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Abstract

Driven by a wide range of applications, several principal subspace estimation problems have
been studied individually under different structural constraints. This paper presents a uni-
fied framework for the statistical analysis of a general structured principal subspace estima-
tion problem which includes as special cases sparse PCA/SVD, non-negative PCA/SVD,
subspace constrained PCA/SVD, and spectral clustering. General minimax lower and up-
per bounds are established to characterize the interplay between the information-geometric
complexity of the constraint set for the principal subspaces, the signal-to-noise ratio (SNR),
and the dimensionality. The results yield interesting phase transition phenomena concern-
ing the rates of convergence as a function of the SNRs and the fundamental limit for
consistent estimation. Applying the general results to the specific settings yields the mini-
max rates of convergence for those problems, including the previous unknown optimal rates
for sparse SVD, non-negative PCA/SVD and subspace constrained PCA/SVD.

Keywords: Low-rank matrix; Metric entropy; Minimax risk; Principal component anal-
ysis; Singular value decomposition

1. Introduction

Spectral methods such as the principal component analysis (PCA) and the singular value
decomposition (SVD) are a ubiquitous technique in modern data analysis with a wide range
of applications in many fields including statistics, machine learning, applied mathematics,
and engineering. As a fundamental tool for dimension reduction, the spectral methods aim
to extract the low-dimensional structures embedded in the high-dimensional data. In many
of these modern applications, the complexity of the data sets and the need of incorporating
the existing knowledge from subject areas require the data analysts to take into account
the prior structural information on the statistical objects of interest in their analysis. In
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particular, many interesting problems in high-dimensional data analysis can be formulated
as a structured principal subspace estimation problem where one has the prior knowledge
that the underlying principal subspace satisfies certain structural conditions (see Section
1.2 for a list of related problems).

The present paper aims to provide a unified treatment of the structured principal sub-
space estimation problems that have attracted much recent interest in both theory and
practice.

1.1 Problem Setup

To fix ideas, we consider two generic models that have been extensively studied in the
literature, namely, the matrix denoising model and the spiked Wishart model ; see, for
example, Johnstone (2001); Baik and Silverstein (2006); Paul (2007); Bai and Yao (2008);
Cai et al. (2013); Donoho and Gavish (2014); Wang and Fan (2017); Choi et al. (2017);
Donoho et al. (2018); Perry et al. (2018); Bao et al. (2018), among many others.

Definition 1 (Matrix Denoising Model) Let Y ∈ Rp1×p2 be the observed data matrix
generated from the model Y = UΓV>+Z where Z ∈ Rp1×p2 has i.i.d. entries from N(0, σ2),
Γ ∈ Rr×r is a diagonal matrix with ordered diagonal entries λ1 ≥ λ2 ≥ ... ≥ λr > 0 for 1 ≤
r ≤ min{p1, p2}, U ∈ O(p1, r), and V ∈ O(p2, r) with O(p, r) = {W ∈ Rp×r : W>W = Ir}
being the set of all p× r orthonormal matrices.

Definition 2 (Spiked Wishart Model) Let Y ∈ Rn×p be the observed data matrix whose
rows Yi ∈ Rp, i = 1, . . . , n, are independently generated from N(µ,UΓU> + σ2Ip) where
U ∈ O(p, r) with 1 ≤ r ≤ p, and Γ ∈ Rr×r is diagonal with ordered diagonal entries
λ1 ≥ ... ≥ λr > 0. Equivalently, Yi can be viewed as Yi = Xi+ εi where Xi ∼ N(µ,UΓU>),
εi ∼ N(0, σ2Ip), and X1, . . . , Xn and ε1, . . . , εn are independent.

These two models have attracted substantial practical and theoretical interest, and
have been studied in different contexts in statistics, probability, and machine learning. The
present paper addresses the problem of optimal estimation of the principal (eigen/singular)
subspaces spanned by the orthonormal columns of U (denoted as span(U)), based on the
data matrix Y and the prior structural knowledge on U. Specifically, we aim to uncover
the deep connections between the statistical limit of the estimation problem as measured
by the minimax risk and the geometric complexity of the parameter spaces as characterized
by functions of certain entropy measures.

Since the principal subspaces can be uniquely identified with their associated projection
matrices, estimating span(U) is equivalent to estimating UU>. A commonly used metric
for gauging the distance between two linear subspaces span(U1) and span(U2) is

d(U1,U2) = ‖U1U
>
1 −U2U

>
2 ‖F .

In this paper, we use d(·, ·) as the loss function and measure the performance of an estimator
Û of U by the risk

R(Û,U) = E[d(Û,U)].
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1.2 Related Works

The problem considered in this paper can be viewed as a generalization and unification of
many interesting problems in high-dimensional statistics and machine learning. We first
present a few examples to demonstrate the richness of the structured principal subspace
estimation problem and its connections to the existing literature.

1. Sparse PCA/SVD. The goal of sparse PCA/SVD is to recover span(U) under the
assumption that columns of U are sparse. Sparse PCA has been extensively studied in
the past two decades under the spiked Wishart model (see, for example, d’Aspremont
et al. (2005); Zou et al. (2006); Shen and Huang (2008); Witten et al. (2009); Yang
et al. (2011); Vu and Lei (2012); Cai et al. (2013); Ma (2013); Birnbaum et al. (2013);
Cai et al. (2015), among many others). In particular, the exact minimax rates of
convergence under the loss d(·, ·) was established by Cai et al. (2013) in the general
rank-r setting. In contrast, theoretical analysis for the sparse SVD is relatively scarce,
and the minimax rate of convergence remains unknown.

2. Non-negative PCA/SVD. Non-negative PCA/SVD aims to estimate span(U) under
the assumption that entries of U are non-negative. This problem has been studied by
Deshpande et al. (2014) and Montanari and Richard (2015) under the rank-one ma-
trix denoising model (r=1), where the statistical limit and certain sharp asymptotics
were carefully established. However, it is still unclear what are the minimax rates of
convergence for estimating span(U) under either rank-one or general rank-r settings
under either the spiked Wishart model or matrix denoising model.

3. Subspace Constrained PCA/SVD. The subspace constrained PCA/SVD assumes the
columns of U are in some low-dimensional linear subspaces of Rp. In other words,
U ∈ CA(p, k) = {U ∈ O(p, r) : AU.j = 0 for all 1 ≤ j ≤ r} for some rank (p − k)
matrix A ∈ Rp×(p−k) where r < k < p. Estimating the principal subspaces under
various linear subspace constraints has been considered in many applications such as
network clustering (Wang and Davidson, 2010; Kawale and Boley, 2013; Kleindessner
et al., 2019). However, the minimax rates of convergence for subspace constrained
PCA/SVD remain unknown.

4. Spectral Clustering. Suppose we observe Yi ∼ N(θi, σ
2Ip) independently, where θi ∈

{θ,−θ} ⊂ Rp for i = 1, ..., n. Let Y ∈ Rn×p such that Yi is the i-th row of Y. We have
Y = hθ> + Z where h ∈ {±1}n and Z has i.i.d. entries from N(0, σ2). The spectral
clustering of {Yi}1≤i≤n aims to recover the class labels in h. Equivalently, the spectral
clustering can be treated as estimating the leading left singular vector u = h/‖h‖2 in
the matrix denoising model with u ∈ Cn± = {u ∈ Rn : ‖u‖2 = 1, ui ∈ {±n−1/2}}. See
Azizyan et al. (2013); Jin and Wang (2016); Lu and Zhou (2016); Jin et al. (2017); Cai
and Zhang (2018); Giraud and Verzelen (2018); Ndaoud (2018); Löffler et al. (2019)
and references therein for recent theoretical results.

In addition to the aforementioned problems, there are many other interesting problems
that share the same generic form as the structured principal subspace estimation problem.
For example, motivated by applications in the statistical analysis of metagenomics data,
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Ma et al. (2019, 2020) considered an approximately rank-one matrix denoising model where
the leading singular vector satisfies the monotonicity constraint. In a special case of matrix
denoising model, namely, the Gaussian Wigner model Y = λuu> + Z ∈ Rn×n, where Z
has i.i.d. entries (up to symmetry) drawn from a Gaussian distribution, the Gaussian Z/2
synchronization problem (Javanmard et al., 2016; Perry et al., 2018) aims to recover the
leading singular vector u where u ∈ {u ∈ Rn : ‖u‖2 = 1, ui ∈ {±n−1/2}}. These important
applications provide motivations for a unified framework to study the fundamental difficulty
and optimality of these estimation problems.

On the other hand, investigations of metric entropy as a measure of statistical complexity
has been one of the central topics in theoretical statistics, ranging from nonparametric
function estimation (Yatracos, 1988; Haussler and Opper, 1997b; Yang and Barron, 1999;
Yang, 1999; Wu and Yang, 2016), high-dimensional statistical inference (Raskutti et al.,
2011; Verzelen, 2012; Vu and Lei, 2012; Cai et al., 2013; Ma, 2013) to statistical learning
theory (Haussler and Opper, 1997a; Lugosi and Nobel, 1999; Bousquet et al., 2002; Bartlett
and Mendelson, 2002; Koltchinskii, 2006; Lecué and Mendelson, 2009; Cai et al., 2016;
Rakhlin et al., 2017). Among them, interesting connections between the complexity of the
parameter space and the fundamental difficulty of the statistical problem as quantified by
certain minimax risk have been carefully established. In this sense, the current work stands
as a step along this direction in the context of principal subspace estimation under some
general random matrix models.

1.3 Main Contribution

The main contribution of this paper is three-fold. Firstly, a unified framework is introduced
for the study of structured principal subspace estimation problems under both the ma-
trix denoising model and the spiked Wishart model. Novel generic minimax lower bounds
and risk upper bounds are established to characterize explicitly the interplay between the
information-geometric complexity of the structural set for the principal subspaces, the
signal-to-noise ratio (SNR), and the dimensionality of the parameter spaces. The results
yield interesting phase transition phenomena concerning the rates of convergence as func-
tions of the SNRs and the fundamental limit for consistent estimation. The general lower
and upper bounds reduce determination of the minimax optimal rates for many interest-
ing problems to mere calculations of certain information-geometric quantities. Secondly, to
obtain the general risk upper bounds, new technical tools are developed for the analysis of
the proposed estimators in their general forms. In addition, the minimax lower bounds rely
on careful constructions of multiple composite hypotheses about the structured parameter
spaces, and non-trivial calculations of the Kullback-Leibler (KL) divergence between certain
mixture probability measures, which can be of independent interest. Thirdly, by directly
applying our general results to the specific problems discussed in Section 1.2, we establish
the minimax optimal rates for those problems. Among them, the minimax rates for sparse
SVD, non-negative PCA/SVD and subspace constrained PCA/SVD, are to our knowledge
previously unknown.
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1.4 Organization and Notation

The rest of the paper is organized as follows. After introducing the notation at the end of
this section, we characterize in Section 2 a minimax lower bound under the matrix denoising
model using local metric entropy measures. A general estimator is introduced in Section 3
and its risk upper bound is obtained via certain global metric entropy measures. In Section
4, the spiked Wishart model is discussed in detail and generic risk lower and upper bounds
are obtained. The general results are applied in Section 5 to specific settings and minimax
optimal rates are established by explicitly calculating the local and global metric-entropic
quantities. In Section 6, we address the computational issues of the proposed estimators
and discuss some extensions and make connections to some other interesting problems.

For a vector a = (a1, ..., an)> ∈ Rn, we denote diag(a1, ..., an) ∈ Rn×n as the diagonal

matrix whose i-th diagonal entry is ai, and define the `p norm ‖a‖p =
(∑n

i=1 a
p
i

)1/p
. We

write a ∧ b = min{a, b} and a ∨ b = max{a, b}. For a matrix A = (aij) ∈ Rp1×p2 , we

define its Frobenius norm as ‖A‖F =
√∑p1

i=1

∑p2
j=1 a

2
ij and its spectral norm as ‖A‖ =

sup‖x‖2≤1 ‖Ax‖2; we also denote A.i ∈ Rp1 as its i-th column and Ai. ∈ Rp2 as its i-th

row. Let O(p, k) = {V ∈ Rp×k : V>V = Ik} be the set of all p × k orthonormal matrices
and Op = O(p, p), the set of p-dimensional orthonormal matrices. For a rank r matrix
A ∈ Rp1×p2 with 1 ≤ r ≤ p1 ∧ p2, its SVD is denoted as A = UΓV> where U ∈ O(p1, r),
V ∈ O(p2, r), and Γ = diag(λ1(A), λ2(A), ..., λr(A)) with λmax(A) = λ1(A) ≥ λ2(A) ≥
... ≥ λp1∧p2(A) = λmin(A) ≥ 0 being the ordered singular values of A. The columns of U
and the columns of V are the left singular vectors and right singular vectors associated to
the non-zero singular values of A, respectively. For a given set S, we denote its cardinality
as |S|. For sequences {an} and {bn}, we write an = o(bn) or an � bn if limn an/bn = 0, and
write an = O(bn), an . bn or bn & an if there exists a constant C such that an ≤ Cbn for
all n. We write an � bn if an . bn and an & bn. Lastly, c, C,C0, C1, ... are constants that
may vary from place to place.

2. Minimax Lower Bounds via Local Packing

We start with the matrix denoising model. Without loss of generality, we focus on estimating
the structured left singular subspace span(U). Specifically, for a given subset C ⊂ O(p1, r),
we consider the parameter space

Y(C, t, p1, p2, r) =

{
(Γ,U,V) :

Γ = diag(λ1, ..., λr),U ∈ C,V ∈ O(p2, r)

Lt ≥ λ1 ≥ ... ≥ λr ≥ t/L > 0

}
, (1)

for some fixed constant L > 1. For any U ∈ O(p1, r) and ε ∈ (0, 1), the ε-ball centered at
U is defined as

B(U, ε) = {U′ ∈ O(p1, r) : d(U′,U) ≤ ε},
and for any given subset C ⊂ O(p1, r), we define

diam(C) = sup
U1,U2∈C

d(U1,U2).

We introduce the concepts of packing and covering of a given set before stating a general
minimax lower bound.
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Definition 3 (ε-packing and ε-covering) Let (V, d) be a metric space and M ⊂ V . We
say that G(M,d, ε) ⊂M is an ε-packing of M if for any mi,mj ∈ G(M,d, ε) with mi 6= mj,
it holds that d(mi,mj) > ε. We say that H(M,d, ε) ⊂ M is an ε-covering of M if for any
m ∈ M , there exists an m′ ∈ H(M,d, ε) such that d(m,m′) < ε. We denote M(M,d, ε) =
max{|G(M,d, ε)|} and N (M,d, ε) = min{|H(M,d, ε)|} as the ε-packing number and the
ε-covering number of M , respectively.

Following Yang and Barron (1999), we also define the metric entropy of a given set.

Definition 4 (packing and covering ε-entropy) Let M(M,d, ε) and N (M,d, ε) be the
ε-packing and ε-covering number of M , respectively. We call logM(M,d, ε) the packing
ε-entropy and logN (M,d, ε) the covering ε-entropy of M .

The following theorem gives a minimax lower bound for estimating span(U) over Y(C, t, p1, p2, r),
as a function of the cardinality of a local packing set of C, the magnitude of the leading
singular values (t), the noise level (σ2), the rank (r), and the dimension (p2) of the right
singular vectors in V.

Theorem 5 Under the matrix denoising model Y = UΓV>+Z where (Γ,U,V) ∈ Y(C, t, p1, p2, r),
suppose there exist some U0 ∈ C, ε0 > 0 and α ∈ (0, 1) such that a local packing set
G = G(B(U0, ε0) ∩ C, d, αε0) satisfies

ε0 =

[(√
cσ2(t2 + σ2p2)

t2

√
log |G|

)
∧ diam(C)

]
, (2)

for some c ∈ (0, 1/640]. Then, as long as |G| ≥ 2, it holds that, for θ = (Γ,U,V),

inf
Û

sup
θ∈Y(C,t,p1,p2,r)

R(Û,U) &

[(
σ
√
t2 + σ2p2

t2

√
log |G|

)
∧ diam(C)

]
, (3)

where the infimum is over all the estimators based on the observation Y.

The above theorem, to the best of our knowledge, is the first minimax lower bound
result for the matrix denoising model under the general parameter space (1). Its proof
is separated into two parts. In the strong signal regime (t2 & σ2p2), the minimax lower
bound can be obtained by generalizing the ideas in Vu and Lei (2012, 2013) and Cai et al.
(2013), where a general lower bound for testing multiple hypotheses (Lemma 30) is applied
to obtain (3). In contrast, the analysis is much more complicated in the weak signal regime
(t2 . σ2p2) due to the asymmetry between U and V: the dependence on p2 needs to be
captured by extra efforts in the lower bound construction (Cai and Zhang, 2018), which is
different from the aforementioned works on sparse PCA. To achieve this, our analysis relies
on a generalized Fano’s method for testing multiple composite hypotheses (Lemma 31) and
a nontrivial calculation of the pairwise KL divergence between certain mixture probability
measures (Lemma 32).

For general C, the existence of ε0 satisfying (2) is not guaranteed by itself – it has to
be determined case by case. In addition, for different constructions of the local packing set
G(B(U0, ε0)∩ C, d, αε0) satisfying (2), the magnitude of ε0 could also vary. Therefore, with
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our general results, obtaining a sharp minimax lower bound for a specific problem reduces
to identifying a local packing set with largest possible ε0 such that equation (2) holds. See
Section 5 for specific examples of calculating such local packing entropy.

A key observation from the above theorem is the role of the local packing setG(B(U0, ε0)∩
C, d, αε0) and its entropy measure log |G(B(U0, ε0) ∩ C, d, αε0)| in characterizing the funda-
mental difficulty of the estimation problem. Similar phenomena connecting the local packing
numbers to the minimax lower bounds has been observed in, for example, nonparametric
function estimation (Yang and Barron, 1999), high-dimensional linear regression (Raskutti
et al., 2011; Verzelen, 2012), and sparse principal component analysis (Vu and Lei, 2012;
Cai et al., 2013). Compared with global packing, local packing reflects the fact that the fun-
damental difficulty of the estimation problem as quantified by the minimax risk is usually
determined by the local geometry of the parameter space around certain worst-case scenario.
In particular, most of the current techniques for deriving the minimax lower bound rely on
constructing hypotheses about the parameter of interest that are as separated as possible,
while their corresponding probability measures are asymptotically indistinguishable (i.e.,
having bounded KL divergence or χ2 divergence). In this case, after careful constructions,
the parameters corresponding to the local packing set oftentimes meet this simultaneous
requirement of separateness and closeness, whereas it is difficult to achieve based on the
global packing set.

In Cai and Zhang (2018), the minimax rate for estimating span(U) under the unstruc-
tured matrix denoising models (i.e., C = O(p1, r)) was shown to be

inf
Û

sup
(Γ,U,V)∈Y(O(p1,r),t,p1,p2,r)

R(Û,U) �
(
σ
√

(t2 + σ2p2)rp1

t2
∧
√
r

)
. (4)

In light of the packing number estimates for the orthogonal group (Lemma 1 of Cai et al.
(2013)), one can show that, for C = O(p1, r), there exists a local packing set G(B(U0, ε0) ∩
C, d, αε0) satisfying (2) such that log |G(B(U0, ε0)∩C, d, αε0)| � p1r. Hence, the lower bound
in (4) is a direct consequence of (3). In addition, comparing the lower bound (3) to (4),
we observe that the information-geometric quantity log |G(B(U0, ε0) ∩ C, d, αε0)| essentially
quantifies the intrinsic statistical dimension of the set C.

3. Risk Upper Bound using Dudley’s Entropy Integral

In this section, we consider a general singular subspace estimator and study its theoretical
properties. Specifically, we obtain its risk upper bound which, analogous to the minimax
lower bound, can be expressed as a function of certain entropic measures related to the
structural constraint C.

Under the matrix denoising model, with the parameters (Γ,U,V) ∈ Y(C, t, p1, p2, r) for
some given set C ⊂ O(p1, r), we consider the structured singular subspace estimator

Û = arg max
U∈C

tr(U>YY>U), (5)

which is also the constrained maximum likelihood estimator. Before stating our main the-
orem, we need to make more definitions about quantities that play important roles in our
subsequent discussions.
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Definition 6 For given C ⊂ O(p1, r) and any U ∈ C, we define the set

T (C,U) =

{
WW> −UU>

‖WW> −UU>‖F
∈ Rp1×p1 : W ∈ C \ {U}

}
,

equipped with the Frobenius distance d2, where for any D1,D2 ∈ T (C,U), we define d2(D1,D2) =
‖D1 −D2‖F .

Definition 7 (Dudley’s entropy integral) For a metric space (T, d) and a subset A ⊂
T , Dudley’s entropy integral of A is defined as D(A, d) =

∫∞
0

√
logN (A, d, ε)dε. Moreover,

we define D′(A, d) =
∫∞

0 logN (A, d, ε)dε.

The Dudley’s entropy integral measures the geometric complexity of a given set. Its
geometric properties as well as its relationships with other geometric complexity measures
such as the Gaussian width and the Sudakov minoration estimate (Cai et al., 2016) have been
carefully studied in literature. See, for example, the well-celebrated Sudakov minoration
theorem (Ledoux and Talagrand, 2013) and the Dudley’s theorem (Dudley, 2010).

Theorem 8 Under the matrix denoising model, for any given subset C ⊂ O(p1, r) and the
parameter space Y(C, t, p1, p2, r), if t/σ & supU∈C [D

′(T (C,U), d2)/D(T (C,U), d2)], it holds
that

sup
(Γ,U,V)∈Y(C,t,p1,p2,r)

R(Û,U) .

(
σ∆(C)

√
t2 + σ2p2

t2
∧ diam(C)

)
, (6)

where ∆(C) = supU∈C D(T (C,U), d2).

The proof of the above theorem, as it concerns the generic estimator (5) under some
arbitrary structural set C, is involved and very different from the existing works such as
Cai et al. (2013), Deshpande et al. (2014), Cai and Zhang (2018) and Zhang et al. (2018),
where specific examples of C are considered. The argument relies on careful analyses of the
supremum of a Gaussian chaos of order two, and the supremum of a Gaussian process. In
the latter case, we applied Dudley’s integral inequality (Theorem 23) and the invariance
property of the covering numbers with respect to Lipschitz maps (Lemma 24), whereas in
the former case, the Arcones-Giné decoupling inequality (Theorem 25) as well as a generic
chaining argument (Theorem 28) were used to obtain the desired upper bounds. Many
technical tools concatenated for the proof of this theorem can be of independent interest.
See more details in Section A.1.

Interestingly, both the risk upper bound (6) and the minimax lower bound (3) indicate
two phase transitions when treated as a function of the SNR t/σ, with the first critical point

t

σ
� √p2, (7)

and the second critical point

t

σ
�
[

ζ

diam2(C)
+

√
ζp2

diam2(C)

]1/2

, (8)
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where in the upper bound ζ = ∆2(C) and in the lower bound ζ = log |G(B(U0, ε0) ∩
C, d, αε0)|. Specifically, the phase transition at the first critical point highlights the role of
the dimensionality of the right singular vectors (V) and the change of the rates of conver-
gence from an inverse quadratic function (σ2

√
p2ζ/t

2) to an inverse linear function (σ
√
ζ/t)

of t/σ. The message from the second phase transition concerns the statistical limit of the es-
timation problem: consistent estimation is possible only when the SNR exceeds the critical
point (8) asymptotically. See Figure 1 for a graphical illustration. As for the implications
of the condition

t/σ & sup
U∈C

[D′(T (C,U), d2)/D(T (C,U), d2)] (9)

required by Theorem 8, it can be seen in Section 5 that, for many specific problems, a
sufficient condition for (9) is that t/σ is above the second critical point (8), which is mild
and natural since the latter condition characterizes the region where Û is consistent and
more generally where consistent estimation is possible.

Figure 1: Graphical illustrations of the phase transitions of the risk as a function of
the SNRs under the matrix denoising model. Left: ζ/diam2(C) � p2; Right:
ζ/diam2(C)� p2

Another interesting phenomena demonstrated by our analysis concerns the relationship
between the two critical points. Specifically, when ζ/diam2(C) � p2, the second critical

point becomes
(
ζp2/diam2(C)

)1/4
, which is much smaller than the first critical point

√
p2

(Figure 1, left); when ζ/diam2(C)� p2, the second critical point becomes
(
ζ/diam2(C)

)1/2
,

which is much larger than
√
p2 so that in this case the first critical point disappears (Figure

1, right). In general, the above discrepancy has deep implications as to the fundamental
difficulty of the estimation problem. For example, in the unstructured case, it can be shown
that ζ/diam2(C) � p1, so that the behavior of minimax rates for estimating span(U) relies
heavily on the relative magnitude between p1 and p2 (Cai and Zhang, 2018).

Comparing our risk upper bound (6) to the minimax lower bound (3), we can observe the
similar role played by the information-geometric quantities that characterize the intrinsic
statistical dimension of the sets C or T (C,U). Specifically, in (6), the quantity ∆(C) is re-
lated to the global covering entropy, whereas in (3), the quantity

√
log |G(B(U0, ε0) ∩ C, d, αε0)|

9
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is associated to the local packing entropy. To obtain the minimax optimal rate of conver-
gence, we need to compare the above two quantities and show

∆2(C) � log |G(B(U0, ε0) ∩ C, d, αε0)|. (10)

For example, under the unconstrained setting, direct calculation yields ∆2(C) � p1r, which
coincides with the local packing entropy and thus leads to the sharp rate in (4). However,
proving the above equation in its general form is difficult. Alternatively, we briefly discuss
the affinity between these two geometric quantities yielded by information theory and leave
more detailed discussions in the context of some specific examples in Section 5.

By definition of the packing numbers, we have the relationship

log |G(B(U0, ε0) ∩ C, d, αε0)| ≤ logM(B(U0, ε0) ∩ C, d, αε0), (11)

that links log |G(B(U0, ε0)∩C, d, αε0)| to the local packing entropy. A well known fact about
the equivalence between the packing and the covering number of a set M is that

M(M,d, 2ε) ≤ N (M,d, ε) ≤M(M,d, ε). (12)

Moreover, Yang and Barron (1999) obtained a very interesting result connecting the local
and the global (covering) metric entropies. Specifically, let U be any element from M , then

logM(M,d, ε/2)− logM(M,d, ε) ≤ logM(B(U, ε) ∩M,d, ε/2) ≤ logM(M,d, ε). (13)

In Section 5, by focusing on some specific examples of C that are widely considered in
practice, we show that equation (10) holds, which along with our generic lower and upper
bounds recovers some existing minimax rates, and more importantly, helps to establish
some previously unknown rates.

4. Structured Eigen Subspace Estimation in the Spiked Wishart Model

We turn the focus in this section to the spiked Wishart model where one has i.i.d. ob-
servations Yi ∼ N(µ,Σ) with Σ = UΓV> + σ2I, which is usually referred as the spiked
covariance. Similar to the matrix denoising model, a minimax lower bound based on some
local packing set and a risk upper bound based on the Dudley’s entropy integral can be
obtained.

4.1 Minimax Lower Bound

For any given subset C ⊂ O(p, r), we consider the parameter space

Z(C, t, p, r) = {(Γ,U) : Γ = diag(λ1, ..., λr), Lt ≥ λ1 ≥ ... ≥ λr ≥ t/L > 0,U ∈ C},

where L > 1 is some fixed constant. The following theorem provides the minimax lower
bound for estimating span(U) over Z(C, t, p, r) under the spiked Wishart model.

10
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Theorem 9 Under the spiked Wishart model where (Γ,U) ∈ Z(C, t, p, r), suppose there
exist some U0 ∈ C, ε0 > 0 and α ∈ (0, 1) such that a local packing set G = G(B(U0, ε0) ∩
C, d, αε0) satisfies

ε0 =

[(
σ
√
c(σ2 + t)

t
√
n

√
log |G|

)
∧ diam(C)

]
, (14)

for some c ∈ (0, 1/32]. Then, as long as |G(B(U0, ε0) ∩ C, d, αε0)| ≥ 2, it holds that

inf
Û

sup
(Γ,U)∈Z(C,t,p,r)

R(Û,U) &

[(
σ
√
σ2 + t

t
√
n

√
log |G|

)
∧ diam(C)

]
, (15)

where the infimum is over all the estimators based on the observation Y.

In Zhang et al. (2018), the sharp minimax rate for estimating span(U) under the un-
structured spiked Wishart model was obtained as

inf
Û

sup
(Γ,U)∈Z(O(p,r),t,p,r)

R(Û,U) �
(
σ
√

(σ2 + t)rp

t
√
n

∧
√
r

)
, (16)

whose lower bound immediately follows from (15). Comparing the general lower bound
(15) to (16), we observe again that the local entropic quantity log |G(B(U0, ε0) ∩ C, d, αε0)|
characterizes the intrinsic statistical dimension (which is rp in the case of C = O(p, r)) of
the set C. See Section 5 for more examples.

4.2 Risk Upper Bound

Under the spiked Wishart model, to estimate the eigen subspace span(U) under the struc-
tural constraint U ∈ C, we start with the sample covariance matrix

Σ̂ =
1

n

n∑
i=1

(Yi − Ȳ )(Yi − Ȳ )>,

where Ȳ = 1
n

∑n
i=1 Yi and Yi is the i-th row of the observed data matrix Y ∈ Rn×p. Since

Σ̂ is invariant to any translation on Y, we assume µ = 0 without loss of generality.
Similar to the matrix denoising model, for the spiked Wishart model, with a slight abuse

of notation, we define the eigen subspace estimator as

Û = arg max
U∈C

tr(U>Σ̂U). (17)

The following theorem provides the risk upper bound of Û.

Theorem 10 Under the spiked Wishart model, for any given C ⊂ O(p, r) and the parameter
space Z(C, t, p, r), suppose n & max{log t

σ2 , r} and
√
t/σ & supU∈C [D

′(T (C,U), d2)/D(T (C,U), d2)],
then

sup
(Γ,U)∈Z(C,t,p,r)

R(Û,U) .

(
σ∆(C)

√
t+ σ2

t
√
n

∧ diam(C)
)
,

where ∆(C) is defined in Theorem 8.

11
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Similar to the matrix denoising model, the above risk upper bound has a great affinity
to the minimax lower bound (15), up to a difference in the information-geometric (metric-
entropic) measure of C; the sharpness of our results relies on the relative magnitude between
the pair of quantities ∆2(C) and log |G(B(U0, ε0) ∩ C, d, αε0)|. In addition, the phase tran-
sitions in the rates of the lower and upper bounds as functions of the SNR t/σ2 can be
observed with the first critical point at

t

σ2
� 1, (18)

and the second critical point at

t

σ2
� ζ

n · diam2(C)
+

√
ζ

n · diam2(C)
, (19)

where in the lower bound ζ = log |G(B(U0, ε0) ∩ C, d, αε0)| and in the upper bound ζ =
∆2(C). Again, the phase transition at the first critical point reflects the change of the
speed of the rates of convergence, whereas the phase transition at the second critical point
characterizes the statistical limit of the estimation problem. See Figure 2 for a graphical
illustration. Finally, it will be seen in Section 5 that for many specific problems, the
condition t/σ2 & supU∈C [D

′2(T (C,U), d2)/D2(T (C,U), d2)] required by Theorem 10 is mild
and in fact necessary for consistent estimation.

Figure 2: Graphical illustrations of the phase transitions in risks as a function of the SNRs
under the spiked Wishart model. Left: ζ/diam2(C)� n; Right: ζ/diam2(C)� n.

5. Applications

In the following, building upon the minimax lower bounds and the risk upper bounds
established in the previous sections, we obtain minimax rates and fundamental limits for
various structural principal subspace estimation problems of broad interest. Specifically, in
light of our generic results, we show the asymptotic equivalence of various local and global
entropic measures associated to some specific examples of C. Previous discussions under the
general settings such as the phase transition phenomena also apply to each of the examples.

12
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5.1 Sparse PCA/SVD

We start with the sparse PCA/SVD where the columns of U are sparse vectors. Suppose
CS(p, r, k) is the k-sparse subset of O(p, r) for some k ≤ p, i.e., CS(p, r, k) = {U ∈ O(p, r) :
max1≤i≤r ‖U.i‖0 ≤ k}. The following proposition concerns some estimates about the local
and global entropic quantities associated with the set CS(p, r, k). For simplicity, we denote
CS(k) = CS(p, r, k) when there is no confusion.

Proposition 11 Under the matrix denoising model where (Γ,U,V) ∈ Y(CS(k), t, p1, p2, r)
with k = o(p1) and r = o(k), there exist some (U0, ε0, α) and a local packing set G(B(U0, ε0)∩
CS(p1, r, k), d, αε0) satisfying (2) such that

∆2(CS(p1, k, r)) . k log(ep1/k) + kr . log |G(B(U0, ε0) ∩ CS(p1, r, k), d, αε0)|.

Similarly, under the spiked Wishart model where (Γ,V) ∈ Z(CS(k), t, p, r) with k = o(p) and
r = o(k), there exist some (U0, ε0, α) and a local packing set G(B(U0, ε0)∩CS(p, r, k), d, αε0)
satisfying (14) such that

∆2(CS(p, k, r)) . k log(ep/k) + rk . log |G(B(U0, ε0) ∩ CS(p, k, r), d, αε0)|.

In light of our lower and upper bounds under both the matrix denoising model (Theorem
5 and 8) and the spiked Wishart model (Theorem 9 and 10), with Proposition 11, we are
able to establish sharp minimax rates of convergence for sparse PCA/SVD.

Theorem 12 Under the matrix denoising model with U ∈ CS(p1, r, k) where k = o(p1) and
r = o(k), for t/σ &

√
k log(ep1/k) +

√
rk, it holds that

inf
Û

sup
Y(CS(k),t,p1,p2,r)

R(Û,U) �
[
σ
√
t2 + σ2p2

t2

(√
k log

ep1

k
+
√
rk

)]
∧
√
r, (20)

where the minimax rate is achieved by (5). Similarly, under the spiked Wishart model
with U ∈ CS(p, r, k) where k = o(p) and r = o(k), if n & max{log t

σ2 , r} and
√
t/σ &√

k log(ep/k) +
√
rk, then

inf
Û

sup
Z(CS(k),t,p,r)

R(Û,U) �
[
σ
√
t+ σ2

t
√
n

(√
k log

ep

k
+
√
rk

)]
∧
√
r, (21)

where the minimax rate is achieved by (17). In particular, for r = O(1), both estimators
(5) and (17) are rate-optimal whenever consistent estimation is possible.

The minimax rate (21) for the spiked Wishart model (sparse PCA) recovers the ones
obtained by Vu and Lei (2012) and Cai et al. (2013) under either finite rank or r = o(k)
settings. In contrast, the result (20) for the matrix denoising model (sparse SVD), to the
best of our knowledge, has not been established.

13
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5.2 Non-Negative PCA/SVD

We now turn to the non-negative PCA/SVD under either the matrix denoising model (SVD)
or the spiked Wishart model (PCA) where U ∈ CN (p, r) = {U = (uij) ∈ O(p, r) : uij ≥
0 for all i, j}. The following proposition provides estimates about the local and global
entropic quantities related to the set CN (p, r).

Proposition 13 Under the matrix denoising model where (Γ,U,V) ∈ Y(CN (p1, r), t, p1, p2, r),
there exist some (U0, ε0, α) and a local packing set G(B(U0, ε0)∩CN (p1, r), d, αε0) satisfying
(2) such that

log |G(B(U0, ε0) ∩ CN (p1, r), d, αε0)| & p1, and ∆2(CN (p1, r)) . p1r.

Similarly, under the spiked Wishart model where (Γ,U) ∈ Z(CN (p, r), t, p, r), there exist
some (U0, ε0, α) and a local packing set G(B(U0, ε0) ∩ CN (p, r), d, αε0) satisfying (14) such
that

log |G(B(U0, ε0) ∩ CN (p, r), d, αε0)| & p, and ∆2(CN (p, r)) . pr.

Remark 14 Unfortunately, unlike the previous example, the estimates of the local and
global entropic quantities provided by the above proposition are not as precise. Between the
estimates of two geometric quantities there is a gap of factor r, which implies matching
minimax rates only when r = O(1) (see Theorem 15 below). In particular, it is unclear
whether such discrepancy is intrinsic to the corresponding geometric quantities or due to
the limitations of our technical tools for deriving sharp estimates of them.

Proposition 13 enables us to establish the following minimax rates using the general
lower and upper bounds from the previous sections.

Theorem 15 Under the matrix denoising model with U ∈ CN (p1, r) where r = O(1), it
holds that

inf
Û

sup
Y(CN (p1,r),t,p1,p2,r)

R(Û,U) �
(
σ
√

(t2 + σ2p2)p1

t2
∧ 1

)
, (22)

and the estimator (5) is rate-optimal whenever consistent estimation is possible. Similarly,
for the spiked Wishart model with U ∈ CN (p, r) where r = O(1), if n & max{log t

σ2 , r}, then

inf
Û

sup
Z(CN (p,r),t,p,r)

R(Û,U) �
(
σ
√

(t+ σ2)p

t
√
n

∧ 1

)
, (23)

where the estimator (17) is rate-optimal whenever consistent estimation is possible.

The minimax rates for non-negative PCA/SVD, which were previously unknown, turn
out to be the same as the rates for the ordinary unstructured SVD (Cai and Zhang, 2018)
and PCA (Zhang et al., 2018). This is due to the fact claimed in Proposition 13 that, under
the finite rank scenarios, as a much smaller subset of O(p, r), CN (p, r) has asymptotically
the same geometric complexity as O(p, r).

14
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Remark 16 Deshpande et al. (2014) considered the rank-one Gaussian Wigner model Y =
λuu> + Z ∈ Rp1×p1, which can be treated as a special case of the matrix denoising model.
Specifically, it was shown that, for û = arg maxu∈CN (p,1) u>Yu, it holds that

sup
(λ,u)∈Z(CN (p,1),t,p,1)

E[1− |û>u|] .
(
σ
√
p

t
∧ 1

)
,

which, by the fact that 1 − |û>u| ≤ d(û,u), can be implied by our result (see also Section
6.2). Similar problems were studied in Montanari and Richard (2015) under the setting
where p1/p2 → α ∈ (0,∞). However, their focus is to unveil the asymptotic behavior of
û>u as well as the analysis of an approximate message passing algorithm, which is different
from ours.

5.3 Subspace Constrained PCA/SVD

In some applications such as network clustering (Wang and Davidson, 2010; Kawale and
Boley, 2013; Kleindessner et al., 2019), it is of interest to estimate principal subspaces with
certain linear subspace constraints. For example, under the matrix denoising model, for
some fixed A ∈ Rp1×(p1−k) of rank (p1 − k) where r < k < p1, a k-dimensional subspace
constraint on the singular subspace span(U) could be U ∈ CA(p1, r, k) = {U ∈ O(p1, r) :
AU.i = 0,∀1 ≤ i ≤ r}. Again, subspace constrained PCA/SVD can be solved based on the
general results obtained in the previous sections.

Proposition 17 For given A ∈ Rp1×(p1−k) of rank (p1 − k), under the matrix denoising
model where (Γ,U,V) ∈ Y(CA(p1, r, k), t, p1, p2, r), there exist some (U0, ε0, α) and a local
packing set G(B(U0, ε0) ∩ CA(p1, r, k), d, αε0) satisfying (2) such that

∆2(CA(p1, r, k)) . rk . log |G(B(u0, ε0) ∩ CA(p1, r, k), d, αε0)|.

Similarly, for given B ∈ Rp×(p−k) of rank (p − k), under the spiked Wishart model with
(Γ,U) ∈ Z(CB(p, r, k), t, p, r), there exist some (U0, ε0, α) and a local packing set G(B(U0, ε0)∩
CB(p, r, k), d, αε0) satisfying (14) such that

∆2(CB(p, r, k)) . rk . log |G(B(U0, ε0) ∩ CB(p, r, k), d, αε0)|.

Theorem 18 Under the matrix denoising model with U ∈ CA(p1, r, k) where r < k < p1

and A ∈ Rp1×(p1−k) is of rank (p1 − k), for t/σ &
√
rk, it holds that

inf
Û

sup
Y(CA(p1,r,k),t,p1,p2,r)

R(Û,U) �
(
σ
√

(t2 + σ2p2)rk

t2
∧
√
r

)
, (24)

where the minimax rate is achieved by (5). Similarly, under the spiked Wishart model with
U ∈ CB(p, r, k), where r < k < p and B ∈ Rp×(p−k) is of rank (p−k), if n & max{log t

σ2 , r}
and
√
t/σ &

√
rk, then

inf
Û

sup
Z(CB(p,r,k),t,p,r)

R(Û,U) �
(
σ
√

(t+ σ2)rk

t
√
n

∧
√
r

)
, (25)

where the minimax rate is achieved by (17). In particular, if r = O(1), then both estimators
(5) and (17) are rate-optimal whenever consistent estimation is possible.
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5.4 Spectral Clustering

As discussed in Section 1.2, spectral clustering can be treated as estimation of the structural
eigenvector under the rank-one matrix denoising model Y = λuv> + Z ∈ Rn×p where
λ = ‖h‖2‖θ‖2 =

√
n‖θ‖2 is the global signal strength, u = h/‖h‖2 ∈ Cn± = {u ∈ Rn :

‖u‖2 = 1, ui ∈ {±n−1/2}} indicates the group labels, and Z has i.i.d. entries from N(0, σ2).
As a result, important insights about the clustering problem can be obtained by calculating
the entropic quantities related to Cn± and applying the general results from the previous
sections.

Proposition 19 Under the matrix denoising model where (λ,u,v) ∈ Y(Cn±, t, n, p, 1), it
holds that ∆2(Cn±) . n. In addition, if t2 = Cσ2(

√
pn + n) for some constant C > 0, then

there exist some (u0, ε0, α) and a local packing set G(B(u0, ε0) ∩ Cn±, d, αε0) satisfying (2)
such that log |G(B(u0, ε0) ∩ Cn±, d, αε0)| � n.

Theorem 20 Under the spectral clustering model defined in Section 1.2, or equivalently,
the matrix denoising model Y = λuv> + Z ∈ Rn×p where u ∈ Cn±, the estimator û =
arg maxu∈Cn± u>YY>u satisfies

sup
(λ,u,v)∈Y(Cn±,t,n,p,1)

R(û,u) .

(
σ
√

(t2 + σ2p)n

t2
∧ 1

)
. (26)

In addition, if t2 . σ2(n+
√
np), then

inf
û

sup
(λ,u,v)∈Y(Cn±,t,n,p,1)

R(û,u) & C (27)

for some absolute constant C > 0.

Intuitively, the fundamental difficulty for clustering relies on the interplay between the
global signal strength t, which reflects both the sample size (n) and the distance between
the two clusters (‖θ‖2), the noise level (σ2), and the dimensionality (p). In particular,
the lower bound from the above theorem shows that one needs ‖θ‖22 & σ2(

√
p/n + 1) in

order to have consistent clustering. Moreover, the risk upper bound implies that, whenever
‖θ‖22 & σ2(

√
p/n + 1), the estimator û is consistent. Theorem 20 thus establishes the

fundamental statistical limit for the minimal global signal strength for consistent clustering.
Similar phenomena have been observed by Azizyan et al. (2013) and Cai and Zhang (2018).

Nevertheless, it should be noted that, despite the fundamental limits for consistent
recovery yielded by Theorem 20, the upper bound (26) is sub-optimal and can be further
improved through a variant of Lloyd’s iterations (Lu and Zhou, 2016; Ndaoud, 2018), or a
hollowing method (Abbe et al., 2020).

6. Discussions

In this paper, we studied a collection of structural principal subspace estimation problems
in a unified framework by exploring the deep connections between the difficulty of statistical
estimation and the geometric complexity of the parameter spaces. Minimax optimal rates
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of convergence for a collection of structured PCA/SVD problems are established. In this
section, we discuss the computational issues of the proposed estimators as well as the
extensions and connections to other problems.

6.1 Computationally Efficient Algorithms and the Iterative Projection Method

In general, the constrained optimization problems that define the estimators in (5) and (17)
are computationally intractable. However, in practice, many iterative algorithms have been
developed to approximate such estimators.

For example, under the matrix denoising model, given the data matrix Y, the set C, and
an initial estimator U0 ∈ O(p1, r), an iterative algorithm for the constrained optimization
problem arg maxU∈C tr(U>YY>U) can be realized through iterations over the following
updates for t ≥ 1:

1. Multiplication: Gt = YY>Ut;

2. QR factorization: U′t+1Wt+1 = Gt where U′t+1 is p1 × r orthonormal and Wt+1 is
r × r upper triangular;

3. Projection: Ut+1 = PC(U′t+1).

Here the projection operator PC(·) is defined as PC(U) = arg minG∈C d(U,G). The above
algorithm generalizes the ideas of the projected power method (see, for example, Boumal
(2016); Chen and Candès (2018); Onaran and Villar (2017)) and the orthogonal iteration
method (Golub and Van Loan, 2012; Ma, 2013).

The computational efficiency of this iterative algorithm relies on the complexity of the
projection operator PC for a given C. In the rank-one case (r=1), Ferreira et al. (2013)
pointed out that, whenever the set C is an intersection of a convex cone and the unit sphere,
the projection operator PC(·) admits an explicit formula and can be computed efficiently.
This class of spherical convex sets includes many of the above examples such as non-negative
PCA/SVD and subspace constrained PCA/SVD. The case of spectral clustering, under the
rank-one setting, is also straightforward as the projection has a simple expression PCn±(u) =

sgn(u)/
√
n (see Ndaoud (2018) and Löffler et al. (2019) for more in depth discussions). As

for sparse PCA/SVD, the computational side of the problem is much more complicated and
has been extensively studied in literature (Shen and Huang, 2008; d’Aspremont et al., 2008;
Witten et al., 2009; Journée et al., 2010; Ma, 2013; Vu et al., 2013; Yuan and Zhang, 2013;
Deshpande and Montanari, 2014).

In addition to the iterative projection method discussed above, there are several other
computationally efficient algorithms such as convex (semidefinite in particular) relaxations
(Singer, 2011; Deshpande et al., 2014; Bandeira et al., 2017) and the approximate message
passing algorithms (Deshpande and Montanari, 2014; Deshpande et al., 2014; Montanari
and Richard, 2015; Rangan and Fletcher, 2012), that have been considered to solve the
structured eigenvector problems. However, the focuses of these algorithms are still rank-
one matrices, and it remains to be understood how well these algorithms generalize to the
general rank-r cases. We leave further investigations along these directions to future work.
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6.2 Extensions and Future Work

As mentioned in Section 1.2, an important special case of matrix denoising model is the
Gaussian Wigner model (Deshpande et al., 2014; Montanari and Richard, 2015; Perry et al.,
2018), where the data matrix Y = UΓU> + Z ∈ Rp×p is symmetric, and the noise matrix
Z has i.i.d. entries (up to symmetry) drawn from N(0, σ2). Consider the parameter space
Z(C, t, p, r) defined in Section 4.1. It can be shown that, under similar conditions to those
of Theorem 5,

inf
Û

sup
(Γ,U)∈Z(C,t,p,r)

R(Û,U) &

[(
σ

t

√
log |G(B(U0, ε0) ∩ C, d, αε0)|

)
∧ diam(C)

]
. (28)

Moreover, if we define Û = arg maxU∈C tr(U>YU), then its risk upper bound can be
obtained as

sup
(Γ,U)∈Z(C,t,p,r)

R(Û,U) .

(
σ∆(C)
t
∧ diam(C)

)
. (29)

These general bounds combined with the entropic quantities calculated in Section 5 would
yield many other interesting optimality results. For instance, recall that the Gaussian
Z/2 synchronization problem can be treated as a rank-one Gaussian Wigner model Y =
λuu> + Z where u ∈ Cn±. In this case, we have, for t . σ

√
n

inf
û

sup
(λ,u)∈Z(Cn±,t,n,1)

R(û,u) & C.

and, for û = arg maxu∈Cn± u>Yu,

sup
(λ,u)∈Z(Cn±,t,n,1)

R(û,u) .

(
σ
√
n

t
∧ 1

)
.

This implies that, about Gaussian Z/2 synchronization, to have consistent estimation/recovery,
one needs λ & σ

√
n, and the estimator û is consistent whenever λ & σ

√
n. These results

make interesting connections to the existing works (Javanmard et al., 2016; Perry et al.,
2018) concerning the so-called critical threshold or fundamental limit for the SNRs in Z/2
synchronization problems.

In the present paper, under the matrix denoising model, we only focused on the cases
where the prior structural knowledge on the targeted singular subspace span(U) is available.
However, in some applications, structural knowledge on the other singular subspace span(V)
can also be available. An interesting question is whether and how much the prior knowledge
on span(V) will help in the estimation of span(U). Some preliminary thinking suggests
that novel phenomena might exist in such settings. For example, in an extreme case, if V
is completely known a priori, then after a simple transform YV = UΓ + ZV, estimation
of span(U) can be reduced to a Gaussian mean estimation problem, whose minimax rate is
clearly independent of the dimension of the columns in V and therefore quite different from
the rates obtained in this paper. The problem again bears important concrete examples
in statistics and machine learning. The present work provides a theoretical foundation for
studying these problems.

18



Optimal Structured Principal Subspace Estimation

Acknowledgement

The authors are grateful to the editors and four anonymous referees for their comments
that improved the presentation of the paper. The research of Tony Cai was supported in
part by NSF grants DMS-1712735 and DMS-2015259 and NIH grants R01-GM129781 and
R01-GM123056. The research of Hongzhe Li was supported in part by NSF grant DMS-
1712735 and NIH grants R01-GM129781 and R01-GM123056. R.M. would like to thank
Shulei Wang, Sai Li, Rui Duan and Jiasheng Shi for helpful discussions.

Appendix A. Proof of the Main Theorems

In this section, we prove Theorems 5, 8, 9 and 10.

A.1 Risk Upper Bounds

This section proves Theorems 8 and 10. Throughout, for any X,Y ∈ Rp1×p2 , we denote
〈X,Y〉 = tr(X>Y). We recall Lemma 1 in Cai and Zhang (2018), which concerns the
relationships between different distance measures.

Lemma 21 For H1,H2 ∈ O(p, r), ‖H1H
>
1 −H2H

>
2 ‖F =

√
2(r − ‖H>1 H2‖2F ), and 1√

2
‖H1H

>
1 −

H2H
>
2 ‖F ≤ infO∈O(r) ‖H1 −H2O‖F ≤ ‖H1H

>
1 −H2H

>
2 ‖F .

Proof of Theorem 8. We begin by stating a useful lemma, whose proof is delayed to
Section C.

Lemma 22 Let U ∈ O(p, r), and Γ = diag(λ1, ..., λr). Then for any W ∈ O(p, r), we have
λ2r
2 ‖UU> −WW>‖2F ≤ 〈UΓ2U>,UU> −WW>〉 ≤ λ21

2 ‖UU> −WW>‖2F . If in addition

we define Σ = σ2Ip + UΓU>. Then for any W ∈ O(p, r), we have λr
2 ‖UU>−WW>‖2F ≤

〈Σ,UU> −WW>〉 ≤ λ1
2 ‖UU> −WW>‖2F .

By Lemma 22 and the fact that tr(Û>YY>Û) ≥ tr(U>YY>U), or equivalently
〈YY>,UU> − ÛÛ>〉 ≤ 0, we have

‖ÛÛ> −UU>‖2F ≤
2

λ2
r

〈UΓ2U> −YY>,UU> − ÛÛ>〉.

Since Y = UΓV> + Z, we have YY> = UΓ2U> + ZVΓU> + UΓV>Z> + ZZ>. Thus

‖ÛÛ> −UU>‖2F ≤
2

λ2
r

[
〈UΓV>Z>, ÛÛ> −UU>〉+ 〈ZVΓU>, ÛÛ> −UU>〉

+ 〈ZZ>, ÛÛ> −UU>〉
]

≡ 2

λ2
r

(H1 +H2 +H3).

For H1, if we set

GW =
WW> −UU>

‖WW> −UU>‖F
, W ∈ O(p1, r) \ {U}, (30)
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we can write

H1 = 〈UΓV>Z>, ÛÛ> −UU>〉 = ‖ÛÛ> −UU>‖F · 〈UΓV>Z>,G
Û
〉

≤ ‖ÛÛ> −UU>‖F · sup
W∈C

tr(ZVΓU>GW).

Similarly, we have H2 ≤ ‖ÛÛ> −UU>‖F · supW∈C tr(UΓV>Z>GW), and H3 ≤ ‖ÛÛ> −
UU>‖F · supW∈C tr(Z>GWZ). It then follows that

‖ÛÛ>−UU>‖F ≤
2

λ2
r

(
sup
W∈C

tr(ZVΓU>GW)+ sup
W∈C

tr(UΓV>Z>GW)+ sup
W∈C

tr(Z>GWZ)

)
.

(31)
The above inequality decomposes the error E‖ÛÛ> −UU>‖F into three terms

E
2

λ2
r

sup
W∈C

tr(ZVΓU>GW), E
2

λ2
r

sup
W∈C

tr(UΓV>Z>GW), E
2

λ2
r

sup
W∈C

tr(Z>GWZ).

In fact, the errors due to the first two terms correspond to the risk in the strong SNR
regime, and the last term contributes to the risk in the weak SNR regime. The rest of the
proof is separated into three parts. In Part I, we show that the first two terms are bounded
by σλ1D(T (C,U), d2)/λ2

r , whereas in Part II we show that the third term can be bounded
by σ2√p2D(T (C,U), d2)/λ2

r + σD′(T (C,U), d2)/λ2
r . In Part III, we obtain the desired risk

upper bound.

Part I. For the term supW∈C tr(ZVΓU>GW), we have

sup
W∈C

tr(ZVΓU>GW) = sup
W∈C

tr(U>GWZVΓ) = sup
W∈C

r∑
i=1

λi · (U>GWZV)ii

≤ λ1 sup
W∈C

tr(VU>GWZ) ≤ λ1 sup
G∈T ′(C,U,V)

〈G,Z〉,

where we defined T ′(C,U,V) = {GWUV> ∈ Rp1×p2 : W ∈ C \ {U}}. To control the
expected suprema of the Gaussian process supG∈T ′(C,U,V)〈G,Z〉, we use the following Dud-
ley’s integral inequality (see, for example, Vershynin 2018, pp. 188).

Theorem 23 (Dudley’s Integral Inequality) Let {Xt}t∈T be a Gaussian process, that
is, a jointly Gaussian family of centered random variables indexed by T , where T is equipped
with the canonical distance d(s, t) =

√
E(Xs −Xt)2. For some universal constant L, we

have E supt∈T Xt ≤ L
∫∞

0

√
logN (T, d, ε)dε.

For the Gaussian process supG∈T ′(C,U,V)〈G,Z〉, the canonical distance defined over the
set T ′(C,U,V) can be obtained as follows. For any G1,G2 ∈ T (C,U,V), the canonical dis-
tance between G1 and G2, by definition, is

√
E〈G1 −G2,Z〉2 = ‖G1−G2‖F ≡ d2(G1,G2).

Theorem 23 yields

E sup
G∈T ′(C,U,V)

〈G,Z〉 ≤ Cσ
∫ ∞

0

√
logN (T ′(C,U,V), d2, ε)dε, (32)
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for some universal constant C > 0. Next, for any G1,G2 ∈ T ′(C,U,V), without loss of
generality, if we assume G1 = GW1UV> and G2 = GW2UV>, where W1,W2 ∈ C \ {U},
then it holds that

d2(G1,G2) = ‖G1 −G2‖F ≤ ‖GW1 −GW2‖F ‖U‖‖V‖ (33)

≤ ‖GW1 −GW2‖F = d2(GW1 ,GW2),

where we used the fact that ‖HG‖F ≤ ‖H‖F ‖G‖. The next lemma, obtained by Szarek
(1998), concerns the invariance property of the covering numbers with respect to Lipschitz
maps.

Lemma 24 (Szarek (1998)) Let (M,d) and (M1, d1) be metric spaces, K ⊂M , Φ : M →
M1, and let L > 0. If Φ satisfies d1(Φ(x),Φ(y)) ≤ Ld(x, y) for x, y,∈ M , then, for every
ε > 0, we have N (Φ(K), d1, Lε) ≤ N (K, d, ε).

Define the set T (C,U) = {GW : W ∈ C \ {U}}. Equation (33) and Lemma 24 imply

logN (T ′(C,U,V), d2, ε) ≤ logN (T (C,U), d2, ε), (34)

which means

sup
W∈C

tr(ZVΓU>GW) ≤ Cλ1σ

∫ ∞
0

√
logN (T (C,U), d2, ε)dε. (35)

Applying the same argument to supW∈C tr(UΓV>Z>GW) leads to

sup
W∈C

tr(UΓV>Z>GW) ≤ Cλ1σ

∫ ∞
0

√
logN (T (C,U), d2, ε)dε. (36)

Part II. To bound supW∈C tr(Z>GWZ), note that tr(Z>GWZ) = vec(Z)>DWvec(Z),
where vec(Z) = (Z11, ..., Zp11, Z12, ..., Zp12, ..., Z1p2 , ..., Zp1p2)>, and

DW =

GW

. . .

GW

 ∈ Rp1p2×p1p2 , (37)

It suffices to control the expected supremum of the following Gaussian chaos of order 2,

sup
D∈P(C,U)

vec(Z)>Dvec(Z), (38)

where P(C,U) = {DW ∈ Rp1p2×p1p2 : W ∈ C \{U}}. To analyze the above Gaussian chaos,
a powerful tool from empirical process theory is the decoupling technique. In particular, we
apply the following decoupling inequality obtained by Arcones and Giné (1993) (see also
Theorem 2.5 of Krahmer et al. (2014)).

Theorem 25 (Arcones-Gené Decoupling Inequality) Let {gi}1≤i≤n be a sequence of
independent standard Gaussian variables and let {g′i}1≤i≤n be an independent copy of {gi}1≤i≤n.
Let B be a collection of n×n symmetric matrices. Then for all p ≥ 1, there exists an absolute
constant C such that

E sup
B∈B

∣∣∣∣ ∑
1≤j 6=k≤n

Bjkgjgk +

n∑
j=1

Bjj(g
2
j − 1)

∣∣∣∣p ≤ CpE sup
B∈B

∣∣∣∣ ∑
1≤j,k≤n

Bjkgjg
′
k

∣∣∣∣p.
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From Theorem 25 and the fact that for given W ∈ C\{U} we have Evec(Z)>DWvec(Z) =
0, then

E sup
D∈P(C,U)

[vec(Z)>Dvec(Z)] ≤ CE sup
D∈P(C,U)

[vec(Z)>Dvec(Z′)] (39)

where Z′ is an independent copy of Z. The upper bound of the right hand side of (39) can
be obtained by using a generic chaining argument developed by Talagrand (2014). To state
the result, we make the following definitions that characterize the complexity of a set in a
metric space.

Definition 26 (admissible sequence) Given a set T in the metric space (S, d), an ad-
missible sequence is an increasing sequence {An} of partitions of T such that |A0| = 1 and
|An| ≤ 22n for n ≥ 1.

Definition 27 (γα(T, d)) Given α > 0 and a set T in the metric space (S, d), we define
γα(T, d) = inf supt∈T

∑
n≥0 2n/αdiam(An(t)), where An(t) is the unique element of An which

contains t and the infimum is taken over all admissible sequences.

The following theorem from (Talagrand, 2014, pp. 246) provides an important upper
bound of the general decoupled Gaussian chaos of order 2.

Theorem 28 (Talagrand (2014)) Let g,g′ ∈ Rn be independent standard Gaussian vec-
tors, and Q = {qij}1≤i,j≤n ∈ Rn×n. Given a set T ⊂ Rn×n equipped with two distances
d∞(Q1,Q2) = ‖Q1 −Q2‖ and d2(Q1,Q2) = ‖Q1 −Q2‖F ,

E sup
Q∈T

g>Qg′ ≤ L(γ1(T, d∞) + γ2(T, d2)),

for some absolute constant L ≥ 0.

A direct consequence of Theorem 28 is

E sup
D∈P(C,U)

[vec(Z)>Dvec(Z′)] ≤ Cσ2(γ1(P(C,U), d∞) + γ2(P(C,U), d2)). (40)

Our next lemma obtains estimates of the functionals γ1(P(C,U), d∞) and γ2(P(C,U), d2).

Lemma 29 Let T (C,U) = {GW ∈ Rp1×p1 : W ∈ C \ {U}} be equipped with distances d∞
and d2 defined in Theorem 28. It holds that

γ1(P(C,U), d∞) ≤ C1

∫ ∞
0

logN (T (C,U), d2, ε)dε, (41)

γ2(P(C,U), d2) ≤ C2
√
p2

∫ ∞
0

√
logN (T (C,U), d2, ε)dε. (42)

Combining the above results, we have

E sup
W∈C

tr(Z>GWZ) . σ2√p2

∫ ∞
0

√
logN (T (C,U), d2, ε)dε+σ

2

∫ ∞
0

logN (T (C,U), d2, ε)dε.

(43)
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Part III. By (31) (35) (36) and (43), we have, for any (Γ,U,V) ∈ Y(C, t, p1, p2, r),
whenever t & σD′(T (C,U), d2)/D(T (C,U), d2),

E‖ÛÛ> −UU>‖F .
σλ1D(T (C,U), d2)

λ2
r

+
σ2√p2D(T (C,U), d2) + σ2D′(T (C,U), d2)

λ2
r

.
σ∆(C)

√
t2 + σ2p2

t2
.

The final result then follows by noticing the trivial upper bound of diam(C).

Proof of Theorem 10. Note that Y = XΓ1/2U>+Z ∈ Rn×p where Γ1/2 = diag(λ
1/2
1 , ..., λ

1/2
r ),

X ∈ Rn×r has i.i.d. entries from ∼ N(0, 1), and Z has i.i.d. entries from N(0, σ2). We can
write

Σ̂ =
1

n
Y>Y − Ȳ Ȳ > =

1

n
(UΓ1/2X>XΓ1/2U> + Z>XΓ1/2U> + UΓ1/2X>Z + Z>Z)

− (UΓ1/2X̄X̄>Γ1/2U> + UΓ1/2X̄Z̄> + Z̄X̄>Γ1/2U> + Z̄Z̄>),

where X̄ = 1
n

∑n
i=1Xi ∈ Rr and Z̄ = 1

n

∑n
i=1 Zi ∈ Rp. Now since tr(Û>Σ̂Û) ≥ tr(U>Σ̂U),

or equivalently 〈Σ̂,UU> − ÛÛ>〉 ≤ 0, by Lemma 22, we have

‖ÛÛ> −UU>‖2F ≤
2

λr
〈Σ− Σ̂,UU> − ÛÛ>〉.

Hence,

‖ÛÛ> −UU>‖2F

≤ 2

λr

[
〈n−1Z>XΓ1/2U>, ÛÛ> −UU>〉+ 〈n−1UΓ1/2X>Z, ÛÛ> −UU>〉

+ 〈n−1UΓ1/2X>XΓ1/2U> −UΓU>, ÛÛ> −UU>〉+ 〈n−1Z>Z− Ip, ÛÛ> −UU>〉

− 〈UΓ1/2X̄X̄>Γ1/2U>, ÛÛ> −UU>〉 − 〈UΓ1/2X̄Z̄>, ÛÛ> −UU>〉

− 〈Z̄X̄>Γ1/2U>, ÛÛ> −UU>〉 − 〈Z̄Z̄>, ÛÛ> −UU>〉
]

≡ 2

λr
(H1 +H2 +H3 +H4 −H5 −H6 −H7 −H8).

To control H1, using the same notations in (30), we have

H1 ≤
1

n
‖ÛÛ> −UU>‖F · sup

W∈C
tr(UΓ1/2X>ZGW).
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Similarly, it holds that

H2 ≤
1

n
‖ÛÛ> −UU>‖F · sup

W∈C
tr(Z>XΓ1/2U>GW),

H3 ≤ 〈Γ1/2(n−1X>X− Ir)Γ
1/2,U>ÛÛ>U− Ir〉

≤ ‖Γ1/2(n−1X>X− Ir)Γ
1/2‖ · |tr(U>ÛÛ>U− Ir)|

≤ λ1

2
‖n−1X>X− Ir‖‖UU> − ÛÛ>‖2F ,

H4 ≤ ‖ÛÛ> −UU>‖F · sup
W∈C

tr((n−1Z>Z− Ip)GW),

H5 ≤ ‖Γ1/2X̄X̄>Γ1/2‖ · |tr(U>ÛÛ>U− Ir)| ≤
λ1

2
‖X̄X̄>‖‖UU> − ÛÛ>‖2F ,

H6 ≤ ‖ÛÛ> −UU>‖F · sup
W∈C

tr(UΓ1/2X̄Z̄>GW),

H7 ≤ ‖ÛÛ> −UU>‖F · sup
W∈C

tr(Z̄>X̄Γ1/2U>GW),

H8 ≤ ‖ÛÛ> −UU>‖F · sup
W∈C

tr(Z̄Z̄>GW).

Combining the above inequalities, we have

‖ÛÛ> −UU>‖F

≤ 2

λr(1− λ1
λr
‖n−1X>X− Ir‖ − λ1

λr
‖X̄X̄>‖)

(
n−1 sup

W∈C
tr(UΓ1/2X>ZGW)

+ n−1 sup
W∈C

tr(Z>XΓ1/2U>GW) + sup
W∈C

tr((n−1Z>Z− Ip)GW) + sup
W∈C

tr(UΓ1/2X̄Z̄>GW)

+ sup
W∈C

tr(Z̄>X̄Γ1/2U>GW) + sup
W∈C

tr(Z̄Z̄>GW)

)
(44)

The rest of the proof is separated into four parts, with the first three parts controlling the
right-hand side of the inequality (44), and the last part deriving the final risk upper bound.

Part I. Note that

sup
W∈C

tr(UΓ1/2X>ZGW) = sup
W∈C

tr(X>ZGWUΓ1/2) ≤ λ1/2
1 sup

W∈C
tr(ZGWUX>/‖X‖)‖X‖

≤ λ1/2
1 sup

G∈T0(C,U,X)
〈Z>,G〉‖X‖,

where T0(C,U,X) =
{

GWUX>

‖X‖ : W ∈ C \ {U}
}

. By Theorem 23, we have

E
[

sup
G∈T0(C,U,X)

〈Z>,G〉
∣∣∣∣X] ≤ Cσ ∫ ∞

0

√
logN (T0(C,U,X), d2, ε)dε.

For any G1,G2 ∈ T0(C,U,X), without loss of generality, if we assume G1 = ‖X‖−1GW1UX>

and G2 = ‖X‖−1GW2UX> where W1,W2 ∈ C \ {U}, then

d2(G1,G2) ≤ ‖GW1 −GW2‖F ‖U‖ ≤ ‖GW1 −GW2‖F = d2(GW1 ,GW2). (45)
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Again, recall the set T (C,U) defined in the proof of Theorem 8, by Lemma 24, we have
logN (T0(C,U,X), d2, ε) ≤ logN (T (C,U), d2, ε), which implies

E sup
W∈C

tr(UΓ1/2X>ZGW) ≤ Cλ1/2
1 E‖X‖σ

∫ ∞
0

√
logN (T (C,U), d2, ε)dε. (46)

Now by Theorem 5.32 of Vershynin (2010), we have E‖X‖ ≤
√
n+
√
r, then

En−1 sup
W∈C

tr(UΓ1/2X>ZGW) ≤ Cλ1/2
1 σ(1/

√
n+
√
r/n)

∫ ∞
0

√
logN (T (C,U), d2, ε)dε.

(47)
Similarly, we can derive

En−1 sup
W∈C

tr(Z>XΓ1/2U>GW) ≤ Cλ1/2
1 σ(1/

√
n+
√
r/n)

∫ ∞
0

√
logN (T (C,U), d2, ε)dε.

(48)
One the other hand, since supW∈C tr(UΓ1/2X̄Z̄>GW) = supW∈C tr(X̄Z̄>GWUΓ1/2) ≤
λ

1/2
1 supW∈C tr(Z̄>GWUX̄/‖X̄‖2)‖X̄‖2 ≤ λ

1/2
1 ‖X̄‖2 supg∈T1〈Z̄,g〉, where T1(C,U,X) =

{GWUX̄
‖X̄‖2

: W ∈ C \ {U}} is equipped with the Euclidean `2 distance. By Theorem 23, we

have

E
[

sup
g∈T1(C,U,X)

〈Z̄,g〉
∣∣∣∣X] ≤ Cσ√

n

∫ ∞
0

√
logN (T1(C,U,X), d2, ε)dε.

Now for any g1,g2 ∈ T1(C,U,X), without loss of generality, if we assume g1 = ‖X̄‖−1
2 GW1UX̄

and g2 = ‖X̄‖−1
2 GW2UX̄, where W1,W2 ∈ C\{U}, then ‖g1−g2‖2 ≤ ‖X̄‖−1

2 ‖GW1UX̄−
GW2UX̄‖2 ≤ d∞(GW1 ,GW2) ≤ d2(GW1 ,GW2). Lemma 24 implies logN (T1(C,U,X), d2, ε) ≤
logN (T (C,U), d2, ε), which along with the fact that E‖X̄‖2 .

√
r/n implies

E sup
W∈C

tr(UΓ1/2X̄Z̄>GW) ≤ Cσ
√
rλ

1/2
1

n

∫ ∞
0

√
logN (T (C,U), d2, ε)dε. (49)

Similarly, we have

sup
W∈C

tr(Z̄>X̄Γ1/2U>GW) ≤ Cσ
√
rλ

1/2
1

n

∫ ∞
0

√
logN (T (C,U), d2, ε)dε. (50)

Part II. Note that tr((n−1Z>Z−σ2Ip)GW) = tr(n−1Z>ZGW)−σ2tr(GW) = n−1vec(Z)>DWvec(Z),
where DW is defined in (37). By the similar chaining argument in Part II of the proof of
Theorem 8, we have

E sup
W∈C

tr((n−1Z>Z−Ip)GW) .
σ2

√
n

∫ ∞
0

√
logN (T (C,U), d2, ε)dε+

σ2

n

∫ ∞
0

logN (T (C,U), d2, ε)dε

(51)
Similarly, since supW∈C tr(Z̄Z̄>GW) = supW∈C Z̄

>GWZ̄, we also have

E sup
W∈C

tr(Z̄Z̄>GW) .
σ2

n

∫ ∞
0

√
logN (T (C,U), d2, ε)dε+

σ2

n

∫ ∞
0

logN (T (C,U), d2, ε)dε.

(52)
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Part III. Define the event E = {‖n−1X>X− Ir‖ ≤ 1/(4L2), ‖X̄X̄>‖ ≤ 1/(4L2)}, where
L is the constant in Z(C, t, p, r). By Proposition D.1 in the Supplementary Material of Ma
(2013),

P (‖n−1X>X− Ir‖ ≤ 2(
√
r/n+ t) + (

√
r/n+ t)2) ≥ 1− 2e−nt

2/2,

which implies P (‖n−1X>X − Ir‖ ≤ 1/(4L2)) ≥ 1 − 2e−cn. In addition, since ‖X̄X̄>‖ ≤
‖X̄‖22 = 1

n

∑r
i=1 g

2
i , where gi ∼i.i.d. N(0, 1), it follows from the concentration inequality for

independent exponential variables (Vershynin, 2010, Proposition 5.16) that P (‖X̄X̄>‖ ≤
1/(4L2)) ≥ 1− 2e−cn. Thus, it follows that

P (Ec) ≤ P (‖n−1X>X− Ir‖ ≥ 1/(4L2)) + P (‖X̄X̄>‖ ≥ 1/(4L2)) ≤ 4e−cn.

Part IV. Note that Ed(U, Û) = E[d(U, Û)|E] +E[d(U, Û)|Ec]. It follows from (44) and
the inequalities (47)-(52) from Parts I and II that

sup
(Γ,U)∈Z(C,t,p,t)

E[d(U, Û)|E]

≤ C

t

[√
tσ

(
1√
n

+

√
r

n

)
D(T (C,U), d2) +

σ2D(T (C,U), d2)√
n

+
σ2D′(T (C,U), d2)

n

]
≤
Cσ∆(C)

√
t(1 + r/n) + σ2

√
nt

,

where the last inequality holds whenever
√
t/σ & supU∈C [D

′(T (C,U), d2)/D(T (C,U), d2)].

On the other hand, by Part III, E[d(U, Û)|Ec] ≤ diam(C)·P (Ec) ≤ C
√
re−cn. Consequently

as long as n & max{log t
σ2 , r} and

√
t/σ & supU∈C [D

′(T (C,U), d2)/D(T (C,U), d2)], we
have

sup
(Γ,U)∈Z(C,t,p,t)

Ed(U, Û) ≤ Cσ∆(C)
√
t+ σ2

√
nt

.

The final result then follows by noticing the trivial upper bound of diam(C).

A.2 Minimax Lower Bounds

Proof of Theorem 5. The proof is divided into two parts, the strong signal regime
(t2 ≥ σ2p2/4) and the weak signal regime (t2 < σ2p2/4). In the strong signal regime,
the minimax lower bound does not depend on the dimensionality p2 of V, so it suffices
to fix V = V0 and perturb U around some U0 ∈ C to construct a parameter set whose
corresponding probability measures are sufficiently close to each other. The minimax lower
bound can be obtained by applying the general lower bound for testing multiple simple
hypotheses (Lemma 30 below). However, in the weak signal regime, the minimax lower
bound does depend on p2. In this case, the construction of the probability measures should
reflect the fundamental difficulty of estimating U due to the coupling effect of the unknown
V. In order to do so, we not only perturbed U around some U0 ∈ C, but also considered
an approximately uniformly distributed prior of V over O(p2, r) subject to certain spectral
constraint. The minimax lower bound is then obtained by using a generalized Fano’s method
(Lemma 31) for testing multiple composite hypotheses. This mixing technique helps to obtain
a sharper minimax lower bound (see also Cai and Zhang (2018)).
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Part I. Strong Signal Regime. The following general lower bound for testing multiple
hypotheses Tsybakov (2009) are needed.

Lemma 30 (Tsybakov (2009)) Assume that M ≥ 2 and suppose that (Θ, d) contains
elements θ0, θ1, ..., θM such that: (i) d(θj , θk) ≥ 2s > 0 for any 0 ≤ j < k ≤M ; (ii) it holds

that 1
M

∑M
j=1D(Pj , P0) ≤ α logM with 0 < α < 1/8 and Pj = Pθj for j = 0, 1, ...,M , where

D(Pj , P0) =
∫

log
dPj
dP0

dPj is the KL divergence between Pj and P0. Then

inf
θ̂

sup
θ∈Θ

Pθ(d(θ̂, θ) ≥ s) ≥
√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
.

Let V0 ∈ O(p2, r) be fixed and U0 ∈ C. Denote the ε-ball B(U0, ε) = {U ∈ O(p1, r) :
d(U,U0) ≤ ε}. For some δ < ε, we consider the local δ-packing set Gδ = G(B(U0, ε)∩C, d, δ)
such that for any pair U,U′ ∈ B(U0, ε)∩C, it holds that d(U,U′) = ‖UU>−U′U′>‖F ≥ δ.
We denote the elements of Gδ as Ui for 1 ≤ i ≤ |Gδ|. Lemma 21 shows that, for any i, we
can find Oi ∈ Or such that ‖U0 −UiOi‖F ≤ d(U0,Ui) ≤ ε. Set U′i = UiOi and denote
G′δ = {U′i}. For given t > 0, we consider the subset

X (t, ε, δ,U0,V0) = {(Γ,U,V) : U ∈ G′δ,V = V0,Γ = tIr} ⊂ Y(C, t, p1, p2, r).

In particular, the above construction admits |X (t, ε, δ,U0,V0)| = |Gδ|.
Moreover, for any (Γ,Ui,V0) ∈ X (t, ε, δ,U0,V0), let Pi be the probability measure of

Y = UiΓV>0 + Z where Z has i.i.d. entries from N(0, σ2). We have, for 1 ≤ i 6= j ≤ |Gδ|,

D(Pi, Pj) =
‖(U′i −U′j)ΓV>0 ‖2F

2σ2
≤
t2‖U′i −U′j‖2F

2σ2
≤ 2t2ε2

σ2
.

Now set ε = ε0 and δ = αε for some α ∈ (0, 1). By assumption,(
cσ2

t2
log |Gαε0 | ∧ diam2(C)

)
≤ ε20 ≤

(
σ2

32t2
log |Gαε0 | ∧ diam2(C)

)
(53)

for some c ∈ (0, 1/32), it holds that D(Pi, Pj) ≤ 1
16 log |Gαε0 |. Now by Lemma 30, it holds

that, for θ = (Γ,U,V),

inf
Û

sup
θ∈X (t,ε,δ,U0,V0)

Pθ(d(Û,U) ≥ αε0/2) ≥
√
|Gαε0 |

1 +
√
|Gαε0 |

(
7

8
− 1√

8 log |Gαε0 |

)
.

By Markov’s inequality, we have

inf
Û

sup
θ∈X (t,ε,δ,U0,V0)

Eθd(Û,U) ≥
αε0
√
|Gαε0 |

2(1 +
√
|Gαε0 |)

(
7

8
− 1√

8 log |Gαε0 |

)
≥ Cαε0,

for some C > 0 as long as |Gαε0 | ≥ 2. Therefore, it holds that

inf
Û

sup
θ∈Y(C,t,p1,p2,r)

Eθd(Û,U) ≥ inf
Û

sup
θ∈X (t,ε,δ,U0,V0)

Eθd(Û,U)

& (σt−1
√

log |Gαε0 | ∧ diam(C)) &
(
σ
√
t2 + σ2p2

t2

√
log |Gαε0 | ∧ diam(C)

)
.

Part II. Weak Signal Regime. The proof relies on the following generalized Fano’s method,
obtained by Ma et al. (2019), about testing multiple composite hypotheses.
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Lemma 31 (Generalized Fano’s Method) Let µ0, µ1, ..., µM be M + 1 priors on the
parameter spaces Θ of the family {Pθ}, and let Pj be the posterior probability measures on
(X ,A) such that

Pj(S) =

∫
Pθ(S)µj(dθ), ∀S ∈ A, j = 0, 1, ...,M.

Let F : Θ→ (Rd, d). If (i) there exist some sets B0, B1, ..., BM ⊂ Rd such that d(Bi, Bj) ≥
2s for some s > 0 for all 0 ≤ i 6= j ≤ M and µj(θ ∈ Θ : F (θ) ∈ Bj) = 1; and (ii) it holds

that 1
M

∑M
j=1D(Pj , P0) ≤ α logM with 0 < α < 1/8. Then

inf
F̂

sup
θ∈Θ

Pθ(d(F̂ , F (θ)) ≥ s) ≥
√
M

1 +
√
M

(
1− 2α−

√
2α

logM

)
.

To use the above lemma, we need to construct a collection of priors over the set
Y(C, t, p1, p2, r). Specifically, recall the previously constructed δ-packing set Gδ = {Ui :
1 ≤ i ≤ |Gδ|}. Inspired by Cai and Zhang (2018), we consider the prior probability measure
µi over Y(C, t, p1, p2, r), whose definition is given as follows. Let W be a random matrix on
Rp2×r, whose probability density is given by

p(W) = C

(
p2

2π

)rp2/2
exp(−p2‖W‖2F /2) · 1{1/2 ≤ λmin(W) ≤ λmax(W) ≤ 2},

where C is a normalizing constant; then, if we denote ŨiΓ̃iṼ
>
i as the SVD of tUiW

> ∈
Rp1×p2 where Ui ∈ Gδ and W ∼ p(W), then µi is defined as the joint distribution of
(Γ̃i, Ũi, Ṽi). By definition of Ui, one can easily verify that µi is a well-defined probability
measure on Y(C, t, p1, p2, r). Note that, for any θi = (Γ̃i, Ũi, Ṽi) ∈ supp(µi) and θj =
(Γ̃j , Ũj , Ṽj) ∈ supp(µj) with 1 ≤ i 6= j ≤ |Gδ|, it holds that d(Ũi, Ũj) = d(Ui,Uj) ≥ δ.

Consequently, the joint distribution of Y = UΓV> + Z with (Γ,U,V) ∼ µi and Zij ∼
N(0, σ2) can be expressed as

Pi(Y) = C

∫
1/2≤λmin(W)≤λmax(W)≤2

σ−p1p2

(2π)p1p2/2
exp(−‖Y − tUiW

>‖2F /(2σ2))

×
(
p2

2π

)rp2/2
exp(−p2‖W‖2F /2)dW,

and it remains to control the pairwise KL divergence D(Pi, Pj) for any 1 ≤ i 6= j ≤ |Gδ|.
This is done by the next lemma, whose proof, which is involved, is delayed to Section C.

Lemma 32 Under the assumption of the theorem, for any 1 ≤ i 6= j ≤ |Gδ|, we have

D(Pi, Pj) ≤ C1t4d2(Ui,Uj)
σ2(4t2+σ2p2)

+ C2 where C1, C2 > 0 are some uniform constant and {Ui} are

elements of Gδ.

Again, set ε = ε0 and δ = αε for some α ∈ (0, 1). By assumption,(
cσ2(t2 + σ2p2)

t4
log |Gδ| ∧ diam(C)

)
≤ ε20 ≤

(
σ2(t2 + σ2p2)

640t4
log |Gδ| ∧ diam(C)

)
,
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for some c ∈ (0, 1/640]. It then follows that D(Pi, Pj) ≤ C log |Gαε0 | + C2. Now let
X ′(t, ε, δ,U0) =

⋃
1≤i≤|Gαε0 |

supp(µi). By Lemma 31 and Markov’s inequality, we have,

for θ = (Γ,U,V),

inf
Û

sup
θ∈X ′(t,ε0,αε0,U0)

Eθd(Û,U) ≥
αε0
√
|Gαε0 |

2(1 +
√
|Gαε0 |)

(
7

8
− 1√

8 log |Gαε0 |

)
≥ Cαε0,

for some C > 0 as long as |Gαε0 | ≥ 2. Hence,

inf
Û

sup
θ∈Y(C,t,p1,p2,r)

Eθd(Û,U) & inf
Û

sup
θ∈X ′(t,ε0,αε0,U0)

Eθd(Û,U)

&

(
σ
√

4t2 + σ2p2

t2

√
log |Gαε0 | ∧ diam(C)

)
.

Proof of Theorem 9. For some U0 ∈ C, similar to the proof of Theorem 5, we consider
the δ-packing set Gδ = G(B(U0, ε) ∩ C, d, δ), where for any Ui,Uj ∈ Gδ, d(Ui,Uj) =
‖UiU

>
i − UjU

>
j ‖F ≥ δ. Then, for given t > 0, we consider the subset Z ′(t, ε, δ,U0) =

{(Γ,U) ∈ Z(C, t, p, r) : U ∈ Gδ,Γ = tIr}, so that |Z ′(t, ε, δ,U0)| = |Gδ|. Let Pi be the joint
probability measure of Yk ∼i.i.d. N(0,Σi) with k = 1, ..., n and Σi = tUiU

>
i + σ2Ip. We

have, for any 1 ≤ i 6= j ≤ |Gδ|,

D(Pi, Pj) =
n

2

(
tr(Σ−1

j Σi)− p+ log

(
det Σi

det Σj

))
=
n

2
tr

(
− t

t+ σ2
UiU

>
i +

t

σ2
UjU

>
j −

t2

σ2(t+ σ2)
UiU

>
i UjU

>
j

)
=

nt2

2σ2(σ2 + t)
(r − ‖U>i Uj‖2F ) ≤ nt2d2(Ui,Uj)

σ2(σ2 + t)
≤ nt2ε2

σ2(σ2 + t)
,

where the second equation follows from the Woodbury matrix identity and the second last
inequality follows from Lemma 21. Now let ε = ε0 and δ = αε for some α ∈ (0, 1). By
assumption,(

cσ2(σ2 + t)

nt2
log |Gαε0 | ∧ diam2(C)

)
≤ ε20 ≤

(
σ2(σ2 + t)

32nt2
log |Gαε0 | ∧ diam2(C)

)
,

for some c ∈ (0, 1/32). It holds that D(Pi, Pj) ≤ 1
16 log |Gαε0 |. Now by Lemma 30, it holds

that, for θ = (Γ,U),

inf
Û

sup
θ∈Z′(t,ε0,αε0,U0)

Pθ(d(Û,U) ≥ αε0/2) ≥
√
|Gαε0 |

1 +
√
|Gαε0 |

(
7

8
− 1√

8 log |Gαε0 |

)
.

By Markov’s inequality, as long as |Gαε0 | ≥ 2, we have

inf
Û

sup
θ∈Z′(t,ε0,αε0,U)

Eθd(Û,U) ≥ Cαε0,

for some C > 0. Therefore, since Z ′(t, ε0, αε0,U) ⊂ Z(C, t, p, r),

inf
Û

sup
θ∈Z(C,t,p,r)

R(Û,U) ≥ inf
Û

sup
θ∈Z′(t,ε0,αε0,U0)

Eθd(Û,U)

&

(
σ
√
σ2 + t

t
√
n

√
log |Gαε0 | ∧ diam(C)

)
.
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Appendix B. Calculation of Metric Entropies

In this section, we prove the results in Section 5 by calculating metric entropies of some
specific sets. The calculation relies on the following useful lemmas.

Lemma 33 (Varshamov-Gilbert Bound) Let Ω = {0, 1}n and 1 ≤ d ≤ n/4. Then
there exists a subset {ω(1), ..., ω(M)} of Ω such that ‖ω(j)‖0 = d for all 1 ≤ j ≤ M and
‖ω(j) − ω(k)‖0 ≥ d

2 for 0 ≤ j < k ≤M , and logM ≥ cd log n
d where c ≥ 0.233.

The proof of the above version of Varshamov-Gilbert bound can be found, for exam-
ple, in Lemma 4.10 in Massart (2007)). The next two lemmas concern estimates of the
covering/packing numbers of the orthogonal group.

Lemma 34 (Candes and Plan 2011) Define P0 = {ŪΓ̄V̄> : Ū, V̄ ∈ O(p, 2r), ‖(Γ̄ii)1≤i≤2r‖2 =
1}. Then for any ε ∈ (0,

√
2), there exists an ε-covering set H(P0, d2, ε) such that |H(P0, d2, ε)| ≤

(c/ε)2(2p+1)r for some constant c > 0.

Lemma 35 For any V ∈ O(k, r), identifying the subspace span(V ) with its projection
matrix V V >, define the metric on the Grassmannian manifold G(k, r) by ρ(V V >, UU>) =
‖V V > − UU>‖F . Then for any ε ∈ (0,

√
2(r ∧ (k − r))),(

c0

ε

)r(k−r)
≤ N (G(k, r), ρ, ε) ≤

(
c1

ε

)r(k−r)
,

where N (E, ε) is the ε-covering number of E and c0, c1 are absolute constants. Moreover,
for any V ∈ O(k, r) and any α ∈ (0, 1), it holds that(

c0

αc1

)r(k−r)
≤M(B(V, ε), ρ, αε) ≤

(
2c1

αc0

)r(k−r)
.

Proof We only prove the entropy upper bound

M(B(V, ε), d, αε) ≤
(
c0

αc1

)r(k−r)
, (54)

as the other results has been proved in Lemma 1 of Cai et al. (2013). Specifically, Let Gε
be the ε-packing set of O(k, r). It then holds that

M(O(k, r), d, αε) ≥
∑
V ∈Gε

M(B(V, ε), d, αε) ≥ |Gε|M(B(V ∗, ε), d, αε)

=M(O(k, r), d, ε)M(B(V ∗, ε), d, αε)

for some V ∗ ∈ O(k, r). Hence,

M(B(V ∗, ε), d, αε) ≤ M(O(k, r)), d, αε)

M(O(k, r)), d, ε)
.

By the equivalence between the packing and the covering numbers, it holds that

M(B(V ∗, ε), d, αε) ≤ N (O(k, r)), d, αε/2)

N (O(k, r)), d, ε)
≤
(

2c1

αc0

)r(k−r)
,
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where the last inequality follows from the first statement of the lemma. Then (54) holds
since the metric d is unitarily invariant.

The following lemma is an estimate of the Dudley’s entropy integral for the orthogonal
group O(p, r).

Lemma 36 For any given U ∈ O(p, r), there exists some constant C > 0 such that∫∞
0

√
logN (T (O(p, r),U), d2, ε)dε ≤ C

√
pr. Therefore, we have ∆2(O(p, r)) ≤ Cpr.

Proof By definition, for any G ∈ T (O(p, r),U), it is at most rank 2r, and suppose its SVD
is G = ŪΓ̄V̄>, then Γ̄ is a diagonal matrix with nonnegative diagonal entries and Frobenius
norm equal to one. Thus, if we define P0 = {ŪΓ̄V̄> : Ū, V̄ ∈ O(p, 2r), ‖(Γ̄ii)1≤i≤2r‖2 = 1},
then by Lemma 24,

N (T (O(p, r),U), d2, ε) ≤ N (P0, d2, ε).

By Lemma 34, we can calculate that∫ ∞
0

√
logN (T (O(p, r),U), d2, ε)dε ≤

∫ ∞
0

√
logN (P0, d2, ε)dε

≤ C√pr
∫ √2

0

√
log(c/ε)dε ≤ C√pr. (55)

The second statement follows directly from the definition of ∆2(O(p, r)).

B.1 Sparse PCA/SVD: Proof of Proposition 11 and Theorem 12

Matrix denoising model with CS(p1, r, k), or sparse SVD. By Lemma 33, we can
construct a subset Θε(k) ⊂ CS(p1, r, k) as follows. Let ΩM = {ω(1), ..., ω(M)} ⊂ {0, 1}p1−r−1

be the set obtained from Lemma 33 where n = p1 − r− 1, d = k/e < (p1 − r− 1)/4 and M

is the smallest integer such that logM ≥ cd log n/d, i.e., M = dexp(ck log e(p1−r−1)
k )e. We

define

Θε =

{[
v 0
0 Ir−1

]
: v = (

√
1− ε2, εω/

√
d) ∈ Sp1−r−1, ω ∈ ΩM

}
, ε ∈ (0, 1).

Then Θε is a ε
2 -packing set of B(U0,

√
2ε) ∩ CS(p1, r, k) with U0 =

[
v0 0
0 Ir−1

]
where v0 =

(1, 0, ..., 0)>, |Θε| = M . Now we set

ε2 =
c1(t2 + σ2p2)σ2k log(e(p1 − r − 1)/k)

t4
∧ 1,

for some sufficiently small c1 > 0. It follows that(
c2σ

2(t2 + σ2p2)

t4
log |Θε| ∧ 1

)
≤ ε2 ≤

(
σ2(t2 + σ2p2)

640t4
log |Θε| ∧ 1

)
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for some c2 ∈ (0, 1/640). So the condition of Theorem 5 holds with ε0 =
√

2ε, α = 1/(2
√

2)
and log |Θε| � k log(ep1/k). Moreover, for any U′ ∈ O(k, r), suppose Mε ⊂ O(k, r) is an
αε-packing set of B(U′, ε) constructed as in Lemma 35, then the set

Θ′ε =

{
U =

[
W
0

]
,W ∈Mε

}
⊂ CS(p1, r, k), (56)

is an αε-packing set of CS(p1, r, k) ∩ B(U0, ε) where U0 =

[
U′

0

]
, and |Θ′ε| ≥ (c/α)r(k−r).

Now we set

ε2 =
c1(t2 + σ2p2)σ2r(k − r)

t4
∧ r2,

for some sufficiently small c1 > 0. It follows that(
c2σ

2(t2 + σ2p2)

t4
log |Θ′ε| ∧ r

)
≤ ε2 ≤

(
σ2(t2 + σ2p2)

640t4
log |Θ′ε| ∧ r

)
for some c2 ∈ (0, 1/640). Thus, the condition of Theorem 5 holds with log |Θ′ε| � r(k − r).

To obtain an upper bound for ∆(CS(p1, r, k)), we notice that any element H ∈ T (CS(p1, r, k),U)
satisfies H = H> and

max
1≤i≤p1

‖Hi.‖0 ≤ k, max
1≤i≤p1

‖H.i‖0 ≤ k.

Then T (CS(p1, r, k),U) can be covered by the union of its
(
p1
k

)
disjoint subsets, with each

subset corresponding to a fixed sparsity configuration. Each of the above subsets can be
identified with T (O(k, r),U′) for some U′ ∈ O(k, r), and by Lemma 34 and the proof of
Lemma 36,

N (T (O(k, r),U′), d2, ε) ≤ (c1/ε)
2r(2k+1).

for any ε ∈ (0,
√

2). Then by taking a union of the covering sets, we have

N (T (CS(p1, r, k),U), d2, ε) ≤
(
p1

k

)
(c1/ε)

2r(2k+1) ≤ (ep1/k)k(c1/ε)
2r(2k+1).

As a result,∫ ∞
0

√
logN (T (CS(p1, r, k),U), d2, ε)dε ≤

√
2k log(ep1/k) +

√
2r(2k + 1)

∫ √2

0

√
log

c1

ε
dε

≤ C(
√
k log(ep1/k) +

√
rk).

In addition, we also have∫ ∞
0

logN (T (CS(p1, r, k),U), d2, ε)dε ≤ C(k log(ep1/k) + rk).

By Part III of the proof of Theorem 8, the upper bound result follows whenever t
σ &√

k log(ep1/k) +
√
rk. In particular, in light of the minimax lower bound (from Theorem

5), if r = O(1), then, whenever consistent estimation is possible, or

σ
√
t2 + σ2p2

t2

(√
k log

ep1

k
+
√
k

)
. 1,

the condition t
σ &

√
k log(ep1/k) +

√
rk is satisfied and the proposed estimator is minimax

optimal. The final results follows by combining Theorems 5 and 8.
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Spiked Wishart model with CS(p, r, k), or sparse PCA. We omitted the proof of
this case as it is similar to the proof of the sparse SVD.

B.2 Non-Negative PCA/SVD: Proof of Proposition 13 and Theorem 15

Matrix denoising model with CN (p1, r), or non-negative SVD. On the one hand,
with Lemma 33, we can construct a subset Θε ⊂ O(p1, r) as follows. Let ΩM = {ω(1), ..., ω(M)} ⊂
{0, 1}n be the set obtained from Lemma 33 where n = p1−r−1, d = (p1−r−1)/4 and M is

the smallest integer such that logM ≥ cd log n/d, i.e., M = dexp( c(p1−r−1) log 2
2 )e. Following

the idea of Vu and Lei (2012) and Cai et al. (2013), we define

Θε =

{[
v 0
0 Ir−1

]
: v = (

√
1− ε2, εω/

√
d) ∈ Sp1−r−1, ω ∈ ΩM

}
, ε ∈ (0, 1).

Then it holds that Θε ⊂ B(U0,
√

2ε) for U0 =

[
v0 0
0 Ir−1

]
where v0 = (1, 0, ..., 0)>, |Θε| =

M , and that for any U 6= U′ ∈ Θε,

d(U,U′) ≥
√

2 ·
√

1− (1− ε2/8)2 ≥ ε

2
.

In other words, Θε is a ε
2 -packing set of B(U0,

√
2ε) ∩ CNN (p1, r). Now we set

ε2 =
c1(t2 + σ2p2)σ2(p1 − r − 1)

t4
∧ 1,

for some sufficiently small c1 > 0. It follows that(
c2σ

2(t2 + σ2p2)

t4
log |Θε| ∧ 1

)
≤ ε2 ≤

(
σ2(t2 + σ2p2)

640t4
log |Θε| ∧ 1

)
for some c2 ∈ (0, 1/640). So the condition of Theorem 5 holds with ε0 =

√
2ε, α = 1/(2

√
2)

and log |Θε| � p1.
On the other hand, we need to obtain an upper bound for ∆(CN (p1, r)). To bound the

Dudley’s entropy integral
∫∞

0

√
logN (T (CN (p1, r),U), d2, ε)dε, we simply use the fact that

CN (p1, r) ⊂ O(p1, r) and

N (T (CN (p1, r),U), d2, ε) ≤ N (T (O(p1, r),U), d2, ε).

Then by Lemma 36, we have ∆2(CNN (p1, r)) . p1r. Combining Theorems 5 and 8, we
have ∆2(CNN (p1, r)) & log |Θε|, which implies ∆2(CNN (p1, r)) � log |Θε| � p1 if r = O(1).
Again, by Part III of the proof of Theorem 8, the upper bound follows whenever t

σ &
√
rp1.

In particular, when r = O(1), this condition is satisfied whenever

σ
√
p1(t2 + σ2p2)

t2
. 1.

In other words, in light of the minimax lower bound (from Theorem 5), whenever consistent
estimation is possible, the condition t

σ &
√
p1 is satisfied and the proposed estimator is

minimax optimal.
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Spiked Wishart model with CN (p, r), or non-negative PCA. Similarly, let ΩM =
{ω(1), ..., ω(M)} ⊂ {0, 1}p−r−1 be the set obtained from Lemma 33 where d = (p−r−1)/4 and

M is the smallest integer such that logM ≥ cd log(p−r−1)/d, i.e., M = dexp( c(p−r−1) log 2
2 )e.

We define

Θε =

{[
v 0
0 Ir−1

]
: v = (

√
1− ε2, εω/

√
d) ∈ Sp−r−1, ω ∈ ΩM

}
, ε ∈ (0, 1).

Then it holds that Θε ⊂ B(U0,
√

2ε) for U0 =

[
v0 0
0 Ir−1

]
where v0 = (1, 0, ..., 0)>, |Θε| =

M , and that for any U 6= U′ ∈ Θε,

d(U,U′) ≥
√

2 ·
√

1− (1− ε2/8)2 ≥ ε

2
.

In other words, Θε is a ε
2 -packing set of B(U0,

√
2ε) ∩ CNN (p, r). Now we set

ε2 =
c1σ

2(σ2 + t)(p− r − 1)

nt2
∧ 1,

for some sufficiently small c1 > 0. It follows that(
c2σ

2(σ2 + t)

nt2
log |Θε|∧1

)
≤ ε2 ≤

(
σ2(σ2 + t)

nt2
(p− r − 1) log 2

10
∧1

)
≤
(
σ2(σ2 + t)

32nt2
log |Θε|∧1

)
for some c2 ∈ (0, 1/32), so that condition of Theorem 9 holds and log |Θε| � p. The rest
of the arguments such as the calculation of Dudley’s entropy integral are the same as the
above proof of the non-negative SVD.

B.3 Subspace PCA/SVD: Proof of Proposition 17 and Theorem 18

To prove this proposition, in light of Lemmas 34, 35 and 36, it suffices to establish the
isometry between (CA(p, r, k), d) and (O(k, r), d). Let Q ∈ O(p, k) has its columns being
the basis of the null space of A. We consider the map F : O(k, r) → CA(p, r, k) where
F (W) = QW. To show that F is a bijection, we notice that

1. For any G ∈ CA(p, r, k), for each of its columns Q.i, there exists some vi ∈ Sk−1 such
that G.i = Qvi and v>i vj = v>i Q>Qvj = G>.iG.j = 0. Then let W = [v1, ...,vr] ∈
O(k, r), apparently, we have F (W) = G. This proves that the map is onto.

2. For any W1 6= W2 ∈ O(k, r), it follows that F (W1) 6= F (W2). This proves the
injection.

To show the map F is isometric, we notice that

1. For any G1 = F (W1),G2 = F (W2) ∈ CA(p, r, k),

d(F (W1), F (W2)) = ‖QW1W
>
1 Q> −QW2W

>
2 Q>‖F

≤ ‖Q‖2‖W1W
>
1 −W2W

>
2 ‖F

≤ d(W1,W2).
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2. For any W1,W2 ∈ O(k, r),

d(W1,W2) = ‖Q>QW1W
>
1 Q> −QW2W

>
2 Q>Q‖F ≤ d(F (W1,W2)).

Thus d(F (W1), F (W2)) = d(W1,W2).

B.4 Spectral Clustering: Proof of Proposition 19 and Theorem 20

The upper bound ∆2(Cn±) . n follows from the same argument as in the proof of Proposition
15. For the second statement, by Lemma 33, we can construct a subset Θ(d) ⊂ Sn−1 as
follows. Let ΩM = {ω(1), ..., ω(M)} ⊂ {0, 1}n be the set obtained from Lemma 33 where
‖ω(j)‖0 = d ≤ n/4 for all 1 ≤ j ≤ n and M is the smallest integer such that logM ≥ cd,
i.e., M = dexp(cd log n

d )e. We define

Θ(d) =

{
2|ω − 0.5 · 1|√

n
∈ Cn± : ω ∈ ΩM ∪ {(0, ..., 0)}

}
,

where 1 = (1, ..., 1)> ∈ Rn. Then since for u0 = (−1/
√
n, ...,−1/

√
n)> and any u ∈ Θ(d),

d(u0,u) ≤ ‖u0 − u‖2 ≤ 2

√
d

n
,

it holds that Θ(d) ⊂ B(u0, 2
√
d/n) with and that for any u 6= u′ ∈ Θ(d),

d(u,u′) ≥ 1√
2
‖u− u′‖2 ≥

√
d

n

so that Θ(d) is a
√

d
n -packing set of B(u0, 2

√
d/n)∩Cn±. Now since t2 = Cσ2(n+

√
np), we

can set

ε0 =

√
d

n
, where d = c1n,

for some sufficiently small c1 > 0, and thus it follows that(
c2σ

2(t2 + σ2p)

t4
log |Θ(d)| ∧ 1

)
≤ ε20 ≤

(
σ2(t2 + σ2p)

128t4
log |Θ(d)| ∧ 1

)
for some c2 ∈ (0, 1/128). So the condition of Theorem 5 holds with α = 1/2 and log |Θ(d)| �
n.

Appendix C. Proof of Technical Lemmas

Proof of Lemma 22. For the first statement, the first inequality can be proved by

〈UΓ2U,UU> −WW>〉 = tr(UΓ2U>)− tr(W>UΓ2U>W)

= tr(Γ2)− tr(Γ2U>WW>U)

=
r∑
i=1

λ2
i (1− (U>WW>U)ii)

≥ λ2
r(r − tr(U>WW>U))

=
λ2
r

2
‖UU> −WW>‖2F .
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The second inequality follows from the same rationale. The second statement has been
proved in Lemma 3 of Cai et al. (2013).

Proof of Lemma 29. Throughout the proof, for simplicity, we write P = P(C,U) and
T = T (C,U). By Corollary 2.3.2 of Talagrand (2014), for any metric space (T, d), if we
define

en(T ) = inf{ε : N (T, d, ε) ≤ Nn}, where N0 = 1;Nn = 22n for n ≥ 1, (57)

then there exists some constant K(α) only depending on α such that

γα(T, d) ≤ K(α)
∑
n≥0

2n/αen(T ). (58)

The following inequalities establish the correspondence between en and the Dudley’s entropy
integral, ∑

n≥0

2n/2en(T ) ≤ C
∫ ∞

0

√
logN (T, d, ε)dε,

∑
n≥0

2nen(T ) ≤ C
∫ ∞

0
logN (T, d, ε)dε,

(59)

whose derivation is delayed to the end of this proof. Combining (58) and (59), it follows
that

γα(T, d) ≤ K(α)

∫ ∞
0

log1/αN (T, d, ε)dε. (60)

By (60), it suffices to obtain estimates of the metric entropies logN (P, d∞, ε) and
√

logN (P, d2, ε).
By definition of T , apparently (P, d∞) is isomorphic to (T , d∞), then by Lemma 24, it holds
that

N (P, d∞, ε) = N (T , d∞, ε).

Along with the fact that, for any G1,G2 ∈ T , d∞(G1,G2) ≤ d2(G1,G2) and therefore

N (T , d∞, ε) ≤ N (T , d2, ε),

we prove the first statement of the lemma. On the other hand, consider the map F :
(P, d2)→ (T , d2) where for any D ∈ P, F (D) ∈ Rp1×p1 is the submatrix of D by extracting
its entries in the first p1 columns and rows. Then, for any D1,D2 ∈ P, it holds that

d2(F (D1), F (D2)) = ‖F (D1)− F (D2)‖F =
1
√
p2
d2(D1,D2).

Again, applying Lemma 6, we have

N (P, d2, ε) = N (T , d2, ε/
√
p2).

The second statement of the lemma then follows simply from the change of variable

γ2(P, d2) ≤ C2

∫ ∞
0

√
logN (T , d2, ε/

√
p2)dε = C2

√
p2

∫ ∞
0

√
logN (T , d2, ε)dε.
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Proof of (59). The proof of the first inequality can be found, for example, on page 22 of
Talagrand (2014). Nevertheless, we provide a detailed proof for completeness. By definition
of en, if ε < en(T ), we have N (T, d, ε) > Nn and N (T, d, ε) ≥ Nn + 1. Then√

log(1 +Nn)(en(T )− en+1(T )) ≤
∫ en(T )

en+1(T )

√
logN (T, d, ε).

Since log(1 +Nn) ≥ 2n log 2 for n ≥ 0, summation over n ≥ 0 yields√
log 2

∑
n≥0

2n/2(en − en+1(T )) ≤
∫ e0(T )

0

√
logN (T, d, ε).

Then the final inequality (59) follows by noting that∑
n≥0

2n/2(en − en+1(T )) =
∑
n≥0

2n/2en(T )−
∑
n≥1

2(n−1)/2en(T )

≥ (1− 1/
√

2)
∑
n≥0

2n/2en(T ).

The second inequality can be obtained similarly by working with the inequality

log(1 +Nn)(en(T )− en+1(T )) ≤
∫ en(T )

en+1(T )
logN (T, d, ε).

Proof of Lemma 32. The proof of this lemma generalizes the ideas in Cai and Zhang
(2018) and Ma et al. (2019). In general, direct calculation of D(Pi, Pj) is difficult. We
detour by introducing an approximate density of Pi as

P̃i(Y) =
σ−p1p2

(2π)p1p2/2

∫
exp(−‖Y − tUiW

>‖2F /(2σ2))

(
p2

2π

)rp2/2
exp(−p2‖W‖2F /2)dW.

Now for Y ∼ P̃i, if Yk is the k-th column of Y, we have

Yk|Ui ∼i.i.d. N
(

0, σ2

(
In −

4t2

4t2 + σ2p2
UiU

>
i

)−1)
= N

(
0, σ2In +

4t2

p2
UiU

>
i

)
, (61)

for k = 1, ..., p2. It is well-known that the KL-divergence between two p-dimensional multi-
variate Gaussian distribution is

D(N(µ0,Σ0)‖N(µ1,Σ1)) =
1

2

(
tr(Σ−1

0 Σ1) + (µ1−µ0)>Σ−1
1 (µ1−µ0)− p+ log

(
det Σ1

det Σ0

))
.

As a result, we can calculate that for any P̃i and P̃j ,

D(P̃i, P̃j) =
p2

2

{
tr

((
Ip1 −

4t2

4t2 + σ2p2
UiU

>
i

)(
Ip1 +

4t2

σ2p2
UjU

>
j

))
− p1

}
≤ Ct4

4t2 + σ2p2
(r − ‖U>i Uj‖2F )

=
Ct4d(Ui,Uj)

4t2 + σ2p2
(62)
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where the last inequality follows from Lemma 21. Hence, the proof of this proposition is
complete if we can show that there exist some constant C > 0 such that

D(Pi, Pj) ≤ D(P̃i, P̃j) + C. (63)

The rest of the proof is devoted to the proof of (63).

Proof of (63). Define the event G = {W ∈ Rr×p2 : 1/2 ≤ λmin(W) ≤ λmax(W) ≤ 2}.
For any given u,

Pi

P̃i
=

1

(2π)
rp2
2 ( σ2

4t2+σ2p2
)
rp2
2

exp

(
1

2σ2

p2∑
k=1

Y >k (Ip1 −
4t2

4t2 + σ2p2
UiU

>
i )Yk

)
× CUi,t

∫
G

exp(−‖Y − tUiW
>‖2F /(2σ2)− p2‖W‖2F /2)dW

=

(
4t2 + σ2p2

2πσ2

)p2r/2
exp

(
− (4t2 + σ2p2)

∥∥∥∥W − 2t

4t2 + σ2p2
U>i Y

∥∥∥∥2

F

/2

)
dW

= CUi,tP

(
W′ ∈ G

∣∣∣∣W′ ∼ N
(

2t

4t2 + σ2p2
U>i Y,

σ2

4t2 + σ2p2
Ip1

))
≤ CUi,t. (64)

Recall that
C−1

Ui,t
= P

(
W = (wjk) ∈ G|wjk ∼ N(0, 1/p2)

)
.

By concentration of measure inequalities for Gaussian random matrices (see, for example,
Corollary 5.35 of Vershynin (2010)), we have, for sufficiently large (p2, r),

P (W ∈ G) ≥ 1− 2 exp(−cp2), (65)

for some constant c > 0. In other words, we have

C−1
Ui,t
≥ 1− p−c2 (66)

and
Pi

P̃i
≤ 1 + p−c2 (67)

uniformly for some constant c > 0. Thus, for some constant δ > 0, we have

D(Pi, Pj) =

∫
Pi

[
log

(
Pi

P̃i

)
+ log

(
P̃i

P̃j

)
+ log

(
P̃j
Pj

)]
dY

≤ log(1 + δ) +D(P̃i, P̃j) +

∫
(Pi − P̃i) log

(
P̃i

P̃j

)
dY +

∫
Pi log

(
P̃i
Pj

)
dY

≤ log(1 + δ) +D(P̃i, P̃j) +

∫
P̃i

(
Pi

P̃i
− 1

)
log

(
P̃i

P̃j

)
dY

+ (1 + δ)

∫
P̃i

∣∣∣∣ log

(
P̃j
Pj

)∣∣∣∣dY
≤ log(1 + δ) +D(P̃i, P̃j) + p−c2

∫
P̃i

∣∣∣∣ log

(
P̃i

P̃j

)∣∣∣∣dY + (1 + δ)

∫
P̃i

∣∣∣∣ log

(
P̃j
Pj

)∣∣∣∣dY.

(68)
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Now since∫
P̃i

∣∣∣∣ log

(
P̃i

P̃j

)∣∣∣∣dY =
1

2σ2

∫
P̃i

∣∣∣∣ 4t2

4t2 + σ2p2

p2∑
k=1

Y >k (UiU
>
i −UjU

>
j )Yk

∣∣∣∣dY
≤ 1

2σ2
E
[

4t2

4t2 + σ2p2

p2∑
k=1

Y >k (UiU
>
i + UjU

>
j )Yk

]
=

4t2p2

2σ2(4t2 + σ2p2)
tr

(
(UiU

>
i + UjU

>
j )
(
σ2Ip1 +

4t2

p2
UiU

>
i

))
≤ 4t2p2

4t2 + σ2p2
tr

(
U>i
(
Ip1 +

4t2

σ2p2

)
Ui

)
=

4rt2

σ2
≤ rp2,

where in the second row the expectation is with respect to Yk ∼ N
(
0, σ2Ip1 + 4t2σ2

σ2p2
UiU

>
i

)
.

we know that the third term in (68) can be bounded by

p−c2

∫
P̃i

∣∣∣∣ log

(
P̃i

P̃j

)∣∣∣∣dY ≤ rp2 · p−c2 ≤ C

for some constants C, c > 0. Finally, by (64), we have∫
P̃i

∣∣∣∣ log

(
P̃j
Pj

)∣∣∣∣dY ≤ ∫ P̃i

∣∣∣∣ log
1

CUj ,t

∣∣∣∣dY +

∫
P̃i

∣∣∣∣ log
1

P (W′ ∈ G|E)

∣∣∣∣dY,

where we denoted

E =

{
W′ ∼ N

(
2t

4t2 + σ2p2
U>i Y,

σ2

4t2 + σ2p2
Ip1

)}
.

Now on the one hand,∫
P̃i

∣∣∣∣ log
1

CUi,t

∣∣∣∣dY ≤ ( log(1 + δ) ∨ | log(1− δ)−1|
)
.

On the other hand, for fixed Y and U>i Y ∈ Rr×p2 , we can find Q ∈ O(p2, p2 − r) which is
orthogonal to U>i Y, i.e., U>i YQ = 0. Then W′Q ∈ Rr×(p2−r) are i.i.d. normal distributed

with mean 0 and variance σ2

4t2+σ2p2
. Then again by standard result in random matrix (e.g.

Corollary 5.35 in Vershynin (2010)), we have

λmin(W′) = λr(W
′) ≥ λr(W′Q) ≥ σ√

4t2 + σ2p2

(
√
p2 − r −

√
r − x)

with probability at least 1 − 2 exp(−x2/2). Since t2 < σ2p2/4, for p2 sufficiently large, we
can find c such that by setting x = c

√
p2,

P (λmin(W′) ≥ 1/2) ≥ 1− e−cp2 . (69)
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Analogous to the argument on λmin(W′), we also have

P (λmax(W′) ≤ 2) ≥ 1− e−cp2 . (70)

Thus, by the union bound inequality, we have

P (W′ ∈ G) ≥ 1− 2e−cp2 ,

and consequently, ∫
P̃i

∣∣∣∣ log
1

P (W′ ∈ G|E)

∣∣∣∣dY ≤ ∣∣∣∣ log
1

1− p−c2

∣∣∣∣ ≤ p−c2 .

This helps us to bound the last term of (68). Combining the above results, we have proven
the inequality (63) and therefore completed the proof.
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