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Abstract

Temporal-Difference off-policy algorithms are among the building blocks of reinforcement
learning (RL). Within this family, @-Learning is arguably the most famous one, which
has been widely studied and extended. The update rule of @-learning involves the use
of the maximum operator to estimate the maximum expected value of the return. How-
ever, this estimate is positively biased, and may hinder the learning process, especially
in stochastic environments and when function approximation is used. We introduce the
Weighted Estimator as an effective solution to mitigate the negative effects of overestima-
tion in @-Learning. The Weighted Estimator estimates the maximum expected value as a
weighted sum of the action values, with the weights being the probabilities that each action
value is the maximum. In this work, we study the problem from the statistical perspec-
tive of estimating the maximum expected value of a set of random variables and provide
bounds to the bias and the variance of the Weighted Estimator, showing its advantages
over other estimators present in literature. Then, we derive algorithms to enable the use of
the Weighted Estimator, in place of the Maximum Estimator, in online and batch RL, and
we introduce a novel algorithm for deep RL. Finally, we empirically evaluate our algorithms
in a large set of heterogeneous problems, encompassing discrete and continuous, low and
high dimensional, deterministic and stochastic environments. Experimental results show
the effectiveness of the Weighted Estimator in controlling the bias of the estimate, resulting
in better performance than representative baselines and robust learning w.r.t. a large set
of diverse environments.
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1. Introduction

Reinforcement Learning (RL) aims at learning how to make optimal decisions in unknown
environments by solving credit assignment problems that extend over time. In order to
be sample-efficient learners, agents are required to constantly update their own beliefs
about the environment and which actions are good and which are not. Temporal dif-
ference (TD) (Sutton and Barto, 1998) and off-policy learning are the core elements of
this kind of behavior, for which @-Learning (Watkins, 1989) is one of the most represen-
tative and well-studied algorithms. )-Learning-based algorithms have been successful in a
wide variety of problems and, in recent years, they are driving RL research towards solv-
ing complex problems, achieving super-human performance on many of them, e.g., deep
Q@-Learning (Mnih et al., 2015; Badia et al., 2020). Nonetheless, the Maximum Estima-
tor (ME) used in @Q-Learning to estimate the maximum expected value (MEV) of the
action-values, is positively biased (Van Hasselt, 2010). The resulting overoptimism can
be particularly harmful in stochastic environments and when using function approxima-
tion (Thrun and Schwartz, 1993), especially in the case where the approximators are deep
neural networks (Van Hasselt et al., 2016). Systematic overestimation of the action-values,
coupled with the inherently high variance of stochastic problems, can lead to incremental
accumulations of errors which slow down the convergence of the learning algorithm or, more
critically, cause the algorithm to diverge when function approximation is used.

The Double @Q-Learning algorithm (Van Hasselt, 2010) and its extension to deep RL,
Double DQN (Van Hasselt et al., 2016), tackle the overestimation problem by replacing ME
with the Double Estimator (DE) (Van Hasselt, 2013), an estimator that disentangles the
choice of the target action and its evaluation. This estimate is negatively biased (Van Has-
selt, 2013), resulting in an underestimation that can lead to better performance in some
environments due to its robustness to stochastic returns and errors introduced by function
approximation, compared to the standard Q-Learning. More recently, Lan et al. (2020) in-
troduced the Maxmin Estimator (MME) as a novel solution to mitigate the overestimation
bias, which uses an ensemble of function approximators to estimate the MEV. Overopti-
mism, in general, is not uniform over the state space and may induce to overestimate the
value of arbitrarily bad actions. The same applies, symmetrically, to overly pessimistic es-
timates that might undervalue a good course of action. Ideally, we would like to exploit the
uncertainty about the optimality of each action to make informed estimations of expected
returns. This is exactly what we achieve in this work.

More specifically, we propose the Weighted Estimator (WE), which consists of a weighted
average of the action values, where the weights are obtained by estimating the probability
that each action value is the largest one (D’Eramo et al., 2016). Computing such proba-
bilities requires knowledge of the distribution of the action values, notably unknown. By
relying on the central limit theorem, we approximate the distributions of the action values
with Gaussian distributions parameterized by the sample mean and the sample variance.
We study the theoretical properties of WE showing that its bias can be either positive or
negative, but it is always between the bias of ME, DE, and MME. Then, we derive a variant
of @-Learning, and its offline variant Fitted Q-Iteration (FQI) (Ernst et al., 2005), replacing
ME with WE, leading respectively to the Weighted Q-Learning (D’Eramo et al., 2016) and
Weighted Fitted Q-Iteration (D’Eramo et al., 2017) algorithms. Furthermore, in this work,
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we propose a novel method enabling the use of WE in deep RL. In particular, we exploit
recent developments in Bayesian deep learning to model the uncertainty of deep RL agents
using neural networks trained with dropout variational inference (Kingma et al., 2015; Gal
and Ghahramani, 2016; Gal et al., 2017). We combine, in a novel way, the dropout un-
certainty estimates with the Weighted Q-Learning algorithm, extending it to the deep RL
setting. The proposed Deep Weighted @Q-Learning algorithm, or Weighted DQN (WDQN),
leverages on an approximated posterior distribution on @-networks to reduce the bias of
deep Q-Learning. WDQN requires only minor modifications to the baseline algorithm and
its computational overhead is negligible on modern GPUs. WDQN extends the approach
to the large and expressive family of value functions parameterized with deep neural net-
works, able to cope with the complexity and high dimensionality of real-world problems.
Overall, the framework for bias reduction in @)-Learning proposed in (D’Eramo et al., 2016,
2017) is theoretically grounded and general, and can be straightforwardly used in classic
RL algorithms. WDQN completes the picture adding scalability. Moreover, the use of WE
is orthogonal to a wide range of (deep) @-Learning extensions. Empirically, we show that
WE reduces the bias of -Learning and improves performance on a wide variety of tasks
from simple grid worlds to Atari games.

The rest of the paper is organized as follows. In the next section, we formally describe the
notions and mathematical notation of the RL setting we consider: we adopt an estimation
theory point of view to study the maximum action value estimation problem. In Section 3,
we introduce WE for both discrete and continuous action spaces. Section 4 studies the
theoretical properties of WE in terms of bias and variance, comparing them with the ME,
DE, and MME ones, and assesses its computational complexity. In Section 5, we introduce
WE-based algorithms for online, offline, and deep RL. Section 6 is dedicated to the extensive
evaluation of our RL methodologies, where we show and discuss the empirical evidence of
the benefit of WE w.r.t. ME, DE, and MME. Section 7 provides additional references to
the state of the art and Section 8 draws the conclusions of this work.

2. Preliminaries
2.1 Markov Decision Processes

Reinforcement Learning (RL) aims at solving decision problems formalized as Markov Deci-
sion Processes (MDPs) and defined as a 5-tuple (S, A, P, R,~) where S is the state space, A
is the action space, P is a Markovian transition model with P(s’|s, a) being the probability
density of reaching state s’ when taking action a in state s, R : S x A x S — R is the
reward function and v € [0, 1) is the discount factor of future rewards. A policy 7 defines
a distribution on the action space 7 : § x A — [0,1] for each state. Following a policy
m, the @Q-value of an action a in a state s is the expected discounted cumulative reward
that is obtained performing action a in state s and following the policy 7 thereafter. The
Q-function maps each state-action pair to the respective ()-value and can be written as
Q7 (s,a) = E, [Zfio Yirei1]so = s, a0 = a], where ry11 is the reward received after the ¢-th
transition. An optimal policy 7* is one that maximizes the expected discounted cumulative
reward. Optimal policies can be found by learning the optimal action-value function Q*,
i.e., the @-function of the optimal policy. The optimal action-value function satisfies the
Bellman optimality equation (Bellman, 1954):



D’EraMO, CIiNI, NUARA, PIROTTA, ALIPPI, PETERS, RESTELLI

Q*(s,a) =E |:Tt+1 + ’YHLE}X Q" (st+1, a/)‘st = 8,4t = Q, St41 = 8/]

- /SP(S’|s,a) (R(s,a, s') —|—’7HZE}XQ* (s',a')) ds'. (1)

For the sake of clarity, in our notation, we will omit the timestep index ¢ when it is obvious
from context. The estimation of the max operator in Equation 1 has a critical role in RL,
and in particular in the well-known Q-Learning algorithm (Watkins, 1989), which is the
object of the study conducted in this paper. In the following, we approach the maximum
expected value estimation problem from a statistical point of view, and then we focus on
the specific case of Q)-Learning.

2.2 Estimating the maximum action value

Given a finite action space A of M > 2 actions, we define a set of M independent random
variables R® = {R;,,...,R; } = {R},..., R}}, each referring to the stochastic return
obtained by executing a particular action a; in state s, and following policy 7 thereafter,
such that Q™ (s,a) = E; [RS|s, a]. Consequently, the optimal action-value function (1) can

be rewritten as
Q*(s,a) =E [r + ymaxE- [sz/] |5,a,s'} . (2)
a/

For ease of notation, in the following we omit the state s in superscripts when the information
about the state is not relevant and we use interchangeably as subscripts actions a; and their
indexes ¢. For each variable R, we denote with f, : R — Ry>( its probability density
function (PDF), with F, : R — [0, 1] its cumulative density function (CDF), with ¢, its
mean, and with o2 its variance. We adopt a statistical of point view to examine the crucial
problem of estimating the maximum action value in Equation (2), by framing it as the
maximum expected value (MEV) estimation problem, defined as

+oo
¢«(R) = max g, = max/ zfo(x) dz. (3)
a a oo

Unfortunately, g«(R) cannot be found analytically if PDFs are unknown. However, ¢.(R)
can be estimated by using a set samples I' = {I', ...,I'js} from the unknown distributions
of each R, to build an estimator ¢,(I"). Given the sample means ¢;(I'), ..., ¢as(I"), unbiased
estimators of the true means qi, ..., ¢y, we denote the PDF and CDF of ¢,(I") by f{ and
Fg . In general, we indicate with the superscript I' that the superscripted quantity should
be evaluated over the sampling of I' (i.e., I" itself should be considered as a random vari-
able). Finally, it should be noted that action value estimates are generally not independent
in sequential problems, nonetheless the independence assumption is useful to analyze the
properties of estimators.

2.2.1 MAXIMUM ESTIMATOR

Several methods to estimate the MEV have been proposed in the literature. The most
straightforward one is the Maximum Estimator (ME) which approximates the MEV with
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the maximum of the sample means
inWE(F) = mélx@z(r) ~ Q*(R)7 (4)

where the symbol ~ means that ¢M ¥ (T") should be intended as an estimate of g.(R). How-
ever, the expected value of the ME is different from the MEV in (3). Consider the CDF
Fmax(x) of ME, corresponding to the probability that ME is less than or equal to x. This
probability is equal to the probability that all other estimates are less than or equal to x:

A M M A
mew:Pmyﬁﬂgﬂzllﬂ@ngllﬂm)

Considering the PDF fmax, the expected value of the ME is E [AME] = E[max, 4,] =
f_oo $fmax( )dx. This is equal to

0o M M
IamyE}zl/ éiIIF cm__E:/a zfi(x) [[ Fi(z) da.
= i

The presence of z in the integral correlates with the monotonically increasing product
Hl oy F; j(x), making the estimator positively biased (Van Hasselt, 2010; Smith and Winkler,
2006).

2.2.2 DOUBLE ESTIMATOR

To solve the overestimation problem in RL, a method called Double Estimator (DE) was
proposed in (Van Hasselt, 2010). DE uses a sample set I' drawn from the true unknown
distribution as in ME, and splits it into two disjoint subsets T4 = {T'{},..., T4/} and
I'B = {TP,...,TB}. If sets are populated by uniformly drawing samples from I' without
replacement the sample means G, (I'4) and G, (I'?) are unbiased estimates of the correspond-
ing true mean ¢g,. One of the two sets is used as a validation set to select a candidate a*,
such that G.«(I'Y) = max, §o(I'), and the other set is used to estimate the corresponding
expected value, i.e., the DE estimate of the MEV:

7 (1) = 4= (TP) = au(R). ()

Obviously, this can be done all the way around by flipping the two datasets, obtaining
a second estimate, hence obtaining a second estimate. The 2-fold Cross Validation (CV)
estimator averages of the two estimates (Van Hasselt, 2013)!. Like ME, the expected value
of DE can be found as

ADE ZP [ Z(FB)] _ FB / fz HFA (6)

1= Jj#i

1. To keep the sets T4 and I'? disjoint, the C'V estimator cannot be used in the Q-learning update rule, but
only in the policy (Van Hasselt, 2010). To achieve a fair comparison, however, we use the CV estimator
in place of DE whenever possible (e.g., bandits and single-step problems).
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Note that if [['4] = |T'B| = |T'|/2, the expected value of the 2-fold CV estimator and DE
(and consequently their bias) are the same (while DE has double the variance of the CV
estimator). This formula can be seen as a weighted sum of the expected values of random
variables in which the weights are the probabilities of each variable being the maximum given
the set of observed samples. Since these probabilities sum up to one, the approximation
given by DE results in a value less than or equal to the MEV.

2.2.3 MAXMIN ESTIMATOR

Lan et al. (2020) introduced the Maxmin @)-Learning as a flexible algorithm to mitigate the
overestimation bias using a new estimator, here referred to as Maxmin Estimator (MME).
MME randomly splits the sample set I" in N disjoint and equally sized subsets T'!, ... 'V,
such that each of the N estimators ¢,(I'V) is an unbiased estimator of g,. Then, MME
selects for each sample mean the minimum among the N estimates, and finally estimates
the MEV by taking the maximum over actions:

@M = maxmin (1) ~ ¢. (). (7)
The intuitive idea behind the effectiveness of MME is that the negative bias introduced
by the use of the min operator balances the positively polarized bias introduced by the
max. Unfortunately, striking a balance depends on the number of actions M, the number of
estimators N, and the actual distribution of the random variables in each state. Lan et al.
(2020) analyze the bias of MME under the assumption that the estimators (the sample
means) are uniformly distributed. The expected value of MME can be written as

M N ) )
E[g™MF] =3P <z = arg imaxmjinq}(F”) E [¢:(T7)] . (8)

i=1 j=1

2.3 -Learning and the bias of action-value estimates

A classic algorithm to solve finite MDPs is Q-Learning (Watkins, 1989), an off-policy algo-
rithm that updates the action-value function @ at each step as

Qui(sta1) = Qilsisar) + aslsisar) (e +ymax Qu(se1,0) = Qulsesar)) . (9)

where ay(s¢, at) is a learning rate, v is a discount factor and 7, is the immediate reward
obtained by taking action a; in state s;. It is possible to show that since @-learning is
a stochastic approximation algorithm, assuming that each state-action pair is visited in-
finitely often and the step sequence satisfies the Robbins-Monro conditions, (J; converges
to @* (Watkins, 1989). However, under particular conditions, such as wrong tuning of hy-
perparameters and highly stochastic environments, the convergence speed of the Q)-function
estimates to @Q* can be impractically slow. One of the main reasons is that Q-learning uses
the ME to estimate the maximum @-value of the next state sy;;1. Since this estimator is
positively biased and the error is propagated at each step, wrong estimates of the )-function
may cause the algorithm to never converge in practice.

In recent years, different approaches have been proposed trying to overcome this is-
sue (Lee et al., 2013; Bellemare et al., 2016; Zhang et al., 2017; Lan et al., 2020). In
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particular, the most commonly used one is the Double Q-Learning algorithm (Van Hasselt,
2010) which replaces the ME used in @-Learning with DE. The underestimation of the
Q-function performed by Double @Q-Learning allows learning a good policy in environments
where Q-Learning fails (e.g., highly stochastic environments with a long or infinite time
horizon or large action spaces). On the other hand, as shown by D’Eramo et al. (2016)
and Lan et al. (2020), the overestimation bias of )-Learning is not always harmful and it
may even be convenient when the action values are significantly different (e.g., deterministic
environments with a short time horizon or with small action spaces). In fact, depending
on the problem, both algorithms have properties that can be detrimental to learning and it
is not always clear which estimator should be preferred. Maxmin @-Learning, conversely,
allows the designer to control the direction of the bias by tuning the number of estimators.
However the distribution of the action values might drastically change over the state-space,
making the selection of the optimal configuration an hard task.

Given the above, we argue that the study of an estimator whose bias is not always
polarized in the same direction across the state-space, regardless of the hyperparameters,
is in order.

3. Weighted Estimator

We propose the Weighted Estimator (WE), to estimate the maximum expected value (MEV)
¢«(R) computing a weighted mean of all the sample averages

Q") =Y da(D)wa(T) ~ ¢.(R), (10)
a€A

where each weight w,(I") is an estimate of the probability of §,(I") being larger than all
other samples means:

()~ P (d0(D) = myx (1) )

Assuming the PDFs faF for each ¢,(I") are known, we can compute the Distribution-aware
Weighted Estimator (DWE):

M M oo Mo
PVEr) =3 P (6(1) = max () Ela()] = B [ @ [[F@) o
=1 i=1 e e

(11)
The sample mean §,(T") is a random variable whose expected value is g, and whose vari-
ance is E—CZ‘ Unfortunately, its PDF f(f depends on the PDF f, of the random variable
R, that is assumed to be unknown. In particular, if R, is normally distributed, then,
independently of the sample size, the sampling distribution of its sample mean is normal

too: Go(T') ~ N (qa, ﬁf—a) On the other hand, by the central limit theorem (CLT), the

sampling distribution far of the sample mean ¢,(I") approaches the normal distribution as
the number of samples |I';| increases, independently of the distribution of R,. Leveraging
on these considerations, we propose to approximate the distribution of the sample mean
Go(I") with a normal distribution, where we replace the (unknown) population mean and
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variance of variable R, with their (unbiased) sample estimates fi,(I") and ,(T):

Finally, the WE can be computed as:

M Yoo M
@”mzz%m%m=2mm/ () [ EE (2) da. (12)
=1 j#i

acA i= -

Note that under the assumption that the variance of each R, is finite, WE is consistent
with ¢.(R): as the number of samples grows to infinity, each sample mean ¢, converges to
the related population mean g,, and the variance of the normal distribution fa tends to
zero. Consequently, the weights of the variables with expected value less than ¢.(R) go to
zero, so that ¢V'F — q.(R).

3.1 Generalization to infinite random variables

We want to generalize WE to handle an infinite number of continuous random variables,
i.e., a continuous action space. Let us consider a continuous space of random variables A
equipped with some metrics (e.g., a Polish space) and assume that the variables in A have
some spatial correlation and that a maximum expected value exists. We choose A to be a
closed interval in R, and we indicate each random variable (return) using the corresponding
real-valued index (action). We assume that each variable indexed by a € A has unknown
bounded mean g, and bounded variance o2. Given a set of samples I, we can compute an
estimate ¢q(I") of the expected value ¢, for any a € A. The weighted sum of equation (10)
generalizes to an integral over the space A:

ﬁ%mz/%mmMMm (13)
A

where w4(T") is the approximate probability density for a corresponding to the variable with
the largest mean (i.e., the largest expected return), which plays the same role of the weights
used in (10). Given the distribution f}: of G4(T"), the computation of the exact density is
similar to what is done in (11) for the computation of the DWE, with the major difference
that in the continuous case we have to (ideally) consider a product of infinite cumulative
distributions. We provide a tractable formulation of such density function as
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wo (L) = f <éa(F) = sup éy(F)> (14)
yeA
- |t =) P (qy< )<a, VyeA\{a})dw (15)
[ R@rl A amss)i (16)
- yGA\{a}
(Ayeadn(® <)
/ @) = za a7
. )I Fy ()™
:/_Oofg(w) 71:’5( ) d (18)

where (16)-(17) follow from the independence assumption. The numerator term in (18) is
the product integral in geometric calculus (i.e., the generalization of the product operator
to continuous supports) and can be related to the classical calculus through the following
relation: T(A Fy (x)®™ = exp ([, In F,, (x)dy) (Grossman and Katz, 1972, Sec. 2.6).

3.1.1 SPATIALLY CORRELATED VARIABLES

We have assumed the random variables to be spatially correlated to be able to use any
regression technique to approximate the empirical means and generalize over poorly or
unobserved regions. Now, we need to restrict the regression class to methods for which
the uncertainty of the outcome can be evaluated. Let g be a generic regressor whose
predictions are the mean of a variable indicated by a and the variance (confidence) of the

predicted mean (i.e. (qa,m ) < g(a )) Analogously to the the discrete case, we exploit

the CLT to approximate the distribution of the sample mean f{ with a normal distribution
JE =N (doso

As a result, the WE for infinite random variables is

0o efAlnF (z)dy
iWET) = ] =/ q I () ————daxda.
2w = [ ar) e [ @) [ @S e 9)

Since in the general case no closed-form solution exists for the above integrals, as in the
finite case, the WE can be computed through numerical integration (e.g., trapezoidal rule
or Romberg integration).

Gaussian Process regression. We propose to use Gaussian Process (GP) regression (Ras-
mussen and Williams, 2005), since it provides both an estimate of the process mean, and
its variance. Consider having a GP trained on a data set of N samples D = {a;,q;}¥,,
where ¢; is a noisy sample drawn from the distribution of the random variable in a;. Given
a new input a,, our objective is to predict the expected value of g, such that g, = f(a.)+e€
where € ~ N (0,0727) is a noise random variable and f is the unknown function generating
the data. Given a kernel function k£ used to measure the covariance between two points
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(ai,aj) and an estimate of the noise variance (7727, the GP approximation for a certain a, is

g ~ N (cj*,ffg* + 072] I) where:

g -1
4=kl (K+olI)  q o)
62, = Cov(g.) = k(2 22) — 1 (K +021) k.,

and k, is the column vector of covariances between a, and all the input points in D (kgf) =
K (ai, a4)), K is the covariance matrix computed over the training inputs (K“) = k(a;, a;)),
and q is the vector of training targets. Given the mean estimate in (20), the application of
ME and DE is straightforward, while using WE requires to estimate also the variance of the
mean estimates. The variance of the GP target ¢, is composed by the variance of the mean
(&g*) and the variance of the noise (ag) (Rasmussen and Williams, 2005). As a result, by
only considering the mean contribute, we approximate the distribution of the sample mean

by fP~ fP =N <cja,&q2a> as defined in Equations (20).

4. Theoretical and empirical analysis

We theoretically analyze the estimation error of WE in terms of bias and variance, com-
paring it with the results available for ME and DE. We also discuss some of the properties
of MME and how it compares with the other estimators. Although DWE cannot be used
in practice, we include it in the following analysis as it provides an upper limit to the accu-
racy of WE. Note that except for the DWE case, we do not assume the distribution of the
random variables to be known.

4.1 Bias

We start by summarizing the main results on the bias of ME and DE reported in (D’Eramo
et al., 2016; Van Hasselt, 2013). For what concerns the direction of the bias, ME is positively
biased, while DE is negatively biased. However, if we look at the absolute bias, there is
no clear winner. An easy way to understand why ME is positively biased is to evaluate
it in a limit case. Suppose we have two identically distributed random variables and that
we want to estimate the MEV of these two variables. Using ME, given two sample means,
we would estimate the MEV as the maximum of the two sample means. However, as we
said, the two random variables have the same true mean but using this approach we would
overestimate the true mean by choosing a sample mean that, due to randomness, is greater
than the other and probably higher than the true average. Conversely, DE is unbiased in
this setting. When the maximum expected value is sufficiently larger than the expected
values of the other variables, the absolute bias of ME can be significantly smaller than the
one of DE. A wide analysis provided in (Van Hasselt, 2013) shows that the bias of ME is
bounded by:

2

lox:
i (21)
T4

M
N M-1
Blas(qi\/[E)S i ;

10
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For the bias of DE, Van Hasselt (2013) conjectures the following bound (which is proved
for two variables):

. (aDEy < 1 9 9
BlaS(q* )2 5 Z]I’A+ ;]I‘B

The bias of WE can be positive or negative. By estimating the probabilities and the
means from the same dataset, WE introduces a positive bias due to the positive correlation
of these measures. On the other hand, the bias is reduced by computing a weighted average
of the sample means. In the next theorem, we provide a relationship between the bias of
WE and the one of ME.

Theorem 1 For any given set R of M random variables:

M—-1 M o?
Bias(¢VF) < Bias(gM¥) < m > |rz-|‘
i=1 7"

The proof of this theorem follows directly from observing that ¢V¥ is always smaller than
GME_In fact, ME can be seen as a WE giving probability one to the variable associated
with the largest sample mean fi;, so that any other weighting cannot produce a larger value.

As shown empirically in Section 6, this does not mean that the absolute bias of WE is
necessarily smaller than the one of ME, since the bias of WE can be also negative. The bias
of WE, indeed, is lower bounded by the bias of DE as shown in (D’Eramo et al., 2016).

Theorem 2 For any given set R of M random variables:

1 M o2 M o2
Bias((jZVE) > Bias((jEE) 2 D) Z ‘rj4| T Z |I’j9|
=1 K3 =1 ?

Proof Similarly to Theorem 1, we consider Equation (6) and Equation (12). Both are
weighted averages of samples means, where weights are estimates of the probability for each
sample mean of being the maximum. However, as noted before, the weights of WE are
computed from the same dataset, causing a positive correlation between them and sample
means. In contrast, the weights of DE are computed w.r.t. two independent set of samples,
thus not being correlated to the sample means. Hence, the bias of WE is greater or equal
than the bias of DE. [ ]

The bias of MME depends on both the number of random variables M and the number
of estimators IV, which can represent an advantage, allowing the designer to calibrate the
estimate for a specific problem (Lan et al., 2020). On the other hand, choosing the right
number of estimators is not an easy task since in RL the distribution of the expected returns
is unknown and varies across the state space. MME is trivially upper-bounded by the bias of
ME, as MME with N =1 is ME and the bias monotonically decreases with N. Differently,
for all N > 2, the bias of MME can be lower than the bias of DE. Let us consider the case
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where there exists a* such that P (a* = argmar,qq(T7 )) ~ 1, in this case the MME is equal
to minj g,+(I'V), which is a negatively biased estimate of the true mean g,-. A lower bound
can be found by noting that min; g+ (IV) = — max; —gq+(I'V) and using Equation (21). Note
that in this setting, which corresponds to the case where one action dominates the others,
all the other estimators are unbiased. While this might not be always a problem in practice,
it shows that MME can be sensitive to the actual distribution of the action-values.

0.6 0.9
0.41
21
0 306
[l
3 0.0t %
M —-0.24 )
%03\
—0.41 <™
~0.6 \/_
—-0.81 : : : : 0.0 , : \
0 1 2 3 4 5 0 1 2 3 4 5
|1 — 2| |1 — 2]
Figure 1: Comparison of the bias of the Figure 2: Comparison of the absolute
estimators varying the differ- bias of the estimators varying
ence of the means the difference of the means.

FEzxample 1. We analyse the bias of the different MEV estimators in a setting with two
normally distributed random variables (Ry ~ N (u1,0%) and Re ~ N (ug,03)) as a function
of the difference of their expected values. Both variables have standard deviation equal to 10
(01 = 02 = 10) and we assume to have 100 samples for each variable (|I';| = |I'z| = 100). For
MME we use N = 2 and WE is computed using a Monte Carlo approach (see Section 4.3)
drawing 100 samples from each approximate PDF. Figure 1 shows that the bias of ME is
always positive, while the biases of DWE and DE are always negative, with the latter always
worse than the former. The bias of WE can be either positive or negative, but it always
falls in the range between the biases of ME and DE. MME behavior is consistent with
our previous observations and shows a large negative bias when the difference between the
means is large. By looking at the absolute biases shown in Figure 2, we can notice that there
is no clear winner. These results confirm the previous theoretical analysis. As mentioned
above, when the variables have the same mean, both DE and DWE are unbiased, while it
represents a worst case for the bias of ME and WE. It follows that, when the difference
between the two means is small (less than 0.5 in the example), DE suffers less absolute bias
than ME and WE. For moderate differences between the means (between 0.5 and 1.8 in the
example), WE has the minimum absolute bias, while ME is preferable for larger differences.

12
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In this settings MME is outperformed by DE, while it shows lower bias than ME and WE
when the difference between the means is very small.

4.2 Variance

Van Hasselt (2013) proved that both the variance of ME and the one of DE? can be upper
2

bounded with the sum of the variances of the sample means: Var( ME) < Zf\i 1 \%\’

2
Var (AD B ) < Zf\il |U?|. The next theorem shows that the same upper bound holds also for
the variance of WE.

Theorem 3 The variance of WE is upper bounded by

Var

Proof We can derive the bound to the variance as

VE) = - . r - y _ S .
Var ( Var Z Gi(D)w; | < Var Z ¢i(I) Z Var (¢;(I)),
i=1 i=1 i=1

where the inequality is a consequence of the maximization of each weight w} with one and
the last equality comes from the independence of the sample means. |

The bound in Theorem 3 is overly pessimistic: even if each weight wzr is correlated to the
other weights and to the sample mean §;(I"), their sum is equal to one. The following upper
bound for the variance of DWE shows that the variance becomes smaller as the accuracy
of the Gaussian approximation used by WE improves.

Theorem 4 The variance of DWE is upper bounded by

2

Var (¢PWE < 0,
ar (¢.777) <, max 1o

Proof Since the weights w; computed by DWE are not random variables, it follows

M M 2
Var (¢;"") = Var (Z éz‘(F)wz) = Zw?Var (@:(T)) < ey ‘
i=1 i=1
where the inequality is motivated by w? <1, Vi |

The variance of MME depends on the number of estimators N. Lan et al. (2020) show,
under some assumption on the distribution of the random variables, that the variance of

2. As already mentioned, in this section what we refer to as DE is actually the 2-fold CV estimator,
which has half the variance of DE. We believe this to be fair, since CV is in fact used in Double Q-
Learning (Van Hasselt, 2010) to take greedy actions. However the reader should keep in mind that the
variance of the action-value function updates when using DE is actually double the one reported here.

13



D’EraMO, CIiNI, NUARA, PIROTTA, ALIPPI, PETERS, RESTELLI

MME can be higher than ME if N is small, while it decreases as N increases, at the expense
of a potentially higher absolute bias.

We study the variance of the different estimators under the same settings described in
Example 1. Figure 3 shows that as the difference of the means of the two variables grows,
the variance of all the estimators converges to the variance of the sample mean of the
variable with MEV. DE is the estimator with the largest variance because of the use of half
the number of samples w.r.t. the other estimators. WE exhibits a variance slightly larger
than ME, while, as expected, the variance of DWE is always the smallest. Figure 4 shows
the MSE (variance + bias?) of the different estimators. When the difference between the
two means is less than one, WE suffers from a lower MSE than the other two estimators.
On the other hand, ME is preferable when there is a variable with an expected value which
is significantly larger than the other ones.

2.0 2.0
ME
1.8 —— DE 1.8
— WE
1.61 DWE 1.6
MME
g 1.4 N 1.4
W
812 N £ 1.2
1.0 1.0 \/\
0.81 0.81
0.6 0.6+
4 : : : : 4 : : : :
0 0 1 2 3 4 5 0 0 1 2 3 4 5
|1 — K2 |1 — K2
Figure 3: Comparison of the variance of Figure 4: Comparison of the MSE of
the different estimators vary- the different estimators vary-
ing the difference of the means. ing the difference of the means.

4.3 Monte Carlo approximation

The integral calculation of Equation (12) makes the WE computation more time-consuming
than the ones of the other estimators. In order to mitigate this issue, we propose a Monte-
Carlo (MC) approximation of WE, consisting of drawing 7" samples from each PDF fI'(z),
and calculating the weights w, using the collected samples. More precisely, the weights are
computed as

T

1
w; = T Z |[Fi,j = m]?X Fij:|:| s (22)

J
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where I'y, ; is the j-th sample drawn from the k-th random variable and [. ..] are the Iverson
brackets ([P] is 1 if P is true, 0 otherwise). It is worth noting that while computing the
integral in Equation (12) with numerical integration methods, e.g., trapezoidal rule, would
require an asymptotic time complexity of O(M?K), where K is the number of trapezoids,
the aforementioned approach provides a time complexity of O(MT). While the number
of trapezoids requires to accurately compute the integral depends on the characteristic of
the integrated function, we consistently observe satisfactory performance using only a small
number of MC samples. The adoption of the MC approach leads to a significant reduction in
the computational cost of running the experiments presented in Section 6, with no relevant
decrease in performance. A relatively small number of samples (e.g., 100), in fact, shows
to be sufficient to account for the variance introduced by the MC approximation in all
the considered settings. Furthermore, from a very practical standpoint, we argue that the
constant part of the computational cost of numerical integration methods can be much
larger than taking a few tens of samples from a Gaussian distribution (see Appendix C).

‘\1072\
T =10 34 L
8 T =100 |
— T = 10000 2.54 r
6| | 2 I
= &
Cg 4} | E 1.5 |
1, L
2 l 0.5 -
0 2 4 6 8 10 12 14 16 18 20 0 10 20 30 40 50 60 70 80 90 100
K2 M
Figure 5: MSE of WE computed With Figure 6: MSE of WE computed with
the Monte-Carlo approxima- the Monte-Carlo approximation
tion method for different values method for different values of T
of T varying the difference of varying the number of random
the means of two random vari- variables M (results are averaged
ables (results are averaged over over 10,000 seeds).
10,000 seeds).
In Figure 5, we show, in a setting with M = 2 two random variables sharing the

same variance Ry ~ N(0,0%) and Ry ~ N(uz2,0?%), how the MSE, which accounts for
both variance and bias, varies as the number of samples T" and the expected value of o
increase. We notice that while 7" = 10 samples are not sufficient to provide an accurate
approximation, for values of ps < 10, the MSE value obtained with 7" = 100 approaches
the one we obtain with T = 10,000. These results suggest us that adopting low number
of samples (T" ~ 100) provides accurate estimates of the integral. In Figure 6, we show
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how the MSE varies as the number of samples T" and the number of random variables M
increase. We define a setting with M — 1 random variables {R1,...,Ry/—1} that follow
the same distribution N'(0, 1) and one random variable Ry; ~ N(5,1). Note that the MSE
increases as the value of M increases and the value of T' decreases.

5. Maximum expected value in Reinforcement Learning

In this section, we show applications of WE in the RL scenario. At first, we introduce the
basic notions about Markov Decision Processes (MDPs) and how MDPs can be solved with
the model-free value-based approaches. Then, we discuss online and batch algorithms based
on ME and DE and present their counterparts based on WE. Eventually, we extend the
focus to the deep RL framework where a novel algorithm based on WE is proposed. It is
worth noting, that all maximum value estimators analyzed in the previous sections rely on
the assumption that data are i.i.d.; this is clearly not the case in online sequential RL where
the policy changes overtime. However, we show, supported by empirical evidence, that WE
is nonetheless effective and leads to better estimation and performance in several settings.
In the following sections, we further comment on this aspect and motivate our algorithm
design choices.

5.1 Weighted Estimator in Reinforcement Learning algorithms

Applying WE in the RL settings requires to model uncertainty over action-value estimates.
By assuming a Gaussian approximation, we consider a distribution @Q(s, a) over action-value
functions such that:

Q(s,a) = N (Q(s,a),0%(s,a)), (23)

where Q(s,a) and 02(s,a) are the mean and the variance of the estimator w.r.t. the state-
action pair (s,a), respectively.

Two types of uncertainty. It is important to stress the difference between our approach
and distributional RL (Morimura et al., 2010; Bellemare et al., 2017), a difference that has
its roots in closely related, but distinct, sources of statistical uncertainty. Standard value-
based methods are interested in learning the expected return associated with a policy.
Distributional approaches, conversely, model the full distribution of the stochastic return
of the decision-making process. In other words, distributional methods account for the
aleatoric uncertainty that is intrinsic in the MDP, a concept related to risk and of paramount
importance for Al safety (Morimura et al., 2010). With WE, conversely, we are concerned
with modeling uncertainty over the estimator, that is, epistemic uncertainty. Going back
to RL, this is the agent’s uncertainty about its predictions. With this view, our approach is
more related to Bayesian RL methods such as Bayesian @Q-Learning (Dearden et al., 1998)
and Randomized Value Functions (Osband et al., 2019).

Among the value-based methods, we consider online and offline algorithms that ap-
proximate optimal @-values without the need for a model of the environment. We mostly
consider MDPs with discrete action spaces, except for the batch algorithm based on WE
which can also be extended to MDPs with continuous action spaces.
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5.1.1 ONLINE RL: WEIGHTED @Q-LEARNING

Recently, the replacement of ME with WE has been proposed in the Weighted Q-Learning
algorithm (D’Eramo et al., 2016). Weighted @Q-Learning (WQL) maintains an estimate
of the mean value of the @)-function and its variance in order to compute the weights
of WE (Algorithm 1). In tabular @Q-learning, the expected return of the optimal policy
Q(s,a) is learned incrementally as an exponentially weighted sample mean of the @Q-Learning
target values y; L - r¢ + ymaxy Q¢(St+1,a). The variance of the return can be estimated
similarly as the weighted sample variance 62(s,a). Following the Gaussian approximation,
we consider the expected return to be normally distributed with a mean corresponding
to the aforementioned sample mean and a variance corresponding to the sample variance
divided by the effective sample size, i.e., the number of updates adjusted to reflect the effect
of the weighting;:
£2

Qi(s,a) =~ N (Qt(s,a), m> . (24)
The effective samples size ESS¢(s,a) can be estimated using the Kish’s effective sample
size (Kish, 1965; Martino et al., 2017), that can be computed incrementally as:

wy(s,a) + (1 — (s, a))w;_1(s,a) + ay(s,a),

Wi (5,0) (1= au(s,a)Pw) 1 (5,0) + u(s,0)?,

wi(s,a))?
ESSi(s,a) = (wt,’f’((;,i)) )
We refer to D’Eramo et al. (2019) for examples of iterative methods to compute online the
weighted sample variance. Note that this weighting partially accounts for nonstationarities
caused by changes in the policy.
Weighted Q-Learning exploits the approximated distribution and adjusts the @-Learning
target value using the WE. The resulting WQL target value can be computed as

y =y Z w1 Qi (Se41, @), (25)
acA

where wg' ™ are the weights of the WE and correspond to the probability of each action-value
being the maximum:

(l,

ws =P <a = arg max Qt(s,a’)) . (26)

Note that the approach used in Algorithm 1 to evaluate the variance of the mean es-
timator conflates an aleatoric component. This component can be completely removed by
adopting a Bayesian approach, e.g., Bayesian @)-Learning. In this tabular setting, we use
a frequentist approach to study WE as a drop-in replacement to other maximum value es-
timators in the standard @-Learning algorithm. In the following we consider the Bayesian
perspective in batch RL and deep RL algorithms.
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Algorithm 1 Weighted Q-learning
1. Inputs: Q(s,a), 6(s,a), ESS(s,a) initial state s
2: repeat
3:  Select an action a according to some policy 7 (-|s) (e.g., e-greedy)
4:  Execute action a and observe reward r and next state s’
5. For each action a € A, compute density fa and cumulative F, distributions as a

normal distribution N (Q(s, a), E";és(fz))

For each action a € A, compute weight w? (integral in Eq. (12) or MC approximation)
YO =1ty e awi Qs a)

Q(s,a) < Q(s,a) + a(s,a)(y"" %" — Q(s,a))

Update 6(s,a) and ESS(s,a) using tuple (s, a,r)

10 s+ s

11: until stopping condition

5.1.2 BATCcH RL: WEIGHTED FITTED Q-ITERATIONS

A well-known batch variant of @Q-Learning is the Fitted Q-Iteration (FQI) algorithm (Ernst
et al., 2005). FQI reformulates the RL problem as a sequence of supervised learning prob-
lems. Given a set of samples D = {(s;, a;, s}, 7i)}; <, Previously collected by the agent
according to a given sampling strategy, at each iteration ¢, FQI builds an approximation of
the optimal @-function by fitting a regression model on a bootstrapped sample set:

D, = {((si, a;),ri +ymax Qi1 (si, a’))} . (27)
@ 1<i<N

The FQI update, similarly to the ()-Learning update, exploits the computation of ME which
causes the same overestimation problem as )-Learning. Intuitively, replacing ME with DE
or WE can help solve this issue in FQI as well. The FQI variant that replaces ME with
DE is called Double FQI, and the variant that uses WE is called Weighted FQI (D’Eramo
et al., 2017). Weighted FQI uses Gaussian Process (GP) regression to compute the mean
Q@-value and its variance in continuous state spaces (Algorithm 2). The interesting aspect
of Weighted FQI is that it can also handle infinite action spaces, as explained in Section 3
and shown in Algorithm 3. Finally, note that in the batch setting, being offline, there are
no issues w.r.t. nonstationarity of the policy learning process.

5.2 Weighted Estimator in deep Reinforcement Learning

The popular Deep @Q-Network algorithm (DQN) (Mnih et al., 2015) is a variant of Q-
Learning designed to stabilize off-policy learning with deep neural networks in highly di-
mensional state spaces. The two most relevant changes introduced by DQN to regular
Q-Learning are the adoption of a replay memory to learn from past experience and the use
of a target network to reduce the correlation between the current model estimate and the
bootstrapped target value.

In practice, DQN learns the -values online, using a neural network with parameters
0, sampling from the replay memory, and with a target network whose parameters 8~ are
updated to match those of the online network every C steps. The model is trained to
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Algorithm 2 Weighted FQI (finite actions)

Inputs: dataset D = {si,ai,ri,s;}le, GP regressor @, horizon T' € N, discrete action space
A: {a;},...,a]u}
Train Qo on To = {(s4,a;,7i)}
for t=1 to T do
for j=1 to K do
for m=1 to M do
Gm, Ugm — Qt,l(s;, am) (evaluate GP)
Jap = N(Gm, 07 )
For each action a,, € A, compute weight w,, (integral in Eq. 12)
end for
Yj =15+ EameA Wa,, a,,
Te < Tt U{(sj,a;,9;)}
end for
Train Q¢ on Ty
end for

Algorithm 3 Weighted FQI, (continuous actions)

Inputs: dataset D = {s;,a;, 7, 5.} |, GP regressor @, horizon T' € N
Train @0 on To = {(si,a;,r:)}
for t=1 to T do
for i=1 to K do R
Given that (ja,aq%a = Qi—1(s},a) and foi= N((ja,aq?a) Va € A
Compute ¢VE (Eq. 19)
yi < Ti + "
Te < Te U{(si,ai, yi)}
end for
Train Q¢ on Ty
end for

minimize the loss

ro)=, B, |- Qo) (29)

(si,a4,r4,8})~m

where m is a uniform distribution over the transitions stored in the replay buffer and yP@N
is defined as
y 9N =i+ ymax Q(s}, a; 67). (29)
DoubleDQN. Among the many studied improvements and extensions of the baseline
DQN algorithm (Wang et al., 2016; Schaul et al., 2016; Bellemare et al., 2017; Hessel et al.,
2018; Badia et al., 2020), DoubleDQN (DDQN) (Van Hasselt et al., 2016) reduces the
overestimation bias of DQN with a simple modification of the update rule. In particular,
DDQN uses the target network to decouple selection and evaluation of the action, and
estimates the target value as

DDQN
i

y =r; + vQ(s;,arg max Q (s}, a;6);07) . (30)
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DDQN improves on DQN converging to a more accurate approximation of the value function
while maintaining the same model complexity and adding minimal computational overhead.

AveragedDQN. AveragedDQN (AvgDQN) (Anschel et al., 2017), on the other hand,
tackles the problem of stabilizing the learning procedure of DQN by averaging the output
of the last K checkpoints of the target network to reduce the variance of the target value.
ie.,

yZAUQDQN + 7y max - ZQ 55,0;0, (31)

MazxminD@N. Maxmin Q-Learning is easily extended to the deep RL using N different
neural networks to approximate the action value function. The inconvenient of training
multiple approximators is a possible increase in computational time or sample complexity,
depending on the rate at which the Q-networks are updated. The MaxminDQN target can

be computed as:
MazxminDQN
i

P . 3 / . -
=r+ ’ymgxmjm Q(s;,a;6;). (32)

5.2.1 DEEP WEIGHTED Q-LEARNING

A natural way to extend the WQL algorithm to deep RL settings is to consider uncertainty
about the model parameters using a Bayesian approach. Among the possible solutions
to estimate uncertainty, bootstrapping has had the greatest success in RL problems, with
BootstrappedDQN (BDQN) (Osband et al., 2016, 2018) which has achieved impressive
results in environments where exploration is critical. On the other hand, bootstrapping
necessitates significant modifications to the baseline DQN architecture and requires to train
a model for each sample of the approximate posterior distribution. This limits the number
of samples available considerably and is a major drawback in using BDQN to approximate
the WE weights. Conversely, dropout (Srivastava et al., 2014) does not affect the model
complexity and allows to compute the weights of the WE by sampling an arbitrary number
of dropout masks.

In the following, we first introduce how neural networks trained with dropout can be
used for approximate Bayesian inference and discuss how this approach has been used with
success in RL problems. Then, we propose a novel approach to exploit the uncertainty
over the model parameters for action evaluation, adapting the WE to the deep RL settings.
Finally, we analyze a possible shortcoming of the proposed method and identify a solution
from the literature to address it.

Bayesian inference with dropout. Dropout (Srivastava et al., 2014) is a regularization
technique used to train large neural networks by randomly dropping units during learn-
ing. In recent years, the dropout technique has been analyzed from a Bayesian perspec-
tive (Kingma et al., 2015; Gal and Ghahramani, 2016) and interpreted as a variational
approximation of a posterior distribution over the neural network parameters. In partic-
ular, Gal and Ghahramani (2016) show how a neural network trained with dropout and
weight decay can bee seen as an approximation of a deep Gaussian process (Damianou and
Lawrence, 2013). The result is a theoretically grounded interpretation of dropout and a
class of Bayesian neural networks (BNNs) that are cheap to train and can be queried to
obtain uncertainty estimates. In fact, a single stochastic forward pass through the BNN can
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be interpreted as taking a sample from the model’s predictive distribution, while the pre-
dictive mean can be computed as the average of multiple samples. This inference technique
is known as Monte Carlo dropout and can be efficiently parallelized in modern GPUs.

A straightforward application of Bayesian models to RL is Thompson Sampling (TS)
(Thompson, 1933). TS is an exploration technique that aims at improving the sample
complexity of RL algorithms by selecting actions according to their probability of being
optimal given the current agent’s beliefs. A practical way to use TS in deep RL is to
take a single sample from a @Q-network trained with dropout and select the action that
corresponds to the maximum sampled action value (Gal and Ghahramani, 2016). TS based
on dropout achieves superior data efficiency compared against naive exploration strategies,
such as e-greedy, in both sequential decision-making problems (Gal and Ghahramani, 2016;
Stadie et al., 2015) and contextual bandits (Riquelme et al., 2018; Collier and Llorens,
2018). Furthermore, the dropout technique has been successfully used in model-based RL,
to estimate the agent’s uncertainty about the environment dynamics (Gal et al., 2016; Kahn
et al., 2017; Malik et al., 2019).

Here we focus on the problem of action evaluation. We show how to use approximate
Bayesian inference to evaluate the WE by introducing a novel approach to exploit uncer-
tainty estimates in deep RL. Our method empirically reduces Q-Learning bias, is grounded
in theory and simple to implement.

5.2.2 WEIGHTED DQN

Let Q(-, -;60,w) be a BNN with weights € trained with a Gaussian prior and dropout
variational inference to learn the optimal action-value function of a certain MDP. We indi-
cate with w the set of random variables that represents the dropout mask, with w; the i-th
realization of the random variables and with €2 their joint distribution:

w:{wlklel,...,L,kZI,...,Kl}, (33)
wii ~ Bernoulli(p;), wi ~ Q(p1,...,pL), (34)

where L is the number of weight layers of the network and K; is the number of units in
layer I.

Consider a sample r; of the MDP return, obtained taking action a in s and following the
optimal policy afterwards. Following the GP interpretation of dropout by Gal and Ghahra-
mani (2016), we approximate the likelihood of this observation as a Gaussian distribution
such that

s ~ N (Q(s,a;0,w),771), (35)
where 7 is the precision hyperparameter.

We can approximate the predictive mean of the process, and the expectation over the
posterior distribution of the Q-value estimates, as the average of T" stochastic forward passes
through the network:

T
E[Q(s,a;0,w)] = QT s,a;0) f; s, a;0,wy). (36)

@T(s, a; 6) is an MC estimate of the BNN prediction of the action-values associated to state
s and action a. A similar, computationally more efficient approximation can be obtained
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Algorithm 4 Weighted DQN
Input: Q-network parameters 8, dropout rates p1, ..., pr, a policy 7, replay memory D
60— <806
Initialize memory D.
for stept =0,... do
Select an action a; according to some policy 7 given the distribution over action-value
functions Q(s, -;60,w)
Execute a; and add (s, at, 7, s¢+1) to D
Sample a mini-batch of transitions {(s;,a;,r;,s;),i=1,..., M} from D
fori=1,..., M do {can be done in parallel}
Take T" samples from Q(s;, - ;07 ,w) by performing T stochastic forward passes
Use the samples to compute the WDQN weights (Eq.38) and targets (Eq.39)
end for
Perform a SGD step on the WDQN loss (Eq. 40)
Eventually update 6~
end for

through weight averaging, which consists in scaling the output of the neurons in layer [
by 1 — p; during training and leaving them unchanged at inference time. We indicate this
estimate as Q(s,a; @) and use it for selecting actions during training.

The epistemic uncertainty of the model, i.e., the uncertainty about the model parame-
ters, can be measured similarly as the sample variance across 1" realizations of the dropout
random variables:

T 2
Var [Q(s,a;0,w)] ~ % > Q(s.a:0,w)* — (} > Q(s,a;6, w)) : (37)
t=1

t=1

As shown by Gal and Ghahramani (2016), the predictive variance can be approximated
with the variance of the estimator in Eq. (37) plus the model inverse precision 77!, As in
the batch case, we are only interested in the first term.

We can estimate the probability needed to calculate the WE in a similar way. Given
T realizations of the dropout variables, the probability that an action a corresponds to the
maximum expected action value can be approximated as the ratio between the number of
times the sampled action-value of a is the maximum and the number of samples T":

T

1

w,(0) =P (a = arg max Q(s, a’; 0,w)> o Z Ha = arg max Q(s,a’; O,wt)ﬂ . (38)
@ t=1 o/

The weights can be efficiently inferred in parallel without any impact on the computational

time. We can define the WE given the Bayesian target @Q-network estimates using the

obtained weights as:

yZWDQN =71+ Z wa (07)Qr(s), a;07). (39)
acA
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Finally, we report for completeness the loss minimized by WDQN, where the parameter
updates are backpropagated using the dropout masks:

L(6) =

L
2
WDQN
SN | (e S ) M R S A e
19Qg,Tg,8; ) ~IL,W =1

where 6; are the weights of layer | and A is the weight decay coefficient. Using weight
decay is necessary for the the variational approximation being valid. The complete WDQN
algorithm is reported in Algorithm 4.

Concrete dropout. The dropout probabilities are variational parameters and influence
the quality of the approximation. Ideally, they should be tuned to maximize the log-
likelihood of observations using a validation method. This is clearly not possible in RL,
where, as already highlighted, the available samples and the underlying distribution change
as the policy improves. In fact, dropout with a fixed probability might lead to poor un-
certainty estimates (Osband et al., 2016, 2018; Gal et al., 2017). Concrete Dropout (Gal
et al., 2017) mitigates this problem by using a differentiable continuous relaxation of the
Bernoulli distribution and learning the dropout rate from data.

In practice, this means that the distribution of the dropout random variables wy;, becomes

wip = o (B (log pr —log(1 — p;) + logu — log(1 — py))), (41)

where (3 is a temperature parameter (fixed at § = 10), u is a uniform random variable
u~U(0,1) and o(-) is the sigmoid function. With this formulation the sampling procedure
becomes differentiable and the loss in Eq. (40) can be rewritten as:

L(0.p) = WP Qlssaib.en))' | 43 (MBS - i)

E [(
(81,a4,74,8}) ~m,w;~ =1

(42)
where ( is a dropout regularization coefficient, H(p) is the entropy of a Bernoulli distribution
with parameter p and K is the number of neurons in layer [.

6. Experiments

We evaluate the performance of ME, DE, MME and WE, in Multi-Armed Bandit (MAB)
and RL problems. We start from considering discrete state and action spaces, then we move
to continuous ones and to deep RL problems.

For MME in the tabular and batch settings, differently from Lan et al. (2020), we do
not use a replay memory for a more direct comparison. Consequently, we fix the number
of estimators to N = 2 to limit the impact on sample complexity. In the deep RL experi-
ments, instead, we run MaxminDQN with both N = 2 and N = 3, and we select the best
configuration in each setting. Since using only N = 2 proved to be the best configuration in
most of the considered settings, we did not further increase the number of approximators.
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6.1 Discrete states and action spaces
6.1.1 INTERNET ADS

We consider an online advertising problem as formulated in (Van Hasselt, 2013), where the
goal is to select the most convenient ad to show on a website from a set of M possible
ads, each one with an unknown expected return per visitor. Ads have the same return per
click, thus the best ad is the one with the highest clickthrough rate (CTR). Since CTRs are
unknown, they have to be estimated from the data. We assume that, given N visitors, each
ad is shown the same number of times, so that we have N/M samples to compute the sample
CTR. Obtaining a quick and accurate estimate of the maximum CTR is typically a critical
task in order to effectively determine future investment strategies. We compare the results
of ME, DE, MME and WE, in different settings. We consider two default configurations:
a first one (first row in Figure 7) where we have M = 30 ads and mean CTR uniformly
sampled from the interval [0.02, 0.05] and a second one where we have M = 10 ads and mean
CTR sampled from [0.02,0.2]. In Figure 7(a) and Figure 7(d), we vary the number of visitors
so that the number of impressions per ad ranges from 1,000 to 10,000. In Figure 7(b) and
Figure 7(e), we vary the number of ads M = {10, 20, ...,90, 100} and the number of visitors
is set to N = 10,000M. In Figure 7(c) and Figure 7(f), we modify the interval of the mean
CTR by changing the value of the upper limit with values in {0.02,0.03,...,0.09,0.1}, with
the lower fixed at 0.02. We show the M SE = bias?+variance for all the settings comparing
the results obtained by each estimator.

WE is the most robust estimator, performing reasonably well in all settings. DE shows
lower bias than ME in many instances, e.g., when the ads have a similar CTR (left most
part of Figure 7(c) and 7(f)). On the other hand DE suffers from high variance. MME
performs well when ME shows high bias, but its performance degrades when ME is less
biased.

6.1.2 SPONSORED SEARCH AUCTIONS

We consider a sponsored search auction problem as described in Xu et al. (2013), where
a search engine runs an auction to select the best ad to show from a pool of candidates
with the goal of maximizing over a value that depends on each advertiser’s bid and click
probability. When an ad is clicked, the advertiser is charged from the search engine of a
fee that depends on the bids b of the advertisers and the ad’s CTRs p, namely bz%, where
the subscript ¢ indicates the i-th biggest value. CTRs are generally unknown, therefore the
search engine should use data to estimate which is the best ad (i.e., the one that maximizes
b-p) and the payment in case of click; reasonably, wrong estimations may significantly harm
revenue. On the other hand, advertisers have to decide the value of their bid b; according to
the true values v; of a click. A desirable property of an auction mechanism, called incentive
compatibility, requires advertisers to maximize their utility by truthfully bidding b; = v;.
Incentive compatibility may not occur when the estimate of the click probabilities is not
accurate. We want to evaluate how the estimators favor the incentive compatibility. We
measure the utility gain, defined as Z;ZZ:;’EB — 1, of advertiser 1, whose true per click value
is v1 = 1, for different bid b; values and in competition with four other advertisers whose
bids are b_; = {0.9,1,2,1}. The CTRs are: p = {0.15,0.11,0.1,0.05,0.01}. CTRs are
estimated from data collected using the UCB1 algorithm (Auer et al., 2002) in a learning
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Figure 7: MSE for each setting. Results are averaged over 2,000 experiments.

phase consisting of 10,000 rounds of exploration (i.e. impressions), using the same settings
of Xu et al. (2013).

Figure 8 shows the utility gain of advertiser 1 when using ME, DE, MME, and WE.The
true bid price is highlighted with a black vertical bar. ME is the only one which is not
able to achieve incentive compatibility, since the utility has positive values before the true
bid price. On the contrary with DE, MME, and WE, the advertiser has no incentive to
underbid, but there is an incentive to overbid using DE. Therefore MME and WE are the
only estimators that succeed to achieve incentive compatibility.

6.1.3 GRID WORLD

This simple MDP consists of a 3 x 3 grid world in which the start state is the lower-left
cell and the goal state is the upper-right cell (Van Hasselt, 2010). We test the performance
of @Q-Learning using ME, DE, MME, and WE; furthermore, we also test Weighted Q-
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Learning using a different policy, named weighted policy®, which samples the action to be
performed in a state from the probability distribution of the weights of WE. We use the
same hyperparameters of Van Hasselt (2010). In particular, we use an e-greedy policy with
e = —~— where n(s) is the number of times the state s has been visited. Learning rate
Naw)
is ay(s,a) = W where n:(s,a) is the current number of updates of that action value
and the discount factor is v = 0.95. In Double @-Learning and Maxmin Q-Learning we
use two learning rates oj'(s,a) = W and of(s,a) = W where n{}(s,a) and
nP(s,a) are respectively the number of times when table A and table B are updated. The
reward function is considered in three different settings: Bernoulli, —12 or 10 randomly at
each step, Gaussian with mean u = —1 and standard deviation ¢ = 5, Gaussian with mean
u = —1 and standard deviation ¢ = 1. Once in the goal state, each action ends the episode
and returns a reward of 5. The optimal policy ends the episode in five actions, therefore
the optimal average reward per step is 0.2. Furthermore, the optimal value of the action
maximizing the Q-value is 574—Zi20 ~* 2 0.36. In Figure 9, the top plots show the average
reward per step obtained by each algorithm and the plots at the bottom show the estimate
of the maximum state-action value at the starting state for each algorithm. Figures 9 show
that, regardless of the bad approximation of the -function, the underestimation of Double
@-Learning and Maxmin @-Learning might allow learning the best policy faster than other
algorithms in these noisy settings. Weighted Q-Learning shows much less bias than other
estimators in all settings; moreover, the use of the weighted policy generally reduces the bias
of the estimation and achieves the best performance in the case with ¢ = 1. These good
results are explained considering that the weighted policy is able to reduce the exploration
faster than e-greedy due to the exploitation of the good approximation of the @-function

3. Equivalent to Thompson Sampling (Thompson, 1933). Note that Weighted @Q-Learning with weighted
policy can be seen as an instance of Expected SARSA (Van Seijen et al., 2009).
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Figure 9: Grid world results with the three reward functions averaged over 10,000 experi-
ments. Optimal policy is the black line.

computed by Weighted Q-Learning. It is worth noting that Weighted @-Learning works
well for both Gaussian and Bernoullian rewards, showing that WE is effective also with
non-Gaussian distributions.

6.2 Continuous state spaces
6.2.1 PRICING PROBLEM

This problem consists in estimating the MEV of the gross profit in a pricing problem. In this
MAB problem we validate the WE with infinite random variables (WE+,) and we compare
its performance against ME, DE, and MME, whose support (actions) has been discretized.
It is crucial to estimate the value of the gross profit accurately in order to evaluate, for
example, an investment decision or to analyze the profitability of products. The support
(action) space is bounded but continuous and represents the price p to be shown to the
user (p € [0,10]). The reserve price 7 , which is the highest price a buyer is willing to pay,
is modeled as a mixture of 3 Gaussian distributions with mean p = {2,4,8}, covariances
0? = {0.01,0.01,0.09} and weights w = {0.6,0.1,0.3}. The revenue function r,(p) is p when
7 > p and 0 otherwise. The maximum revenue is about 2.17. In each test the algorithms
are fed with a set of samples 7 = {(p;,7;)};=,. Each sample is obtained by sampling a
reserve price 7; from the Gaussian mixture, a price p; from a uniform distribution over the
price range, and by evaluating the revenue function (r; = r,(p;)). Clearly, the reserve price
is unknown to the algorithm. Results are averaged over 50 runs and confidence intervals
at 95% are shown. WE exploits a Gaussian process with a squared exponential kernel
to generalize over the continuous price (GPs are fitted on 7), while ME, DE, and MME,
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discretize the price space into ny uniformly spaced bins. As shown in Figure 10, the number
ny of optimal bins varies with the number n, of available samples. This means that, once the
samples have been collected, ME, DE, and MME, need an optimization phase for selecting
the appropriate number of bins (not required by WE). WE is able to achieve the lowest or
a comparable level of bias with every batch dimension even though it exploits a sensibly
wider action space (infinite). In fact, as shown by the experiments, the performance of
ME and DE may degrade as the number of bins increases, i.e., the action space increases.
The variance of WE, as shown in Figure 11, is always comparable to the one of the best
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Figure 12: Pendulum experiment.

configuration of the other estimators. From Figure 10 we can see that ME is prone to
overestimation, while WE bias is almost always smaller or stays between ME and DE. 4
This discrete approximation introduces an additional (here negative) term to the bias.

6.2.2 SWING-UP PENDULUM

A more complex scenario is represented by the continuous control problem analyzed in
this section: the Swing-Up Pendulum with limited torque (Doya, 2000). The aim of these
experiments is to compare FQI variants in continuous state space with both discrete and
continuous actions. The peculiarity of this environment lies in the fact that the control with
a limited torque (u € [—5,5]) makes the policy learning non-trivial. The continuous state
space is * = (0,w), where 0 is the angle and w is the angular velocity. An episode starts
with zo = (6o, 0) where 6y ~ U(—n, ), evolves according to the the dynamic system 6 = w
and ml%& = —pw +mglsin(f) +u, and terminates after 100 steps. The physical parameters
are mass m = 1, friction g = 0.01, length [ = 1, g = 9.8, step time 79 = 0.01. The
reward depends on the height of the pendulum: r(x) = cos(f). The problem is discounted
with v = 0.9. The GP uses a squared exponential kernel with an independent length scale
for each input dimension (ARD SE). The hyperparameters are tuned on the samples and
the input values are normalized between [—1,1]. We collected training sets of different
sizes using a random policy. The FQI horizon is 10 iterations. The final performance
of the algorithm is the average reward, calculated starting from 36 different initial angles
0o = {%E|k = {0,1,...,35}}. We consider two settings for this problem: one with a discrete
set of 11 evenly-spaced torque values in [—5, 5] and another with a continuous action space.
In the former setting we use a different GP for each action. The results in Figure 12(a) show

4. The reason why ME bias is not always positive, as stated by its theoretical properties, is due to the use
of binning for the discretization of the continuous MAB.
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that in the discrete case Weighted FQI reaches the highest average reward if the number of
episodes is less or equal to 50 (with statistical confidence of 95% obtained over 100 runs),
while for an higher number of episodes it is matched by the Maxmin variant of FQI. In the
continuous case, on the other hand, Figure 12(b) shows that there is not statistical evidence
of one algorithm outperforming the others (95% confidence bounds obtained over 25 runs).
In this setting, the only algorithm that is able to directly handle the continuous space is the
Weighted FQI defined in Algorithm 3 and indicated in the plot with the symbol co. The
other algorithms use a GP and 100 actions to approximate the maximum. Interestingly,
the continuous version of WE, does not improve performance. Our guess is that, in this
setting, the variance introduced by considering an infinite number of actions outweighs the
benefits of a lower bias.

6.3 Deep Reinforcement Learning scenario

In this section we compare the deep RL variants of the different algorithms. We measure the
effects of the different estimators on the quality of the learned value functions and policies
across all the experiments. First we run a proof of concept experiment on the Lunar Lander
environment (Brockman et al., 2016). Then we test WDQN in three environments of the
Minatar benchmark (Young and Tian, 2019). WDQN achieves a more accurate estimation
of the expected return which often results in better policies. Furthermore, the experiments
show the limits of DDQN, which is only an approximation of the DE and is still prone
to overestimation. Finally we perform a set of experiments on two Atari games from the
Arcade Learning Environment (ALE) (Bellemare et al., 2013) where DQN is known for
overestimating the action-values (Van Hasselt et al., 2016).

All the agents are evaluated after each training epoch using the greedy policy, for Asterix
we follow the evaluation protocol of Mnih et al. (2015). AvgDQN uses 3 approximators in
all experiments. For each experiment we report both the average cumulative reward at each
evaluation step and the prediction of the expected return, compared to the real discounted
return obtained by the agents. Even if Thompson Sampling (T'S) (Thompson, 1933) is the
natural choice for WDQN, all the algorithms, unless explicitly stated, use an e-greedy policy
to guarantee fair comparison. For WDQN the greedy action is selected during training as
the action corresponding to the maximum @-value estimated with weight averaging, while
during evaluation we take the action with the highest probability of being estimated as
optimal as in Eq. (38). We found WDQN to be robust to the number of dropout samples
used to compute the WE (e.g., T' > 30). We used low values for the weight decay term, as
in Farebrother et al. (2018), and tuned the dropout regularization coefficient for the problem
at hand. The algorithms and the experimental setup have been developed using the open-
source RL libraries MushroomRL® (D’Eramo et al., 2021) and OpenAl Gym (Brockman
et al., 2016). Full description of the complete experimental setup and further results can
be found in the appendix.
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Figure 13: Learning curves on Lunar Lander. On the left the evaluation scores of each
epoch (20k steps). On the right the maximum action-value estimated by each
agent at the initial state of the MDP; the dashed lines are the real obtained
discounted return. The results shown are the average of 20 independent runs,
shaded areas are 95% confidence intervals. The curves are smoothed using a
moving average of 10 epochs.

6.4 Lunar Lander

Lunar Lander is an MDP from the Gym collection. To solve the environment, the agent has
to control the thrusters of a spacecraft to safely land in a specific location. In order to make
prediction and control more challenging, we increased the stochasticity of the environment
adding a 10% chance of repeating the last executed action, instead of the one selected by the
agent. The three agents use the same exact network architecture, two hidden layers with
100 units and relu activation, the Adam optimizer with a learning rate of 3e—4, a target
updated frequency of 300, a replay buffer of 10k transitions and e-greedy exploration with
¢ linearly decreasing from 1 to 0.01 in the first 1,000 steps. WDQN uses Concrete Dropout
in each hidden layer. Figure 13 shows the learning curves of the three agents. WDQN and
MaxminDQN achieve the highest average reward, but WDQN is more sample efficient and
shows better prediction accuracy w.r.t. the other estimators.

6.5 Minatar

Minatar (Young and Tian, 2019) is an RL testbed with environments mimicking the dynam-
ics of games from ALE, but with a simplified state representation. Minatar implements also
sticky actions and difficulty ramping (Machado et al., 2018). The results of the experiment
are shown in Figure 14. We use the same convolutional neural network and hyperparameters
of Young and Tian (2019), but replace RMSProp with the Adam optimizer % and learning
rate le—4. For WDQN we choose the dropout regularization coefficient with random search

5. Open source code at https://github.com/MushroomRL/mushroom-rl.
6. We found that Adam provides significantly more stable learning across all the agents.
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and use the same value in the three games. MaxminDQN uses N = 2 approximators, as
using N = 3 provided only a moderate performance increase in Seaquest and markedly
worse performance on Breakout (see appendix).

On Breakout, WDQN achieves the highest average reward, and is more sample efficient
in Freeway. MaxminDQN underperforms on Breakout, but it is able to widely outperform
the other algorithms on Seaquest. DQN, DDQN and AvgDQN obtain similar average reward
in all the considered environments. For what concerns the estimation of the expected return,
WDQN shows lower bias in the first epochs of the learning procedure and converges to fairly
accurate estimates. MaxminDQN is negatively biased in all the settings, while DQN has
the largest positive bias. Since the number of actions and the regularization coefficient of
WDQN are the same among the three environments, it is clear that the entropy of the WE
weights depends heavily on the dynamics and the input space of the problem.

6.6 Atari games

The purpose of this experiment is to asses whether WDQN can be used to tackle the
learning instability of vanilla DQN in the Atari Learning Environment (Bellemare et al.,
2013) observed by Van Hasselt (2010). We consider two Atari games, Asterix and Wizard
of Wor, in which Van Hasselt et al. (2016) showed that the overestimation bias causes
vanilla DQN to fail. We use the same neural network and hyperparameters of Mnih et al.
(2015), replicating the same experimental setting. For WDQN we use Concrete Dropout
only in the fully connected layer after the convolutional block. Figure 15 shows the result of
the comparison in terms of average reward and prediction accuracy of WDQN against the
DQN and DDQN. DQN is unstable and widely overestimates the discounted return. This
instability causes the performance to collapse in both scenarios. DDQN manages to stabilize
the learning performance on Asterix, but, in our settings, is not enough to yield satisfactory
performance on Wizard of Wor differently from what observed by Van Hasselt et al. (2016),
probably due to minor implementation details ( Henderson et al. (2017)). However, it is
worth mentioning the the performance of DDQN would most likely improve in this scenario
by reducing the target update frequency. WDQN, on the other hand, manages to control
the bias and the learning instability in both cases, achieving a comparable performance and
prediction accuracy w.r.t. DDQN in Asterix and outperforming the other two baselines on
Wizard of Wor. Finally, in Figure 16 we show the comparison of WDQN against methods
using multiple Q-networks, namely MaxminDQN and AvgDQN. On Asterix, MaxminDQN
is able to achieve a much higher cumulative reward, while showing a large negative bias.
On Wizard of Wor, WDQN achieves the best scores, but due to the high-variance of the
experiments, the performance difference is not statistically significant. MaxminDQN, on
the other hand, is accurate in estimating the maximum action-value of the initial state. It is
interesting to note that increasing the number of approximators from 2 to 3, MaxminDQN
exhibited poor performance and learning instability, showing the importance of properly
calibrating N. Results for MaxminDQN with 3 approximators are reported in the appendix.
AvgDQN achieves good results, behaving similarly to DDQN on Asterix, but showing a large
variance in performance on Wizard of Wor. The number of approximators of AvgDQN was
chosen as to use a similar time budget w.r.t. MaxminDQN and WDQN.

32



GAUSSIAN APPROXIMATION FOR BIAS REDUCTION IN (Q-LEARNING

MinAtar-Breakout

25 17.5 4 0.7
15.0 A 0.6
i 20 A
% *g, 12.5 A §0.5 1
o 151 © i =
S 10.0 £ 04
) 54 T
© Bo 7.5 — w
g 101 I 4,_._5,.15:;:4"«'. N 2 0.3
< 5.01 17
5 T 0.2 -
2517
T T T T T T T T T T 0.1 - T T T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epochs Epochs Epochs
MinAtar-Seaquest
0.7
60 A
0.6
o 50 A
I = > 0.5
5 401 @ g
4 Z *E 0.4
g 30 S S
E O w
g 201 € = 0.3 1
< o
10 A - 0.2 1
oy ; ; ; ; ; ; ; . : 0.1 : : ; .
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epochs Epochs Epochs
MinAtar-Freeway
2.5 A 0.7
60 A
0.6
< 50 2.01 ==
E . NAl wAa N~ > 0.5 -
5 407 @ 15- e
o ) 2 0.4
© 30 1 8] S T
g Bo 1.0 w
9 20 € = 0.3
<
0.5 A1
10 A ', 0.2
01 ; ; ; . 0.0 1, ; . ; . 0.1+ ; . ; ;
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
Epochs Epochs Epochs
— AvgDQN MaxminDQN —— DQN —— DDQN — WDQN

Figure 14: Learning curves of the analyzed DQN variants on three Minatar games. In the
leftmost column, we show the evaluation scores after each of the 200 training
epochs, where 1 epoch corresponds to 25k steps. In the middle column we report
for each game and agent the estimate of the expected return w.r.t. the initial
state of the environment; the dashed lines indicate the real discounted return
obtained by the agents. In the rightmost column we show the moving average
of the entropy of the WDQN weights. The results shown here are averaged over
20 independent runs and the shaded areas represent 95% confidence intervals.
The curves are smoothed using a moving average of 10 epochs.
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Figure 15: The curves on the left show the evaluation scores. The figure in the right
reports, for each agent, the estimate of the expected return w.r.t. the starting
screen of the game; the dashed curves indicate the real discounted return for each
agent. Each epoch corresponds to 1M frames. The results are averaged over 10
independent runs and the shaded areas represent 95% confidence intervals. The
curves are smoothed using a moving average of 10 epochs to improve readability.

It is worth mentioning that empirically we noticed that the optimizer has a large impact
on the performance. In particular, we observed that using Adam (Kingma and Ba, 2015),
following modern best practices (Hessel et al., 2018; Dabney et al., 2018), was enough to
stabilize learning for DQN, even if the overestimation bias remained large. These observa-
tions are confirmed by the recent work of Gogianu et al. (2021), that thoroughly analyze the
impact of different optimization techniques in the learning dynamics of deep RL algorithms.
However, we remark again the objective of this was to asses the robustness of WDQN in the
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Figure 16: Comparison of methods using multiple approximators against WDQN on Atari
games. The results shown here are the average of 10 independent runs and the
shaded areas represent 95% confidence intervals. The curves are smoothed using
a moving average of 10 epochs to improve readability.

same settings where ME fails to learn and not to claim state-of-the-art results that would
require computationally expensive hyperparameter tuning.

7. Additional references

We already discussed several approaches to tackle the problem of estimation biases in Q-
Learning. In this section, we make a brief summary of this line of research, providing an
overview on how the same problem has been addressed in different RL settings. Thrun and
Schwartz (1993) discussed the issues of overestimation bias in @-Learning with function ap-
proximation, in particular they provided a theoretical analysis of the phenomenon showing
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how noisy predictions can cause systematic overestimation of values. Interestingly, Thrun
and Schwartz (1993) show examples in which Q-Learning is expected to fail. Van Hasselt
(2010) introduced Double @Q-Learning and showed that overestimation can also hinder the
performance of tabular ()-Learning by making the algorithm converge at an impracticably
slow rate. Notably, they identified the root cause of the overestimation in the positive bias
of ME by analyzing the problem from a statistical perspective, which was further expanded
in (Van Hasselt, 2013). Estimating the MEV is, in fact, a known problem in statistics (Smith
and Winkler, 2006; Tibshirani and Tibshirani, 2009) and for which an unbiased estimator,
in general, does not exist (Blumenthal and Cohen, 1968; Bhaeiyal Ishwaei et al., 1985).

Weighted Q-Learning has to be considered, then, in the context of the existing algo-
rithms that attempt to address the bias of (-Learning. Among the others, Bias-corrected
Q-Learning (Lee et al., 2013) improves the learning stability of Q)-Learning by using a cor-
rection term that depends on the variance of the rewards. The Weighted Double @Q)-Learning
algorithm (Zhang et al., 2017) uses instead a combination of ME and DE to balance be-
tween the overestimation and underestimation of the two estimators. The already discussed
Maxmin @-Learning (Lan et al., 2020) introduced the Maxmin Estimator and showed how
it can be used to effectively control the error in the setting studied by Thrun and Schwartz
(1993). Overestimation of the action-values can be even more problematic in the DQN
algorithm (Mnih et al., 2015), due to the high variance typical of deep RL approaches.
The Double DQN algorithm (Van Hasselt et al., 2016) introduced the use of DE in DQN,
which shows better estimate of action-values and superior performance w.r.t. vanilla DQN.
Another way to limit the overestimation is by reducing the variance of the estimate, as
in the case of Averaged DQN (Anschel et al., 2017). The Weighted Estimator, being a
convex combination of action-values, is also related to softmax operators typically used in
RL (Sutton and Barto, 1998; Asadi and Littman, 2017).

The problem of biased value estimates has also been studied in maximum-entropy
RL (Haarnoja et al., 2017), where recent works (Fox et al., 2016; Fox, 2019) studied how to
learn unbiased estimates by schedules of the temperature of the Soft ()-Learning updates.
Finally, overestimation is also detrimental in deep actor-critic algorithms, such as Deep
Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015). Notably, the Twin Delayed
DDPG algorithm (TD3) (Fujimoto et al., 2018) uses a clipped version of the Double Q-
Learning update that significantly improves the approximation of the value function and
the overall performance of DDPG.

8. Conclusions

Off-policy learning offers a sample-efficient solution to the problem of optimal decision
making under uncertainty and it is an integral part of modern approaches for designing
autonomous intelligent agents. Accurate estimation of action-value functions is a consti-
tutional element of algorithms based on these ideas. However, state-of-the-art methods
show to be unreliable when applied in stochastic environments, a typical characteristic of
real-world problems.

In this paper we presented a set of principled tools and techniques, grounded in statis-
tics, to address this problem. We showed that the introduced Weighted Estimator can be
effectively applied in different settings and that it is orthogonal to the underlying learn-
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ing procedure. Empirical results suggest, in agreement with previous works (Van Hasselt,
2010; D’Eramo et al., 2016; Lan et al., 2020), that none of the estimators outperform the
others in general, but that final performance are tightly related to specific characteristics
of the problem at hand. Furthermore, due the peculiarities of the shape of some reward
functions, estimation biases may also turn out to be beneficial. However, while it is possible
to construct toy problems to show and partially understand this phenomenon (see for ex-
ample Lan et al. (2020)), in practice there is no good heuristic to decide whether a positive
or negative bias might hurt performance or not. This is particularly true when no prior
knowledge on the environment is available and/or different regions of the state-action space
have radically different characteristics. In this context, the Weighted Estimator strikes as
a strong contender due to its robustness and the unpolarized nature of its bias. In fact, our
method successfully overcomes the limits of well-established alternatives, generally without
compromising computational time and ease of implementation.

The main outcome of this work is a unifying view advocating for the adoption of the
Weighted Estimator in RL, and substantiating this claim by proposing an extension to the
deep RL setting. There are multiple possible directions for future work. From the theoretical
perspective, future work should analyze the different estimators taking into account the
sequential nature of the decision making process. On the same note, dropout uncertainty
estimates can be poorly calibrated (Osband et al., 2018; Lakshminarayanan et al., 2017)
and do not propagate uncertainty through the Bellman equation (Osband et al., 2018).
Future work should combine ideas that solve this issue (e.g., Metelli et al. (2019); Osband
et al. (2018)) with methods that allow to compute the weights of the Weighted Estimator
with acceptable precision. Finally, as already mentioned, the combination of the Weighted
Estimator with state-of-the-art value-based RL algorithms should be further investigated.
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Appendix

The appendix is organized as follows. In Appendix A, we provide additional empirical
results and further details on the experimental settings used to evaluate the agents. In
Appendix B, we compare WE against softmax operators frequently used in RL. Then, in
Appendix C, we provide a comparison on the grid world environment for the Monte Carlo
approximation of WE against the approximation obtained with the trapezoidal rule.

Appendix A. Experiments details and additional results

In this section we provide additional empirical results and details on the experimental setup
used for the empirical evaluation of the proposed methods.

For the implementation of the algorithms and the simulation environments we rely on
the following open-source libraries:

e numpy (Harris et al., 2020);

MushroomRL (D’Eramo et al., 2021);

Gym (Brockman et al., 2016);

ALE (Bellemare et al., 2013);
e MinAtar (Young and Tian, 2019);
e PyTorch (Paszke et al., 2019).

The experiments were run on a server with an Intel Xeon Silver 4116 CPU with NVIDIA
Titan V GPUs. Most of the hyperparameters were selected based on published results, as
we mention for each experiment in Section 6.

A.1 Lunar Lander

For Lunar Lander (Brockman et al., 2016) we limit the length of an episode (during evalu-
ation and training) at 1,000 steps. To increase the complexity of the problem, we make the
environment stochastic using sticky actions (see previous subsection) with a prepeat = 10%.
We use a small neural network with only two hidden layers. For WDQN, we use Concrete
Dropout on each hidden layer. Table 1 reports the hyperparameters used to train the agents.
Hyperparameters were tuned on vanilla DQN and kept fixed for the competitors. Hyperpa-
rameters specific to WDQN were tuned with a small random search. For MaxminDQN we
ran the experiments with both 2 and 3 approximators, since 3 approximators led to clearly
worse performance (as shown in Figure 17) we did not increase the number of estimators
further.

A.2 MinAtar

MinAtar (Young and Tian, 2019) offers a collection of environments resembling games
from the Atari Learning Environment (Bellemare et al., 2013). The state representation of
MinAtar environments is a matrix with multiple channels, where each channel gives specific
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Figure 17: Learning curves on Lunar Lander for MaxminDQN with different number of
approximators. The results averaged over 20 independent runs.

information about some aspects of the environment (e.g., position and speed of a moving
object). MinAtar implements the ALE modifications suggested by Machado et al. (2018),
i.e., sticky actions and difficulty ramping.

We use the same hyperparameters and network of Young and Tian (2019), but we use
Adam for training, which yields good results across all the considered algorithms. The
learning rate used for Adam is the default used by several popular DQN implementations.
For WDQN, we select the additional hyperparameters by choosing the value providing
better performance with a small search and keeping it fixed across the three games. Table 2
shows the relevant hyperparameters.

For WDQN, we run an additional experiment to asses the impact of the dropout regu-
larization coefficient. We set the initial dropout rate at p = 0.5 (which corresponds to the
maximum entropy) and test the agents using regularization coefficients of different magni-
tude. The results, reported in Figure 18, show how higher levels of regularization generally
correspond to higher entropy of the weights used to compute the WE. Finally, in Figure 19,
we show results for MaxminDQN with N = 2, and N = 3 approximators; we also show
WDQN learning curves as reference.

A.3 Atari games

For the experiment on the Atari games we use the settings of Mnih et al. (2015). The
additional hyperparameters introduced by WDQN are tuned with a - very small - random
search. Concrete Dropout is used only on the neurons of the last (dense) hidden layer, as
usually done in convolutional neural networks; which means that the stochastic forward
passes needed to compute the Weighted Estimator can be efficiently performed through the
last layer alone. Agents are evaluated during training every 1M frames, with the 30 no-op
starting condition. During evaluation the episode length is capped at 30 minutes. Table 3
reports a list of additional relevant hyperparameters.
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regularization values. The results are averaged over 20 independent runs.
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Table 1: DQN hyperparameters on Lunar Lander. Hyperparameters marked with a * are
used only for WDQN.

Hyperparameter ‘ Value
Units per layer [100, 100]
Activation relu
Optimizer Adam
Learning rate 3e—4
Batch size 32
Loss function MSE
Training frequency 1
Target network update frequency 300
Min. memory size 250
Max. memory size 10,000
Discount factor (v) 0.99
Initial exploration rate (€stqrt) 1.0
Final exploration rate (€¢pq) 0.01
Exploration steps 1,000
Evaluation exploration rate (€4est) 0.0
MC dropout samples™ 50
Weight decay coefficient (\)* le—6
Dropout regularization coefficient (¢)* 2.5e—3
Initial dropout rate (p)* 0.2

N. approximators — AvgDQN (74ug) 3

N. approximators — MaxminDQN (1) | 2

Figure 20 shows results for MaxminDQN when increasing the number of approximators
from N = 2 to N = 3. Besides to the clear impact in terms of learning speed due to
the reduced number of samples to train each model, the negative bias introduced by MME
heavily affects performance in Asterix, where the learning algorithm completely fails.

Appendix B. Comparison against softmax operators

Weighted @-Learning uses a convex combination of action values, resulting from the use of
the WE, to compute the target of the update. We resort to the grid world problem to provide
a comparison of Weighted Q-Learning against other methods based on a convex combination
of action values. We consider the standard softmax operator (Sutton and Barto, 1998), and
the mellowmaz operator (Asadi and Littman, 2017). To directly compare against WE,
we use a temperature value of 1 for both operators. Figure 21 shows that the standard
softmax performs considerably worse than other methods, obtaining strongly suboptimal
performance and inaccurate value estimation. Mellowmax behaves better than softmax in
terms of performance, but tends to largely underestimate the action-value.
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Table 2: DQN hyperparameters on Minatar environments. Hyperparameters marked with
a * are used only for WDQN.

Hyperparameter Value
Optimizer Adam
Learning rate le—4
Batch size 32

Loss function Huber
Training frequency 1
Target network update frequency 1,000
Min. memory size 5,000
Max. memory size 100, 000
Discount factor () 0.99
Initial exploration rate (gs¢art) 1.0
Final exploration rate (£¢pq) 0.1
Exploration steps 100, 000
Evaluation exploration rate (g¢es) 0.0

MC dropout samples* 100
Weight decay coefficient (\)* le—6
Dropout regularization coefficient (¢)* le—4
Initial dropout rate (p)* 0.1

N. approximators — AvgDQN (n4yg) 3

N. approximators — MaxminDQN (7,n,) | 2

Table 3: DQN hyperparameters on Atari. Hyperparameters marked with a * are used only

for WDQN.
Hyperparameter ‘ Value
MC dropout samples — WDQN 100
Weight decay coefficient — WDQN () le—6
Dropout regularization coefficient — WDQN (¢) | 5e—2
Initial dropout rate (p) 0.5
N. approximators — AvgDQN (n4yg) 3
N. approximators — MaxminDQN (72,,n,) 2

Appendix C. Computational analysis for Weighted Estimator

We provide an analysis of the difference between the integration and the sampling methods
for computing the weights of WE. In Figure 22, we show the maximum action-value in
the starting state of the grid world problem described in Section 6, using the setting with
reward distributed as N'(5,1). The experiment was performed using standard scientific
computing libraries for both numerical integration and random sampling. We show that
the maximum action-value estimates obtained with the integration method with 1,000 and
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Figure 20: Learning curves on Atari games for MaxminDQN with different numbers of
approximators. Results are averaged over 10 independent runs.

25 trapezoids, and with the sampling methods with 100 samples, do not have substantial
differences. Moreover, the average computation times to compute the weights of the WE are
0.619ms and 0.204ms, respectively for the integration method with 1,000 and 25 trapezoids,
and 0.0325ms for the sampling method with 100 samples. This result shows that the
sampling method can provide an accurate estimate of the weights of the WE while being
computationally more advantageous than the integration method.
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