 10.

5.1 Convergence analysis

The convergence analysis of MBSPA follows the technique of Ghadimi et al. (2016) adapted
to our problem. We first define the following gradient mappings in iteration k,

Gkγ,A(wk) := Pγ(wk,∇Akλ,M (wk, ξk))

and
Gkγ,E(wk) := Pγ(wk,∇Ekλ(wk)).

7



Metel and Takeda

Algorithm 1 Mini-Batch Stochastic Proximal Algorithm (MBSPA)

Input: w1 ∈ Rd, N ∈ Z>0, α, θ ∈ R
M := dNαe, λ = 1

Nθ

Lλ = L+ 1
λ , γ = 1

Lλ
R ∼ uniform{1, ..., N}
for k = 1, 2, ..., R− 1 do
ζλ(wk) ∈ proxλg(w

k)

Sample ξk ∼ PM
Compute ∇Akλ,M (wk, ξk) (18)

wk+1 = proxγh(wk − γ∇Akλ,M (wk, ξk))
end for
Output: w̄R ∈ proxλg(w

R)

We also note that

wk+1= proxγh(wk − γ∇Akλ,M (wk, ξk))

=wk − γ
(

1

γ

(
wk − proxγh(wk − γ∇Akλ,M (wk, ξk))

))
=wk − γGkγ,A(wk). (19)

In order to offer some intuition for Algorithm 1, we analyze its convergence for minimizing
Φ(w) when f(w) = h(w) = 0 and g(w) = |w|, and f(w) = g(w) = 0 and h(w) = |w| for
w ∈ R in the appendix.

The following lemma bounds E
[
||GRγ,E(wR)||22

]
, which will be used to bound E

[
dist(0,Gγ̄(w̄R))

]
in Theorem 9.

Lemma 2 For an initial value w1 ∈ Rd, N ∈ Z>0, and α, θ ∈ R, MBSPA generates wR

satisfying the following bound.

E||GRγ,E(wR)||22 ≤
(L+N θ)

N
∆̃ +

6

dNαe
σ2,

where ∆̃ = 4(Φ̃λ(w1)− Φ̃λ(w∗λ)) and w∗λ is a global minimizer of Φ̃λ(·).

In order to prove this result, we require the following properties.

Property 3 For any, including random w ∈ Rd, it holds that

E||∇Akλ,M (w, ξk)−∇Ekλ(w)||22 ≤
σ2

M
.
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Proof From (14) and (18), ∇Akλ,M (w, ξk)−∇Ekλ(w) = 1
M

∑M
j=1∇F (w, ξkj )−∇f(w). Taking

the expectation of its squared norm,

E||∇Akλ,M (w, ξk)−∇Ekλ(w)||22 = E|| 1

M

M∑
j=1

(∇F (w, ξkj )−∇f(w))||22

=
1

M2
E(E[||

M∑
j=1

(∇F (w, ξkj )−∇f(w))||22|w])

=
1

M2
E

n∑
i=1

E[(

M∑
j=1

∇F (w, ξkj )i −∇f(w)i)
2|w].

For j 6= l, ∇F (w, ξkj )i − ∇f(w)i and ∇F (w, ξkl )i − ∇f(w)i are conditionally independent
random variables with zero mean with respect to w. It follows that

E[(∇F (w, ξkj )i −∇f(w)i)(∇F (w, ξkl )i −∇f(w)i)|w]

=E[(∇F (w, ξkj )i −∇f(w)i)|w]E[(∇F (w, ξkl )i −∇f(w)i)|w]

=0,

and

1

M2
E

n∑
i=1

E[(
M∑
j=1

∇F (w, ξkj )i −∇f(w)i)
2|w] =

1

M2
E

n∑
i=1

E[
M∑
j=1

(∇F (w, ξkj )i −∇f(w)i)
2|w]

=
1

M2
E

n∑
i=1

M∑
j=1

(∇F (w, ξkj )i −∇f(w)i)
2

=
1

M2

M∑
j=1

E||∇F (w, ξkj )−∇f(w)||22

≤ σ2

M

using (5).

The following property can be found in (Ghadimi et al., 2016). The notation we use is
somewhat different, so we have included the proof in the appendix for clarity.

Property 4 (Ghadimi et al., 2016, Lemma 1) Let w, s ∈ Rd and γ > 0, then

− 〈s,Pγ(w, s)〉 ≤ 1

γ

(
h(w)− h(proxγh(w − γs))

)
− ||Pγ(w, s)||22.

Property 5 For any w ∈ Rd, it holds that

‖|Gkγ,A(w)− Gkγ,E(w)||2 ≤ ||∇Akλ,M (w, ξk)−∇Ekλ(w)||2.
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Proof

‖|Gkγ,A(w)− Gkγ,E(w)||2

=||1
γ

(
w − proxγh(w − γ∇Akλ,M (w, ξk))

)
− 1

γ

(
w − proxγh(w − γ∇Ekλ(w))

)
||2

=
1

γ
||proxγh(w − γ∇Ekλ(w))− proxγh(w − γ∇Akλ,M (w, ξk))||2

≤1

γ
||w − γ∇Ekλ(w)− w + γ∇Akλ,M (w, ξk)||2

=||∇Akλ,M (w, ξk))−∇Ekλ(w))||2,

where the inequality holds due to the nonexpansivity of the proximal operator of proper
closed convex functions (Beck, 2017, Theorem 6.42).

Proof of Lemma 2 Given the smoothness of Ekλ(w) as shown in Property 1,

Ekλ(wk+1) ≤ Ekλ(wk) + 〈∇Ekλ(wk), wk+1 − wk〉+
Lλ
2
||wk+1 − wk||22

= Ekλ(wk) + 〈∇Ekλ(wk),−γGkγ,A(wk)〉+
Lλ
2
||γGkγ,A(wk)||22,

from (19). Let δk := ∇Akλ,M (wk, ξk)−∇Ekλ(wk), then

Ekλ(wk+1) ≤ Ekλ(wk)− γ〈∇Akλ,M (wk, ξk),Gkγ,A(wk)〉+ γ〈δk,Gkγ,A(wk)〉+
Lλ
2
||γGkγ,A(wk)||22.

Using Property 4 with w = wk and s = ∇Akλ,M (wk, ξk),

Ekλ(wk+1) ≤ Ekλ(wk) + h(wk)− h(wk+1)− γ||Gkγ,A(wk)||22 + γ〈δk,Gkγ,A(wk)〉+
Lλγ

2

2
||Gkγ,A(wk)||22.

Applying (15) and (16),

Φ̃λ(wk+1) ≤ Φ̃λ(wk)− γ||Gkγ,A(wk)||22 + γ〈δk,Gkγ,A(wk)〉+
Lλγ

2

2
||Gkγ,A(wk)||22

= Φ̃λ(wk) +

(
Lλγ

2

2
− γ
)
||Gkγ,A(wk)||22 + γ〈δk,Gkγ,E(wk)〉+ γ〈δk,Gkγ,A(wk)− Gkγ,E(wk)〉

≤ Φ̃λ(wk) +

(
Lλγ

2

2
− γ
)
||Gkγ,A(wk)||22 + γ〈δk,Gkγ,E(wk)〉+ γ||δk||2||Gkγ,A(wk)− Gkγ,E(wk)||2

≤ Φ̃λ(wk) +

(
Lλγ

2

2
− γ
)
||Gkγ,A(wk)||22 + γ〈δk,Gkγ,E(wk)〉+ γ||δk||22,

where the last inequality uses Property 5. After N iterations,(
γ − Lλγ

2

2

) N∑
k=1

||Gkγ,A(wk)||22 ≤ Φ̃λ(w1)− Φ̃λ(wN+1) + γ
N∑
k=1

(
〈δk,Gkγ,E(wk)〉+ ||δk||22

)
≤ Φ̃λ(w1)− Φ̃λ(w∗) + γ

N∑
k=1

(
〈δk,Gkγ,E(wk)〉+ ||δk||22

)
. (20)
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It follows from (4) that for ξk independent of w, E[∇Akλ,M (w, ξk)|w] = ∇Ekλ(w), and so

E[δk|wk] = 0. Taking the expectation of both sides of (20),(
γ − Lλ

2
γ2

) N∑
k=1

E||Gkγ,A(wk)||22 ≤Φ̃λ(w1)− Φ̃λ(w∗) + γ

N∑
k=1

E
(
〈δk,Gkγ,E(wk)〉+ ||δk||22

)
=Φ̃λ(w1)− Φ̃λ(w∗) + γ

N∑
k=1

(
E(E[〈δk,Gkγ,E(wk)〉|wk]) + E||δk||22

)
=Φ̃λ(w1)− Φ̃λ(w∗) + γ

N∑
k=1

(
E(〈E[δk|wk],Gkγ,E(wk)〉) + E||δk||22

)
=Φ̃λ(w1)− Φ̃λ(w∗) + γ

N∑
k=1

E||δk||22

≤Φ̃λ(w1)− Φ̃λ(w∗) + γ
N

M
σ2,

where the final inequality uses Property 3. As we choose R uniformly over {1, ..., N},

E||GRγ,A(wR)||22 =
1

N

N∑
k=1

E||Gkγ,A(wk)||22

≤ 1

N
(
γ − Lλ

2 γ
2
) (Φ̃λ(w1)− Φ̃λ(w∗) + γ

N

M
σ2

)

=
2Lλ
N

(
Φ̃λ(w1)− Φ̃λ(w∗)

)
+

2

M
σ2,

where the final equality holds since γ = 1
Lλ

.

E||GRγ,E(wR)||22 = E||GRγ,A(wR) + GRγ,E(wR)− GRγ,A(wR)||22
= E

(
||GRγ,A(wR)||22 + 2〈GRγ,A(wR),GRγ,E(wR)− GRγ,A(wR)〉+ ||GRγ,E(wR)− GRγ,A(wR)||22

)
≤ 2E||GRγ,A(wR)||22 + 2E||GRγ,E(wR)− GRγ,A(wR)||22

≤ 4Lλ
N

(
Φ̃λ(w1)− Φ̃λ(w∗)

)
+

4

M
σ2 + 2E||∇ARλ,M (wR, ξR)−∇ERλ (wR)||22

≤ 4Lλ
N

(
Φ̃λ(w1)− Φ̃λ(w∗)

)
+

4

M
σ2 +

2

M
σ2

=
4Lλ
N

(
Φ̃λ(w1)− Φ̃λ(w∗)

)
+

6

M
σ2

=
(L+N θ)

N
∆̃ +

6

dNαe
σ2,

where the first inequality uses Young’s inequality on the middle term.

In order to prove the convergence of E
[
dist(0,Gγ̄(w̄R)

]
, we require the following three

properties. The next property can be found in (Beck, 2017). Our assumptions are slightly
different, so we have included the proof in the appendix for clarity.

11
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Property 6 (Beck, 2017, Theorem 10.9) For γ1 ≥ γ2 > 0 and any w, s ∈ Rd,

||Pγ1(w, s)||2 ≤ ||Pγ2(w, s)||2.

Property 7 Assume that g(w) is Lipschitz continuous with parameter l and γ̄ ≥ γ, then

dist(0,Gγ̄(ζλ(wk))) ≤||Gkγ,E(wk)||2 + 2lλ

(
2

γ̄
+ L

)
.

Proof Given that ζλ(w) is a minimizer of 1
2λ ||w − x||

2
2 + g(x) from (7),

1

λ
(w − ζλ(w)) ∈ ∂g(ζλ(w)).

It follows that

dist(0,Gγ̄(ζλ(wk)))

≤||Pγ̄(ζλ(wk),∇f(ζλ(wk)) +
1

λ
(wk − ζλ(wk)))||2

=||Pγ̄(ζλ(wk),∇f(ζλ(wk)) +
1

λ
(wk − ζλ(wk))) + Pγ̄(wk,∇Ekλ(wk))− Pγ̄(wk,∇Ekλ(wk))||2

≤||Pγ̄(wk,∇Ekλ(wk))||2 + ||Pγ̄(ζλ(wk),∇f(ζλ(wk)) +
1

λ
(wk − ζλ(wk)))− Pγ̄(wk,∇Ekλ(wk))||2.

Given that ||Pγ̄(wk,∇Ekλ(wk))||2 ≤ ||Pγ(wk,∇Ekλ(wk))||2 = ||Gkγ,E(wk)||2 from Property 6,

dist(0,Gγ̄(ζλ(wk)))

≤||Gkγ,E(wk)||2 + ||Pγ̄(ζλ(wk),∇f(ζλ(wk)) +
1

λ
(wk − ζλ(wk)))− Pγ̄(wk,∇Ekλ(wk))||2.

(21)

Focusing on the second term,

||Pγ̄(ζλ(wk),∇f(ζλ(wk)) +
1

λ
(wk − ζλ(wk)))− Pγ̄(wk,∇Ekλ(wk))||2

=

∥∥∥∥1

γ̄

(
ζλ(wk)− proxγ̄h(ζλ(wk)− γ̄(∇f(ζλ(wk)) +

1

λ
(wk − ζλ(wk))))

)
−1

γ̄

(
wk − proxγ̄h(wk − γ̄(∇f(wk) +

1

λ
(wk − ζλ(wk))))

)∥∥∥∥
2

≤1

γ̄
||ζλ(wk)− wk||2 +

1

γ̄
||proxγ̄h(wk − γ̄(∇f(wk) +

1

λ
(wk − ζλ(wk))))

− proxγ̄h(ζλ(wk)− γ̄(∇f(ζλ(wk)) +
1

λ
(wk − ζλ(wk))))||2

≤1

γ̄
||ζλ(wk)− wk||2 +

1

γ̄
||wk − γ̄(∇f(wk) +

1

λ
(wk − ζλ(wk)))

− (ζλ(wk)− γ̄(∇f(ζλ(wk)) +
1

λ
(wk − ζλ(wk))))||2

≤2

γ̄
||ζλ(wk)− wk||2 + ||∇f(ζλ(wk))−∇f(wk)||2

≤2

γ̄
||ζλ(wk)− wk||2 + L||ζλ(wk)− wk||2, (22)

12
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where the second inequality follows from the nonexpansivity of the proximal operator. In
order to bound ||ζλ(wk)− wk||2, recall from (11) that

g(w) ≥ eλg(w)

=
1

2λ
||w − ζλ(w)||22 + g(ζλ(w)).

Rearranging and using the Lipschitz continuity of g(w),

1

2λ
||w − ζλ(w)||22 ≤ g(w)− g(ζλ(w))

≤ l||w − ζλ(w)||2,

and dividing both sides by 1
2λ ||w − ζ

λ(w)||2,

||w − ζλ(w)||2 ≤ 2lλ. (23)

Using (21)-(23),

dist(0,Gγ̄(ζλ(wk)))≤||Gkγ,E(wk)||2 +
2

γ̄
||ζλ(wk)− wk||2 + L||ζλ(wk)− wk||2

≤||Gkγ,E(wk)||2 + 2lλ

(
2

γ̄
+ L

)
.

Property 8 Let w∗ be a global minimizer of Φ(·) and let w∗λ be a global minimizer of Φ̃λ(·).
Assume that g(w) is Lipschitz continuous with parameter l, then

Φ̃λ(w)− Φ̃λ(w∗λ) ≤ Φ(w)− Φ(w∗) +
l2λ

2
.

Proof

Φ̃λ(w)− Φ̃λ(w∗λ)− Φ(w) + Φ(w∗)=eλg(w)− f(w∗λ)− eλg(w∗λ)− h(w∗λ)

− g(w) + f(w∗) + g(w∗) + h(w∗)

≤− f(w∗λ)− eλg(w∗λ)− h(w∗λ) + f(w∗) + g(w∗) + h(w∗)

≤− f(w∗λ)− eλg(w∗λ)− h(w∗λ) + f(w∗λ) + g(w∗λ) + h(w∗λ)

=g(w∗λ)− eλg(w∗λ),

where the first inequality follows from (11). For any w,

−eλg(w) = − 1

2λ
||w − ζλ(w)||22 − g(ζλ(w))

Adding g(w) to both sides,

g(w)− eλg(w) = g(w)− g(ζλ(w))− 1

2λ
||w − ζλ(w)||22

≤ l||w − ζλ(w)||2 −
1

2λ
||w − ζλ(w)||22.

13
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The right-hand side is maximized when ||w − ζλ(w)||2 = lλ, giving the desired result,

g(w)− eλg(w) ≤ l2λ

2
.

Theorem 9 Assume that g(w) is Lipschitz continuous with parameter l and γ̄ = 1
Nτ for

τ ≤ θ. The output w̄R of MBSPA satisfies

E
[
dist(0,Gγ̄(w̄R))

]
≤

√
(L+N θ)

N

(
∆ +

2l2

N θ

)
+

√
6σ2

dNαe
+

2l

N θ
(2N τ + L) ,

where ∆ = 4(Φ(w1)− Φ(w∗)) and w∗ is a global minimizer of Φ(·).

Proof We first verify that γ̄ = 1
Nτ ≥ 1

Nθ ≥ 1
L+Nθ = γ. From Property 7, taking ζλ(wR) =

w̄R,

dist(0,Gγ̄(w̄R)) ≤ ||GRγ,E(wR)||2 + 2lλ

(
2

γ̄
+ L

)
.

Taking its expectation,

E
[
dist(0,Gγ̄(w̄R))

]
≤E[||GRγ,E(wR)||2] + 2lλ

(
2

γ̄
+ L

)
≤
√

E
[
||GRγ,E(wR)||22

]
+

2l

N θ
(2N τ + L)

≤
√

(L+N θ)

N
∆̃ +

√
6σ2

dNαe
+

2l

N θ
(2N τ + L) ,

where the second inequality uses Jensen’s inequality and the third inequality follows from
Lemma 2. The result then follows using Property 8 as

∆̃ = 4(Φ̃λ(w1)− Φ̃λ(w∗λ)) ≤ 4(Φ(w1)− Φ(w∗)) + 2l2λ

= ∆ +
2l2

N θ
.

Having bounded the expected distance of Gγ̄(w̄R) from the origin, we prove an ε-accurate
point convergence complexity.

Corollary 10 Assume that g(w) is Lipschitz continuous with parameter l. To obtain an ε-
accurate solution (8) using MBSPA, the gradient call complexity is O(ε−5) and the proximal
operator complexity is O(ε−3) choosing θ = 1

3 , α = 2
3 , and τ = 0.

14
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Proof From Theorem 9,

E
[
dist(0,Gγ̄(w̄R))

]
≤

√
(L+N θ)

N

(
∆ +

2l2

N θ

)
+

√
6σ2

dNαe
+

2l

N θ
(2 + L)

=O(N0.5θ−0.5) +O(N−0.5α) +O(N−θ).

Setting θ = 1
3 and α = 2

3 ,

E
[
dist(0,Gγ̄(w̄R))

]
≤ O(N−

1
3 ).

An ε-accurate solution will require less than N = O(ε−3) iterations. Two proximal op-
erations are required per iteration, which establishes the proximal operator complexity of
O(ε−3). The number of gradient calls per iteration is dNαe = O(ε−2). The number of
gradient calls to get an ε-accurate solution is then bounded by

NdNαe = O(ε−5).

6. Variance Reduced Stochastic Proximal Algorithm for Finite-sum
Problems

In this section we assume that f(w) takes the form of (3). This is a common problem setting
when optimizing over a collected dataset, such as when doing empirical risk minimization.
The algorithm MBSPA applies for this setting as well, but in this section we analyze a
variance reduced method, VRSPA, which in addition takes advantage of the finite-sum
structure of f(w) to acheive a better convergence complexity compared to MBSPA, see
Table 1. The optimal values for parameters α and θ of VRSPA are given in Corollary 15.

6.1 Convergence analysis

We require the function Ek,tλ (w) in our convergence analysis, which is constructed in the
same way as Ekλ(w) (13), but using wkt instead of wk. This function possesses the same
characteristics as found in Property 1. In addition, let

Gk,tγ,E(wkt ) := Pγ(wkt ,∇E
k,t
λ (wkt )).

The convergence analysis follows the work of Li and Li (2018) adapted to our problem.

Lemma 11 For an initial value w̃1, N ∈ Z>0, and α, θ ∈ R, VRSGA generates wRT satis-
fying the following bound.

E
[
||GR,Tγ,E (wRT )||22

]
≤ ∆̃

L+ (Sm)θ

Sm
,

where ∆̃ = 36(Φ̃λ(w̃1)− Φ̃λ(w∗λ)) and w∗λ is a global minimizer of Φ̃λ(·).
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Algorithm 2 Variance reduced stochastic proximal algorithm (VRSPA)

Input: w̃1 ∈ Rd, N ∈ Z>0, α, θ ∈ R
m = dnαe, b = m2

S = dNme, λ = (Sm)−θ

Lλ = L+ 1
λ , γ = 1

6Lλ
R ∼ uniform{1, ..., S}
for k = 1, 2, ..., R do
wk1 = w̃k

Gk = ∇f(w̃k)
for t = 1, 2, ...,m do
ζλ(wkt ) ∈ proxλg(w

k
t )

I ∼ uniform{1, ..., n}b
V k
t = 1

b

∑
j∈I
(
∇fj(wkt )−∇fj(w̃k)

)
+Gk + 1

λ(wkt − ζλ(wkt ))

wkt+1 = proxγh(wkt − γV k
t )

end for
w̃k+1 = wkm+1

end for
T ∼ uniform{1, ...,m}
Output: w̄RT ∈ proxλg(w

R
T )

In order to prove this result, we require the following properties. Property 12 can be
found in (Li and Li, 2018). We have included the proof in our notation in the appendix.

Property 12 (Li and Li, 2018, Lemma 1) Consider arbitrary w, s, z ∈ Rd, and w+ =
proxγh(w − γs),

Ek,tλ (w+) + h(w+)≤Ek,tλ (z) + h(z) + 〈∇Ek,tλ (w)− s, w+ − z〉+
Lλ
2
||w+ − w||22 +

Lλ
2
||z − w||22

− 1

γ
〈w+ − w,w+ − z〉.

Property 13 For vectors w, x, z, and β > 0,

||w − x||22 ≤ (1 + β)||w − z||22 +

(
1 +

1

β

)
||z − x||22.

Proof

||w − x||22 = ||w − z + z − x||22
≤ (||w − z||2 + ||z − x||2)2

= ||w − z||22 + 2||w − z||2||z − x||2 + ||z − x||22

≤ ||w − z||22 +

(
β||w − z||22 +

1

β
||z − x||22

)
+ ||z − x||22

= (1 + β)||w − z||22 +

(
1 +

1

β

)
||z − x||22,
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where the second inequality uses Young’s inequality.

Proof of Lemma 11 Let ŵkt+1 = proxγh(wkt − γ∇E
k,t
λ (wkt )), with w+ = wkt+1, w = wkt ,

s = V k
t , and z = ŵkt+1 in Property 12 to get the inequality

Ek,tλ (wkt+1) + h(wkt+1)≤Ek,tλ (ŵkt+1) + h(ŵkt+1) + 〈∇Ek,tλ (wkt )− V k
t , w

k
t+1 − ŵkt+1〉+

Lλ
2
||wkt+1 − wkt ||22 +

Lλ
2
||ŵkt+1 − wkt ||22 −

1

γ
〈wkt+1 − wkt , wkt+1 − ŵkt+1〉.

(24)

In addition, let w+ = ŵkt+1, w = wkt , s = ∇Ek,tλ (wkt ), and z = wkt in Property 12 to get

Ek,tλ (ŵkt+1) + h(ŵkt+1)≤Ek,tλ (wkt ) + h(wkt ) + 〈∇Ek,tλ (wkt )−∇Ek,tλ (wkt ), ŵkt+1 − wkt+1〉

+
Lλ
2
||ŵkt+1 − wkt ||22 +

Lλ
2
||wkt − wkt ||22 −

1

γ
〈ŵkt+1 − wkt , ŵkt+1 − wkt 〉

=Ek,tλ (wkt ) + h(wkt ) +

(
Lλ
2
− 1

γ

)
||ŵkt+1 − wkt ||22. (25)

Adding (24) and (25),

Ek,tλ (wkt+1) + h(wkt+1)≤Ek,tλ (wkt ) + h(wkt ) + 〈∇Ek,tλ (wkt )− V k
t , w

k
t+1 − ŵkt+1〉+

Lλ
2
||wkt+1 − wkt ||22

− 1

γ
〈wkt+1 − wkt , wkt+1 − ŵkt+1〉+

(
Lλ −

1

γ

)
||ŵkt+1 − wkt ||22.

From (15) and (16),

Φ̃λ(wkt+1)≤Φ̃λ(wkt ) + 〈∇Ek,tλ (wkt )− V k
t , w

k
t+1 − ŵkt+1〉+

Lλ
2
||wkt+1 − wkt ||22

− 1

γ
〈wkt+1 − wkt , wkt+1 − ŵkt+1〉+

(
Lλ −

1

γ

)
||ŵkt+1 − wkt ||22. (26)

Plugging 〈wkt+1 − wkt , wkt+1 − ŵkt+1〉 = 1
2

(
||wkt+1 − wkt ||22 + ||wkt+1 − ŵkt+1||22 − ||ŵkt+1 − wkt ||22

)
into (26) and rearranging,

Φ̃λ(wkt+1)≤Φ̃λ(wkt ) + 〈∇Ek,tλ (wkt )− V k
t , w

k
t+1 − ŵkt+1〉+

(
Lλ
2
− 1

2γ

)
||wkt+1 − wkt ||22

− 1

2γ
||wkt+1 − ŵkt+1||22 +

(
Lλ −

1

2γ

)
||ŵkt+1 − wkt ||22. (27)

Focusing on the term − 1
2γ ||w

k
t+1 − ŵkt+1||22, we apply Property 13 with w = wkt+1, x = wkt ,

and z = ŵkt+1. After rearranging,

−(1 + β)||wkt+1 − ŵkt+1||22 ≤ −||wkt+1 − wkt ||22 +

(
1 +

1

β

)
||ŵkt+1 − wkt ||22.
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Dividing both sides by 2γ(1 + β),

− 1

2γ
||wkt+1 − ŵkt+1||22 ≤ −

1

2γ(1 + β)
||wkt+1 − wkt ||22 +

(
1 + 1

β

)
2γ(1 + β)

||ŵkt+1 − wkt ||22.

Choosing β = 3,

− 1

2γ
||wkt+1 − ŵkt+1||22 ≤ −

1

8γ
||wkt+1 − wkt ||22 +

1

6γ
||ŵkt+1 − wkt ||22.

Using this inequality in (27),

Φ̃λ(wkt+1)≤Φ̃λ(wkt ) + 〈∇Ek,tλ (wkt )− V k
t , w

k
t+1 − ŵkt+1〉+

(
Lλ
2
− 1

2γ

)
||wkt+1 − wkt ||22

− 1

8γ
||wkt+1 − wkt ||22 +

1

6γ
||ŵkt+1 − wkt ||22 +

(
Lλ −

1

2γ

)
||ŵkt+1 − wkt ||22

=Φ̃λ(wkt ) + 〈∇Ek,tλ (wkt )− V k
t , w

k
t+1 − ŵkt+1〉+

(
Lλ
2
− 5

8γ

)
||wkt+1 − wkt ||22

+

(
Lλ −

1

3γ

)
||ŵkt+1 − wkt ||22

≤Φ̃λ(wkt ) + γ||∇Ek,tλ (wkt )− V k
t ||22 +

(
Lλ
2
− 5

8γ

)
||wkt+1 − wkt ||22

+

(
Lλ −

1

3γ

)
||ŵkt+1 − wkt ||22, (28)

where the last inequality holds since

〈∇Ek,tλ (wkt )− V k
t , w

k
t+1 − ŵkt+1〉

≤||∇Ek,tλ (wkt )− V k
t ||2||wkt+1 − ŵkt+1||2

=||∇Ek,tλ (wkt )− V k
t ||2||proxγh(wkt − γV k

t )− proxγh(wkt − γ∇E
k,t
λ (wkt ))||2

≤γ||∇Ek,tλ (wkt )− V k
t ||22

using the Cauchy-Schwarz inequality and the nonexpansivity of the proximal operator of h.
Taking the expectation of both sides of (28),

EΦ̃λ(wkt+1)≤E
[
Φ̃λ(wkt ) + γ||∇Ek,tλ (wkt )− V k

t ||22 +

(
Lλ
2
− 5

8γ

)
||wkt+1 − wkt ||22

+

(
Lλ −

1

3γ

)
||ŵkt+1 − wkt ||22

]
. (29)
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Focusing on E
[
||∇Ek,tλ (wkt )− V k

t ||22
]
, from (14) and the definition of V k

t found in Algorithm

2, ∇Ek,tλ (wkt )− V k
t = ∇f(wkt )− (1

b

∑
j∈I
(
∇fj(wkt )−∇fj(w̃k)

)
+Gk). After rearranging,

E||∇Ek,tλ (wkt )− V k
t ||22 = E||1

b

∑
j∈I

(∇fj(w̃k)−∇fj(wkt )−Gk +∇f(wkt ))||22

=
1

b2
E(E[||

∑
j∈I

(∇fj(w̃k)−∇fj(wkt )−Gk +∇f(wkt ))||22|w̃k, wkt ])

=
1

b2

∑
j∈I

E||∇fj(w̃k)−∇fj(wkt )−Gk +∇f(wkt )||22

≤ 1

b2

∑
j∈I

E||∇fj(w̃k)−∇fj(wkt )||22

≤ L2

b
E||w̃k − wkt ||22.

The random variables ∇fj(w̃k) − ∇fj(wkt ) −
(
Gk −∇f(wkt )

)
for j ∈ I are conditionally

independent with zero mean with respect to w̃k and wkt , and so the third equality holds
using the same reasoning found in Property 3. The first inequality holds since E||x−E[x]||22 ≤
E||x||22 for any random variable x. Using this bound in (29),

EΦ̃λ(wkt+1)≤E
[
Φ̃λ(wkt ) + γ

L2

b
||w̃k − wkt ||22 +

(
Lλ
2
− 5

8γ

)
||wkt+1 − wkt ||22

+

(
Lλ −

1

3γ

)
||ŵkt+1 − wkt ||22

]
≤E

[
Φ̃λ(wkt ) +

Lλ
6b
||w̃k − wkt ||22 −

13Lλ
4
||wkt+1 − wkt ||22 − Lλ||ŵkt+1 − wkt ||22

]
=E

[
Φ̃λ(wkt ) +

Lλ
6b
||w̃k − wkt ||22 −

13Lλ
4
||wkt+1 − wkt ||22 −

1

36Lλ
||Gk,tγE(wkt )||22

]
,

(30)

where the last two lines use γ = 1
6Lλ

. Focusing on −13Lλ
4 ||w

k
t+1 − wkt ||22, we apply Property

13 with w = wkt+1, x = w̃k, and z = wkt ,

(1 + β)||wkt+1 − wkt ||22 ≥ ||wkt+1 − w̃k||22 −
(

1 +
1

β

)
||wkt − w̃k||22

−13Lλ
4
||wkt+1 − wkt ||22 ≤ −

13Lλ
4(1 + β)

||wkt+1 − w̃k||22 +
13Lλ

(
1 + 1

β

)
4(1 + β)

||wkt − w̃k||22.

Setting β = 2t− 1,

−13Lλ
4
||wkt+1 − wkt ||22 ≤ −

13Lλ
8t
||wkt+1 − w̃k||22 +

13Lλ
8t− 4

||wkt − w̃k||22.
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Applying this bound in (30),

EΦ̃λ(wkt+1)≤E
[
Φ̃λ(wkt ) +

(
Lλ
6b

+
13Lλ
8t− 4

)
||w̃k − wkt ||22 −

13Lλ
8t
||wkt+1 − w̃k||22

− 1

36Lλ
||Gk,tγ,E(wkt )||22

]
.

Summing over t,

EΦ̃λ(wkm+1)≤E

[
Φ̃λ(wk1) +

m∑
t=1

(
Lλ
6b

+
13Lλ
8t− 4

)
||w̃k − wkt ||22

−
m∑
t=1

13Lλ
8t
||wkt+1 − w̃k||22 −

1

36Lλ

m∑
t=1

||Gk,tγ,E(wkt )||22

]
.

As w̃k = wk1 and ||wkm+1 − w̃k||22 ≥ 0,

EΦ̃λ(wkm+1)

≤E

[
Φ̃λ(wk1) +

m∑
t=2

(
Lλ
6b

+
13Lλ
8t− 4

)
||w̃k − wkt ||22

−
m−1∑
t=1

13Lλ
8t
||wkt+1 − w̃k||22 −

1

36Lλ

m∑
t=1

||Gk,tγ,E(wkt )||22

]

=E

[
Φ̃λ(wk1) +

m−1∑
t=1

(
Lλ
6b

+
13Lλ
8t+ 4

− 13Lλ
8t

)
||wkt+1 − w̃k||22 −

1

36Lλ

m∑
t=1

||Gk,tγ,E(wkt )||22

]

≤E

[
Φ̃λ(wk1) +

m−1∑
t=1

(
Lλ
6b
− Lλ

2t2

)
||wkt+1 − w̃k||22 −

1

36Lλ

m∑
t=1

||Gk,tγ,E(wkt )||22

]

≤E

[
Φ̃λ(wk1)− 1

36Lλ

m∑
t=1

||Gk,tγ,E(wkt )||22

]
,

where the last inequality holds since 6b = 6m2 > 2(m− 1)2 ≥ 2t2 for t = 1, ...,m− 1. This
summation can be equivalently written as

EΦ̃λ(w̃k+1) ≤ EΦ̃λ(w̃k)− E

[
1

36Lλ

m∑
t=1

||Gk,tγ,E(wkt )||22

]
.

Rearranging,

E

[
1

36Lλ

m∑
t=1

||Gk,tγ,E(wkt )||22

]
≤ EΦ̃λ(w̃k)− EΦ̃λ(w̃k+1),

summing over k,

E

[
1

36Lλ

S∑
k=1

m∑
t=1

||Gk,tγ,E(wkt )||22

]
≤ Φ̃λ(w̃1)− EΦ̃λ(w̃S+1)

≤ Φ̃λ(w̃1)− Φ̃λ(w∗λ),
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and multiplying both sides by 36Lλ
Sm ,

E
[
||GR,Tγ,E (wRT )||22

]
≤

36Lλ

(
Φ̃λ(w̃1)− Φ̃λ(w∗λ)

)
Sm

= ∆̃
L+ (Sm)θ

Sm
.

We now prove the convergence of VRSPA in terms of the subdifferential mapping.

Theorem 14 Assume that g(w) is Lipschitz continuous with parameter l and γ̄ = 1
Nτ for

τ ≤ θ. The output w̄RT of VRSPA satisfies the following inequality.

E
[
dist(0,Gγ̄(w̄RT ))

]
≤
√

(L+ (Sm)θ) (∆ + 18l2(Sm)−θ)

Sm
+

2l

(Sm)θ
(2N τ + L) ,

where ∆ = 36(Φ(w1)− Φ(w∗)) and w∗ is a global minimizer of Φ(·).

Proof We check that γ̄ = 1
Nτ ≥ 1

(Sm)τ ≥
1

(Sm)θ
≥ 1

6(L+(Sm)θ)
= γ. From Property 7,

dist(0,Gγ̄(w̄RT )) ≤ ||GR,Tγ,E (wRT )||2 + 2lλ

(
2

γ̄
+ L

)
.

Taking its expectation,

E
[
dist(0,Gγ̄(w̄RT )))

]
≤E[||GR,Tγ,E (wRT )||2] + 2lλ

(
2

γ̄
+ L

)
≤
√

E
[
||GR,Tγ,E (wRT )||22

]
+

2l

(Sm)θ
(2N τ + L)

≤
√

(L+ (Sm)θ) (∆ + 18l2(Sm)−θ)

Sm
+

2l

(Sm)θ
(2N τ + L) ,

where the third inequality follows from Lemma 11 and Property 8,

∆̃ = 36(Φ̃λ(w1)− Φ̃λ(w∗λ)) ≤ 36(Φ(w1)− Φ(w∗)) + 18l2λ

= ∆ +
18l2

(Sm)θ
.

Corollary 15 Assume that g(w) is Lipschitz continuous with parameter l. To obtain an

ε-accurate solution (8) using VRSPA, the gradient call complexity is O(n
2
3 ε−3) and the

proximal operator complexity is O(ε−3) choosing α = θ = 1
3 , and τ = 0.
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Proof From Theorem 14,

E
[
dist(0,Gγ̄(w̄RT ))

]
≤

√√√√(L+ (Sm)
1
3

)(
∆ + 18l2(Sm)−

1
3

)
Sm

+
2l

(Sm)
1
3

(2 + L)

= O((Sm)−
1
3 ).

An ε-accurate solution will require at most Sm = O(ε−3) iterations. Two proximal oper-
ations are required each iteration, giving a proximal operator complexity of O(ε−3). The
number of gradient calls after Sm iterations is

Sn+ Smb = Sm
n

dn
1
3 e

+ Smdn
1
3 e2 = O(n

2
3 ε−3).

7. Applications

We now present three examples of sparse constrained optimization problems which fit within
our assumptions.

7.1 Sparse Binary Classification with Outlier Detection and Fairness
Constraints

We are given training data {x, y} where x = {x1, x2, ..., xn}, xj ∈ Rd′ is the feature set, and
y = {y1, y2, ..., yn}, yj ∈ {−1, 1} is the label set. In the application of classifying people,
there may be sensitive attributes such as race or sex. Even if a sensitive attribute xa ∈ x is
removed from the feature set, our predictions may still be correlated to it, resulting in our
model disproportionately treating a subset of the population unfairly. This is remedied by
bounding the covariance between the sensitive attribute xa and the model output as done
in (Zafar et al., 2017),

1

n

∣∣∣∣∣∣
n∑
j=1

(xja − x̄a)v>x
j
−a

∣∣∣∣∣∣ ≤ c,
where x̄a is the mean of xa, x

j
−a is the jth feature vector with the sensitive attribute re-

moved, v>xj−a is our model output using decision variables v ∈ Rd′ , and c > 0 determines
the maximum covariance tolerated.

We consider the smoothed 0-1 loss of Zhao et al. (2010) as our loss function,

L(u) =


0 if u > 1
1
4u

3 − 3
4u+ 1

2 if − 1 ≤ u ≤ 1

1 otherwise .

(31)
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We implement outlier detection by the mean-shift method, modifying our prediction
to v>xj−a + zj , using decision variables z ∈ Rn to reduce the loss incurred by outliers. It
was shown in (She and Owen, 2011) that the l1 norm is not effective as a penalizer of z
when multiple outliers are present, which motivates the use of a non-convex regularizer. As
all of the regularizers considered for g(w) in Section 1 are separable, we are able to take
g(w) = g1(v)+g2(z), and are free to use different regularizers for v and z. The classification
problem is then solved by the following minimization,

min
v,z

1

n

n∑
j=1

L(yj(v>xj−a + zj)) + g1(v) + g2(z)

s.t.
1

n

∣∣∣∣∣∣
n∑
j=1

(xja − x̄a)v>x
j
−a

∣∣∣∣∣∣ ≤ c.
The feasible region of decision variables v can be rewritten as

C =

{
v :

x̂>v ≤ c
−x̂>v ≤ c

}
,

where x̂ = 1
n

∑n
j=1(xja − x̄a)xj−a.

Property 16 The projection of v onto C equals

projC(v) =


v − x̂>v−c

||x̂||22
x̂ if x̂>v > c

v − x̂>v+c
||x̂||22

x̂ if − x̂>v > c

v else.

Proof The projection of v onto C can be found solving the following minimization problem,

min
v̄

1

2
||v̄ − v||22 (32)

s.t. x̂>v̄ ≤ c
−x̂>v̄ ≤ c,

using its KKT conditions,

v̄ = v + (µ2 − µ1)x̂ (Stationarity)

x̂T v̄ ≤ c, −x̂T v̄ ≤ c (Primal feasibility)

µ1, µ2 ≥ 0 (Dual feasibility)

µ1(x̂T v̄ − c) = 0, µ2(−x̂T v̄ − c) = 0. (Complementary slackness)

We consider three scenarios for v, the first being when x̂T v > c, where an optimal solu-
ton is µ1 = x̂T v−c

||x̂||22
, µ2 = 0, and v̄ = v− µ1x̂. The second scenario is when −x̂T v > c, where

we set µ1 = 0, µ2 = − x̂T v+c
||x̂||22

, and v̄ = v + µ2x̂. Finally, when v is feasible in (32), we set

µ1 = µ2 = 0, giving v̄ = v.

23



Metel and Takeda

We take g1(v) :=
∑d′

i=1 g
1
i (vi) equal to MCP, where for κ1, ν1 > 0,

g1
i (vi) = κ1

∫ |vi|
0

max

(
0, 1− u

ν1κ1

)
du (33)

=

{
κ1|vi| −

v2i
2ν1

if |vi| ≤ ν1κ1

ν1κ
2
1/2 if |vi| > ν1κ1.

Property 17 g1(v) is κ1

√
d′-Lipschitz continuous.

Proof Assume vi ≥ 0, over which g1
i (vi) is differentiable for vi > 0 with

∣∣∣dg1idvi (vi)∣∣∣ ≤ κ1.

Using the mean value theorem, for v′i ≥ 0, |g1
i (v
′
i)−g1

i (vi)| ≤ κ1|v′i−vi|. Given the symmetry
of g1

i (vi), this bound holds for all v′i, vi ∈ R, and

|g1(v′)− g1(v)| =

∣∣∣∣∣
d′∑
i=1

(g1
i (v
′
i)− g1

i (vi))

∣∣∣∣∣
≤

d′∑
i=1

|g1
i (v
′
i)− g1

i (vi)|

≤ κ1

d′∑
i=1

|v′i − vi|

≤ κ1

√
d′||v′ − v||2

As considered in (She and Owen, 2011), we set g2(z) equal to SCAD, which is also
separable. For κ2 > 0 and ν2 > 2,

g2
i (zi)=κ2

∫ |zi|
0

min

(
1,

max(0, ν2κ2 − u)

(ν2 − 1)κ2

)
du

=


κ2|zi| if |zi| ≤ κ2
−z2i +2ν2κ2|zi|−κ22

2(ν2−1) if κ2 < |zi| ≤ ν2κ2

(ν2 + 1)κ2
2/2 if |zi| > ν2κ2.

Similarly to MCP, SCAD is symmetric and |dist(0, ∂g2
i (zi))| ≤ κ2. Using the same

reasoning as in the proof of Property 17, we get the following property.

Property 18 g2(z) is κ2
√
n-Lipschitz continuous.

For the closed form solutions of the proximal operators of MCP and SCAD see (Gong
et al., 2013).
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Property 19 The function 1
n

∑n
j=1 L(yj(v>xj−a + zj)), with L(·) as defined in (31), is

3
2n

∑n
j=1 ||[(x

j
−a)
>, 1]||22-smooth in v and z.

Proof Taking the second derivative, |L′′(u)| ≤ 3
2 . Using the mean value theorem, |L′(u)−

L′(t)| ≤ 3
2 |u − t|. Composing L(u) with the affine function yj(v>xj−a + zj), the resulting

function is 3
2 ||[(x

j
−a)
>, 1]||22-smooth (Shalev-Shwartz and Ben-David, 2014, Claim 12.9). We

conclude that 1
n

∑n
j=1 L(yj(v>xj−a + zj)) is 3

2n

∑n
j=1 ||[(x

j
−a)
>, 1]||22-smooth.

For the following two applications, it is assumed g(w) is taken as either MCP or SCAD
for simplicity.

7.2 Sparse Portfolio Optimization using S-Shaped Utility with Loss Aversion

We assume there are d risky assets with stochastic returns ri, i = 1, ..., d, and an investor
desires to place a fraction wi of their wealth into each asset i. Finding a sparse portfolio
is desirable as trading fewer assets generally results in lower transaction costs. Motivated
by prospect theory (Kahneman and Tversky, 1979), we assume the investor is risk adverse
in gains (concave utility) and risk seeking in losses (convex utility). Our objective is to
maximize the following exponential utility function

F (w, r) =

1−e−ψ
1(

∑d
i=1 wiri)

ψ1 if
∑d

i=1wiri ≥ 0

eψ
2(

∑d
i=1 wiri)−1
ψ2 otherwise,

(34)

where ψ1, ψ2 > 0. This utility function has been considered in (Köbberling and Wakker,
2005; Pirvu and Schulze, 2012). Choosing ψ1 > ψ2 models loss aversion, where the investor
has increased sensitivity to losses than to gains. The optimization problem is then

max Er[F (w, r)] + g(w) (35)

s.t.

d∑
i=1

wi ≤ 1

wi ≥ 0 for i = 1, ..., d,

where we assume there should be no short selling. Let

Q :=

{
w :

∑d
i=1wi ≤ 1

wi ≥ 0 for i = 1, ..., d

}
,

and IN := {i : wi ≤ 0} and IP := {i : wi > 0}.

Property 20 The projection of w onto Q can be computed in two steps: 1) projQ(wi) = 0

for i ∈ IN ; 2) if
∑
i∈IP

wi > 1, project {wi : i ∈ IP } onto the probability simplex.
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Proof Similar to Property 16, the projection of w onto Q is the following minimization
problem,

min
w̄

1

2
||w̄ − w||22

s.t.
d∑
i=1

w̄i ≤ 1

w̄i ≥ 0 for i = 1, ..., d,

with KKT conditions,

w̄i = wi − µ0 + µi for i = 1, ..., d (Stationarity)

d∑
i=1

w̄i ≤ 1, w̄i ≥ 0 for i = 1, ..., d (Primal feasibility)

µi ≥ 0 for i = 0, ..., d (Dual feasibility)

µ0(
d∑
i=1

w̄i − 1) = 0, µiw̄i = 0 for i = 1, ..., d. (Complementary slackness)

First we confirm that if wi ≤ 0, then w̄i = 0, or else 0 < w̄i = wi − µ0 + µi ≤ µi, which
contradicts complementary slackness. Now if

∑
i∈IP

wi ≤ 1, setting µi = −wi for i ∈ IN ,

µi = 0 for i ∈ IP , and µ0 = 0, gives the optimal solution of w̄i = 0 for i ∈ IN and w̄i = wi
for i ∈ IP . If instead

∑
i∈IP

wi > 1,
∑
i∈IP

w̄i = 1, or else if
∑
i∈IP

w̄i < 1, µ0 = 0 and there would

exist a j ∈ IP with wj > w̄j = wj + µj , which contradicts dual feasibility.

We note that projecting onto the probability simplex can be achieved using a simple
non-iterative algorithm such as found in (Wang and Carreira-Perpinán, 2013). For the
optimization problem (35), we assume that we have access to n historical observations of
r, rj for j = 1, ..., n, and take a distribution-free approach, optimizing directly over the
observations,

f(w) =
1

n

n∑
j=1

F (w, rj)

Property 21 The function f(w) = 1
n

∑n
j=1 F (w, rj), where F (w, rj) is as defined in (34)

is max(ψ1,ψ2)
n

∑n
j=1 ||rj ||22-smooth.

Proof We first consider the univariate function

F̂ (u) =

F̂1(u) = 1−e−ψ1u

ψ1 if u ≥ 0

F̂2(u) = eψ
2u−1
ψ2 otherwise.
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The first and second derivatives of F̂1(u) and F̂2(u) are

F̂ ′1(u) = e−ψ
1u, F̂ ′′1 (u) = −ψ1e−ψ

1u, F̂ ′2(u) = eψ
2u, and F̂ ′′2 (u) = ψ2eψ

2u.

We can see that |F̂ ′′1 (u)| ≤ ψ1 and |F̂ ′′2 (u)| ≤ ψ2 over their domains. Assume that w, x ≥ 0
and v, u ≤ 0. Using the mean value theorem,

|F̂ ′(w)− F̂ ′(x)| = |F̂ ′1(w)− F̂ ′1(x)|
≤ ψ1|w − x| (36)

|F̂ ′(v)− F̂ ′(u)| = |F̂ ′2(v)− F̂ ′2(u)|
≤ ψ2|v − u| (37)

Assuming ψ1 ≥ ψ2, let x = −ψ2

ψ1 v with F̂ ′1(x) = F̂ ′2(v), then

|F̂ ′(w)− F̂ ′(v)| = |F̂ ′1(w)− F̂ ′2(v)|
= |F̂ ′1(w)− F̂ ′1(x)|
≤ ψ1|w − x|
≤ ψ1|w − v|. (38)

Assuming now ψ2 ≥ ψ1, let u = −ψ1

ψ2 w with F̂ ′2(u) = F̂ ′1(w), then

|F̂ ′(w)− F̂ ′(v)| = |F̂ ′1(w)− F̂ ′2(v)|
= |F̂ ′2(u)− F̂ ′2(v)|
≤ ψ2|u− v|
≤ ψ2|w − v|, (39)

From (36)-(39), we conclude that F̂ (u) is max(ψ1, ψ2)-smooth. As shown in the proof
of Property 19, since F (w, rj) is F̂ (u) composed with the affine function

∑d
i=1wir

j
i , it is

||rj ||22 max(ψ1, ψ2)-smooth and f(w) is max(ψ1,ψ2)
n

∑n
j=1 ||rj ||22-smooth.

7.3 Non-Negative Sparse Principal Component Analysis

Principal component analysis (PCA) finds a lower dimensional approximation of a dataset,
with the non-negative sparse extension having applications in economics, bioinformatics
and computer vision (Zass and Shashua, 2007). Given a data set x ∈ Rd×n, we find its first
sparse non-negative principal component by solving

min − 1

2n

n∑
j=1

(w>xj)
2 + g(w) (40)

s.t. ||w||2 ≤ 1, w ≥ 0.
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The projection onto C = {w : ||w||2 ≤ 1, w ≥ 0} has the explicit solution (Bauschke
et al., 2018, Theorem 7.1)

projC(w) =
max(w, 0)

max(||max(w, 0)||2, 1)
.

Property 22 Given a dataset x ∈ Rd×n, the function f(w) = − 1
2n

∑n
j=1(w>xj)

2 is 1
n ||xx

>||2-
smooth, where || · ||2 is the spectral norm.

Proof The function f(w) can be rewritten as

f(w) = − 1

2n

n∑
j=1

(w>xj)
2 = − 1

2n
w>

 n∑
j=1

xjx
>
j

w = − 1

2n
w>xx>w.

∥∥∇f(w)−∇f(w′)
∥∥

2
=

∥∥∥∥− 1

n
xx>w +

1

n
xx>w′

∥∥∥∥
2

≤ 1

n

∥∥xx>∥∥
2

∥∥w − w′∥∥
2
.

7.3.1 Experiment

We conducted experiments to observe our convergence analysis in practice and to compare
our algorithms to SDCAM (Liu et al., 2019). We test on the problem of non-negative sparse
PCA (40) on datasets MNIST (LeCun, 1998) and RCV1 (Lewis et al., 2004). The dimen-
sions of MNIST are n = 60, 000 and d = 784, and those of RCV1 are n = 804, 414 and
d = 47, 236. All experiments were conducted using MATLAB 2017b on a Mac Pro with
a 2.7 GHz 12-core Intel Xeon E5 processor and 64GB of RAM. In Figure 1 we compare
the performance of all algorithms. Given differences in convergence analysis and algorithm
design, we plot the objective function versus wall-clock time as a general measure of al-
gorithm performance. The values for α and θ established in Corollaries 10 and 15 were
used to implement MBSPA and VRSPA. It was hypothesized that the inferior performance
of VRSPA was due to its smaller stepsize, so VRSPA2 is VRSPA using the stepsize of
MBSPA. All parameters of SDCAM were left unchanged as used in the available implemen-
tation1. The regularizer g(w) was chosen as MCP with parameters chosen as κ = 1

d and
ν = 1. VRSPA requires that each fj(w) be L-smooth, so in our numerical experiments we
took L = max

j

∥∥xjx>j ∥∥2
. We chose the number of iterations of each algorithm so that they

terminate at approximately the same time where at least half of the algorithms reached
an observable level of convergence. Unlike for VRSPA, the number of samples M used
to approximate ∇f(w) in MBSPA grows with the number of iterations. Given the rapid

1 http://www.mypolyuweb.hk/~tkpong/Matrix_sparse_MP_codes/
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Figure 1: Comparison of algorithms of this paper and SDCAM (Liu et al., 2019) on datasets
MNIST and RCV1.

convergence of all algorithms for the MNIST dataset, the number of samples used was only
M = 91, which can be observed by the choppiness of the function value. We observe in
general though that our algorithms were able to achieve a fast rate convergence in both
experiments compared to SDCAM.

In Figure 2 we plot an upper bound of the subdifferential mapping of our algorithms.
Given that the analysis of SDCAM did not use this measure of convergence we did not
include it in the plots. Following Corollaries 10 and 15 we chose τ = 0, resulting in γ̄ = 1.
For each iteration k, we plot

||Ĝ1(wk)||2 :=||wk − proxC(wk − sk)||2 (41)

where sk ∈ ∇f(wk) + ∂g1(wk), taking ∂|0| = 0 when computing a subgradient of ∂g1(wk)
(33). We can see that in general the convergence of the subdifferential mapping is not
monotonic. For non-convex optimization, as we approach a local minimum, the subdiffer-
ential of the objective will not generally be monotonically decreasing. This allows the norm
of the change in w to increase when applying a projected subgradient method while the
function value is decreasing. We also observe that the convergence of each algorithm in
terms of (41) is similar to their convergence in terms of their function values. This gives
positive empirical evidence for the benefit of using the subdifferential mapping as a measure
of convergence.
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Figure 2: Bound on subdifferential mapping of algorithms of this paper on datasets MNIST
and RCV1.

8. Conclusion

In this paper we considered minimizing a smooth non-convex loss function with a non-
smooth non-convex regularizer with convex constraints. We proposed a new measure of
convergence, the subdifferential mapping, and presented two stochastic proximal gradient
algorithms. To the best of our knowledge, we have presented the first non-asymptotic
convergence bounds for this class of objective function. In an empirical study we found our
algorithms to converge faster than a state-of-the-art deterministic algorithm.

Acknowledgments

The research of the first author is supported in part by JSPS KAKENHI Grants No.
19H04069. The research of the second author is supported in part by JSPS KAKENHI
Grants No. 17H01699 and 19H04069.

Appendix

Minimizing |w| using Algorithm 1

Considering the case when f(w) = g(w) = 0 and h(w) = |w|, the proximal operator of h(w)
is
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proxγh(w) = max(0, |w| − γ) sgn(w) for γ > 0

=

{
w − sgn(w)γ if |w| − γ > 0

0 if |w| − γ ≤ 0,

and

Gγ(w) =
1

γ

(
w − proxγh(w)

)
=

{
sgn(w) if |w| − γ > 0
w
γ if |w| − γ ≤ 0.

Examining Algorithm 1 in this setting,

∇Akλ,M (w, ξk) = 0,

and updates will be done as

wk+1 = proxγh(wk).

Each iteration |wk| is decreased by γ when |wk| − γ > 0, and once |wk| ≤ γ, the algo-

rithm will converge setting wk+1 = 0, so after K := d |w
1|
γ e iterations Gγ(wK) = 0.

Considering the case when f(w) = h(w) = 0 and g(w) = |w|,

proxλg(w) := max(0, |w| − λ) sgn(w) for λ > 0

=

{
w − sgn(w)λ if |w| − λ > 0

0 if |w| − λ ≤ 0,

and

Gγ(w) = {s : s ∈ ∂|w|} .

Examining Algorithm 1,

∇Akλ,M (w, ξk) =
1

λ

(
w − proxλg(w)

)
,

and updates will be done as

wk+1 = wk − γ

λ

(
wk − proxλg(w

k)
)
.

In this setting L = 0, so γ = λ and

wk+1 = proxλg(w
k),

and we recover the same convergence with wK = 0, and dist(0,Gγ(wK)) = 0.

31



Metel and Takeda

Property 4 (Ghadimi et al., 2016, Lemma 1) Let w, s ∈ Rd and γ > 0, then

− 〈s,Pγ(w, s)〉 ≤ 1

γ

(
h(w)− h(proxγh(w − γs))

)
− ||Pγ(w, s)||22.

Proof By the optimality of proxγh(w − γs) in (6),

0 ∈ −Pγ(w, s) + s+ ∂h(proxγh(w − γs)).

Taking p ∈ ∂h(proxγh(w − γs)) such that 0 = −Pγ(w, s) + s+ p, it follows that

0 = 〈−Pγ(w, s) + s+ p,Pγ(w, s)〉
= 〈s+ p,Pγ(w, s)〉 − ||Pγ(w, s)||22

≤ 〈s,Pγ(w, s)〉+
1

γ

(
h(w)− h(proxγh(w − γs))

)
− ||Pγ(w, s)||22,

where the inequality uses the convexity of h.

Property 6 (Beck, 2017, Theorem 10.9) For γ1 ≥ γ2 > 0 and any w, s ∈ Rd,

||Pγ1(w, s)||2 ≤ ||Pγ2(w, s)||2.

Proof For an arbitrary v ∈ Rd and γ > 0, proxγh(v) is the minimizer of 1
2γ ||v−x||

2
2 +h(x)

and so

1

γ
(v − proxγh(v)) ∈ ∂h(proxγh(v)). (42)

By the definition of a subgradient of a convex function, for any y ∈ Rd,

h(y)− h(proxγh(v)) ≥ 1

γ

〈
v − proxγh(v), y − proxγh(v)

〉
.

First let γ = γ1, v = w − γ1s and y = proxγ2h(w − γ2s),

h(proxγ2h(w − γ2s))− h(proxγ1h(w − γ1s)) (43)

≥ 1

γ1

〈
w − γ1s− proxγ1h(w − γ1s),proxγ2h(w − γ2s)− proxγ1h(w − γ1s)

〉
=
〈
Pγ1(w, s)− s, γ1Pγ1(w, s)− γ2Pγ2(w, s)

〉
.

Exchanging γ1 and γ2, letting γ = γ2, v = w − γ2s and y = proxγ1h(w − γ1s),

h(proxγ1h(w − γ1s))− h(proxγ2h(w − γ2s)) ≥
〈
Pγ2(w, s)− s, γ2Pγ2(w, s)− γ1Pγ1(w, s)

〉
.

(44)

Adding inequalities (43) and (44),

0≥
〈
Pγ1(w, s)− Pγ2(w, s), γ1Pγ1(w, s)− γ2Pγ2(w, s)

〉
. (45)
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Expanding and rearranging (45),

γ1||Pγ1(w, s)||22 + γ2||Pγ2(w, s)||22≤(γ1 + γ2)
〈
Pγ1(w, s),Pγ2(w, s)

〉
(46)

≤(γ1 + γ2)||Pγ1(w, s)||2||Pγ2(w, s)||2,

using the Cauchy-Schwarz inequality. Assume ||Pγ1(w, s)||2 > 0, otherwise the property
trivially holds, and set t = ||Pγ2(w, s)||2/||Pγ1(w, s)||2. Inequality (46) can now be written
as

γ1 + γ2t2 − (γ1 + γ2)t≤0.

The roots of the left hand side function occur at t = 1 and t = γ1

γ2
, so for the inequality to

hold,

1 ≤ t ≤ γ1

γ2
,

which includes the desired inequality,

||Pγ1(w, s)||2 ≤ ||Pγ2(w, s)||2.

Property 12 (Li and Li, 2018, Lemma 1) Consider arbitrary w, s, z ∈ Rd, and w+ =
proxγh(w − γs),

Ek,tλ (w+) + h(w+)≤Ek,tλ (z) + h(z) + 〈∇Ek,tλ (w)− s, w+ − z〉+
Lλ
2
||w+ − w||22 +

Lλ
2
||z − w||22

− 1

γ
〈w+ − w,w+ − z〉.

Proof As was done in the proof of Property 4, let us take p ∈ ∂h(proxγh(w − γs)) such

that 0 = −Pγ(w, s) + s+ p = 1
γ (w+ − w) + s+ p. It follows by the convexity of h(·) that

h(w+) ≤ h(z) + 〈p, w+ − z〉

= h(z)−
〈

1

γ
(w+ − w) + s, w+ − z

〉
. (47)

Adding (47) with the following two inequalities, which come from the smoothness of Ek,tλ (w)

and −Ek,tλ (w), see Property 1, proves the result.

Ek,tλ (w+) ≤ Ek,tλ (w) + 〈∇Ek,tλ (w), w+ − w〉+
Lλ
2
||w+ − w||22

−Ek,tλ (z) ≤ −Ek,tλ (w) + 〈−∇Ek,tλ (w), z − w〉+
Lλ
2
||z − w||22
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