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Abstract

Current feature selection methods, especially applied to high dimensional data, tend to suf-
fer from instability since marginal modifications in the data may result in largely distinct
selected feature sets. Such instability strongly limits a sound interpretation of the selected
variables by domain experts. Defining an adequate stability measure is also a research
question. In this work, we propose to incorporate into the stability measure the impor-
tances of the selected features in predictive models. Such feature importances are directly
proportional to feature weights in a linear model. We also consider the generalization to a
non-linear setting.

We illustrate, theoretically and experimentally, that current stability measures are sub-
ject to undesirable behaviors, for example, when they are jointly optimized with predictive
accuracy. Results on micro-array and mass-spectrometric data show that our novel stabil-
ity measure corrects for overly optimistic stability estimates in such a bi-objective context,
which leads to improved decision-making. It is also shown to be less prone to the under-
or over-estimation of the stability value in feature spaces with groups of highly correlated
variables.

Keywords: feature selection, selection stability, bi-objective optimization, bioinformatics,
feature importance

1. Introduction

Feature selection, i.e. the selection of a small subset of informative and relevant features
to be included in a predictive model, has become compulsory for a wide variety of applica-
tions due to the appearance of very high dimensional data sets, notably in the biomedical
domain (Saeys et al., 2007). Filtering noisy and irrelevant features can avoid overfitting
the data and potentially improve predictive performance. Feature selection also allows for
the learning of fast and compact models, which are easier to interpret. Such models can
then be analyzed by domain experts and are easier to validate. Getting more interpretable
models is also a key concern nowadays, and even considered by many as a requirement,
when deployed in the medical domain.

Feature selection has been already studied in depth (Tang et al., 2014; Saeys et al.,
2007; Kalousis et al., 2007b). Yet, current methods are still somewhat unsatisfactory mainly
because of the typical instability they exhibit. Instability here refers to the fact that the
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Figure 1: Illustration of the stability problem. The outcome is a measure of the trade-off
between predictive accuracy and selection stability. The accuracy relates to the
relevance of the selected features while stability is linked to the soundness of the
domain analysis.

selected features may drastically change even after marginal modifications of the data, or,
more generally, after some fine-tuning of the data production or data analysis pipeline.
Figure 1 illustrates such a phenomenon. The initial data set is perturbed1 to form M
different data sets D1≤i≤M . A feature subset F1≤i≤M is selected from each of these modified
versions of the initial data set. A predictive model P1≤i≤M is then built on each of the feature
subsets and evaluated on some test examples. The pipeline depicted in Figure 1 has two non-
necessarily competing objectives: 1) a measure of the performance of the predictive models
built on the selected features and 2) a measure of the stability of the selected features which
is related to the soundness of the domain analysis. Possible additional quality criteria are
minimal model size or sparsity. Instability arises when little agreement over the selected
features occurs, i.e. when the second objective is not met. This prevents a correct and
sound interpretation of the selected features and strongly impacts their further validation
by domain experts as it reduces their trust towards the proposed features. These experts
would often prefer a more stable feature selection algorithm over an unstable and slightly
more accurate one (Kalousis et al., 2007a; Saeys et al., 2008b). This is especially true in the
biomedical field where reproducibility has proven to be a key challenge (Haibe-Kains et al.,
2013). Unlike optimizing the accuracy of predictive models, optimizing selection stability
may look trivial since an algorithm always returning an arbitrary but fixed set of features
would be stable by design. Yet, such an algorithm is not expected to select informative and
predictive features and would thus fail to meet the first objective above. This illustrates
that optimizing stability is only well-posed jointly with predictive accuracy which, as in
Figure 1, can be measured by the average accuracy of the M learned models.

1. Here it is done by subsampling which is often used to measure such instability, but it could be any small
perturbation.
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A common approach to estimate the second objective is to measure the stability of the
feature subsets, on which are built the predictive models, without considering these models
in the stability value. This strategy has been applied in (Sechidis et al., 2019; Hamer
and Dupont, 2020). These papers also acknowledge the existence of a Pareto front in the
(accuracy, stability) objective space. Considering such a subset selection stability in the
model selection can also reduce the number of irrelevant selected features (Nogueira et al.,
2017a). Our recent work (Hamer and Dupont, 2020) goes further by jointly optimizing
selection stability and predictive performance and by deriving Pareto-optimal compromises
using extensions of the well-known recursive feature elimination (rfe) algorithm (Guyon
et al., 2002).

In this paper, we demonstrate the limitations that occur when one uses subset stability
measures. Instead, we aim at quantifying the stability of a partial feature weighting, where
each feature weight represents the importance of the corresponding selected feature in the
associated predictive model. In the simplest case corresponding to a (generalized) linear
model, the importance of a feature is directly proportional to its associated weight in such
a model.2 Such an objective, in addition to providing more refined feature preferences for
domain analysis, is shown to be more adequate in certain situations. This is the case when
jointly optimizing selection stability with predictive performance or when the feature space
is composed of highly correlated feature groups. Our contributions include

• A visualization tool allowing the intuitive assessment of stability (Section 3).

• A new weight-based stability measure, closely matching the visual interpretation,
which provably satisfies several properties (fully defined, bounds, correction for chance
and maximum stability ⇔ deterministic importance), some of which are not fulfilled
by current weight-based stability measures (Section 5).

• A generic method to evaluate the importance of a feature in a predictive model (Sec-
tion 5.1).

• The theoretical justification and experimental validation that current stability mea-
sures do not behave adequately in the presence of highly correlated feature groups,
while our measure improves this behavior (Section 5.3).

• The introduction (previous work) and extension (current work) of an approach to
optimize jointly predictive accuracy and selection stability (Sections 6.1 and 6.2).

• The theoretical justification (Section 6.3) and experimental validation (Section 7.1)
that our proposed measure improves decision-making when stability is optimized
jointly with predictive accuracy.

2. Related Work

Feature selection techniques are generally split into three categories: filters, wrappers, and
embedded methods. Filters evaluate the relevance of features independently of the final
model, most commonly a classifier, and remove low ranked features. Simple filters (e.g.

2. We study the non-linear case in Section 5.1.

3



Hamer and Dupont

t-test or anova) are univariate, which is computationally efficient and tends to produce a
relatively stable selection but they plainly ignore the possible dependencies between various
features. Information-theoretic methods, such as mrmr (Ding and Peng, 2005) and many
others, are based on mutual information between features or with the response, but a robust
estimation of these quantities in high dimensional spaces remains difficult. Wrappers look
for the feature subset that will yield the best predictive performance on a validation set.
They are classifier dependent and very often multivariate. However, they can be very
computationally intensive and an optimal feature subset can rarely be found. Embedded
methods select features by determining which features are more important in the decisions of
a predictive model. Prominent examples include svm-rfe (Guyon et al., 2002) and logistic
regression with a lasso (Tibshirani, 1996) or elastic net penalty (Zou and Hastie, 2005).
These methods tend to be more computationally demanding than filters but they integrate
into a single procedure the feature selection and the estimation of a predictive model. Yet,
they also tend to produce much less stable models. Recently, deep neural networks have
started to be used as feature selectors as well (Li et al., 2016; Roy et al., 2015).

Some works specifically study the reasons behind selection instability. Results show
that it is mostly caused by the small sample/feature ratio (Alelyani, 2013), noise in the
data (Shanab et al., 2012), or imbalanced target variable (Awada et al., 2012) and feature
redundancy (Somol and Novovicova, 2010). While all of these reasons clearly play a role,
the small sample/feature ratio and feature redundancy are likely the most important ones in
a biomedical domain with typically several thousands, if not millions, of sometimes highly
correlated features for only a few dozens or hundreds of samples. This is likely why stable
feature selection is intrinsically hard in this domain and why existing techniques are still
unsatisfactory.

Looking for a stable feature selection also requires a proper way to quantify stability
itself. In general, the stability of a feature selection algorithm relates to the robustness of
its feature preferences with respect to small modifications of the data. Feature selection
algorithms can produce either (a) a subset of selected features, (b) a partial or complete
ranking of the features or (c) a weight for each feature which typically assesses the impor-
tance of this feature in a predictive model. Each type of feature selection requires dedicated
stability measures.

Many subset-based selection stability measures have already been proposed: the
Kuncheva index (Kuncheva, 2007), the Jaccard index (Kalousis et al., 2005), the pog (Shi
et al., 2006) and npog (Zhang et al., 2009b) indices among others. Under such a profusion
of different measures, it becomes difficult to justify the choice of a particular index and
even more to compare results of works based on different metrics. Furthermore, the large
number of available measures can lead to publication bias (researchers may select the index
that makes their algorithm look the most stable) (Boulesteix and Slawski, 2009). In the
hope of fixing this issue, a more recent work (Nogueira et al., 2017a) lists and analyzes
15 different stability measures. They are compared based on the satisfaction of 5 different
properties that a stability measure should comply with. They also propose a novel and
unifying index. This index, which we extensively use in this work, is described in more
detail in Section 2.1. A related and popular weight-based stability measure, which makes
use of the sample Pearson’s correlation coefficient (Kalousis et al., 2007a; Nogueira and
Brown, 2016), is reviewed in Section 2.2.
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In this work, we focus on the study of the feature importances and their variations
rather than the feature positions in a ranking. Still, we briefly consider the ranking measure
proposed in (Jurman et al., 2008) which is defined from the Canberra distance. This measure
is reviewed in Section 2.3. Section 4 illustrates the differences between the three types of
stabilities and shows that ranking measures can deviate from our purpose of assessing the
stability of the selected features.

Several authors have proposed different approaches to increase stability. For instance,
instance-weighting for variance reduction (Han and Yu, 2012) and ensemble methods for
feature selection have been proposed (Saeys et al., 2008a; Abeel et al., 2010) and generally
increase selection stability. Stability selection (Meinshausen and Bühlmann, 2010) is a
particular ensemble method which ultimately selects features with a selection frequency
higher than a threshold πthr for at least one regularisation parameter λ ∈ Λ. While these
methods have been shown to increase selection stability, the gain they offer is still limited
as they are not designed to search explicitly through a bi-dimensional (accuracy, stability)
objective space.

In order to explicitly tune the accuracy/stability trade-off, a hybrid version of the well-
known recursive feature elimination algorithm has been recently proposed in (Hamer and
Dupont, 2020). In essence, the selection is stabilized by forcing the selection of some features
based on univariate criteria which are generally more stable than multivariate selection
methods. This approach is more extensively reviewed in Section 6.1. We will then use
and extend this work as an illustration of how current stability measures are susceptible to
undesirable behaviors when one tries to increase selection stability.

2.1 A Unifying Selection Stability Index

The stability index introduced in (Nogueira et al., 2017a) measures the stability across M
selected subsets of features. It can be computed according to Equation (1)

φ = 1−
1
d

∑d
f=1 s

2
f

k̄
d ∗ (1− k̄

d )
(1)

with k̄ the mean number of features selected from the original d features and s2
f = M

M−1 p̂f (1−
p̂f ) the estimator of the variance of the selection of the fth feature over the M selected
subsets, where p̂f is the fraction of times feature f has been selected among them. These
subsets are typically obtained by resampling M times the learning data. This is the only
existing measure satisfying the 5 properties described in (Nogueira et al., 2017a):

• Fully defined : the measure is defined for every possible combinations of M feature
subsets.

• Strict monotonicity : the measure strictly decreases with the selection variance.

• Bounds: the measure is bounded by constants.

• Maximum stability ⇔ deterministic selection

• Correction for chance: under the null model of feature selection, the expected value
of the measure is constant.
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The null model of feature selection, noted H0, is defined in (Nogueira et al., 2017a) as the
situation where every possible feature subset has an equal probability to be selected.

The correction for chance property states that, under H0, φ is constant in expectation
(here set to 0). The intuition behind this property is that a stability measure should not
be influenced by the similarities between selected feature subsets that occur by chance. In
addition to the correction for chance property, φ is formally bounded by −1 and 1 and is
asymptotically lower bounded by 0 as M →∞. This measure is equivalent to the Kuncheva
index (KI) (Kuncheva, 2007) when the number of selected features k is constant across the
M selected subsets, but it can be computed in O(Md) whereas KI requires O(M2d). The
Kuncheva index can be computed using Equation (2)

KI =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

|Fi ∩ Fj | − k2

d

k − k2

d

(2)

where |Fi ∩ Fj | is the number of features subset i, Fi, and subset j, Fj , have in common.
Subset stability measures are either similarity-based or frequency-based. Similarity-

based measures, such as the Kuncheva index, defines the stability as the average pairwise
similarity between pairs of selected feature subsets. Frequency-based measures, such as
φ, rather use the selection frequencies of each feature in the stability definition. (Nogueira
et al., 2017a) bridge the gap between these two families of measures by proving the following
result:

2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

|Fi ∩ Fj | = k̄ −
d∑

f=1

s2
f . (3)

A stability index increasing with the size of the intersection between pairwise feature subsets
can then be re-formulated as another index, decreasing with the feature selection variance.
In this work, we extend the Kuncheva index to handle a varying number of features and
feature importances and we show that it can be re-formulated as a weighted frequency-based
measure.

2.2 Pearson’s Correlation

A popular weight-based stability measure computes the average correlation between feature
weights of different selection runs:

φpears =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

ρi,j (4)

where

ρi,j =

∑d
f=1(wf,i − µi)(wf,j − µj)√∑d

f=1(wf,i − µi)2 ∗
√∑d

f=1(wf,j − µj)2
,

with wf,i the weight, or score, associated to feature f in selection run i and µi the average
feature weight in this run. Nogueira and Brown (2016) prove that, if these weights are
either 0 or 1 (indicating the selection of the feature) and if the number of non-zero weights
is constant across selection runs, then φpears is equivalent to the Kuncheva index. By
extension, it is also equivalent to φ in this particular setting.
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2.3 The Canberra Distance Between Partial Rankings

The Canberra distance, with location parameter k, evaluates the stability of partial feature
rankings (of size k) and is defined as follows (Jurman et al., 2008):

φkcan = 1− 1

χ

2

M(M − 1)

M∑
i=1

M∑
j=i+1

d∑
f=1

|min(ri(f), k + 1)−min(rj(f), k + 1)|
min(ri(f), k + 1) + min(rj(f), k + 1)

(5)

with ri(f) the rank of feature f in ranking i and χ = (k+1)(2d−k)
d × log(4) − 2kd+3d−k−k2

d
the term which approximately corrects the measure for chance. This measure naturally
penalizes more variability that occurs at the top of the ranking.

3. Feature Stability Maps

In this section, we propose a visualization tool that allows the intuitive estimation of the
stability of the learning process outcomes which are here a set of selected features and a
predictive model built on them (see Figure 1). Each row of these feature stability maps
represents a given decision model, the whole map representing the M models learned over
the M resamplings (M = 30 here). Each feature is assigned a color and the horizontal
extensions of the rectangles measure the importance of the features in the corresponding
decision models, here linear ones estimated on each of such resamplings. For clarity, the
features are sorted from left to right in decreasing order of selection frequency pf across
runs.

As a domain analysis tool, these so-called feature stability maps allow the identification
of the most reliably identified features (the most frequently selected features which are put
at the left of such maps) and the most important features in the predictive models (the
largest rectangles) that are subsequently built on the selected features. Features combining
both properties are likely to be particularly appealing for domain experts. In the example of
Figure 2, the green feature seems particularly interesting, as it is selected in every run and
also matters the most in the predictive models. In contrast, the mauve and orange features
are selected in most of the selection runs but are much less important in the predictive
models. They look thus less appealing for subsequent analysis as they actually matter less
in the involved process.

4. Motivation for weight-based Measures

The primary goal of increasing stability is the improvement of the domain experts confidence
towards the learning (and selection) algorithms and more specifically, their outcomes. In
this paper, we propose a measure (φiw, formally defined in Section 5) which weights the
contributions of the selected features in the selection stability by their relative importance
in the associated predictive models. We motivate here on several examples that such a
weighted stability is beneficial for the primary goal stated above.

A first example of feature stability map is displayed in Figure 3. The learning algorithm
selects the same 20 variables in each run. They are combined in a multivariate predictive
model where each feature plays an approximately equal role. This map would be perfectly
interpretable by domain experts.

7



Hamer and Dupont

Figure 2: Example of feature stability map. Each row represents a given predictive model
(e.g. a classifier or a regression model). Features are assigned unique colors
and the horizontal extensions of the rectangles measure their importance in the
models. The features are sorted from left to right in decreasing order of selection
frequency pf .

Figure 3: Feature stability map indicating strong interpretability. The measures φ, φpears

and φiw are high but the ranking measure φcan is not (φ = 1, φpears = 0.97 ,
φiw = 0.9 and φcan = 0.47).

In this case, both subset-based and weight-based stability measures are very high, even
equal to 1 for subset-based measures such as φ (assuming d > 20 here). For ranking stability
measures, this is not the case, as the ranking between the 20 selected features is (by design
in this toy example) random. To compute stability values, we assume that the number of
input features d tends to ∞.

Figure 4 illustrates a particularly interesting scenario which has been drawn from our
experiments. As features are sorted from left to right in decreasing selection frequency,
left features are selected the most often and consequently are the most responsible for the
apparent (subset-)selection stability which is good in this example (φ = 0.72). However,
it appears that the 15 features that are selected the most (among the 20 selected features

8



An Importance Weighted Feature Selection Stability Measure

Figure 4: Example of a feature stability map for which φ would be drastically overestimated.
The measures φpears and φiw (and φcan to a lesser extent) correct this phenomenon
(φ = 0.72, φpears = 0.13, φcan = 0.39 and φiw = 0.21).

here) have a cumulative importance that is only around 25%. A domain expert would
expect the most frequently selected features to be particularly useful to the task of interest
(= high importance). In Figure 4, it appears to be the opposite, as some of them only play
a marginal role in the predictive models.

A second kind of undesirable instability is depicted in Figure 5. In this example, even
though the same subset is selected in each run, feature importance is highly varying across
selection runs. Like the classical feature selection instability, a strong instability of the
importance of the selected features is likely to deteriorate the interpretability of the selected
features and the trust of domain experts towards their actual relevance. Subset-based
stability measures are unable to grasp these nuances. Situations similar to the ones depicted
in Figures 4 and 5 can naturally occur when selection stability is optimized jointly with
predictive accuracy, as is studied further in Section 7.1. One can also see that φcan is
higher in Figure 5 than in Figure 3 which is orthogonal to our purpose of measuring the
stability of the selected features importance. We focus our study on subset and weight-based
measures for this reason and because dedicated ranking stability measures are not designed
to compare rankings of different sizes (which occurs when the number of selected features
varies from run to run). For situations where domain experts would rather be interested in
a feature ranking, we refer the reader to (Urkullu et al., 2020; Jurman et al., 2008; Nogueira
et al., 2017b; Kumar and Vassilvitskii, 2010).

As far as Figures 3, 4 and 5 are concerned, φpears is able to correctly identify instability.
However, we note later that φpears lacks some important properties (see Table 2). Fur-
thermore, it behaves inadequately in the setting depicted in Figure 6, which can naturally
arise when the feature space is composed of highly correlated feature groups, as detailed
in Section 5.3. In Figure 6, perfectly stable features have a cumulative importance of 50%
while the other half of importance belongs to 5 features different in each run. Arguably,
stability should be close to 0.5 in this setting which is the precise value of our proposed
measure φiw. Subset-based measures such as φ naturally overestimate stability while the
weight-based φpears underestimates it. This phenomenon and the problems that arise from
it are studied further in Section 5.3.
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Figure 5: Feature stability map where feature importance is highly unstable. The subset
stability φ does not account for this instability and is maximal (φ = 1), while
φcan is the highest among the maps presented here (φcan = 0.55). Once again,
φpears and φiw are able to assess this instability (φpears = 0.42, φiw = 0.53).

Figure 6: Feature stability map with half the importance space being perfectly stable while
the other half is perfectly unstable. The measure φ overestimates stability as
the number of stable features is high, while φpears underestimates it (φ = 0.75,
φpears = 0.25, φcan = 0.51 and φiw = 0.5).

5. An Importance Weighted Stability

In this section, we extend the Kuncheva index to handle a varying number of selected
features and to incorporate feature importances. We pose

φiw =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

|Fi ∩ Fj |iw − |Fi ∩ Fj |rand
iw

k̄ − C
(6)

with

|Fi ∩ Fj |iw =
∑

f∈Fi∩Fj

min (If,i, If,j), |Fi ∩ Fj |rand
iw =

1

d

∑
f∈Fi,f ′∈Fj

min(If,i, If ′,j)

and

C =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

|Fi ∩ Fj |rand
iw ,

If,i being the importance of the selected feature f in predictive model number i. In essence,
the similarity between two selection runs is defined as the sum of the common importance
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that selected features have between both decision models. The overall stability value is then
the average of the pairwise similarities (normalized and corrected for chance). This can be
visually estimated with the help of the feature stability maps, as it corresponds to the overlap
of the same colors across rows. This new stability φiw corrects for the undesirable instability
of Figures 4 and 5 as these overlaps are low in both cases. As previously stated, it is exactly
equal to 0.5 in Figure 6 because the overlaps extend to exactly half of the feature stability
map.3 Such a stability requires an importance evaluation function: I : {F ,P} → R.
This function is formally defined in Section 5.1. We normalize the feature importances in
each selection run such that

∑
f If,i = k̄, ∀1 ≤ i ≤M . As such a normalization would be

undefined for a selection run i with ki = 0, we pose |Fi ∩ Fj |iw = |Fi ∩ Fj |rand
iw = 0 if

ki = 0⊕ kj = 0 and k̄ (the average number of selected features) if ki = kj = 0, with ⊕ the
xor operator.

The corrective term C in the definition of φiw (Equation 6) can be computed in O(M2k̄+
Mk log(k)) time by Algorithm 2 in Appendix C, with k log(k) = 1

M

∑M
i=1 ki log(ki), assum-

ing that the feature selection algorithm produces unsorted feature importances.4 The overall
time complexity to compute φiw from feature importance is also O(M2k̄ + Mk log(k)), as
computing the pairwise intersections |Fi ∩ Fj |iw requires only O(M2k̄).

5.1 Evaluating Feature Importance

The evaluation of the importance of features in a predictive model is the root of embedded
feature selection algorithms. For linear models, one can use the simple function

Ilin(f,w) = ||w||0 ×
|wf |
||w||1

(7)

where w represents the weight vector of the model. A linear rfe builds linear models and
iteratively drops the features whose importance are the lowest according to Equation (7).
For non-linear svm models, one can still attribute an importance to each feature by com-
puting how much this feature contributes to the margin of the svm (Guyon et al., 2002).
This can be done using Equation (8)

Isvm(f,α) ∝ |W 2(α)−W 2
(−f)(α)|, W 2

−f (α) =
∑
k,l

αkαlykyl(x
−f
k · x

−f
l ) (8)

where x−fk denotes the training point k without the feature f , yk is the label of training point
k (±1) and the αk’s are the solutions to the svm dual problem. Similarly to the linear rfe
algorithm, the non-linear svm-rfe iteratively drops features with the lowest importance
according to Equation (8). This process produces the same ranking as Equation (7) for
linear svms (Guyon et al., 2002). For random forest classifiers, feature importance can be
measured by randomly permuting the features in the out-of-bag samples and computing the
predictive accuracy decrease these permutations cause (Breiman, 2001; Paul et al., 2013).
For black-box classifiers (e.g. dnns), and to provide a unified framework, we define the
importance of a feature f in a predictive model p, or the sensitivity of model p to the

3. We suppose that d tends to ∞ in Figure 6 which here implies C → 0.
4. Otherwise, the time complexity becomes O(M2k̄).
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feature f as the inverse of the smallest noise applied to f necessary to flip the decision of
model p, averaged over the n learning examples. Formally,

In(f, p) ,
1

n

n∑
i=1

kp × I(f, p,xi)∑d
f ′∈Fp

I(f ′, p,xi)
, I(f, p,xi) =

σf
δxi,p,f

(9)

where kp is the number of features used by model p, δxi,p,f is the smallest additive change
(in absolute value) required to feature f such that the decision of the predictive model p
on example xi changes, and σf the standard deviation of feature f . Intuitively, if one can
change feature f by large amounts without perturbing the decisions of the model (here
thought as a classifier), then f is not important in the decisions. On the contrary, if a
small change to f causes a lot of decision switches, then the model is highly sensitive to it.
Theorem 1 states that computing feature importance using Equation (7) or (9) for linear
models is equivalent when the selected features are normalized to unit variance.

Theorem 1 For a linear decision model p with weights w, evaluated from n learning ex-
amples with kp features normalized to unit variance,

Ilin(f,w) = ||w||0 ×
|wf |
||w||1

= In(f, p).

Proof As features are normalized to unit variance, σf = 1, ∀f . The decision function of

a linear model p with weights w can be written D(w,x) = sign(
∑kp

f=1wf × xf + w0). The
smallest change δxi,p,f to a feature f required to flip the decision of data point xi is the
change required such as to make D(w,xi) = 0. Then,

δxi,p,f =
D(w,xi)

|wf |
⇒ I(f, p,xi) =

|wf |
D(w,xi)

⇒ In(f, p) =
1

n

n∑
i=1

kp ×
|wf |

D(w,xi)∑d
f ′∈Fp

|wf ′ |
D(w,xi)

⇒ In(f, p) =
1

n

n∑
i=1

kp ×
|wf |
||w||1

= kp ×
|wf |
||w||1

, ||w0|| ×
|wf |
||w||1

, Ilin(f,w).

With feature importance defined by Equation (9), computing the importances for all M
selection runs can be done in O(Mk̄) for linear models (according to Theorem 1) and
in O(Mk̄n) in the non-linear case. As stability estimation (with φiw) requires O(M2k̄ +
Mk log(k)), the time complexity of the joint process of evaluating feature importance and
computing stability is O(M2k̄ + Mk log(k) + Mk̄n) in general and O(M2k̄ + Mk log(k) +
Mk̄) = O(M2k̄ +Mk log(k)) when dealing with linear predictive models.
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5.2 Properties

In this section, we show that our proposed stability measure φiw satisfy the following prop-
erties, adapted from (Nogueira et al., 2017a). Two new desirable properties for a stability
measure are then defined in Sections 5.3 and 6.3, and proved for φiw in appendix.

- Property 1 Fully defined: the measure is defined for every possible importance combi-
nations.

- Property 2 Maximum stability ⇔ deterministic importance

- Property 3 Bounds: the measure is bounded by constants not dependent on the overall
number of features d or on the average number of features selected k̄.

- Property 4 Correction for chance: the measure is constant in expectation (here set to
0) when features are selected randomly.

Our proposed measure, φiw, is fully defined: it is defined everywhere except when no
feature is ever selected, or every feature is always selected with an equal importance. In
both cases, one can hardly speak of feature selection. The measure is maximal whenever
the same feature subset is always selected and the importances of the selected features are
constant across runs. It is lower bounded by −1

M−1 and upper bounded by 1. As the number
of runs M is greater than or equal to 2, φiw is always bounded by −1 and 1 which is
necessary for relevant comparisons, and is asymptotically lower bounded by 0 as M tends
to∞. The measure is also corrected for chance as its expected value is constant (here set to
0) whenever features are selected at random. These properties are proved in Appendix A.

Theorem 2, proved in Appendix B, shows more clearly the similitude between φiw and
the Kuncheva index whenever the importance of all selected features is evenly distributed
between them in any given run.

Theorem 2 Whenever the importance of all selected features is evenly distributed between
them in any given run,

φiw =
µM [

k̄|Fi∩Fj |
max(ki,kj) ]− k̄

dµM [
kikj

max(ki,kj) ]

k̄ − k̄
dµM [

kikj
max(ki,kj) ]

with µM (g(i, j)) = 2
M(M−1)

∑M
i=1

∑M
j=i+1 g

∗(i, j), g∗(i, j) = 1 if ki = kj = 0, g(i, j) other-
wise.

The correction for chance term of the Kuncheva index, k̄2

d , is extended here to
k̄
dµM [

kikj
max(ki,kj) ] to handle a varying number of selected features. Also, the subset inter-

section between selection runs i and j, |Fi ∩ Fj |, is weighted by the term k̄
max(ki,kj) , such

that selection runs with a high or low number of selected features influence the overall sta-
bility value by the same amount. We show in Section 5.3 that this property is convenient
when dealing with groups of correlated variables.

Theorem 3, proved in Appendix B as well, further shows that whenever the number
of selected features is constant across runs, our proposed measure degenerates into the
Kuncheva index and thus, into φ.
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Theorem 3 Whenever the importance of all selected features is evenly distributed between
them in any given run and the number of selected features is constant across the M runs,

φiw =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

|Fi ∩ Fj | − k̄2

d

k̄ − k̄2

d

,

which is the usual expression of the Kuncheva index.

Theorem 2 and Theorem 3 indicate that, when the predictive models approximately use
their features equally, our measure φiw behaves in a similar manner to existing measures
(as is validated in Section 7.2). However, we show in Sections 5.3 and 6.3 that current
measures are vulnerable to undesirable behaviors in certain situations, while our measure
is more robust in this regard.

We further show in Appendix B that the measure φiw can be re-stated in a frequency-
based form, as

φiw = 1−
M
M−1(k̄ −

∑d
f=1 I

∗
fp

2
f )

k̄ − C
= 1−

∑d
f=1 I

∗
fs

2
f + M

M−1(k̄ −
∑

f I
∗
fpf )

k̄ − C
(10)

with a properly normalized global feature importance I∗f =
∑M

i,j=1
min(If,i,If,j)

|zf,. 6=0|2 , where |zf,. 6=
0| is the number of runs where feature f is selected. This new formulation makes even more
explicit the corrections for the instabilities of Figure 4 and 5: the selection variance s2

f of
features with a high importance I∗f accounts more in the overall stability such that the
overestimation of stability, when frequently selected features are not used for prediction,
is corrected (Figure 4). Furthermore, having features with highly varying importances in
different selection runs is penalized by the term (k̄ −

∑
f I
∗
fpf ) which is equal to zero only

when If,i = I∗f , ∀i.

5.3 Stability in the Presence of Highly Correlated Feature Groups

In this section, we analyze the behavior of stability measures when the feature space is
composed of groups of highly correlated features. We first review a recently proposed
measure, which explicitly aims at dealing with feature correlations, and then study its
behavior, along with φ, φpears, and φiw in the presence of correlated feature groups.

Sechidis et al. (2019) generalize the index φ such as to accurately measure selection
stability in the presence of high correlation between variables. The idea behind the measure
is that an algorithm that tends to select different features should not be considered unstable
if these features are highly correlated to each other, as the effective extracted information
is the same. To this goal, they define the effective similarity between two selection runs as
the generalized inner product

|Fi ∩ Fj |C = ziCzj
where zi,f is the Bernouilli variable which is equal to 1 when feature f is selected in selection
run i and where the elements cf,f ′ ≥ 0 of the matrix C represent the correlation between
feature f and f ′. The more correlated the selected variables in run i and j are to each
other, the bigger the similarity between these runs. They then proved the following result:
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2

M(M − 1)

M∑
i=1

M∑
j=i+1

|Fi ∩ Fj |C = k̄C − tr(CS) (11)

where k̄C = 1
M

∑M
i=1 ziCzi and with S the variance-covariance matrix of Z, the matrix with

the elements zi,f . Equation (11) is analogous to Equation (3) when C is the identity matrix.
The following frequency-based measure can then be derived

φC = 1− tr(CS)

tr(C
∑0)

(12)

with
∑0 the matrix that normalizes the measure. For further details, we refer the reader

to (Sechidis et al., 2019). Some other stability measures designed to correctly handle high
correlated variables are proposed in (Yu et al., 2008; Zhang et al., 2009a).

While our measure φiw does not take directly feature correlations into account, we
illustrate here, using experiments on simulated data, that evaluating φiw can be beneficial
when the feature space is composed of correlated groups. We use an artificially generated
data set with N = 5 groups of variables. Each group contains c features that are highly
correlated to each other (average correlation of ρg � 0). In addition to these feature groups,
the data set contains l = 1000 variables. Feature values are sampled from two multivariate
normal distributions using the mvrnorm R package. Positive examples (n+ = 100) are
sampled from a first distribution, centered on µ+, a vector with µ+,f = µg+ if feature f
belongs to one of theN = 5 correlated groups, µ¬g+ otherwise. Negative examples (n− = 100)
are sampled from a second distribution, centered on µ− = −µ+. Both distributions have
unit variance. We consider three scenarios with different values of µg+, µ¬g+ and ρg, specified
in Table 1. In all scenarios, features inside a correlated group are very relevant to the binary
prediction task, while features outside such groups are less but still marginally relevant. For
feature selection, we use the group lasso (scenarios 1 and 2), configured such that it selects
all features inside a group or none of them, and the standard lasso (scenario 3). We set the
regularization parameter λ of the lasso and group lasso such as to select approximately
40 features when the size c of the correlated groups is equal to 1. The N = 5 feature groups
are thus expected to be selected in most of the M = 30 selection runs while the selection
of the additional features should be unstable. The experiment is repeated 10 times using
different generative seeds for the data sets and the mean stability values are reported in
Figure 8 as a function of c, the size of the correlated groups.

We first study Figure 7 which represents the cumulative importance of the features that
are selected by the group lasso in scenario 1 when c = 1 (top) and c = 10 (bottom).
Clearly, the group lasso gives more importance to the features of the 5 groups when c = 1
as they are more relevant (by design). When c = 10 however, the importance of the features
inside the correlated groups is reduced, such that the cumulative importance of each group
is approximately the same as in the c = 1 case. In the same spirit as in (Sechidis et al.,
2019) where the authors argue that the alternate selection of highly correlated features
should not influence stability, we argue that the size of the correlated groups c should not
drastically influence stability either (whenever the group importance is independent of c),
as the effective extracted information is unchanged.
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Scenario µg+ µ¬g+ ρg method

1 0.35 0.05 0.8 group lasso

2 0.5 0.05 0.8 group lasso

3 0.5 0.05 0.95 lasso

Table 1: Experimental settings for the three studied scenarios. The relevance of features
inside one of the N = 5 correlated groups is related to µg+ while the relevance
of features outside any group (∼ µ¬g+ ) is constant across scenarios. The average
intra-group correlation is ρg and inter-group correlation is negligible. In scenarios
2 and 3, features inside correlated groups are very relevant and are selected in
(nearly) all runs.

Figure 8 compares φ, φiw, φpears (with the feature weights wf,i as the importances If,i)
and φC (with the correlation matrix C such that cf,f ′ = 1 iff features f and f ′ belong
to the same group, which is consistent with the authors proposal of thresholding the true
correlation) when the sizes of the correlated groups c vary.

When the group lasso is used (Figures 8a and 8b), the standard stability φ increases
when the number of correlated variables inside each group grows, which is undesirable.
Increasing the number of correlated variables increases φ because their small selection vari-
ance is counted more than once. With cg, the size of the correlated group g, pg its selection
frequency and s2

g = pg(1 − pg), its selection variance (we assume here M → ∞ to simplify
calculations),

φ = 1−
∑

g

∑
f∈g s

2
g∑

g pgcg
, 1−

∑
g cg × s2

g∑
g pgcg

. (13)

In Equation (13), a variable outside any correlated group is considered as being in a group
of size 1. In the above scenarios, cg = c for the 5 groups and cg = 1 for all the other
variables. The contribution of a group to the variance term of φ is proportional to its size,
as the importance reduction of the features inside the groups is not taken into account.
This behavior is more pronounced in Figure 8b (scenario 2) than in Figure 8a (scenario 1),
as the variables inside correlated groups are more relevant, causing the selection variance
of the correlated groups to be even smaller.

The Pearson’s correlation measure φpears exhibits another behavior: it starts higher than
the other measures and gradually decreases. When the total number of features d tends to
∞, the correlation ρi,j between feature importances of two runs i and j satisfies

ρi,j =

∑
f If,iIf,j√∑d

f=1 I
2
f,i ∗

√∑d
f=1 I

2
f,j

. (14)

The contribution of a feature in the numerator of ρi,j increases quadratically with its im-
portance. When c = 1, it is dominated by the stability of the N = 5 feature groups, as
their importance is the highest. Then, as c increases, the importance of each feature inside
the groups is cut by c (as illustrated by Figure 7), meaning that the sum of squared of the
importance inside each group

∑
f∈g I

2
f,i decreases by a factor c as well. This implies an
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Figure 7: Feature stability maps of the group lasso (scenario 1) when the size of the corre-
lated groups c is equal to 1 (top) and 10 (bottom). The group lasso regularization
is chosen to select ≈ 40 features on average when c = 1, but the specific number
of selected features here varies across runs. As the cumulative importance of each
group is approximately constant in both feature stability maps, their stability
should be similar.

unintuitive result: the contribution of a correlated group to φpears is inversely proportional
to its size. As a consequence, when c grows, stability is more and more dominated by the
out of group features, which have a larger selection variance. As was the case for φ, this
behavior is accentuated in Figure 8b (scenario 2), where the importance of correlated groups
is larger (as is their relevance).

These results can be compared to the behavior of φiw, where features contribute to the
stability proportionally to their importance. Hence, as the sum of the importance of each
group remains constant with respect to its size, so is their contribution to stability. As a
consequence, φiw remains approximately constant with c. Property 5 formalizes this result.

Property 5 Group size independence: whenever perfectly correlated feature groups are se-
lected as a whole, stability depends only on the groups’ cumulative importance, not on the
group sizes.
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φC

φ

φpears

φiw

(a) Scenario 1

φC

φ

φpears

φiw

(b) Scenario 2

φC

φ φpears

φiw

(c) Scenario 3

Figure 8: Experimental comparison of the stability measures φ, φC , φpears and φiw in the
presence of highly correlated feature groups, in function of c, the size of such
groups. The group lasso is used for feature selection in (a)(scenario 1) and
(b)(scenario 2), the lasso in (c)(scenario 3). Given the design of these experi-
ments, the stability value should not depend on c.

As detailed in Appendix A, Property 5 strictly holds for φiw if the global importance of
each group is distributed among its features deterministically across runs. Unlike the other
measures, φiw correctly assesses the relative importance of each group in the global stability
value but may underestimate the within-group stability if the above assumption is violated.5

The measure φC stands out from the others by displaying different behaviors in Figure 8a
(scenario 1) and 8b (scenario 2). When the correlated groups are almost always selected
(Figure 8b), φC behaves like φ, i.e. it increases with c. However, when correlated groups
have non-negligeable selection variance, (Figure 8a), φC first starts to improve as before,
but as c continues to increase, it turns out that φC tends to −∞. Nonetheless, φC is the
only measure studied here where different features inside a correlated group are considered
equivalent. When the lasso is used instead of the group lasso, φC remains approximately
constant, as the lasso generally selects a single, or a few arbitrary features inside each
group. This is illustrated in Figure 8c (scenario 3). The other measures φ, φiw and φpears

5. As shown in Figure 7, it is respected with the group lasso. The global importance of each group is
approximately evenly distributed among their features.
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all decrease when c increases as the selection of the few selected features inside each group
becomes more and more unstable.

6. Stability Optimization

In this section, we study a second scenario that illustrates the limits of subset-based stability
measures: the joint optimization of stability and predictive accuracy. Firstly, we review and
extend a recently proposed approach for joint optimization. Then, we demonstrate that
optimizing subset-based measures, such as φ, can sometimes lead to situations with poor
interpretability. Next, we argue why considering φiw is more adequate in this context.

6.1 Hybrid-RFE

Hamer and Dupont (2020) optimize the selection stability φ jointly with the predictive
accuracy in a bi-objective framework. Pareto-optimal trajectories are derived, from which
domain experts can choose a particular compromise based on their personal preferences.
The trajectories are obtained by pre-selecting some features based on a stable univariate
criterion, before running the multivariate recursive feature elimination (rfe) algorithm
which then selects the most appropriate additional features.

This methodology is summarized in Algorithm 1. Firstly, a set of stable features, SN , is
found as the top-N features based on a univariate criterion (lines 3,4). Univariate filters tend
to be more stable than multivariate methods as they do not take feature interdependencies
into account. These N features are then forced to be selected at each iteration of the rfe,
which selects, in a multivariate fashion, the most appropriate additional features. It does
so by iteratively minimizing the logistic loss (line 7), ranking every feature (but the ones of
the stable set) based on the absolute value of their weight w in the learned decision function
(line 8), and dropping the one feature with minimal weight (line 9), until the desired number
of features k is reached.6 Finally, it learns the final decision function by minimizing the
logistic loss on the k selected features (line 10), possibly with a different regularization
constant λf . The difference between this approach and the classic rfe is that the features
in SN are never dropped and are thus always present in the final model. To take advantage
of this knowledge, one can apply differential shrinkage on these features to increase their
importance in the multivariate selection (line 7, with � the element-wise product). The
intensity of this differential shrinkage is dictated by the meta-parameter ε ≤ 1 used in line
5.

If the set of stable features, SN , is robust, then increasing N , the number of features
selected beforehand, is expected to increase the overall selection stability at the cost of a
possible decrease in predictive accuracy. If N = 0, this hybrid-rfe is equivalent to the
classical rfe, for which no feature is pre-selected, except that the logistic loss is considered
here instead of the default hinge loss. This logistic loss choice is motivated by the stability
gains it offers, as studied in Appendix E. When N = k, the approach becomes equivalent
to a purely univariate filter.

6. For computational reasons, it is common to drop a fraction of the remaining features instead of a single
one at each iteration. We opt here to drop 20% of the remaining features at each pruning step.
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Algorithm 1 Hybrid rfe.

1: procedure SelectFeatures(N,λ, ε, λf )
2: F ← the set of all features
3: rf ← univariate criterion rank of each feature (descending order)
4: SN ← {f : rf ≤ N}
5: βf ← ε if f ∈ SN , 1 otherwise
6: while |F| > k do
7: w∗ ← argminw

∑n
i=1 log(1 + exp−yi(wxi)) + λ||β �w||2

8: r∗ ← rank features {f ∈ F \ SN} on |w∗f | in descending order
9: F ← F \ {f : r∗f = |F| −N}

10: w∗ ← argminw

∑n
i=1 log(1 + exp−yi(wxi)) + λf ||w||2

11: return (F ,w∗)

Figure 9: Typical Pareto-optimal curves of the rfe (blue) and the hybrid-rfe (red). Far
better (accuracy, stability) trade-offs are reachable with the hybrid-rfe.

We use a linear combination of the supervised Welch’s t-test ratio (Welch, 1947) and the
unsupervised sample variance as the univariate criterion. Figure 9 depicts a typical result
of the hybrid-rfe approach on a micro-array data set with k = 20. For more details, we
refer the reader to our previous work (Hamer and Dupont, 2020).

The plot represents the areas dominated by the Pareto-optimal curves that can be drawn
by model selection on the regularization parameters λ and λf of the standard logistic rfe
(blue) and by the hybrid-rfe (red). The hybrid-rfe is able to increase the selection stability
by considerable amounts and dominates simple model selection. The original paper further
shows that the hybrid-rfe is mostly sensitive to the stability of the stable set SN , and less
to its predictive accuracy.

6.2 An Extension to the Hybrid-RFE

We propose an extension to the hybrid-rfe which aims at increasing stability by modulating
the importance of the selected features. Indeed, since φiw depends on the M final decision
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models, one can increase it independently of the selection process itself. In this section, we
estimate which selected features are likely to be frequently selected across the M resampling
runs and apply differential shrinkage on them to increase their importance in the decision
models. From the left-hand side of Equation (10), repeated here for convenience,

φiw = 1−
M
M−1(k̄ −

∑d
f=1 I

∗
fp

2
f )

k̄ − C
,

it follows that increasing I∗f of frequently selected features (features with a high pf ) increases

stability. In order to increase I∗f = 1
M2

∑M
i,j min(If,i, If,j), one must increase the importance

If,i of feature f in multiple selection runs jointly.
As rfe drops features iteratively, it is possible to measure, for each feature, how close

they are to the elimination during the selection process. We define an overall frequency
score, which estimates the true selection frequency of the selected features

scf =
|F0|
|F#|

# pruning steps∏
s=1

|Fs| − rf (s) + 1

|Fs−1| − rf (s) + 1
(15)

with Fs the set of selected features after s rfe pruning steps, and rf (s) the rank of feature
f at step s (rfe ranks features at each iteration and drops a fraction of the least relevant
ones). This score has the convenient properties of being bounded by 0 and 1, and to be
independent of the number of pruning steps. Indeed, assuming that a feature f has a
constant ranking rf (s) = rf ≤ k, then

scf =
|F0|
|F#|

( |F#| − rf + 1

|F0| − rf + 1

)
which does not depend on the number of steps.

Figure 10 depicts the correlation between the selection frequency pf of feature f , across
M = 100 selection runs, and the average frequency score scf given by Equation (15), on
two typical micro-array data sets (singh (left) and chiaretti (right) which are introduced
in Section 7.1). The average frequency score scf is computed only over the runs for which
f is selected (the score is not defined for the other runs). Features which are selected
more often tend to have higher frequency scores (the (Pearson) correlations between both
variables are 0.68 and 0.54 for singh and chiaretti, respectively). We then apply the
following regularization in order to reduce the importance of the selected features with a
low frequency score scf :

R = λf ∗ (1 + α ∗ (1− scf ))||w||2 (16)

with α a meta-parameter determining the amplitude of the differential shrinkage. Features
with a low frequency score are more regularized which is expected to decrease their weight
and thus their importance in the linear predictive models.

6.3 Theoretical Analysis

The hybrid-rfe, introduced in Section 6.1, combines the selection of N features which are
first chosen based on a univariate criterion, and the selection of k − N features which are
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Figure 10: Correlation between the selection frequency pf of feature f with its average
frequency score scf on singh (left) and chiaretti (right).

then found, in a multivariate fashion, by Algorithm 1. In this section, we generalize this
idea and provide a theoretical analysis of the evolution of the stability when Q selection
methods are combined (Q = 2 for the hybrid-rfe). From this analysis, it follows that,
unlike the other measures, the stability φiw is particularly suitable to be optimized along
with predictive accuracy.

Consider the following scenario. For each selection run m, we learn Q independent linear
models on non-overlapping selected feature sets Fq(m):

∑
f∈Fq(m)wf (m)×xf ≥ tq(m), with

the normalization
∑

f∈Fq(m)wf (m) = k̄q. Each of the Q models is found by a given selection
method. The overall prediction model is defined as a fixed linear combination of the Q linear
models:

∑
q δIq

∑
f∈Fq(m)wf (m)×xf ≥ t(m). The parameter δIq modulates the importance

of the selected features from particular selection methods. In this scenario, Property 6 states
that it should be possible to decompose stability in multiple terms, respectively capturing

the stability of each selection method, noted here φqiw. These terms are weighted by
k̄q
k̄
δIq,

such that a selection method q has more weight in the overall stability when it is responsible
for a large fraction of the selected features and when these features are important in the
combined predictive model. This property is proved for φiw in Appendix A under the
assumption that d tends to ∞.

Property 6 Importance weighted decomposition: when combining the non-overlapping se-
lected feature sets of Q different methods, which produce Q models, in a single predictive
model, if features selected by method q have their importance multiplied by δIq in the com-
bined predictive model of each selection run, stability can be expressed as a weighted sum of
the Q prior stabilities:

φiw =

Q∑
q=1

k̄q

k̄
δIqφ

q
iw

with φqiw the stability of method q alone, and δIq the factor such that If,i = δIq × Iqf,i.

As far as the hybrid-rfe is concerned, whenever the N features of the stable set are
less relevant, combining both selections reduces their importance in the predictive models
and increases the importance of the k − N multivariate features (δIq=univariate < 1 and

δIq=RFE > 1). This gives more weight to φq=RFE
iw in Property 6, thus limiting the stability

increase provided by the forced univariate selection of the N features.
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Hamer and Dupont (2020) optimize jointly the measure φ with the predictive accuracy
and show that the quality of the reachable compromises is highly dependent on the stability
of the stable set, rather than on its predictive performance. In general, better compromises
are obtained when the N pre-selected features are stable, even if not relevant to the predic-
tion task. This is caused by the fact that, unlike φiw, the selection of stable, yet marginally
important features increases φ. Indeed, a similar result to Property 6 can be derived for φ
when d tends to ∞:

φ =

Q∑
q=1

k̄q

k̄
φq, (17)

which does not depend on δIq. As a consequence, a good (accuracy, φ) compromise is
not necessarily meaningful, as φ could have been artificially increased by the selection of
stable features which marginally take part in the predictive models. Subset measures, in
general, can not be optimized soundly with predictive accuracy, as is shown experimentally
in Section 7.1.

The measure φpears can not be decomposed in multiple terms under the scenario de-
scribed by Property 6. Still, if we assume that the q methods distribute importance evenly
among their respective selected features (i.e. Iqf,i = 1, ∀f, i, q), the following decomposition
holds when d tends to ∞:

φpears =

∑Q
q=1 δI

2
q k̄qφ

q
pears∑Q

q=1 δI
2
q k̄q

. (18)

In this specific case, the relative contributions of the prior stabilities φqpears to the combined
stability φpears are proportional to δI2

q . Due to this δI2
q factor, the stability φpears, like φiw,

can not be increased by the selection of stable, yet marginally important features. However,
as shown in Section 5.3 and on the illustrative example below, this quadratic dependency
can have some negative consequences.

Consider the following example with Q = 2. Both selection methods distribute im-
portance evenly among their respective selected features. The first method always selects
the same 15 features and is thus perfectly stable: φ1 = φ1

pears = φ1
iw = 1. The second

method always select 5 features but these 5 features never overlap across the M selec-
tion runs. Method 2 is perfectly unstable: φ2 = φ2

pears = φ2
iw = 0, when d tends to

∞. Assume that we combine these two methods and obtain the feature stability map
depicted in Figure 6. This map is obtained with δI1 = 2

3 and δI2 = 2. In this sce-
nario, according to Equation (17), φ = 15

20 × φ1 + 5
20 × φ2 = 0.75. According to Equa-

tion (18), φpears = 1
4 × φ1

pears + 3
4 × φ2

pears = 0.25. Finally, according to Property 6,

φiw = 1
2 × φ1

iw + 1
2 × φ2

iw = 0.5, which is the preferable stability value for such a fea-
ture stability map. Table 2 summarizes the different desirable properties of the considered
stabilities.

7. Experiments

In this experimental section, we study the behavior of the stability measures φ, φpears

and φiw in the context of joint optimization with predictive accuracy (Section 7.1). We
evaluate the stability of classical feature selection approaches according to these measures
in Section 7.2 before briefly comparing their sampling distributions in Section 7.3. In this
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Property φ φpears

Fully defined 3 3

Upper bound 3 ≤ 1 3 ≤ 1

Lower bound 3 ≥ −1
M−1 3 ≥ −1

M−1

Maximum 3 ⇔ Det. sel. 7 ⇔ Linear dep.

Corrected for H0 3 3

Group size
independence

7

The contribution of a
group to φ is prop. to

its size
7

The contribution of a
group to φpears

decreases with its size

Interchangeable
correlated features

7 7

Importance weighted
decomposition

7
Non-weighted
decomposition

7
No general

decomposition

Property φiw φC
Fully defined 3 3

Upper bound 3 ≤ 1 7

Lower bound 3 ≥ −1
M−1 7

Maximum 3 ⇔ Det. imp. 7

Corrected for H0 3 3

Group size
independence

3

The contribution of a
group to φ is

independent of its size
7 Complex

Interchangeable
correlated features

7 3

Importance weighted
decomposition

3 7
No general

decomposition

Table 2: Summary of the properties verified by the stability measures under study. The
measure φ cannot grasp nuances brought by feature importance and do not take
variable correlation into account. The measure φC extends φ to deal with feature
correlations at the expense of the bounds and maximum property. The correlation
measure φpears takes feature importance into account in a way that undesirable be-
haviors can occur (notably in the presence of large correlated groups of variables).
Furthermore, it does not satisfy the maximum property as only a perfect linear
dependency is sufficient to make the measure maximal. Our proposed measure
satisfy the group size independence and importance weighted decomposition prop-
erties which makes it more robust in different scenarios. Still, φiw lacks the ability
to consider highly correlated features as interchangeable (the alternate selection
of highly correlated features creates instability).
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experimental part, we focus on the impact of feature importance on stability rather than on
the effect of feature correlation. We do not evaluate φC here for this reason, and because it
is not bounded which makes any comparison difficult.

7.1 Case Study: Decision Making for Cancer Diagnosis

Let us first study the compromises between accuracy and stability which are achievable
with the hybrid-rfe on five micro-array and one mass spectrometric data sets. We show
here that decision-making is heavily influenced by the choice of the stability measure. In
particular, we show that the Pareto-optimal front is different for each measure and that
optimizing φ or φpears can lead to unsatisfactory feature stability maps. Furthermore,
optimizing both of these measures usually gives a false sense of stability which also hinders
appropriate decision-making. The studied data sets are summarized in Table 3. They
all have a small n (number of samples) to d (number of features) ratio, which generally
causes feature selection methods to be particularly unstable. The learning task consists in
predicting whether or not a patient is suffering from the corresponding disease. As is often
done when dealing with high dimensional data sets, the feature space is first pre-filtered by
removing the features with lowest variance (except for alon and gravier, for which such
a pre-filtering has already been performed). The amount of pre-filtering is found such as
to maximize the predictive performance of the classical rfe (N = 0) and is kept constant
for all experiments. To measure the accuracy and stability obtained with a given set of
meta-parameters, we use the classical bootstrap protocol which draws with replacement M
samples of the same size as the original data set. Each model is evaluated on the out-of-
bag examples and the mean classification accuracy is reported. The selection stability is
evaluated using Equation (1)(φ), (4)(φpears) and (6)(φiw), over the M = 100 resamplings.

We perform experiments using the hybrid-rfe with the additional meta-parameter α, in-
troduced in Section 6.2. The N pre-selected features are ranked according to the considered
univariate criterion and are put, in that order, on top of the rfe ranking at each iteration,
such that their frequency score scf given by Equation (15) is the highest. Increasing α is
thus expected to increase the importance of these N pre-selected features in the predictive
models, as they are less regularized (Equation 16). To limit our analysis to a subset of all
Pareto-optimal points, we assume here that a domain expert aims at maximizing the objec-
tive function o(A,S) = γA + (1− γ)φ , with A the accuracy, φ a particular stability, and
0 ≤ γ ≤ 1 a parameter representing the domain expert’s affinity towards accuracy versus
stability. Intuitively, a given γ value implies a willingness to sacrifice a point in accuracy
if stability can be increased by more than γ

1−γ . Such an objective function restricts our
analysis to the convex hull of the Pareto-optimal curve.

We study in Figure 11 the achievable compromises in the (accuracy, stability) objective
space using the hybrid-rfe on the singh data set. The plain points represent all Pareto-
optimal trade-offs when φ (red), φpears (green) and φiw (blue) are used to assess stability.
They are obtained with the hybrid-rfe with different sets of meta-parameters (N ,λ ,ε and
λf , see Algorithm 1). These plain points are the same across the three subfigures. The three
stabilities start roughly equal at the left of their respective Pareto front, and our measure φiw

can be increased much less than φ and φpearson. The three measures are provably equivalent
whenever the importance of the selected features are always 1. A strong difference among
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name data year n d disease d after fil.

alon micro-array 1999 62 2000 colon cancer 2000

borovecki micro-array 2005 31 22283 Huntington’s 1000

singh micro-array 2002 102 12600 prostate cancer 1250

gravier micro-array 2010 168 2905 breast cancer 2905

chiaretti micro-array 2004 111 12625 leukemia 5000

arcene mass-spectra 2003 198 10000 ovarian/prostate cancer 5000

Table 3: Information on used data sets, from the UCI machine learning repository (arcene)
and from the datamicroarray R package for the others.

the values taken by φ, φpears and φiw suggests that the selection moves away from this
base scenario. We illustrate this phenomenon in the rest of this section. Most importantly,
we show that optimizing φ or φpears respectively leads to situations where φ � φiw and
φpears � φiw, with poorly interpretable feature stability maps.

To this goal, consider the circled points in Figure 11. They are the compromises (A, φ)
(red), (A, φpears) (green) and (A, φiw) (blue) maximizing γA+(1−γ)φ for some 0 ≤ γ ≤ 1
with φ = φ (Figure 11a), φ = φpears (Figure 11b) and φ = φiw (Figure 11c). For instance,
the blue circled points in Figure 11a are the compromises in the (A, φiw) objective space
that correspond to the convex hull of the (A, φ) Pareto-optimal curve. These blue circled
points depart from the (A, φiw) Pareto-optimal curve which consists of the plain blue points.
This implies that the Pareto-optimal curves of φ and φiw are obtained with different meta-
parameters choices, otherwise the two blue curves would coincide in Figure 11a. Figure 11a
also illustrates that increasing φ is not guaranteed to increase φiw or φpears, as the blue
and green circled curves sometimes move back towards lower stability values. The feature
stability maps annotated to Figure 11a clearly show that optimizing φ tends to reduce the
importance of frequently selected features in the predictive models. In other words, φ is
best increased here by the selection of stable features, yet marginally used for prediction.
Figure 11b shows that maximizing φpears is not guaranteed to increase φ or φiw. Optimizing
φpears tends to give large, yet highly varying importances to frequently selected features,
which also hinders sound domain analysis. Finally, optimizing φiw provides a much nicer
feature stability map where features have reasonably constant importance across runs. This
stability map has been obtained by forcing the selection of the 5 features with highest
sample variance and by applying a small differential shrinkage based on the frequency score
scf (α = 0.1).

The choice of the stability measure also influences the predictive performance of the
chosen compromise. On singh, for 0.4 ≤ γ ≤ 0.6, the chosen compromises correspond to
the feature stability maps to the right of each subfigure. Using φ as stability measure gives
the illusion of increasing stability by large amounts, thus more accuracy is sacrificed (here
A ≈ 0.889 for φ (Figure 11a), A ≈ 0.930 for φpears (Figure 11b) and A ≈ 0.934 for φiw

(Figure 11c)). Optimizing φ, and φpears (to a lesser extent here), leads to unsatisfactory
stability maps with lower predictive performance.

Analogous results to the ones presented in Figure 11 for the other data sets are presented
in Appendix D. On most data sets, the Pareto-optimal compromises depend on the choice
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of stability. Even when this is not the case, the choice of measure strongly affects the
willingness of sacrificing accuracy which ultimately leads to different chosen Pareto-optimal
compromises.

7.2 Stability of Standard Feature Selection Methods

The hybrid-rfe algorithm (Algorithm 1 in Section 6.1) is designed to navigate through the
(accuracy, stability) objective space. In Section 7.1, we have shown that using φiw as the
stability measure improves decision-making in such a context. To broaden our analysis, we
study in this section the stability of common feature selection methods: logistic regression
with the lasso or elastic net penalty, random forests, the relief algorithm, and the
standard svm or logistic rfe, which are not designed to explore such a bi-objective space.
Results show that our proposed measure φiw behaves similarly to φ and φpears (but still
provides some additional insights). This indicates that φiw keeps the correct behavior of
well-known measures in standard cases (while being more robust to extreme situations, as
demonstrated in Sections 5.3 and 7.1).

We use additional data sets which are briefly described in Table 4. Biomedical data sets
(from Table 3) are now pruned to 5000 features. We aim at selecting min(20,

√
d) features,

while we set M to 30. We study each selection method independently (aggregated results
are provided in Appendix E).

name year n d name year n d

ionosphere 1989 350 34 gastro 2016 76 698

sonar NA 207 60 lsvt 2014 126 310

breast 1995 568 30

Table 4: Information on the data sets used in this section (in addition to those introduced
in Table 3), from the uci machine learning repository.

7.2.1 The Lasso

The lasso, used in the context of logistic regression, finds the linear model w minimizing

n∑
i=1

log(1 + exp−yi(wxi)) + λ||w||1.

The larger the regularization parameter λ, the fewer features are selected (features with
a non-zero weight). The lasso is known as being an unstable feature selection approach.
This is confirmed in our experiments (see Appendix E for comparative results). Nonetheless,
Figure 12 illustrates that the lasso tends to give more importance (width of the rectangles)
to frequently selected features (features at the left of the maps). This positively affects φiw.
Yet, another kind of instability is often observed with the lasso: the importance given
to each selected feature varies significantly from one selection run to another, which is
penalized by φiw. This behavior tends to make φiw lower than φpears as the latter is less
sensitive to such an instability. Table 5 summarizes the compromises achievable by the
lasso for the three considered stabilities.
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(a) Optimizing φ

(b) Optimizing φpears

(c) Optimizing φiw

Figure 11: Pareto-optimal curves (plain points) for φ (red), φpears (green) and φiw (blue),
obtained with the hybrid-rfe on the singh data set. The circled points are the
compromises (A, φ) (red), (A, φpears) (green) and (A, φiw) (blue) maximizing
γA+(1−γ)φ for some 0 ≤ α ≤ 1 with φ = φ (a), φ = φpears (b) and φ = φblue

(c). The map to the right of each subfigure is chosen with 0.40 ≤ γ ≤ 0.60 (a),
0.35 ≤ γ ≤ 0.70 (b) and 0.35 ≤ γ ≤ 0.80 (c). The optimal trade-off found along
Pareto-curves in the (accuracy, stability) space clearly depends on the stability
measure used and results into strongly different feature stability maps.
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Figure 12: Typical feature stability map of the lasso (on singh (left) and lsvt(right)).
The lasso regularization parameter is chosen to select min(20,

√
d) features on

average, but the specific number of selected features here varies across runs. The
lasso gives larger importances (width of the rectangles) to frequently selected
features (features at the left of the maps). Yet, feature importance is highly
varying.

data A φ φpears φiw data A φ φpears φiw

ion 0.85 0.74 0.91 0.76 son 0.73 0.44 0.52 0.37

bre 0.95 0.71 0.91 0.78 gas 0.82 0.27 0.28 0.21

lsv 0.84 0.4 0.51 0.38 alo 0.8 0.2 0.23 0.17

sin 0.91 0.31 0.57 0.37 chi 0.81 0.3 0.36 0.27

gra 0.73 0.18 0.22 0.15 arc 0.72 0.14 0.21 0.14

bor 0.94 0.12 0.16 0.10

Table 5: Stability of the lasso on all considered data sets.

7.2.2 Elastic-Net penalty

The elastic net penalty is a direct generalization to the lasso penalty which minimizes
the linear combination of the L1 and L2 loss

n∑
i=1

log(1 + exp−yi(wxi)) + λ1(λ2||w||1 + (1− λ2)||w||2). (19)

It is purely equivalent to the lasso when λ2 = 1. Figure 13 studies the dependency
of the accuracy and stability on the parameter λ2. Each line depicts the evolution of a
stability measure with (from left to right) a decreasing λ2 parameter. All three stability
measures increase when departing from the pure lasso selection (λ2 = 1). On some data
sets (notably singh, alon, lsvt), increasing the L2 regularization also first increases the
accuracy. Then, as λ2 continues to decrease, the accuracy starts to drop. On other data
sets, such as gravier, the accuracy drops directly when departing from the lasso selection.
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φ
φiw
φpears

Figure 13: Evolution of the (accuracy, stability) compromises obtained with logistic regres-
sion with an elastic net penalty. The reported stability measures are φ, φpears

and φiw. Each line starts with λ2 = 1 (lasso) which decreases by 0.1 at each
point. Stability is increased when λ2, the weight of the L1 loss in Equation (19),
decreases. This stability increase sometimes comes at the cost of predictive
accuracy.

7.2.3 Logistic rfe

The logistic rfe is illustrated by Algorithm 1, without any feature pre-selection (N=0).
Equation (19) with λ2 = 0 is iteratively minimized and the least significant features are
dropped at each iteration. After the selection procedure, which uses a given regularization
parameter λ, Equation (19) is minimized again with a different regularization λf for learning
the predictive model. Increasing λf tends to increase φiw and φpears as it reduces the
instability of the importance of the selected features. As λf does not influence the identity
of the selected features, φ remains unchanged with its variations. This phenomenon is
illustrated in Figure 14 which has been obtained on the lsvt data set. Increasing the
regularization parameter λ used during the selection improves all stability measures. When
λf is low (left of each line), φiw is much lower than φ due to the instability that occurs
during the learning of the final model. Increasing λf first increases both the accuracy
and φiw before the accuracy finally starts to drop, as a too strong regularization prevents
the learning of an adequate model. We observed a very similar behavior for the svm-rfe
algorithm, even though the latter is generally more unstable (see Appendix E).

7.2.4 Random Forests

Random forests can be used for feature selection as well. Feature importance is computed
by randomly permuting the features in the out-of-bag samples of each of the T trees and by
computing the predictive accuracy decrease these permutations imply (Breiman, 2001; Paul
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φ
φiwφpears

Figure 14: Typical results of the logistic rfe (on lsvt). The reported stability measures
are φ, φpears and φiw. Each line starts (from the left) with a low final regu-
larization parameter λf , which is gradually increased. A larger λf stabilizes
feature importance and improves φpears and φiw. Increasing the regularization
λ improves all three stability measures.

et al., 2013). The features whose removal causes the largest accuracy decrease are selected
and a new random forest is learned on those features only.

Figure 15 depicts the (accuracy, stability) trade-offs that are achievable on all data sets.
Stability is clearly increased when the forest size grows before converging for T ≈ 1000.
Accuracy also tends to be increased and to converge faster than stability which is consistent
with the results of (Paul et al., 2012). Figure 16 illustrates typical feature stability maps
obtained with random forests, here on gastro, with T = 10 (left) and T = 3000 (right).
Clearly, increasing the size of the forests both stabilizes the selection of the feature subsets
and the importance of the selected features. Large forests produce much more interpretable
feature stability maps.

7.2.5 Relief algorithm

The relief algorithm is a multi-variate filter approach (Kira et al., 1992). Feature scores
are computed based on feature value differences between neighbor examples. We consider
here a version of the relief where K nearest instances have equal weights.7 The predictive
model is a standard K nearest neighbor classifier with majority voting. As can be seen in
Figure 17, stability is largely influenced (and often increased) by the number K of considered

7. We use the CORElearn R package for this purpose.
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φ
φiwφpears

Figure 15: (accuracy, stability) compromises reachable with random forests. The reported
stability measures are φ, φpears and φiw. Each line starts (from the left) with
forests of only three trees. The forest size is gradually increased up to 3000 trees.
Larger forests are more stable and have a better predictive accuracy.

Figure 16: Feature stability maps of random forests on gastro with T = 10 (left) and
T = 3000 (right). Increasing the size of the random forests produces more
interpretable feature stability maps.
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φ
φiw
φpears

φ
φiw
φpears

Figure 17: (accuracy, stability) compromises of the relief algorithm. The reported sta-
bility measures are φ, φpears and φiw. Each line starts (from the left) with only
one neighbor considered. This number is gradually increased up to 40 which
increases stability in most cases.

neighbors. Typical features maps obtained with the relief (here on sonar with K = 1
(left) and K = 25 (right)) are depicted in Figure 18. In the right map, φiw is higher than
φ, as frequently selected features have high importances and these importances are quite
constant across selection runs.

7.3 Variability of the Stability Measures

Taking into account the importance of selected features in the stability value creates an
additional degree of variability that could result in unreliable stability estimation when the
number of selection runs M is small. We show here that this added variability is usually
small. Furthermore, the variability of our measure φiw is generally lower than the variability
of φpears. Figure 19 depicts the variation coefficients cv(, σ

µ) of φ, φpears and φiw, when
200 stability estimates are measured using M = 5 with the lasso. As the lasso exhibits
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Figure 18: Feature stability maps of the relief on sonar with K = 1 (left) and K = 25
(right).

the largest feature importance variability, it best highlights the differences between stability
measures. On 6 of the 11 data sets, cv,φ < cv,φiw < cv,φpears , there is no noticeable difference
on 4, and on ionosphere only, cv,φpears < cv,φiw < cv,φ. Using importance-based measures
indeed creates an additional uncertainty in the stability value, but our proposed measure
φiw is, in general, less impacted than φpears. The sampling distributions of all three measures
are approximately normally distributed, as illustrated in Figure 20.

φ
φiwφpears

Figure 19: Variation coefficients of the stability measures obtained with the lasso regres-
sion on M = 1000 selection runs. Stability estimates are found by aggregat-
ing groups of 5 runs (thus producing 200 of such estimates). In most cases,
cv,φ < cv,φiw < cv,φpears .
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φ
φiw
φpears

φ
φiw
φpears

Figure 20: Sampling distributions of the stability measures obtained with the lasso regres-
sion on M = 1000 selection runs, for gastro (left) and lsvt (right). Stability
estimates are found by aggregating groups of 5 runs (thus producing 200 of
such estimates). These sampling distributions are approximately normally dis-
tributed.

8. Conclusions and Perspectives

The typical instability of standard feature selection methods is a key concern nowadays as
it reduces the interpretability of the predictive models as well as the trust of domain experts
towards the selected feature subsets. Such experts would often prefer a more stable feature
selection algorithm over an unstable but possibly slightly more accurate one.

To tackle this issue, predictive accuracy and selection stability are here jointly optimized
in a bi-objective framework. Pareto-optimal trajectories are derived, from which domain
experts can choose a particular compromise based on their personal preferences. In this
context, adequately measuring stability is necessary for domain experts to make informed
decisions. While most measures proposed in the literature study the stability of feature
subsets, we incorporate into the stability value the selected features importance in predic-
tive models. In particular, we propose a generic way to evaluate the importance of each
selected feature in a predictive model and to consider the variability of this importance as
an additional source of instability.

Our proposed measure φiw is shown to improve decision-making when stability is jointly
optimized with predictive accuracy. Indeed, we show that using current measures in such
a bi-objective context can lead to unsatisfactory results and often gives a false sense of
stability which hinders appropriate decision-making. We demonstrate this phenomenon
both theoretically and experimentally on micro-array and mass-spectrometric data. The
proposed measure is also shown to correct for under- or over-estimation of stability in
feature spaces with groups of highly correlated variables. While current measures are very
sensitive to the size of such groups, we formally prove and validate on simulated data that
our measure is not.

We also propose a simple visualization tool, referred to as feature stability maps, which
allows the intuitive estimation of stability across several runs of feature selection. Inspection
of such feature stability maps allows the identification of the most reliably identified features
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along with the most important features in the predictive models. Features combining both
properties are likely to be particularly appealing to domain experts.

Even though our proposed measure is shown to improve the behavior of current measures
when the feature space is composed of highly correlated feature groups, it still lacks the
ability to consider highly correlated features as interchangeable, i.e. the alternate selection
of highly correlated features still creates instability. Our future work includes the design
of an improved stability measure, which would both directly be function of the selected
features correlation and incorporate feature importance.
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Appendix A. Proof of Properties

In this appendix, we prove the 6 properties satisfied by our proposed stability measure

φiw =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

|Fi ∩ Fj |iw − |Fi ∩ Fj |rand
iw

k̄ − C
(20)

with

|Fi ∩ Fj |iw =
∑

f∈Fi∩Fj

min (If,i, If,j), |Fi ∩ Fj |rand
iw =

1

d

∑
f∈Fi,f ′∈Fj

min(If,i, If ′,j)

and

C =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

|Fi ∩ Fj |rand
iw .

Property 1 Fully defined: the measure is defined for every possible importance combina-
tions.

Proof
For φiw to be undefined, the corrective term C must be equal to k̄, such that the denominator
of Equation (20) is equal to 0. As feature importances are normalized such that

∑
f If,i =

k̄, ∀1 ≤ i ≤M , |Fi ∩ Fj |rand
iw is upper bounded by k̄, ∀i, j. Indeed, such a normalization

implies ∑
f ′∈Fj

min(If,i, If ′,j) ≤ k̄, ∀f ∈ Fi.

As there are at most d features selected in run i,

|Fi ∩ Fj |rand
iw =

1

d

∑
f∈Fi

∑
f ′∈Fj

min(If,i, If ′,j) ≤
1

d
dk̄ ≤ k̄.

For the inequality not to be strict, all d features must be selected in both selection runs
and the importances must all be equal such that min(If,i, If ′,j) = If,i = If,i ∀f, f ′ or no
feature must be selected in both runs (as we posed |Fi ∩ Fj |rand

iw = k̄ in this situations). It
then follows that φiw is well defined unless all features are always selected with a constant
(= 1) importance in each run, or no feature is ever selected.

Property 2 Maximum stability ⇔ deterministic importance

Proof For φiw to be maximal (= 1, see Property 3), |Fi ∩ Fj |iw must be equal to k̄ ∀i, j.
This condition is equivalent to If,i = If,j ∀f, i, j. In other words, φiw is maximal when the
importance of each feature is constant across selection runs. We refer to such a situation
as deterministic.
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Property 3 Bounds: the measure is bounded by constants not dependent on the overall
number of features d or on the average number of features selected k̄.

Proof Our measure φiw, defined in Equation (6), can be trivially restated as

φiw =

(
2

M(M−1)

∑M
i=1

∑M
j=i+1 |Fi ∩ Fj |iw

)
− C

k̄ − C
.

As |Fi ∩ Fj |iw ≤ k̄ ∀i, j, this implies 2
M(M−1)

∑M
i=1

∑M
j=i+1 |Fi ∩ Fj |iw ≤ k̄. The measure

φiw is thus upper bounded by 1. The proof of the lower bound is more complex. Referring
to

A =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

|Fi ∩ Fj |iw,

we first use the chain of equivalence:

φiw ≥
−1

M − 1
⇔ A− C

k̄ − C
≥ −1

M − 1
⇔ M

M − 1
C−A ≤ k̄

M − 1
⇔M2C−M(M −1)A ≤Mk̄.

We maximize M2C −M(M − 1)A using linear programming and show that the optimal
solution cannot exceed Mk̄.

maximize
M

M − 1

1

d

∑
i

∑
j 6=i

∑
f

∑
f ′

zijff ′ −
∑
i

∑
j 6=i

∑
f

zijff

subject to zijff ′ − wif ≤ 0
zijff ′ − wjf ′ ≤ 0
zijff − wif ≥ 0
zijff − wjf ≥ 0∑

f wi,f = k̄ ∀i
zijff ′ ≥ 0, wif ≥ 0

The first four constraints impose that zijff ′ = min(wi,f , wj,f ′). As the sign of zijff ′ in
the objective is positive, at least one of the first two constraints will always be tight. The
same is true for the 3rd and 4th constraints, as the sign of zijff is negative in the objective
( M
M−1

1
d − 1 ≤ 0 with d ≥ 2,M ≥ 2). This leads to the following dual formulation.

minimize
∑
i

k̄Wi

subject to yijff ′1 + yijff ′2 ≥
M

M − 1

1

d
for f 6= f ′

yijff1 + yijff2 ≥ M
M−1

1
d − 1

−
∑

j 6=i
∑

f ′ yijff ′1 −
∑

i 6=j
∑

f ′ yijff ′2 +Wi ≥ 0 ∀i, f
yijff ′. ≥ 0, yijff. ≤ 0
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The assignment yijff ′. = M
M−1

1
2d , yijff. = M

M−1
1
2d −

1
2 , Wi = M is a solution to the

problem. The first two constraints are trivially satisfied. One can check that the third one
is also satisfied:

−
∑
j 6=i

∑
f ′

yijff ′1 −
∑
i 6=j

∑
f ′

yijff ′2 +Wi = (−(M − 1)d
M

M − 1

1

2d
)× 2 +M = 0.

This solution has an objective value of Mk̄. As a consequence, the optimal value of the
primal formulation is upper bounded by Mk̄.

Property 4 Correction for chance: the measure is constant in expectation (here set to 0)
when features are selected randomly.

Proof The average contribution to |Fi ∩ Fj |iw that a feature selected in both runs i and j
imply is ∑

f∈Fi,f ′∈Fj
min(If,i, If,j)

kikj
.

If features were to be selected at random (i.e. under the null model of feature selection
H0, defined in Section 2.1 as the situation where every possible feature subset has an equal
probability to be selected.), there would be, on average,

kikj
d of such jointly selected features.

Then,

|Fi ∩ Fj ||H0

iw =
1

d

∑
f∈Fi,f ′∈Fj

min(If,i, If,j) = |Fi ∩ Fj |rand
iw .

Also, in the special cases where ki, kj or both are equal to 0, |Fi ∩ Fj |iw = |Fi ∩ Fj |rand
iw .

Under H0, the numerator of Equation (6) would then be equal to 0, making φiw|H0 = 0.

Property 5 concerns the behavior of stability when the feature space is composed of
highly correlated feature groups, which is studied in details in Section 5.3. It formalizes
why our proposed measure φiw can remain approximately independent from the correlated
groups sizes in the two first scenarios studied in that section (Figures 8a and 8b), where
the group lasso is used for feature selection. We prove that φiw satisfies Property 5 under
the following assumptions: 1) the importance of each group is deterministically distributed
among their respective selected features and 2) d tends to ∞.

Property 5 Group size independence: whenever perfectly correlated feature groups are se-
lected as a whole, stability depends only on the groups’ cumulative importance, not on the
group sizes.

Proof According to the assumptions (1) and (2) above, it follows that the importance of
feature f , which belong to group g, in selection run i, satisfies

If,i = I1
g,i

k̄

k̄1cg
δf (21)
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with I1
g,i the importance of the group g in run i whenever the group size cg is reduced to 1,

k̄1 the average number of selected features in this reference scenario, and δf the constant
fraction of importance feature f has in group g (0 ≤ δf ,

∑
f∈g δf = 1). One can easily verify

that Equation (21) satisfy the normalization constraint

d∑
f=1

I1
f,i = k̄1, ∀i⇒

d∑
f=1

If,i = k̄, ∀i.

Let I∗f be, as in Equation (10), equal to
∑M

i,j=1
min(If,i,If,j)

|zf,. 6=0|2 , where |zf,. 6= 0| is the number

of runs where feature f is selected. Similarly, let I∗,1g =
∑M

i,j=1

min(I1g,i,I
1
g,j)

|zf,. 6=0|2 . It follows that

I∗f =
1

|zf,. 6= 0|2
∑
i,j

min(I1
g,i

k̄

k̄1cg
δf , I

1
g,j

k̄

k̄1cg
δf ) =

k̄
k̄1cg

δf

|zf,. 6= 0|2
∑
i,j

min(I1
g,i, I

1
g,j) =

k̄

k̄1cg
δfI
∗,1
g .

Then, using Equation (10),

∑
g

∑
f∈g

I∗fp
2
g =

∑
g

p2
g

k̄

k̄1cg

∑
f∈g

δfI
1,∗
g =

∑
g

p2
g

k̄

k̄1
I∗,1g ⇒

φiw = 1−
k̄ −

∑
g

∑
f∈g I

∗
fp

2
g

k̄ − C
= 1−

k̄ − k̄
k̄1

∑
g I
∗,1
g p2

g

k̄cg − C
= 1−

k̄1 −
∑

g I
∗,1
g p2

g

k̄1 − C
= φ1

iw,

with φ1
iw the stability of the reference scenario where the group sizes cg are all equal to 1.

In Section 6.3, we study the behavior of φ, φpears and φiw when different feature selec-
tion methods are combined. Combining different selection methods allows the exploration
of part of the (accuracy, stability) objective space whenever they produce different (accu-
racy, stability) trade-offs. This is illustrated in Section 7.1 with the hybrid-rfe (introduced
in Section 6.1) which combines the classical logistic rfe and a more stable, yet less accu-
rate, univariate criterion. Property 6 states that the contribution of each of the combined
selection methods to the stability should be proportional to the importance of their selected
features in the global predictive model. We prove Property 6 for φiw under the assumption
that d tends to ∞. One of the consequence of this result is that φiw, unlike φ, cannot be
increased by the selection of stable, yet marginally important features (see Section 7.1 for
practical evaluations).
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Property 6 Importance weighted decomposition: when combining the non-overlapping se-
lected feature sets of Q different methods, which produce Q models, in a single predictive
model, if features selected by method q have their importance multiplied by δIq in the com-
bined predictive model of each selection run, stability can be expressed as a weighted sum of
the Q prior stabilities:

φiw =

Q∑
q=1

k̄q

k̄
δIqφ

q
iw

with φqiw the stability of method q alone, and δIq the factor such that If,i = δIq × Iqf,i.

Proof Assuming that d tends to ∞, we can neglect the correction for chance terms, such
that

φiw =
2

M(M − 1)

∑M
i=1

∑M
j=i+1 |Fi ∩ Fj |iw

k̄
.

As there is no feature intersections between the sets selected by the Q methods, one can
write

|Fi ∩ Fj |iw =
∑
q

∑
fq

min(Iqf,iδIq, I
q
f,jδIq) =

∑
q

δIq
∑
fq

min(Iqf,i, I
q
f,j) =

∑
q

δIq|Fi ∩ Fj |qiw.

Then,

φiw =
2

M(M − 1)

∑
q

δIq

∑M
i=1

∑M
j=i+1 |Fi ∩ Fj |

q
iw

k̄
⇒

φiw =
∑
q

k̄q

k̄
δIq

2

M(M − 1)

∑M
i=1

∑M
j=i+1 |Fi ∩ Fj |

q
iw

k̄q
=
∑
q

k̄q

k̄
δIqφ

q
iw

To keep the normalization
∑

f If,i = k̄,∀i correct, the δIq values must verify

∑
q

k̄q

k̄
δIq = 1

such that ∑
f

If,i =
∑
q

δIq
∑
fq

Iqf,i =
∑
q

δIqkq = k̄.
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Appendix B. Proof of Theorems

In this Appendix, we prove Theorem 2, Theorem 3 and Equation (10).

Theorem 2 Whenever the importance of all selected features is evenly distributed between
them in any given run,

φiw =
µM [

k̄|Fi∩Fj |
max(ki,kj) ]− k̄

dµM [
kikj

max(ki,kj) ]

k̄ − k̄
dµM [

kikj
max(ki,kj) ]

with µM (g(i, j)) = 2
M(M−1)

∑M
i=1

∑M
j=i+1 g

∗(i, j), g∗(i, j) = 1 if ki = kj = 0, g(i, j) other-
wise.

Proof As feature importance is constant inside each selection run, according to the nor-
malization

∑
f If,i = k̄, ∀i, the importance of a feature in selection run i is equal to k̄

ki
.

Starting from |Fi ∩ Fj |iw =
∑

f min (If,i, If,j), we get

|Fi ∩ Fj |iw =
∑

f∈Fi∩Fj

min(
k̄

ki
,
k̄

kj
) =

k̄|Fi ∩ Fj |
max(ki, kj)

.

Also,

|Fi ∩ Fj |rand
iw =

1

d

∑
f∈Fi,f ′∈Fj

min(If,i, If,j) =
1

d
kikj min(

k̄

ki
,
k̄

ki
) =

k̄

d

kikj
max(ki, kj)

.

Theorem 3 Whenever the importance of all selected features is evenly distributed between
them in any given run and the number of selected features is constant across the M runs,

φiw =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

|Fi ∩ Fj | − k̄2

d

k̄ − k̄2

d

,

which is the usual expression of the Kuncheva index.

Proof Using Theorem 2 and posing ki = k̄ ∀i, we get k̄
max(ki,kj) = 1 and

kikj
d = k̄2

d . Then,

φiw =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

|Fi ∩ Fj | − k̄2

d

k̄ − k̄2

d

which is the usual expression of the Kuncheva index. As the Kuncheva index is equivalent
to φ when the number of selected features is constant, so is φiw.

We further prove the frequency-based restatement of φiw (Equation 10):
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φiw = 1−
M
M−1(k̄ −

∑d
f=1 I

∗
fp

2
f )

k̄ − C
= 1−

∑d
f=1 I

∗
fs

2
f + M

M−1(k̄ −
∑

f I
∗
fpf )

k̄ − C
with pf the selection frequency of feature f in the M runs, s2

f , M
M−1pf (1−pf ) its selection

variance and I∗f =
∑M

i,j=1
min(If,i,If,j)

|zf,. 6=0|2 a properly normalized global feature importance,

where |zf,. 6= 0| is the number of runs where feature f is selected. In the following proof,
zf,i is the Bernouilli variable indicating the selection or non-selection of feature f in selection
run i.
Proof We first develop the average pairwise similarity between selection runs:

1

M(M − 1)

M∑
i=1

M∑
j=1,j 6=i

|Fi ∩ Fj |iw =
1

M(M − 1)

M∑
i=1

M∑
j=1,j 6=i

d∑
f=1

min(If,i, If,j)zf,izf,j

=
1

M(M − 1)

M∑
i=1

M∑
j=1

d∑
f=1

min(If,i, If,j)zf,izf,j −
1

M(M − 1)

M∑
i=1

d∑
f=1

Ii,fzi,fzi,f =

1

M(M − 1)

d∑
f=1

M2I∗fp
2
f −

k̄

M − 1
=

M

M − 1

d∑
f=1

I∗fp
2
f −

k̄

M − 1
=

M

M − 1

d∑
f=1

I∗fpf −
d∑

f=1

I∗fs
2
f −

k̄

M − 1
.

Injecting into φiw,

φiw =
2

M(M − 1)

M∑
i=1,j>i

|Fi ∩ Fj |iw − |Fi ∩ Fj |rand
iw

k̄ − C
=

1
M(M−1)(

∑M
i=1,j 6=i |Fi ∩ Fj |iw)− C
k̄ − C

=
( M
M−1

∑d
f=1 I

∗
fpf −

∑d
f=1 I

∗
fs

2
f −

k̄
M−1)− C

k̄ − C

=
( M
M−1

∑d
f=1 I

∗
fpf −

∑d
f=1 I

∗
fs

2
f −

Mk̄
M−1) + k̄ − C

k̄ − C

= 1−
∑d

f=1 I
∗
fs

2
f + M

M−1(k̄ −
∑

f I
∗
fpf )

k̄ − C
.
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Appendix C. Time Complexity of the Correction for Chance

In this Appendix, we propose an algorithm which computes the corrective term C in the
definition of φiw in O(M2k̄+Mk log(k)), with k log(k) = 1

M

∑M
i=1 ki log(ki). As a reminder,

C is defined as

C =
2

M(M − 1)

M∑
i=1

M∑
j=i+1

1

d

∑
f∈Fi,f ′∈Fj

min(If,i, If ′,j).

Algorithm 2 Computing C.

1: procedure C(F , I,M) . O(M2k̄ +Mk log(k))
2: for i ∈ 1:M do . O(Mk log(k))
3: Ii ← sort(Ii) . O(ki log(ki))
4: Isumi[l]←

∑
p≤l Ii[p] ∀1 ≤ l ≤ ki . O(ki)

5: C ← 0
6: for i, j ∈ 1 : M do . O(M2k̄)
7: C ← 0, |Fi ∩ Fj |rand

iw ← 0, ci = 0
8: for cj ∈ 1:kj do . O(ki + kj)
9: while ci < ki & Ii[ci + 1] < Ij [cj ] do

10: ci ← ci + 1

11: if ci == 0 then
12: |Fi ∩ Fj |rand

iw + = Ij [1]× ki
13: else
14: if ci == ki then
15: |Fi ∩ Fj |rand

iw + = Isumi[ki]
16: else
17: |Fi ∩ Fj |rand

iw + = Isumi[ci] + (ki − ci)× Ij [cj ]
18: C ← C + |Fi ∩ Fj |rand

iw /M2

19: return C
d

The computational complexities are reported in the comments of the main steps of this
algorithm. We first sort the selected features by increasing importance for each selection
run and store the cumulative importance of the first l features in Isumi[l]. Then, for each
pair of runs, we can compute

∑
f∈Fi,f ′∈Fj

min(If,i, If ′,j) by traversing each sorted array of
features once. The invariant of the for loop on line 8 is the following:

|Fi ∩ Fj |rand
iw =

∑
f∈Fi,f ′∈Fj [1:(cj−1)]

min(If,i, If ′,j).

After the while loop on line 9 is executed, ci is equal to the biggest importance in run i
lower than Ij [cj ], the importance of the feature of run j considered at this iteration of the
for loop. The sum of minimums

∑
f∈Fi,f ′=Fj [cj ] min(If,i, If ′,j) can then be decomposed
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into two terms (the cases where ci = 0 or ci = ki are handled explicitly in the algorithm):∑
f∈Fi[1:ci],f ′=Fj [cj ]

min(If,i, If ′,j) +
∑

f∈Fi[(ci+1):ki],f ′=Fj [cj ]

min(If,i, If ′,j) = Isumi[ci] + (ki − ci)Ij [cj ].

Appendix D. Decision Making for Cancer Diagnosis

This Appendix further studies the behavior of the measures φ, φpears and our measure φiw

in the context of joint optimization with predictive accuracy. As detailed in Section 7.1, φ
is best increased by the selection of stable features, yet marginally used for prediction, while
optimizing φpears can give highly varying importances to the selected features (example in
Figure 11). Optimizing our proposed measure leads to more satisfactory feature stability
maps with higher predictive performance.

This Appendix presents the results obtained with the hybrid-rfe on the data sets
borovecki (Figure 21), chiaretti (Figure 22), alon (Figure 23), gravier (Figure 24)
and arcene (Figure 25). As in Figure 11 in Section 7.1 (on singh), the plain points in the
figures below represent all Pareto-optimal trade-offs when φ (red), φpears (green) and φiw

(blue) are used to assess stability. The circled points are the compromises (A, φ) (red),
(A, φpears) (green) and (A, φiw) (blue) maximizing γA + (1 − γ)φ for some 0 ≤ γ ≤ 1
with φ = φ (a), φ = φpears (b) and φ = φiw (c). The Pareto-optimal fronts obtained
when each measure is optimized are in general different. This illustrates that optimizing
φ or (to a lesser extent here) φpears is not guaranteed to increase φiw, which can lead to
unsatisfactory results (see feature stability maps of Figure 11). Even when Pareto-fronts
are approximately identical, the γ values corresponding to each compromise can vary sig-
nificantly (ex: chiaretti (Figure 22) for φpears and φiw) which ultimately leads to different
chosen trade-offs.
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(a) Optimizing φ

(b) Optimizing φpears (c) Optimizing φiw

Figure 21: Pareto-optimal curves for φ (red), φpears (green) and φiw (blue), obtained with
the hybrid-rfe on the borovecki data set. From (a), it is clear that increasing
φ do not necessarily increase φpears and φiw. Furthermore, accuracy is sacrificed
for γ values much bigger when φ is optimized. Using φ to estimate stability
gives a false sense of stability and may convince domain experts to sacrifice
more predictive performance, even though the more robust measure φiw is barely
increased. For this data set, only small differences are observed when optimizing
φpears or φiw.
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(a) Optimizing φ

(b) Optimizing φpears

(c) Optimizing φiw

Figure 22: Pareto-optimal curves for φ (red), φpears (green) and φiw (blue), obtained with
the hybrid-rfe on the chiaretti data set.
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(a) Optimizing φ

(b) Optimizing φpears

(c) Optimizing φiw

Figure 23: Pareto-optimal curves for φ (red), φpears (green) and φiw (blue), obtained with
the hybrid-rfe on the alon data set.
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(a) Optimizing φ

(b) Optimizing φpears

(c) Optimizing φiw

Figure 24: Pareto-optimal curves for φ (red), φpears (green) and φiw (blue), obtained with
the hybrid-rfe on the gravier data set.
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(a) Optimizing φ

(b) Optimizing φpears

(c) Optimizing φiw

Figure 25: Pareto-optimal curves for φ (red), φpears (green) and φiw (blue), obtained with
the hybrid-rfe on the arcene data set.
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Appendix E. Stability of Standard Feature Selection Methods

In this Appendix, the aggregated results of Section 7.2 are depicted. They compare the
stability of logistic regression with a lasso or elastic net penalty, the logistic rfe, the
svm-rfe, random forests and the relief algorithm. For the sake of readability, we compare
φ and φiw only. Both stability measures φ and φiw have similar values most of the times.
This illustrates that φiw tends to behave like φ in standard scenarios. Selection methods
that are the most present in the overall Pareto front, hence offering a best trade-off between
predictive accuracy and stability, are the random forests and the logistic rfe while the
lasso, the relief and the svm-rfe seems the most unstable methods.
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Figure 26: Comparison of φ and φiw of the elastic net, the lasso, random forests, the
logistic rfe, the svm-rfe and the relief on the ionosphere and sonar data
sets.
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Figure 27: Comparison of φ and φiw of the elastic net, the lasso, random forests, the
logistic rfe, the svm-rfe and the relief on the breast, gastro and lsvt data
sets.
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Figure 28: Comparison of φ and φiw of the elastic net, the lasso, random forests, the
logistic rfe, the svm-rfe and the relief on the alon, singh and chiaretti

data sets.
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Figure 29: Comparison of φ and φiw of the elastic net, the lasso, random forests, the
logistic rfe, the svm-rfe and the relief on the gravier and arcene data sets.
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