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Abstract
Model-based clustering is widely used in a variety of application areas. However, fundamental
concerns remain about robustness. In particular, results can be sensitive to the choice of kernel rep-
resenting the within-cluster data density. Leveraging on properties of pairwise differences between
data points, we propose a class of Bayesian distance clustering methods, which rely on modeling
the likelihood of the pairwise distances in place of the original data. Although some information
in the data is discarded, we gain substantial robustness to modeling assumptions. The proposed
approach represents an appealing middle ground between distance- and model-based clustering,
drawing advantages from each of these canonical approaches. We illustrate dramatic gains in the
ability to infer clusters that are not well represented by the usual choices of kernel. A simula-
tion study is included to assess performance relative to competitors, and we apply the approach to
clustering of brain genome expression data.
Keywords: Distance-based clustering, Mixture model, Model-based clustering, Model misspeci-
fication, Pairwise distance matrix, Partial likelihood

1. Introduction

Clustering is a primary focus of many statistical analyses, providing a valuable tool for exploratory
data analysis and simplification of complex data. In the literature, there are two primary approaches
– distance- and model-based clustering. Let yi ∈ Y , for i = 1, . . . , n, denote the data and let d(y, y′)
denote a distance between data points y and y′. Then, distance-based clustering algorithms are
typically applied to the n× n matrix of pairwise distances D(n)×(n) = {di,j}, with di,j = d(yi, yj)
for all i, j pairs and (n) = {1, . . . , n}. For reviews, see Jain (2010); Xu and Tian (2015). In contrast,
model-based clustering takes a likelihood-based approach in building a model for the original data
y(n) that has the form:

yi
iid∼ f, f(y) =

k∑
h=1

πhK(y; θh), (1)

where π = (π1, . . . , πk)
′ is a vector of probability weights in a finite mixture model, h is a cluster

index, and K(y; θh) is the density of the data within cluster h. Typically, K(y; θ) is a density in a
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parametric family, such as the Gaussian, with θ denoting the parameters. The finite mixture model
(1) can be obtained by marginalizing out the cluster index ci ∈ {1, . . . , k} in the following model:

yi ∼ K(θci), pr(ci = h) = πh. (2)

Using this data-augmented form, one can obtain maximum likelihood estimates of the model pa-
rameters π and θ = {θh} via an expectation-maximization algorithm (Fraley and Raftery, 2002).
Alternatively, Bayesian methods are widely used to include prior information and characterize un-
certainty in the parameters. For reviews, see Bouveyron and Brunet-Saumard (2014) and McNi-
cholas (2016).

Distance-based algorithms tend to have the advantage of being relatively simple conceptually
and computationally, while a key concern is the lack of characterization of uncertainty in clustering
estimates and associated inferences. While model-based methods can address these concerns by
exploiting a likelihood-based framework, a key disadvantage is a large sensitivity to the choice of
kernel K(·; θ). Often, kernels are chosen for simplicity and computational convenience, and they
place rigid assumptions on the shape of the clusters, which are not justified by the applied setting
being considered.

We are not the first to recognize this problem, and there is literature attempting to address is-
sues with kernel robustness in model-based clustering. One direction is to choose a flexible class
of kernels, which can characterize a wide variety of densities. For example, one can replace the
Gaussian kernel with one that accommodates asymmetry, skewness and/or heavier tails (Karlis and
Santourian (2009); Juárez and Steel (2010); O’Hagan et al. (2016); Gallaugher and McNicholas
(2018); among others). A related direction is to nonparametrically estimate the kernels specific
to each cluster, while placing minimal constraints for identifiability, such as unimodality and suf-
ficiently light tails. This direction is related to the mode-based clustering algorithms of Li et al.
(2007); see also Rodrı́guez and Walker (2014) for a Bayesian approach using unimodal kernels.
Unfortunately, as discussed by Hennig et al. (2015), a kernel that is too flexible leads to ambiguity
in defining a cluster and identifiability issues: for example, one cluster can be the union of sev-
eral clusters that are close. Practically, such flexible kernels demand a large number of parameters,
leading to daunting computation cost.

A promising new strategy is to replace the likelihood with a robust alternative. Coretto and
Hennig (2016) propose a pseudo-likelihood based approach for robust multivariate clustering, which
captures outliers with an extra improper uniform component. Miller and Dunson (2018) propose a
coarsened Bayes approach for robustifying Bayesian inference and apply it to clustering problems.
Instead of assuming that the observed data are exactly generated from (1) in defining a Bayesian
approach, they condition on the event that the empirical probability mass function of the observed
data is within some small neighborhood of that for the assumed model. Both of these methods aim
to allow small deviations from a simple kernel. It is difficult to extend these approaches to data with
high complexity, such as clustering multiple time series, images, etc.

We propose a new approach based on a Bayesian model for the pairwise distances, avoiding a
complete specification of the likelihood function for the data y(n). There is a rich literature propos-
ing Bayesian approaches that replace an exact likelihood function with some alternative. Cher-
nozhukov and Hong (2003) consider a broad class of such quasi-posterior distributions. Jeffreys
(1961) proposed a substitution likelihood for quantiles for use in Bayesian inference; also refer to
Dunson and Taylor (2005). Hoff (2007) proposed a Bayesian approach to inference in copula mod-
els, which avoids specifying models for the marginal distributions via an extended rank likelihood.
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Johnson (2005) proposed Bayesian tests based on modeling frequentist test statistics instead of the
data directly. These are just some of many examples.

Our proposed Bayesian distance clustering approach gains some of the advantages of model-
based clustering, such as uncertainty quantification and flexibility, while significantly simplifying
the model specification task. There is a connection between our approach and nonnegative matrix
factorization (NMF) methods (Kuang et al., 2012; Zhao et al., 2015; Kuang et al., 2015). Cer-
tain NMF algorithms can be viewed as fast approximations to our likelihood-based approach. Our
major contributions are: (i) establishing a novel link between model- and distance-based frame-
works, (ii) introducing a principled choice for assigning kernels for distances (equivalent to the
affinity/similarity score in NMFs), and (iii) providing a way to calibrate the parameters within the
proposed probabilistic framework.

2. Partial likelihood for distances

2.1 Motivation for partial likelihood

Suppose that data y(n) are generated from model (1) or equivalently (2). We focus on the case in
which yi = (yi,1, . . . , yi,p)

′ ∈ Y ⊂ Rp. The conditional likelihood of the data y(n) given clustering
indices c(n) can be expressed as

L(y(n); c(n)) =

k∏
h=1

∏
i:ci=h

Kh(yi) =

k∏
h=1

Lh(y[h]), (3)

where we let Kh(y) denote the density of data within cluster h, and y[h] = {yi : ci = h} =

{y[h]
i , i = 1, . . . , nh} is the data in cluster h. Since the information of c(n) is stored by the index

with [h], we will omit c(n) in the notation when [h] appears. Referring to y[h]
1 as the seed for clus-

ter h, we can express the likelihood Lh(y[h]) using the change-of-variables (y
[h]
1 , y

[h]
2 . . . , y

[h]
nh) →

(y
[h]
1 , d̃

[h]
2,1, . . . , d̃

[h]
nh,1

):

Kh(y
[h]
1 )

nh∏
i=2

Gh(d̃
[h]
i,1 | y

[h]
1 )

= Kh
(
y

[h]
1 | d̃

[h]
2,1, . . . , d̃

[h]
nh,1

)
Gh
(
d̃

[h]
2,1, . . . , d̃

[h]
nh,1

)
,

(4)

where d̃[h]
i,1 = y

[h]
i − y

[h]
1 denotes the difference vector between y[h]

i and y[h]
1 (with G the transformed

kernel), and the second line is an equivalent factorization of the joint distribution, with Kh(y
[h]
1 | .)

the conditional density of y[h]
1 given the differences. Expression (4) is a product of the densities

of the seed and (nh − 1) differences. As the cluster size nh increases, the relative contribution of
the seed density Kh(y

[h]
1 | .) will decrease and the likelihood becomes dominated by Gh. With this

heuristic justification, we discard the Kh(y
[h]
1 | .) term by treating the value of y[h]

1 as random and
integrating out Kh(y

[h]
1 | .).

We now use a toy example to illustrate how to derive the function Gh from a known model-
based likelihood (later we will show how to specify Gh directly, when the model-based likelihood
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is not known). Consider the case of yi ∈ R from a Gaussian mixture, starting from the likelihood
of those yi’s associated with ci = h:

Lh(y[h]) = (2πσ2
h)−nh/2 exp

[
−
∑nh

i=1(y
[h]
i − µh)2

2σ2
h

]

= (2πσ2
h)−nh/2 exp

−
∑nh

i=1

[
(y

[h]
i − y

[h]
1 )2 + (y

[h]
1 − µh)2 + 2(y

[h]
i − y

[h]
1 )(y

[h]
1 − µh)

]
2σ2

h

 ,

To obtain Gh, based on the formula f(d, y) = f(y | d)
∫
f(d, y)dy, we use the change-of-

variable d̃[h]
i,1 = y

[h]
i − y

[h]
1 , and integrate out y[h]

1 [as the information of y[h]
1 is now in Kh

(
y

[h]
1 |

d̃
[h]
2,1, . . . , d̃

[h]
nh,1

)
]:

Gh
(
d̃

[h]
2,1, . . . , d̃

[h]
nh,1

)
=∫

(2πσ2
h)−nh/2 exp

[
−
∑nh

i=1 d̃
[h]2
i,1 + nh(y

[h]
1 − µh)2 + 2(y

[h]
1 − µh)

∑nh
i=1 d̃

[h]
i,1

2σ2
h

]
dy[h]

1

= (2πσ2
h)−(nh−1)/2 1

√
nh

exp

[
−
∑nh

i=1 d̃
[h]2
i,1 − (

∑
d

[h]
i,1)2/nh

2σ2
h

]
(a)
= (2πσ2

h)−(nh−1)/2 1
√
nh

∏
i,j

exp

(
−

d̃
[h]2
i,j

4nhσ
2
h

)
,

where (a) is due to 2
∑

i<j d̃
[h]2
ij =

∑
i

∑
j(d̃

[h]
i,1−d̃

[h]
j,1)2 = nh

∑
i d̃

[h]2
i,1 +nh

∑
j d̃

[h]2
j,1 −

∑
j 6=i 2d̃

[h]
i,1d̃

[h]
j,1−∑

i=j 2d̃
[h]
i,1d̃

[h]
j,1 = 2nh[

∑
d̃

[h]2
i,1 − (

∑
d̃

[h]
i,1)2/nh].

In the above example, note that the right hand side appears to be a product density of all the
pairwise differences D̃[h] = {d̃[h]

i,j}(i,j), besides those formed with the seed. This is due to the linear

equality that d̃[h]
i,j = d̃

[h]
i,1−d̃

[h]
j,1 — therefore, there are effectively only (nh−1) free random variables;

once they are given, the rest are completely determined.
Generalizing from this form, we now specify G as

Gh
(
d̃

[h]
2,1, . . . , d̃

[h]
nh,1

)
=

nh∏
i=1

∏
j>i

g
1/nh

h (d̃
[h]
i,j ), (5)

where gh : Rp → R+ and each d̃[h]
i,j is assigned a marginal density. The power 1/nh is a calibration

parameter that adjusts the order discrepancy between the numbers of (nh− 1)nh/2 marginal densi-
ties and (nh − 1) effective random variables. We will formally justify this calibration in the theory
section.

Remark 1 To clarify, despite the simple product form, (5) should not be treated as the independent
densities of nh(nh− 1)/2 differences. This is because these differences contain effectively (nh− 1)

random variables d̃[h]
2,1, . . . , d̃

[h]
nh,1

, and (nh−1)(nh−2)/2 interaction terms d̃[h]
i,j = d̃

[h]
i,1− d̃

[h]
j,1; these
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interaction terms induce dependence between d̃[h]
i,1 and d̃[h]

j,1:

Gh
(
d̃

[h]
2,1, . . . , d̃

[h]
nh,1

)
=

[ nh∏
i=2

g
1/nh

h (d̃
[h]
i,1)

][ nh−1∏
i=1

∏
i<j

g
1/nh

h (d̃
[h]
i,1 − d̃

[h]
j,1)

]
.

For example, for d̃[h]
2,1 and d̃[h]

3,1, the related terms in (5) are:

g1/nh(d̃
[h]
2,1)g1/nh(d̃

[h]
3,1)g1/nh(d̃

[h]
2,1 − d̃

[h]
3,1),

which is a non-separable function of d̃[h]
2,1 and d̃[h]

3,1, and hence not independent.

We now state the assumptions that we use for clustering.

Assumption 1 For those data within a cluster, y[h]
i and y[h]

j are independent and identically dis-
tributed.

Focusing on marginally specifying each gh, we can immediately obtain two key properties of
d̃

[h]
i,j = y

[h]
i − y

[h]
j : (1) Expectation zero, and (2) Marginal symmetry with skewness zero. Hence,

the distribution of the differences is substantially simpler than the original data distribution Kh.
This suggests using Gh for clustering will substantially reduce the model complexity and improve
robustness.

We connect the density of the differences to a likelihood of ‘distances’ — here used as a loose
notion including metrics, semi-metrics and divergences. Consider di,j ∈ [0,∞) as a transform of
d̃i,j , such as some norm di,j = ‖d̃i,j‖ (e.g. Euclidean or 1-norm); hence, a likelihood for di,j is
implicitly associated to a pushforward measure from the one on d̃i,j (assuming a measurable trans-
form). For example, an exponential density on di,j = ‖d̃i,j‖1 can be taken as the result of assigning
a multivariate Laplace on d̃i,j . We can further generalize the notion of difference from subtraction to
other types, such as ratio, cross-entropy, or an application-driven specification (Izakian et al., 2015).

To summarize, this motivates the practice of first calculating a matrix of pairwise distances,
and then assigning a partial likelihood for clustering. For generality, we slightly abuse notation and
replace the difference array D̃ with the distance matrixD in (5), and denote the density byGh(D[h]).
We will refer to (5) as the distance likelihood from now on. Conditional on the clustering labels,

L[D; c(n)] =
k∏

h=1

Gh(D[h]), (6)

with ci ∼
∑k

h=1 πhδh independently, as is (2).
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Figure 1: Illustration of the clustering uncertainty and its estimation using the distance-based clus-
tering method. Left panel: two overlapping clusters (red and grey) generated from two skew Gaus-
sian distributions with n = 400. Center panel: the oracle uncertainty pr(ci 6= ĉi | yi) calculated
based on the generative distribution. Right panel: the matrix of the co-assignment probabilities
pr(ci = cj | D) estimated using the distance likelihood of D.

To provide some intuition about the clustering uncertainty, we simulate two clusters using the
bivariate skewed Gaussian distribution: in each dimension, the first cluster has a skewness of 4
(red in Figure 1, left panel), location of 0 and scale of 1, and the second has a skewness of −2,
location of 0.5 and scale of 1 (grey in Figure 1, left panel); the two sub-coordinates are generated
independently. Via the skew Gaussian density Kh(yi) used to generate the data, we can compute
the oracle assignment probability pr(ci = h | yi) for h = 1 and 2, and the most likely cluster
assignment ĉi for each data point.

Clearly, due to the overlapping of the two clusters, there is a significant amount of uncertainty
for those near the location (0, 0), as the pr(ci 6= ĉi) remains away from 0 (Figure 1, center panel)
— importantly, such uncertainty does not vanish even as n→∞, as these points will remain nearly
equidistant to the two cluster centers. Using the distance likelihood on D, we can obtain an easy
quantification of the uncertainty, by sampling ci from the posterior distribution and calculating the
co-assignment probabilities pr(ci = cj | D); as shown in the right panel, the off-diagonal block
shows that a significant portion of data that can be co-assigned to either the first or the second
cluster with a non-trivial probability.

2.2 Choosing a distance density for clustering

To implement our Bayesian distance clustering approach, we need a definition of clusters, guiding
us to choose a parametric form for gh(.) in (5). For conciseness, we will focus on the norm-based
distances from now on. A popular intuition for a cluster is a group of data points, such that most
of the distances among them are relatively small. That is, the probability of finding large distances
within a cluster should be low. We now state the assumption.

Assumption 2 With σh > 0, a scale parameter and εh a function that rapidly declines towards 0
as t increases.

pr(d[h]
i,j ≥ tσh) ≤ εh(t) for sufficiently large t > 0. (7)
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For such a decline, it is common to consider the sub-exponential rate (Wainwright, 2019), εh(t) =
O{exp(−t/b)} with some constant b > 0. Ideally, we want σh to be small, so that most of the
distances within a cluster are small.

It is tempting to consider using a simple exponential density Exp(σh) for modeling d[h]
i,j , how-

ever, we make an important observation here: the exponential distribution has a deterministic rela-
tionship between the mean σh and the variance σ2

h — this means any slightly large Ed[h]
i,j (such as

when the distribution of d[h]
i,j does not follow a exponential decay near zero) will inflate the estimate

of σh, making it difficult to use small distances for clustering.

Figure 2: Histograms of Euclidean distances scaled by 1/σh (with σh ≈
√
p). Left is the first two

dimensions, and the right show that the distances formed within a cluster (cyan) tend to be much
smaller than the ones across clusters (red). Each cluster’s data are generated from a multivariate
Laplace distribution yi ∼ Lap(µh,Σh) with h = 1, 2.

This motivates us to use a two-parameter distribution instead — in this article, we use Gamma
(αh, σh) for gh in (5), whose variance αhσ2

h is no longer completely determined by the mean αhσh.

gh(d
[h]
i,j ) =

1

Γ(αh)σαh
h

xαh−1 exp
(
−d[h]

i,j/σh

)
. (8)

We defer the prior choice for αh and σh to a later section. For now, we verify that the Gamma
distribution does have a sub-exponential tail that satisfies Assumption 1.

Lemma 2 (Bound on the right tail) If d has the density (8), for any αh ≥ 1 and t > 0,

pr(d ≥ tσh) ≤Mtαh exp (−t),

where M = (αh)−αh exp(αh).

Remark 3 The polynomial term tαh allows deviation from the exponential distribution at small t;
its effect vanishes as t increases.

The assumption on the distances are connected to some implicit assumptions on the data dis-
tribution K(yi). As such a link varies with the specific form of the distance, we again focus on
the vector norm of subtraction d[h]

i,j = ‖y[h]
i − y

[h]
j ‖q, with ‖x‖q = (

∑p
j=1 x

q
j)

1/q and q ≥ 1. We
now show that a sub-exponential tail for the vector norm distance is a necessary result of assuming
sub-exponential tails in K(yi).
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Lemma 4 (Tail of vector norm distance) If there exist bound constants m[h]
1 ,m

[h]
2 > 0, such that

for all j = 1, . . . , p

pr(|y[h]
i,j − Ey[h]

i,j | ≥ t) ≤ m
[h]
1 exp(−m[h]

2 t), (9)

then, there exist another two constants νh, bh > 0, such that for any q ≥ 1

pr(d[h]
ij > tbhp

η) ≤ 2p exp{−tp(η−1/q)/2} for t > 2p1/q−ην2
h. (10)

Remark 5 The concentration property (9) is less restrictive than common assumptions on the ker-
nel in a mixture model, such as Gaussianity, log-concavity or unimodality.

3. Hyper-prior specification for αh and σh

In Bayesian clustering, it is useful to choose the prior parameters in a reasonable range (Malsiner-
Walli et al., 2017). Recall in our gamma density, αh determines the mean for d[h]

i,j at αhσh. To favor
small values for the mode while accommodating a moderate degree of uncertainty, we use a Gamma
prior αh ∼ Gamma(1.5, 1.0).

To select a prior for σh, we associate it with a pre-specified maximum cluster number k. We
can view k as a packing number — that is, how many balls (clusters) we can fit in a container of the
data. To formalize, imagine a p-dimensional ellipsoid in Rp enclosing all the observed data. The
smallest volume of such an ellipsoid is

vol(Data) = M min
µ∈Rp,Q�0

(det Q)−1/2, s.t. (yi − µ)TQ(yi − µ) ≤ 1 for i = 1, . . . , n,

which can be obtained via a fast convex optimization algorithm (Sun and Freund, 2004), with M =
π̃p/2/Γ(p/2 + 1) and π̃ ≈ 3.14.

If we view each cluster as a high-probability ball of points originating from a common distribu-
tion, then the diameter — the distance between the two points that are farthest apart — is ∼ 4σh.
This is calculated based on pr(d ≤ 4σh) ≈ 0.95 using the gamma density with shape 1.5 (the prior
mean of αh). We denote the ball by B2σh , with vol(B2σh) = M(2σh)p.

Setting k to the packing number

k ' vol(Data)

vol(B2σh)

yields a sensible prior mean for σh. For conjugacy, we choose an inverse-gamma prior for σh with
E(σh) = βh,

σh ∼ Inverse-Gamma(2, βσ), βσ =
1

2

{
vol(Data)

kM

}1/p

.

The above prior can be used as a default in broad applications, and does not require tuning to
each new application.

4. Theory

We describe several interesting properties for the distance likelihood.
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4.1 Calibration

Lemma 6 (Exchangeability) When the product density (5) is used for all Gh(D[h]), h = 1, . . . , k,
the distance likelihood (6) is invariant to permutations of the indices i:

L{y(n); c(n)} = L{y(n∗); c(n∗)},

with (n∗) = {1∗, . . . , n∗} denoting a set of permuted indices.

We fill a missing gap between the model-based and distance likelihoods by considering an
information-theoretic analysis of the two clustering approaches. This also leads to a principled
choice of the power 1/nh in (5).

To quantify the information in clustering, we first briefly review the concept of Bregman diver-
gence (Bregman, 1967). Letting φ : S → R be a strictly convex and differentiable function, with S
the domain of φ, the Bregman divergence is defined as

Bφ(x, y) = φ(x)− φ(y)− (x− y)TOφ(y),

where Oφ(y) denotes the gradient of φ at y. A large family of loss functions, such as squared norm
and Kullback-Leibler divergence, are special cases of the Bregman divergence with suitable φ. For
model-based clustering, when the regular exponential family (‘regular’ as the parameter space is a
non-empty open set) is used for the component kernel Kh, Banerjee et al. (2005) show that there
always exists a re-parameterization of the kernel using Bregman divergence. Using our notation,

Kh(yi; θh) = exp
{
T (yi)

′θh − ψ(θh)
}
κ(yi)⇔ exp [−Bφ {T (yi), µh}] bφ{T (yi)},

where T (yi) is a transformation of yi, in the same form as the minimum sufficient statistic for θh
(except this ‘statistic’ is based on only one data point yi); µh is the expectation of T (yi) taken with
respect to Kh(y; θh); ψ, κ and bφ are functions mapping to (0,∞).

With this re-parameterization, maximizing the model-based likelihood over c(n) becomes equiv-
alent to minimizing the within-cluster Bregman divergence

Hy =
k∑

h=1

H [h]
y , H [h]

y =

nh∑
i=1

Bφ

{
T (y

[h]
i ), µh

}
.

We will refer to Hy as the model-based divergence.
For the distance likelihood, considering those distances that can be viewed or re-parameterized

as a pairwise Bregman divergence, we assume each g(d
[h]
i,j ) in the distance likelihood (5) can be

re-written with a calibrating power βh > 0 as

gβh(d
[h]
i,j ) = zβh exp

[
−βhBφ

{
T (y

[h]
i ), T (y

[h]
j )
}]

,

with z > 0 the normalizing constant. A distance-based divergence Hd can be computed as

Hd =
k∑

h=1

H
[h]
d , H

[h]
d = βh

nh∑
i=1

nh∑
j=1

1

2
Bφ

{
T (y

[h]
i ), T (y

[h]
j )
}
. (11)

We now compare these two divergences Hy and Hd at their expectations.
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Lemma 7 (Expected Bregman Divergence) The distance-based Bregman divergence (11) in cluster
h has

Ey[h]H
[h]
d = βhEy[h]i

E
y
[h]
j

nh∑
i=1

nh∑
j=1

1

2
Bφ{T (y

[h]
i ), T (y

[h]
j )}

= (nhβh) Ey[h]

[
nh∑
i=1

Bφ{T (y
[h]
i ), µh}+Bφ{µh, T (y

[h]
i )}

2

]
,

where the expectation over y[h] is taken with respect to Kh.

Remark 8 The term inside the expectation on the right hand side is the symmetrized Bregman di-
vergence between T (y

[h]
i ) and µh (Banerjee et al., 2005). Therefore, Ey[h]H

[h]
d = (nhβh)Ey[h]H

[h]
y

when Bφ(·, ·) is symmetric.

There is an order difference of O(nh) between distance-based and model-based divergences.
Therefore, a sensible choice is simply setting βh = 1/nh. This power is related to the weights used
in composite pairwise likelihood (Lindsay, 1988; Cox and Reid, 2004).

4.2 Relationship to Graph Cut

It is also interesting to consider the matrix form of the distance likelihood. We use C as an n × k
binary matrix encoding the cluster assignment, with Ci,h = 1 if ci = h, and all other Ci,h′ = 0.
Then it can be verified that CTC = diag(n1, . . . , nk). Hence the distance likelihood, with the
Gamma density, is

G(D;C) ∝ exp
[
tr
{
CT(logD)CΛ(CTC)−1

}]
exp

[
− tr

{
CTDC

(
ΣCTC

)−1}]
, (12)

where D is the n × n distance matrix, log is applied element-wise, Σ = diag(σ1, . . . , σk), and
Λ = diag(α1− 1, . . . , αh− 1). If C contains zero columns, the inverse is replaced by a generalized
inverse.

One may notice some resemblance of (12) to the loss function in graph partitioning algorithms.
Indeed, if we simplify the parameters to α1 = · · · = αk = α0 and σ1 = · · · = σk = σ0, then

G(D;C) ∝ exp
[
tr
{
CTAC

(
CTC

)−1}]
, (13)

where A = κ1n,n −D/σ0 + (α0 − 1) logD can be considered as an adjacency matrix of a graph
formed by a log-Gamma distance kernel, with 1n,n as an n×nmatrix with all elements equal to 1; κ
a constant so that eachAi,j > 0 (since κ enters the likelihood as a constant tr{CTκ1n,nC(CTC)−1} =
nκ, it does not impact the likelihood of C). To compare, the popular normalized graph-cut loss
(Bandeira et al., 2013) is

NCut-Loss =
k∑

h=1

∑
i:ci=h

∑
j:cj 6=h

Ai,j
2nh

, (14)

which is the total edges deleted because of partitioning (weighted by n−1
h to prevent trivial cuts).

There is an interesting link between (13) and (14).

10
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Lemma 9 Considering a graph with weighted adjacency matrix A, the normalized graph-cut loss
is related to the negative log-likelihood (omitting constant) (13) via

2NCut-Loss = −tr
{
CTAC

(
CTC

)−1}
+

n∑
i=1

∑n
j=1Ai,j

nci
.

Remark 10 The difference on the right is often known as the degree-based regularization (with∑n
j=1Ai,j the degree, nci the size of the cluster that data i is assigned to). When the cluster sizes

are relatively balanced, we can ignore its effect.

Such a near-equivalence suggests that we can exploit popular graph clustering algorithms, such
as spectral clustering, for good initiation of C as a warm-start of the Markov chain Monte Carlo
algorithm.

5. Posterior computation

For the posterior computation, Gibbs sampler is easy to derive as it involves updating one element
of the parameter at a time, from the full conditional distribution. However, this could lead to a heavy
computational cost for our model. To understand this, consider the update step for each ci, which
involves a draw from the categorical distribution:

pr(ci = h | .) =
πhG(D; C̃i,h)∑k

h′=1 πh′G(D; C̃i,h′)
,

where C̃h denotes a matrix equal to the current value of C, except replacing the ith row with Ci,h =
1 and Ci,j = 0 for other j 6= h. Since G(D;C) involves a matrix inverse term (CTC)−1, the
above ratio cannot be simplified to reduce the computational burden. The evaluation cost for each
G(D;C) is dominated by the matrix multiplication steps within, hence having an overall cost of
O(n2k). Therefore, iterating over h = 1, . . . , k and i = 1, . . . , n will lead to a high cost in one
sweep of update.

To solve this problem, we instead develop a more efficient algorithm based on the approximate
Hamiltonian Monte Carlo (HMC) algorithm. We use a continuous relaxation of each row Ci (on a
simplex vertex) into the interior of the simplex, and denote the relaxation by Wi ∈ ∆

(k−1)
\∂ . This is

achieved via a tempered softmax re-parameterization (Maddison et al., 2017)

wi,h =
exp(vi,h/t)∑k

h′=1 exp(vi,h′/t)
, h = 1, . . . , k.

At small t > 0 and close to 0, if one vi,h is slightly larger than the rest in {vi,1, . . . , vi,k}, then
wi,h will be close to 1, and all the other wi,h′’s close to 0. In this article, we use t = 0.1 as a
balance between the approximation accuracy and the numeric stability of the algorithm. In ad-
dition, we re-parameterize the other parameters using the softplus function σh = log[exp(σ̃h) +
1] , αh = log[exp(α̃h) + 1] for h = 1, . . . , k, and and the softmax function (π1, . . . , πk) =
softmax(π̃1, . . . , π̃k) (as defined above except with t = 1), where σ̃h, α̃h and π̃h are all uncon-
strained parameters in R amenable to the off-the-shelf continuous HMC algorithm.

We denote the vectorized parameters by β = (v1,1, . . . , vn,k, σ̃1, . . . , σ̃k, α̃1, . . . , α̃k, π̃1, . . . , π̃k).
To sample from posterior distribution β ∼ Πβ|D(·), the HMC uses an auxiliary momentum variable

11
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v and samples from a joint distribution Π(β, v) = Π(β | D)Π(v), where a common choice of Π(v)
is the density of N(0,M). Denote U(β) = − log Π(β | D) and K(v) = − log π(v) = vTM−1v/2,
which are commonly referred to as the potential energy and kinetic energy respectively. The total
Hamiltonian energy function is H(β, v) = U(β) +K(v).

At each state (β, v), a new proposal (β∗, v∗) is generated by simulating Hamiltonian dynamics
satisfying the Hamilton’s equations:

∂β

∂t
=
∂H(β, v)

∂v
= M−1v;

∂v

∂t
= −∂H(β, v)

∂β
=
∂ log Π(β | D)

∂β
.

Since the exact solution to the above is intractable, we can numerically approximate the temporal
evolution using the leapfrog scheme, as described in the following pseudocode.

for Iteration =1, 2, . . . do
Sample v ∼ N(0,M), set β∗ ← β and v∗ ← v;
for l = 1, . . . , L do

Update v∗ ← v∗ + ε
2
∂ log Π(β∗|D)

∂β∗ ;
Update β∗ ← β∗ + εM−1v∗;
Update v∗ ← v∗ + ε

2
∂ log Π(β∗|D)

∂β∗ ;
if (β∗ − β)Tv∗ < 0 then

Break;
Sample u ∼ Uniform(0, 1);
if u < min{1, exp[−H(β∗,−v∗) +H(β, v)]}. then

Set β ← β∗;
Algorithm 1: The pseudocode of the No-U-Turn Hamiltonian Monte Carlo sampler for the
Bayesian distance clustering.

To accelerate the convergence of the Markov chain to stationarity, we first use the BFGS op-
timization algorithm (implemented in the PyTorch package) to first minimize U(β) and obtain the
posterior mode β̂. We then initialize the Markov chain at β = β̂.

A typical choice for the working parameter M−1 is to let it roughly scale with the covariance
matrix of the posterior distribution (Neal, 2011). Using β̂, we calculate the observed Fisher infor-
mation at β̂ [the Hessian matrix of U(β) evaluated at β̂, denoted by HessU (β̂)], which gives an
approximation to the inverse covariance of β. Although it is tempting to set M−1 = [HessU (β̂)]−1,
the matrix inversion of the latter is often costly and ill-conditioned. To avoid this problem, we use a
simpler and diagonal parameterization M−1 = diag(1/HessU (β̂)i,i), which shows good empirical
performances in all the examples within this article.

To run the HMC sampler, we use the No-U-Turn Sampler (NUTS-HMC) algorithm (Hoffman
and Gelman, 2014) implemented in the ‘hamiltorch’ package (Cobb and Jalaian, 2020), which also
automatically tunes the other two working parameters ε and L. After the automatic tuning, the
algorithm reaches an acceptance rate close to 70% as commonly desired for good mixing of the
Markov chains. To provide some running time, using a quad-core i7 CPU, at n = 1000, the HMC
algorithm takes about 20 minutes for running 10, 000 iterations.

Remark 11 On the computational cost, the most expensive step in the HMC algorithm is the calcu-
lation of the derivative of logG(D;W ) with respect to the matrix W , which involves the following
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form:

∂tr[(XTAX)(XTBX)−1]

∂X
= 2AX(XTBX)−1 − 2BX(XTBX)−1(XTAX)(XTBX)−1

where X ∈ Rn×k, symmetric B ∈ Rn×n and symmetric A ∈ Rn×n. Since k is relatively small, the
matrix inversion of the k×k matrix is not costly [O(k3)] and dominated by the matrix multiplication
O(n2k). Therefore, running over L leapfrog steps, the computational cost per iteration of HMC is
O(Ln2k).

Potentially, one could instead consider a Gibbs sampling algorithm, using a block-wise update
of CT(logD)C and CTDC (instead of a full evaluation of the matrix product) when sampling each
row of C. Despite having a similar computing complexity, a strength of HMC is that we can take
advantage of the highly parallelized matrix operation on C, which is often faster than the sequential
looping over each row of C.

In comparison, the parametric/model-based clustering algorithm has a lower cost of O(n), al-
though this often comes with a risk of model misspecification for modern data. Therefore, choosing
which class of methods involves a trade-off between computational speed versus model robustness.

The posterior samples of CCT give an estimate of the pairwise co-assignment probabilities
pr(ci = cj) =

∑k
h=1 pr(ci = cj = h). To obtain estimates for pr(ci = h), we use symmetric sim-

plex matrix factorization (Duan, 2020) on {pr(ci = cj)}i,j to obtain an n× k matrix corresponding
to {pr(ci = h)}i,h. For the diagnostics on the convergence, we calculate the autocorrelation (ACF)
and the effective sample size (ESS) for each parameter, and we provide some diagnostic plots in the
appendix.

In this article, for the ease of visualization and interpretation, we use pr(ci 6= ĉi | D) as a mea-
sure of the uncertainty on the point estimate ĉi = maxh=1,...,k pr(ci = h | D). An alternative is to
use the variation of information (Wade and Ghahramani, 2018) as a metric between the clusterings,
leading to the discrete extension of the posterior mean and credible intervals. The readers can find
the method and toolbox within the reference.

In addition, in the appendix, we show that the non-negative matrix factorization (NMF) algo-
rithm, if using a calibrated similarity matrix as its input (such as using our distance likelihood),
produces an almost indistinguishable result from the Bayesian distance clustering method. On the
other hand, if the similarity is set less carefully (such as using the “default” choice in popular ma-
chine learning packages), we found a severe sensitivity that leads to over-/under-estimation of the
uncertainty (as shown in Panel 4 of Figure 8). Therefore, for the sake of both conciseness and fair-
ness, we choose to not present the NMF results without calibration in the numerical experiments.
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6. Numerical experiments

6.1 Clustering with skewness-robust distance
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(a) Histogram and the true density (red line) of a
mixture of two symmetric Gaussians.
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(b) Histogram and the true density (red line) of a
mixture of two right skewed Gaussians.
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(c) Assignment probability pr(ci = 1), under
Bayesian distance clustering and the mixture of
Gaussians. Dashed line is the oracle probability
based on symmetric Gaussians.
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(d) Assignment probability pr(ci = 1), under
Bayesian distance clustering and the mixture of
Gaussians. Dashed line is the oracle probability
based on skewed Gaussians.

(e) The point estimates ĉi (represented by two colors) using Bayesian distance clustering and the mixture of
Gaussians.

Figure 3: Clustering data from a two-component mixture of skewed Gaussians in R. Bayesian
Distance clustering (BDC) gives posterior clustering probabilities close to the oracle probabilities
regardless of whether the distribution is skewed or not (upper plots in panel c and d), while the
mixture of Gaussians fails when the skewness is present (lower plot in panel d).
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p Bayes Dist. Clustering Mix. of Gaussians Mix. of Skewed Gaussians
1 0.80 (0.75, 0.84) 0.65 (0.55, 0.71) 0.81 (0.75, 0.85)
5 0.76 (0.71, 0.81) 0.55 (0.40, 0.61) 0.76 (0.72, 0.80)
10 0.72 (0.68, 0.76) 0.33(0.25, 0.46) 0.62 (0.53, 0.71)
30 0.71 (0.67, 0.76) 0.25 (0.20, 0.30) 0.43 (0.37, 0.50)

Table 1: Accuracy of clustering skewed Gaussians under different dimensions p. Adjusted Rand
index (ARI) is computed for the point estimates using variation of information. The average and
95% confidence interval are shown.

As described in Section 2.1, the vector norm-based distance is automatically robust to skewness. To
illustrate, we generate n = 200 data from a two-component mixture of skewed Gaussians:

pr(ci = 1) = pr(ci = 2) = 0.5,

yi,j | ci = h ∼ SN(µh, 1, αh) for j = 1 . . . p,

where SN(µ, σ, α) has density π(y | µ, σ, α) = 2f{(y − µ)/σ}F{α(y − µ)/σ} with f and F the
density and cumulative distribution functions for the standard Gaussian distribution.

We start with p = 1 and assess the performance of the Bayesian distance clustering model
under both non-skewed (α1 = α2 = 0, µ1 = 0, µ2 = 3) and skewed distributions (α1 = 8, α2 =
10, µ1 = 0, µ2 = 2). The results are compared against the mixture of Gaussians as implemented
in the Mclust package. Figure 3(a,c) show that for non-skewed Gaussians, the proposed approach
produces clustering probabilities close to their oracle probabilities, obtained using knowledge of
the true kernels that generated the data. When the true kernels are skewed Gaussians, Figure 3(b,d)
shows that the mixture of Gaussians gives inaccurate estimates of the clustering probability, whereas
Bayesian distance clustering remains similar to the oracle.

To evaluate the accuracy of the point estimate ĉi, we compute the adjusted Rand index (Rand,
1971) with respect to the true labels. We test under different p ∈ {1, 5, 10, 30}, and repeat each
experiment 30 times. The results are compared against model-based clustering using symmetric
and skewed Gaussians kernels, using independent variance structure. As shown in Table 1, the
misspecified symmetric model deteriorates quickly as p increases. In contrast, Bayesian distance
clustering maintains high clustering accuracy.

6.2 Clustering high dimensional data with subspace distance

For high-dimensional clustering, it is often useful to impose the additional assumption that each
cluster lives near a different low-dimensional manifold. Clustering data based on these manifolds
is known as subspace clustering. We exploit the sparse subspace embedding algorithm proposed
by Vidal (2011) to learn pairwise subspace distances. Briefly speaking, since the data in the same
cluster are alike, each data point can be approximated as a linear combination of several other data
points in the same subspace; hence a sparse locally linear embedding can be used to estimate an
n× n coefficient matrix Ŵ through

Ŵ = arg min
W :wi,i=0,

∑
j wi,j=1

n∑
i=1

‖yi −Wyi‖22 + ‖W‖1,
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Bayes Dist. Clustering Spectral Clustering HDClassif
0.57 (0.54, 0.60) 0.50 (0.48, 0.52) 0.35 (0.31, 0.43)

Table 2: Accuracy of clustering MNIST hand-written digit data. Adjusted Rand index (ARI) is com-
puted for the point estimates using variation of information. The average ARI and 95% confidence
intervals are shown.

where the sparsity of Ŵ ensures only the data in the same linear subspace can have non-zero em-
bedding coefficients. Afterward, we can define a subspace distance matrix as

di,j = 2−
(

|ŵi,j |
maxj′ |ŵi,j′ |

+
|ŵj,i|

maxj |ŵj,j |

)
,

where we follow Vidal (2011) to normalize each row by its absolute maximum. We then use this
distance matrix in our Bayesian distance clustering method.

To assess the performance, we use the MNIST data of hand-written digits of 0 − 9, with each
image having p = 28 × 28 pixels. In each experiment, we take n = 10, 000 random samples to
fit the clustering models, among which each digit has approximately 1000 samples, and we repeat
experiments 10 times. For comparison, we also run the near low-rank mixture model in HDclassif
package (Bergé et al., 2012) and spectral clustering based on the p-dimensional vector norm. Our
method using subspace distances shows clearly higher accuracy, as shown in Table 2.

7. Clustering brain regions

We carry out a data application to segment the mouse brain according to the gene expression ob-
tained from the Allen Mouse Brain Atlas dataset (Lein et al., 2007). Specifically, the data are in situ
hybridization gene expression, represented by expression volume over spatial voxels. Each voxel
is a (200µm)3 cube. We take the mid-coronal section of 41 × 58 voxels. Excluding the empty
ones outside the brain, they have a sample size of n = 1781. For each voxel, there are records of
expression volume over 3241 different genes. To avoid the curse of dimensionality for distances,
we extract the first p = 30 principal components and use them as the source data.

Since gene expression is closely related to the functionality of the brain, we will use the clusters
to represent the functional partitioning, and compare them in an unsupervised manner with known
anatomical regions. The voxels belong to 12 macroscopic anatomical regions (Table 4).
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(c) Point estimate from
Bayesian Distance Clustering.

Figure 4: Clustering mouse brain using gene expression: visualizing the clustering result on the first
two principal components.

For clustering, we use an over-fitted mixture with k = 20 and small Dirichlet concentration
parameter α = 1/20. As shown by Rousseau and Mengersen (2011), asymptotically, small α < 1
leads to the automatic emptying of small clusters; we observe such behavior here in this large
sample. In the Markov chain, most iterations have 7 major clusters. Table 5 lists the voxel counts at
ĉ(n).

Comparing the two tables, although we do not expect a perfect match between the structural and
functional partitions, we do see a correlation in group sizes based on the top few groups. Indeed,
visualized on the spatial grid (Figure 5), the point estimates from Bayesian distance clustering have
very high resemblance to the anatomical structure. Comparatively, the clustering result from the
Gaussian mixture model is completely different.

To benchmark against other distance clustering approaches, we compute various similarity
scores and list the results in Table 3. Competing methods include spectral clustering (Ng et al.,
2002), DBSCAN (Ester et al., 1996) and HDClassif (Bergé et al., 2012); the first two are applied
on the same dimension-reduced data as used by Bayesian distance clustering, while the last one
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BDC GMM Spectral Clustering DBSCAN HDClassif
Adjusted Rand Index 0.49 0.31 0.45 0.43 0.43
Normalized Mutual Information 0.51 0.42 0.46 0.44 0.47
Adjusted Mutual Information 0.51 0.42 0.47 0.45 0.47

Table 3: Comparison of label point estimates using Bayesian distance clustering (BDC), Gaussian
mixture model (GMM), spectral clustering, DBSCAN and HDClassif. The similarity measure is
computed with respect to the anatomical structure labels.
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ture model.

0

10

20

30

40

0 20 40 60

X1

X2
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tance Clustering.
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(d) Uncertainty based on Bayesian Dis-
tance Clustering: pr(ci 6= ĉi)

Figure 5: Clustering mouse brain using gene expression: visualizing the clustering result on the
spatial grid of brain voxels. Comparing with the anatomical structure (panel a), Bayesian Distance
Clustering (panel c) has a higher similarity than the Gaussian mixture model (panel b). Most of the
uncertainty (panel d) resides in the inner layers of the cortical plate (upper parts of the brain).

is applied directly on the high dimensional data. Among all the methods, the point estimates of
Bayesian Distance Clustering have the highest similarity to the anatomical structure.

Figure 5(d) shows the uncertainty about the point clustering estimates, in terms of the probability
pr(ci 6= ĉi). Besides the area connecting neighboring regions, most of the uncertainty resides in the
inner layers of the cortical plate (upper parts of the brain). As a result, the inner cortical plate can
be either clustered with the outer layer or with the inner striatum region. Therefore, from a practical
perspective, when segmenting the brain according to the functionality, it is more appropriate to treat
the inner layers as a separate region.
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8. Discussion

The use of a distance likelihood reduces the sensitivity to the choice of a mixture kernel, giving
the ability to exploit distances for characterizing complex and structured data. While we avoid
specifying the kernel, one potential weakness is that there can be sensitivity to the choice of the
distance metrics. For example, the Euclidean distance tends to produce a more spherical cluster,
compared to the weighted Euclidean distance (see appendix). However, our results suggest that this
sensitivity is often less than that of the assumed kernel. In many settings, there is a rich literature
considering how to carefully choose the distance metric to reflect structure in the data (Pandit and
Gupta, 2011). In such cases, the sensitivity of clustering results to the distance can be viewed as a
positive. Clustering method necessarily relies on some notion of distances between data points.

Another issue is that we give up the ability to characterize the distribution of the original data.
An interesting solution is to consider a modular modeling strategy that connects the distance clus-
tering to a post-clustering inference model while restricting the propagation of cluster information
in one direction only. Related modular approaches have been shown to be much more robust than a
single overarching full model (Jacob et al., 2017).

Our concentration characterization of the within-cluster distance based on the vector norm holds
for any arbitrary p. On the other hand, high-dimensional clustering is a subtle topic with challenging
issues: (i) not all the coordinates in Rp contain discriminative information that is favorable for one
particular partition; hence some alternative distances (Vidal, 2011), feature selection (Witten and
Tibshirani, 2010), or multi-view clustering (Duan, 2020) may be necessary; (ii) the selection of
number of clusters k becomes difficult, and it was recently discovered (Chandra et al., 2020) that
the model-based framework could lead to nonsensical results of converging to either one cluster or
n clusters even under a correctly specified model, as p→∞.

One interesting extension of this work is to combine with the nearest neighbor algorithm —
we can choose to ignore the large distances and instead focus on modeling the K smallest ones
for each data point — this could also significantly reduce the O(n2) computing and storage cost,
via the sparse matrix computation. One possible model is to replace our Gamma distance density
with a two-component mixture: one Gamma component concentrating near zero for modeling small
distances, and one Uniform(0,maxi,j di,j) for handling large distances. Since the uniform density
is a constant that does not depend on the specific value of the distance (as long it is in the support
of the uniform), it effectively eliminates the influence of large distances in clustering.
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Appendix

Proof of Lemma 2

Proof We first focus on x ∼ Gamma(α, 1), by the Markov’s inequality

pr(x ≥ t) ≤ E exp(sX)

exp(st)
= (1− s)−αe−ts,

where s < 1. Minimizing the right hand side over s yields s∗ = 1− α/t, and

pr(x ≥ t) ≤ (
t

α
)αe−t+α = α−αeαtαe−t.

Scaling x by σh and adjusting the constant yield the results.

Proof of Lemma 4

Proof Equivalently, the sub-exponential tail can be characterized by the bound on its moment
generating function

E exp{t(y[h]
i,k − µ

[h]
k )} ≤ exp(ν2

ht
2/2) ∀|t| ≤ 1/bh,

for k = 1, . . . , p. It immediately follows that the pairwise difference d̃[h]
i,j = y

[h]
i − y

[h]
j between two

iid random variables must be sub-exponential as well, with

E exp(td̃
[h]
i,j,k) ≤ exp(ν2

ht
2) ∀|t| ≤ 1/bh.

That is, sub-exponential–(
√

2νh, bh). Then the vector norm

pr(d[h]
i,j > pηt) = pr(

p∑
k=1

|d̃[h]
i,j,k|

q > pηqtq)

≤ p pr(|d̃[h]
i,j,k|

q > pηq−1tq)

= p pr(|d̃[h]
i,j,k| > pη−1/qt)

≤ 2p exp{−tp(η−1/q)/(2bh)} for t > p1/q−η2ν2
h/bh.

where the first inequality is due to pr(
∑p

i=1 ai > b) ≤ pr(There is at least one i: ai > b/p) ≤∑p
i=1 pr(ai > b/p) and second inequality uses Ed[h]

i,j,k = 0 and the property of sub-exponential tail
(Wainwright, 2019).
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Proof of Lemma 7

Proof For a clear exposition, we omit the sub/super-script h for now and use xi = T (yi)

EyiEyj
n∑
i=1

n∑
j=1

Bφ(xi, xj) =EyiEyj
n∑
i=1

n∑
j=1

{φ(xi)− φ(xj)− 〈xi − xj ,Oφ(xj)〉}

=Eyj
n∑
j=1

n∑
i=1

{Eyiφ(xi)− φ(µ)− 〈Eyixi − µ,Oφ(µ)〉

+ φ(µ)− φ(xj)− 〈Eyixi − xj ,Oφ(xj)〉

=n
n∑
i=1

Eyi{φ(xi)− φ(µ)− 〈xi − µ,Oφ(µ)〉}

+ n

n∑
j=1

Eyj{φ(µ)− φ(xj)− 〈µ− xj ,Oφ(xj)〉}

=n
n∑
i=1

Ey{Bφ(xi, µ) +Bφ(µ, xi)},

where 〈., .〉 denotes dot product, the second equality is due to Fubini theorem and Eyixi−µ = 0.

Proof of Lemma 9

Proof Using 1n,m n×m matrix with all elements equal 1. Since CTC = diag(n1, . . . , nk), the 2
times of normalized graph cut loss can be written as

tr
[
A(1n,k − C)

(
CTC

)−1
CT
]

= −tr
{
AC
(
CTC

)−1
CT
}

+ tr
[
A1n,k

(
CTC

)−1
CT
]
.

For the second term
tr
[
A1n,k

(
CTC

)−1
CT
]

=tr
[
CTA1n,k

(
CTC

)−1]
=

n∑
i=1

∑n
j=1Ai,j

nci
.
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Anatomical Structure Name Voxel Count
Cortical plate 718
Striatum 332
Thalamus 295
Midbrain 229
Basic cell groups and regions 96
Pons 56
Vermal regions 22
Pallidum 14
Cortical subplate 6
Hemispheric regions 6
Cerebellum 5
Cerebral cortex 2

Table 4: Names and voxel counts in 12 macroscopic anatomical structures in the coronal section of
the mouse brain. They represent the structural partitioning of the brain.

Index Voxel Count
1 626
2 373
3 176
4 113
5 79
6 39
7 12

Table 5: Group indices and voxel counts in 7 clusters found by Bayesian Dis-
tance Clustering, using the gene expression volume over the coronal section of
the mouse brain. They represent the functional partitioning of the brain.

Numerical experiments showing the effect of discarding the seed

We show numerically that as nh increases, the seed conditional density Kh
(
y

[h]
1 | d̃[h]

2,1, . . . , d̃
[h]
nh,1

)
becomes very small in magnitude compared to the distance likelihood Gh

(
d̃

[h]
2,1, . . . , d̃

[h]
nh,1

)
. To

compute those two terms, we use the Gaussian example presented in Section 2.1, simulated with
σ2
h = 1, µh = 0. Since the values of those densities are very close to zero, we use the log-scale and

compute the ratio, ∣∣∣∣∣ logKh
(
y

[h]
1 | d̃

[h]
2,1, . . . , d̃

[h]
nh,1

)
logKh

(
y

[h]
1 | d̃

[h]
2,1, . . . , d̃

[h]
nh,1

)
Gh
(
d̃

[h]
2,1, . . . , d̃

[h]
nh,1

)
∣∣∣∣∣

as a measure of how small Kh(y
[h]
1 | .) compared to Gh. We repeat each experiment for 30 times

and create the box plots. As can be seen from Figure 6 (left panel), the ratio quickly drops to near
zero after nh ≥ 10. In addition, we repeat the same experiment except using a multivariate Gaussian
N(0, Ip); and the findings are very similar (right panel).
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(a) p = 1. (b) p = 30.

Figure 6: Numerical experiments show that the seed conditional density Kh
(
y

[h]
1 | d̃

[h]
2,1, . . . , d̃

[h]
nh,1

)
becomes much smaller than the distance likelihood as nh increases.

The effect of distances on the shapes of clusters

(a) Clustering using the Euclidean distance di,j = ‖yi − yj‖2, each cluster has a spherical shape.

(b) Clustering using the weighted Euclidean distance di,j =
√

(yi − yj)TS(yi − yj), with S = diag(s1, s2),
each induced cluster has an elliptical shape.

Figure 7: Experiments show that the choice of distances may impact the shapes of the clusters and
the uncertainty. Although, if one wants to separate clusters based on different ‘shapes’, a model on
the cluster-specific covariances could be more useful than one on the pairwise distances.
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Connection with the nonnegative matrix factorization methods

Figure 8: Comparing the performance of the Bayesian distance clustering (BDC) and the nonneg-
ative matrix factorization (NMF) using the symmetric simplex matrix factorization (Zhao et al.,
2015; Duan, 2020). We apply the algorithms on the two clusters of skew Gaussian data as generated
in Section 2.1, and plot the estimated co-assignment probability matrix for each method. As can
be seen from Panels 2 and 3, when NMF is well calibrated in its similarity function (as we defined
in (13), with parameters set to the posterior mean estimate from BDC), it produces a result almost
indistinguishable from BDC — both are very close to the oracle co-assignment probability (Panel
1). On the other hand, NMF using an uncalibrated similarity exp(−d2

i,j) produces a result (Panel 4)
very different from the oracle.
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