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Optimal transport has recently been reintroduced to the machine learning community
thanks in part to novel efficient optimization procedures allowing for medium to large scale
applications. We propose a Python toolbox that implements several key optimal transport
ideas for the machine learning community. The toolbox contains implementations of a
number of founding works of OT for machine learning such as Sinkhorn algorithm and
Wasserstein barycenters, but also provides generic solvers that can be used for conducting
novel fundamental research. This toolbox, named POT for Python Optimal Transport, is

open source with an MIT license.
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1. Introduction and motivations

Optimal Transport (OT) is a field of mathematics which studies the geometry of proba-

bility spaces. Among its many contributions,

OT provides a principled way to compare
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and align probability distributions by taking into account the underlying geometry of the
considered metric space. Examples where this approach is useful in machine learning (ML)
are ubiquitous and include, for instance, prominent tasks such as training generative adver-
sarial networks (GANs) (Arjovsky et al., 2017) where OT was successfully used to overcome
the vanishing gradient problem, and domain adaptation (Courty et al., 2016) where its ca-
pacity to align two distributions was used to transfer a classifier across different domains.
Other examples showing the versatility of OT are given by the averaging of population
data in neuroscience (Gramfort et al., 2015), shape reconstruction (Bonneel et al., 2016)
and learning word embeddings in natural language processing (Kusner et al., 2015). The
success of OT in different scientific areas resides in two main features. On the one hand,
OT-based Wasserstein distance compares favourably to popular f-divergences including
popular Kullback-Leibler, Jensen-Shannon divergences and Total Variation distance, when
the support of the two distributions is disjoint. On the other hand, and contrary to other
popular integral probability metrics (IPMs) such as maximum mean discrepancy (MMD),
the solution of the OT problem is given by a probabilistic (coupling) function that provides
soft-assignments between the points in the supports of the two distributions, which can
be used for their further matching. We refer the interested reader to the book of Villani
(2008) for a complete theoretical treatment, and to the book of Peyré and Cuturi (2018)
for a more comprehensive study on OT’s computational aspects. With growing interest of
the machine learning community in optimal transport, it is important to provide a simple
and efficient framework with several OT solvers. We choose to conduct its development in
the Python programming language, for its wide use in the machine learning community. Its
high-level interactive nature makes it an appealing tool for both academic and industrial
software developments, and several popular machine learning libraries (Pedregosa et al.,
2011) and deep learning open source frameworks (Paszke et al., 2019; Abadi et al., 2015)
are built upon it.

The Python Optimal Transport (POT) library takes advantage of Python to make
Optimal Transport accessible to the machine learning community. It provides state-of-the-
art algorithms to solve the regular OT optimization problems, and related problems such
as entropic Wasserstein distance with Sinkhorn algorithm or barycenter computations. As
POT is designed to be user focused and friendly, we have kept our toolbox easy to use
and accessible with convention consistencies and syntax over all the available functions.
Moreover, our toolbox depends only on standard open source libraries. Available under an
MIT license, it is usable under many operating systems such as Linux, MacOSX or Windows.
Furthermore, the generic solvers relying on for OT variants (group lasso regularization,
Gromov Wasserstein) can also be used for solving novel OT formulations in fundamental
research. Finally, we provide new users a quick start guide for POT in the documentation
and several examples and notebooks for our different solvers. POT is greatly appreciated
in the machine learning community, with more than 5K downloads each month on PyPI.

2. Existing Optimal Transport solvers

There exist several open-source optimal transport solvers, but most of them are compan-
ion codes of papers and are either outdated or not currently maintained. For instance,
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we can mention the codes of Chizat Package
(2016), which addresses unbalanced opti- E?\agrcs P?T | OTi“ha | OfT | GeomLoss
mal transport, and of Farchi (2016), who | EMD Variants (multiscale) v
_ : Sinkhorn v v v v
proposes a Benam(?u Brenier OT solYer. il Sinkhorn Y Y y Y
From our perspective, the two most im- | Unbalanced/Partial OT v v )
portant current solvers are the OT Tool- | Resularized OT v )
] Wasserstein Barycenter v v v (V)
box (OTT) (Schmitzer, 2018) and the | Gromov-Wasserstein v
. Sliced Wasserstein v
OTJulia package (Zhang et al., 2020). | . Adaptation v
The OT Toolbox proposes several OT | GPU implementation ) v

solvers based on a C++ implementation
with a Python binding. This toolbox has
limited documentation, is rarely updated
and is still considered a preliminary version. The OTJulia is a more complete package that
can be seen as a Julia counterpart of POT. It implements several OT solvers with detailed
documentation, but still misses some features related to recent algorithmic developments,
and interestingly is a wrapper around POT for its exact EMD OT solver. Finally, GeomLoss
(Feydy et al., 2019) is a more specific toolbox for solving very large scale Sinkhorn on CPU
and GPU with a PyTorch API. It is based on the very elegant KeOps framework (Charlier
et al., 2020), and is currently a better alternative to POT for using Sinkhorn losses in deep
learning architectures.

Table 1: Feature comparisons between POT, OTJulia,
OTT and GeomLoss.

3. Toolbox usage

The library provides recent state-of-the-art solvers for various optimal transport problems
related to statistics and machine learning. As mentioned earlier, POT has sub-modules
dedicated to different problems. In this section, we give a short description of the provided
OT solvers.

Kantorovich optimal transport problems. This is the most typical OT problem.
It seeks an optimal coupling T which minimizes the displacement cost of a discrete measure
a to a discrete measure b with respect to a ground cost M € R™*"2_ In order to be a
transport plan, T must be part of the set II(a,b) = {T > 0,T1,, = a,T'1,, = b}. When
the ground cost is a metric, the optimal value of the OT problem is also a metric (Rubner
et al., 2000; Cuturi and Avis, 2014) and is called the Wasserstein distance. In this discrete
case, the OT problem is defined as

min

b) =
War(a,b) Tell(a,b)

(T, M) , (1)

which is a linear program. The optimization problem above is often adapted to include a
regularization term for the transport plan T', such as entropic regularization (Cuturi, 2013)
or squared L2. For the entropic regularized OT problem, one may use the Sinkhorn Knopp
algorithm (or variants), or stochastic optimization algorithms. POT has a simple syntax to
solve these problems (see Sample 1).

Wasserstein barycenter problems. The notion of barycenters can be extended to
the use of the Wasserstein distance, allowing one to define the Wasserstein barycenter for



T W N =

[ENEGUR N

FLAMARY ET AL.

Sample 1: OT matrix POT syntax

import ot

# a, b are 1D histograms (sum to 1 and positive)

# M is the ground cost matrix

T = ot.emd(a, b, M) # exact linear program

T_reg = ot.sinkhorn(a, b, M, reg) # entropic regularized 0T

a set of N probability measures {ai,as,...,ayn} as follows:
N N

a® = arg minZaiWM(ai, a), Zai =1 (2)
¢ =1 i=1

When using entropic regularization, an efficient Bregman projection algorithm is provided
in POT, on the other hand the unregularized problem is solved with LP solvers (see Sample
2).

Sample 2: OT barycenters POT syntax

# A is a n*d matrix containing d 1D histograms

# M is the ground cost matrix

ba = ot.barycenter(A, M, reg) # entropic regularization

ba0 = ot.lp.barycenter (A, M) # unregularized barycenter (slow)

Other solvers and tools. Different OT solvers are available in sub-modules of POT.
ot.da contains methods and classes with a scikit-learn compatible API for domain adap-
tation applications. ot.gromov and ot.partial contain respectively solvers for Gromov-
Wasserstein and partial OT problems. Finally we provide in ot.optim several general
solvers that can be used to solve OT problems with a user-specified regularization.

Examples. The POT toolbox also provides several examples and notebooks which
present various OT problems. Solvers are illustrated on one or two dimensional simulated
data, as well as some real world problems such as color transfer.

4. Toolbox philosophy and underlying technology

In this section, we detail the vision of POT, and explain how we ensure the open source
philosophy.

Code quality and library design. The main purpose of POT is to compute solutions
to optimal transport problems such as the Wasserstein distance between probability distri-
butions. To ensure code clarity, we respect the PEP8 guidance. Regarding code quality, we
enforce a strict rule on providing several tests for every new contribution and detected bug.
In some cases, OT problems have closed-form solutions which allow one to design simple
tests and to ensure the correctness of our code. Through our test procedure, all functions
and classes are tested, with a line coverage of 92% of the code. Optimal transport can be
used to solve different families of problems and we have designed POT to provide a sub-
module for each one of them. For instance, there are sub-modules for linear programming
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solvers (ot.1lp) or domain adaptation (ot.da). Some fundamental functions and solvers,
such as ot.emd, are imported directly into the root ot module for easy access.

Open and collaborative. We have implemented POT with an open and collaborative
spirit and placed it under MIT license. It is hosted on GitHub! and a public mailing list is
available to the community to work on or follow the toolbox. POT is community-based, and
has already received contributions from more than 20 collaborators. External contributions
and requests are welcome and encouraged if they follow the code of conduct provided on the
repository. For all contributions, continuous integration is used to ensure validation of all
the tests and PEP8 compliance before any code merge (wheels compilation, tests, coverage,
documentation build).

Documentation. POT provides detailed documentation? for each function and class.
For each function, the documentation includes the mathematical problem that the function
solves, parameter descriptions, returned elements, examples, and bibliographical references.
All the papers related to the available solvers are listed in the documentation. Finally,
we provide an easy to understand quick start guide and a gallery of examples in the doc-
umentation, both as Python scripts and Jupyter notebooks, thanks to the sphinx-gallery
package. In total, more than 25 examples are available.

Dependencies. POT relies only on open source libraries such as NumPy (Harris et al.,
2020) and SciPy (Virtanen et al., 2020) for linear algebra and optimization problems. Vi-
sualization, mostly used in the examples, requires the Matplotlib (Hunter, 2007) visual-
ization library. The Cython (Behnel et al., 2011) framework was used to provide a simple
Python wrapper around the C++ code. For some specific sub-modules such as dimension-
ality reduction with a Wasserstein loss, we used the manifold optimization library Pymanopt
(Townsend et al., 2016) and the automatic differentiation library Autograd (Maclaurin et al.,
2015). For solving the problem of non regularized OT, we have used a state-of-the-art solver
provided in C++ by Bonneel et al. (2011). Finally, we allow for GPU acceleration with
a CuPy implementation of an entropic OT; a PyTorch (Paszke et al., 2019) implementation
for losses and solvers is currently underway.

5. Conclusion

We have presented POT, an optimal transport toolbox written in Python. Distributed un-
der the MIT license, this open source toolbox is well-documented and community-driven.
It offers reference implementations of state-of-the-art solvers for optimal transport related
problems, and aims to foster the development and the fast dissemination of new ML al-
gorithms. Code consistency makes it an easy tool for research purposes, teaching® and
industrial applications. It relies solely on open source software. The toolbox is actively
maintained and evolves quickly.  Future directions for our toolbox include further inte-
gration possibilities with deep neural network pipelines, by providing native support for
modern backends such as PyTorch (Paszke et al., 2019) or TensorFlow (Abadi et al., 2015),
currently underway.

1. https://github.com/Python0T/POT

2. https://Python0T.github.io

3. POT was used as teaching tool for practical sessions at Statlearn 2018 and the DS3 Data Science Summer
School 2019.
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