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Abstract
Inverse reinforcement learning (IRL) aims to estimate the reward function of optimizing agents by
observing their response (estimates or actions). This paper considers IRL when noisy estimates of
the gradient of a reward function generated by multiple stochastic gradient agents are observed. We
present a generalized Langevin dynamics algorithm to estimate the reward function R(θ); specifi-
cally, the resulting Langevin algorithm asymptotically generates samples from the distribution pro-
portional to exp(R(θ)). The proposed adaptive IRL algorithms use kernel-based passive learning
schemes. We also construct multi-kernel passive Langevin algorithms for IRL which are suitable
for high dimensional data and achieve variance reduction. The performance of the proposed IRL
algorithms are illustrated on examples in adaptive Bayesian learning, logistic regression (high di-
mensional problem) and constrained Markov decision processes. We prove weak convergence of
the proposed IRL algorithms using martingale averaging methods. We also analyze the tracking
performance of the IRL algorithms in non-stationary environments where the utility function R(θ)
has a hyper-parameter that jump changes over time as a slow Markov chain which is not known to
the inverse learner. In this case, martingale averaging yields a Markov switched diffusion limit as
the asymptotic behavior of the IRL algorithm.

Keywords: passive learning, stochastic gradient algorithm, inverse reinforcement learning, weak
convergence, martingale averaging theory, Langevin dynamics, stochastic sampling, inverse Bayesian
learning, Constrained Markov Decision process, logistic regression, variance reduction, Bernstein
von-Mises theorem, Markov chain hyper-parameter

1. Introduction

Inverse reinforcement learning (IRL) aims to estimate the reward function of optimizing agents by
observing their actions (estimates). Classical IRL is off-line: given a data set of actions chosen
according to the optimal policy of a Markov decision process, Ng and Russell (2000) formulated a
set of inequalities that the reward function must satisfy. In comparison, this paper constructs and
analyzes real time IRL algorithms by observing optimizing agents that are performing real time
reinforcement learning (RL). The problem we consider is this: Suppose we observe estimates of
multiple (randomly initialized) stochastic gradient algorithms (reinforcement learners) that aim to
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maximize a (possibly non-concave) expected reward. How to design another stochastic gradient
algorithm (inverse learner) to estimate the expected reward function?

1.1 RL and IRL Algorithms

To discuss the main ideas, we first describe the point of view of multiple agents performing rein-
forcement learning (RL). These agents act sequentially to perform RL by using stochastic gradient
algorithms to maximize a reward function. Let n = 1, 2 . . . index agents that perform RL sequen-
tially. The sequential protocol is as follows. The agents aim to maximize a possibly non-concave
reward R(θ) = E{rk(θ)} where θ ∈ RN . Each agent n runs a stochastic gradient algorithm over
the time horizon k ∈ {τn, τn + 1, . . . , τn+1 − 1}:

θk+1 = θk + ε∇θrk(θk), k = τn, τn + 1, . . . , τn+1 − 1

initialized independently by θτn ∼ π(·).
(1)

Here ∇θrk(θk) denotes the sample path gradient evaluated at θk, and τn, n = 1, 2 . . . , denote
stopping times measurable wrt the σ-algebra generated by {θτn ,∇θrk(θk), k = τn, τn + 1, . . .}.
The initial estimate θτn for agent n is sampled independently from probability density function π
defined on RN . Finally, ε is a small positive constant step size.

Next we consider the point of view of an observer that performs inverse reinforcement learning
(IRL) to estimate the reward function R(θ). The observer (inverse learner) knows initialization
density π(·) and only has access to the estimates {θk} generated by RL algorithm (1). The observer
reconstructs the gradient∇θrk(θk) as ∇̂θrk(θk) = (θk+1−θk)/µ for some positive step size µ. The
main idea of this paper is to propose and analyze the following IRL algorithm (which is a passive
Langevin dynamics algorithm) deployed by the observer:

αk+1 = αk + µ
[ 1

∆N
K
(θk − αk

∆

) β
2
∇θrk(θk) +∇απ(αk)

]
π(αk) +

√
µπ(αk)wk, k = 1, 2, . . . ,

(2)
initialized by α0 ∈ RN . Here µ and ∆ are small positive constant step sizes, {wk, k ≥ 0} is an i.i.d.
sequence of standard N -variate Gaussian random variables, and β = ε/µ is a fixed constant. Note
that we have expressed (2) in terms of∇θrk(θk) (rather than ∇̂θrθ(θk)) since we have absorbed the
ratio of step sizes into the scale factor β.

The key construct in (2) is the kernel function1 K(·). This kernel function is chosen by the ob-
server such that K(·) decreases monotonically to zero as any component of the argument increases
to infinity,

K(θ) ≥ 0, K(θ) = K(−θ),
∫
RN

K(θ)dθ = 1. (3)

An example is to choose the kernel as a multivariate normal N(0, σ2IN ) density with σ = ∆, i.e.,

1

∆N
K
( θ

∆

)
= (2π)−N/2∆−N exp

(
−‖θ‖

2

2∆2

)
,

which is essentially like a Dirac delta centered at 0 as ∆ → 0. Our main result stated informally is
as follows; see Theorem 1 in Sec.4 for the formal statement.

1. Our use of the term “kernel” stems from non-parametric statistics and passive stochastic approximation. It is not
related to reproducing kernels in Hilbert spaces.
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Informal Statement of Result. Based on the estimates {θk} generated by RL algorithm (1), the
IRL algorithm (2) asymptotically generates samples {αk} from the Gibbs measure

p(α) ∝ exp
(
βR(α)

)
, α ∈ RN , where β = ε/µ. (4)

To explain the above result, let p̂ denote the empirical density function constructed from sam-
ples {αk} generated by IRL algorithm (2). Then clearly2 log p̂(α) ∝ R(α). Thus IRL algorithm (2)
serves as a non-parametric method for stochastically exploring and reconstructing reward R, given
the estimates {θk} of RL algorithm (1). Hence based on the estimates {θk} generated by RL algo-
rithm (1), IRL algorithm (2) serves as a randomized sampling method for exploring the rewardR(α)
by simulating random samples from it. Finally, in adaptive Bayesian learning discussed in Sec.3, the
RL agents maximize logR(α) using gradient algorithm (1); then IRL algorithm (2) directly yields
samples from βR(α).

1.2 Context and Discussion

The stochastic gradient RL algorithm (1) together with non-parametric passive Langevin IRL algo-
rithm (2) constitute our main setup. Figure 1 displays our framework.

Stochastic
Gradient

Learner {θk}

Passive IRL
Langevin

Dynamics {αk}

Time evolving
Utility R(·)

noisy
measurement

{∇θrk(θk)} R̂(·)

active (Sec.2.2.3)

Figure 1: Schematic of proposed adaptive IRL framework. Multiple agents (learners) compute noisy gradient
estimates∇θrk(θk) of a possibly time evolving reward R(·). By observing these gradient estimates, the IRL
Langevin dynamics algorithm (2) generates samples αk ∼ exp(βR(α)). So reward R(·) can be estimated
from the log of the empirical distribution of {αk}. The IRL algorithm (2) is passive: its estimate αk plays
no role in determining the point θk where the learner evaluates gradients ∇θrk(θk). Sec.2.2 presents several
additional IRL algorithms including a variance reduction algorithm and a non-reversible diffusion. Sec.2.2.3
presents an active IRL where the IRL requests the learner to provide a gradient at αk, but the learner provides
the noisy mis-specified gradient estimate ∇θrk(αk + vk) where {vk} is a noise sequence. Finally, Sec.5
analyzes the tracking properties of the IRL algorithm when the reward R(·) evolves in time according to an
unknown Markov chain.

More abstractly, the IRL problem we address is this: given a sequence of noisy sample path
gradients {∇θrk(θk)}, how to estimate the expected reward R(·)? The IRL algorithm (2) builds on
classical stochastic gradient algorithms in 3 steps. First, it is passive: it does not specify where the
RL agents compute gradient estimates. The gradient estimates are evaluated by RL agents at points
θk, whereas the IRL algorithm requires gradients at αk. To incorporate these mis-specified gradi-
ents, the passive algorithm uses the kernelK(·). Second, a classical passive stochastic gradient algo-
rithm only estimates a local maximum of R(·); in comparison we are interested in non-parametric

2. Since the IRL algorithm does not know the step size ε of the RL, it can only estimate R(·) up to a proportionality
constant β. In classical Langevin dynamics β denotes an inverse temperature parameter.
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reconstruction (estimation) of the entire reward R(·). Therefore, we use a passive Langevin dy-
namics based algorithm. Finally, we are interested in tracking (estimating) time evolving reward
functions R(·). Therefore we use a constant step size, passive Langevin dynamics IRL algorithm;
see point (vii) below.

To give additional insight we now discuss the context, useful generalizations of IRL algorithm
(2), and related works in the literature.

(i) Multiple agents. The multiple agent RL algorithm (1) is natural in non-convex stochastic opti-
mization problems. Starting from various randomly chosen initial conditions θτn ∼ π(·), the agents
evaluate the gradients ∇θrk(θk) at various points θk to estimate the global maximizer. Since the
initializations {θτn} is a sequence of independent random variables, the RL agents can also act in
parallel (instead of sequentially). Given this sequence of gradients {∇θrk(θk)}, the aim of this pa-
per is to construct IRL algorithms to estimate R(θ). As an example, motivated by stochastic control
involving information theoretic measures (Guan et al., 2014) detailed in Sec.3.1, suppose multiple
RL agents run stochastic gradient algorithms to estimate the minimum of a non-convex Kullback
Leibler (KL) divergence. By observing these gradient estimates, the passive IRL algorithm (2)
reconstructs the KL divergence.3

(ii) Passive IRL. The IRL algorithm (2) is a Langevin dynamics based gradient algorithm with
injected noise {wk}. It is a passive learning algorithm since the gradients are not evaluated at αk
by the inverse learner; instead the gradients are evaluated at the random points θk chosen by the RL
algorithm. This passive framework is natural in an IRL. The inverse learner passively observes the
RL algorithm and aims to estimate its utility.

We emphasize that the passive Langevin IRL algorithm (1) estimates the utility function R(θ);
see (4). This is unlike classical passive stochastic gradient algorithms that estimate a local stationary
point of the utility. To the best of our knowledge, such passive Langevin dynamics algorithms have
not been proposed or analyzed - yet such algorithms arise naturally in estimating the utility by
observing the estimates from a stochastic gradient algorithm.

The kernel K(·) in (2) effectively weights the usefulness of the gradient∇θrk(θk) compared to
the required gradient ∇αrk(αk). If θk and αk are far apart, then kernel K((θk − αk)/∆) will be
small. Then only a small proportion of the gradient estimate∇θrk(θk) is added to the IRL iteration.
On the other hand, if αk = θk, (2) becomes a standard Langevin dynamics type algorithm. We
refer to Révész (1977); Hardle and Nixdorf (1987); Nazin et al. (1989); Yin and Yin (1996) for the
analysis of passive stochastic gradient algorithms. The key difference compared to these works is
that we are dealing with a passive Langevin dynamics algorithm, i.e., there is an extra injected noise
term involving wk.

(iii) Intuition behind passive Langevin IRL algorithm (2). To discuss the intuition behind (2), we
first discuss the classical Langevin dynamics and also a more general reversible diffusion. The

3. To give additional context, multi-agent systems for deterministic optimization are studied in Nedic and Ozdaglar
(2009) where the aim is to optimize cooperatively the sum of convex objectives corresponding to multiple agents.
Agents (represented by nodes in a graph) deploy deterministic sub-gradient algorithms and exchange information to
achieve consensus. We consider a stochastic optimization framework where agents compute noisy gradient estimates.
Our passive IRL uses these gradient estimates to reconstruct (explore) the reward function and uses a (stochastic
gradient)) Langevin dynamics algorithm.
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classical Langevin dynamics algorithm with fixed step size µ > 0 and deterministic reward R(θ) is
of the form

θk+1 = θk + µ∇R(θk) +
√
µ

√
2

β
wk, k = 1, 2, . . . (5)

Indeed (5) is the Euler-Maruyama time discretization of the continuous time diffusion process

dθ(t) = ∇θR(θ) +

√
2

β
dW (t) (6)

which has stationary measure p(θ) given by (4). More generally, assuming σ(·) is differentiable,
Stramer and Tweedie (1999) studied reversible diffusions of the form

dθ(t) =

[
β

2
σ(θ)∇θR(θ) dt+∇θσ(θ) dt+ dW (t)

]
σ(θ), (7)

whose Euler-Maruyama time discretization yields

θk+1 = θk + µ
[β

2
∇θR(θk) +∇θσ(θk)

]
σ(θk) +

√
µσ(θk)wk, k = 1, 2, . . . (8)

It is easily verified that reversible diffusion (7) has the same Gibbs stationary measure p(θ) in (4).

The IRL algorithm (2) substantially generalizes (8) in three ways: First, the gradient is at a
mis-specified point θk compared to αk; hence we use the kernel K as discussed in point (ii) above.
Second, unlike (8) which uses ∇θR(θ), IRL algorithm (2) only has the (noisy) gradient estimate
∇θrk(θ). Finally, we choose σ(θ) as π(θ), namely the initialization density specified in (1), to
ensure that the stationary measure is as specified in (4) as explained at the end of Sec.2.1.

The intuition behind the weak convergence of the passive Langevin IRL algorithm (2) is ex-
plained in Sec.2.1. It is shown there via stochastic averaging arguments as the kernel converges to a
Dirac-delta, the IRL algorithm (2) converges to the reversible diffusion process (7) with stationary
measure given by (4).

(iv) IRL for Markov Decision Process. Several types of RL based policy gradient algorithms in the
Markov decision process (MDP) literature (Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998)
fit our framework. As a motivation, we now briefly discuss IRL for an infinite horizon average
cost4 MDP; details are discussed in Sec.3.3. Let {xn} denote a finite state Markov chain with
controlled transition probabilities Pij(u) = P[xn+1 = j|xn = i, un = u] where action un is chosen
from policy uθ parametrized by θ as un = uθ(xn). Solving an average cost MDP (assuming it is
unichain (Puterman, 1994)) involves computing the optimal parameter θ∗ = sup{θ : R(θ)} where
the cumulative reward is

R(θ) = lim
T→∞

inf
1

T
Eθ
[ T∑
n=1

ρ(xn, un) | x0 = x
]
, un = uθ(xn) (9)

Suppose now that a forward learner runs a policy gradient RL algorithm that evaluates estimates
∇θrk(θ) of ∇θR(θ) in order to estimate θ∗. Given these gradient estimates, how can an IRL algo-
rithm estimate R(θ)?

4. As mentioned in Sec.3.3, our IRL algorithms also apply to the simpler discounted cost MDP case.
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In Sec.3.3, motivated by widely used fairness constraints in wireless communications, we con-
sider more general average cost constrained MDPs (CMDPs), see Altman (1999); Ngo and Kr-
ishnamurthy (2010); Borkar and Jain (2010). In CMDPs (Altman, 1999), the optimal policy is
randomized. Since the optimal policy is randomized, classical stochastic dynamic programming or
Q-learning cannot be used to solve CMDPs as they yield deterministic policies. One can construct
a Lagrangian dynamic programming formulation (Altman, 1999) and Lagrangian Q-learning algo-
rithms (Djonin and Krishnamurthy, 2007). Sec.3.3 considers the case where the RL agents deploy
a policy gradient algorithm. By observing these gradient estimates, our IRL algorithm reconstructs
the Lagrangian of the CMDP.

Notice that our non-parametric setup is different to classical IRL in Ng and Russell (2000) where
the inverse learner has access to actions from the optimal policy, knows the controlled transition
probabilities, and formulates a set of linear inequalities that the reward function ρ(x, u) satisfies.
Our IRL framework only has access to gradient estimates ∇θrk(θ) evaluated at random points θ,
and does not require knowledge of the parameters of the CMDP. Also our IRL framework is adaptive
(see point (vii) below): the IRL algorithm (2) can track a time evolving R(θ) due to the transition
probabilities or rewards of the MDP evolving over time (and unknown to the inverse learner).

(v) Multi-kernel IRL. IRL algorithm (2) requires the gradient ∇θr(θk) and knowing the density
π(·). In Sec.2.2.2 we will discuss a two-time scale multi-kernel IRL algorithm, namely (20),
that does not require knowledge of the density π(·). All that is required is a sequence of sam-
ples {∇θrk(θi), i = 1 . . . , L} when the IRL estimate is αk. The multi-kernel IRL algorithm (20)
incorporates variance reduction and is suitable for high dimensional inference. In Sec.2.2, we also
discuss several other variations of IRL algorithm (2) including a mis-specified active IRL algorithm
where the gradient is evaluated at a point θk that is a corrupted value of αk.

(vi) Global Optimization vs IRL. Langevin dynamics based gradient algorithms have been studied
as a means for achieving global minimization for non-convex stochastic optimization problems, see
for example Gelfand and Mitter (1991). The papers Teh et al. (2016); Raginsky et al. (2017) give
a comprehensive study of convergence of the Langevin dynamics stochastic gradient algorithm in a
non-asymptotic setting. Also Welling and Teh (2011) studies Bayesian learning, namely, sampling
from the posterior using stochastic gradient Langevin dynamics.

Langevin dynamics for global optimization considers the limit as β → ∞. In comparison, the
IRL algorithms in this paper consider the case of fixed β = ε/µ, since we are interested in sampling
from the reward R(·). Also, we consider passive Langevin dynamics algorithms in the context of
IRL. Thus the IRL algorithm (2) is non-standard in two ways. First, as mentioned above, it has a
kernel to facilitate passive learning. Second, the IRL algorithm (2) incorporates the initialization
probability π(·) which appears in the RL algorithm (1). Thus (2) is a non-standard generalized
Langevin dynamics algorithm (which still has reversible diffusion dynamics).

(vii) Constant step size Adaptive IRL for Time Evolving Utility. An important feature of the IRL
algorithm (2) is the constant step size µ (as opposed to a decreasing step size). This facilities
estimating (adaptively tracking) rewards that evolve over time. Sec.5 gives a formal weak conver-
gence analysis of the asymptotic tracking capability of the IRL algorithm (2) when the reward R(·)
jump changes over time according to an unknown Markov chain. The Markov chain constitutes a
hyper-parameter in the sense that it is not known or used by the IRL algorithm; it is used in our
convergence analysis to determine how well the IRL algorithm can learn a time evolving reward.
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The analysis is very different to classical tracking analysis of stochastic gradient algorithms
(Benveniste et al., 1990) where the underlying hyper-parameter evolves continuously over time.

The assumptions used in analyzing the adaptation of the IRL algorithm in Sec.5 are similar
to those for the passive IRL in Sec.4; the main additional assumption is that the Markov chain’s
transition matrix is parametrized by a small parameter η. Depending on how η compares to the
IRL algorithm step size µ, we analyze three cases of adaptive IRL in Sec.5: (i) the reward jump
changes on a slower time scale than the dynamics of the Langevin IRL algorithm, i.e., η = o(µ);
(ii) the reward jump changes on the same time scale as the Langevin IRL algorithm, i.e., η = O(µ);
(iii) The reward jump changes on a faster time scale compared to the Langevin IRL algorithm, i.e.,
µ = o(η).

The most interesting (and difficult) case considered in Sec.5 is when the reward changes at the
same rate as the IRL algorithm, i.e., η = O(µ). Then stochastic averaging theory yields a Markov
switched diffusion limit as the asymptotic behavior of the IRL algorithm. This is in stark contrast
to classical averaging theory of stochastic gradient algorithms which yields a deterministic ordinary
differential equation (Kushner and Yin, 2003; Benveniste et al., 1990). Due to the constant step
size, the appropriate notion of convergence is weak convergence (Kushner and Yin, 2003; Ethier
and Kurtz, 1986; Billingsley, 1999). The Markovian hyper-parameter tracking analysis generalizes
our earlier work Yin et al. (2004, 2009) in stochastic gradient algorithms to the current case of
passive Langevin dynamics with a kernel.

(viii) Estimating utility functions. Estimating a utility function given the response of agents is
studied under the area of revealed preferences in microeconomics. Afriat’s theorem (Afriat, 1967;
Diewert, 2012; Varian, 2012) in revealed preferences uses the response of a linearly constrained
optimizing agent to construct a set of linear inequalities that are necessary and sufficient for an
agent to be an utility maximizer; and gives a set valued estimate of the class of utility functions
that rationalize the agents behavior. Different to revealed preferences, the current paper uses noisy
gradients to recover the utility function and that too in real time via a constant step size Langevin
diffusion algorithm.

We already mentioned classical IRL (Ng and Russell, 2000; Abbeel and Ng, 2004) which aims
to estimate an unknown deterministic reward function of an agent by observing the optimal actions
of the agent in a Markov decision process setting. Ziebart et al. (2008) uses the principle of max-
imum entropy for achieving IRL of optimal agents. More abstractly, IRL falls under the area of
imitation learning (Ho and Ermon, 2016; Osa et al., 2018) which is the process of learning from
demonstration. Our IRL approach can be considered as imitation learning from mis-specified noisy
gradients evaluated at random points in Euclidean space. We perform adaptive (real time) IRL:
given samples from a stochastic gradient algorithm (possibly a forward RL algorithm), we pro-
pose a Langevin dynamics algorithm to estimate the utility function. Our real-time IRL algorithm
facilitates adaptive IRL, i.e., estimating (tracking) time evolving utility functions. In Sec.5, we an-
alyze the tracking properties of such non-stationary IRL algorithms when the utility function jump
changes according to an unknown Markov process.

(ix) Interpretation as a numerical integration algorithm. Finally, it is helpful to view IRL algorithm
(2) as a numerical integration algorithm when the integrand (gradients to be integrated) are presented
at random points and the integrand terms are corrupted by noise (noisy gradients). One possible
offline approach is to discretize RN and numerically build up an estimate of the integral at the
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discretized points by rounding off the evaluated integrands terms to the nearest discretized point.
However, such an approach suffers from the curse of dimensionality: one needs O(2N ) points to
construct the integral with a specified level of tolerance. In comparison, the passive IRL algorithm
(2) provides a principled real time approach for generating samples from the integral, as depicted
by main result (4).

(x) Although our main motivation for passive Langevin dynamics stems from IRL, namely esti-
mating a utility function, we mention the interesting recent paper by Kamalaruban et al. (2020)
which shows that classical Langevin dynamics yields more robust RL algorithms compared to clas-
sic stochastic gradient.5 In analogy to Kamalaruban et al. (2020), in future work it is worthwhile
exploring if our passive Langevin dynamics algorithm can be viewed as a robust version of classical
passive stochastic gradient algorithms.

(xi) Finally, we assumed in (1) that the RL agents use a fixed step size ε which is not necessarily
known to the inverse learner deploying (2). More generally5, the step size of each RL agent n in (1)
can be chosen as εn = ε(1 + νn) where {νn} is an iid bounded zero mean process. This models the
case where the RL agents deploy different step sizes, for example, due to separate hyper-parameter
tuning methods, that are not known to the inverse learner. Then our main result (4) continues to
hold. In particular, denote βn = εn/µ. Then as explained in Footnote 6 in Sec.2.1, by averaging
theory arguments, βn “averages out”’ to β = ε/µ on the IRL algorithm time scale.

1.3 Organization

The rest of the paper is organized as follows:
1. Sec.2 discusses the IRL algorithm (2), related works in the literature and gives an informal

proof of convergence based on averaging theory arguments. Also the following IRL algo-
rithms are discussed:

(a) A two time scale multi-kernel IRL algorithm with variance reduction. This IRL algo-
rithm is illustrated in a high dimensional example.

(b) An active IRL algorithm with mis-specified gradient. That is, given the current estimate
αk, the IRL is given a gradient estimate at ∇θrk(αk + vk) where vk is a noise process,
and the mis-specified point αk + vk is known to the IRL algorithm.

(c) A non-reversible diffusion IRL where a skew symmetric matrix yields a larger spectral
gap and therefore faster convergence to the stationary distribution (at the expense of
increased computational cost).

2. Sec.3 gives three classes of numerical examples that illustrate our proposed IRL algorithms:
(a) Learning the KL divergence given noisy gradients. Also IRL for Adaptive Bayesian

learning is discussed.
(b) IRL on a logistic regression classifier involving the adult a9a dataset; this is a large

dimensional example with N = 124 and requires careful use of the proposed multi-
kernel IRL algorithm.

(c) IRL for reconstructing the cumulative reward of an finite horizon constrained Markov
decision process (CMDP). Such CMDPs are non-convex in the action probabilities and

5. We thank an anonymous reviewer for bringing this paper to our attention. We also thank the reviewer for suggesting
the idea of agent specific step sizes εn in point (xi).
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have optimal polices that are randomized. We demonstrate how the Langevin-based IRL
can learn a from a policy gradient RL algorithm.

The numerical examples are provided as proof of concept rather than a detailed comparison
with state-of-the-art.

3. Sec.4 gives a complete weak convergence proof of IRL algorithm (2) using martingale aver-
aging methods. Sec.6 gives a formal proof of convergence of the multi-kernel algorithm (20).

4. Sec.5 provides a formal weak convergence analysis of the asymptotic tracking capability
of the IRL algorithm (2) when the utility function jump changes according to a slow (but
unknown) Markov chain.

5. Finally, the appendix gives Matlab source codes for the three numerical examples presented
in the paper. So the numerical results of this paper are fully reproducible.

2. Informal Proof and Alternative IRL Algorithms

The RL algorithm (1) together with IRL algorithm (2) constitute our main setup. In this section,
we first start with an informal proof of convergence of (2) based on stochastic averaging theory; the
formal proof is in Sec.4. The informal proof provided below is useful because it gives additional
insight into the design of related IRL algorithms. We then discuss several related IRL algorithms
including a novel multi-kernel version with variance reduction.

2.1 Informal Proof of Main Result (4)

Since the IRL algorithm (2) uses a constant step size, the appropriate notion of convergence is weak
convergence. Weak convergence (for example, (Ethier and Kurtz, 1986)) is a function space gener-
alization of convergence in distribution; function space because we prove convergence of the entire
trajectory (stochastic process) rather than simply the estimate at a fixed time (random variable).

A few words about our proof approach. Until the mid 1970s, convergence proofs of stochastic
gradient algorithms assumed martingale difference type of uncorrelated noises. The so-called or-
dinary differential equation (ODE) approach was proposed by Ljung (1977) for correlated noises
and decreasing step size, yielding with probability one convergence. This was subsequently gener-
alized by Kushner and coworkers (see for example Kushner (1984)) to weak convergence analysis
of constant step size algorithms. The assumptions required in this paper are weaker and the results
more general than that used in classical mean square error analysis because we are dealing with
suitably scaled sequences of the iterates that are treated as stochastic processes rather than random
variables. Our approach captures the dynamic evolution of the algorithm. As a consequence, using
weak convergence methods we can also analyze the tracking properties of the IRL algorithms when
the parameters are time varying (see Sec.5).

As is typically done in weak convergence analysis, we first represent the sequence of esti-
mates {αk} generated by the IRL algorithm as a continuous-time random process. This is done
by constructing the continuous-time trajectory via piecewise constant interpolation as follows: For
t ∈ [0, T ], define the continuous-time piecewise constant interpolated processes parametrized by
the step size µ as

αµ(t) = αk, for t ∈ [µk, µk + µ). (10)

Sec.4 gives the detailed weak convergence proof using the martingale problem formulation of
Stroock and Varadhan (Ethier and Kurtz, 1986).
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Our informal proof of the main result (4) proceeds in two steps:
Step I. We first fix the kernel step size ∆ and apply stochastic averaging theory arguments: this

says that at the slow time scale, we can replace the fast variables by their expected value. For small
step sizes ε and µ = ε/β, there are three time scales in IRL algorithm (2):

1. {θk} evolves slowly on intervals k ∈ {τn, τn+1 − 1}, and {αk} evolves slowly versus k.
2. We assume that the run-time of the RL algorithm (1) for each agent n is bounded by some

finite constant, i.e., τn+1 − τn < M for some constant M . So {θτn} ∼ π is a fast variable
compared to {αk}.

3. Finally the noisy gradient process {∇θrk(·)} evolves at each time k and is a faster variable
than {θτn} which is updated at stopping times τn.

With the above time scale separation, there are two levels of averaging involved. First averaging
the noisy gradient ∇θrk(θk) yields ∇θR(θ). Next6 averaging {θτn} yields θ ∼ π. Thus applying
averaging theory to IRL algorithm (2) yields the following averaged system:

ᾱk+1 = ᾱk + µEθ∼π
[ 1

∆N
K
(θ − ᾱk

∆

) β
2
∇θR(θ) +∇απ(ᾱk)

]
π(ᾱk) +

√
µπ(ᾱk)wk

= ᾱk + µ

∫
RN

1

∆N
K
(θ − ᾱk

∆

) β
2
π(ᾱk)∇θR(θ)π(θ)dθ + π(ᾱk)∇απ(ᾱk) +

√
µπ(ᾱk)wk.

(11)

Given the sequence {ᾱk}, define the interpolated continuous time process ᾱµ as in (10). Then as µ
goes to zero, ᾱµ converges weakly to the solution of the stochastic differential equation

dα(t) =

∫
RN

1

∆N
K
(θ − α

∆

) [β
2
π(α)∇θR(θ) dt

]
π(θ) dθ + π(α)∇απ(α) dt+ π(α) dW (t),

α(0) = α0,

(12)

where W (t) is standard Brownian motion. Put differently, the Euler-Maruyama time discretization
of (12) yields (11). To summarize (12) is the continuous-time averaged dynamics of IRL algo-
rithm (2). This is formalized in Sec.4.

Step II. Next, we set the kernel step size ∆→ 0. Then K(·) mimics a Dirac delta function and
so the asymptotic dynamics of (12) become the diffusion

dα(t) =

[
β

2
π(α)∇αR(α) dt+∇απ(α) dt+ dW (t)

]
π(α), α(0) = α0 (13)

Finally, (13) is a reversible diffusion and its stationary measure is the Gibbs measure p(α) defined
in (4). Showing this is straightforward:7 Recall (Karatzas and Shreve, 1991) that for a generic
diffusion process denoted as dx(t) = f(x)dt+ σ(x)dW (t), the stationary distribution p satisfies

L∗p =
1

2
Tr[∇2(Σp)]− div(fp) = 0, where Σ = σσ′ (14)

6. Recall item (xi) of Sec.1.2 discussed the case where each agent n chooses step size εn = ε(1+νn). Then βn = εn/µ
is averaged at this time scale yielding β.

7. Note Stramer and Tweedie (1999, Eq.34) has a typographic error in specifying the determinant.
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and L∗ is the forward operator. From (13), f(α) = [β2π(α)∇αR(α) +∇απ(α)]π(α), σ = π(α)I .
Then it is verified by elementary calculus that p(α) ∝ exp

(
βR(α)

)
satisfies (14).

To summarize, we have shown informally that IRL algorithm (2) generates samples from (4).
Sec.4 gives the formal weak convergence proof.

(v) Why not use classical Langevin dynamics? The passive version of the classical Langevin
dynamics algorithm reads:

αk+1 = αk + µ
1

∆N
K
(θk − αk

∆

)
∇rk(θk) +

√
µ

√
2

β
wk, k = 1, 2, . . . (15)

where θk are computed by RL (1). Then averaging theory (as µ → 0 and then ∆ → 0) yields the
following asymptotic dynamics (where W (t) denotes standard Brownian motion)

dα(t) = ∇αR(α)π(α)dt+

√
2

β
dW (t), α(0) = α0 (16)

Then the stationary distribution of (16) is proportional to exp(β
∫

[∇αR(α)π(α)]dα). Unfortu-
nately, this is difficult to relate to R(α) and therefore less useful. In comparison, the generalized
Langevin algorithm (2) yields samples from stationary distribution proportional to exp(βR(α))
from which R(α) is easily estimated (as discussed below (4)). This is the reason why we will use
the passive generalized Langevin dynamics (2) for IRL instead of the passive classical Langevin
dynamics (15).

2.2 Alternative IRL Algorithms

IRL algorithm (2) is the vanilla IRL algorithm considered in this paper and its formal proof of
convergence is given in Sec.4. In this section we discuss several variations of IRL algorithm (2).
The algorithms discussed below include a passive version of the classical Langevin dynamics, a
two-time scale multi-kernel MCMC based IRL algorithm (for variance reduction) and finally, a
non-reversible diffusion algorithm. The construction of these algorithms are based on the informal
proof discussed above.

2.2.1 PASSIVE LANGEVIN DYNAMICS ALGORITHMS FOR IRL

IRL algorithm (2) can be viewed as a passive modification of the generalized Langevin dynamics
proposed in Stramer and Tweedie (1999). Since generalized Langevin dynamics includes classical
Langevin dynamics as a special case, it stands to reason that we can construct a passive version of
the classical Langevin dynamics algorithm. Indeed, instead of (2), the following passive Langevin
dynamics can be used for IRL (initialized by α0 ∈ RN ):

αk+1 = αk + µ
1

∆N
K
(θk − αk

∆

) β

2π(αk)
∇θrk(θk) +

√
µwk, k = 1, 2, . . . (17)

Note that this algorithm is different to (15) due to the term π(αk) in the denominator, which makes
a crucial difference. Indeed, unlike (15), algorithm (17) generates samples from (4), as we now
explain: By stochastic averaging theory arguments as µ goes to zero, the interpolated processes αµ

converges weakly to (where W (t) below is standard Brownian motion)

dα(t) =

∫
RN

1

∆N
K
(θ − α

∆

) [ β

2π(α)
∇θR(θ) dt

]
π(θ) dθ + dW (t), α(0) = α0 (18)

11
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Again as ∆→ 0, K(·) mimics a Dirac delta function and so the π(·) in the numerator and denomi-
nator cancel out. Therefore the asymptotic dynamics become the reversible diffusion

dα(t) =
β

2
∇αR(α) dt+ dW (t), α(0) = α0 (19)

Note that (19) is the classical Langevin diffusion and has stationary distribution p specified by (4).
So algorithm (17) asymptotically generates samples from (4).

Finally, we note that Algorithm (17) can be viewed as a special case of IRL algorithm (2) since
its limit dynamics (19) is a special case of the limit dynamics (13) with π(·) = 1.

2.2.2 VARIANCE REDUCTION FOR HIGH DIMENSIONAL IRL

For large dimensional problems (e.g., N = 124 in the numerical example of Sec.3), the passive IRL
algorithm (2) can take a very large number of iterations to converge to its stationary distribution.
This is because with high probability, the kernel K(θk, αk) will be close to zero and so updates of
αk will occur very rarely.

There is strong motivation to introduce variance reduction in the algorithm. Below we propose
a two time step, multi-kernel variance reduction IRL algorithm motivated by importance sampling.
Apart from the ability to deal with high dimensional problems, the algorithm also does not require
knowledge of the initialization probability density π(·).

Suppose the IRL operates at a slower time scale than the RL algorithm. At each time k (on
the slow time scale), by observing the RL algorithm, the IRL obtains a pool of samples of the
gradients ∇θrk(θk,i) evaluated at a large number of points θk,i, i = 1, 2, . . . , L (here i denotes the
fast time scale). As previously, each sample θk,i is chosen randomly from π(·). Given these sampled
derivatives, we propose the following multi-kernel IRL algorithm:

αk+1 = αk + µ
β

2

∑L
i=1 p(αk|θk,i)∇θrk(θk,i)∑L

l=1 p(αk|θk,l)
+
√
µwk, θk,i ∼ π(·) (20)

In (20), we choose the conditional probability density function p(θ|α) as follows:

p(α|θ) = pv(θ − α) where pv(·) = N(0, σ2IN ). (21)

For notational convenience, for each α, denote the normalized weights in (20) as

γk,i(α) =
p(α|θk,i)∑L
l=1 p(α|θk,l)

i = 1, . . . , L (22)

Then these L normalized weights qualify as symmetric kernels in the sense of (3). Thus IRL algo-
rithm (20) can be viewed as a multi-kernel passive stochastic approximation algorithm. Note that
the algorithm does not require knowledge of π(·).

Since for each k, the samples {θk,i, i = 1, . . . , L} are generated i.i.d. random variables, it is
well known from self-normalized importance sampling Cappe et al. (2005) that as L→∞, then for
fixed α,

L∑
i=1

γk,i(α)∇θrk(θk,i)→ E{∇θrk(θ)|α} w.p.1, (23)

12
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provided E|p(θ|α)∇rθ(θ)| <∞. Similar results can also be established more generally if {θk,i, i =
1, . . . , L} is a geometrically ergodic Markov process with stationary distribution π(·).

Remark: Clearly the conditional expectation E{∇θrk(θ)|αk} always has smaller variance than
∇θrk(θ); therefore variance reduction is achieved in IRL algorithm (20). In sequential Markov
chain Monte Carlo (particle filters), to avoid degeneracy, one resamples from the pool of “parti-
cles” {θi, i = 1 . . . , L} according to the probabilities (normalized weights) γi. For large L, the
resulting resampled particles have a density p(θ|αk). However, we are only interested in computing
an estimate of the gradient (and not in propagating particles over time). So we use the estimate∑

i γk,i∇θrk(θk,i) in (20); this always has a smaller variance than resampling and then estimating
the gradient; see Ross (2013, Sec.12.6) for an elementary proof.

Why not use the popular MCMC tool of sequential importance sampling with resampling? Such
a process resamples from the pool of particles and pastes together components of θi from other
more viable candidates θj . As a result, L composite vectors are obtained, which are more viable.
However, since our IRL framework is passive, this is of no use since we cannot obtain the gradient
for these L composite vectors. Recall that in our passive framework, the IRL has no control over
where the gradients∇θrk(θ) are evaluated.

Informal Analysis of IRL algorithm (20). By stochastic averaging theory arguments as µ goes
to zero, the interpolated process αµ from IRL algorithm (20) converges weakly to

dα(t) =

∫
RN

β

2
∇θR(θ) p

(
θ|α(t)

)
dθ dt+ dW (t), α(0) = α0 (24)

where W (t) is standard Brownian motion. Notice that even though θi are sampled from the density
π(·), the above averaging is w.r.t. the conditional density p(θ|α) because of (23). For small variance
σ2, by virtue of the classical Bernstein von-Mises theorem (Van der Vaart, 2000), the conditional
density p(θ|α) in (24) acts as a Dirac delta yielding the classical Langevin diffusion

dα(t) =
β

2
∇αR(α(t)) dt+ dW (t) (25)

Therefore algorithm (20) generates samples from distribution (4). The formal proof is in Sec.6.

2.2.3 ACTIVE IRL WITH MIS-SPECIFIED GRADIENT

Thus far we have considered the case where the RL algorithm provides estimates ∇θrk(θk) at
randomly chosen points independent of the IRL estimate αk. In other words, the IRL is passive
and has no role in determining where the RL algorithm evaluates gradients.

We now consider a modification where the RL algorithm gives a noisy version of the gradient
evaluated at a stochastically perturbed value of αk. That is, when the IRL estimate is αk, it requests
the RL algorithm to provide a gradient estimate ∇θrk(αk). But the RL algorithm evaluates the
gradient at a mis specified point θk = αk + vk, namely, ∇θrk(αk + vk). Here vk ∼ N(0, σ2IN ) is
an i.i.d. sequence. The RL algorithm then provides the IRL algorithm with θk and ∇θrk(θk). So,
instead of θk being independent of αk, now θk is conditionally dependent on αk as

p(θk|αk) =
1

(2π)N σN
exp(− 1

2σ2
‖θk − αk‖2), θk, αk ∈ RN (26)

In other words, the IRL now actively specifies where to evaluate the gradient; however, the RL algo-
rithm evaluates a noisy gradient and that too at a stochastically perturbed (mis-specified) point θk.
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The active IRL algorithm we propose is as follows:

αk+1 = αk + µ
1

∆N
K(

θk − αk
∆

)
β

2 p(θk|αk)
∇θrk(θk) +

√
µwk, where θk = αk + vk (27)

The proof of convergence again follows using averaging theory arguments. Since {θk} ∼ p(θ|αk)
is the fast signal and {αk} is the slow signal, the averaged system is

dα(t) =

∫
RN

1

∆N
K
(θ − α

∆

) β

2 p(θ|α(t))
∇θR(θ) p(θ|α(t)) dθ dt+ dW (t)

So the p(θ|α(t)) cancel out in the numerator and denominator. As ∆→ 0, the kernel acts as a Dirac
delta thereby yielding the classical Langevin diffusion (25).

Remark: The active IRL algorithm (27) can be viewed as an idealization of the multi-kernel
IRL algorithm (20). The multi-kernel algorithm constructs weights to approximate sample from the
conditional distribution p(θ|α). In comparison, the active IRL has direct measurements from this
conditional density. So the active IRL can be viewed as an upper bound to the performance of the
multi-kernel IRL Another motivation is inertia. Given the dynamics of the RL algorithm, it may not
be possible to the RL to abruptly jump to evaluate a gradient at αk, at best the RL can only evaluate
a gradient at a point αk +vk. A third motivation stems from mis-specification: if the IRL represents
a machine (robot) learning from a human, it is difficult to specify to the human exactly what policy
αk to perform. Then θk = αk + vk can be viewed as an approximation to this mis-specification.

2.2.4 NON-REVERSIBLE DIFFUSION FOR IRL

So far we have defined four different passive Langevin dynamics algorithms for IRL, namely (2),
(17), (20), and (27). These algorithms yield reversible diffusion processes that asymptotically sam-
ple from the stationary distribution (4). It is well known (Hwang et al., 1993, 2005; Pavliotis,
2014) that adding a skew symmetric matrix to the gradient always improves the convergence rate of
Langevin dynamics to its stationary distribution. That is for anyN×N dimensional skew symmetric
matrix S = −S′, the non-reversible diffusion process

dα(t) =
β

2
(IN + S)∇αR(α)dt+ dW (t), α(0) = α0 (28)

has a larger spectral gap and therefore converges to stationary distribution π(α) faster than (13).
The resulting IRL algorithm obtained by a Euler-Maruyama time discretization of (28) and then
introducing a kernel K(·) is

αk+1 = αk + µ
1

∆N
K
(θk − αk

∆

) β (IN + S)

2π(αk)
∇θrk(θk) +

√
µwk, k = 1, 2, . . . (29)

initialized by α0 ∈ RN . Again a stochastic averaging theory argument shows that IRL algorithm
(29) converges weakly to the non-reversible diffusion (28). In numerical examples, we found em-
pirically that the convergence of (29) is faster than (2) or (17). However, the faster convergence
comes at the expense of an order of magnitude increased computational cost. The computational
cost of IRL algorithm (29) is O(N2) at each iteration due to multiplication with skew symmetric
matrix S. In comparison the computational costs of IRL algorithms (2) and (17) are each O(N).
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3. Numerical Examples

This section presents three examples to illustrate the performance of the proposed IRL algorithms.

3.1 Example 1. IRL for Bayesian KL divergence and Posterior Reconstruction

This section illustrates the performance of our proposed IRL algorithms in reconstructing the Kull-
back Leibler (KL) divergence and multi-modal posterior distribution. Our formulation is a stochas-
tic generalization of adaptive Bayesian learning in Welling and Teh (2011) as explained below.

Motivation. Exploring and estimating the KL divergence of a multimodal posterior distribution
is important in Bayesian inference (Robert and Casella, 2013), maximum likelihood estimation,
and also stochastic control with KL divergence cost (Guan et al., 2014). To motivate the problem,
suppose random variable θ has prior probability density p(θ). Let θo denote a fixed (true) value of
θ which is unknown to the optimizing agents and inverse learner. Given a sequence of observations
y1:T = (y1, . . . , yT ), generated from distribution p(y1:T |θo), the KL divergence of the posterior
distribution is

J(θo, θ) = Eθo{log p(θo|y1:T )− log p(θ|y1:T )} =

∫
log

p(θo|y1:T )

p(θ|y1:T )
p(y1:T |θo)dy1:T (30)

It is well known (via Jensen’s inequality) that the global minimizer θ∗ of J(θo, θ) is θo. Therefore
minimizing the KL divergence yields a consistent estimator of θo. Moreover, under mild stationary
conditions, when the prior is non-informative (and so possibly improper), the Shannon-McMillan-
Breiman theorem (Barron, 1985) implies that the global minimizer of the KL divergence converges
with probability 1 to the maximum likelihood estimate as T →∞. So there is strong motivation to
explore and estimate the KL divergence.

Typically the KL divergence J(θo, θ) is non-convex in θ. So we are in the non-convex optimiza-
tion setup of (1) where multiple agents seek to estimate the global minimizer of the KL divergence.

3.1.1 MODEL PARAMETERS

We consider a stochastic optimization problem where a RL system chooses actions uk from ran-
domized policy p(θ|y1:T ). In order to learn the optimal policy, the RL system aims to estimate the
global minimizer θ∗ = arg minθ J(θo, θ); see for example Guan et al. (2014) for motivation of KL
divergence minimization in stochastic control. Then by observing the gradient estimates of the RL
agents, we will use our proposed passive IRL algorithms to reconstruct the KL divergence.

Ignoring the constant term p(θo|y1:T ) in (30), minimizing J(θo, θ) wrt θ is equivalent to max-
imizing the relative entropy R(θ) = Eθo{log p(θ|y1:T )}. So multiple RL agents aim to solve the
following non-concave stochastic maximization problem: Find

θ∗ = arg max
θ

R(θ), where R(θ) = Eθo{log p(θ|y1:T )} (31)

In our numerical example we choose θ = [θ(1), θ(2)]′ ∈ R2 and θo is the true parameter value which
is unknown to the learner. The prior is p(θ) = N(0,Σ) where Σ = diag[10, 2]. The observations
yk are independent and generated from the multi-modal mixture likelihood

yk ∼ p(y|θo) =
1

2
N(θo(1), 2) +

1

2
N(θo(1) + θo(2), 2)
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Since y1, . . . , yT are independent and identically distributed, the objective R(θ) in (31) is

R(θ) = Eθo{log p(θ) + T log p(y|θ)}+ constant indpt of θ (32)

For true parameter value θo = [0, 1]′, it can be verified that the objective R(θ) is non-concave and
has two maxima at θ = [0, 1]′ and θ = [1,−1]′.

3.1.2 CLASSICAL LANGEVIN DYNAMICS

To benchmark the performance of our passive IRL algorithms (discussed below), we ran the classi-
cal Langevin dynamics algorithm:

θk+1 = θk + µ
β

2
∇θrk(θk) +

√
µwk, k = 1, 2, . . . , (33)

Note that the classical Langevin dynamics (33) evaluates the gradient estimate∇θrk(θk) unlike our
passive IRL algorithm which has no control of where the gradient is evaluated. Figure 2 displays
both the empirical histogram and a contour plot of the estimateR(θ) generated by classical Langevin
dynamics. The classical Langevin dynamics can be viewed as an upper bound for the performance
of our passive IRL algorithm; since our passive algorithm cannot specify where the gradients are
evaluated.

3.1.3 PASSIVE IRL ALGORITHMS

We now illustrate the performance of our proposed passive IRL algorithms for the above model.
Recall that the framework comprises two parts: First, multiple RL agents run randomly initialized
stochastic gradient algorithms to maximizeR(θ). Second, by observing these gradients, our passive
IRL Langevin based algorithms construct a non-parametric estimate of the R(θ). We discuss these
two parts below:

1. Multiple agent Stochastic Gradient Algorithm. Suppose multiple RL agents aim to learn
the optimal policy by estimating the optimal parameter θ∗. To do so, the agents use the stochastic
gradient algorithm (1):

θk+1 = θk + ε∇θrk(θk)
∇θrk(θk) = ∇θ log p(θk) + T ∇θ log p(yk|θk)

(34)

with multiple random initializations, depicted by agents n = 1, 2, . . .. For each agent n, the initial
estimate was sampled randomly as θτn ∼ π(·) = N(0, I2×2). Each agent runs the gradient algo-
rithm for 100 iterations with step size ε = 10−3 and the number of agents is 105. Thus the sequence
{θk; k = 1, . . . 107} is generated.

2. IRL algorithms and performance. Given the sequence of estimates {θk} generated by the
RL agents above, and initialization density π, the inverse learner aims to estimate R(θ) in (32)
by generating samples {αk} from exp(βR(θ)). Note that the IRL algorithm has no knowledge
of p(θ) or p(y|θ). Since the inverse learner has no control of where the reinforcement learner
evaluates its gradients, we are in passive IRL setting. We ran the IRL algorithm (2) with kernel
K(θ, α) ∝ exp(−‖α−θ‖

2

0.02 ), step size µ = 5 × 10−4, β = 1. Figure 3 displays both the empirical
histogram and a contour plot. Notice that the performance of our IRL is very similar to classical
Langevin dynamics (where the gradients are fully specified).
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Figure 2: Classical Langevin dynamics (ground truth)
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Figure 3: IRL Algorithm (2)
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Figure 4: Two time scale multi-kernel IRL Algorithm (20)
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We compared the performance of the classical Langevin with the passive Langevin IRL al-
gorithm averaged over 100 independent runs. The comparison is with respect to the variational
distance8 d(1) and d(2) between the two marginals of the empirical density p(θ) ∝ exp(R(θ)).
The values obtained from our simulations are

d(1) = 0.0122, d(2) = 0.0202. (35)

Finally, we illustrate the performance of the two-time scale multikernel algorithm (20). Recall
this algorithm does not require knowledge of the initialization probabilities π(·). Figure 4 displays
both the empirical histogram and a contour plot. Again the performance of the IRL is very similar
to the classical Langevin dynamics performance.

3.1.4 MULTIPLE INVERSE LEARNERS

We also considered the case where multiple inverse learners act in parallel. Suppose each inverse
learner l ∈ {1, 2, . . . , L} deploys IRL algorithm (2) with its own noise sample path denoted by
{w(l)

k }, which is independent of other inverse learners. Obviously, if the estimate α(l)
k of one of

the inverse learners (say l) is close to θk, then ∇θrk(θk) is a more accurate gradient estimate for
∇θrk(α

(l)
k ). However, for high dimensional problems, our numerical experiments (not presented

here) show very little benefit unless the number of inverse learners is chosen as L = O(2N ) which
is intractable.

3.1.5 IRL FOR ADAPTIVE BAYESIAN LEARNING

Having discussed reconstructing the KL divergence via IRL, we now extend the Bayesian learning
framework proposed in Welling and Teh (2011) to our IRL framework.

Bayesian Learning. First a few words about the Bayesian learning framework in Welling and
Teh (2011). In comparison to the stochastic optimization problem (31), they consider a fixed sample
path y1:T and the associated deterministic optimization problem of finding global maximizers of

R(θ) = log p(θ|y1:T ). (36)

Welling and Teh (2011) use the classical Langevin dynamics to generate samples from the posterior
p(θ|y1:T ) as follows: First, since y1, . . . , yT are independent,

∇θ log p(θ|y1:T ) ∝ ∇θ log p(θ) +

T∑
k=1

∇θ log p(yk|θ) (37)

Next it is straightforward to see that T iterations of the classical Langevin algorithm (or a fixed step
size deterministic gradient ascent algorithm) using the gradient ∇θ log p(θ) + T ∇θ log p(yk|θ) is
identical to running T sweeps of the algorithm through the sequence y1:T with gradient (37). So
Welling and Teh (2011) run the classical Langevin algorithm using the gradient

∇θ log p(θ) + T ∇θ log p(yk|θ).

8. Recall the variational distance is half the L1 norm

18



INVERSE RL WITH PASSIVE LANGEVIN DYNAMICS

Notice unlike the KL estimation framework (31) which has an expectation Eθo over the observations,
the underlying optimization of log p(θ|y1:T ) is deterministic since we have a fixed sequence y1:T .
Then clearly the Langevin dynamics generates samples from the stationary distribution

π(θ) = exp
(

log(p(θ|y1:T ))
)

= p(θ|y1:T ) (38)

namely, the posterior distribution.9 So the classical Langevin algorithm which sweeps repeatedly
through the dataset y1:T generates samples from the posterior distribution - this is the main idea of
Bayesian learning in Welling and Teh (2011).

IRL. We now consider IRL in this Bayesian learning framework to reconstruct the posterior
density. Given the sample path y1:T , suppose multiple forward learners seek to estimate the maxi-
mum (mode) of the multimodal posterior log p(θ|y1:T ). The agents run the (deterministic) gradient
ascent algorithm (1) with gradient

∇θrk(θk) = ∇θ log p(θk) + T ∇θ log p(yk|θk)

The IRL problem we consider is: By passively observing these gradients, how can the IRL algorithm
reconstruct the posterior distribution p(θ|y1:T )? We use our IRL algorithm (2). The implementation
of IRL algorithm (2) follows the Welling and Teh (2011) setup: The RL agents choose random
initializations θ0 ∼ π and then run gradient algorithms sweeping repeatedly through the dataset
y1:T . The IRL algorithm (2) passively views these estimates {θk} and reconstructs the posterior
distribution p(θ|y1:T ) from these estimates.

We now illustrate the performance of IRL algorithm (2) in this Bayesian learning setup. For the
same parameters as in the example above (recall T = 100), Table 1 compares the performance of
the classical Langevin algorithm and our IRL algorithm with the Metropolis Hastings sampler. The
Metropolis Hastings sampler can be considered as the ground truth for the posterior p(θ|y1:100).

Classical Langevin Passive IRL Langevin
d(1) 0.0213 0.0264
d(2) 0.0229 0.0305

Table 1: Variational distance between marginals and Metropolis Hastings algorithm

3.2 Example 2. IRL with Logistic Regression Classifier

We now consider a high dimensional IRL problem (N = 124) on the benchmark adult a9a dataset.
Performing IRL, i.e., generating samples from a 124 dimensional probability density that represents
the utility, is challenging and requires use of the multi-kernel variance reduced IRL algorithm (20).

SETUP

In a logistic regression model parameterized by θ ∈ RN , the observations (labels) yk ∈ {0, 1} are
assumed to be generated probabilistically from

P (yk = 1|θ) = σ(ψ′kθ) =
1

1 + exp(−ψ′kθ)
, θ ∈ RN

9. This is in contrast to our KL divergence estimation setup (32) where the stationary distribution is π(θ) =
exp

(
Eθo{log p(θ|y1:T )}

)
and Eθo denotes expectation wrt p(y1:T |θo).
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Here ψk ∈ RN is known input vector at time k and is called the feature.
We consider a Bayesian setting where the prior of θ is assumed to be an N -variate Laplacian

density with independent components. So the prior is

p(θ) ∝ exp(−
N∑
i=1

|θ(i)|).

As in the Bayesian learning setup (36) above, given the fixed sequence y1:T , the RL agents aim to
find the global maximizer of

R(θ) = log p(θ|y1:T ) (39)

To do so, the RL agents use the gradient algorithm

θk+1 = θk + ε
[
∇θ log p(θk) + T ∇θ log p(yk|θk)

]
. (40)

with multiple sweeps over the dataset. Note that for the logistic model, ∇θ log p(θk) = − sgn(θ)
elementwise and∇θ log p(yk|θk) = ψk

(
yk − σ(ψ′kθk)

)
.

DATASET

We consider the benchmark adult a9a dataset which can be downloaded from
https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/binary.html.

The dataset consists of a time series of binary valued (categorical) observations yk ∈ {0, 1} and
a time series of regression vectors ψ̄k ∈ R123 for k = 1, . . . , 32651. To model the bias, we add one
additional component; so the unknown parameter vector is θ ∈ R124 and the augmented regression

vectors are ψk =

[
1
ψ̄k

]
∈ R124, for k = 1, . . . , 32651.

PERFORMANCE OF IRL ALGORITHM (20)

Suppose the inverse learner observes the estimates {θk} generated by the RL agents according to
(40). The inverse learner aims to reconstruct the posterior p(θ|y1:T ). Since N = 124, the IRL
algorithm needs to explore and sample from a 124-variate distribution which is a formidable task.
The vanilla IRL algorithm (2) is not tractable since it would take a prohibitive number of iterations to
converge. We illustrate the performance of the multi-kernel variance reduction IRL algorithm (20).

We ran multi-kernel IRL algorithm (20) and active IRL algorithm (27) on the a9a dataset. As
mentioned in Sec.2.2.3, the active IRL (27) is an idealization of the multikernel IRL algorithm (20)
and so forms a benchmark for it. The parameters were chosen as µ = 2.5× 10−4, π(θ) = N(0, I),
σ = 0.1, L = 100 in (20) and T = 10 in (39). As in Welling and Teh (2011), we ran 10 “sweeps”
through the dataset. That is, we appended 9 repetitions of the data set resulting in a single dataset
of 10× 32651 time points; and then ran the IRL algorithms on this appended dataset.

To benchmark these algorithms, we also ran the classical Langevin dynamics algorithm:

αk+1 = αk + µ
β

2
∇rk(αk) +

√
µwk, k = 1, 2, . . . , (41)

which corresponds to the ground truth (since the gradients are evaluated at αk).
IRL Algorithms (20) and (27) generate samples {αk} from a 124-dimensional distribution. To

visualize the performance, we used the output sequence {αk} from these algorithms to compute
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(a) Active IRL Algorithm (27) vs ground truth.
Wasserstein 1 distance (42) of each of the 124
marginals
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(b) Multikernel Algorithm (20) vs ground truth.
Wasserstein 1 distance (42) of each of the 124
marginals

(c) Comparison of 117th marginal

Figure 5: Comparison of multi-kernel IRL Algorithm (20) and active IRL algorithm (27) with
classical Langevin (41) (ground truth)

the empirical cumulative distribution functions for each of the 124 marginal distributions, denoted
by F̂i(α(i)), i = 1, . . . , 124. For each such marginal empirical distribution, we then computed the
corresponding marginal from the classical Langevin dynamics (41), denoted as Fi(α(i)); this can
be viewed as the ground truth. Finally, we computed the L1 distance (Wasserstein 1-metric)

d(i) =

∫
|F̂i(α(i))− Fi(α(i))| dα(i), i = 1, . . . , 124. (42)

This L1 distance is more appropriate for our purposes than the Kolmogorov-Smirnov distance since
typically the constant or proportionality β is not known and so the regions of support of the empirical
cumulative distribution functions can vary substantially.

Figure 5(a) and (b) display the L1 distance d(i) vs i = 1, 2, . . . , 124 for the IRL Algorithms
(20) and (27). In a sense, Algorithm (27) can be viewed as an upper bound for the performance of
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Algorithm (20) since the conditional density p(θ|αk) used to generate θ in Algorithm (27) is exactly
the same kernel used in Algorithm (20). As can be seen from Figure 5(a) and (b), the two algorithms
perform similarly, despite the fact that Algorithm (20) has no control over where the derivative
is evaluated. This shows that the IRL algorithm is a viable method for sampling from the high-
dimensional Bayesian posterior; or equivalently estimating J(θ, θo) in (39). Finally, Figure 5(c)
shows the marginal distribution for the 117-th component of θ for the classical Langevin (ground
truth), active IRL (mis-specified), multi-kernel IRL and a naive Langevin. By naive Langevin we
mean the Langevin algorithm that uses the gradient ∇θrk(θk) instead of ∇θrk(αk) at the estimate
αk, without any kernel. We see that the multi-kernel and active IRL are close to the ground truth
(Langevin) while the naive IRL performs very poorly (since it completely disregards the fact that
the gradients evaluated at αk and θk are different).

3.3 Example 3. IRL for Constrained Markov Decision Process (CMDP)

In this section we illustrate the performance of the IRL algorithms for reconstructing the cumulative
reward of a constrained Markov decision process (CMDP) given gradient information from a RL
algorithm. This is in contrast to classical IRL (Ng and Russell, 2000) where the transition matrices
of the MDP are assumed known to the inverse learner.

Consider a unichain10 average reward CMDP {xn} with finite state space X = {1, . . . , X} and
action space U = {1, 2, . . . , U}. The CMDP evolves with transition probability matrix P (u) where

Pij(u)
4
= P[xn+1 = j|xn = i, un = u], u ∈ U . (43)

When the system is in state xn ∈ X , an action un = u(xn) ∈ U is chosen, where u denotes (a
possible randomized) stationary policy. The reward incurred at stage n is ρ(xn, un) ≥ 0.

Let D denote the class of stationary randomized Markovian policies. For any stationary policy
u ∈ D, let Eu denote the corresponding expectation and define the infinite horizon average reward

J(u) = lim
T→∞

inf
1

T
Eu

[ T∑
n=1

ρ(xn, un) | x0 = x
]
. (44)

Motivated by modeling fairness constraints in network optimization (Ngo and Krishnamurthy, 2010),
we consider the reward (44), subject to the average constraint:

B(u) = lim
T→∞

inf
1

T
Eu

[ T∑
n=1

β(xn, un)
]
≤ γ, (45)

(44), (45) constitute a CMDP. Solving a CMDP involves computing the optimal policy u∗ ∈ D that
satisfies

J(u∗) = sup
u∈D

J(u) ∀x0 ∈ X , subject to (45) (46)

To solve a CMDP, it is sufficient to consider randomized stationary policies:

u(x) = u with probability φ(u|x) =
φ̄(x, u)∑
ũ∈U φ̄(x, ũ)

, (47)

10. By unichain (Puterman, 1994, pp. 348) we mean that every policy where un is a deterministic function of xn consists
of a single recurrent class plus possibly an empty set of transient states.
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where the conditional probabilities φ and joint probabilities φ̄ are defined as

φ(u|x) = P(un = u|xn = x), φ̄(x, u) = P(u, x). (48)

Then the optimal policy u∗ is obtained as the solution of a linear programming problem in terms of
the X × U elements of φ̄; see Puterman (1994) for the precise equations.

Also (Altman, 1999), the optimal policy u∗ of the CMDP is randomized for at most one of the
states. That is,

u∗(x) = pu∗1(x) + (1− p)u∗2(x) (49)

where p ∈ [0, 1] denotes the randomization probability and u∗1,u
∗
2 are pure (non-randomized) poli-

cies. Of course, when there is no constraint (45), the CMDP reduces to classical MDP and the
optimal stationary policy u∗(x) is a pure policy. That is, for each state x ∈ X , there exists an action
u such that φ(u|x) = 1.

Remarks. (i) (45) is a global constraint that applies to the entire sample path (Altman, 1999).
Since the optimal policy is randomized, classical value iteration based approaches and Q-learning
cannot be used to solve CMDPs as they yield deterministic policies. One can construct a Lagrangian
dynamic programming formulation (Altman, 1999) and Lagrangian Q-learning algorithms (Djonin
and Krishnamurthy, 2007). Below for brevity, we consider a policy gradient RL algorithm.

(ii) Discounted CMDPs. Instead of an average cost CMDP, a discounted cost CMDP can be
considered. Discounted CMDPs are less technical in the sense that an optimal policy always ex-
ists (providing the constraint set is non-empty); whereas average cost CMDPs require a unichain
assumption. It is easily shown (Krishnamurthy, 2016) that the dual linear program of a discounted
CMDP can be expressed in terms of the conditional probabilities φ(u|x) and the optimal random-
ized policy is of the form (49). The final IRL algorithm is identical to (54) below.

3.3.1 POLICY GRADIENT FOR RL OF CMDP

Having specified the CMDP model, we next turn to the RL algorithm. RL algorithms11 are used
to estimate the optimal policy of an MDP when the transition matrices are not known. Then the
LP formulation in terms of joint probabilities φ̄ is not useful since the constraints depend on the
transition matrix. In comparison, policy gradient RL algorithms are stochastic gradient algorithms
of the form (1) that operate on the conditional action probabilities φ(u|x) defined in (48) instead of
the joint probabilities φ̄(x, u).

Note that (46) written as a minimization (in terms of −J), together with constraint (45) is in
general, no longer a convex optimization problem in the variables φ; see Figure 6 for an illustration.
So it is not possible to guarantee that simple gradient descent schemes12 can achieve the global
optimal policy. This motivates the setting of (1) where multiple agents that are initialized randomly
aim to estimate the optimal policy.

Since the problem is non-convex, and the inequality constraint is active (i.e., achieves equality)
at the global maximum, we assume that the RL agents use a quadratic penalty method: For λ ≥ 0,

11. In adaptive control, RL algorithms such as policy gradient are viewed as simulation based implicit adaptive control
methods that bypass estimating the MDP parameters (transition probabilities) and directly estimate the optimal policy.

12. Consider minimizing the negative of the objective function, namely −J without constraint (45). Even though −J
is nonconvex in φ, one can show (using Lyapunov function arguments) that for this unconstrained MDP case, the
gradient algorithm will converge to a global optimum. However for the constrained MDP case this is not true; the
nonconvex objective and constraints results in a duality gap.
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denote the quadratic penalized objective to be maximized as

R(φ) = J(φ)− λ (B2(φ)− γ) (50)

Such quadratic penalty functions are used widely for equality constrained non-convex problems.
The RL agents aim to minimize the T -horizon sample path penalized objective which at batch

k is

rk(φ)
4
= Jk,T (φ) + λ

(
B2
k,T (φ)− γ

)
, λ ∈ R+

Jk,T =
1

T

T∑
n=1

ρ(xn,uφ(un)), Bk,T =
1

T

T∑
n=1

β(xn,uφ(un))
(51)

There are several methods for estimating the policy gradient ∇φrk(φk) (Pflug, 1996) including
the score function method, weak derivatives (Abad and Krishnamurthy, 2003) and finite difference
methods. A useful finite difference gradient estimate is given by the SPSA algorithm (Spall, 2003);
useful because SPSA evaluates the gradient along a single random direction.

3.3.2 IRL FOR CMDP

Consider the CMDP (43), (44), (47). Assume we are given a sequence of gradient estimates
{∇φrk(φk)} of the sample path wrt to the parametrized policy φ from (51). The aim of the in-
verse learner is to reconstruct the reward R(φ) in (50). Since by construction the constraint is active
at the optimal policy, the aim of the inverse learner is to explore regions of φ in the vicinity where
the constraint {φ : B(φ) ≈ γ} is active in order to estimate R(φ).

A naive application of Langevin IRL algorithm (2) to update the conditional probabilities {φk}
will not work. This is because there is no guarantee that the estimate sequence {φk} generated by
the algorithm are valid probability vectors, namely

φk(u|x) ∈ [0, 1],
∑
u∈U

φk(u|x) = 1, x ∈ X . (52)

We will use spherical coordinates13 to ensure that the conditional probability estimates φk generated
by the IRL algorithm satisfies (52) at each iteration k. The idea is to parametrize

√
φk(u|x) to lie

on the unit hyper-sphere in RU . Then all needed are the U − 1 angles for each x, denoted as
θ(i, 1), . . . θ(i, U − 1). Define the spherical coordinates in terms of the mapping:

φ = E(θ), where φ(u|x) =


cos2 θ(i, 1) if u = 1

cos2 θ(i, u)
∏u−1
p=1 sin2 θ(i, p) u ∈ {2, . . . , U − 1}

sin2 θ(i, U − 1)
∏U−2
p=1 sin2 θ(i, p) u = U

(53)

Then clearly φ(u|x) in (53) always satisfies feasibility (52) for any real-valued (un-constrained)
θ(x, u). To summarize, there are (U − 1)X unconstrained parameters in θ. Also for θ(i, u) ∈

13. Another parametrization widely used in machine learning is exponential coordinates: φ(u|x) = exp(θ(x,u))∑
a∈U exp(θ(x,a))

,
where θ(x, u) ∈ R is unconstrained. However, as shown in Krishnamurthy (2016); Krishnamurthy and
Vazquez Abad (2018), spherical coordinates typically yield faster convergence. We also found this in numerical
studies on IRL (not presented here).
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[0, π/2], the mapping E : RU×X → RU×X in (53) is one-to-one and therefore invertible. We
denote the inverse as E−1.

Remark: As an example, consider U = 2. Then in spherical coordinates φ(1|i) = sin2 θ(i, 1),
φ(2|i) = cos2 θ(i, 1), where θ(i, 1) is un-constrained.; clearly φ(1|i) + φ(2|i) = 1, φ(u|i) ≥ 0.

With the above re-parametrization, we can run any of the passive Langevin dynamics IRL al-
gorithms proposed in this paper. In the numerical example below, we ran the two-time scale multi-
kernel IRL algorithm (20). Recall this does not require knowledge of π(·) and also provides vari-
ances reduction: Given the current IRL estimate αk, the RL gives us a sequence {φi,∇φrk(φi), i =
1, . . . , L} The IRL algorithm (20) operating on the (U − 1)X unconstrained parameters of θ is:

αk+1 = αk + µ
β

2

∑L
i=1 p(θi|αk)∇θrk(θi)∑L

l=1 p(θl|αk)
+
√
µwk, φi ∼ π(·)

where θi = E−1(φi), ∇θrk(θi) = (∇φrk(φi))′∇θφi,
p(θ|α) = pv(θ − α), pv(·) = N(0, σ2IN )

(54)

In the second line of (54), we transformed∇φrk(φk) to∇θrk(θk) to use in the IRL algorithm.
To summarize, the IRL algorithm (54) generates samples αk ∼ exp(R(E(α))). Equivalently,

φk = E(αk) ∼ exp(R(φ)), where R(φ) is defined in (50). Thus given only gradient information
from a RL algorithm, we can reconstruct (sample from) the penalized reward R(·) of the CMDP
without any knowledge of the CMDP parameters.

3.3.3 NUMERICAL EXAMPLE

We generated a CMDP with X = 2 (2 states), U = 2 (2 actions) and 1 constraint with

P (1) =

[
0.8 0.2
0.3 0.7

]
, P (2) =

[
0.6 0.4
0.1 0.9

]
, ρ =

[
1 100
30 2

]
, β =

[
0.2 0.3
2 1

]
, γ = 1, λ = 105

(55)
Recall the transition matrices P (u) are defined in (43), the reward matrix (ρ(x, u)) in (44), con-
straint matrix (β(x, u)) and γ in (45), and penalty multiplier λ in (51).

The randomized policy φ(u|x), u ∈ {1, 2}, x ∈ {1, 2} is a 2 × 2 matrix. It is completely
determined by (φ(1|1), φ(1|2)) ∈ [0, 1]× [0, 1]; so it suffices to estimate R(φ) over [0, 1]× [0, 1].

Figure 6(a) displays the cumulative reward J(φ); this constitutes the ground truth. To obtain
this figure, we computed the average reward MDP value function J(φ) and constraintB(φ) for each
policy φ where φ sweeps over [0, 1]× [0, 1]. Given a policy φ, J(φ) and B(φ) are computed by first
evaluating the joint probability φ̄ as (Ross, 1983, pp.101)

φ̄(j, a) =
∑
i

∑
ā

φ̄(i, ā)Pij(ā)φ(a|j),
∑
j

∑
a

φ̄(j, a) = 1

and then J(φ) =
∑

x

∑
u φ̄(x, u)ρ(x, u), B(φ) =

∑
x

∑
u φ̄(x, u)β(x, u).

For values of φ that do not satisfy the constraint B(φ) < γ, we plot J(φ) = 0. Figure 6(a)
illustrates the non-convex nature of the constraint set.

Figure 6(b) displays the penalized cumulative reward R(φ) = J(φ)− λ (B(φ)− γ)2 where the
quadratic penalty function is λ (B(φ)−γ)2. As mentioned earlier, since we know that the constraint
is active at the optimal policy, we want the IRL to explore the vicinity of the region of φ where the
constraint is active.
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We then ran the IRL algorithm (54) using spherical coordinates with parameters µ = 5× 10−6,
σ = 0.1, L = 50 for T = 105 iterations. Figure 6(c) displays a 3-dimensional stem plots of the
log of the empirical distribution of φk = E(αk). wrt coordinates φ(1|1) and φ(1|2). As can be seen
from the two plots, the IRL algorithm samples from the high probability regions {φ : B(φ) ≈ γ}
to reconstruct the penalized reward R(φ). Specifically, the C-shaped curve profile generated by the
IRL estimates match the C-shaped curve of the penalized cumulative reward Figure 6(b).

4. Weak Convergence Analysis of IRL Algorithm

This section discusses the main assumptions, weak convergence theorem and proof regarding IRL
algorithm (2). (Recall the informal proof in Sec.2.1 for the motivation of weak convergence.)

NOTATION

• Since ∇θrk(θk) is a noise corrupted estimate of the gradient ∇θR(θ), we write it in more
explicit notation as r̃(θk, ξk), where {ξk} is a sequence of random variables satisfying appro-
priate conditions specified below.
• We use πα(·) to denote∇απ(·).
• Finally, Em denotes the conditional expectation (conditioning up to timem), i.e., conditioning

wrt the σ-algebra Fm = σ{α0, θj , ξj ; j < m}.

ALGORITHM

There are two possible implementations of IRL algorithm (2). The first implementation is (2),
namely,

αk+1 = αk +
µ

∆N
K
(θk − αk

∆

)β
2
r̃(θk, ξk)π(αk) + µπα(αk)π(αk) +

√
µπ(αk)wk, (56)

and the second implementation is

αk+1 = αk +
µ

∆N
K
(θk − αk

∆

)[β
2
r̃(θk, ξk)π(θk) + πα(θk)

]
+

√
µ

∆N
K
(θk − αk

∆

)
π(θk)wk,

(57)
where µ is the stepsize and ∆ = ∆(µ) is chosen so µ/∆N → 0 as µ→ 0.

Both the above algorithms converge to the same limit. The proof below is devoted to (56), but
(57) can be handled similarly. Also the proofs of the other two proposed IRL algorithms, namely
(17) and (29) are similar.

Taking a continuous-time interpolation

αµ(t) = αk for t ∈ [µk, µk + µ), (58)

we aim to show that the sequence αµ(·) converges weakly to α(·), which give the desired limit.

4.1 Assumptions

We begin by stating the conditions needed.

(A1) For each ξ, r̃(·, ξ) has continuous partial derivatives up to the second order such that the
second partial r̃αα(·, ξ) is bounded. For each b <∞ and T <∞, {r̃(α, ξj); |α| ≤ b, jµ ≤ T}
is uniformly integrable.
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(a) Cumulative Reward J(φ) with active constraint B(φ) ≤ 1.
The non-convexity of the constraint set is clearly seen.

(b) Penalized Cumulative Reward with Quadratic PenaltyR(φ) =
J(φ)− λ (B(φ)− 1)2. The lighter green shade on top shows the
active constraint. This plot constitutes the ground truth

(c) IRL algorithm estimate. Snapshot 1 shows that the IRL estimates R(φ) in the vicinity of the active
constraint.. Snapshot 2 shows that the IRL explores regions in the vicinity of the active constraint. Specifically
the curve is close to the lighter shade green in Fig (b)

Figure 6: IRL for Constrained MDP
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(A2) The sequences {θk} is stationary and independent of {ξk}. For each k ≥ n, there exists a
conditional density of θk given Fn, denoted by πk(θ|Fn) such that πk(θ|Fn) > 0 for each
θ and that πk(·|Fn) is continuous. The sequence {πk(·|Fn)}k≥n is bounded uniformly. The
probability density π(·) is continuous and bounded with π(θ) > 0 for each θ such that

lim
k−n→∞

E|πk(θ|Fn)− π(θ)| = 0. (59)

(A3) The measurement noise {ξn} is exogenous, and bounded stationary mixing process with mix-
ing measure ϕk such that Er̃(α, ξk) = Rα(α) for each α and

∑
k ϕk < ∞. The {wk} is a

sequence of RN -valued i.i.d. random variables with mean 0 and covariance matrix I (the
identity matrix); {wk} and {ξk} are independent.

(A4) The kernel K(·) satisfies

K(u) ≥ 0, K(u) = K(−u), sup
u
K(u) <∞,∫

K(u)du = 1,

∫
|u|2K(u)du <∞.

(60)

Remarks: We briefly comment on the assumptions (A1)-(A4).
• Assumption (A1) requires the smoothness of r̃(·, ξ), which is natural because we are using
r̃(·, ξk) to approximate the smooth function∇R. We consider a general noise so the uniform
integrability is used. If the noise is additive in that r̃(θ, ξ) = ∇R(θ) + ξ, then we only need
the finite p̃-moments of ξk for p̃ > 1.
• Assumption (A3) requires the stochastic process {ξn} to be exogenous, and bounded station-

ary mixing. Thus for each α, {r̃(α, ξk)} is also a mixing sequence. A mixing process is
one in which remote past and distant future are asymptotically independent. It covers a wide
range of random processes such as i.i.d. sequences, martingale difference sequences, moving
average sequences driving by a martingale difference sequence, and functions of stationary
Markov processes with a finite state space (Billingsley, 1999), etc. The case of {wk} and
{ξk} being dependent can be handled, but for us {wk} is the added perturbation to get the
desired Brownian motion so independence is sufficient.
• By exogenous in (A3), we mean that

P (ξn+1 ∈ A1, . . . , ξn+k ∈ Ak|α0, ξj , xj ; j ≤ n)
= P (ξn+1 ∈ A1, . . . , ξn+k ∈ Ak|α0, xj , ξj , αj+1; j ≤ n),

for all Borel sets Ai, i ≤ k, and for all k and n.
• In view of the mixing condition (A3) on {ξk}, for each b <∞ and T <∞, {r̃(α, ξj); |α| ≤
b, jµ ≤ T} and {r̃α(α, ξj); |α| ≤ b, jµ ≤ T} are uniformly integrable.
• Again, using the mixing condition, for each α, as n→∞,

1

n

m+n−1∑
j=m

Emr̃(α, ξj)→ Rα(α) in probability. (61)

• For a Borel set A, we have P (θk ∈ A|Fn) =
∫
θ∈A πk(θ|Fn)dθ. If {θn} is itself a stationary

φ-mixing sequence with a continuous density, and if E|θn|2 < ∞, then by virtue of a well-
known mixing inequality, some c̃0 > 0, (Ethier and Kurtz, 1986, Corollary 2.4 in Chapter 7),

E
{
|
∫
θπk(θ|Fn)dθ −

∫
θπ(θ)dθ|

}
≤ c̃0ϕ

1/2
θ (k − n)E1/2|θk|2 → 0 as k − n→∞,
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where ϕθ(·) denotes the mixing measure.
• Condition (A4) is concerned with the properties ofK(·). It assumes that the kernel is nonneg-

ative, symmetric, bounded (similar to a probability density function), and square integrable.
(A4) is satisfied by a large class of kernels. For example, commonly used symmetric kernels
with compact supports satisfy this condition (e.g., truncated Gaussian kernels). Moreover,
it is also verifiable for kernels with unbounded support. A crucial point is that the tails of
K(·) are small (asymptotically negligible). For simplicity, we use (A4) as a nicely packaged
version. In fact, (A4) is a sufficient condition for a much larger class of kernels satisfying∫

K(u)du = 1,

∫
|u|lK(u)du <∞ some l, (62a)∫

K2(u)du <∞,
∫
|u|2K(u)du <∞, (62b)∫

(u1)m1(u2)m2 · · · (uN )mNK(u)du = 0 if l > 1, (62c)

where 1 ≤ m1 +m2 + · · ·+mN ≤ l − 1 (62d)

Here u1, . . . , uN denote the components of u ∈ RN . The parameter l is a smoothness indica-
tor of the kernel and the last line of (62) is often used in nonparametric estimation in statistics.
Such a condition stems from a large class of kernels used in the so-called lth-order averag-
ing operator; see Katkovnik (1976). Thus, (A4) can be replaced by this more general setup.
However, we use the current form of (A4) because it is easily verifiable (e.g., by Gaussian
kernel).
Eq.(62) can be written in multi-index notation as follows. Let m = (m1, . . . ,mN ) where
each mi is a nonnegative integer, |m| =

∑N
i=1mi, and m! =

∏N
i=1mi!. Thus, um =

(u1)m1 · · · (uN )mN . Then (62c), (62d) can be written in multi-index notation as∫
umK(u)du = 0 if 1 ≤ |m| ≤ l − 1 and l > 1.

4.2 Main Result and Proof

As is well known (Kushner and Yin, 2003), a classical fixed step size stochastic gradient algorithm
converges weakly to a deterministic ordinary differential equation (ODE) limit; this is the basis of
the so called ODE approach for analyzing stochastic gradient algorithms. In comparison, the dis-
crete time IRL algorithm (2) converges weakly to a stochastic process limit α(·). In this section we
prove weak convergence of the interpolated process {αµ(·)} to the stochastic process limit α(·) as
µ → 0. Proving weak convergence requires first that the tightness of the sequence be verified and
then the limit be characterized via the so called martingale problem formulation. For a comprehen-
sive treatment of the martingale problem of Stroock and Varadhan, see Ethier and Kurtz (1986).

Theorem 1 Assume conditions (A1)-(A4). Then the interpolated process αµ(·) (defined in (58))
for IRL algorithm (2) has the following properties:

1. {αµ(·)} is tight in Dd[0,∞).
2. Any weakly convergent subsequence of {αµ(·)} has a limit α(·) that satisfies

dα(t) =
[β

2
π2(α(t))Rα(α(t)) + πα(α(t))π(α(t))

]
dt+ π(α(t))dW (t),

α(0) = α0,
(63)
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where W (·) is a standard Brownian motion with mean 0 and covariance being the identity
matrix I ∈ RN×N , provided (63) has a unique weak solution (in a distributional sense) for
each initial condition.

For sufficient conditions leading to unique weak solutions of stochastic differential equation
and uniqueness of martingale problem, see Ethier and Kurtz (1986, p. 182) or Karatzas and Shreve
(1991).

Proof. The proof is divided into 4 steps.
Step 1. Use a truncation device. Because the sequence {αk} is not a priori bounded, the main

idea is to use a truncation device (Kushner and Yin, 2003, p.284). (Step 4 below deals with the
un-truncated process.) Let M > 0 be a fixed but otherwise arbitrary constant. Denote by SM =
{α ∈ RN : |α| ≤ M} the N -dimensional ball centered at the origin with radius M . Consider the
truncated algorithm

αMk+1 =αMk +µ
[ 1

∆N
K
(θk − αMk

∆

)β
2
r̃(θk, ξk)+πα(αMk )

]
π(αMk )qM (αMk )+

√
µπ(αMk )qM (αMk )wk,

(64)
where

qM (α) =

{ 1, α ∈ SM ;
0, α ∈ RN − SM+1;
smooth otherwise.

By virtue of (A4), the integrability of the kernel forces θk to be in line with the iterates αMk in that
only asymptotically negligible tails can be added.

Remark. Define αµ,M (t) = αMn on [µk, µk + µ). Then αµ,M (·) ∈ DN [0,∞) and is an M -
truncation for αµ(·) (Kushner and Yin, 2003, p.284). We proceed to prove the tightness and weak
convergence of the truncated sequence {αµ,M (·)} first and then complete the proof by letting M →
∞ in Step 4.

Step 2. Prove the tightness of {αµ,M (·)}. Note that in view of Nazin et al. (1989, Lemma 1),
by virtue of (A4), for a function h(·) that is twice continuously differentiable with bounded second
derivative, it follows that ∣∣∣ 1

∆N

∫
K
(θ − α

∆

)
h(θ)dθ − h(α)

∣∣∣ = O(∆2). (65)

Using (65), (A1), and noting that {wk} is an i.i.d. sequence with mean 0 and covariance matrix I , we

can show that
{[

∆−NK
(
θk−αMk

∆

)
β
2 r̃(θk, ξk) +πα(αMk )

]
π(αMk )qM (αMk )

}
is uniformly integrable

and also {π(αMk )qM (αMk )wk} is uniformly integrable. Then using Kushner (1984, p.51, Lemma
7) (or use a perturbed test function methods as in Kushner and Yin (2003, Chapter 7)), it can be
shown that {αµ,M (·)} is tight in D([0,∞),RN ), the space of RN -valued functions that are right
continuous, have left limits, endowed with the Skorohod topology.

Step 3. Characterize the limit process. Because {αµ,M (·)} is tight, by virtue of Prohorov’s theo-
rem (Billingsley, 1999), we can extract a weakly convergent subsequence. To simplify notation, still
denote the subsequence by {αµ,M (·)} whose limit is αM (·). By Skorohod representation (Kushner
and Yin, 2003, p. 230) with a slight abuse of notation, we may assume that αµ,M (·) converges to
αM (·) w.p.1. To complete the proof, we need only characterize the limit process by showing that
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the limit αM (·) is a solution of the martingale problem with backward operator

LMf(α) = f ′α(α)
[β

2
π2(α)Rα(α) + πα(α)π(α)

]
qM (α) +

1

2
π2(α) Tr[fαα(α)]qM (α) (66)

for any real-valued function f(·) ∈ C2
0 (Ethier and Kurtz (1986, Lemma 8.1, p.225)), where f ′

denotes the transpose of f .
By Theorem 8.2 in Ethier and Kurtz (1986), to verify the martingale property, we need to show

that for any bounded and continuous test function g(·), any t, s > 0, any positive integer κ1, and
any tı ≤ t,

E
{
g(αM (tı) : ı ≤ κ1)

[
f(αM (t+ s))− f(αM (t))−

∫ t+s

t
LMf(αM (u))du

]}
= 0. (67)

Note that (67), namely, the solution of the martingale problem, is a statement about the finite di-
mensional distributions of αM (·) at times t1, . . . , tκ1 .

To verify (67), we work with the sequence indexed by µ. By the continuity of f(·), the weak
convergence, and the Skorohod representation, we have that as µ→ 0,

Eg(αµ,M (tı) : ı ≤ κ1)[f(αµ,M (t+ s))− f(αµ,M (t))]

→ Eg(αM (tı) : ı ≤ κ1)[f(αM (t+ s))− f(αM (t))].
(68)

To simplify notation, we denote qMk = qM (αMk ) in what follows whenever there is no confusion
and retain the notation qM (αMk ) whenever it is needed. Dividing the segment

bt/µc ≤ k ≤ b(t+ s)/µc

into sub-blocks of size mµ each so that mµ →∞ as µ→ 0 and δµ = µmµ → 0. Then we obtain

Eg(αµ,M (tı) : ı ≤ κ1)[f(αµ,M (t+ s))− f(αµ,M (t))]

= Eg(αµ,M (tı) : ı ≤ κ1)
(
Elmµ

(t+s)/δµ∑
l=t/δµ

[f(αMlmµ+mµ)− f(αMlmµ)]
)

= Eg(αµ,M (tı) : ı ≤ κ1)
{
Elmµ

(t+s)/δµ∑
l=t/δµ

f ′α(αMlmµ)

lmµ+mµ−1∑
k=lmµ

[ µ

∆N
K
(θk − αMk

∆

)
×β

2
r̃(θk, ξk)π(αMk ) + µπα(αMk )π(αMk ) +

√
µπ(αMk )wk

]
qMk

+
1

2
Elmµµ

(t+s)/δµ∑
l=t/δµ

lmµ+mµ−1∑
k=lmµ

π2(αk) Tr[fαα(αMlmµ)wkw
′
k]q

M
k

+Elmµ
(t+s)/δµ∑
l=t/δµ

eµl

}
,

(69)
where Elmµ denotes the conditional expectation with respect to the past information up to the time
lmµ (i.e., the σ-algebra generated by {αk, θk, ξk : k < lmµ}), and eµl is an error term. It can be
shown that

Eg(αµ,M (tı) : ı ≤ κ1)
∣∣∣Elmµ (t+s)/δµ∑

l=t/δµ

eµl

∣∣∣2 → 0 as µ→ 0. (70)
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Noting that {wk} is an i.i.d. sequence with mean 0 and covariance I (the identity matrix), using
the continuity of π(·), the limit of

Eg(αµ,M (tı) : ı ≤ κ1)
{1

2
Elmµµ

(t+s)/δµ∑
l=t/δµ

lmµ+mµ−1∑
k=lmµ

π2(αMk ) Tr[fαα(αMlmµ)wkw
′
k]q

M
k

}
,

is the same as that of

Eg(αµ,M (tı) : ı ≤ κ1)
{1

2

(t+s)/δµ∑
l=t/δµ

π2(αMlmµ) Tr[fαα(αMlmµ)]δµqM (αlmµ)
}

= Eg(αµ,M (tı) : ı ≤ κ1)
{1

2

(t+s)/δµ∑
l=t/δµ

π2(αµ,M (lδµ)) Tr[fαα(αµ,M (lδµ))]δµqM (π(αµ,M (lδµ)))
}
.

It then follows from weak convergence of αµ,M (·) to αM (·) and the Skorohod representation,

Eg(αµ,M (tı) : ı ≤ κ1)
{1

2
Elmµµ

(t+s)/δµ∑
l=t/δµ

lmµ+mµ−1∑
k=lmµ

π2(αMk ) Tr[fαα(αMlmµ)wkw
′
k]q

M
k

}
→ Eg(αM (tı) : ı ≤ κ1)

{1

2

∫ t+s

t
π2(αM (u)) Tr[fαα(αM (u))]qM (αM (u))du

}
as µ→ 0.

(71)
Using the condition on the i.i.d. noise {wk}, it is readily seen that

Eg(αµ,M (tı) : ı ≤ κ1)
{
Elmµ

√
µ

(t+s)/δµ∑
l=t/δµ

f ′α(αMlmµ)

lmµ+mµ−1∑
k=lmµ

π(αMk )wkq
M
k

}

= Eg(αµ,M (tı) : ı ≤ κ1)
{√

µ

(t+s)/δµ∑
l=t/δµ

f ′α(αMlmµ)

lmµ+mµ−1∑
k=lmµ

Elmµπ(αMk )ElmµwkqMk
}

→ 0 as µ→ 0.

(72)

Next, using the continuity of π(·), πα(·), fα(·), together with the weak convergence of αµ,M (·) to
αM (·), the Skorohod representation, the notation qMk defined before, and the notation convention
qMlmµ = qM (αMlmµ) and qMl = qM (αM (lδµ)), we have

lim
µ→0

E
[
g(αµ,M (tı) : ı ≤ κ1)

{
Elmµµ

(t+s)/δµ∑
l=t/δµ

f ′α(αMlmµ)

lmµ+mµ−1∑
k=lmµ

πα(αMk )π(αMk )qMk

}]

= lim
µ→0

E
[
g(αµ,M (tı) : ı ≤ κ1)

{
Elmµµ

(t+s)/δµ∑
l=t/δµ

f ′α(αMlmµ)

lmµ+mµ−1∑
k=lmµ

πα(αMlmµ)π(αMlmµ)qMlmµ

}]

= lim
µ→0

E
[
g(αµ,M (tı) : ı ≤ κ1)

{
Elmµ

(t+s)/δµ∑
l=t/δµ

f ′α(αµ,M (lδµ))πα(αµ,M (lδµ))π(αµ,M (lδµ))qMl δµ

}]
= E

[
g(αM (tı) : ı ≤ κ1)

{∫ t+s

t
f ′α(αM (u))πα(αM (u))π(αM (u))qM (αM (u))du

}]
.

(73)

32



INVERSE RL WITH PASSIVE LANGEVIN DYNAMICS

Note that

E
[
g(αµ,M (tı) : ı ≤ κ1)

{
Elmµ

(t+s)/δµ∑
l=t/δµ

f ′α(αMlmµ)

lmµ+mµ−1∑
k=lmµ

µ

∆N
K
(θk − αMk

∆

)β
2
r̃(θk, ξk)π(αMk )qMk

}]

= E
[
g(αµ,M (tı) : ı ≤ κ1)

{β
2

(t+s)/δµ∑
l=t/δµ

δµf
′
α(αMlmµ)π(αMlmµ)

× 1

∆N

1

mµ

lmµ+mµ−1∑
k=lmµ

ElmµK
(θk − αMk

∆

)
r̃(θk, ξk)q

M
k

}]
+ o(1),

(74)
where o(1)→ 0 as µ→ 0 uniformly in t. By the continuity of π(·) and r̃(·, ξ) for each ξ,

ψµ =
1

∆N

1

mµ

lmµ+mµ−1∑
k=lmµ

ElmµK
(θk − αMk

∆

)
r̃(θk, ξk)q

M
k

=
1

∆N

1

mµ

lmµ+mµ−1∑
k=lmµ

Elmµ
[ ∫

K
(θ − αMk

∆

)
r̃(θ, ξk)π(θ)dθ

]
θ=θk

qMk

+
1

∆N

1

mµ

lmµ+mµ−1∑
k=lmµ

Elmµ
[ ∫

K
(θ − αMk

∆

)
r̃(θ, ξk)[π(θ|Flmµ)− π(θ)]dθ

]
θ=θk

qMk

In view of (A2), the last term above contributes nothing to the limit. By virtue of (65),

1

∆N

1

mµ

lmµ+mµ−1∑
k=lmµ

Elmµ
[ ∫

K
(θ − αMk

∆

)
r̃(θ, ξk)π(θ)dθ

]
θ=θk

qMk

=
1

mµ

lmµ+mµ−1∑
k=lmµ

Elmµ r̃(αMk , ξk)π(αMk )qMk + o(1),

where o(1)→ 0 in probability. Thus we have

ψµ =
1

mµ

lmµ+mµ−1∑
k=lmµ

Elmµ r̃(αMk , ξk)π(αMk )qMk + o(1)

=
1

mµ

lmµ+mµ−1∑
k=lmµ

Elmµ r̃(αMlmµ , ξk)π(αMlmµ)qMk + o(1)

=
1

mµ

lmµ+mµ−1∑
k=lmµ

Elmµ r̃(αµ,M (lδµ), ξk)π(αµ,M (lδµ))qMl + o(1),

(75)

where o(1) → 0 in probability as µ → 0, because of the continuity of π(·) and r̃(·, ξ) for each
ξ. Letting lδµ → u as µ → 0, then for any lmµ ≤ k ≤ mµ + mµ, µk → u. Using the
weak convergence of αµ,M (·) to αM (·) and the Skorohod representation, we can approximate
r̃(αµ,M (lδµ), ξk)π(αµ,M (lδµ))qM (αµ,M (lδµ)) by r̃(αM (u), ξk)π(αM (u))qM (αM (u)) with an er-
ror going to 0. Because αM (·) is bounded, for each γ > 0, we can choose {Oγi : i ≤ iγ} as a
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finite collection of disjoint sets of diameter no larger than γ whose union covers the range of αM (·).
Thus, αM (·) can be approximated by

∑iγ
i=1 α

γ
i 1{αM (u)∈Oγi }. Consequently,

ψµ =
1

mµ

iγ∑
i=1

lmµ+mµ−1∑
k=lmµ

Elmµ r̃(α
γ
i , ξk)π(αγi )1{αM (u)∈Oγi }qM (αM (u)) + o(1), (76)

where o(1) → 0 in probability. Now it is clear that condition (A3) and hence (61) can be used.
Using (76) and (61) together with (74) and detailed calculation yields that

E
[
g(αµ,M (tı) : ı ≤ κ1)

{
Elmµ

(t+s)/δµ∑
l=t/δµ

f ′α(αMlmµ)

lmµ+mµ−1∑
k=lmµ

µ

∆N
K
(θk − αMk

∆

)β
2
r̃(θk, ξk)π(αMk )qMk

}]
→ E

[
g(αM (tı) : ı ≤ κ1)

{β
2

∫ t+s

t
Rα(αM (u))π2(αM (u))qM (u)du

}]
.

(77)
Using (68) and (69), and combining the estimates and calculation in (70)-(77) lead to (67).

Therefore, we arrive at that αM (·) is the solution of the martingale problem with operator LM given
in (66).

Step 4. Let the truncation level M →∞. In the last step, we let M → ∞ to obtain the con-
vergence of the un-truncated process αµ(·). The details are as in Kushner (1984, pp. 44-46). The
verbatim argument is thus omitted.

Now, our arguments in Steps 1-4 yield the desired result Theorem 1. The proof of the theorem
is concluded.

4.3 Comments

We make two remarks below.
• We proved Theorem 1 above for algorithm (56); equivalently (2). The proof of convergence

of (57) can be carried out similarly. The main difference is that we are utilizing the kernel
K(·) to incorporate θk used in the algorithm. There is no additional technical difficulty.
• Note that in a way, (56) can be considered to be more efficient than (57). First, because π(α)

is available, (56) is more direct. Second, using π(α) and πα(α) in lieu of using π(θ) and
πα(θ) together with the kernel K(·) avoids an additional averaging and the involvement of a
Dirac δ-like function.

5. Tracking Analysis of IRL in Non-Stationary Environment

An important feature of the IRL algorithm (2) is its constant step size µ (as opposed to a decreasing
step size). This facilities estimating (tracking) time evolving reward functions. This section analyzes
the ability of IRL algorithm to track a time-varying reward function.

Since we are estimating a time evolving reward, we first give a model for the evolution of
the reward R(θ) over time. Below, the Markov chain {xk} will be used as a hyper-parameter
to model the evolution of the time varying reward, which we will denote as R(θ, xk). By hyper-
parameter we mean that the Markov chain model is not known or used by the IRL algorithm (2).
The Markov chain assumption is used only in our convergence analysis to determine how well does
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the IRL algorithm estimates (tracks) the reward R(θ, xk) that jump changes (evolves) according to
an unknown Markov chain xk.

We assume that the RL agents perform gradient algorithm (1) by evaluating the sequence of
gradients {∇θrk(θk, xk)}. Note that both the RL and IRL do not know the sample path {xk}. We
will use similar notation to Sec.4:
• Denote∇θrk(θk, xk) as r̃(θk, ξk, xk),
• We use πα(·) to denote∇απ(·).

5.1 Assumptions

We focus on the following algorithm

αk+1 = αk +
µ

∆N
K
(θk − αk

∆

)β
2
r̃(θk, ξk, xk)π(αk) + µπα(αk)π(αk) +

√
µπ(αk)wk, (78)

The main assumptions are as follows.

(M1) (Markovian hyper-parameter) Let {xk, k ≥ 0} be a Markov chain with finite state space
X = {1, . . . , X} and transition probability matrix I + ηQ, where η > 0 is a small parameter
and Q = (qij) is an X ×X irreducible generator (matrix) (Yin and Zhang, 2013, p.23) with

qij ≥ 0, i 6= j,
∑
j

qij = 0, i ∈ X ,

also {xk} is independent of {θk} and {wk}.

(M2) Assumption (A1) holds on r̃(·, ξ, i) for each fixed state i ∈ X . Also (A2), (A3), (A4) hold.

5.2 Main Result

Recall that µ is the step size of the IRL algorithm while η reflects the rate at which the hyper-
parameter Markov chain xk evolves. In the following tracking analysis of IRL algorithm (2) , we
will consider three cases, µ = O(η), µ � η, and µ � η. The three cases represent three different
types of asymptotic behavior. If µ� η, the frequency of changes of the Markov chain is very slow.
Thus, we are treating a case similar to a constant parameter, or we essentially deal with a “single”
objective function. If µ � η, then the Markov chain jump changes frequently. So what we are
optimizing is a function

∑X
i=1R(α, i)νi, where νi is the stationary distribution associated with the

generator Q. If µ = O(η), then the Markov chain changes in line with the optimization recursion.
In this case, we obtain switching limit Langevin diffusion.

In Theorem 2 below, for brevity we use µ = η for µ = O(η), η = µ1+∆̃ for η = o(µ) and
η = µ∆̃ for µ = o(η), respectively. These cover all three possible cases of the rate at which the
hyper-parameter evolves compared to the dynamics of the Langevin IRL algorithm.

Theorem 2 Consider the IRL algorithm (78). Under Assumptions (M1) and (M2), assuming that
(79), or (80), or (81) has a unique solution in the sense in distribution. Then the following results
hold.
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1. Assume µ = η. Then as µ ↓ 0, the interpolated process (αµ(·), xµ(·)) converges weakly to
the switching diffusion (α(·), x(·)) satisfying

dα(t) =
[β

2
π2(α(t))Rα(α(t), x(t)) + πα(α(t))π(α(t))

]
dt+ π(α(t))dW (t), (79)

where W (·) is a standard Brownian motion with mean 0 and covariance being the identity
matrix I ∈ RN×N , and x(·) is a continuous-time Markov chain with generator Q.

2. Suppose η = µ1+∆̃ with ∆̃ > 0 and denote the initial distribution of xη(0) by pι (independent
of η) for each ι ∈ X . Then as µ ↓ 0, the interpolated process (αµ(·)) converges weakly to the
following diffusion process

dα(t) =
[β

2
π2(α(t))

∑
ι∈X

Rα(α(t), ι) pι + πα(α(t))π(α(t))
]
dt+ π(α(t))dW (t), (80)

3. Suppose that η = µ∆̃ with 0 < ∆̃ < 1 and denote the stationary distribution associated with
the continuous-time Markov chain with generator Q by ν = (ν1, . . . , νX). Then as µ ↓ 0, the
interpolated process (αµ(·)) converges weakly to the following diffusion process

dα(t) =
[β

2
π2(α(t))

∑
ι∈X

Rα(α(t), ι) νι + πα(α(t))π(α(t))
]
dt+ π(α(t))dW (t). (81)

Remark. Theorem 2 presented the asymptotic behavior of the IRL algorithm (78) with Marko-
vian switching. In accordance with the rates of variations of the adaptation rates (represented by
the stepsize µ) and the switching rate (represented by the stepsize η), three cases are considered.
Case 1 indicates that when µ is in line with η, the limit differential equation is a switching diffusion.
Case 2 concentrates on the case that the switching is much slower than the stochastic approximation
generated by the recursion. Thus, the limit Langevin equation is one in which the drift and diffu-
sion coefficients are averaged out with respect to the initial distribution of the limit Markov chain.
Roughly, it reveals that the “jump change” parameter x(t) is more or less as a constant in the sense
the coefficients are averages w.r.t. the initial distribution. Case 3 is the one that the Markov chain
is changing much faster than the stochastic approximation rate. As a result, the “jump change”
behavior is replaced by an average with respect to the stationary distribution of the Markov chain.
Then we derive the associated limit Langevin equation. Again, the limit has no switching in it.

5.3 Proof of Theorem 2

We will prove Statement 1 for the case µ = η. Consider (αµ(·), xµ(·)), the pair of interpolated
processes. We shall show that this pair of processes converges weakly to (α(·), x(·)) such that the
limit is a solution of (79) or equivalently, (α(·), x(·)) is a solution of the martingale problem with
an operator redefined by

Lf(α, i) = f ′α(α, i)
[β

2
π2(α, i)Rα(α)+πα(α)π(α)

]
+

1

2
π2(α) Tr[fαα(α, i)]+Qf(α, ·)(i), (82)

where
Qf(α, ·)(i) =

∑
j∈X

qijf(α, j), for each i ∈ X .
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We still need to use an M truncation device (truncation on α). However, for notation simplicity, we
suppress the M truncation. From (78), it is easily seen that

αk+1 = αk +
µ

∆N
K
(θk − αk

∆

)β
2

∑
i∈X

r̃(θk, ξk, i)π(αk)1{xk=i} + µπα(αk)π(αk) +
√
µπ(αk)wk.

(83)
To prove the tightness of (αµ(·), xµ(·)), we prove the tightness {xµ(·)} first. This can be done by
considering χk = (1{xk=1}, . . . , 1{xk=X}) ∈ R1×X , and defining χµ(t) = χk for t ∈ [µk, µk+µ).
Denote byFµt , the σ-algebra generated by {ξk, θk, xk, α0 : k ≤ t/µ}, and denote the corresponding
conditional expectation by Eµt . Because χk is a Markov chain and because of the independence of
xk with ξk and θk, we can show for any δ > 0, t > 0, s > 0 with s ≤ δ, for some random variable
γ̂µ(δ) > 0,

sup
0≤s≤δ

Eµt [|χµ(t+ s)− χµ(t)|2
∣∣Fµt ] ≤ Eµt γ̂

µ(δ).

Furthermore,
lim
δ→0

lim sup
µ→0

Eγ̂µ(δ) = 0,

which implies the tightness of {χµ(·)} (see (Kushner, 1984, p. 47, Theorem 3) and hence the tight-
ness of {xµ(·)}. We can also prove the tightness of {αµ(·)}. Then the tightness of {αµ(·), xµ(·)}
can be proved. The rest of the averaging procedure is similar to that of the proof of Theorem 1.

For the proofs of Statement 2, the case η = µ1+∆̃, and Statement 3, the case η = µ∆̃, the
arguments are similar to Yin et al. (2013) Section 4.1 and Section 4.2, respectively. We thus omit
the details.

6. Proof of Convergence of IRL Algorithm (20)

Here we prove weak convergence of the multi-kernel variance reduction IRL algorithm (20). The
proof involves a novel application of the Bernstein von-Mises theorem (which in simple terms is a
central limit theorem for a Bayesian estimator); see (88) below.

Recall that we write∇rk(θ) as r̃(θ, ξk) as in the proof of Theorem 1. The algorithm (20) is

αk+1 = αk + µ
β

2

Lµ∑
i=1

p(αk|θi)r̃(θi, ξk)∑Lµ
l=1 p(αk|θl)

+
√
µwk, (84)

where Lµ is so chosen that Lµ →∞ as µ→ 0.
We start with the following assumptions:

(B1) (A1) holds and the reward R(·) has continuous partial derivatives up to the second order and
the second-order partial of R is uniformly bounded.

(B2) The {θl} is a stationary sequence θl ∼ π(·); {θl} is independent of {ξk} and {wk}, where
{ξk} and {wk} satisfy (A3).

(B3) For each fixed α, and each i = 1, . . . , Lµ, define

γi(α) =
p(α|θi)∑Lµ
l=1 p(α|θl)

.
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For each ξ and each α, as µ→ 0, Lµ →∞ and

Lµ∑
i=1

γi(α)r̃(θi, ξ)→ Er̃(θ, ξ|α) w.p.1. (85)

(B4) E|r̃(θi, ξk)|2 <∞ for each i and each k, and
∫

(1 + |∇R(θ)|2)(p(θ/α)/π(θ))2π(θ)dθ <∞.

(B5) (a) The conditional probability density function

p(α|θ) = pv(θ − α) (86)

where pv(·) is a symmetric density with zero mean and covariance O(∆2)I . where I denotes
the identity matrix.
(b) The Fisher information matrix Iθ =

∫
RN ∇ log p(α|θ) p(α|θ) dα is invertible for all θ ∈

RN .

Remarks. We briefly comment on the assumptions. (B1) is a smoothness assumption on r̃(·, ξ) and
R(·). The second order differentiability ofR(·) is used in a Taylor series expansion in Proposition 4
to obtain the final stochastic diffusion limit. Note that (B1) is a stronger assumption than (A1).

Condition (B2) specifies the distribution of θl. We also assume that this sequence is independent
of the ξk and wk. The assumption builds on (A3).

(B3) is an averaging condition; i.i.d. samples {θi} is a special case. In fact, we only need the
convergence to be in the sense of convergence in probability.

(B4) is a classical square integrability assumption for asymptotic normality.
Finally, (B5) is used in the Bernstein von-Mises theorem to show that the posterior p(θ|α) is

asymptotically normal and behaves as a Dirac delta as ∆ ↓ 0; see Proposition .4 below.
As in our previous proofs, we define the interpolated process αµ(t) = αk, t ∈ [µk, µk + µ).

For convenience, the proof proceeds in two steps: In the first step, Proposition 3 below shows that
αµ(·) converges weakly to α(·) such that α(t) satisfies the stochastic differential equation (24) w.r.t.
conditional expectation p(θ|α(t)).

Proposition 3 Assume conditions (B1)–(B5) hold and that the stochastic differential equation

dα(t) =

∫
RN

β

2
∇R(θ) p

(
θ|α(t)

)
dθ dt+ dW (t), α(0) = α0 (87)

has a unique solution in the sense in distribution for each initial condition. Then the interpolated
process αµ(·) converges weakly to α(·) such that α(·) is the solution of (87).

Note that in the above, we used the uniqueness solution in the weak or distribution sense. Such
a uniqueness is equivalent to the uniqueness of the associated martingale problem; see Ethier and
Kurtz (1986, p. 182) or Karatzas and Shreve (1991).

In the second step, we use the Bernstein von-Mises theorem below to characterize the posterior
as a normal distribution when the parameter ∆ in the likelihood density goes to zero. The Bernstein-
von Mises theorem (Van der Vaart, 2000) implies that for small parameter ∆ in the likelihood (21),
the posterior converges to the Gaussian density N(θ;α,∆2Iθ̄). More precisely,∫

|p(θ|α)−N(θ;α,∆2Iθ̄)|dθ → 0 in probability under Pθ̄ as as∆→ 0. (88)
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Here Iθ̄ =
∫
RN ∇ log p(α|θ) p(α|θ) dα|θ=θ̄ is the Fisher information matrix evaluated at the param-

eter value14 θ̄ and

N(θ;α,∆2Iθ̄) = 2π−N/2 exp
[
− 1

2
(θ − α)′|∆2I−1

θ̄
|−1(θ − α)

]
. (89)

In view of the parametrization by ∆ above, αµ(·) should be written as αµ,∆(·).

Proposition 4 Assume conditions (B1) to (B5), and (88) hold. Then the limit in Proposition 3 can
be written as α∆(t). As ∆→ 0, α∆(t) has the limit α(t) satisfying

dα(t) =
β

2
∇R(α(t)) dt+ dW (t), α(0) = α0. (90)

6.1 Proof Outline of Proposition 3

We present the main ideas of the proof and the underlying intuition. Define αµ(t) = αk, for
t ∈ [µk, µk+µ). As in the proof of Theorem 1 in Sec.4.2, we should still use a truncation device and
use the martingale problem formulation. However, to present the main idea without overburdening
with technical details, we will use simpler and intuitive ideas. Thus we simply assume that the
iterates are bounded. For example, we should use a smooth function with compact support f(·) as
in the proof of Theorem 1. However, for simplicity of argument, we will illustrate the idea without
using this function f(·); we will also suppress the truncation notation.

Denote by Fµt , the σ-algebra generated by {θk, ξk, α0 : k ≤ bt/µc}, where bsc denotes the
integer part of s. In what follows, we shall suppress the floor function notation. Denote by Eµt ,
the conditional expectation with respect to Fµt . We also use Eξk to denote the conditioning on
{ξj : j ≤ k}. For any δ > 0, t > 0, s > 0 and s ≤ δ, by the boundedness of the iterates, conditions
(B1), (B2), the form of γi(α) in (B3), and (B4), we have

Eµt |αµ(t+ s)− αµ(t)|2

≤ K
[
Eµt
∣∣∣µ (t+s)/µ−1∑

k=t/µ

Lµ∑
i=1

γi(αk)r̃(θi, ξk)
∣∣∣2 + Eµt

∣∣∣√µ (t+s)/µ−1∑
k=t/µ

wk

∣∣∣2]
≤ Ksµ

(t+s)/µ−1∑
k=t/µ

Eµt
∣∣∣ Lµ∑
i=1

γi(αk)r̃(θi, ξk)
∣∣∣2 +KµEµt

(t+s)/µ−1∑
k=t/µ

w′kwk ≤ Eµt γ̂
µ(δ),

where γ̂µ(δ) is a random variable. Moreover,

lim
δ→0

lim sup
µ→0

Eγ̂µ(δ) = 0.

Thus the tightness of {αµ(·)} is obtained; see Kushner (1984, p. 47).
By Prohorov’s theorem, we can extract a weakly convergent subsequence. Select such a se-

quence and still use µ as its index (for notional simplicity) with limit α(·). By Skorohod represen-
tation (without changing notation), αµ(·) converges w.p.1 to α(·). Now for any t > 0 and s > 0,

αµ(t+ s)− αµ(t) =
β

2
µ

(t+s)/µ−1∑
k=t/µ

Lµ∑
i=1

γi(αk)r̃(θi, ξk) +
√
µ

(t+s)/µ−1∑
k=t/µ

wk. (91)

14. It suffices to choose any θ̄ such that α ∼ p(·|θ̄). The precise value of θ̄ need not be known and is irrelevant to our
analysis.
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Define

Wµ(t) =
√
µ

(t/µ)−1∑
k=0

wk.

By using the classical functional invariance theorem, clearly Wµ(·) converges weakly to W (·) a
standard Brownian motion. As a consequence,

Wµ(t+ s)−Wµ(t) =
√
µ

(t+s)/µ−1∑
k=t/µ

wk

→W (t+ s)−W (t)

by the weak convergence and the Skorohod representation. To determine the limit of the drift term,
we proceed similarly to the proof of Theorem 1. In view of (21), γi(α) is continuous (and in fact
smooth) w.r.t. α. We use the finite value approximation argument as just above (76) together with
the averaging condition in (B3). That is, for each η̃ > 0, we can choose {Oη̃j : j ≤ jη̃} as a finite
collection of disjoint sets of diameter no larger than η̃ whose union covers the range of αµ(u) so
αµ(u) can be approximated by

∑jη̃
j=1 α

η̃
j 1{αη̃(u)∈Oη̃j }

. Thus using the notation as in the proof of

Theorem 1, and choosing any positive integer κ1 and tι ≤ t with ι ≤ κ1,

lim
µ→0

Eg(αµ(tι) : ι ≤ κ1)
[
µ

(t+s)/µ−1∑
k=t/µ

Lµ∑
i=1

γi(αk)r̃(θi, ξk)
]

= lim
µ→0

Eg(αµ(tι) : ι ≤ κ1)
[ t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

Lµ∑
i=1

γi(αk)r̃(θi, ξk)
]

= lim
µ→0

Eg(αµ(tι) : ι ≤ κ1)
[ t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

Elmµ
Lµ∑
i=1

γi(αlmµ)r̃(θi, ξk)
]

= lim
µ→0

Eg(αµ(tι) : ι ≤ κ1)
[ t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

Elmµ
jη̃∑
j=1

Lµ∑
i=1

γi(α
η̃
j )r̃(θi, ξk)1{αη̃(u)∈Oη̃j }

]
= lim

µ→0
Eg(αµ(tι) : ι ≤ κ1)

[ t+s∑
lδµ=t

δµ
1

mµ

lmµ+mµ−1∑
k=lmµ

Elmµ
jη̃∑
j=1

Eξk [r̃(θ, ξk)|αη̃j ]1{αη̃(u)∈Oη̃j }

]
= Eg(α(tι) : ι ≤ κ1)

[ ∫ t+s

t

∫
RN
∇Rθ(θ)p(θ|α(u))dθdu

]
,

(92)
where Eξk denotes the conditioning on {ξj : j ≤ k}. In the above, we used (85), and noted that
letting µlmµ → u yields µk → u for lmµ ≤ k ≤ lmµ + mµ. We also used (B5). Putting the
estimates together, we obtain the desired limit.

6.2 Proof Outline of Proposition 4

To prove Proposition 4, using (B5), by virtue of (88), p(θ|α) can be approximated by N(θ;α,∆2Iθ̄),

the normal density given by (89). For notational convenience denote p̃(θ, α)
4
= N(θ;α,∆2Iθ̄)

below. Now, we work with ∆→ 0. By Taylor expansion,

∇R(θ) = ∇R(α) +∇2R(α+)[θ − α],
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where ∇2R is the Hessian (the second partial derivatives) of R, and α+ is on the line segment
joining θ and α. Choose v so that εlmε → v. As a result, for any k satisfying lmε ≤ k ≤ lmε+mε,
εk → v. It follows that∫

RN
∇R(θ)p(θ|α(v))dθ =

∫
RN
∇R(θ)p̃(θ, α(v))dθ + o∆(1)

=

∫
RN
∇R(α)p̃(θ, α(v))dθ

+

∫
RN
∇2R(α+(v))[θ − α(v)]p̃(θ, α(v))dθ + o∆(1)

= ∇R(α(v)) + o∆(1)

→ ∇R(α(v)) as ∆→ 0,

(93)

where o∆(1)→ 0 in probability as ∆→ 0. Note that in the above, the form of the density implies∫
RN
∇2R(α+(v))[θ − α(v)]p̃(θ, α(v))dθ = 0.

7. Conclusions and Extensions

This paper has presented and analyzed the convergence of passive Langevin dynamics algorithms
for adaptive inverse reinforcement learning (IRL). Given noisy gradient estimates of a possibly time
evolving reward function R, the Langevin dynamics algorithm generates samples {αk} from the
Gibbs measure p(α) ∝ exp

(
βR(α)

)
; so the log of the empirical distribution of {αk} serves as a

non-parametric estimator for R(α). The proposed algorithm is a passive learning algorithm since
the gradients are not evaluated at αk by the inverse learner; instead the gradients are evaluated at
the random points θk chosen by the gradient (RL) algorithm. This passive framework is natural in
an IRL where the inverse learner passively observes forward learners.

Apart from the main IRL algorithm (2), we presented a two-time scale IRL algorithm for
variance reduction, an active IRL algorithm which deals with mis-specified gradients, and a non-
reversible diffusion IRL algorithm with larger spectral gap and therefore faster convergence to the
stationary distribution. We presented three detailed numerical examples: inverse Bayesian learn-
ing, a large dimensional IRL problem in logistic learning involving a real dataset, and IRL for a
constrained Markov decision process. Finally, we presented a complete weak convergence proof of
the IRL algorithm using martingale averaging methods. We also analyzed the tracking capabilities
of the IRL algorithm when the utility function jump changes according to a slow (but unknown)
Markov chain.

Extensions. A detailed proof of the two-time scale variance reduction algorithm involves
Bayesian asymptotics, namely, the Bernstein von Mises theorem. Since the submission of the
current paper, in a recent work (Krishnamurthy and Yin, 2020), we have developed a complete
convergence proof. It is important to note that the IRL algorithms proposed in this paper are adap-
tive: given the estimates from an adaptive gradient algorithm, the IRL algorithm learns the utility
function. In other words, we have a gradient algorithm operating in series with a Langevin dynam-
ics algorithm. In future work it is of interest to study the convergence properties of multiple such
cascaded Langevin dynamics and gradient algorithms.

The recent paper by Kamalaruban et al. (2020) shows that classical Langevin dynamics yields
more robust RL algorithms compared to classic stochastic gradient. In analogy to Kamalaruban et al.
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(2020), in future work it is worthwhile exploring how our passive Langevin dynamics framework
can be viewed as a robust version of classical passive stochastic gradient algorithms.

Finally, this paper analyzed the weak convergence and tracking properties of passive Langevin
dynamic algorithms. In future work it is of interest to analyze the asymptotic convergence rate and
spectral gap of the diffusion process induced by the proposed algorithm. This will also facilitate
quantifying how the convergence rate is affected when the step size εn of each RL agent n is chosen
randomly (and unknown to the inverse learner).
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P. Révész. How to apply the method of stochastic approximation in the non-parametric estimation of
a regression function. Statistics: A Journal of Theoretical and Applied Statistics, 8(1):119–126,
1977.

C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, 2013.

S. Ross. Introduction to Stochastic Dynamic Programming. Academic Press, San Diego, California.,
1983.

S. Ross. Simulation. Academic Press, 5 edition, 2013.

J. Spall. Introduction to Stochastic Search and Optimization. Wiley, 2003.

O. Stramer and R. L. Tweedie. Langevin-type models I: Diffusions with given stationary distribu-
tions and their discretizations. Methodology and Computing in Applied Probability, 1(3):283–
306, 1999.

R. Sutton and A. Barto. Reinforcement learning: An introduction. MIT Press, 1998.

Y. W. Teh, A. H. Thiery, and S. J. Vollmer. Consistency and fluctuations for stochastic gradient
Langevin dynamics. The Journal of Machine Learning Research, 17(1):193–225, 2016.

A. W. Van der Vaart. Asymptotic Statistics, volume 3. Cambridge University Press, 2000.

H. Varian. Revealed preference and its applications. The Economic Journal, 122(560):332–338,
2012.

M. Welling and Y. W. Teh. Bayesian learning via stochastic gradient Langevin dynamics. In Pro-
ceedings of the 28th International Conference on Machine Learning (ICML-11), pages 681–688,
2011.

44



INVERSE RL WITH PASSIVE LANGEVIN DYNAMICS

G. Yin and K. Yin. Passive stochastic approximation with constant step size and window width.
IEEE transactions on automatic control, 41(1):90–106, 1996.

G. Yin, V. Krishnamurthy, and C. Ion. Regime switching stochastic approximation algorithms with
application to adaptive discrete stochastic optimization. SIAM Journal on Optimization, 14(4):
117–1215, 2004.

G. Yin, C. Ion, and V. Krishnamurthy. How does a stochastic optimization/approximation algorithm
adapt to a randomly evolving optimum/root with jump Markov sample paths. Mathematical
programming B. (Special Issue dedicated to B.T. Polyak’s 70th Birthday), 120(1):67–99, 2009.

G. Yin, Q. Yuan, and L. Y. Wang. Asynchronous stochastic approximation algorithms for net-
worked systems: regime-switching topologies and multiscale structure. Multiscale Modeling &
Simulation, 11(3):813–839, 2013.

G. Yin and Q. Zhang. Continuous-time Markov chains and applications: a two-time-scale approach,
volume 37. Springer Science & Business Media, 2013.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA, 2008.

45



KRISHNAMURTHY AND YIN

Appendix A. Matlab Source Code for IRL Algorithm (2) in inverse Bayesian
learning of Sec.3.1. (Generates Figure 3)

1 % IRL a l g o r i t h m f o r mut imodal m i x t u r e
2 m i x t u r e w e i g h t = 0 . 5 ; nsamples =100; s i g p 1 = s q r t ( 1 0 ) ; s i g p 2 = 1 ; s i g l 1 = s q r t ( 2 ) ;

s i g l 2 = s q r t ( 2 ) ; mix tu re mean1 = 0 ; mix tu re mean2 = 1 ;
3 T = 80000000; t h = [ 0 ; 0 ] ; a l f a = randn ( 2 , 1 ) ;
4 s t e p =1e−3; l a n g s t e p 1 = 1e−5; l a n g s t e p 2 = s q r t ( l a n g s t e p 1 ) ; k e r n e l s t e p = 0 . 2 ;
5 Cker = 1 / ( 2∗ p i ∗ k e r n e l s t e p ˆ 2 ) ; k e r n e l s t e p s q = 2∗ k e r n e l s t e p ˆ 2 ;
6 a lphaIRL = z e r o s ( 2 , T ) ; e s t = z e r o s ( 2 , T ) ;
7

8 f o r i t e r = 1 : T
9 t h = randn ( 2 , 1 ) ;

10

11 % s i m u l a t e d a t a
12 i f r and < m i x t u r e w e i g h t
13 y = s i g l 1 ∗ r andn + mix tu re mean1 ;
14 e l s e
15 y = s i g l 2 ∗ r andn + mix tu re mean1 + mix tu re mean2 ;
16 end ;
17

18 t 1 = t h ( 1 ) ; t 2 = t h ( 2 ) ;
19

20 % e v a l u a t e g r a d i e n t s
21 grad1 = nsamples ∗ ( ( m i x t u r e w e i g h t ∗exp (−( t 1 − y ) ˆ 2 / ( 2 ∗ s i g l 1 ˆ 2 ) ) ∗ (2∗ t 1 − 2∗y ) )

/ ( 2 ∗ s i g l 1 ˆ 3 ) − ( exp (−( t 1 + t 2 − y ) ˆ 2 / ( 2 ∗ s i g l 2 ˆ 2 ) ) ∗ ( m i x t u r e w e i g h t − 1)
∗ (2∗ t 1 + 2∗ t 2 − 2∗y ) ) / ( 2 ∗ s i g l 2 ˆ 3 ) ) / ( ( exp (−( t 1 + t 2 − y ) ˆ 2 / ( 2 ∗ s i g l 2 ˆ 2 ) ) ∗ (
m i x t u r e w e i g h t − 1) ) / s i g l 2 − ( m i x t u r e w e i g h t ∗exp (−( t 1 − y ) ˆ 2 / ( 2 ∗ s i g l 1 ˆ 2 )
) ) / s i g l 1 ) − t 1 / ( s i g p 1 ˆ 2 ) ;

22

23 grad2 = − t 2 / ( s i g p 2 ˆ 2 ) − nsamples ∗ ( exp (−( t 1 + t 2 − y ) ˆ 2 / ( 2 ∗ s i g l 2 ˆ 2 ) ) ∗ (
m i x t u r e w e i g h t − 1) ∗ (2∗ t 1 + 2∗ t 2 − 2∗y ) ) / ( 2 ∗ s i g l 2 ˆ 3 ∗ ( ( exp (−( t 1 + t 2 − y )
ˆ 2 / ( 2 ∗ s i g l 2 ˆ 2 ) ) ∗ ( m i x t u r e w e i g h t − 1) ) / s i g l 2 − ( m i x t u r e w e i g h t ∗exp (−( t 1 − y )
ˆ 2 / ( 2 ∗ s i g l 1 ˆ 2 ) ) ) / s i g l 1 ) ) ;

24

25

26 % p a s s i v e Langevin dynamics
27 gaus = exp(− a l f a ( 1 ) ˆ 2 / 2 ) ∗ exp(− a l f a ( 2 ) ˆ 2 / 2 ) / ( 2 ∗ p i ) ;
28 a l f a = a l f a + Cker∗exp ( −(norm ( th−a l f a ) ) ˆ 2 / k e r n e l s t e p s q ) ∗ ( l a n g s t e p 1 / 2 ∗ [

g rad1 ; g rad2 ] / gaus ) + l a n g s t e p 2 ∗ r andn ( 2 , 1 ) ;
29 a lphaIRL ( : , i t e r ) = a l f a ;
30

31 % c l a s s i c a l s t o c h a s t i c g r a d i e n t
32 t h = t h + s t e p ∗ [ g rad1 ; g rad2 ] ;
33 e s t ( : , i t e r ) = t h ;
34 end ;
35 % P l o t t i n g
36 f i g u r e ( 4 ) ; h i s t o g r a m 2 ( a lphaIRL ( 1 , 5 0 0 0 : end ) , a lphaIRL ( 2 , 5 0 0 0 : end ) , ’ N o r m a l i z a t i o n

’ , ’ p r o b a b i l i t y ’ ) ;
37 a x i s ( [−3 ,3 ,−3 ,3] ) ; x l a b e l ( ’ $\ t h e t a ( 1 ) $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ F o n t S i z e ’ , 1 8 ) ;

y l a b e l ( ’ $\ t h e t a ( 2 ) $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ F o n t S i z e ’ , 1 8 ) ;
38 f i g u r e ( 5 ) ; [M1, N1 ] = h i s t 3 ( a lphaIRL ( : , 5 0 0 0 : end ) ’ , [ 2 0 , 2 0 ] ) ;
39 c o n t o u r ( N1{1} , N1{2} , M1’ ) ; a x i s ( [−3 ,3 ,−3 ,3] ) ;
40 x l a b e l ( ’ $\ t h e t a ( 1 ) $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ F o n t S i z e ’ , 1 8 ) ;
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41 y l a b e l ( ’ $\ t h e t a ( 2 ) $ ’ , ’ I n t e r p r e t e r ’ , ’ l a t e x ’ , ’ F o n t S i z e ’ , 1 8 ) ; g r i d on ; co lormap (
j e t ) ;

Appendix B. Matlab Source Code for multi-kernel IRL (20) for Logistic Regression
in Sec. 3.2

1 % Mult i−k e r n e l IRL f o r l o g i s t i c r e g r e s s i o n a9a d a t a s e t
2

3 %Algor i t hm p a r a m e t e r s
4 l a n g s t e p 1 = 0 . 2 5 e−3; l a n g s t e p 2 = s q r t ( l a n g s t e p 1 ) ; s i g m a t h e t a =1;
5 s i g m a k e r n e l = 0 . 1 ; L =100; i n c r e m e n t s i g = 0 . 1 ;
6

7 % Read a9a D a t a s e t
8 l o a d d a t a s e t F e a t u r e s . mat ; l o a d d a t a s e t L a b e l s . mat ;
9

10

11 thd im = s i z e ( f e a t u r e s , 1 ) + 1 ; T = 32400 ; ; Nsweep =10; nsamples =10;
12 l a b e l s ( l a b e l s <0) = 0 ; % s e t a l l −1 t o 0
13

14 e s t = z e r o s ( thdim , T∗Nsweep ) ; t h = z e r o s ( thdim , 1 ) ; a l f a = t h ;
15

16 f o r sweep = 1 : Nsweep
17

18 f o r i t e r =1 :T
19

20 t h = s i g m a t h e t a ∗ r andn ( thdim , L ) ; % RL c h o o s e s t h randomly
21 d = vecnorm ( th−a l f a ) ;
22 we ig h t =10ˆ (2∗ thd im ) ∗exp(− d . ˆ 2 / ( 2 ∗ s i g m a k e r n e l ) ) ;
23

24 i f ( sum ( w e ig h t ) < 1e−60)
25 a l f a = 0 . 1∗ r andn ( thdim , 1 ) ; %r e s e t a l f a i f s t u c k
26 end ;
27 nwe igh t = w e i gh t / sum ( w e i gh t ) ;
28

29

30 p s i = [ 1 ; f e a t u r e s ( : , i t e r ) ] ; y = l a b e l s ( i t e r ) ;
31 s igmoidy = 1 . / ( 1 + exp(−p s i ’∗ t h ) ) ;
32 wgrad = ( nsamples ∗ p s i .∗ ( y − s igmoidy ) − s i g n ( t h ) ) ∗ nweight ’ ;
33

34

35 k = ( sweep−1) ∗ T + i t e r ; k ,
36

37 % l o g i s t i c r e g r e s s i o n s t e p f o r IRL a l g o r i t h m
38 a l f a = a l f a +0 .5∗ l a n g s t e p 1 ∗ wgrad + l a n g s t e p 2 ∗ r andn ( thdim , 1 ) ;
39

40 e s t ( : , k ) = a l f a ;
41 end ;
42 end ;
43

44 f i g u r e ( 4 ) ; h i s t o g r a m ( e s t ( 1 , : ) , ’ N o r m a l i z a t i o n ’ , ’ p r o b a b i l i t y ’ ) ;
45 t i t l e ( ’ Mul t i−k e r n e l a l g o r i t h m ’ )

Remarks: Out of 10 sweeps, where each sweep has 32000 iterations, only 14 resets (line 25)
were required for L = 100 in IRL algorithm (20).

47



KRISHNAMURTHY AND YIN

Appendix C. Matlab Source Code for multi-kernel IRL (54) to solve Constrained
MDP in Sec.3.3. (Generates Fig.6(b) and (c))

1 % Mult i−k e r n e l IRL f o r MDP
2

3 T = 150000; g r i d p o i n t s = 100 ;
4 t p ( : , : , 1 ) = [ 0 . 8 0 . 2 ; 0 . 3 0 . 7 ] ; t p ( : , : , 2 ) = [ 0 . 6 0 . 4 ; 0 . 1 0 . 9 ] ;
5 s t a t e d i m =2; a c t i o n d i m = 2 ;
6 l a n g s t e p 1 =5e−6; l a n g s t e p 2 = s q r t ( l a n g s t e p 1 ) ;
7 l s t e p = 1 /2∗ l a n g s t e p 1 ;
8

9 c o s t = [1 100 ; 30 2 ] ; c o n s t r a i n t = [ 0 . 2 0 . 3 ; 2 1 ] ; lambda =1 e5 ;
10 i n v e r s e s t e p = g r i d p o i n t s / 2 ;
11

12 p o l = z e r o s ( s t a t e d i m , g r i d p o i n t s ˆ 2 ) ; P e n a l t y R e w a r d = z e r o s ( g r i d p o i n t s ˆ 2 , 1 ) ;
13 p o l c o n = z e r o s ( g r i d p o i n t s ˆ 2 , 1 ) ;
14 p o l e v a l = z e r o s ( g r i d p o i n t s , g r i d p o i n t s ) ; a l f a = z e r o s ( 2 , T ) ; c o n d p r o b = z e r o s ( 2 ,

T ) ;
15

16 % Solve avg c o s t MDP e x a c t l y , ove r a g r i d o f 100 x100 p o s s i b l e randomized
p o l i c i e s

17 f o r i =1 : g r i d p o i n t s −1,
18 f o r j =1 : g r i d p o i n t s −1,
19

20 k = g r i d p o i n t s ∗ ( i −1)+ j ;
21

22 p o l i c y = [ i / g r i d p o i n t s , 1 − i / g r i d p o i n t s ; j / g r i d p o i n t s , 1− j / g r i d p o i n t s ] ;
23 p o l ( : , k ) = [ p o l i c y ( 1 , 1 ) ; p o l i c y ( 2 , 1 ) ] ;
24

25 [ p o l v a l , po l c on ] = m d p b a r r i e r ( c o s t , c o n s t r a i n t , p o l i c y , t p ) ; % e x t e r n a l
f u n c t i o n

26 p o l c o n ( k ) = po l co n ;
27 P e n a l t y R e w a r d ( k ) = p o l v a l − lambda ∗ ( ( 1 − po l c on ) ˆ 2 ) ;
28 p o l e v a l ( i , j ) = P e n a l t y R e w a r d ( k ) ;
29 end ;
30 end
31

32 f i g u r e ( 7 ) ; s tem3 ( p o l ( 1 , : ) , p o l ( 2 , : ) , Pena l ty Reward , ’ Marke rFaceColo r ’ , ’ g ’ )
33 x l a b e l ( ’ po l1 ’ ) ; y l a b e l ( ’ po l2 ’ ) ;
34

35 % E v a l u a t e and s t o r e f i n i t e d i f f e r e n c e g r a d i e n t s o f MDP ove r a 100 x100 g r i d
36 f o r i =2 : g r i d p o i n t s −1,
37 f o r j =2 : g r i d p o i n t s −1,
38 g rad ( i , j , 1 ) = ( p o l e v a l ( i +1 , j ) − p o l e v a l ( i −1, j ) ) ∗ i n v e r s e s t e p ;
39 g rad ( i , j , 2 ) = ( p o l e v a l ( i , j +1) − p o l e v a l ( i , j −1) ) ∗ i n v e r s e s t e p ;
40 end
41 end
42 %%%%%%%%%%%%%%%%%%%%%%%%%%
43 % IRL a l g o r i t h m
44 k e r n e l s t e p = 0 . 1 ;
45 a l f a b a r = [ 1 ; 1 ] ; Cker = 1 / ( 2∗ p i ∗ k e r n e l s t e p ˆ 2 ) ; L=50;
46

47 f o r k =1:T ,
48 t h b a r = p i / 2∗ r and ( 2 , L ) ;
49 d = vecnorm ( a l f a b a r−t h b a r ) ;
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50 we ig h t =10∗ exp(− d . ˆ 2 / ( 2 ∗ k e r n e l s t e p ˆ 2 ) ) ;
51 i f ( sum ( w e ig h t ) < 1e−6)
52 a l f a b a r = 0 . 1∗ r andn ( 2 , 1 ) ; %r e s e t a l f a i f s t u c k
53 end ;
54 nwe igh t = w e i gh t / sum ( w e i gh t ) ;
55 p = ( s i n ( t h b a r ) ) . ˆ 2 ;
56 p i nd ex = min ( max ( round ( g r i d p o i n t s ∗ p ) , [ 1 ; 1 ] ) , [ g r i d p o i n t s −1; g r i d p o i n t s −1]) ;
57 g h a t p = z e r o s ( 2 , 1 ) ;
58 f o r i =1 :L
59 g h a t p = [ g rad ( p i nd ex ( 1 , i ) , p i nd ex ( 2 , i ) , 1 ) ; g r ad ( p i nd ex ( 1 , i ) , p ind ex ( 2 , i )

, 2 ) ] .∗ s i n ( t h b a r ( : , i ) ) .∗ cos ( t h b a r ( : , i ) ) ∗ nwe igh t ( i ) + g h a t p ;
60 end ;
61 ghatm = 2∗ g h a t p ; % w e i g h t e d g r a d i e n t
62 % P a s s i v e Langevin dynamics
63 a l f a b a r = a l f a b a r + ( l s t e p ∗ ghatm ) + l a n g s t e p 2 ∗ r andn ( 2 , 1 ) ; a l f a b a r =

abs ( a l f a b a r ) ;
64 a l f a ( : , k ) = a l f a b a r ;
65 c o n d p r o b ( : , k ) = ( s i n ( a l f a b a r ) ) . ˆ 2 ; %p o l i c y c o n d i t i o n a l p r o b a b i l i t i e s
66 end ;
67 % p l o t l o g o f e m p i r i c a l d e n s i t y
68 [M,N] = h i s t 3 ( c o n d p r o b ( : , T / 2 : end ) ’ , [ 1 0 0 , 1 0 0 ] ) ;
69 f i g u r e ( 3 ) ; s tem3 ( f l i p (N{1} ) , f l i p (N{2} ) , ( l o g (M) ) , ’ MarkerFaceColo r ’ , ’ g ’ ) ;
70 x l a b e l ( ’ po l1 ’ ) ; y l a b e l ( ’ po l2 ’ ) ;

External Function used in above program

1 f u n c t i o n [ a v g c o s t , a v g c o n s t r a i n t ] = m d p b a r r i e r ( c o s t , c o n s t r a i n t , pol , t p )
2 % e v a l u a t e MDP p o l i c y f o r a v e r a g e c o s t MDP
3

4 s t a t e d i m = s i z e ( c o s t , 1 ) ; a c t i o n d i m = s i z e ( c o s t , 2 ) ;
5

6 %t p ( : , : , 1 ) = [ 0 . 8 0 . 2 ; 0 . 3 0 . 7 ] ; t p ( : , : , 2 ) = [ 0 . 6 0 . 4 ; 0 . 1 0 . 9 ] ;
7 %p o l = [ 0 . 8 , 0 . 2 ; 0 . 3 0 . 7 ] ;
8

9 %c o s t = [1 1 0 ; 3 2 ] ;
10

11 f o r i =1 : s t a t e d i m
12 f o r a =1: a c t i o n d i m
13 l = a + ( i −1)∗ a c t i o n d i m ;
14 f o r j = 1 : s t a t e d i m
15 f o r a b a r = 1 : a c t i o n d i m
16 m = a b a r + ( j −1)∗ a c t i o n d i m ;
17 t p c o m p o s i t e ( l ,m) = t p ( i , j , a ) ∗ p o l ( j , a b a r ) ;
18 end ;
19 end ;
20 c o s t v e c t o r ( l ) = c o s t ( i , a ) ;
21 c o n s t r a i n t v e c t o r ( l ) = c o n s t r a i n t ( i , a ) ;
22 end ;
23 end ;
24

25 [ aa , bb ] = e i g ( t p c o m p o s i t e ’ ) ;
26 j o i n t p r o b = aa ( : , 1 ) / sum ( aa ( : , 1 ) ) ;
27

28 a v g c o n s t r a i n t = c o n s t r a i n t v e c t o r ∗ j o i n t p r o b ;
29

30 a v g c o s t = c o s t v e c t o r ∗ j o i n t p r o b ;
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