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Abstract

Zeroth-order (ZO) optimization has been the key technique for various machine learning ap-
plications especially for black-box adversarial attack, where models need to be learned in a
gradient-free manner. Although many ZO algorithms have been proposed, the high function
query complexities hinder their applications seriously. To address this challenging problem,
we propose two stagewise black-box reduction frameworks for ZO algorithms under convex
and non-convex settings respectively, which lower down the function query complexities of
ZO algorithms. Moreover, our frameworks can directly derive the convergence results of
ZO algorithms under convex and non-convex settings without extra analyses, as long as
convergence results under strongly convex setting are given. To illustrate the advantages,
we further study ZO-SVRG, ZO-SAGA and ZO-Varag under strongly-convex setting and
use our frameworks to directly derive the convergence results under convex and non-convex
settings. The function query complexities of these algorithms derived by our frameworks
are lower than that of their vanilla counterparts without frameworks, or even lower than
that of state-of-the-art algorithms. Finally we conduct numerical experiments to illustrate
the superiority of our frameworks.

Keywords: Zeroth order optimization, black-box reduction, stagewise training, convex
optimization, non-convex optimization

1. Introduction

In many machine learning applications, such as black-box adversarial attacks on deep neural
networks (DNNs) (Papernot et al., 2017; Madry et al., 2017; Kurakin et al., 2016), bandit
optimization (Flaxman et al., 2005) and reinforcement learning (Choromanski et al., 2018),

c©2021 Bin Gu, Xiyuan Wei, Shangqian Gao, Ziran Xiong, Cheng Deng, and Heng Huang.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-611.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-611.html


Gu, Wei, Gao, Xiong, Deng, and Huang

calculating the explicit gradients of objective function is computationally expensive or in-
feasible. Thus, zeroth-order (ZO) optimization methods are extremely important to these
optimization problems, because ZO method estimates the gradient only by two function
evaluations. With the applications of black-box adversarial attacks, bandit optimization
and reinforcement learning becoming more and more popular in machine learning, ZO op-
timization has gained increasing attention recently.

Since ZO algorithms use function values to estimate the gradient which can be used to
update the solutions of the objective function, a critical assessment metric for algorithmic
efficiency of ZO algorithms is the function query complexity, i.e., the number of queried
function values to converge to a specified accuracy. Take black-box adversarial attacks as
an example, its ultimate goal is to use function estimation as little as possible to generate
an adversarial example. Thus, in this paper, we will investigate different ZO algorithms in
term of function query complexity.

Specifically, Nesterov and Spokoiny (2017) proposed the ZO gradient descent (ZO-GD)
algorithm that used the Gaussian smoothing technique to construct a two-point gradient
estimator. Its function query complexities are O

(
dn
ε

)
for convex problems and O

(
dn
ε2

)
for

non-convex problems respectively, where n and d are the sample and features sizes respec-
tively. With the same gradient estimation technique, Ghadimi and Lan (2013) proposed
a ZO stochastic gradient descent (ZO-SGD) algorithm with the function query complexity
of O

(
d
ε2

)
and O

(
d
ε4

)
for convex and non-convex problems respectively. Since ZO gradient

estimator have a high variance, variance reduction techniques have recently been used in
developing new ZO algorithms. These include ZO-SVRG, ZO-SVRG-Ave and ZO-SVRG-
Coord (Liu et al., 2018), SPIDER-SZO (Fang et al., 2018) and ZO-SPIDER-Coord-Rand
(Ji et al., 2019). Their function query complexities for convex and non-convex problems
are given in Table 1 and 2 respectively. Note that, variance reduction techniques were also
extended to proximal algorithms (e.g. Huang et al. (2019)) which are beyond the scope of
this paper.

Although many ZO algorithms have been proposed as mentioned above, the high func-
tion query complexities still hinder many ZO applications seriously especially for black-box
adversarial attacks. As shown in (Tu et al., 2019), to achieve 97% attack success rate, ZO
algorithm needs 10,000 more queries which is impractical in real-world applications of ad-
versarial attacks because query count is normally limited in most machine learning systems.
Thus, whether the function query complexities of ZO algorithms can be improved further
is an important problem. To the best of our knowledge, it is still a vacancy to provide a
framework to improve the function query complexities for different ZO algorithms under
the convex and non-convex conditions.

To address this challenging problem, in this paper, we propose two ZO reduction frame-
works, AdaptRdct-C and AdaptRdct-NC for handling convex and non-convex objectives,
respectively. They work in a black-box manner, and only have minor requirement over the
oracle optimizer. This means we can apply AdaptRdct-C and AdaptRdct-NC to various ZO
algorithms to lower their function query complexity. To demonstrate the effectiveness of
the proposed ZO reduction frameworks, we choose ZO-SVRG and ZO-SAGA, ZO exten-
sions of two popular variance-reduced algorithms (Johnson and Zhang, 2013; Defazio et al.,
2014), as the oracle optimizer for reduction. We theoretically study the function query
complexity of applying our ZO reduction frameworks on ZO-SVRG and ZO-SAGA, and the
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results are very promising: when ZO reduction frameworks are used, both ZO-SVRG and
ZO-SAGA outperform their vanilla counterparts. We also empirically verify this conclusion
with real-data experiments.

Besides lowering down the function query complexities of ZO algorithms, another ad-
vantage of our frameworks is that convergence results of ZO algorithms under convex and
non-convex settings can be directly derived without extra analyses, as long as convergence
results under strongly convex setting are given. At each stage of our frameworks, a ZO
algorithm actually solves a strongly convex subproblem, instead of the original convex or
non-convex problem. Thus with convergence results under strongly convex setting, our
frameworks can directly derive convergence results under convex or non-convex setting. To
illustrate this advantage, we study the convergence results of ZO-SVRG and ZO-SAGA
under strongly convex setting, and use our frameworks to directly derive the convergence
results under convex and non-convex settings. Specially, we also use the convergence results
of ZO-Varag under strongly convex setting, which was derived by (Chen et al., 2020) (with
only minor modifications), to directly derive the convergence results of ZO-Varag under
convex and non-convex settings. Under convex setting, the function query complexity of
AdaptRdct-C (ZO-Varag) matches that of vanilla ZO-Varag derived by (Chen et al., 2020).
Under non-convex setting, the function query complexity of AdaptRdct-NC (ZO-Varag)
solving σ-strongly non-convex problems outperforms that of state-of-the-arts algorithms
when n < O

(
L
σ

)
, where n is the number of individual functions and L is the Lipschitz

constant.

Contributions. The main contributions of this paper are summarized as follows:

1. We propose two reduction frameworks for zeroth-order algorithms under convex and
non-convex settings respectively, which lowers down the function query complexities
of zeroth-order algorithms. Moreover, our frameworks can directly derive convergence
results of zeroth-order algorithms under convex and non-convex settings without extra
analyses, as long as convergence results under strongly convex setting are given.

2. We apply our frameworks to three zeroth-order algorithms to illustrate the advantages
of our frameworks, which are ZO-SVRG, ZO-SAGA and ZO-Varag. To the best of our
knowledge, we are the first to propose black-box reduction frameworks for zeroth-order
algorithms and apply them to zeroth-order optimization.

3. As a by-product, we are the first to provide the convergence rates and function query
complexities of ZO-SVRG and ZO-SAGA under both of the convex and strongly convex
conditions.

2. Related Work

Black-Box Reduction Techniques: Allen-Zhu and Hazan (2016) proposed a black-box
reduction method for convex problems. The reduction method is in a black-box manner,
which means the analyses and results work for a wide range of convex problems and first-
order algorithms. Chen et al. (2018) proposed a universal stagewise optimization framework
for non-convex problems. The framework originates from the proximal point method in
convex optimization (Rockafellar, 1976; Güler, 1992; Frostig et al., 2015; Lin et al., 2018).
Our study also falls into developing black-box reduction methods for both convex and
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Table 1: Comparison of ZO algorithms solving convex problems in terms of convergence rate
and function query complexity. (n denotes the number of individual loss function,
d denotes the dimension of problem space, S denotes the number of epochs, m
denotes the update frequency, ρi∈[6] ∈ (0, 1) denotes six different constants and ε

denotes the accuracy. C1 denote the case that n ≥ O
(

1
ε

)
, C2 denotes the case

that n < O
(

1
ε

)
. Õ hides a logarithmic factor.)

Algorithms Smoothing parameter Convergence rate Function query complexity

ZO-GD

(Nesterov and Spokoiny)
O
(√

ε
d

)
O
(
d
S

)
O
(
dn
ε

)
ZO-SGD

(Ghadimi and Lan)
O
(

1√
d

)
O
(√

d
S

)
O
(
d
ε2

)
ZO-SVRG-Coord-Rand-C

(Ji et al.)
O
(
ε
d

)
O
(
ρS1 + 1

m

)
O(min{dn, dε } log 1

ε )

ZO-SPIDER-Coord-C

(Ji et al.)
O
(√

ε√
d

)
O
(
ρS2 + 1

m

)
O(min{dn, dε } log 1

ε )

ZO-Varag

(Chen et al.)


O
(

ε√
d

)
, C1

O
(√

nε
3
2√
d

)
, C2

{
O
(
ρS3
)
, C1

O
(

1
nS2

)
, C2

{
O
(
dn log 1

ε

)
, C1

O
(
dn log n+ d

√
n
ε

)
, C2

ZO-SVRG/ZO-SAGA

(Ours)
O
(√

ε√
d

)
O
(
d
S

)
O
(
n+d
ε

)
AdaptRdct-C (Ours)

(ZO-SVRG)
O
(√

ε√
d

)
O
(
ρS4
)

O(n log 1
ε + d

ε )

AdaptRdct-C (Ours)

(ZO-SAGA)
O
(

ε√
d

)
O
(
ρS5
)

Õ(n log 1
ε + d

ε )

AdaptRdct-C (Ours)

(ZO-Varag)


O
(

ε√
d

)
, C1

O
(√

nε
3
2√
d

)
, C2

O
(
ρS6
) {

O
(
dn log 1

ε

)
, C1

O
(
dn log n+ d

√
n
ε

)
, C2

non-convex problems, but different from the methods above, our methods focus on ZO
algorithms.

Zeroth-Order Optimization: ZO optimization is a classical problem in the optimization
community. We first summarize the ZO algorithms for convex problems. Specifically, Ne-
mirovski et al. (2009) first introduced a one-point random sampling scheme to approximate
the true gradient ∇f(x) by querying f(x) at a random location that is close to x. After
that, Agarwal et al. (2010); Nesterov and Spokoiny (2017) proposed multi-point gradient
estimation approach. Many works were based on multi-point estimation. For example,
Ghadimi and Lan (2013) presented ZO stochastic gradient descent (ZO-SGD) algorithm
using a two-point Gaussian gradient estimator; Duchi et al. (2015) derived a ZO mirror
descent algorithm; Ji et al. (2019) proposed ZO stochastic variance reduced gradient (ZO-
SVRG-Coord-Rand-C) algorithm; Chen et al. (2020) proposed an accelerated ZO variance
reduced gradient (ZO-Varag) algorithm.
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Table 2: Comparison of ZO algorithms solving σ-strongly non-convex problems in terms
of convergence rate and function query complexity. (n denotes the number of
individual loss function, d denotes the dimension of problem space, L denotes the
smoothness parameter, S denotes the number of epochs, m denotes the update
frequency, and K = mS. ♠: |S2| denotes the batch size for constructing the
random gradient estimator. FI: pmin = min {d, q} and pmax = max {d, q}, where
q denotes the number of i.i.d. smoothing vectors for constructing the average
random gradient estimator. C1 denote the case that n ≥ O

(
L
σ

)
, C2 denotes the

case that n < O
(
L
σ

)
. Õ hides a logarithmic factor.)

Algorithms Smoothing parameter Convergence rate Function query complexity

ZO-GD

(Nesterov and Spokoiny)
O
(
ε
d

)
O
(√

d√
S

)
O
(
dn
ε2

)
ZO-SGD

(Ghadimi and Lan)
O
(

ε

d
3
2

)
O
(
d1/4

S1/4

)
O
(
d
ε4

)
ZO-SVRG-Rand

(Liu et al.)
O
(

ε√
d

)
O
( √

d√
K

+ 1√
|S2|

)♠
O
(
nL
ε2 + dL

ε4

)
ZO-SVRG-Ave

(Liu et al.)
O
(

ε√
d

)
O
( √

d√
K

+ 1√
|S2|pmin

)F

O
(
nqL
ε2 + pmaxL

ε4

)I
ZO-SVRG-Coord

(Ji et al.)
O
(

ε√
d

)
O
( √

d√
K

)
O
(

min{dn
2/3L
ε2 , dL

ε10/3
}
)

ZO-SPIDER-Coord

(Ji et al.)
O
(

ε√
d

)
O
(√

d|S1|1/4√
K

)
O
(

min{d
√
nL
ε2 , dLε3 }

)
SPIDER-SZO

(Fang et al.)
O
(

ε√
d

)
O
( √

d√
K

)
O
(

min{d
√
nL
ε2 , dLε3 }

)
AdaptRdct-NC (Ours)

(ZO-SVRG/ZO-SAGA)
O
(

ε√
d

)
O
(√

d√
S

)
Õ(nσε2 + dL

ε2 )

AdaptRdct-NC (Ours)

(ZO-Varag)
O
(
ε2√
d

)
O
(√

d√
S

) Õ
(
d(nσ+L)

ε2

)
, C1

Õ
(
d
√
nσL
ε2

)
, C2

For non-convex problems, Nesterov and Spokoiny (2017) proposed ZO gradient descent
(ZO-GD) algorithm. Then Ghadimi and Lan (2013) introduced its stochastic counterpart
ZO-SGD. Lian et al. (2016) derived an asynchronous ZO stochastic gradient (ASZO) algo-
rithm for parallel optimization. Gu et al. (2018a) further improved the convergence rate of
ASZO by combining variance reduction technique with coordinate-wise gradient estimators.
Liu et al. (2018) proposed ZO SVRG based algorithms using three different gradient esti-
mators. Fang et al. (2018) presented a SPIDER based ZO method named SPIDER-SZO.
Ji et al. (2019) further improved ZO SVRG based and SPIDER based algorithms.
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3. Preliminaries

In this paper, we study the following finite-sum optimization problem

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x) (1)

where fi∈[n](x) are smooth individual loss functions. Problem (1) summarizes an extensive
number of important (regularized) learning problems, such as, `2-regularized logistic re-
gression (Conroy and Sajda, 2012), ridge regression (Shen et al., 2013), least-squares SVM
(Suykens and Vandewalle, 1999).

For simplicity, we denote || · || to be the Euclidean norm || · ||2, and denote x∗ to be
the optimal solution for our problem, i.e., f(x∗) = minx∈Rd f(x). First we give some basic
definitions as follows.

Definition 1 For function f : Rd → R, we have

• f is L-smooth with respect to the Euclidean norm if ∀x,y ∈ Rd, it satisfies |f(y) −
f(x)− 〈∇f(x),y − x〉| ≤ L

2 ||y − x||2.

• f is convex if ∀x,y ∈ Rd, it satisfies f(y) ≥ f(x) + 〈∇f(x),y − x〉.

• f is γ-strongly convex if f(x) − γ
2 ||x||

2 is convex, i.e., ∀x,y ∈ Rd, it satisfies f(y) ≥
f(x) + 〈∇f(x),y − x〉+ γ

2 ||y − x||2.

• f is σ-strongly non-convex if f(x) + σ
2 ||x||

2 is convex, i.e., ∀x,y ∈ Rd, it satisfies
f(y) ≥ f(x) + 〈∇f(x),y − x〉 − σ

2 ||y − x||2.

From Definition 1, we know that if f(x) is L-smooth, then it is L-strongly non-convex.
In consequence, for a function f(x) which is both L-smooth and σ-strongly non-convex, we
can ensure that σ ≤ L. To evaluate the performance of an algorithm solving non-convex
problems, we calculate its function query complexity to reach an ε-stationary point, which
is defined as follows.

Definition 2 (ε-Stationary Point) x ∈ Rd is an ε-stationary point if ||∇f(x)|| ≤ ε.

3.1 Assumptions

From Definition 1, we list the following assumptions.

A 1 fi∈[n](x) is γ-strongly convex, and f(x) is γ-strongly convex as well.

A 2 fi∈[n](x) is convex, and f(x) is convex as well.

A 3 fi∈[n](x) is σ-strongly non-convex, and f(x) is σ-strongly non-convex as well.

A 4 fi∈[n](x) is L-smooth, and f(x) is L-smooth as well.
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3.2 ZO Gradient Estimation

Given an individual problem fi(x), we use the following two-point gradient estimator with
random direction (Gao et al., 2018), which is abbreviated as random direction estimator :

∇̂fi(x) =
d

µ
[fi(x + µu)− fi(x)]u. (2)

and the full gradient estimator with random direction is given by

∇̂f(x) =
1

n

n∑
i=1

∇̂fi(x) (3)

where µ is the smoothing parameter, u ∈ Rd and {u} are i.i.d. random directions drawn
from a uniform distribution over a unit sphere. In general, ∇̂fi(x) and ∇̂f(x) are biased
approximation of the true gradients, ∇fi(x) and ∇f(x). It is clear that the bias is deter-
mined by smoothing parameter µ and will reduce as µ approaches zero. Ji et al. (2019)
introduced another gradient estimator by setting the direction u in each coordinate, which
is abbreviated as coordinate-wise estimator :

∇̂coordfi(x) =
d∑
j=1

fi(x + µej)− fi(x− µej)

2µ
ej . (4)

where ej denotes a standard basis vector with 1 at its j-th coordinate and 0 otherwise. The
coordinate-wise estimator is more stable than random direction estimator, but it requires
more function queries than the random direction estimator. Conversely, random direction
estimator requires less function queries, but it introduces much higher error. In this paper,
we mainly discuss random direction estimator. The coordinate-wise estimator only appears
when we apply our frameworks to ZO-Varag in Section 5 since we use the convergence
results derived by Chen et al. (2020), which are based on the coordinate-wise estimator.

4. Zeroth-Order Reduction Frameworks for Convex and Non-convex
Problems

Recently, Allen-Zhu and Hazan (2016); Chen et al. (2018) proposed first-order reduction
methods for solving convex and non-convex problems, respectively. Both methods add an
quadratic regularizer to the original problem to ensure strong convexity. Then they call a
first-order oracle to optimize the new strongly convex objective. Their theoretic analyses
show that, in comparison to directly optimizing the original problem, algorithms optimizing
the new problem leads to a better performance. Enlightened by their methods, we propose
two ZO reduction frameworks (i.e., AdaptRdct-C and AdaptRdct-NC ) for solving convex
and non-convex problems, respectively. Before presenting the two reduction frameworks,
we first define a property on the ZO oracle algorithm.

Definition 3 (ZOOD Property) We say an algorithm A(f,x) solving problem(1) satis-
fies the ZO Objective Decrease (ZOOD) property with complexity C(L, γ) if, for any starting
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point x, it produces an output x′ ← A(f,x) with function query complexity C(L, γ), such
that

E
[
f(x′)−min

x
f(x)− δµ

]
≤ K0

[
f(x)−min

x
f(x)− δµ

]
(5)

where δµ is a fixed error introduced by smoothing parameter µ and K0 ∈ (0, 1).

4.1 AdaptRdct-C : Transforming Convex Problems into Strongly Convex
Problems

In this subsection, we focus on solving problem (1) under convex setting, and propose
AdaptRdct-C. We summarize AdaptRdct-C in Algorithm 1. Specifically, AdaptRdct-C con-
sists of S epochs. At s-th epoch where s = 1, ..., S, we define a γs-strongly convex problem

f (s)(x)
def
= f(x) + γs

2 ||x − x0||2, where x0 is a starting point. The parameter γs decreases

at an exponential rate, i.e., γs =
√
Kγs−1 for each s ≥ 1. γ1 is a specified parameter. In

each epoch, we run a ZOOD algorithm A on f (s)(x) with starting point xs−1 which out-
puts a solution xs. After all epochs are finished, AdaptRdct-C outputs the latest result xS .
Theorem 1 gives the convergence property of AdaptRdct-C. The proof is provided in the
appendix.

Algorithm 1 AdaptRdct-C Framework

Input: Starting vector x0, epoch S, regularization parameter γ1, ZOOD parameter K0

for s = 1, ..., S do

f (s)(x)
def
= f(x) + γs

2 ||x− x0||2.

xs ← A(f (s),xs−1) such that

E
[
f (s)(xs)−min

x
f (s)(x)− δµ

]
≤ K0

[
f (s)(xs−1)−min

x
f (s)(x)− δµ

]
γs =

√
K0γs−1.

end for
Output: xS .

Theorem 1 Suppose Assumption 2 holds. Let x0 be a starting vector such that f(x0) −
f(x∗) ≤ ∆, and ||x0 − x∗||2 ≤ Θ. For Algorithm1, we have

E[f(xS)− f(x∗)] ≤δµ +KS0 [∆− δµ] +

(
1

2
+

2√
K0

)
K
S
2
0 γ1Θ (6)

From the ZOOD property as defined in Definition 3, we can obtain the following corol-
lary.

Corollary 1 By applying AdaptRdct-C, the total function query complexity to solve the
finite-sum problem is

∑S
s=1 C(L, γs) with S = O

(
log 1

ε

)
.

In Section 5, we apply AdaptRdct-C on three ZO algorithms, which are ZO-SVRG,
ZO-SAGA and ZO-Varag. Through theoretical analyses, we show that the AdaptRdct-
C variants of ZO-SVRG and ZO-SAGA have lower function query complexities than their

8
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original counterparts. Also, we show that the function query complexity of the AdaptRdct-C
variant of ZO-Varag matches that of vanilla ZO-Varag.

4.2 AdaptRdct-NC : Transforming Non-convex Problems into Strongly Convex
Problems

In this subsection, we focus on the reduction method for solving non-convex problems.
Different from convex optimization, the convergence of non-convex optimization is usually
identified by the ε-stationary points (i.e., ||∇f(x)|| ≤ ε ). To propose our analysis, we
introduce the following concepts.

Definition 4 (Moreau Envelope and Proximal Mapping) For any function f and λ >
0, the following function is called a Moreau envelope of f

fλ(x) = min
z
f(z) +

1

2λ
||z− x||2 (7)

Further, the optimal solution to the above problem is denoted as

Proxλf (x) = arg min
z
f(z) +

1

2λ
||z− x||2 (8)

It is known that ∇fλ(x) =
x−Proxλf (x)

λ (see e.g. (Chen et al., 2019)). Also, for any

x ∈ Rd, denote x+ def
= Proxλf (x), we have

f(x+) ≤ f(x)

‖x− x+‖ = λ‖∇fλ(x)‖
‖∇f(x+)‖ ≤ ‖∇fλ(x)‖

(9)

Thus a point x satisfying ‖∇fλ(x)‖ ≤ ε is close to an ε-stationary point of f in distance of
O(λε).

To solve a σ-strongly non-convex problem, AdaptRdct-NC works as follows (please see
Algorithm 2). It consists of S epochs, at the beginning of each epoch s = 1, 2, ..., S, we

define a σ-strongly convex problem f (s)(x)
def
= f(x)+σ||x−xs−1||2, where xs−1 is the output

of the ZOOD algorithm of last epoch and σ is the non-convex parameter of the problem
f(x). In each epoch, we call a ZOOD algorithm A to solve f (s)(x) with starting point xs−1,
and obtain the output xs such that

E
[
f (s)(xs)−min

x
f (s)(x)− δµ

]
≤ σ2K0

L2s

[
f (s)(xs−1)−min

x
f (s)(x)− δµ

]
(10)

After all epochs are finished, AdaptRdct-NC outputs a randomly chosen result xα+1 with
α chosen from 0, ..., S with probability pα = ατ/

∑S−1
s=0 s

τ . The convergence property of
AdaptRdct-NC is given in Theorem 2, where the proof is provided in the appendix.

Theorem 2 Suppose Assumption 3 holds. Let x0 be a starting vector such that f(x0) −
f(x∗) ≤ ∆. For Algorithm 2, we have

E
[
‖∇f(xα+1)‖2

]
≤ 16σ(2K + 1)

(1−K)S
[f(x0)− f(x∗)] +

(
64− 16K

1−K
+ 4L2

)
σδµ

where K = σ2K0
L2 .
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Algorithm 2 AdaptRdct-NC Framework

Input: Starting vector x0, epoch S, regularization parameter λ = 1
2σ , ZOOD parameter

K0, weight parameter τ > 0.
for s = 1, ..., S + 1 do

f (s)(x)
def
= f(x) +

1

2λ
‖x− xs−1‖2

xs ← A(f (s),xs−1) such that

E
[
f (s)(xs)−min

x
f (s)(x)− δµ

]
≤ σ2K0

L2s

[
f (s)(xs−1)−min

x
f (s)(x)− δµ

]
end for

Output: xα+1, where α is chosen from 0, ..., S with probability pα = ατ/
∑S−1

s=0 s
τ .

Note that the coefficient in (10) is σ2K0
L2s

, while the coefficient in AdaptRdct-C (Algorithm
3) is K0. In fact, if the coefficient in (10) is set to K0, then only the convergence of
E
[
‖∇fλ(xα)‖2

]
can be guaranteed (cf. the proof of Theorem 2). From (9) we can calculate

x+
α = Proxλf(xα) to guarantee the convergence of E

[
‖∇f(x+

α )‖2
]
, which is a measure of

ε-stationary point. However, this calculation is impractical in zeroth-order optimization
since we only have access to the function value. The choice of the coefficient in (10) helps
us directly guarantee the convergence of E

[
‖∇f(xα+1)‖2

]
, but this comes with an extra

logarithmic cost in the function query complexity. To be specific, ZOOD property (3) claims
that a zeroth-order algorithm produces an output xs ← A(f (s),xs−1) with function query
complexity C(L, σ), such that

E
[
f (s)(xs)−min

x
f (s)(x)− δµ

]
≤ K0

[
f (s)(xs−1)−min

x
f (s)(x)− δµ

]
Then it is evident that the algorithm produces xs with function query complexity C(L, σ) log L2s

σ2

satisfying (10). Then we get the following corollary.

Corollary 2 By applying AdaptRdct-NC, the total function query complexity to find an

ε-stationary point is O
(
C(L, σ)

∑S
s=1 log L2s

σ2

)
with S = O

(
σ
ε2

)
. Specifically, we have

S∑
s=1

log
L2s

σ2
=

S∑
s=1

(
log

L2

σ2
+ log s

)
=S log

L2

σ2
+ logS

=S log
L2

σ2
+ S logS − S +O (logS)

where the last equality comes from the Stirling’s formula. Then the total function query

complexity to find an ε-stationary point is Õ
(
σC(L,σ)

ε2

)
, where Õ hides a logarithmic factor.

The quadratic terms in our two frameworks are different from each other. In AdaptRdct-
C, the coefficient of the quadratic term (i.e., γs) diminishes at an exponential rate. This
feature contributes to the linear convergence of AdaptRdct-C for convex problems (cf. the
proof of Theorem 1). The quadratic term is set to ‖x−x0‖2 since it can be transformed into

10
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another term that is much easier to deal with, i.e., ‖x0−x∗‖2, where x∗ denotes the optimal
solution to the original problem. Although it derives excellent results for convex problems,
AdaptRdct-C is not applicable to non-convex problems. From Definition 1, it is clear that
for a σ-strongly non-convex problem, a coefficient greater than σ/2 is necessary to ensure
strong convexity. So AdaptRdct-C does not guarantee strong convexity for non-convex
problems. For a σ-strongly non-convex problem, a natural idea is to fix the coefficient to a
constant that is greater than σ/2. Thus in AdaptRdct-NC, the coefficient is set to σ. And
the quadratic term is set to ‖x−xs−1‖2 because it can be transformed into ‖xs−1−x∗s‖2/λ,
which equals ‖∇fλ(xs−1)‖2, which is a key element in the proof since it is related to our
convergence measure ‖∇f(x)‖2.

In Section 5, we apply AdaptRdct-NC on ZO-SVRG, ZO-SAGA and ZO-Varag, and
present their convergence properties and function query complexities through theoretical
analyses.

5. Applications of Reduction Frameworks on Zeroth-order Algorithms

The key idea of AdaptRdct-C and AdaptRdct-NC is to transform convex or non-convex
problems into a strongly convex problem and call a ZO algorithm to solve the new problem.
To keep our paper self-contained and evaluate our methods’ performance, in this section, we
give convergence analyses of three ZO variance reduced algorithms, and apply our reduction
frameworks on them. Specifically, we consider the ZO versions of SVRG (Johnson and
Zhang, 2013), SAGA (Defazio et al., 2014) and Varag (Lan et al., 2019), and provide
their convergence rates along with function query complexities under both of the convex
and strongly convex settings. To the best of our knowledge, we are the first to provide
the convergence rates of ZO-SVRG and ZO-SAGA under both of the convex and strongly
convex conditions. We apply AdaptRdct-C and AdaptRdct-NC on them, then compare our
new methods with vanilla ZO-SVRG, ZO-SAGA and ZO-Varag. The results show that our
AdaptRdct-C and AdaptRdct-NC greatly lower their query complexities for ZO-SVRG and
ZO-SAGA.

5.1 Zeroth-Order SVRG Algorithm

Johnson and Zhang (2013) proposed first-order stochastic variance reduced gradient (SVRG)
algorithm. The key step of SVRG is to generate a snapshot (denoted as x̃) of x after a certain
number of iterations, and the full gradient at x̃ is used to build a modified stochastic gradient
estimation, which is a gradient blending v = ∇fi(x)−∇fi(x̃)+∇f(x̃), where v denotes the
gradient estimate at x, i ∈ [n] is chosen uniformly randomly, and ∇f(x̃) = 1

n

∑n
j=1∇fj(x̃).

Under ZO setting, we use the following gradient estimator to approximate the gradient
blending

v̂ = ∇̂fi(x)− ∇̂fi(x̃) + ∇̂f(x̃). (11)

Recall from Section 3 that ∇̂fi(x) = d
µ [fi(x + µu)− fi(x)]u and ∇̂f(x) = 1

n

∑n
j=1 ∇̂fj(x).

We present ZO-SVRG in Algorithm 3. Next we give the convergence property of ZO-SVRG
for solving strongly convex problems, which shows that it can easily satisfy the ZOOD
property.

11
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Algorithm 3 ZO-SVRG Algorithm

Input: Stepsize η, update frequency m, epoch S, starting vector x0
m = x̃0 ∈ Rd.

for s = 1, 2, ..., S do
Option I : xs0 = x̃s−1;
Option II : xs0 = xs−1

m .
Compute ĝs = ∇̂f(x̃s−1).
for k = 0, 1, ...,m− 1 do

Uniformly randomly choose ik ∈ [n] and usk from a unit sphere.

v̂sk = ∇̂fik(xsk)− ∇̂fik(x̃s−1) + ĝs.
xsk+1 = xsk − ηv̂sk.

end for
Set x̃s = xsk for randomly chosen k ∈ {0, 1, ...,m− 1}.

end for

Theorem 3 (Strongly Convex) Suppose Assumptions 1 and 4 hold, denote f(x̃0) −
f(x∗) = ∆. By using Option I in Algorithm 3, we have

E[f(x̃s)− f(x∗)] ≤ δµ +

(
β2

β1

)s
(∆− δµ) (12)

where β1 = 2mη[1 − 24ηdL], β2 = 2
γ + 48mη2dL, δµ = 2ηmµ2L(2ηd2L+1)

β1−β2 and η, m satisfy

inequalities η < 1
48dL and m > 1

γη(1−48ηdL) .

Remark 1 From Theorem 3, take S = 1, we have

E [f(x̃1)− f(x∗)− δµ] ≤ β2

β1
[f(x̃0)− f(x∗)− δµ] (13)

then we know that our ZO-SVRG algorithm satisfies the ZOOD property after running one

epoch, with function query complexity O
(
n+ dL

γ

)
, K0 = β2

β1
and δµ = 2ηmµ2L(2ηd2L+1)

β1−β2 .

Corollary 3 Under strongly convex setting, if we take stepsize η = 1
112dL and m = 896dL

3γ ,

then we have β2
β1

= 0.75, and ZO-SVRG Algorithm has a convergence rate of O
(

3
4

)S
and a

function query complexity of O
(
(n+ d) log 1

ε

)
.

For the purpose of comparison, we provide the convergence result of ZO-SVRG under
the convex setting (Theorem 4). Based on Theorem 4, we provide the function query
complexity of ZO-SVRG for solving convex problems (Corollary 4), where reduction is not
used.

Theorem 4 (Convex) Suppose Assumptions 2 and 4 hold, f(x̃0)− f(x∗) ≤ ∆ and ||x̃0−
x∗||2 ≤ Θ. Using Option II in Algorithm 3, we have

E[f(xα)− f(x∗)] ≤ Θ + 48mη2dL∆

2mSη(1− 48ηdL)
+
µ2L(4ηd2L+ 1)

1− 48ηdL
(14)

where xα is uniformly randomly chosen from {{xsk}
m−1
k=0 }

S
s=1, and η < 1

48dL .

12
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Corollary 4 Under convex setting, ZO-SVRG has a convergence rate of O
(
d
S

)
and a func-

tion query complexity of O
(
n+d
ε

)
.

5.2 Zeroth-Order SAGA Algorithm

Defazio et al. (2014) proposed first-order SAGA algorithm. The key step of SAGA is to
keep a table of gradients of previous results ∇f(φi∈[n]). The modified stochastic gradient
estimate is v = ∇fi(x)−∇fi(φi)+g(φ), where v denotes the gradient estimate at x, i ∈ [n]
is chosen uniformly randomly, and g(φ) = 1

n

∑n
j=1∇fj(φj). Under ZO setting, we use the

following gradient estimator to approximate the gradient blending

v̂ = ∇̂fi(x)− ∇̂fi(φi) + ĝ(φ) (15)

where ĝ(φ) = 1
n

∑n
j=1 ∇̂fj(φj).

Algorithm 4 ZO-SAGA Algorithm

Input: Stepsize η, iteration K, starting vector x0 ∈ Rd, auxiliary vectors {φ0
i }ni=1 with

φ0
i = x0 for each i.

Compute ĝ0 = ∇̂f(x0) = 1
n

∑n
i=1 ∇̂fi(φ0

i ).
for k = 0, 1, 2, ...,K − 1 do

Uniformly randomly choose ik ∈ [n] and uk from a unit sphere.
v̂k = ∇̂fik(xk)− ∇̂fik(φkik) + ĝk.

xk+1 = xk − ηv̂k.
φk+1
ik

= xk and ĝk+1 = ĝk + 1
n

(
∇̂fik(xk)− ∇̂fik(φkik)

)
end for

Next we give the convergence property of ZO-SAGA for solving strongly convex prob-
lems, which shows that it naturally satisfies the ZOOD property.

Theorem 5 (Strongly Convex) Suppose assumptions 1 and 4 hold, denote f(x0)−f(x∗) =
∆. We have

E
[
f(xk)− f(x∗)

]
≤ δµ +

(
1− γ

112dL+ nγ

)K [L(2 + cγ)

2γ
∆− δµ

]
(16)

where c = ηn(1− 32ηdL), η = 2
112dL+nγ and δµ = 2L2µ2(2ηLd2+1)

γ .

Remark 2 From Theorem 3, we know that ZO-SAGA satisfies ZOOD property with func-

tion query complexity O
(

(n+ dL
γ ) log L

γ

)
, K0 = 1

e and δµ = 2L2µ2(2ηLd2+1)
γ .

For the purpose of comparison, we provide the convergence result of ZO-SAGA under
the convex setting (Theorem 6). Based on Theorem 6, we provide the function query
complexity of ZO-SAGA for solving convex problems (Corollary 5), where reduction is not
used.
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Theorem 6 (Convex) Suppose Assumptions 2 and 4 hold. For Algorithm 4, we have

E [f(xτ )− f(x∗)] ≤ 56dLT 0

K
+ 112ηLµ2(2ηLd2 + 1) (17)

where η = 1
56dL , T

0 = ||x0 − x∗||2 + 3
7ηn

[
f(x0)− f(x∗)

]
and xτ is uniformly randomly

chosen from
{
xk
}K
k=1

.

Corollary 5 Under convex setting, ZO-SAGA has a convergence rate of O
(
d
K

)
and a

function query complexity of O
(
n+d
ε

)
.

5.3 Zeroth-order Varag Algorithm

Lan et al. (2019) proposed first-order Varag algorithm. Chen et al. (2020) introduced ZO-
Varag, zeroth-order version of Varag. ZO-Varag is an accelerated algorithm which maintains
three acceleration sequences (i.e., {x}, {x} and {x̄}). It is also a variance reduced algorithm
which leverages the same technique as SVRG. We present ZO-Varag in Algorithm 5.

Algorithm 5 ZO-Varag Algorithm

Input: Starting vector x0 ∈ Rd, Epoch S, update frequency {ms}, {βs}, {αs}, {ps}, {θk}
Set x̃0 = x̄0 = x0.
for s = 1, 2, ..., S do

Set x̃ = x̃s−1;
Set x0 = xs−1, x̄0 = x̃.
Compute ĝs = ∇̂coordf(x̃).
for k = 1, 2, ...,ms do

xk = [(1 + γβs)(1− αs − ps)x̄k−1 + αsxk−1 + (1 + γβs)psx̃] / [1 + γβs(1− αs)]
Uniformly randomly choose ik ∈ [n]
v̂sk = ∇̂coordfik(xk)− ∇̂coordfik(x̃s−1) + ĝs.
xk = [βsγxk + xk−1 − βsv̂sk] / [1 + γβs].
x̄k = (1− αs − ps)x̄k−1 + αsxk + psx̃.

end for
Set xs = xms , x̄s = x̄ms , and x̃s =

∑ms
k=1(θkx̄k)/(

∑ms
k=1 θk).

end for

Note that we present the algorithm with notations different from that in (Chen et al.,
2020) to avoid ambiguity. Specifically, we use {βs} to replace {γs} in their paper, {ms}
to replace {Ts}, k to replace t and v̂sk to replace Gt. The next assumption is the same as
Assumption A2ν in (Chen et al., 2020).

Assumption 5 Let x∗ ∈ arg minx∈Rd f(x). For any epoch s of Algorithm 5, consider the
inner-loop sequences {xk} and {x̄k}. There exist a finite constant Z < ∞, potentially
dependent on L and d, such that, for µ small enough,

sup
s≥0

max
x∈{xk}∪{x̄k}

E [‖x− x∗‖] ≤ Z

14
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The following Theorem corresponds to Theorem 8 in (Chen et al., 2020). We make
minor modifications in the parameter setting so that it satisfies our ZOOD property. Note

that Chen et al. (2020) set a threshold s0
def
= blog nc + 1. When s > s0, their parameter

setting is exactly the same as ours; when s ≤ s0, they chose a different parameter setting.
We choose the following parameter setting because ms is set to n, so that the algorithm
satisfies our ZOOD property (which can be seen from the proof). Theorem 7 can be directly
derived from Lemmas 8 and 9.

Theorem 7 (Strongly Convex) Suppose Assumptions 1, 4 and 5 hold. Set

ms = n, ps =
1

2
, αs = min

{√
nγ

12L
,
1

2

}
, βs =

1

12Lαs

Γk = (1 + γβs)
k, θk =

{
Γk−1 − (1− αs − ps)Γk, k ≤ ms − 1

Γk−1, k = ms

We obtain

E
[
f(x̃S)− f(x∗)

]
≤


(

1
4

)S 4
3E
[
f(x̃0)− f(x∗)

]
+ 1

2µ
2Ld+ 4

3L
√
dZµ, n ≥ 18L

γ(
1 +

√
γ

12nL

)−nS
3E
[
f(x̃0)− f(x∗)

]
+ S

Γn

[
3
2µ

2Ld+ (4− 2αs)L
√
dZµ

]
, n < 18L

γ

Remark 3 From Theorem 7, we know that ZO-Varag satisfies ZOOD property withFQC = O (dn) and K0 = 1
4 and δµ = 2

3µ
2Ld+ 16

9 L
√
dZµ, n ≥ 18L

γ

FQC = O
(
d
√

nL
γ

)
and K0 = 1

e and δµ =
√

L
nγ

[
3
2µ

2Ld+ 4L
√
dZµ

]
, n < 18L

γ

where FQC denotes function query complexity.

5.4 Applying Reduction Methods to ZO-SVRG, ZO-SAGA and ZO-Varag

With the above results, now we can present the function query complexity of applying
AdaptRdct-C and AdaptRdct-NC on ZO-SVRG, ZO-SAGA and ZO-Varag:

Corollary 6 Suppose Assumptions 2, 4 and 5 hold. Applying AdaptRdct-C on ZO-SVRG,
from Corollary 1 and Remark 1 we know that the total function query complexity to solve the
finite-sum problem is O

(
n log 1

ε + d
ε

)
. Applying AdaptRdct-C on ZO-SAGA, from Corol-

lary 1 and Remark 2 we know that the total function query complexity to solve the finite-sum
problem is O

((
n log 1

ε + d
ε

)
log 1

ε2

)
. Applying AdaptRdct-C on ZO-Varag, from Corollary

1 and Remark 3 we know that the total function query complexity to solve the finite-sum

problem is

{
O
(
dn log 1

ε

)
, n ≥ O

(
1
ε

)
O
(
dn log n+ d

√
n
ε

)
, n < O

(
1
ε

)
Corollary 6 entails the superiority of our reduction method AdaptRdct-C in efficiency:

from Corollaries 4 and 5 above, we know that directly applying ZO-SVRG and ZO-SAGA
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to solve convex problems yields function query complexity O
(
n+d
ε

)
and O

(
nd
ε

)
respectively.

After applying AdaptRdct-C, we reduce the term O
(

1
ε

)
to O

(
log 1

ε

)
for ZO-SVRG and shave

the factor n for ZO-SAGA. Furthermore, from Table 1 we know that vanilla ZO-Varag has

a function query complexity

{
O
(
dn log 1

ε

)
, n ≥ O

(
1
ε

)
O
(
dn log n+ d

√
n
ε

)
, n < O

(
1
ε

) . The result of ZO-Varag

with AdaptRdct-C completely matches the result above, but our result is derived without
extra analysing the convex setting, which saves much effort.

Corollary 7 Suppose Assumptions 2, 4 and 5 hold. Applying AdaptRdct-NC on ZO-
SVRG and ZO-SAGA, from Corollary 2, Remark 1 and 2, we know that to get an ε-
stationary point, the total function query complexity is Õ

(
nσ+dL
ε2

)
. Applying AdaptRdct-NC

on ZO-Varag, from Corollary 2 and Remark 3 we know that to get an ε-stationary point, the

total function query complexity is

Õ
(
d(nσ+L)

ε2

)
, n ≥ O

(
L
σ

)
Õ
(
d
√
nσL
ε2

)
, n < O

(
L
σ

) , where Õ hides a logarithmic

factor.

Corollary 7 also verifies that ZO-SVRG and ZO-SAGA with AdaptRdct-NC are better
for solving non-convex problems. From Table 2, ZO-SVRG-Rand and ZO-SVRG-Ave with

mini-batch technique have function query complexity of O
(
nL
ε2

+ dL
ε4

)
and O

(
nq
ε2

+ pmaxL
ε4

)
respectively. It can be seen that our ZO-SVRG and ZO-SAGA with AdaptRdct-NC have
much lower function query complexity. We attribute this acceleration to two factors and
we use ZO-SVRG-Rand to illustrate these two factors. The first part in the function query
complexity is reduced from nL

ε2
to nσ

ε2
(note that σ ≤ L always holds, cf. Definition 1), and

this is due to our framework. The second part is reduced from dL
ε4

to dL
ε2

, and this is because
we control the term E

[
‖v̂sk‖2

]
in a wiser way in the analysis. Note that the acceleration of

the first part is huge when σ � L.

Also, we derive the convergence result of ZO-Varag for solving non-convex problems
without extra effort, and this result is not studied by (Chen et al., 2020). Moreover, the

known best function query complexity is O
(

min{d
√
n

ε2
, d
ε3
}
)

, which is obtained by ZO-

SPIDER-Coord (Ji et al., 2019) and SPIDER-SZO (Fang et al., 2018). When σ < L,
ZO-Varag with AdaptRdct-NC outperforms the two SPIDER-based algorithms.

5.5 The Choice of the Smoothing Parameter

In Section 3.2 we introduce two different ZO gradient estimators. It can be seen that the
smoothing parameter µ should be set as small as possible so that the difference between
the gradient estimator and the true gradient is as small as possible. But in practice it
is impossible to set µ to an arbitrarily small value as we want, since the accuracy of the
computing system is limited. If µ is set to a small value, there is possibility that the result
is effected by the hardware.

From the analyses in Sections 4 and 5 we know that µ introduces an error term δµ in the
convergence results of our frameworks and ZO algorithms. In order to achieve ε-accuracy,
δµ can be set to O (ε), which means that µ is not required to be set to an arbitrarily small
value. Different ZO algorithms have different δµ, thus the smoothing parameter µ also
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differs. We list the value of the smoothing parameter of different ZO algorithms in Tables
1 and 2.

It can be seen that in all ZO algorithms listed in Tables 1 and 2, the value of the
smoothing parameter µ has a dependence on the accuracy ε, which is difficult to implement
in practice since we usually do not set the accuracy in advance. To solve this problem, Liu

et al. (2018) set µ = O
(

1√
dT

)
, where T is the total number of iterations. Ji et al. (2019)

set µ = 1e-2. Chen et al. (2020) set µ = 1e-3. Similar to their approaches, we set µ = 1
d in

our experiments. Compared with setting µ to a constant, our choice is more adaptive.
Finally we raise a point regarding AdaptRdct-C. When n < 18L

γ , ZO-Varag satisfies

ZOOD property with δµ =
√

L
nγ

[
3
2µ

2Ld+ 4L
√
dZµ

]
, which is dependent on 1√

γ . This can

be a problem for AdaptRdct-C. Note that in Algorithm 1, γs diminishes at a linear rate.

From Theorem 1 we know that at S-th stage, we achieve an accuracy of O
(√
K0

S
)

= O (ε),

and γS =
√
K0

S−1
γ1 = O (ε). Thus the smoothing parameter µ of AdaptRdct-C (ZO-Varag)

need to be chosen O (
√
ε) smaller (cf. Table 1). But this result still matches that of vanilla

ZO-Varag derived by Chen et al. (2020). ZO-SAGA has such dependence similarly. But
this is not a problem for AdaptRdct-NC since σ does not diminish in Algorithm 2.

6. Experiments

In this section, we compare the performance of our reduction methods with other popular
ZO algorithms. We conduct experiments on ZO-SVRG, ZO-SAGA and ZO-Varag with and
without our reduction methods. We conduct two experiments with real-world datasets.
The first experiment is generation of black-box adversarial examples for non-convex objec-
tives, and the second experiment addresses logistic regression under convex and non-convex
settings, respectively.

6.1 Generation of Black-Box Adversarial Examples

In image classification, adversary attack crafts input images with imperceptive perturbation
to mislead a trained classifier. The resulting perturbed images are called adversarial exam-
ples, which are commonly used to understand the robustness of learning models. Under the
black-box setting, the attackers only have access to the function value. It is obvious that
this problem falls into the framework of ZO optimization.

For the target black-box model, we choose three well-trained DNNs F (·) = [F1(·), ..., FK(·)],
where Fk(·) returns the prediction score of the k-th class. They are trained on three datasets,
i.e., Cifar-10, Fashion mnist (Fmnist) and Mnist. For each model, we attack n = 50
correctly-classified images {ai}ni=1 from the same class, and adopt the following black-box
attacking loss. The i-th individual loss function fi(x) is given by

fi(x) = max
{

logFyi

(
aadvi

)
− logFytar

(
aadvi

)
, 0
}

+ λ‖aadvi − ai‖2 (18)

where aadvi = 0.5 tanh
(
tanh−1 (2ai) + x

)
is the adversarial example of the i-th natural

image ai, and yi is the true label of image ai, ytar is the target attack class, λ is set to
1e-1. Note that the loss function is non-convex, so in this experiment we only examine the
performance of AdaptRdct-NC.
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In the experiment, we compare the performance of our frameworks applied to ZO-
SVRG, ZO-SAGA and ZO-Varag. Fig. 1 shows that ZO-SVRG with AdaptRdct-NC has a
better performance than its counterpart without reduction. Also, ZO-Varag and ZO-SAGA
outperform other algorithms. Choice of parameters and more results of our frameworks
applied to the three zeroth-order algorithms under different parameter settings can be found
in Appendix F.
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Figure 1: Comparison of black-box attack methods on three well-trained DNNs.

6.2 Convex and Non-convex Logistic Regression

In this subsection, we mainly consider logistic regression and its variant. To conduct ex-
periments on AdaptRdct-C, we first choose the classical logistic regression problem

f1(x) =
1

n

n∑
i=1

−
(
yi log s(−xTai) + (1− yi) log s(xTai)

)
(19)

where ai ∈ Rd denote the features, yi ∈ {0, 1} are the classification labels and s(z) =
1/(1 + exp(−z)) is the sigmoid function. It is obvious that the problem is convex. For

non-convex problems, we add a non-convex regularizer
∑d

i=1
x2
i

1+x2
i

to the convex problem

f1(x). Then we get

f2(x) =
1

n

n∑
i=1

−
(
yi log s(−xTai) + (1− yi) log s(xTai)

)
+ λ

d∑
i=1

x2
i

1 + x2
i

(20)

where λ is set to 1e-1. For these problems, we conduct the experiments on three LIBSVM
datasets (Chang and Lin, 2011), i.e., the German (n = 1, 000, d = 24), Ijcnn1 (n = 49, 990,
d = 22) and Mushrooms (n = 8124, d = 112) datasets.

Besides ZO-SVRG, ZO-SAGA and ZO-Varag, we also add SPIDER-SZO (Fang et al.,
2018) for comparison. Figs. 2(a) - 2(c) show the convergence results in terms of subopti-
mality (the difference of objective function to the global optimal) of the algorithms solving
the convex problem f1(x), and Figs. 2(d) - 2(f) show the convergence results in terms of
suboptimality on the non-convex problem f2(x). It can be seen that under both convex

18
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and non-convex settings, ZO-SVRG and ZO-SAGA equipped with reduction methods are
much faster than the original algorithms without reduction. Choice of parameters and
more results of our frameworks applied to the three zeroth-order algorithms under different
parameter settings can be found in Appendix F.
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Figure 2: Comparison of different ZO algorithms for logistic regression problems. (a) - (c)
Convex. (d) - (f) Non-convex.

7. Conclusion

In this paper, we develop two reduction frameworks for ZO algorithms under convex and
non-convex setting, respectively. Our frameworks work in a black-box manner, thus they
can be applied to a wide range of ZO algorithms to further lower their function query
complexities. Moreover, our frameworks can directly derive convergence results of ZO algo-
rithms under convex and non-convex settings without extra analyses, as long as convergence
results under strongly convex setting are given. To illustrate the advantages of our frame-
works clearly, we have studied the performance of applying our frameworks to ZO versions
of SVRG, SAGA and Varag. The results of ZO-SVRG and ZO-SAGA indicate that our
approach has a lower query complexity than vanilla ZO algorithms under both convex and
non-convex settings. Our theoretic study and experimental results highlight the advantages
of combining ZO optimization with the reduction techniques. To the best of our knowledge,
we are the first to propose black-box reduction frameworks for zeroth-order algorithms and
apply them to zeroth-order optimization. In the future, we would like to extend this work
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to the parallel computing (Gu et al., 2020b, 2019, 2018b) and federated learning (Gu et al.,
2020a; Zhang et al., 2021) scenarios.

Appendix

Appendix A provides the proof of AdaptRdct-C.

Appendix B provides the proof of AdaptRdct-NC.

Appendix C provides the proof of ZO-SVRG.

Appendix D provides the proof of ZO-SAGA.

Appendix E provides the proof of ZO-Varag.

Appendix F provides choice of parameters in the experiment and additional experiment
results of our frameworks applied to ZO-SVRG, ZO-SAGA and ZO-Varag under different
parameter settings.

Appendix A. Proof of AdaptRdct-C

In this section we provide the proof of Theorem 1.

Theorem 1 Suppose Assumption 2 holds. Let x0 be a starting vector such that f(x0) −
f(x∗) ≤ ∆, and ||x0 − x∗||2 ≤ Θ. For Algorithm 1, we have

E[f(xS)− f(x∗)] ≤ δµ +KS0 [∆− δµ] +

(
1

2
+

2√
K0

)
K
S
2
0 γ1Θ

Proof Denote x∗s = arg minx f
(s)(x). By the strong convexity of f (s)(x), we have

E
[
f (s)(x∗s)− f (s)(x∗)

]
≤ −γs

2
E
[
||x∗s − x∗||2

]
(21)

Using the fact that f (s)(x∗s) ≥ f(x∗s), as well as the definition f (s)(x∗) = f(x∗) + γs
2 ||x

∗ −
x0||2, we immediately have

E
[
f(x∗s)− f(x∗)− γs

2
||x∗ − x0||2

]
≤ −γs

2
E
[
||x∗s − x∗||2

]
(22)

Rearranging the terms, we get

γs
2
||x0 − x∗||2 − γs

2
E
[
||x∗s − x∗||2

]
≥ E [f(x∗s)− f(x∗)] ≥ 0 (23)

Thus we have

E
[
‖x∗s − x∗‖2

]
≤ ||x0 − x∗||2 (24)

Denote K = K0, the ZOOD property of A ensures that

E
[
f (s)(xs)− f (s)(x∗s)− δµ

]
≤ KE

[
f (s)(xs−1)− f (s)(x∗s)− δµ

]
(25)
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Denote Ds = E
[
f (s)(xs−1)− f (s)(x∗s)

]
. At the beginning, we have upper bound D1 =

f (1)(x0)− f (1)(x∗1) ≤ f(x0)− f(x∗). For each epoch s ≥ 1, we compute that

Ds+1 = E
[
f (s+1)(xs)− f (s+1)(x∗s+1)

]
¬
=E

[
f (s)(xs)−

γs − γs+1

2
||xs − x0||2

]
− E

[
f (s)(x∗s+1)− γs − γs+1

2
||x∗s+1 − x0||2

]

≤E

[
f (s)(xs)−

γs − γs+1

2
||xs − x0||2

]
− E

[
f (s)(x∗s) +

γs
2
||x∗s+1 − x∗s||2

]
+
γs − γs+1

2
E
[
||x∗s+1 − x0||2

]
≤E

[
f (s)(xs)− f (s)(x∗s)

]
+
γs − γs+1

2
E
[
||x∗s+1 − x0||2

]
®
≤E

[
f (s)(xs)− f (s)(x∗s)

]
+ (γs − γs+1)E

[
||x∗s+1 − x∗||2 + ||x0 − x∗||2

]
¯
≤E

[
f (s)(xs)− f (s)(x∗s)

]
+ 2(1−

√
K)γs||x0 − x∗||2

(26)

Above, ¬ uses the definition of f (s+1)(x);  uses the convexity of f (s)(x) and the fact that
x∗s is the minimizer of f (s)(x); ® uses the inequality ||a− b||2 ≤ 2||a||2 + 2||b||2; ¯ follows
from (24) and γs+1 =

√
Kγs. That implies

Ds+1 − δµ ≤ E
[
f (s)(xs)− f (s)(x∗s)− δµ

]
+ 2(1−

√
K)γs||x0 − x∗||2

≤ K(Ds − δµ) + 2(1−
√
K)γs||x0 − x∗||2

(27)

The second inequality follows from (25). Recursively applying the above inequality, we have

DS+1 − δµ ≤ KS(D1 − δµ) + ||x0 − x∗||2 · 2 · (1−
√
K)[γS +KγS−1 + ...+KS−1γ1]

= KS(D1 − δµ) + ||x0 − x∗||2 · 2 · (1−
√
K)γS [1 +

√
K + ...+

√
K
S−1

]

≤ KS(D1 − δµ) + ||x0 − x∗||2 · 2 · γS

= KS(D1 − δµ) + ||x0 − x∗||2 · 2√
K
· γS+1

(28)

Finally, we obtain

E[f(xS)− f(x∗)− δµ]
¬
≤ E[f (S+1)(xS)− f (S+1)(x∗)− δµ +

γS+1

2
||x0 − x∗||2]


≤ E[f (S+1)(xS)− f (S+1)(x∗S+1)− δµ +

γS+1

2
||x0 − x∗||2]

®
≤ KS [f(x0)− f(x∗)− δµ] + (

1

2
+

2√
K

)γS+1||x0 − x∗||2

¯
≤ KS [f(x0)− f(x∗)− δµ] + (

1

2
+

2√
K

)K
S
2 γ1||x0 − x∗||2

(29)

The ¬ comes from the definition of f (S+1)(x) and the fact that f(x) ≤ f (S+1)(x);  comes
from the fact that x∗S+1 is the minimizer of f (S+1)(xS); ® comes from (28), and ¯ comes
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from the update rule γs+1 =
√
Kγs. Note that f(x0) − f(x∗) ≤ ∆, ||x0 − x∗||2 ≤ Θ and

K = K0, then we have

E[f(xS)− f(x∗)] ≤ δµ +KS0 [∆− δµ] + (
1

2
+

2√
K0

)K
S
2
0 γ1Θ (30)

Then we complete the proof.

Appendix B. Proof of AdaptRdct-NC

In this section we provide the proof of Theorem 2.

Theorem 2 Suppose Assumption 3 holds. Let x0 be a starting vector such that f(x0) −
f(x∗) ≤ ∆. For Algorithm 2, we have

E
[
‖∇f(xα+1)‖2

]
≤ 16σ(2K + 1)

(1−K)S
[f(x0)− f(x∗)] +

(
64− 16K

1−K
+ 4L2

)
σδµ

where K = σ2K0
L2

Proof With the definition of Moreau envelope, we have fλ(xs−1) = minx f
(s)(x). Denote

x∗s = arg minx f
(s)(x) = Proxλf (xs−1), we get ∇fλ(xs−1) = xs−1−x∗

s
λ . Then with the

definition of f (s)(x), we have

f(xs−1) = f (s)(xs−1) ≥ f (s)(x∗s) = f(x∗s) +
1

2λ
||xs−1 − x∗s||2 (31)

Denote K = σ2K0
L2 , Algorithm 2 ensures that

E
[
f (s)(xs)− f (s)(x∗s)− δµ

]
≤ K

[
f (s)(xs−1)− f (s)(x∗s)− δµ

]
(32)

which implies

E
[
f (s)(xs)

]
≤ f (s)(x∗s) +K

[
f (s)(xs−1)− f (s)(x∗s)

]
− (K − 1)δµ (33)

Thus we have

E
[
f(xs) +

1

2λ
||xs − xs−1||2

]
= E

[
f (s)(xs)

]
≤ f (s)(x∗s) +K

[
f (s)(xs−1)− f (s)(x∗s)

]
− (K − 1)δµ

≤ f(xs−1) +K
[
f (s)(xs−1)− f (s)(x∗s)

]
− (K − 1)δµ

(34)

The last inequality follows from (31). On the other hand, we have

||xs − xs−1||2 = ||xs − x∗s + x∗s − xs−1||2

= ||xs − x∗s||2 + ||x∗s − xs−1||2 + 2 〈xs − x∗s,x
∗
s − xs−1〉

≥ −||xs − x∗s||2 +
1

2
||xs−1 − x∗s||2

(35)
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The inequality follows from Young’s inequality. Combining with (34), we then get

E
[

1

4λ
||xs−1 − x∗s||2

]
≤ E

[
1

2λ
||xs − xs−1||2 +

1

2λ
||xs − x∗s||2

]
≤ E

[
f(xs−1)− f(xs) +K[f (s)(xs−1)− f (s)(x∗s)]− (K − 1)δµ +

1

2λ
||xs − x∗s||2

]
¬
≤ E

[
f(xs−1)− f(xs) +K[f (s)(xs−1)− f (s)(x∗s)]− (K − 1)δµ +

1

λ(λ−1 − σ)
[f (s)(xs)− f (s)(x∗s)]

]

≤ E

[
f(xs−1)− f(xs) +

2− λσ
1− λσ

(
K
[
f (s)(xs−1)− f (s)(x∗s)

]
− (K − 1)δµ

)]
®
= E

[
f(xs−1)− f(xs) + 3

(
K
[
f (s)(xs−1)− f (s)(x∗s)

]
− (K − 1)δµ

)]
(36)

¬ holds because f (s)(x) is (λ−1−σ)-strongly convex,  holds due to (32), and ® holds due
to λ = 1

2σ . Next, we bound f (s)(xs−1)− f (s)(x∗s) given that xs−1 is fixed. According to the

definition of f (s)(x), we have

f (s)(xs−1)− f (s)(x∗s) = f (s)(xs)− f (s)(x∗s) + f (s)(xs−1)− f (s)(xs)

= f (s)(xs)− f (s)(x∗s) + f(xs−1)− f(xs)−
1

2λ
||xs − xs−1||2

≤ f (s)(xs)− f (s)(x∗s) + f(xs−1)− f(xs)

(37)

Taking expectation over randomness in the s-th stage on both sides, we have

f (s)(xs−1)− f (s)(x∗s) ≤ E
[
f (s)(xs)− f (s)(x∗s)

]
+ E [f(xs−1)− f(xs)]

≤ K
[
f (s)(xs−1)− f (s)(x∗s)

]
− (K − 1)δµ + E[f(xs−1)− f(xs)]

(38)

The second inequality follows from (32). Rearranging the terms, we have

f (s)(xs−1)− f (s)(x∗s) ≤
1

1−K
E[f(xs−1)− f(xs)] + δµ (39)

Plug this upper bound into (36), then we have

E
[

1

4λ
||xs−1 − x∗s||2

]
≤ E

[
f(xs−1)− f(xs) +

3K
1−K

[f(xs−1)− f(xs)] + 3δµ

]
=

2K + 1

1−K
E [f(xs−1)− f(xs)] + 3δµ

(40)

Since ||∇fλ(xs−1)|| = ||xs−1−x∗
s ||

λ , we have

λ

4
E
[
||∇fλ(xs−1)||2

]
≤ 2K + 1

1−K
E [f(xs−1)− f(xs)] + 3δµ (41)

Multiplying both sides with weight ws−1
def
= (s− 1)τ , we get

λ

4
ws−1E

[
||∇fλ(xs−1)||2

]
≤ 2K + 1

1−K
ws−1E [f(xs−1)− f(xs)] + 3ws−1δµ (42)

23



Gu, Wei, Gao, Xiong, Deng, and Huang

By summing over s = 1, ..., S + 1, we get

λ

4

S+1∑
s=1

ws−1E
[
||∇fλ(xs−1)||2

]
≤ 2K + 1

1−K

S+1∑
s=1

ws−1E [f(xs−1)− f(xs)] + 3

S+1∑
s=1

ws−1δµ (43)

With the choice of xα, we have

λ

4

S+1∑
s=1

ws−1E[||∇fλ(xα)||2]

≤2K + 1

1−K
E

[
w0f(x0)− wSf(xS+1) +

S+1∑
s=1

(ws−1 − ws) f(xs−1)

]
+ 3

S+1∑
s=1

ws−1δµ

¬
=

2K + 1

1−K
E

[
S+1∑
s=1

(ws−1 − ws) [f(xs−1)− f(xS+1)]

]
+ 3

S+1∑
s=1

ws−1δµ


≤2K + 1

1−K
E

[
S+1∑
s=1

(ws−1 − ws) [f(x0) + (s− 1)δµ − f(xS+1)]

]
+ 3

S+1∑
s=1

ws−1δµ

≤2K + 1

1−K
wSE[f(x0)− f(xS+1)] +

2K + 1

1−K

S+1∑
s=1

ws−1δµ + 3
S+1∑
s=1

ws−1δµ

(44)

where ¬ holds because w0 = 0,  holds because from ZOOD property we have f(xs−1) −
f(x0) ≤ δµ. Since λ = 1

2σ and
∑S+1

s=1 ws−1 ≥ S, we have

E[||∇fλ(xα)||2] ≤ 8σ(2K + 1)

(1−K)S
[f(x0)− f(x∗)] +

32− 8K
1−K

σδµ (45)

Note that f(x0)−f(xS+1) ≤ f(x0)−f(x∗) = ∆. Denote x+
α

def
= Proxλf(xα) = arg minx f

(α+1)(x),
then

‖∇f(xα+1)‖2
¬
≤2‖∇f(xα+1)−∇f(x+

α )‖2 + 2‖∇f(x+
α )‖2


≤2L2‖xα+1 − x+

α ‖2 + 2‖∇fλ(xα)‖2
(46)

where ¬ comes from the fact that ‖a + b‖2 ≤ ‖a‖2 + ‖b‖2,  comes from the smoothness
of f and (9). For any s = 0, ..., S, we have

L2‖xs+1 − x+
s ‖2

¬
≤2L2

σ

[
f (s+1)(xs+1)− f (s+1)(xs

+)
]


≤ 2σK
s+ 1

[
f (s+1)(xs)− f (s+1)(xs

+)
]

+ 2L2δµ

®
=

2σK
s+ 1

[
f(xs)− f(x+

s )− σ‖xs − x+
s ‖2
]

+ 2L2δµ

¯
≤ 2σK
s+ 1

[f(xs)− f(x∗)] + 2L2δµ

°
≤ 2σK
s+ 1

∆ +
(
K + 2L2

)
δµ

(47)
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where ¬ comes from the strong convexity of fs+1(x) and x+
s is its minimizer,  comes

from Algorithm 2, ® comes from the definition of fs+1(x), ¯ holds since x∗ minimizes
f , ° comes from the ZOOD property. Multiplying both sides with ws+1, summing over
s = 0, ...S, following similar analysis above, we have

L2
S∑
s=0

ws+1E
[
‖xα+1 − x+

α ‖2
]
≤

S∑
s=0

ws+1
2σK
s+ 1

∆ +

S∑
s=0

ws+1

(
K + 2L2

)
δµ (48)

with the choice of ws we have

L2E
[
‖xα+1 − x+

α ‖2
]
≤ 2σK

S
∆ +

(
K + 2L2

)
δµ (49)

Combining the above inequality with (45) and (46), we get

E
[
‖∇f(xα+1)‖2

]
≤ 16σ(2K + 1)

(1−K)S
[f(x0)− f(x∗)] +

(
64− 16K

1−K
+ 4L2

)
σδµ (50)

Then we complete the proof

Appendix C. Proof of ZO-SVRG

In this section we provide proof of Theorem 3 and 4. First we present four auxiliary lemmas,
Lemma 1, 2, 3 and 4. We introduce a smoothing function. Define fµ(x) = Eu∼Ub

[f(x+µu)]
where Ub is a uniform distribution over the unit Euclidean ball. Then we have :

Lemma 1 Suppose Assumptions 2 and 4 hold, we have
1) fµ(x) is also L-smooth and convex, and

∇fµ(x) = Eu[∇̂f(x)]

2) ∀ x ∈ Rd,

|fµ(x)− f(x)| ≤ Lµ2

2

||∇fµ(x)−∇f(x)||2 ≤ µ2L2d2

4

3) ∀ x ∈ Rd,

Eu

[
||∇̂f(x)−∇fµ(x)||2

]
≤ Eu

[
||∇̂f(x)||2

]
≤ 2d||∇f(x)||2 +

µ2L2d2

2

Proof See (Liu et al., 2018, Lemma 1).

Lemma 2 Suppose Assumption 4 holds, we have

Ei[||∇fi(x)−∇fi(x∗)||2] ≤ 2L[f(x)− f(x∗)]
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Proof See (Johnson and Zhang, 2013, Theorem 1).

Lemma 3 Suppose Assumption 4 holds, ∀ x,y ∈ Rd, i ∈ [n] and β > 0, we have

E
[
||∇̂fi(x)− ∇̂fi(y)||2

]
≤3dE

[
(1 + β)||∇fi(x)−∇fi(x∗)||2 + (1 +

1

β
)||∇fi(y)−∇fi(x∗)||2

]
+

3L2d2µ2

2

Proof From (Ji et al., 2019, Lemma 5), we have

E
[
||∇̂fi(x)− ∇̂fi(y)||2

]
≤ 3dE

[
||∇fi(x)−∇fi(y)||2

]
+

3L2d2µ2

2
(51)

Using Young’s inequality, we have

E
[
||∇̂fi(x)− ∇̂fi(y)||2

]
≤3dE

[
(1 + β)||∇fi(x)−∇fi(x∗)||2 + (1 +

1

β
)||∇fi(y)−∇fi(x∗)||2

]
+

3L2d2µ2

2

(52)

Lemma 4 Suppose Assumptions 2 and 4 hold. Taking expectation with respect to all vari-
ables, we have :

E
[
||v̂sk||2

]
≤ 48dL [f(xsk)− f(x∗)] + 48dL [f(x̃s−1)− f(x∗)] + 8L2d2µ2

Proof From the definition of fµ and the choice of ik, we have

E
[
∇̂fik(xsk)− ∇̂fik(x̃s−1)

]
= ∇fµ(xsk)−∇fµ(x̃s−1) (53)

Then we can rewrite v̂sk as

v̂sk =∇̂fik(xsk)− ∇̂fik(x̃s−1) + ∇̂f(x̃s−1)

=∇̂fik(xsk)− ∇̂fik(x̃s−1)− E
[
∇̂fik(xsk)− ∇̂fik(x̃s−1)

]
+∇fµ(xsk) +

(
∇̂f(x̃s−1)−∇fµ(x̃s−1)

)
(54)

Then we have

E
[
||v̂sk||2

]
=E

[
||∇̂fik(xsk)− ∇̂fik(x̃s−1)− E

[
∇̂fik(xsk)− ∇̂fik(x̃s−1)

]
+∇fµ(xsk) +

(
∇̂f(x̃s−1)−∇fµ(x̃s−1)

)
||2
]

≤3E
[
||∇̂fik(xsk)− ∇̂fik(x̃s−1)− Eik [∇̂fik(xsk)− ∇̂fik(x̃s−1)]||2

]
+ 3E

[
||∇fµ(xsk)||2

]
+ 3E

[
||∇̂f(x̃s−1)−∇fµ(x̃s−1)||2

]
≤3E

[
||∇̂fik(xsk)− ∇̂fik(x̃s−1)||2

]
+ 6E

[
||∇f(xsk)||2

]
+

3µ2d2L2

2

+ 6dE
[
||∇f(x̃s−1)||2

]
+

3µ2d2L2

2
(55)
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where the first inequality holds due to ||a + b + c||2 ≤ 3||a||2 + 3||b||2 + 3||c||2, the second
inequality holds due to E

[
||a− E[a]||2

]
≤ E

[
||a||2

]
and Lemma 1. From Lemma 3 with

β = 1, we bound the first term on the right hand side of (55) as

E
[
||∇̂fik(xsk)− ∇̂fik(x̃s−1)||2

]
≤ 6dE

[
||∇fik(xsk)−∇fik(x∗)||2 + ||∇fik(x̃s−1)−∇fik(x∗)||2

]
+

3L2d2µ2

2

≤ 12dLE [f(xsk)− f(x∗) + f(x̃s−1)− f(x∗)] +
3L2d2µ2

2

(56)

From the smoothness of f and the fact that ∇f(x∗) = 0, we have for all x ∈ Rd

E
[
||∇f(x)||2

]
≤ 2LE [f(x)− f(x∗)] (57)

Substitute (56) and (57) into (55), we get

E
[
||v̂sk||2

]
≤ 48dL [f(xsk)− f(x∗)] + 48dL [f(x̃s−1)− f(x∗)] + 8L2d2µ2 (58)

Then we complete the proof.

Theorem 3 Suppose Assumptions 1 and 4 hold, denote f(x̃0) − f(x∗) = ∆. By using
Option I in Algorithm 3, we have

E [f(x̃s)− f(x∗)] ≤ δµ +

(
β2

β1

)s
(∆− δµ)

where β1 = 2mη [1− 24ηdL] , β2 = 2
γ + 48mη2dL, δµ = 2ηmµ2L(4ηd2L+1)

β1−β2 and η, m satisfy

inequalities η < 1
48dL and m > 1

γη(1−48ηdL) .

Proof From Lemma 1, we have E[v̂sk] = ∇fµ(xsk). Conditioned on xsk, we have

E[||xsk+1 − x∗||2] = ||xsk − x∗||2 − 2η(xsk − x∗)TE[v̂sk] + η2E[||v̂sk||2]

≤ ||xsk − x∗||2 − 2η[fµ(xsk)− fµ(x∗)] + η2E[||v̂sk||2]

≤ ||xsk − x∗||2 − 2η[f(xsk)− f(x∗)] + η2E[||v̂sk||2] + 2ηLµ2

(59)

where the first inequality comes from the convexity of fµ(x), the last inequality holds due
to Lemma 1. Substituting Lemma 4 into (59), we have

E[||xsk+1 − x∗||2] ≤||xsk − x∗||2 − 2η(1− 24ηdL)[f(xsk)− f(x∗)]

+ 48η2dL[f(x̃s−1)− f(x∗)] + 8η2L2d2µ2 + 2ηLµ2
(60)

Now we consider a fixed stage s, so that xs0 = x̃s−1 and x̃s is selected after all of the updates
have completed. With the choice of x̃s, we get

∑m
i=1[f(xsk)− f(x∗)] = mE[f(x̃s)− f(x∗)].

By summing the previous inequality over k = 0, 1, ...,m− 1, we have

E
[
||xsm − x∗||2

]
+ 2mη(1− 24ηdL)E [f(x̃s)− f(x∗)]

≤ E
[
||xs0 − x∗||2

]
+ 48mη2dL [f(x̃s−1)− f(x∗)] + 2ηmµ2L(4ηd2L+ 1)

(61)
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Note that using option I, we have xs0 = x̃s−1. With strong convexity of f(x), we get

E[||xsm − x∗||2] + 2mη(1− 24ηdL)E[f(x̃s)− f(x∗)]

≤ (
2

γ
+ 48mη2dL)E[f(x̃s−1)− f(x∗)] + 2ηmµ2L(4d2η2L+ 1)

(62)

Denote β1 = 2mη[1− 24ηdL], β2 = 2
γ + 48mη2dL, δµ = 2ηmµ2L(4ηd2L+1)

β1−β2 . This implies

E[f(x̃s)− f(x∗)]− δµ ≤
β2

β1
{E[f(x̃s−1)− f(x∗)]− δµ} (63)

Note that we need to choose η < 1
48dL and m > 1

γη(1−48ηdL) to ensure that 0 < β2
β1

< 1.
Telescope the sum in s = 1, 2, ..., S, we get

E [f(x̃s)− f(x∗)] ≤ δµ +

(
β2

β1

)s
(∆− δµ) (64)

Then we complete the proof.

Theorem 4 Suppose Assumptions 2 and 4 hold, f(x̃0)− f(x∗) ≤ ∆ and ||x̃0 − x∗||2 ≤ Θ.
Using Option II in Algorithm 3, we have

E[f(xα)− f(x∗)] ≤ Θ + 48mη2dL∆

2mSη(1− 48ηdL)
+
µ2L(4ηd2L+ 1)

1− 48ηdL

where xα is uniformly randomly chosen from {{xsk}
m−1
k=0 }

S
s=1, and η < 1

48dL .

Proof From (61), we have

E[||xsm − x∗||2] + 2mη(1− 24ηdL)E[f(x̃s)− f(x∗)]

≤ E[||xs0 − x∗||2] + 48mη2dL[f(x̃s−1)− f(x∗)] + 2ηmµ2L(4ηd2L+ 1)

= E[||xs−1
m − x∗||2] + 48mη2dL[f(x̃s−1)− f(x∗)] + 2ηmµ2L(4ηd2L+ 1)

(65)

The first equality holds because in option II, we set xs0 = xs−1
m . Now we define the

Lyapunov function

P s
def
= E

[
||xsm − x∗||2

]
+ 48mη2dLE [f(x̃s)− f(x∗)]

Then we have

2mη(1− 48ηdL)E [f(x̃s)− f(x∗)] ≤ P s−1 − P s + 2ηmµ2L(4ηd2L+ 1) (66)

Telescope the sum in s = 1, 2, ..., S, we get

2mη(1− 48ηdL)

S∑
s=1

E [f(x̃s)− f(x∗)] ≤ P 0 − PS + 2ηmSµ2L(4ηd2L+ 1) (67)
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With the definition of xα and the choice of x̃s, we have E[f(xα)−f(x∗)] = 1
S

∑S
s=1 E[f(x̃s)−

f(x∗)], thus we get

2mSη(1− 48ηdL)E[f(xα)− f(x∗)]

≤ P 0 + 4ηmSµ2L(2ηd2L+ 1)

= ||x̃0 − x∗||2 + 48mη2dL[f(x̃0)− f(x∗)] + 2ηmSµ2L(4ηd2L+ 1)

(68)

which implies

E[f(xα)− f(x∗)] ≤ Θ + 48mη2dL∆

2mSη(1− 48ηdL)
+
µ2L(4ηd2L+ 1)

1− 48ηdL
(69)

Thus we get Theorem 4. Note that we need to choose η < 1
48dL .

Appendix D. Proof of ZO-SAGA

In this section we provide the proof of Theorem 5 and Theorem 6. We first present two
auxiliary lemmas, Lemma 5 and 6.

Lemma 5 Suppose Assumption 4 holds. ∀ x, φi ∈ Rd, we have :

1

n

n∑
i=1

||∇fi(φki )−∇fi(x∗)||2 ≤ 2L

[
1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗)

]

Proof See (Defazio et al., 2014, Lemma 6).

Lemma 6 Suppose Assumption 4 holds. Take expection over all variables, we have

E
[
||v̂k||2

]
≤12dL

(
(1 + β)

[
f(xk)− f(x∗)

]
+ (1 +

1

β
)

[
1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗)

])
+ 4L2d2µ2 + 8dL

[
f(xk)− f(x∗)

]
Proof Since ik is uniformly randomly chosen, we can rewrite v̂k as

v̂k = ∇̂fik(xk)− ∇̂fik(φkik)− Eik
[
∇̂fik(xk)− ∇̂fik(φkik)

]
+ ∇̂f(xk) (70)

Then we have

E
[
||v̂k||2

]
= E

[
||∇̂fik(xk)− ∇̂fik(φkik)− Eik

[
∇̂fik(xk)− ∇̂fik(φkik)

]
+ ∇̂f(xk)||2

]
≤ 2E

[
||∇̂fik(xk)− ∇̂fik(φkik)− Eik

[
∇̂fik(xk)− ∇̂fik(φkik)

]
||2
]

+ 2E
[
||∇̂f(xk)||2

]
≤ 2E

[
||∇̂fik(xk)− ∇̂fik(φkik)||2

]
+ 4dE

[
||∇f(xk)||2

]
+ µ2d2L2

(71)
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where the first inequality holds due to ||a + b||2 ≤ 2||a||2 + 2||b||2, the second inequality
holds due to E[||a − E[a]||2] ≤ E[||a||2] and Lemma 1. From Lemma 3, we bound the first
term on the right hand side of (71) as

E
[
||∇̂fik(xk)− ∇̂fik(φkik)||2

]
≤ 3d

(
(1 + β)E

[
||∇fik(xk)−∇fik(x∗)||2 + (1 +

1

β
)E
[
||∇fik(φkik)−∇fik(x∗)||2

]])
+

3L2d2µ2

2
(72)

From Lemma 2, we have

E
[
||∇fik(xk)−∇fik(x∗)||2

]
≤ 2L

[
f(xk)− f(x∗)

]
(73)

From Lemma 5 and the fact that E
[
||∇fik(φkik)−∇fik(x∗)||2

]
= 1

n

∑n
i=1 ||∇fi(φki )−∇fi(x∗)||2

we have

E
[
||∇fik(φkik)−∇fik(x∗)||2

]
≤ 2L

[
1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗)

]
(74)

Thus we have

E
[
||∇̂fik(xk)− ∇̂fik(φkik)||2

]
≤6dL

(
(1 + β)

[
f(xk)− f(x∗)

]
+ (1 +

1

β
)

[
1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗)

])

+
3L2d2µ2

2
(75)

Since f(x) is L-smooth and convex, we can bound the second term on the right hand side
as

E
[
||∇f(xk)||2

]
≤ 2LE

[
f(xk)− f(x∗)

]
(76)

Substitute (75) and (76) into (71), we get

E
[
||v̂k||2

]
≤12dL

(
(1 + β)

[
f(xk)− f(x∗)

]
+ (1 +

1

β
)

[
1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗)

])
+ 4L2d2µ2 + 8dL

[
f(xk)− f(x∗)

]
(77)

Then we complete the proof.

Theorem 5 Suppose Assumptions 1 and 4 hold, denote f(x0)− f(x∗) = ∆. We have

E
[
f(xk)− f(x∗)

]
≤ δµ +

(
1− γ

112dL+ nγ

)K [L(2 + cγ)

2γ
∆− δµ

]
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where c = ηn(1− 32ηdL), η = 2
112dL+nγ and δµ = 2L2µ2(2ηLd2+1)

γ .

Proof From Lemma 1, we have E[v̂k] = ∇fµ(xk), Conditioned on xk, we have

E
[
||xk+1 − x∗||2

]
= ||xk − x∗||2 − 2η(xk − x∗)TE

[
v̂k
]

+ η2E
[
||v̂sk||2

]
≤ ||xk − x∗||2 − 2η

[
fµ(xk)− fµ(x∗)

]
+ η2E

[
||v̂k||2

]
≤ ||xk − x∗||2 − 2η

[
f(xk)− f(x∗)

]
+ 2ηLµ2

+ η212dL

(
(1 + β)

[
f(xk)− f(x∗)

]
+ (1 +

1

β
)

[
1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗)

])
+ 4η2L2d2µ2 + 8η2dL

[
f(xk)− f(x∗)

]
≤ (1− ηγ

2
)||xk − x∗||2 − η [1− 4ηdL(3β + 5)]

[
f(xk)− f(x∗)

]
+ 12η2dL(1 +

1

β
)

[
1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗)

]
+ 2ηLµ2(2ηLd2 + 1)

(78)
where the second inequality comes from Lemma 1 and Lemma 6, and the last imequality
holds because −η

[
f(xk)− f(x∗)

]
≤ −ηγ

2 ||x
k − x∗||2. Define

T k
def
= ||xk − x∗||2 + c

[
1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗)

]

Note that

E

[
1

n

n∑
i=1

fi(φ
k+1
i )

]
=

1

n
f(xk) + (1− 1

n
)
1

n

n∑
i=1

fi(φ
k
i ) (79)

E

[
− 1

n

n∑
i=1

(φk+1
i − x∗)T∇fi(x∗)

]
= − 1

n

〈
∇f(x∗),xk − x∗

〉
− (1− 1

n
)
1

n

n∑
i=1

〈
∇fi(x∗), φki − x∗

〉
= −(1− 1

n
)
1

n

n∑
i=1

〈
∇fi(x∗), φki − x∗

〉
(80)

Denote δ = 4Lµ2(2ηLd2+1)
γ , then from (78) by rearranging the terms we can immediately get

E
[
T k+1 − δ

]
≤(1− ηγ

2
)
[
T k − δ

]
+
( c
n
− η [1− 4ηdL(3β + 5)]

) [
f(xk)− f(x∗)

]
+

[
12η2dL(1 +

1

β
)− (

1

n
− ηγ

2
)c

][
1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗)

]
(81)
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Due to the convexity of fi(x), we have

1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗) ≥ 0 (82)

By setting η = 2
112dL+nγ , β = 1, c = ηn [1− 4ηdL(3β + 5)], we can ensure the second and

third terms on the right hand side of (81) are non-positive, which implies

E
[
T k+1 − δ

]
≤ (1− ηγ

2
)
[
T k − δ

]
(83)

Telescope the sum, we get

E
[
TK − δ

]
≤ (1− 1

112dL+ nγ
)K
[
T 0 − δ

]
= (1− 1

112dL+ nγ
)K
(
||xk − x∗||2 + c

[
f(x0)− f(x∗)

]
− δ
) (84)

From (82), we have ||xk − x∗||2 ≤ T k. With the smoothness and strong convextiy of f(x),
we have

f(xk)− f(x∗) ≤ L

2

[
||xk − x∗||2

]
≤ LT k

2

≤ L

2
δ +

L

2
(1− 1

112dL+ nγ
)K
(

2

γ

[
f(x0)− f(x∗)

]
+ c

[
f(x0)− f(x∗)

]
− δ
)

(85)
Denote δµ = L

2 δ, we get

f(xk)− f(x∗) ≤ δµ + (1− 1

112dL+ nγ
)K
(
L(2 + cγ)

2γ

[
f(x0)− f(x∗)

]
− δµ

)
(86)

where c = ηn(1− 32ηdL) and η = 2
112dL+nγ . Then we complete the proof.

Theorem 6 Suppose Assumptions 2 and 4 hold. For Algorithm 4, we have

E [f(xτ )− f(x∗)] ≤ 56dLT 0

K
+ 112ηLµ2(2ηLd2 + 1)

where η = 1
56dL , T

0 = ||x0 − x∗||2 + 3
7ηn

[
f(x0)− f(x∗)

]
and xτ is uniformly randomly

chosen from
{
xk
}K
k=1

.
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Proof From Lemma 1, we have E[v̂k] = ∇fµ(xk), Conditioned on xk, we have

E
[
||xk+1 − x∗||2

]
= ||xk − x∗||2 − 2η(xk − x∗)TE

[
v̂k
]

+ η2E
[
||v̂sk||2

]
≤ ||xk − x∗||2 − 2η

[
fµ(xk)− fµ(x∗)

]
+ η2E

[
||v̂k||2

]
≤ ||xk − x∗||2 − 2η

[
f(xk)− f(x∗)

]
+ 2ηLµ2

+ η212dL

(
(1 + β)

[
f(xk)− f(x∗)

]
+ (1 +

1

β
)

[
1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗)

])
+ 4η2L2d2µ2 + 8η2dL

[
f(xk)− f(x∗)

]
= ||xk − x∗||2 − 2η [1− 2ηdL(3β + 5)]

[
f(xk)− f(x∗)

]
+ 12η2dL(1 +

1

β
)

[
1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗)

]
+ 2ηLµ2(2ηLd2 + 1)

(87)
The second inequality comes from Lemma 1 and Lemma 6.

Define T k
def
= ||xk−x∗||2+α

[
1
n

∑n
i=1 fi(φ

k
i )− f(x∗)− 1

n

∑n
i=1(φki − x∗)T∇fi(x∗)

]
, which

is the Lyapunov Function, and note that

E

[
1

n

n∑
i=1

fi(φ
k+1
i )

]
=

1

n
f(xk) + (1− 1

n
)
1

n

n∑
i=1

fi(φ
k
i ) (88)

E

[
− 1

n

n∑
i=1

(φk+1
i − x∗)T∇fi(x∗)

]
= − 1

n

〈
∇f(x∗),xk − x∗

〉
− (1− 1

n
)
1

n

n∑
i=1

〈
∇fi(x∗), φki − x∗

〉
= −(1− 1

n
)
1

n

n∑
i=1

〈
∇fi(x∗), φki − x∗

〉
(89)

Then we have

E
[
T k+1

]
≤T k +

{α
n
− 2η [1− 2ηdL(3β + 5)]

}[
f(xk)− f(x∗)

]
+ 2ηLµ2(2ηLd2 + 1)

+

[
12η2dL(1 +

1

β
)− α

n

][
1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗)

]
(90)

Due to the convexity of fi(x), we have

1

n

n∑
i=1

fi(φ
k
i )− f(x∗)− 1

n

n∑
i=1

(φki − x∗)T∇fi(x∗) ≥ 0 (91)

By setting β = 1, η = 1
4dL(3β+3β−1+8)

= 1
56dL , α = 3n

392dL = 3
7ηn, we can ensure the last term

on the right hand side of (90) is non-positive, which implies

E
[
T k+1

]
≤ T k − 1

56dL

[
f(xk)− f(x∗)

]
+ 2ηLµ2(2ηLd2 + 1) (92)
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Telescope the sum and rearrange the terms, we get

1

56dL

K∑
k=1

[
f(xk)− f(x∗)

]
≤ T 0−E

[
TK+1

]
+2KηLµ2(2ηLd2+1) ≤ T 0+2KηLµ2(2ηLd2+1)

(93)
The second inequality comes from the fact that T k is always positive. Since E [f(xτ )] =
1
K

∑K
k=1

[
f(xk)− f(x∗)

]
, then we get

[f(xτ )− f(x∗)] ≤ 56dLT 0

K
+ 112ηLµ2(2ηLd2 + 1) (94)

From the definition of T 0, we know that T 0 = ||x0 − x∗||2 + 3
7ηn

[
f(x0)− f(x∗)

]
. Then we

complete the proof.

Appendix E. Proof of ZO-Varag

In this section, we provide the proof of Theorem 7. Specifically, Theorem 7 is a direct result
of Lemma 8 and 9. The following Lemma corresponds to Lemma 25 in (Chen et al., 2020).
They are the same except the notations.

Lemma 7 Suppose Assumptions 1, 4 and 5 hold. Under the choice of parameters from
Theorem 7, we have

E
[
βs
αs

[f(x̄k)− f(x∗)] +
1 + γβs

2
‖xk − x∗‖2

]
≤βs
αs

(1− αs − ps) [f(x̄k−1)− f(x∗)] +
βsps
αs

[f(x̃)− f(x∗)] +
1

2
‖xk−1 − x∗‖2

+
βs
αs
· 3

4
µ2Ld+

βs
αs

(2− αs)L
√
dZµ

The following Lemma corresponds to Lemma 27 in (Chen et al., 2020). We make minor
modifications so that it satisfies our ZOOD property.

Lemma 8 Suppose Assumptions 1, 4 and 5 hold. Under the choice of parameters from
Theorem 7, if n ≥ 18L

γ , we have

E
[
f(x̃S)− f(x∗)

]
≤
(

1

4

)S 4

3
E
[
f(x̃0)− f(x∗)

]
+

1

2
µ2Ld+

4

3
L
√
dZµ

Proof For this case, αs = α = ps = 1
2 , βs = β = 1

6L , ms = n. Based on Lemma 7, we have

E
[
β

α
[f(x̄k)− f(x∗)] + (1 + γβ) · 1

2
‖x− x∗‖2

]
≤ β

2α
[f(x̃)− f(x∗)] +

1

2
‖xk−1 − x∗‖2 +

β

α
· 3

4
µ2Ld+

β

α
2L
√
dZµ

(95)
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Multiplying both sides by Γk−1 = (1 + γβ)k−1, we obtain

E
[
β

α
Γk−1 [f(x̄k)− f(x∗)] +

Γk
2
‖xk − x∗‖2

]
≤ β

2α
Γk−1 [f(x̃)− f(x∗)] +

Γk−1

2
‖xk−1 − x∗‖2 +

β

α
Γk−1 ·

3

4
µ2Ld+

β

α
Γk−1 · 2L

√
dZµ

(96)

Since θk = Γk−1, the last inequality can be rewritten as

E
[
β

α
θk [f(x̄k)− f(x∗)] +

Γk
2
‖xk − x∗‖2

]
≤ β

2α
θk [f(x̃)− f(x∗)] +

Γk−1

2
‖xk−1 − x∗‖2 +

β

α
θk ·

3

4
µ2Ld+

β

α
θk · 2L

√
dZµ

(97)

Summing up the inequality above from k = 1 to ms, we obtain

β

α

ms∑
k=1

θkE [f(x̄k)− f(x∗)] +
Γms

2
E
[
‖xms − x∗‖2

]
≤ β

2α

ms∑
k=1

θkE [f(x̃)− f(x∗)] +
1

2
‖x0 − x∗‖2 +

β

α
· 3

4
µ2Ld

ms∑
k=1

θk +
β

α
· 2L
√
dZµ

ms∑
k=1

θk

(98)

and then

4

[
β

2α

ms∑
k=1

θkE [f(x̄k)− f(x∗)]

]
+

Γms
2

E
[
‖xms − x∗‖2

]
≤ β

2α

ms∑
k=1

θkE [f(x̃)− f(x∗)] +
1

2
‖x0 − x∗‖2 +

β

α
· 3

4
µ2Ld

ms∑
k=1

θk +
β

α
· 2L
√
dZµ

ms∑
k=1

θk

(99)

which is based on the fact that

Γms = (1 + γβ)ms ≥ 1 + γβms = 1 +
γn

6L
≥ 4

where the last inequality is conditioned on n ≥ 18L
γ . Since x̃s =

∑ms
k=1(θkx̄k)/(

∑ms
k=1 θk),

x̃ = x̃s−1, x0 = xs−1, xms = xs in the epoch s and thanks to the convexity of f , (99)
implies

4

[
β

2α
E [f(x̃s)− f(x∗)]

]
+

1

2
∑ms

k=1 θk
E
[
‖xs − x∗‖2

]
≤ β

2α
E
[
f(x̃s−1)− f(x∗)

]
+

1

2
∑ms

k=1 θk
‖xs−1 − x∗‖2 +

β

α
· 3

4
µ2Ld+

β

α
· 2L
√
dZµ

(100)
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Multiplying both sides with 2α
β and applying this inequality recursively for s = 1, ..., S, we

obtain

E
[
f(x̃S)− f(x∗)

]
+

2α

γ
∑ms

k=1 θk
· 1

2
E
[
‖xS − x∗‖2

]
≤
(

1

4

)S [
E
[
f(x̃0)− f(x∗)

]
+

2α

γ
∑ms

k=1 θk
· 1

2
E
[
‖x0 − x∗‖2

]]
+

S∑
s=1

(
1

4

)s [3

2
µ2Ld+ 4L

√
dZµ

]

≤
(

1

4

)S [
E
[
f(x̃0)− f(x∗)

]
+

2α

γn
· 1

2
E
[
‖x0 − x∗‖2

]]
+

1

2
µ2Ld+

4

3
L
√
dZµ

(101)
where the last inequality holds since

∑S
s=1

(
1
4

)s ≤ 1
4 ·

1
1− 1

4

= 1
3 and

∑ms
k=1 θk ≥ ms = n.

From the convexity of f and the fact that n ≥ 18L
γ , we have

2α

γn
· 1
2
E
[
‖x0 − x∗‖2

]
=

6L

n
· 1
2
E
[
‖x0 − x∗‖2

]
≤ 6L

nγ
E
[
f(x0)− f(x∗)

]
≤ 1

3
E
[
f(x0)− f(x∗)

]
Note that x0 = x̃0. Combining the above inequality with (101), we have

E
[
f(x̃S)− f(x∗)

]
≤ E

[
f(x̃S)− f(x∗)

]
+

2α

γ
∑ms

k=1 θk
· 1

2
E
[
‖xS − x∗‖2

]
≤
(

1

4

)S [
E
[
f(x̃0)− f(x∗)

]
+

2α

γn
· 1

2
E
[
‖x0 − x∗‖2

]]
+

1

2
µ2Ld+

4

3
L
√
dZµ

≤
(

1

4

)S 4

3
E
[
f(x̃0)− f(x∗)

]
+

1

2
µ2Ld+

4

3
L
√
dZµ

(102)

Then we complete the proof.

The following Lemma corresponds to Lemma 28 in (Chen et al., 2020). We make minor
modifications so that it satisfies our ZOOD property.

Lemma 9 Suppose Assumptions 1, 4 and 5 hold. Under the choice of parameters from
Theorem 7, if n < 18L

γ , we have

E
[
f(x̃S)− f(x∗)

]
≤

(
1 +

√
γ

12nL

)−nS
3E
[
f(x̃0)− f(x∗)

]
+

S

Γn

[
3

2
µ2Ld+ (4− 2αs)L

√
dZµ

]
Proof For this case, αs = α =

√
nγ
12L , ps = p = 1

2 , βs = β = 1√
12nLγ

, ms = n. Based on

Lemma 7, we have

E
[
βs
αs

[f(x̄k)− f(x∗)] +
1 + γβs

2
‖xk − x∗‖2

]
≤βs
αs

(1− αs − ps) [f(x̄k−1)− f(x∗)] +
βsps
αs

[f(x̃)− f(x∗)] +
1

2
‖xk−1 − x∗‖2

+
βs
αs
· 3

4
µ2Ld+

βs
αs

(2− αs)L
√
dZµ

(103)
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Multiplying both sides by Γk−1 = (1 + γβ)k−1, we obtain

E
[

Γk−1βs
αs

[f(x̄k)− f(x∗)] +
Γk
2
‖xk − x∗‖2

]
≤Γk−1βs

αs
(1− αs − ps) [f(x̄k−1)− f(x∗)] +

Γk−1βsps
αs

[f(x̃)− f(x∗)] +
Γk−1

2
‖xk−1 − x∗‖2

+
Γk−1βs
αs

· 3

4
µ2Ld+

Γk−1βs
αs

(2− αs)L
√
dZµ

(104)
Summing up the inequality above from k = 1 to ms, we obtain

β

α

ms∑
k=1

θkE [f(x̄k)− f(x∗)] +
Γms

2
E
[
‖xms − x∗‖2

]
≤β
α

(
1− α− p+ p

ms∑
k=1

Γk−1

)
E [f(x̃)− f(x∗)] +

1

2
‖x0 − x∗‖2

+
β

α

ms∑
k=1

Γk−1 ·
3

4
µ2Ld+

β

α

ms∑
k=1

Γk−1 · (2− αs)L
√
dZµ

(105)

Since x̃s =
∑ms

k=1(θkx̄k)/(
∑ms

k=1 θk), x̃ = x̃s−1, x0 = xs−1, xms = xs in the epoch s and
thanks to the convexity of f , it implies

β

α

ms∑
k=1

θkE [f(x̃s)− f(x∗)] +
Γms

2
E
[
‖xs − x∗‖2

]
≤β
α

(
1− α− p+ p

ms∑
k=1

Γk−1

)
E
[
f(x̃s−1)− f(x∗)

]
+

1

2
‖xs−1 − x∗‖2

+
β

α

ms∑
k=1

Γk−1 ·
3

4
µ2Ld+

β

α

ms∑
k=1

Γk−1 · (2− αs)L
√
dZµ

(106)

Moreover, we have

ms∑
k=1

θk =Γms−1 +

ms−1∑
k=1

(Γk−1 − (1− α− p)Γk)

=Γms(1− α− p) +

ms∑
k=1

(Γk−1 − (1− α− p)Γk)

=Γms(1− α− p) + [1− (1− α− p)(1 + γβ)]

ms∑
k=1

Γk−1

(107)

And α =
√

nγ
12L = γβms. Then we have

1− (1− α− p)(1 + γβ) =(1 + γβ)(α+ p− γβ) + γ2β2

≥(1 + γβ)(γβms + p− γβ)

=p(1 + γβ) (1 + 2(ms − 1)γβ)

≥p(1 + γβ)ms = pΓms

(108)
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Hence we obtain
∑ms

k=1 θk ≥ Γms (1− α− p+ p
∑ms

k=1 Γk−1). Thus (106) implies

Γms

[
β

α

(
1− α− p+ p

ms∑
k=1

Γk−1

)
E [f(x̃s)− f(x∗)] +

1

2
E
[
‖xs − x∗‖2

]]

≤β
α

(
1− α− p+ p

ms∑
k=1

Γk−1

)
E
[
f(x̃s−1)− f(x∗)

]
+

1

2
‖xs−1 − x∗‖2

+
β

α

ms∑
k=1

Γk−1 ·
3

4
µ2Ld+

β

α

ms∑
k=1

Γk−1 · (2− αs)L
√
dZµ

(109)

Applying this inequality iteratively for s = 1, ..., S, we obtain

β

α

(
1− α− p+ p

ms∑
k=1

Γk−1

)
E
[
f(x̃S)− f(x∗)

]
+

1

2
E
[
‖xS − x∗‖2

]
≤
(

1

Γms

)S [β
α

(
1− α− p+ p

ms∑
k=1

Γk−1

)
E
[
f(x̃0)− f(x∗)

]
+

1

2
‖x0 − x∗‖2

]

+
S∑
s=1

(
1

Γms

)s [β
α

ms∑
k=1

Γk−1 ·
3

4
µ2Ld+

β

α

ms∑
k=1

Γk−1 · (2− αs)L
√
dZµ

] (110)

Note that, since

β

α

(
1− α− p+ p

ms∑
k=1

Γk−1

)
≥ βp

α

ms∑
k=1

Γk−1 ≥
βpms

α
=
βpms

n

and p = 1
2 , the inequality above implies

E
[
f(x̃S)− f(x∗)

]
≤
(

1

Γms

)S [
E
[
f(x̃0)− f(x∗)

]
+

α

βn
E
[
‖x0 − x∗‖2

]]
+

S∑
s=1

(
1

Γms

)s [3

2
µ2Ld+ (4− 2αs)L

√
dZµ

]

≤
(

1

Γms

)S [
E
[
f(x̃0)− f(x∗)

]
+

α

βn
E
[
‖x0 − x∗‖2

]]
+

S

Γms

[
3

2
µ2Ld+ (4− 2αs)L

√
dZµ

]
(111)

Since α
β = 12Lα2 = nγ, from the strong convexity of f we have

α

βn
E
[
‖x0 − x∗‖2

]
= γE

[
‖x0 − x∗‖2

]
≤ 2E

[
f(x0)− f(x∗)

]
Note that x0 = x̃0, combining the above inequality with (111), we have

E
[
f(x̃S)− f(x∗)

]
≤
(

1

Γms

)S
3E
[
f(x̃0)− f(x∗)

]
+

S

Γms

[
3

2
µ2Ld+ (4− 2αs)L

√
dZµ

]
=

(
1 +

√
γ

12nL

)−nS
3E
[
f(x̃0)− f(x∗)

]
+

S

Γn

[
3

2
µ2Ld+ (4− 2αs)L

√
dZµ

] (112)
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Then we complete the proof.

Theorem 7 Suppose Assumptions 1, 4 and 5 hold. Set

ms = n, ps =
1

2
, αs = min

{√
nγ

12L
,
1

2

}
, βs =

1

12Lαs

Γk = (1 + γβs)
k, θk =

{
Γk−1 − (1− αs − ps)Γk, k ≤ ms − 1

Γk−1, k = ms

We obtain

E
[
f(x̃S)− f(x∗)

]
≤


(

1
4

)S 4
3E
[
f(x̃0)− f(x∗)

]
+ 1

2µ
2Ld+ 4

3L
√
dZµ, n ≥ 18L

γ(
1 +

√
γ

12nL

)−nS
3E
[
f(x̃0)− f(x∗)

]
+ S

Γn

[
3
2µ

2Ld+ (4− 2αs)L
√
dZµ

]
, n < 18L

γ

Proof The result can be directly derived from Lemma 8 and 9.

Appendix F. Additional Experiment Results

In this section, we provide our choice of parameters and more experiments results of
AdaptRdct-C (ZO-SVRG/ZO-SAGA/ZO-Varag) and AdaptRdct-NC (ZO-SVRG/ZO-SAGA/ZO-
Varag) under different parameter settings.

Choice of Parameters

The parameters of the algorithms are set according to their convergence analyses. To be spe-
cific, under convex setting, the parameters of ZO-SVRG and ZO-SAGA are set according to
Theorem 4 and 6 respectively, the parameters of AdaptRdct-C (ZO-SVRG/ZO-SAGA/ZO-
Varag) are set according to Theorem 3, 5 and 7 respectively. The parameters of ZO-Varag
are set according to (Chen et al., 2020, Theorem 6). The parameters of ZO-SPIDER-Coord
are set according to (Ji et al., 2019, Appendix, Theorem 7).

Under non-convex setting, the parameters of ZO-SVRG are set according to (Liu et al.,
2018, Corollary 1). The parameters of AdaptRdct-NC (ZO-SVRG/ZO-SAGA/ZO-Varag)
are set according to Theorem 3, 5 and 7 respectively. The parameters of ZO-SPIDER-Coord
are set according to (Ji et al., 2019, Corollary 3).

In the experiment of generation of black-Box adversarial examples, we set a mini-batch
size of 10 for all the algorithms. We conduct grid search for the regularization parameter
σ on {1e-2, 1e-1, 1} for algorithms with our reduction frameworks. For all the algorithms,
we conduct grid search for the Lipschitz constant L on {1, 1e1, 1e2, 1e3}. Note that L is
related to the choice of learning rate. The smoothing parameter µ is set to 1/d.

In the experiment of logistic regression, we set a mini-batch size of 64 for all the algo-
rithms. We conduct grid search for the regularization parameter γ0 and σ on {1e-4, 5e-4,
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1e-3, 5e-3, 1e-2} for algorithms with our reduction frameworks under convex and non-convex
settings, respectively. For all the algorithms, we conduct grid search for the Lipschitz con-
stant L on {1e-2, 5e-2, 1e-1, 5e-1, 1, 5, 1e1, 5e1, 1e2}. The smoothing parameter µ is set
to 1/d.

Table 3: Choices of parameters for the experiment of generation of black-Box adversarial
examples.

Cifar-10 Fmnist Mnist
Algorithms

σ L σ L σ L

ZO-SVRG - 1 - 1 - 1

ZO-SPIDER-Coord - 1 - 1 - 1

AdaptRdct-NC (ZO-SVRG) 1 1 1 1 1 1

AdaptRdct-NC (ZO-SAGA) 1e-1 1 1 1 1 1

AdaptRdct-NC (ZO-Varag) 1e-2 1 1e-2 1 1e-1 1

Table 4: Choices of parameters for the experiment of convex logistic regression.

German Ijcnn1 Mushrooms
Algorithms

γ0 L γ0 L γ0 L

ZO-SVRG - 5e-2 - 5e-2 - 5e-2

ZO-SAGA - 5e-2 - 1e-1 - 1e-1

ZO-Varag - 5e-2 - 1e-2 - 1e-1

ZO-SPIDER-Coord - 1 - 1e-1 - 1

AdaptRdct-NC (ZO-SVRG) 1e-3 1e-1 1e-4 1e-2 1e-4 1e-2

AdaptRdct-NC (ZO-SAGA) 5e-3 5e-2 1e-4 5e-2 1e-4 1e-2

AdaptRdct-NC (ZO-Varag) 1e-3 1e-1 5e-4 5e-2 5e-4 5e-2

Table 5: Choices of parameters for the experiment of non-convex logistic regression.

German Ijcnn1 Mushrooms
Algorithms

σ L σ L σ L

ZO-SVRG - 1 - 1 - 1e-2

ZO-SPIDER-Coord - 1e2 - 1e1 - 1e1

AdaptRdct-NC (ZO-SVRG) 5e-2 5 1e-2 5 5e-4 5e-2

AdaptRdct-NC (ZO-SAGA) 1e-2 1e1 1e-2 5 5e-4 5e-2

AdaptRdct-NC (ZO-Varag) 5e-4 5e-1 1e-4 1e-2 5e-4 5e-2
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More Results on Generation of Black-Box Adversarial Examples
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Figure 3: AdaptRdct-NC (ZO-SVRG) running under different parameter settings
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Figure 4: AdaptRdct-NC (ZO-SAGA) running under different parameter settings
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Figure 5: AdaptRdct-NC (ZO-Varag) running under different parameter settings
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Figure 6: AdaptRdct-C (ZO-SVRG) running under different parameter settings
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Figure 7: AdaptRdct-C (ZO-SAGA) running under different parameter settings
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Figure 8: AdaptRdct-C (ZO-Varag) running under different parameter settings
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Figure 9: AdaptRdct-NC (ZO-SVRG) running under different parameter settings
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Figure 10: AdaptRdct-NC (ZO-SAGA) running under different parameter settings
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Figure 11: AdaptRdct-NC (ZO-Varag) running under different parameter settings
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