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Abstract
Modern neural networks featuring a large number of layers (depth) and units per layer (width)
have achieved a remarkable performance across many domains. While there exists a vast
literature on the interplay between infinitely wide neural networks and Gaussian processes,
a little is known about analogous interplays with respect to infinitely deep neural networks.
Neural networks with independent and identically distributed (i.i.d.) initializations exhibit
undesirable forward and backward propagation properties as the number of layers increases,
e.g., vanishing dependency on the input, and perfectly correlated outputs for any two inputs.
To overcome these drawbacks, Peluchetti and Favaro (2020) considered fully-connected
residual networks (ResNets) with network’s parameters initialized by means of distributions
that shrink as the number of layers increases, thus establishing an interplay between infinitely
deep ResNets and solutions to stochastic differential equations, i.e. diffusion processes, and
showing that infinitely deep ResNets does not suffer from undesirable forward-propagation
properties. In this paper, we review the results of Peluchetti and Favaro (2020), extending
them to convolutional ResNets, and we establish analogous backward-propagation results,
which directly relate to the problem of training fully-connected deep ResNets. Then, we
investigate the more general setting of doubly infinite neural networks, where both network’s
width and network’s depth grow unboundedly. We focus on doubly infinite fully-connected
ResNets, for which we consider i.i.d. initializations. Under this setting, we show that the
dynamics of quantities of interest converge, at initialization, to deterministic limits. This
allow us to provide analytical expressions for inference, both in the case of weakly trained
and fully trained ResNets. Our results highlight a limited expressive power of doubly infinite
ResNets when the unscaled network’s parameters are i.i.d. and the residual blocks are
shallow.
Keywords: convolutional neural network; deep neural network; diffusion process; doubly
infinite neural network; neural tangent kernel; residual neural network; stochastic differential
equation.

1. Introduction

Modern neural networks featuring a large number of layers (depth) and units per layer
(width) have achieved a remarkable performance across many domains (LeCun et al., 2015).
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Under suitable distributional assumptions for network’s parameters, the large-width limit
of a neural network is a Gaussian process (Neal, 1995; Matthews et al., 2018). Such an
interplay between infinitely wide neural networks and Gaussian processes has contributed to
the study of properties of neural networks, and most recently it has become a critical tool for
introducing inferential algorithms that directly target the infinite-dimensional setting (Lee
et al., 2018; Garriga-Alonso et al., 2019; Lee et al., 2019b; Arora et al., 2019). According to
recent studies on infinitely wide neural networks, it seems natural to ask whether there exists
an interplay between infinitely deep neural networks and classes of stochastic processes. At a
first glance, this interplay might prove elusive. Because of the duality between initialization
schemes and Bayesian neural networks, it is well-known that any initialization scheme for
neural networks may be interpreted as a prior distribution on network’s parameters, and
in turns the initialization induces a prior on the network. Therefore, any neural network
at initialization may be viewed as a suitable stochastic process indexed by depth, whose
distribution is defined through a sequence of conditional distributions mapping from each
layer to the next layer. Early works have focused on the stabilization of the variance of
key quantities of interest across the layers of neural networks (Glorot and Bengio, 2010; He
et al., 2015). More recent works (Poole et al., 2016; Schoenholz et al., 2017; Hayou et al.,
2019a) considered the impact of initialization schemes to the forward-propagation of the
input signal.

Even when initialized on the edge of chaos (EOC) for optimal forward-propagation of the
signal (Hayou et al., 2019a), neural networks with an independent and identically distributed
(i.i.d.) initialization exhibit pathological properties as their total depth increases. Arguably,
the two most common pathological properties are: i) the dependency on the input signal
eventually vanishes for most activation functions (Neal, 1995; Poole et al., 2016; Schoenholz
et al., 2017); ii) the distributions of the layers, when viewed as random functions on the input
space, eventually concentrate on restrictive families including constant functions (Hayou et al.,
2019a). As an illustrative example, in Figure 1 we show functions sampled from the last layer
of a feedforward neural network for two activation functions under EOC initialization. For
the hyperbolic tangent (tanh) activation function, i.e. φ(x) = tanh(x), the input signal has
no discernible impact on the output, as can be seen by the constant marginal distributions,
and the sampled functions are almost constant. This behavior is representative of most
classes of smooth activation functions used in practice (Hayou et al., 2019a). For the rectified
linear unit (ReLU) activation function, i.e. φ(x) = max(0, x), the input signal affects the
variance of the output and the sampled functions are piece-wise linear functions. In both
cases, the outputs corresponding to any two input signals end up perfectly correlated. While
this analysis applies to feedforward neural networks, residual neural networks (ResNets)
suffer from analogous issues (Yang and Schoenholz, 2017). In addition, for the ResNets it is
known that the variance of the Gaussian-distributed pre-activations may grow unbounded
over the layers.

The above-mentioned pathological properties, as well as other critical difficulties, are
determined by the fact that common prior distributions on network’s parameters introduce
a constant level of randomness over each network’s layer. To overcome these difficulties,
Peluchetti and Favaro (2020) introduced a prior distribution that depends on the number of
layers, in such a way that the distribution of network’s parameters shrinks as the number
layers increases. Under this novel prior construction, Peluchetti and Favaro (2020) showed

2



Doubly infinite residual neural networks: a diffusion process approach

2 1 0 1 2

2

1

0

1

2

tanh

2 1 0 1 2

ReLU

Figure 1: Samples of a given pre-activation from the last layer xlast,1 of a feedforward neural
network with 500 layers of 500 units over an input signal z ∈ [−2, 2], and tanh and
ReLU activation functions. Initialization on the EOC. Samples are displayed in
blue, and for each input signal the 5%, 50% and 95% quantiles are displayed in
orange.

that fully-connected ResNets converge to certain classes of diffusion processes on a finite
time interval, jointly over multiple input signals, as the number of layers increases. The
conditions required for attaining the convergence to diffusion processes provide with a concrete
guideline for selecting compatible neural network architectures, activation functions and
distributions for network’s parameters. The resulting limiting diffusion processes satisfy
stochastic differential equations (SDE) that describe the evolution of infinitely deep neural
networks over time (depth). The connection with SDEs sheds light on properties of very
deep neural networks in a general framework, which includes finitely wide neural networks
and correlated distributions for network’s parameters. In particular, Peluchetti and Favaro
(2020) showed that the limiting diffusion process is a well-behaved stochastic process in the
sense that: i) it retains the dependency from the input signal; ii) it does not suffer from
the perfect correlation constraint; iii) it does not collapse to a deterministic function nor it
diverges.

1.1 Our contributions

In this paper, we review the forward-propagation results of Peluchetti and Favaro (2020), and
we extend them to convolutional ResNets. Then, we study analogous backward-propagation
results, which relate to the fundamental problem of training ResNets. Stochastic gradient
descent (SGD) is arguably the most common paradigm for training neural networks (Robbins
and Monro, 1951; Bottou et al., 2018). Focusing on the gradient backward-propagation, in
neural networks we face a large number of Jacobian matrix multiplications for computing
the gradients with respect to the networks’ parameters of the lowest layers. This may
result in a vanishing (or exploding) gradient, that is the gradient’s magnitude in the the
lowest layers goes to zero (or grows unbounded) as the number of layers increases. As SGD
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relies on gradients to perform the updates of the parameters, a vanishing (or exploding)
gradient is detrimental to the training performance. The information propagation literature
covers this setting, with results qualitatively similar to the forward-propagation analysis
(Schoenholz et al., 2017; Hayou et al., 2019a; Yang and Schoenholz, 2017). Our study is
critical to the performance of the training. We show that the Jacobian matrix of any layer
with respect to the input layer converges to a matrix-valued diffusion process, which is the
solution of a matrix SDE. Moreover, under appropriate non-explosivity conditions such a
matrix-valued limiting diffusion process is shown to be invertible with dynamics given by a
related matrix-valeud SDE. These results imply that in large-depth limit the Jacobian of the
final layer with respect to any layer is again well-behaved and that exploding gradients are
not possible.

We conclude our study by extending the results of Peluchetti and Favaro (2020), as well
as the corresponding backward-propagation results presented in this paper, to the general
setting of infinitely deep and infinitely wide ResNets. For short, these neural networks
are referred to as doubly infinite ResNets. In such a setting, we assume that network’s
parameters are i.i.d., and we focus on doubly infinite ResNets defined through a restricted
class of activation functions. With regards to the forward-propagation analysis of doubly
infinite ResNets, we show that the dynamic of the neural network simplifies, and quantities
of interest are either analytically available or can be efficiently approximated by numerical
computations. Moreover, we show that the distribution in function space of a doubly infinite
ResNet converges to the distribution of a Gaussian process with an affine kernel. With
regards to the backward-propagation analysis, the recent literature on the Neural Tangent
Kernel (NTK) investigates problem of training a neural network by means of gradient descent
with infinitesimally small learning rate and quadratic loss for infinitely wide neural networks
(Jacot et al., 2018; Arora et al., 2019). We establish a connection with this line of research,
showing that for doubly infinite ResNets the NTK at initialization converges to an affine
kernel. Under suitable assumptions for our class of doubly infinite ResNets, this result implies
that weakly and fully trained neural networks with a large depth and width collapse to linear
regression.

1.2 Organization of the paper

The paper is structured as follows. Section 2 contains some preliminary results on diffusion
process approximations of discrete-time stochastic processes, and the notation to be used
throughout the paper. In Section 3 we review the forward-propagation results of Peluchetti
and Favaro (2020), and we extend them to convolutional ResNets. Section 4 contains the
backward-propagation analysis for infinitely deep ResNets, whereas Section 5 contains forward-
propagation and backward-propagation analyses for doubly infinite ResNets. In Section 6 we
present numerical experiments, and in Section 7 we discuss our work and directions for future
work. Proofs of our results and additional plots are deferred to Appendix A and Appendix B,
respectively.

2. Preliminaries on diffusion process approximations, and notation

We recall assumptions and results for diffusion process approximations of discrete-time
stochastic processes, which are at the basis of the work of Peluchetti and Favaro (2020). Let
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xl, for l = 1, . . . , L, denote the l-th layer of a neural network with L layers, and let x0 be
the network’s input; we refer to the next section for a precise description of xl in the context
of neural networks, and in particular for ResNets. As we consider limiting continuous-time
stochastic process, we re-index x0,x1, . . . ,xL on a discrete-time scale. In particular, let
T > 0 be a terminal time, ∆t = T/L, for each L we establish a correspondence between
discrete indices l ∈ Z+ and discrete times t ∈ R+ by l = 0, 1, . . . , L↔ t = 0, ∆t, 2∆t, . . . , T .
Without loss of generality, we consider a neural network with input x0 and layers x∆t, . . . ,xT ,
with xt being a generic layer. Let p(xT |x0) denote the conditional distribution of the
network’s output given the input for a neural network at initialization. To enforce desirable
properties on p(xT |x0), the strategy of Peluchetti and Favaro (2020) consists in having the
neural networks to converge, as L goes to infinity, i.e. ∆t ↓ 0, to a continuous-time stochastic
process on the finite time interval [0, T ]. In this case, for L large enough, the conditional
distribution p(xT |x0) is close to the distribution of the limiting process at T given the same
x0, with the limiting process being chosen in such a way to make the transition density
function well behaved. Among possible constructions of continuous-time stochastic processes
as limits of discrete-time processes, here we consider the case where the limiting stochastic
process has continuous paths. In all the neural network architectures considered in the
present paper, each network’s layer depends exclusively on the previous one, and hence xt has
the Markov property. These conditions identify diffusion processes (Stroock and Varadhan,
2006) that are continuous-time Markov processes with continuous paths as natural candidates
for the limiting process.

Let xt denote a generic D-dimensional discrete-time Markov process, and let ∆xt =
xt+∆t − xt be the corresponding forward increments of the stochastic process. We recall
assumptions that imply the convergence of xt to a limiting diffusion process solution of a
SDE. Such a SDE is referred to as the limiting SDE. In particular, it is implicit that the
conditional distribution p(xt+∆t |xt) depends on ∆t for the limiting diffusion process to exist
as required.

Assumption 1 (instantaneous mean function and covariance function) There exist
a function µ(x) : RD → RD and a function σ2(x) : RD → RD×D such that for some δ > 0 it
holds

lim
∆t↓0

E[∆xt |xt]
∆t

= µ(xt), (1)

lim
∆t↓0

V[∆xt |xt]
∆t

= σ2(xt) (2)

and

lim
∆t↓0

E[(∆xt)
2+δ |xt]

∆t
= 0 (3)

uniformly on compact sets of RD for each component, where µ(x) and σ2(x) are continuous
functions, and σ2(x) is positive semi-definite, i.e. σ2(x) = σ(x)σ(x)> for σ(x) : RD →
RD×D.

The infinitesimal evolution of the diffusion processes considered in the present work is
characterized by their instantaneous mean vector (1) and instantaneous covariance matrix
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(2). That is, the first two limits in Assumption 1 pinpoint the form of the limiting SDE. The
condition (3) represents a technical condition, in the sense that it allows us to consider the
limits (1) and (2) instead of their truncated version. We refer to Nelson (1990) for additional
details on Assumption 1 and related assumptions. The next theorem establishes that, under
Assumption 1 and additional assumptions, in the limit of xt can be embedded in the solution
of an SDE.

Theorem 1 Under Assumption 1, extend the discrete-time stochastic process xt to the
stochastic process xt on t ∈ [0, T ] by continuous-on-right step-wise-constant interpolation of
xt, i.e.

xt = xu1u≤t<u+∆t u ∈ {0,∆t, 2∆t, . . . , T}. (4)

According to the construction (4), consider the D-dimensional SDE on [0, T ] with initial
value x0 = x0, drift vector µ(x) given by (1), and diffusion matrix σ(x) given by a square
root of (2):

dxt = µ(xt)dt+ σ(xt)dBt, (5)

where Bt is a D-dimensional Brownian motion (BM) with independent components, and (5)
means that

xT = x0 +

∫ T

0
µ(xt)dt+

∫ T

0
σ(xt)dBt,

with the first and the second integral being a Riemann integral and an Ito integral, respectively.
If the SDE (5) admits a weak solution, and if this solution is unique in law and non-explosive,
then the stochastic process xt defined in (4) converges in distribution to the solution of the
SDE (5). This result still holds true for an independent and square integrable random variable
x0 ∼ p(x0), provided that the driving BM is independent of x0. In both cases the convergence
in distribution is on D([0,∞),RD), the space of RD-valued processes on [0,∞) which are
continuous from the right with finite left limits, endowed with the Skorohod metric (Billingsley,
1999, Chapter 3).

We are dealing with three stochastic processes: i) the discrete-time stochastic process xt;
ii) the continuous-time interpolation process xt of xt; iii) the limiting diffusion process xt
of xt. In Theorem 1, the continuous-time interpolation xt of xt is introduced because we
are seeking a continuous-time limiting process from a discrete-time stochastic process. The
convergence established in Theorem 1 is a strong convergence in the sense that it concerns
with the convergence of the distribution of the stochastic process (xt)t∈[0,T ] as a stochastic
object on the finite interval [0, T ] to the limiting diffusion process (xt)t∈[0,T ] as L ↑ ∞. We
consider weak solutions, as opposed to a strong solution, where it suffices that a BM Bt can
be found such that a solution can be obtained (Øksendal, 2003, Section 5.3). The focus on
weak solutions and uniqueness in law of such a solutions, also known as weak uniqueness, is
justified by our interest in the distributional properties of the limiting behavior of xt. In
particular, weak solutions and uniqueness enable us to consider weaker requirements for
attaining convergence of xt. In particular, consider the following discretization of the SDE
(5):

xt+∆t = xt + µ(xt)∆t+ σ(xt)ζt
√

∆t, (6)

where ζt is a D-dimensional random vector whose components are i.i.d. as standard Gaussian
random variables (mean 0 and variance 1). Under suitable conditions, and in an appropriate
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sense (Kloeden and Platen, 1992, Sections 10.2 and 14.1), it can be proved that the SDE
(6) converges to the SDE (5). In the deterministic part of the SDE (6) we recognize the
so-called Euler discretization of an ODE. In particular, Theorem 1 postulates the existence
and uniqueness in law of the weak solution of the limiting SDE, and its non-explosive
behavior. This following assumptions state sufficient conditions for the postulated solution
of the limiting SDE.

Assumption 2 (weak solution and uniqueness in law on compact sets) The mean
function µ(x) and the covariance function σ(x) are twice continuous and differentiable
functions.

Assumption 3 (non-explosive solution) There exists a finite C > 0 such that for each
x ∈ RD:

‖µ(x)‖+ ‖σ(x)‖ ≤ C(1 + ‖x‖).

If Assumption 1 and Assumption 2 hold true and Assumption 3 does not hold, then we
still obtain convergence to the solution xt of the SDE (5). However, xt might diverge to
infinity with positive probability on any time interval. We will return to this problem in the
next section.

We conclude by introducing the main notation to be used throughout the paper: tensors
(matrices, vectors) are indexed via subscripts (ui, ui,j , . . . ), and we make use of • to index all
elements and of : to index ranges; we make no distinction between vectors and n× 1 matrices,
i.e. vectors are assumed to be column vectors; for a matrix u, u> is its transpose, and if
u is square diag(u) is its diagonal vector and Tr(u) is its trace; the norm of a vector u is
‖u‖ =

√
u>u; if v is another vector their inner product is 〈u, v〉 = u>v; the norm of a matrix

u is ‖u‖ =
√

Tr(u>u); for two matrices u and v, uv stands for the matrix multiplication,
u⊗ v for Kronecker’s tensor product and u� v for the element-wise product; we assume that
matrix multiplication has higher precedence than element-wise product; for a tensor u, vec(u)
is its vectorization (row-wise for matrices, with elements being traversed starting from the
last dimension); we make use of I to denote the identity matrix and of 1 to denote a vector of
ones; for random variables z and w, let var[z] be the variance of z, cov[z, w] be the covariance
between z and w and ρ[z, w] be their correlation; for random vectors z ∈ Rr and w ∈ Rc the
r × c cross-covariance matrix C[z, w] is given by C[z, w]i,j = cov[zi, wj ]; the r × r covariance
matrix of z is thus V[z] = C[z, z]; the expectation E[z] of a random tensor z is defined as
the tensor of the expectations of its elements; for D-dimensional stochastic processes zt and
wt, we make use of [z]t to denote the quadratic variation, which is a D-dimensional vector,
and of [z, w]t to denote the quadratic covariation, which is a D × D-dimensional matrix;
for a differentiable function f : Rk → R, ∇uf(u) ∈ Rk is its corresponding gradient vector;
if f : Rk → Rm, J(f(u), u) ∈ Rm×k is its Jacobian matrix. We refer to Table 1 for the
complete notation.

3. Infinitely deep ResNets

Peluchetti and Favaro (2020) investigated the implications of Assumption 1, Assumption 2
and Assumption 3 in the context of forward-propagation analysis of fully-connected ResNets,
thus establishing an interplay between infinitely deep ResNets and solutions of SDEs, that is
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Table 1: Notation: symbols and variables
Symbol Description

ui, ui,j , ui,j,l, . . . vector, matrix, tensor indexing
we use : for ranges, • for all elements, F for convolutional patches

u> matrix transpose
diag(u) matrix diagonal
Tr(u) matrix trace
‖u‖ vector or matrix norm
〈u, v〉 inner product of 2 vectors
uv matrix multiplication
u⊗ v Kronecker’s tensor product
u� v element-wise tensor product
vec(u) tensor vectorization
I identity matrix
1 vector of ones
1 indicator function
var[z] variance of a random variable
cov[z, w] covariance between 2 random variables
ρ[z, w] correlation between 2 random variables
C[z, w] cross-covariance matrix between 2 random vectors
V[z] covariance matrix of a random vector
E[z] expectation of a random tensor
[z]t quadratic variation of a stochastic process
[z, w]t quadratic covariation between 2 stochastic processes
∇uf(u) function gradient
J(f(u), u) function jacobian
N ,MN , T N Gaussian, matrix-Gaussian, tensor-Gaussian distributions

Variable Description

D width of each layer, indexed by d
L number or layers, indexed by l
T integration time, indexed by t
∆t time discretization interval
xl neural network layers
xt neural network layers over time
xt interpolated neural network layers over time
xt limit diffusion of xt (as ∆t ↓ 0)
gt neural network output-input Jacobian over time
gt interpolated neural network output-input Jacobian over time
gt limit diffusion of gt (as ∆t ↓ 0)
φ, ψ activation functions
At, at neural network weights and biases
Wt, bt neural network weights and biases diffusions
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diffusion processes. In this section, we review and discuss the main results established in
Peluchetti and Favaro (2020), and we extend them to the more general setting of convolutional
ResNets.

3.1 Fully-connected ResNets

We consider unmodified, albeit simplified, standard neural network architectures, which is in
line with the research area of forward-propagation analysis (Poole et al., 2016; Schoenholz
et al., 2017; Hayou et al., 2019a). Consistently with Section 2, we consider a discrete-time
stochastic process xt ∈ RD, which is assumed to be of constant dimensionality in order
that ∆xt is well-defined. For Assumption 1 to hold, we need Pr(‖∆xt‖ > ε |xt) ↓ 0 as
∆t ↓ 0 for any ε > 0, that is we require the increments of the stochastic process xt to vanish
eventually. Intuitively, this is because the continuity of the paths of the limiting diffusion
process. According to the stochastic process xt, a fully-connected feedforward neural network
is expressed by

xt+∆t = ft(xt) = φ(Atxt + at),

for a nonlinear activation function φ : R→ R applied element-wise. We refer to At ∈ RD×D
as weights and to at ∈ RD as biases. Hence ∆xt = φ(Atxt + at)− xt. Shrinking increments
would imply that for all x, φ(Atx+at) can be made arbitrarily concentrated around x with a
suitable choice of distributions for (At, at). This cannot be achieved unless φ is linear or the
distribution of (At, at) depends on x. Indeed, fixing x determines the values around which
(At, at) need to concentrate for the increments to vanish (if any), hence the increments will
not vanish for a different x′ 6= x, a fact that is most easily seen in the specific case where
(At, at) are scalars.

The same lines of reasoning rules out the residual network architecture (ResNet), originally
introduced in the work of He et al. (2016a). In particular, in the ResNet architecture we
write xt+∆t = ft(xt + rt(xt)). This leaves us with the identity ResNet of He et al. (2016b)
where we write

xt+∆t = xt + rt(xt) (7)

for some choice of rt, the residual blocks, which we require to eventually vanish. Each rt
results from an interleaved application of affine transforms and non-linear activation functions.
Peluchetti and Favaro (2020) considered the case of shallow residual blocks, such that (7)
becomes

xt+∆t = xt + φ(Atψ(xt) + at) (8)

for two activation functions φ : R → R, ψ : R → R which are applied element-wise. We
remark that the non-standard approach of using of 2 activation functions, i.e. φ, ψ, is applied
to cover the case of shallow residual blocks in full generality. For a shallow residual block rt,
the vanishing increments requirement is satisfied by having the distributions of weights At
and biases at both concentrate around 0 provided that φ(0) = 0. Furthermore, it proves to
be advantageous to consider weights and biases given by increments of diffusion processes
corresponding to solvable SDEs. Notice that the use of increments implies independence
across layers, and the simplest parametrization corresponds to typical fully i.i.d. initializations
used in practice.
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Assumption 4 (distributions of network’s parameters and scaling) LetWt be a dif-
fusion process in RD×D and let bt be a diffusion process in RD, which are defined as the
solutions of

dWt = µWdt+ dW̃t (9)

with d vec(W̃t) = σWd vec(BW
t ), and

dbt = µbdt+ σbdBb
t , (10)

respectively, where BW
t ∈ RD×D and Bb

t ∈ RD are independent BMs with independent
components, µb ∈ RD, σW ∈ RD2×D2

, σb ∈ RD×D, and ΣW = σWσW
>, Σb = σbσb

> are
positive semi-definite. That is, Wt and bt are matrix-valued and vector-valued diffusion
processes, respectively, solutions of SDEs with deterministic time-homogeneous drift and
diffusion coefficients.

Now, we consider the setting of Assumption 4. In particular, the discretizations of
the diffusion processes Wt and bt displayed in (9) and (10), respectively, admit exact
representations as

∆Wt = µW∆t+ εWt
√

∆t

and
∆bt = µb∆t+ εbt

√
∆t,

where vec(εWt )
i.i.d.∼ ND2

(
0,ΣW

)
and εbt

i.i.d.∼ ND
(
0,Σb

)
for t = ∆t, . . . , T , with N being the

multivariate Gaussian distribution. According to the above discretizations of Wt and bt, we
consider residual blocks where At = ∆Wt and at = ∆bt, and then we write the ResNet as
follows

xt+∆t = xt + φ(∆Wtψ(xt) + ∆bt). (11)

Assumption 4 covers the case where network’s parameters are i.i.d. across layers according to
a multivariate Gaussian distribution, up to the required scaling which is necessary to obtain
the desired limiting diffusion process. By considering deterministic but time-dependent
µWt , µ

b
t ,Σ

W
t ,Σ

b
t the extension to layer-dependent distributions is immediate. More generally,

we can consider Wt and bt driven by arbitrary SDEs. Moreover, dependencies across the
parameters of different layers can be accommodated by introducing additional SDE-driven
processes, driving the evolution of Wt and bt. We do not pursue further these directions
in the present work. As for the activation functions, we require the following regularity
assumptions.

Assumption 5 (regularity of activation functions) The activation function ψ : R →
R is continuously differentiable two times on R. The activation function φ : R→ R is such
that φ(0) = 0 and, moreover, φ is continuously differentiable three times on R and its second
and third derivatives have at most exponential tails growth, that is for some k > 0 it holds
true

lim
|x|↑∞

|φ′′(x)|
ek|x|

+ lim
|x|↑∞

|φ′′′(x)|
ek|x|

<∞.
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The assumption φ(0) = 0 and the smoothness assumptions on φ have been shown to be
key requirements to achieve good signal propagation (Hayou et al., 2019a,b). On the basis of
Assumption 4 and Assumption 5, we now report the main result of Peluchetti and Favaro
(2020).

Theorem 2 Under Assumption 4 and Assumption 5, Assumption 1 with δ = 2 holds true for
the ResNet xt defined in (11). The infinitesimal mean µ(x)and covariance σ2(x) functions
are such that

µ(x) = φ′(0)(µb + µWψ(x)) +
1

2
φ′′(0) diag(V[εWt ψ(x) + εbt |x])

and
σ2(x) = φ′(0)2 V[εWt ψ(x) + εbt ‖, x].

Furthermore, Assumption 2 is satisfied and, by means of Theorem 1, the continuous-time
interpolation xt of the ResNet xt converges in distribution to the solution on [0, T ] of the
SDE

dxt = φ′(0)
(
V[εWt ψ(xt) + εbt |xt]

)1/2
dBt (12)

+
(
φ′(0)(µb + µWψ(xt)) +

1

2
φ′′(0) diag(V[εWt ψ(xt) + εbt |xt])

)
dt

with initial value x0 = x0 where Bt is a D-dimensional BM vector with independent compo-
nents.

Theorem 2 does not establish a direct connection between the limiting diffusion process xt
and the driving sources of randomness provided by the diffusion processesWt and bt. Since we
are interested in the study of properties of ResNets in the function space, that is over multiple
input signals, a brute force approach would require to establish limiting diffusion processes
as in Theorem 2 for an enlarged discrete-time stochastic process xt = [x

(1)
t · · ·x

(N)
t ] ∈ RDN

corresponding to a collection of N initial values x0 = [x
(1)
0 · · ·x

(N)
0 ]. Instead, Peluchetti and

Favaro (2020) showed that the limiting SDE is equivalent in law to the solution of another
SDE which preserves the dependency on the driving sources of randomness. From here on, let
x

(i)
t and x

(j)
t denote ResNets corresponding to two initial values x(i)

0 and x
(j)
0 , respectively.

Moreover, let x(i)
t and x(j)

t denote limiting diffusion processes corresponding to the same
two initial values, i.e. x(i)

0 = x
(i)
0 and x

(j)
0 = x

(j)
0 respectively. Hereafter, we continue to

make use of xt for x
(i)
t and xt for x

(i)
t when no confusion arises. Under Assumption 4 and

Assumption 5, the next corollary characterizes the limiting diffusion process of the ResNet
x

(i)
t

Corollary 3 Let x(i)
t be the ResNet corresponding to the initial value x

(i)
0 . Under Assump-

tion 4 and Assumption 5, the limiting diffusion process x(i)
t of x(i)

t is the solution on [0, T ] of
the SDE

dx
(i)
t = φ′(0)(dWtψ(x

(i)
t ) + dbt) +

1

2
φ′′(0)(d[Wψ(x(i))]t + d[b]t), (13)

and
d[x(i), x(j)]t = φ′(0)2(d[Wψ(x(i)),Wψ(x(j))]t + d[b, b]t). (14)

11
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A direct consequence of Theorem 2 is that the distribution of the ResNet output given
the input, i.e. p(xT |x0), converges to the transition density p(xT |x0) of the solution of
(13). In particular, as T is finite, the dependency on the input does not vanish in the limit of
infinite total depth L and can be controlled via the distributions of network’s parameters and
the integration time T . The representations (12) and (13) are complementary: depending on
the situation it will prove advantageous to use one or the other. Theorem 2 and Corollary
3 are general in the sense that we allow for an arbitrary covariance structure between the
elements of εWt , i.e. an arbitrary (constant and deterministic) quadratic covariation for Wt.
This makes it difficult to derive more explicit results, and is also an impractical approach as
the parametrization requires O(D4) elements. Peluchetti and Favaro (2020) then considered
more restrictive distribution assumptions with a more manageable O(D2) parametrization
cost.

Assumption 6 (matrix Gaussian network’s parameters) Let bt, µb, σb, Bb
t , µ

W , BW
t be

defined as in Assumption 4, and let Wt be a diffusion process in RD×D, which is defined as
the solution of

dWt = µWdt+ σWOdBW
t σ

WI ,

where σWO , σWI ∈ RD×D and ΣWO = σWOσWO
>, ΣWI = σWI

>
σWI are positive semi-definite

matrices.

We consider the setting of Assumption 6. Under this setting the discretization of Wt

satisfies
εWt

i.i.d.∼ MND,D

(
0,ΣWO ,ΣWI

)
for t = ∆t, . . . , T , whereMN stands for the matrix Gaussian distribution. This is a direct
consequence of the following fact: if ζ ∼ MN (0, I, I) then AζB ∼ MN (0, AA>, B>B).
The fundamental property of the MN distributions is that the covariance factorizes as
cov(εWo,i, ε

W
o′,i′) = ΣWO

o,o′Σ
WI
i,i′ . The reader is referred to Gupta and Nagar (1999) for a compre-

hensive treatment of matrix Gaussian distributions and their properties. Under Assumption 5
and Assumption 6, the next corollary characterizes the limiting diffusion process of the
ResNet x(i)

t .

Corollary 4 Let x(i)
t be the ResNet corresponding to the initial value x

(i)
0 . Under Assump-

tion 5 and Assumption 6, the limiting diffusion process x(i)
t of x(i)

t is the solution on [0, T ] of
the SDE

dx
(i)
t = φ′(0)

(
(µWψ(x

(i)
t ) + µb)dt+ σWOdBW

t σ
WIψ(x

(i)
t ) + σbdBb

t

)
(15)

+
1

2
φ′′(0) diag

(
Σb + ΣWO(ψ(x

(i)
t )>ΣWIψ(x

(i)
t ))

)
dt,

and
d[x(i), x(j)]t = φ′(0)2

(
Σb + ΣWOψ(x

(i)
t )>ΣWIψ(x

(j)
t )
)
dt.

Under Assumption 6 we have that the covariance function V[εWt ψ(xt) + εbt |xt] is given
by Σb + ΣWO(ψ(xt)

>ΣWIψ(xt)). In particular, the dependency on the state xt in Equation
(12) goes through a linear transformation and a weighted inner product. This fact sheds light

12
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on the impact of introducing dependencies among row and columns of network’s parameters
At = ∆Wt. Specifically, the matrix ΣWI defines the structure of the inner weighted product,
while the matrix ΣWO defines how such transforms affect each dimension d ∈ D. Peluchetti
and Favaro (2020) completed their study by considering the simplest fully i.i.d. setting
with the assumption of centered distributions for Wt and bt. Fully i.i.d. initializations are
commonly used in training of neural networks. A scaling of the weights by D−1/2 is also
introduced; this is the same scaling used to obtain Gaussian process limits in infinitely wide
networks (Neal, 1995; Lee et al., 2018). In Section 5 we show that such a scaling allows to
study D ↑ ∞.

Assumption 7 (fully i.i.d. network’s parameters) Let Wt be a diffusion process in
RD×D and let bt be a diffusion process in RD, which are defined as the solutions of the
SDSs

dWt =
σw√
D
dBW

t (16)

and
dbt = σbdB

b
t , (17)

respectively, where BW
t ∈ RD×D and Bb

t ∈ RD are independent BMs and σw > 0, σb > 0 are
scalars.

Now, we consider the setting of Assumption 7. In particular, the discretizations of
the diffusion processes Wt and bt displayed in (16) and (17), respectively, admit exact
representations as

∆Wt = εWt
σw√
D

√
∆t (18)

and
∆bt = εbtσb

√
∆t (19)

where εWt
i.i.d.∼ MND,D

(
0, ID, ID

)
and εbt

i.i.d.∼ ND
(
0, ID

)
. Under Assumption 5 and As-

sumption 7, the next corollary characterizes the limiting diffusion process of the ResNet
x

(i)
t .

Corollary 5 et x(i)
t be the ResNet corresponding to the initial value x

(i)
0 . Under Assump-

tion 5 and Assumption 7, the limiting diffusion process x(i)
t of x(i)

t is the solution on [0, T ] of
the SDE

dx
(i)
t = φ′(0)

( σw√
D
dBW

t ψ(x
(i)
t ) + σbdB

b
t

)
(20)

+
1

2
φ′′(0)

(
σ2
b +

σ2
w

D
‖ψ(x

(i)
t )‖2)

)
ID dt,

and

d[x(i), x(j)]t = φ′(0)2
(
σ2
b +

σ2
w

D
〈ψ(x

(i)
t ), ψ(x

(j)
t )〉

)
ID dt.

13
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In all cases the activation function φ only impacts the dynamics through its local
behavior at the origin, while this is not the case for the activation ψ. Under the setting of
Assumption 7, i.e. fully i.i.d. network’s parameters, we have that V[εWt ψ(xt)+εbt |xt] is given
by σ2

b + σ2
w
D ‖ψ(xt)‖2. In particular, the dependency on the state xt in (12) goes only through

the norm of xt, which is permutation invariant in d ∈ D. Accordingly, the distribution of the
stochastic processes xt,d is exchangeable across d ∈ D if the distribution of x0,d is so. We
will show in Section 5.3 that, under Assumption 7, as D ↑ ∞ xt,d will become i.i.d. over d if
x0,d is so.

Remark 6 According to Equation (13) and Equation (14), the joint evolution of the diffusion
processes x(i)

t and x(j)
t corresponding to two inputs x(i)

0 and x(j)
0 , respectively, is not perfectly

correlated. This remains true also in the parameterizations of Assumption 6 and Assumption 7.
Thus in the limit of infinite total depth L the distribution in function space does not suffer from
the perfect correlation problem. The joint distribution p(x(i)

T , x
(j)
T |x

(i)
0 , x

(j)
0 ) is not Gaussian.

We show in Section 5.3 that we recover the Gaussian case as D ↑ ∞ under the parametrization
of Assumption 7.

Remark 7 A standard time-change result for SDEs (Øksendal, 2003, Theorem 8.5.7) implies
that the time-scaling of an SDE is equivalent to multiplying the drift and the diffusion
coefficients by the scaling constant and by the square root of the scaling constant, respectively.
Furthermore, according to Equation (12), it is possible to compensate changes in the integration
time T with changes in the “hyper-parameters” µb, µW ,Σb,ΣW in Assumption 4 to leave the
dynamics of (12) invariant. These observations remain true also in the parameterizations of
Assumption 6 and Assumption 7. Therefore, without loss of generality, we can restrict to
T = 1.

Remark 8 Without further assumptions, the solutions to the limiting SDEs can be explosive
solutions. Assumption 3 is satisfied under all considered distributional assumptions for
network’s parameters if either: i) ψ exhibits at most square-root growth, in particular ψ is
bounded; or ii) ψ exhibits at most linear growth, in particular ψ is the identity function, and
φ′′(0) = 0, in particular φ = tanh. We will show in Section 5.3 that, under Assumption 7,
as D ↑ ∞ in the case of φ′′(0) 6= 0 with ψ the identity function, the explosion time becomes
deterministic.

Remark 9 The limiting diffusion processes that we have obtained are based on smoothness
assumptions for φ. Given the popularity of the ReLU activation function φ(a) = max(0, a),
we consider here a brief analysis which includes it. In particular, we assume that φ(a) is
positively homogeneous, i.e. φ(αa) = αφ(a) for α > 0, h is random variable, and γ > 0 then:
E[φ(h∆tγ)/∆t] = E [φ(h)] ∆tγ−1 and E[φ(h∆tγ)2/∆t] = E

[
φ(h)2

]
∆t2γ−1. Comparing these

results with (1) and (2), we see that unless E[φ(h)] = 0, the choice of γ = 1/2 would result
in the drift term blowing up. The alternative of choosing γ = 1 recovers a non stochastic
limit which can be interpreted as a particular form of Chen et al. (2018). The positive
homogeneity of ReLU activations makes equivalent to modify the recursion or reparameterize
the parameter.

We have considered x0 ∈ RD to be the input of the ResNet. A neural network acts as
a function approximator to be fitted to some dataset D = (Z,Y) = {(z(i), y(i))}Ni=1 of size
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N where z(i) ∈ RZ represents an input and y(i) ∈ RY represents the corresponding output.
Classification problems can be framed in this setting if we use a one-hot representation for
y(i). In general, there can be a mismatch between D,Z and Y , making it is necessary to
introduce adaptation layers z(i) 7→ x

(i)
0 and x

(i)
T 7→ ŷ(i) where ŷ(i) is the network prediction

for z(i). As for xt, we denote a single data-point (z(i), y(i)) with (z, y) when no confusion
arises.

3.2 Convolutional ResNets

We extend the main results of Peluchetti and Favaro (2020) to the more general setting of
convolutional neural networks (CNNs). Such extension relies on the equivalence between
convolutional transformations (either at a given position, or over all positions) and specific
forms of matrix multiplication. For the sake of simplicity and clarity in exposition, we present
our results for 2D convolutions and square filters. Analogous results follow in the more general
setting. CNNs are best described by keeping the features, height and width dimensions
separated, in which case xt is a three-dimensional tensor. This does not cause issues to our
analysis, since we can consider the vectorization vec(xt) which allows us to refer to definitions
and results of Section 2. We denote the input image to the convolutional neural network
and its layers with xt, t = 0,∆t, . . . , T . As before xt needs to be of fixed dimensionality:
xt ∈ RU×V×D, D being the number of channels, and U and V being respectively the height
and the width.

We consider square filters of spatial length K, with K being odd, in which case the
off-center range of the filter is E = (K − 1)/2. Assuming unitary strides in both height
and width dimensions, constant dimensionality is achieved by padding the width and height
dimensions of xt, t > 0, with E pixels borders. The padding can be performed arbitrarily
here: typically the values next to the boarder are copied or paddings have the same value of
a background reference level. We enumerate the set of P = UV positions, where positions
are ordered in row-wise manner (the ordering does not affect the results as long as it is
the same everywhere). A convolutional transform x ∈ R(U×V×D) 7→ y ∈ R(U×V×D) is
obtained by applying (convolving) the same filterW ∈ RD×(U×V×D) to the extracted patches
xFp ∈ R(U×V×D) by matrix multiplication: yp = WxFp, yp ∈ RD for each p = 1, . . . , P .
Parentheses indicate how the dimensions are flattened (vectorized), and each patch is given
by xFp = xFp,• = xu−E:u+E,v−E:v+E,• for position p = (u, v), u = 1, . . . , U , v = 1, . . . , V . We
incorporate the padding in the patch extraction operation: indexing outside the allowed
ranges (which happens for positions at the boarders) returns the padded values. More
generally a bias term b ∈ RD can be included resulting in yp = WxFp + b. See Dumoulin
and Visin (2016) and references therein for a comprehensive account. For convenience let
F = UV D denote the extracted patch size. We begin with the most generic parametrization
for CNNs covered in this work, which corresponds to Assumption 4 for the fully-connected
case.

Assumption 8 (distributions of network’s parameters and scaling) LetWt be a dif-
fusion process in RD×K×K×D and let bt be the diffusion process in RD, which are defined as
the solutions of

dWt = µWdt+ dW̃t (21)
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with d vec(W̃t) = σWd vec(BW
t ), and

dbt = µbdt+ σbdBb
t (22)

where BW
t ∈ RD×K×K×D and Bb

t ∈ RD are independent BMs with independent components,
µW ∈ RD×K×K×D, µb ∈ RD, σW ∈ RDF×DF , σb ∈ RD×D, and ΣW = σWσW

>, Σb = σbσb
>

are positive semi-definite. That is, Wt and bt are tensor-valued and vector-valued diffusion
processes, respectively, solutions of SDEs with deterministic time-homogeneous drift and
diffusion coefficients.

Now, we consider the setting of Assumption 8. In particular, the discretizations of
the diffusion processes Wt and bt displayed in (21) and (22), respectively, admit exact
representations as

∆Wt = µW∆t+ εWt
√

∆t

and
∆bt = µb∆t+ εbt

√
∆t,

where vec(εWt )
i.i.d.∼ NDF

(
0,ΣW

)
and εbt

i.i.d.∼ ND
(
0,Σb

)
for t = ∆t, . . . , T where N stands

for the multivariate Gaussian distribution. As in Peluchetti and Favaro (2020), we consider
shallow residual blocks and two activation functions. This leads to write the ResNet as
follows

xt+∆t,p = xt,p + φ(∆Wtψ(xt,Fp) + ∆bt) (p = 1, . . . , P ) (23)

where ∆Wtψ(xt,Fp) is computed by means of matrix multiplication as we have explained
above. The next theorem states our main convergence result in the setting of convolutional
ResNets. In particular, the next theorem provides the convolutional counterpart of Theorem
2.

Theorem 10 Under Assumption 8 and Assumption 5, Assumption 1 with δ = 2 holds
true for the ResNet xt defined in (23). The infinitesimal mean µ(x) and covariance σ2(x)
functions are such that

µ(x) =

µF(xF1)
...

µF(xFP )


where

µF(xFp) = φ′(0)(µb + µWψ(xFp)) +
1

2
φ′′(0) diag(V[εWt ψ(xFp) + εbt |xFp]),

and

σ2(x) = φ′(0)2

σ
2
F(xF1, xF1) · · · σ2

F(xF1, xFP )
...

...
...

σ2
F(xFP , xF1) · · · σ2

F(xFP , xFP )


where

σ2
F(xFp, xFp′) = C[εWt ψ(xFp) + εbt , ε

W
t ψ(xFp′) + εbt |xFp, xFp′ ].
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Furthermore, Assumption 2 is satisfied and, by means of Theorem 1, the continuous-time
interpolation vec(xt) of the ResNet vec(xt) converges in distribution to the solution on [0, T ]
of the SDE

d vec(xt) (24)

= φ′(0)

σ
2
F(xt,F1, xt,F1) · · · σ2

F(xt,F1, xt,FP )
...

...
...

σ2
F(xt,FP , xt,F1) · · · σ2

F(xt,FP , xt,FP )


1/2

dBt +

µF(xt,F1)
...

µF(xt,FP )

 dt
with initial value x0 = x0 where Bt is a PD-dimensional BM vector with independent
components.

The proof of Theorem 10 is omitted. This is because the proof is obtained along lines
similar to the proof of Theorem 2, while being more cumbersome due to the extra spacial
dimensions. Notice that the dimensionality of the driving Brownian motion depends on U, V .
As in Section 3.1 we can restate Theorem 10 by making explicit the dependency on the
driving sources of randomness. In particular, this allows us to formulate the dynamics of xt
as integration with respect to Brownian motions whose dimensionality does not depend on
the number of inputs, nor their spatial sizes U, V . Under Assumption 8 and Assumption 5,
the next corollary characterizes the limiting diffusion process of the convolutional RenNet at
the initial value x

(i)
0 .

Corollary 11 Let x(i)
t,p be the ResNet corresponding to the initial value x

(i)
0 . Under Assump-

tion 8 and Assumption 5, the limiting diffusion process x(i)
t,p of x(i)

t,p is the solution on [0, T ] of
the SDE

dx
(i)
t,p = φ′(0)(dWtψ(x

(i)
t,Fp) + dbt) +

1

2
φ′′(0)(d[Wψ(x

(i)
Fp)]t + d[b]t) (25)

for p = 1, . . . , P , and

d[x(i)
p , x

(j)
p′ ]t = φ′(0)2(d[Wψ(x

(i)
Fp),Wψ(x

(j)
Fp′)]t + d[b, b]t) (26)

The parametrization of Assumption 8 is O(D2F 2). Hereafter we introduce a more
parsimonious parameterization which is based on tensor Gaussian distributions; this is
a natural generalization of the matrix Gaussian distribution in Gupta and Nagar (1999).
The use of Kronecker products allows us to cover this parametrization with a compact
notation. We also introduce a fully i.i.d. initialization with the same scaling with D as in
the fully-connected case.

Assumption 9 (tensor Gaussian network’s parameters) Let bt, µb, σb, Bb
t , µ

W , BW
t be

defined as in Assumption 8, and let Wt be a diffusion process in RD×(K×K×D), which is
defined as the solution of

dWt = µWdt+ σWOdBW
t (σWU ⊗ σWV ⊗ σWI ),

where σWO , σWI ∈ RD×D, σWU , σWV ∈ RK×K and ΣWO = σWOσWO
>, ΣWU = σWUσWU

>,
ΣWV = σWV σWV

>, ΣWI = σWI
>
σWI are positive semi-definite matrices
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We consider the setting of Assumption 9. Under this setting the discretization of Wt

satisfies:
εWt

i.i.d.∼ T ND,K,K,D

(
0,ΣWO ,ΣWU ,ΣWV ,ΣWI

)
for t = ∆t, . . . , T , where T N stands for the tensor Gaussian distribution, and we have
cov(εWo,u,v,i, ε

W
o′,u′,v′,i′) = ΣWO

o,o′Σ
WU
u,u′Σ

WV
v,v′Σ

WI
i,i′ . Under Assumption 9 and Assumption 5, the

next corollary characterizes the limiting diffusion process of the convolutional ResNet at the
initial value x

(i)
0 . In particular, the next corollary provides the convolutional counterpart of

Corollary 4.

Corollary 12 Let x(i)
t,p be the ResNet corresponding to the initial value x

(i)
0 . Under Assump-

tion 9 and Assumption 5, the limiting diffusion process x(i)
t,p of x(i)

t,p is the solution on [0, T ] of
the SDE

dx
(i)
t,p = φ′(0)

(
(µWψ(x

(i)
t,Fp) + µb)dt (27)

+ σWOdBW
t (σWU ⊗ σWV ⊗ σWI )ψ(x

(i)
t,Fp) + σbdBb

t

)
+

1

2
φ′′(0) diag

(
Σb + ΣWO(ψ(x

(i)
t,Fp)

>(ΣWU ⊗ ΣWV ⊗ ΣWI )ψ(x
(i)
t,Fp))

)
dt

and
d[x(i)

p , x
(j)
p′ ]t = φ′(0)2

(
Σb + ΣWOψ(x

(i)
t,Fp)

>(ΣWU ⊗ ΣWV ⊗ ΣWI )ψ(x
(j)
t,Fp′)

)
dt.

Assumption 10 (fully i.i.d. network’s parameters) Let Wt be a diffusion process in
RD×K×K×D and let bt be the diffusion process in RD, which are defined as solutions of the
SDEs

dWt =
σw√
D
dBW

t (28)

and
dbt = σbdB

b
t , (29)

respectively, where BW
t ∈ RD×D and Bb

t ∈ RD are independent BMs and σw > 0, σb > 0 are
scalars.

Now, we consider the setting of Assumption 10. In particular, the discretizations of
the diffusion processes Wt and bt displayed in (28) and (29), respectively, admit exact
representations as

∆Wt = ζWt
σw√
D

√
∆t

and
∆bt = ζbtσb

√
∆t,

where ζWt
i.i.d.∼ T ND,K,K,D

(
0, ID, IK , IK , ID

)
and ζbt

i.i.d.∼ ND
(
0, ID

)
. As for the setting of

fully-connected neural networks, fully i.i.d. initializations are commonly used in the context
of the training of convolutional neural networks. Under Assumption 10 and Assumption 5,
the next corollary characterizes the limiting diffusion process of the convolutional ResNet at
the initial value x

(i)
0 . In particular, the next corollary provides the convolutional counterpart

of Corollary 5.
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Corollary 13 Let x(i)
t,p be the ResNet corresponding to the initial value x

(i)
0 . Under Assump-

tion 10 and Assumption 5, the limiting diffusion process x(i)
t,p of x(i)

t,p is the solution on [0, T ]
of the SDE

dx
(i)
t,p = φ′(0)

( σw√
D
dBW

t ψ(x
(i)
t,Fp) + σbdB

b
t

)
(30)

+
1

2
φ′′(0)

(
σ2
b +

σ2
w

D
‖ψ(x

(i)
t,Fp)‖2)

)
ID dt

and

d[x(i)
p , x

(j)
p′ ]t = φ′(0)2

(
σ2
b +

σ2
w

D
〈ψ(x

(i)
t,Fp), ψ(x

(j)
t,Fp′)〉

)
ID dt

In view of the results obtained in this section, all the remarks of Section 3.1 have a
corresponding remark that applies to infinitely deep convolutional ResNets. Namely, the main
qualitative conclusions continue to hold. That is, the stochastic process limit is well-behaved
and perfect-correlation problems are avoided, explosive solutions are possible whenever
φ′′(0) 6= 0.

4. Infinitely deep ResNets’ gradient

We consider the problem of trainability at initialization of very deep ResNets which are
finitely wide. In a generic setting, gradient descent iterations with a fixed learning rate η are
of the form

θ(b+ 1) = θ(b)− η∇R(θ(b)))

for b = 0, 1, . . . , where θ(b) ∈ RΘ is the generic iteration of network’s parameters of interest,
and R(θ) is a smooth real-valued loss function to be minimized. Differently from the gradient
descent, the SGD relies on unbiased estimates of the gradient of the loss function of interest.
In particular, for E[∇Rb(θ)] = ∇R(θ), SGD iterations with a fixed learning rate η are of the
form

θ(b+ 1) = θ(b)− η∇Rb(θ(b)).

Both R(θ) and Rb(θ) are obtained by summing or averaging terms of the form R(ŷ(z), y)
with R : RY × RY → R being the loss function for 1 data-point (z, y) and ŷ(z) being the
prediction of the neural network for z. For the rest of this section we consider a single data
point and smooth R. A key difficulty in training very deep neural networks is that the
gradients with respect to lower layers, i.e. small t for large L in our setting, might vanish or
explode. This phenomenon results in negligible or diverging network’s parameter updates
and ultimately in bad training performance. This intuition can be made rigorous by linking
the norm of the gradients, or their expectations, to loss function decrements (Bottou et al.,
2018).

For each t, let θt denote the weight, or the bias, at layer t, either in the “standard”
form (∆Wt,∆bt) or in the “reparametrized” form (εWt , ε

b
t). Then, we can write the following

equations
(∇θt−∆t

R)> = J(R,xT )J(xT ,xt)J(xt, θt−∆t)

and
J(xT ,xt) = J(xT ,xT−∆t)J(xT−∆t,xT−2∆t) · · · J(xt+∆t,xt).
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The problematic term is represented by the Jacobian matrix J(xT ,xt). Indeed the matrix
J(xT ,xt) involves a large (infinite in the limit L ↑ ∞) number of matrix multiplications
for the lower layers of a neural network, where t ≈ 0. Note that J(xT ,xt) is closely
related to J(xt,x0) as, provided that J(xt,x0) is invertible, J(xT ,xt) can be obtained as
J(xT ,xt) = J(xT ,x0)J(xt,x0)−1. In any case, the properties of J(xt,x0) are most closely
related to the problem of a vanishing/exploding gradient. Hereafter, we show that for
infinitely deep ResNets, under suitable assumptions on the activation functions φ and ψ,
the problem of an exploding gradient is avoided. Moreover, we show that under the same
assumptions on φ and ψ the limiting process is invertible. Construction of invertible neural
networks is the main focus of recent research (Behrmann et al., 2019), and the invertibility
of ResNets has been empirically shown to be related to model robustness (Engstrom et al.,
2019).

Let xt follow the ResNet (11) with the activation functions ψ and φ satisfying Assump-
tion 5. Let gt = J(xt,x0), hence gt+∆t = J(xt+∆t,xt)gt, and by direct computation we can
write

∆gt =
(
φ′(∆Wtψ(xt) + ∆bt)1D

> �∆Wt � 1Dψ
′(xt)

>)gt.
Now, we show that the Jacobian matrix J(xt,x0) is well behaved in the sense that it
converges to the solution J(xt, x0) of a matrix SDE as L ↑ ∞. As in the case of xt, we can
derive a limiting SDE to which gt converges, as L ↑ ∞, by establishing the convergence of
the corresponding instantaneous mean and covariance of gt. We denote this limiting SDE
with gt = J(xt, x0). Subsequently we can link gt with Wt and bt by showing the equivalence
in law between gt and the solution to another SDE. The next theorem states directly the
final result.

Theorem 14 Let gt = J(xt,x0) and let gt denote the continuous-time interpolation of gt.
Under Assumption 4 and Assumption 5, gt converges in distribution to the solution of the
matrix SDE

dgt =
((
φ′(0)dWt + φ′′(0)d[Wψ(x)1D

> �W ]t

)
� 1Dψ

′(xt)
>
)
gt (31)

We require the matrix SDE (31) to be non-explosive. This is for instance the case when
φ′′(0) and ψ is the identity function. See also Remark 8 in Section 3.1. As long as (31) is
not explosive, J(xt, x0) is invertible and we can find the SDE determining the evolution of
its inverse.

Corollary 15 Let gt be the matrix-valued diffusion process satisfying the matrix SDE (31).
Under Assumption 4 and Assumption 5, gt is invertible and its inverse satisfies the matrix
SDE

dg−1
t = g−1

t

(
−
(
φ′(0)dWt + φ′′(0)d[Wψ(x)1D

> �W ]t

)
�1Dψ

′(xt)
>+φ′(0)2d[W�1Dψ

′(x)>]t
)
.

(32)

Hence, J(xT , xt) can be obtained as J(xT , xt) = gT g
−1
t by means of integrating (31) and

(32), which are driven by the same process W . Theorem 14 and Corollary 15 have two
fundamental consequences: i) as gt is the Jacobian of the last layer with respect of the first
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layer of the limiting process xt, it follows that the exploding gradient problem is avoided as
long as (31) is not explosive; ii) by the inverse function theorem the limiting process xt is
invertible. Note that the results of this section hold for all the parametrizations discussed in
Section 3.1.

5. Doubly infinite ResNets

We study the more general setting of infinitely deep and infinitely wide ResNets, that is
ResNets where both the depth L and the dimension D grow unboundedly. In particular, it
is assumed that first L ↑ ∞, and then D ↑ ∞. Most of the analysis that follows assumes
that ψ is the identity function. Although we only provide heuristics for the convergence
results of Proposition 18 and Proposition 19, numerical experiments reported in Section 6
support their correctness. Moreover, the numerical experiments of Section 6 support the
conjecture that analogous results hold when D and L grow unbounded jointly when ψ is the
identity function, and φ is suitably smooth as assumed thorough this work. A more detailed
discussion on interchanging the width and depth limits under these assumptions is contained
in Section 5.6. Hereafter, we consider the setting of Corollary 5, i.e. fully i.i.d. network’s
parameters. In this case, we can rewrite (20) as

dx
(i)
t = φ′(0)(

σw√
D
dBW

t ψ(x
(i)
t ) + σbdB

b
t ) +

1

2
φ′′(0)(σ2

b + σ2
wq

(i)
t )1Ddt (33)

and
d[x(i), x(j)]t = φ′(0)2(σ2

b + σ2
wλ

(i,j)
t ) ID dt

with λ(i,j)
t = 〈ψ(x

(i)
t ), ψ(x

(j)
t )〉/D and q(i)

t = λ
(i,i)
t = ‖ψ(x

(i)
t )‖2/D. As a starting point, we

need to ensure the well-posedness of (33) for small t > 0 as D ↑ ∞. Therefore, we assume that
the following limits exist and are finite: q(i),∞

0 = limD↑∞ q
(i)
0 , and λ(i,j),∞

0 = limD↑∞ λ
(i,j)
0 .

Note that the notation does not convey explicitly the dependence of xt, and hence of qt, λt
on D.

5.1 Weakly and fully trained ResNets

The connection between Gaussian processes and infinitely wide neural networks is well-known
(Neal, 1995; Lee et al., 2018; Garriga-Alonso et al., 2019). In Section 5.3 we show that similar
results hold true for infinitely deep and infinitely wide ResNets, thus obtaining convergence
to a Gaussian process. For infinitely wide neural networks, the NTK of Jacot et al. (2018);
Arora et al. (2019); Lee et al. (2019b) allows for computing the solution obtained by fully
training a neural network according to continuous-time, i.e. infinitesimal learning rate,
gradient descent under the assumption of a quadratic loss. More in detail, let ŷ(i)

θ ∈ R be
the output of a neural network with parameters θ ∈ RΘ for its i-th input, i = 1, . . . , N . Let
R(θ) = 1

2

∑N
i=1(ŷ

(i)
θ − y

(i))2 be the squared loss over training data, where y(i) denotes the
i-th target. We report (Arora et al., 2019, Proposition 3.1) according to our notation:

Proposition 16 Consider minimizing the squared loss R(θ) by gradient descent with in-
finitesimally small learning rate: dθ(t)

dt = −∇θR(θ(t)). Let ŷ(t) = {ŷ(i)
θ(t)}

N
i=1 ∈ RN be the

network outputs on all inputs at time t, and y = {y(i)}Ni=1 be the desired outputs. Then ŷ(t)
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follows the following evolution, where K(t) is an N ×N positive semidefinite matrix whose
(i, j)-th entry is K(t)(i,j) = 〈∇θŷ

(i)
θ(t),∇θŷ

(j)
θ(t)〉:

dŷ(t)

dt
= −K(t)(ŷ(t)− y). (34)

According to Equation (34), the empirical NTK corresponding to inputs i, j is then defined
as follows:

K(i,j) = 〈∇θŷ
(i)
θ(0),∇θŷ

(j)
θ(0)〉, (35)

i.e. it is K(t) for t = 0. As the width of a neural network goes to infinity, K(i,j) converges
to a deterministic limit K(i,j,∞) for each pair of points under the considered assumptions.
Moreover, it is possible to bound the fluctuations of K(t) around its initial value K(0) as the
width increases. Building on these results, it is possible to establish the equivalence between
the solution obtained by fully training a neural network via continuous-time gradient descent
and kernel regression via the K(i,j,∞) kernel. Indeed, within the aforementioned setting,
the time-independent K(i,j,∞) can be substituted for K(t)(i,j) in (34) yielding the constant
coefficients ODE

dŷ(t)

dt
= −K(∞)(ŷ(t)− y). (36)

The stationary solution of the ODE (36), with initial condition ŷ(0) = 0, is given by
the standard kernel regression formula associated to the kernel K(∞). In particular, the
desired initial condition can be enforced either by scaling the neural network output by
an appropriately small constant (Arora et al., 2019) or by subtracting the output of an
independent and untrained copy of the considered neural network at initialization (Lee et al.,
2019b).

We show in Section 5.4 that similar results hold for the case of infinitely deep and
infinitely wide ResNets: (35) at initialization converges to a deterministic limit. Also, it
is known (Arora et al., 2019) that in the aforementioned setting, training only the last
output of a neural network under the same conditions corresponds to performing Bayesian
inference under the Gaussian process prior arising in the infinite wide limit. Hence, we talk
equivalently of Bayesian inference and weak training, and we refer to the standard NTK
setting as full training. All the results of Section 5.3 and Section 5.4 concern with a ResNet
x0:T with input x0. As previously mentioned, it is necessary to complete the ResNet with
an input layer adapting the infinitely wide ResNet to finite-dimensional inputs. Moreover,
to more closely resemble neural networks used in practice, an output adaptation layer is
commonly introduced as well. In Section 5.5 we study the implications to the training
of completing the ResNet with input and output layers. Moreover, in line with the NTK
literature, it is necessary to consider an appropriate parametrization in order to obtained the
desired NTK convergence results. The reparametrized gradients used by gradient descent
are computed with respect to network’s parameters which are i.i.d. distributed as standard
Gaussian distributions and any scaling is expressed via multiplication, not via the Gaussian
distribution’s variance. In our context this corresponds to gradients with respect to (εWt , ε

b
t)

in (18) and (19).
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5.2 Weakly trained ResNets - general case

Observe that the evolution of (33) is directly governed by q
(i)
t and λ

(i,j)
t . The following

results forms the basis of our analysis. Its proof is obtained by a straightforward but tedious
application of multi-dimensional Ito’s formula (Øksendal, 2003, Section 4.2) and is thus
omitted.

Proposition 17 Let xt = x
(i)
t evolve according to the SDE (33), and let f(x) = 〈g(x), h(x)〉/D

with g and h being twice continuously differentiable scalar functions applied element-wise.
Then

df(xt) = φ′(0)
1

D
(g′(xt)h(xt) + g(xt)h

′(xt))
>(

σw√
D
dBW

t ψ(xt) + σbdB
b
t )

+
1

2
(σ2
b + σ2

wq
(i)
t )φ′(0)2(〈g′′(xt), h(xt)〉/D + 〈g(xt), h

′′(xt)〉/D + 2〈g′(xt), h′(xt)〉/D)dt

+
1

2
(σ2
b + σ2

wq
(i)
t )φ′′(0)(〈g′(xt), h(xt)〉/D + 〈g(xt), h

′(xt)〉/D)dt

Moreover, Let xt = x
(i)
t and yt = x

(j)
t evolve according to (33), and let F (x, y) = 〈G(x), H(y)〉/D

with G and H being twice continuously differentiable scalar functions applied element-wise.
Then

dF (xt, yt) = φ′(0)
1

D
(G′(xt)H(yt))

>(
σw√
D
dBW

t ψ(xt) + σbdB
b
t )

+ φ′(0)
1

D
(G(xt)H

′(yt))
>(

σw√
D
dBW

t ψ(yt) + σbdB
b
t )

+
1

2D
(σ2
b + σ2

wq
(i)
t )φ′′(0)〈G′(xt), H(yt)〉dt

+
1

2D
(σ2
b + σ2

wq
(j)
t )φ′′(0)〈G(xt), H

′(yt)〉dt

+
1

2D
(σ2
b + σ2

wq
(i)
t )〈G′′(xt), H(yt)〉dt

+
1

2D
(σ2
b + σ2

wq
(j)
t )〈G(xt), H

′′(yt)〉dt

+
1

D
(σ2
b + σ2

wλ
(i,j)
t )〈G′(xt), H ′(yt)〉dt

The evolution of q(i)
t and λ

(i,j)
t is obtained by an application of Proposition 17 with

h := g := H := G := ψ, resulting in dq(i)
t = df(x

(i)
t ) and dλ(i,j)

t = dF (x
(i)
t , x

(j)
t ). Inspecting

the corresponding dynamics highlights the difficulties in obtaining closed-form solutions for
the evolution of q(i)

t and λ(i,j)
t . The drift and diffusion coefficients describing the evolution of

q
(i)
t involves inner-products of the form 〈ψ(m)(x

(i)
t ), ψ(n)(x

(i)
t )〉 where m,n = 0, 1, 2 denote

the degrees of differentiation. By relying on Proposition 17 to determine the evolution of
〈ψ(m)(x

(i)
t ), ψ(n)(x

(i)
t )〉 results in drift and diffusion coefficients depending on other terms of the

form 〈ψ(m)(x
(i)
t ), ψ(n)(x

(i)
t )〉 involving higher degrees of differentiation. Similar considerations

hold true for λ(i,j)
t . Ultimately, determining the evolution of q(i)

t and λ(i,j)
t separately from

x
(i)
t requires solving an infinite recursion of SDEs. Similarly, solving (33) directly requires
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solving an infinite dimensional SDE as D ↑ ∞. In either cases it doesn’t seem possible to
solve (33) exactly in the infinite-width limit with a finite amount of computational effort.
In the special case where ψ is the identity function the dynamics of q(i)

t and λ(i,j)
t simplify

considerably. We explore the implications of this modeling assumption in the remaining
sections of this work.

5.3 Weakly trained ResNets - identity ψ case

Hereafter, we assume the activation function ψ to be the identity function, and hence only the
activation function φ affects the neural network. In Lemma 21 in Appendix A we derive the
evolution of q(i)

t and λ(i,j)
t in this specific setting. Now, we show that as D increases q(i)

t and
λ

(i,j)
t converge to deterministic limits which are obtained as solutions of a finite-dimensional

ODE system.

Proposition 18 (Heuristic) As D ↑ ∞, the quantities m(i)
t , q(i)

t , λ(i,j)
t converge to the

solutions of the ODEs

dm
(i),∞
t =

1

2
φ′′(0)

(
σ2
b + σ2

wq
(i),∞
t

)
dt,

dq
(i),∞
t =

(
φ′′(0)m

(i),∞
t + φ′(0)2

)(
σ2
b + σ2

wq
(i),∞
t

)
dt

and

dλ
(i,j),∞
t =

(1

2
φ′′(0)((σ2

b + σ2
wq

(i),∞
t )mj,∞

t + (σ2
b + σ2

wq
(j),∞
t )m

(i),∞
t )

+ φ′(0)2
(
σ2
b + σ2

wλ
(i,j),∞
t )

)
dt,

respectively. Moreover, under the assumption φ′′(0) = 0, the solutions for m(i),∞
T , q(i),∞

T and
λ

(i,j),∞
T are

m
(i),∞
T = m

(i),∞
0 ,

q
(i),∞
T = q

(i),∞
0 +

(
q

(i),∞
0 +

σ2
b

σ2
w

)(
eφ
′(0)2σ2

wT − 1
)
.

and

λ
(i,j),∞
T = λ

(i,j),∞
0 +

(
λ

(i,j),∞
0 +

σ2
b

σ2
w

)(
eφ
′(0)2σ2

wT − 1
)
,

respectively. Moreover, under the assumption φ′′(0) 6= 0, the solutions for m(i),∞
T and q(i),∞

T

are

m
(i),∞
T =

1

φ′′(0)

{
−φ′(0)2 +

1

σw

√
C tan

(
1

2
σw
√
C(T + 2c2)

)}
(37)

and

q
(i),∞
T =

1

φ′′(0)2σ2
w

{
−φ′′(0)2σ2

b + C sec

(
1

2
σw
√
C(T + 2c2)

)2
}
, (38)

respectively, where c1 and c2 are two constants that depend on the initial conditions of
Equations (37) and (38), and C = −φ′(0)4σ2

w + φ′′(0)2(σ2
b + σ2

wc1).
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In Proposition 18, m(i)
t = D−1

∑
1≤d≤D x

(i)
t,d and we further require that m(i),∞

0 =

limD↑∞m
(i)
0 exists and it is finite. Crucially, when ψ is the identity function, it is not

possible to decouple the evolution of q(i)
t and λ(i,j)

t from the evolution of the driving stochas-
tic process xt when D ↑ ∞. The drift, diffusion, and correlation coefficients driving the SDE
(33) converge to deterministic limit too which results in i.i.d. stochastic processes across the
dimensions of the neural network.

Proposition 19 (Heuristic) As D ↑ ∞ each x(i)
t converges to x(i),∞

t , with the x(i),∞
t ’s being

i.i.d. across the dimensions of the neural network. Moreover, for x(i),∞
t = x

(i),∞
t,1 , x

(i),∞
t,2 , . . . ,

and d, u ≥ 1 it holds

dx
(i),∞
t,d = φ′(0)(σ2

b + σ2
wq

(i),∞
t )1/2dB

(i),∞
t,d (39)

and

d[B
(i),∞
d , B(j),∞

u ]t =
σ2
b + σ2

wλ
(i,j),∞
t(

(σ2
b + σ2

wq
(i),∞
t )(σ2

b + σ2
wq

(j),∞
t )

)1/2 δd,udt,
where B(i),∞

t,1 , B
(i),∞
t,2 , . . . are scalar BMs dependent over i and q(i),∞

t , λ
(i,j),∞
t are obtained

by solving the ODEs in Proposition 18. Over the two data-points indexed by i, j this is a
2-dimensional SDE with time-dependent and deterministic drift and diffusion coefficients,
and such that

p(x
(i),∞
T,d , x

(j),∞
T,d |x(i)

0,d, x
(j)
0,d) = N2

([
x

(i)
0,d +m

(i),∞
T −m(i),∞

0

x
(j)
0,d +m

(j),∞
T −m(j),∞

0

]
, (40)[

v
(i),∞
T − v(i),∞

0 c
(i,j),∞
T − c(i,j),∞

0

c
(i,j),∞
T − c(i,j),∞

0 v
(j),∞
T − v(j),∞

0

])
,

where v(i),∞
t = q

(i),∞
t − (m

(i),∞
t )2, c(i,j),∞

t = λ
(i,j),∞
t −m(i),∞

t m
(j),∞
t .

According to Proposition 19, doubly infinite ResNets are non-centered Gaussian processes
with covariance kernel K(i,j),∞ = c

(i,j),∞
T − c

(i,j),∞
0 and mean function M

(i),∞
d = x

(i)
0,d +

m
(i),∞
T − m

(i),∞
0 . That is: i) when φ′′(0) = 0, we have M (i),∞

d = x
(i)
0,d and K(i,j),∞ =

(λ
(i,j),∞
0 + σ2

b/σ
2
w)(eφ

′(0)2σ2
wT − 1); ii) when φ′′(0) 6= 0, from Equation (37) and Equation (38)

we obtain the deterministic explosion time of x(i),∞
t,d by solving 2−1σw

√
C(T + 2c2) = π/2 in

T ; in particular, the constants c1, c2 depend on m(i),∞
0 , q(i),∞

0 and have to be determined
numerically.

5.4 Fully trained ResNets

Let θ = {εWt , εbt}T−1
t=0 denote the “reparametrized” collection of network’s parameters with

respect to which we compute the NTK.We establish the convergence ofK(i,j) to a deterministic
limit as L ↑ ∞ and then D ↑ ∞. We operate under the following assumptions: i) xt follows
(20) with ψ being the identity function; ii) network’s parameters follow Assumption 7; iii)
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φ′′(0) = 0; iv) ŷ = xT,1. We have K(i,j) = K(i,j)
W + K(i,j)

b , where K(i,j)
W =

∑T
t=∆tK

(i,j)
W,t ,

K(i,j)
b =

∑T
t=∆tK

(i,j)
b,t , and

K(i,j)
W,t = J(ŷ(i),x

(i)
T )J(x

(i)
T ,x

(i)
t )J(x

(i)
t ,∆Wt−∆t)

×
(
J(ŷ(j),x

(j)
T )J(x

(j)
T ,x

(j)
t )J(x

(j)
t ,∆Wt−∆t)

)>
σ2
w∆t/D

and

K(i,j)
b,t = J(ŷ(i),x

(i)
T )J(x

(i)
T ,x

(i)
t )J(x

(i)
t ,∆bt−∆t)

×
(
J(ŷ(j),x

(j)
T )J(x

(j)
T ,x

(j)
t )J(x

(j)
t ,∆bt−∆t)

)>
σ2
b∆t,

as
J(xt, ζ

W
t−∆t) = J(xt,∆Wt−∆t)σw

√
∆t/
√
D

and
J(xt, ζ

b
t−∆t) = J(xt,∆bt−∆t)σb

√
∆t.

Recall from our study in Section 4 that, as L→∞, we have that J(x
(i)
T ,x

(i)
t )→ gT g

−1
t

and J(x
(j)
T ,x

(j)
t ) → gT g

−1
t , as the evolution of gt does not depend on xt when φ′′(0) = 0.

Furthermore, note that J(xt,∆Wt−∆t)d,i,j → φ′(0)δd,ixt,j and J(xt,∆bt−∆t)d,i → φ′(0)δd,i.
By combining these results, and by assuming that the interchange of limits is justified, we
write

K(i,j)
W → φ′(0)2σ2

wJ(ŷ(i), x
(i)
T )gT

[∫ T

0

〈x(i)
t , x

(j)
t 〉

D
g−1
t g−1

t
>
dt

]
g>T J(ŷ(j), x

(j)
T )>

and

K(i,j)
b → φ′(0)2σ2

bJ(ŷ(i), x
(i)
T )gT

[∫ T

0
g−1
t g−1

t
>
dt

]
g>T J(ŷ(j), x

(j)
T )>.

Now, g−1
t g−1

t
>

= (g>t gt)
−1. Accordingly, by an application of Ito’s formula for matrix SDE

products (Protter, 2005, Chapter V, Theorem 47), for Ut = g>t gt we obtain the following
SDE

dUt = φ′(0)
σw√
D
g>t

(
dBW

t + dBW
t
>)

gt + φ′(0)2σ2
wUtdt,

where U0 = ID, and whose quadratic variation (a matrix, in this particular case) is of the
following form

d[U ]t = φ′(0)2σ
2
w

D

(
gt
> � gt>

)(
gt � gt

)
dt,

vanishing as D → ∞. Therefore, Ut → U∞t where dU∞t = φ′(0)2σ2
wU
∞
t dt. Thus, as

D → ∞ the term g>t gt is an infinite dimensional diagonal matrix with constant element
u∞t computable by solving the ODE du∞t = φ′(0)2σ2

wu
∞
t dt with initial value u∞0 = 1, i.e.

u∞t = exp(φ′(0)2σ2
wt).

Note that: i) the matrix
∫ T

0 (g>t gt)
−1dt is asymptotically diagonal with constant el-

ement (1 − exp(φ′(0)2σ2
wT ))/(φ′(0)2σ2

w); ii) the matrix gT g
>
T is asymptotically diagonal
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with constant element exp(φ′(0)2σ2
wT )/(φ′(0)2σ2

w). Therefore, one has that the matrix
gT

[∫ T
0 g−1

t g−1
t
>
dt
]
g>T is asymptotically diagonal with value (exp(φ′(0)2σ2

wT )−1)/(φ′(0)2σ2
w).

Note that we rely on the assumption that the approximation errors due to considering each
term separately vanish as D ↑ ∞, or at least the approximation errors cancel out. Finally,
ŷ = xT,1 corresponds to selecting the first element of this diagonal matrix. If E = eφ

′(0)2σ2
wT

then

K(i,j)
b → K(i,j),∞

b =
σ2
b

σ2
w

(E − 1).

Along similar lines we obtain the deterministic limit to which K(i,j)
NT ,W,t converges as D ↑ ∞,

i.e.,

K(i,j)
W → K(i,j),∞

W = λ
(i,j),∞
0 φ′(0)2σ2

wTE +
σ2
b

σ2
w

[
φ′(0)2σ2

wTE − (E − 1)
]

hence obtaining

K(i,j) → K(i,j),∞ = λ
(i,j),∞
0 CE +

σ2
b

σ2
w

CE.

where E = exp(C) and C = φ′(0)2σ2
wT . This can be contrasted with the main result of

Section 5.3, where we have shown that the (standard) kernel corresponding to D ↑ ∞ for
φ′′(0) = 0 is given by

K(i,j) → K(i,j),∞ = λ
(i,j),∞
0 (E − 1) +

σ2
b

σ2
w

(E − 1).

Note that the two kernels correspond to two different training regimes: i) training all layers
of the neural network; ii) training only the output layer of the neural network. However, the
two kernels are qualitatively similar. In particular, both kernels depend linearly on λ(i,j),∞

0 .
The only difference is with respect to the behavior of (E − 1) compared to CE as a function
of C.

5.5 Training of completed ResNets

Results presented in Section 5.3 and Section 5.4 entail a neural network with an infinite-
dimensional input. Let z, z′ ∈ RZ1 be two inputs of the neural network. We consider a linear
adaptation layer, i.e. an embedding, of the form x0 = Az where, in line with Section 5.3 and
Section 5.4, the elements of A ∈ RD×Z are i.i.d. as N (0, σ2

Z). It follows that across d we
have

(x0,d,x
′
0,d)

i.i.d.∼ N2(0,ΣZ(z, z′)),

where

ΣZ(z, z′) = σ2
Z

[
‖z‖2 〈z, z′〉
〈z′, z〉 ‖z′‖2

]
.

By the strong law of large numbers λ0 = 1
D 〈x0,x

′
0〉 → λ∞0 = E[x0,1x

′
0,1] = σ2

Z〈z, z′〉 as
D ↑ ∞, hence q∞0 = σ2

Z‖z‖2 and q′∞0 = σ2
Z‖z′‖2. In the weakly training setting, which is

1. for convenience we use in this section the z, z′ notation instead of z(i), z(j), and proceed in the same way
for all other quantities depending on i, j
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equivalent to Bayesian inference with a Gaussian process prior, we know from Section 5.3
that across d we have

(x∞T,d, x
′∞
T,d |x0,d,x

′
0,d)

i.i.d.∼ N2

([
x0,d

x′0,d

]
,Σweak(z, z′)

)
,

where

Σweak(z, z′) = σ2
Z(E − 1)

[
‖z‖2 〈z, z′〉
〈z′, z〉 ‖z′‖2

]
+
σ2
b

σ2
w

(E − 1)

with E = eφ
′(0)2σ2

wT . Then, by direct computation, we obtain the following Gaussian
distribution

(x∞T,d, x
′∞
T,d)

i.i.d.∼ N2

([
0
0

]
,ΣZ(z, z′) + Σweak(z, z′)

)

= N2

([
0
0

]
, σ2

ZE

[
‖z‖2 〈z, z′〉
〈z′, z〉 ‖z′‖2

]
+
σ2
b

σ2
w

(E − 1)

)
.

That is, the prior distribution induced by a doubly infinite ResNet with the input adaptation
layer is i.i.d. across the dimensions d, and distributed as a centered Gaussian process with
kernel

K(z, z′) = σ2
ZE〈z, z′〉+

σ2
b

σ2
w

(E − 1). (41)

We also augment the neural network with an output adaptation layer ŷ = GxT , where
the elements of G ∈ R1×D are i.i.d. as N (0, σ2

Y /D). Then, it follows that the doubly infinite
ResNet with both input and output adaption layers still follows a Gaussian process whose
kernel is

K(z, z′) = σ2
YK(z, z′). (42)

Now, consider the Bayesian noiseless linear model with fully independent prior distributions
formulated by ŷ = α+βz where α ∈ R, α ∼ N (0, σ2

α), β ∈ RZ , βi ∼ N (0, σ2
β) for i = 1, . . . , Z,

then:

(ŷ, ŷ′) ∼ N2

([
0
0

]
, σ2

β

[
‖z‖2 〈z, z′〉
〈z′, z〉 ‖z′‖2

]
+ σ2

α

)
.

Thus, according to (41) it follows that, within the doubly infinite limit, the completed ResNet
prior model collapses to a noiseless Bayesian linear regression prior where σ2

α =
σ2
b

σ2
w
σ2
Y (E − 1)

and σ2
β = σ2

Y σ
2
ZE.

Under the fully trained setting, in Section 5.4 we have established the convergence of
the NTK. Now, we consider directly the doubly infinite ResNet augmented with both input
and output layers as previously defined. Recall that in the NTK literature the input layer
is sometimes not trained, and the output layer is sometimes omitted (Arora et al., 2019).
Hereafter, we report only the results for the special case in which all layers are present
and trained as it most closely resembles standard practice for finitely-sized networks. In
particular,

K(z, z′) = σ2
Y

(
σ2
Z(C + 1)E〈z, z′〉+

σ2
b

σ2
w

CE

)
+K(z, z′)
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= σ2
Y

(
σ2
Z(C + 2)E〈z, z′〉+

σ2
b

σ2
w

(CE + E − 1)

)
. (43)

For more general cases, the results follow along lines similar to the steps detailed in Section 5.4.
In particular, in all cases the kernel remains affine in 〈z, z′〉, and only the coefficients are
affected.

The problem of establishing the equivalence between kernel regression and fully trained
neural networks requires two steps: i) establishing the NTK convergence at initialization, as
we have proved in Section 5.4; ii) bounding the NTK fluctuations during training (Arora
et al., 2019; Lee et al., 2019a). To the best of our knowledge, step ii) has not been formally
established for architectures which are not feed-forward, e.g. for ResNets. Assuming such a
result, Equation (43) shows that in the doubly infinite limit fully trained ResNet correspond to
noiseless (kernel) linear regression. Kernel regression is equivalent to the posterior predictive
mean of a Gaussian process with the same kernel. Hence, relatively to point predictions,
both weakly and fully trained doubly infinite ResNets of the considered class collapse to a
linear model.

5.6 Concluding remarks

We considered doubly infinite ResNets by first establishing a diffusion limit (L ↑ ∞) and
then by considering increasing dimensionality of the diffusion process (D ↑ ∞). Here, we
briefly present the alternative approach where we invert the order to taking limits, that
is first the width tends to infinity, then the depth tends to infinity. We assume fully i.i.d.
network’s parameters according to a time-discretization of Assumption 7, i.e. (18) and (19),
with σ2

b = 0, σ2
w = 1 for simplicity of exposition. We consider two inputs x, y ∈ RI and

the same input adaption layer of Section 5.5, with σ2
I = 1. Once again for simplicity of

exposition, we consider in this section the ResNet (11) without the φ activation function. In
such a setting, the case L ↑ ∞ is thoroughly studied, starting with the seminal work of Neal
(1995) and proceeding with the more recent developments of Lee et al. (2018), Jacot et al.
(2018) and Lee et al. (2019b). By means of the standard approach we obtain the following
recursion over the layers of an infinitely wide ResNet:

(x0,d, y0,d)
i.i.d.∼ N2(0,Σ0)

with
Σxy

0 = 〈x, y〉,
and

(xt+∆t,d, yt+∆t,d)
i.i.d.∼ N2(0,Σt+∆t = Σt + Σt:t+∆t)

with
Σxy
t:t+∆t = E

ε,γ∼Σxy
t

[ψ(ε)ψ(γ)]∆t,

where d = 1, . . . are the neural network units, which are i.i.d. in the infinitely wide limit,
and we used the notation Σxy to denote upper-right element of a 2× 2 covariance matrix
(the remaining elements are obtained setting x = y or y = x). The recursion over layer depth
(time):

Σxy
t+∆t = Σxy

t + E
ε,γ∼Σxy

t

[ψ(ε)ψ(γ)]∆t
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provides an easy way to establish the infinitely deep limit (D ↑ ∞) via the ODE limit of the
recursion over

Σ̇xy
t = E

ε,γ∼Σxy
t

[ψ(ε)ψ(γ)]. (44)

The extension to an arbitrary number of inputs is immediate. In particular, the resulting
continuum of Gaussian processes, one at each t ≥ 0, requires to solve the ODE (44). The
expectation defining the drift of (44) has a closed-form solution for some specific choices of
the activation functions, and requires numerical approximations in the general case. The
ODE (44) also requires numerical integration aside from specific cases, such as ψ being
the identity function. It is easy to check that in this case one obtains the same results of
Section 5.3 for φ′(0) = 1 (for instance when φ = tanh). Thus, in this setting, the order in
which the limits of depth and width are taken does not matter. When φ′(0) 6= 1, the results
of this Section only differ by the multiplicative constant φ′(0) which can be absorbed into σb
and σw, resulting again in an equivalent model. Moreover, the derivations of this Section
can be extended to the cover the case of a suitably smooth activation φ, in which case the
constant φ′(0) would be recovered as well. Ultimately, the φ activation plays a very limited
role for large L, and when the ψ activation is missing (i.e. it is the identity) the ResNet
tends to a linear neural network in the doubly infinite limit.

6. Numerical results

We start by introducing all the neural network models considered in this section. In all the
experiments we set ψ to the identity function and, without loss of generality, we assume
T = 1.

Regarding fully-connected networks, we consider the fully i.i.d. parametrization of
Assumption 7. When Z = 1, i.e. for 1-dimensional inputs, we can opt for copying the input
across all dimensions: x0,• = z for an input z, i.e. x0,d = z for each d ∈ D. We refer to
this model as Ftanh when φ = tanh and as Fswish when φ = swish. The swish activation
function (swish(x) = x sigmoid(x)) has been shown empirically (Ramachandran et al., 2017)
and theoretically (Hayou et al., 2019a) to be competitive. More in general, for any input
dimension Z, we complete the model with input and output adaptation layers as defined in
Section 5.5. We choose to use σ2

Z = Z/I and σY = 1/D. We will refer to such completed
models as F tanh and F swish.

Regarding convolutional networks, we consider the fully i.i.d. parameterization of As-
sumption 10. A generic input is here of dimension U × V × C, with U, V,C representing
the input height, width and number of channels. The adaptation layer is here an 1-by-1
convolution adapting the number of channels to the model dimension D. More precisely: for
each p x0,p = Azp where p index the UV positions and the elements of A ∈ RD×Z are i.i.d. as
N (0, 1/C). The output layer is composed again of a 1-by-1 convolution which is followed by
global space averaging. That is: ŷ = 1

UV

∑UV
p=1GxT,p, here again p index the UV positions

and the elements of G ∈ RY×D are i.i.d. as N (0, 1/D). We refer to this convolutional model
with φ = tanh as Ctanh.
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6.1 Correctness checks

We start with a numerical study of the correctness of the results of Section 3, Section 4
and Section 5. We consider Ftanh with σ2

w = σ2
b = 1 and two 1-dimensional inputs z(1) = 0,

z(2) = 1, hence x
(1)
0,• = z(1),x

(2)
0,• = z(2), and simulate 10.000 draws of the first dimension

(d = 1) of:

a) x
(1)
T , x(2)

T via the ResNet recursion (8);

b) x(1)
T , x(2)

T via the discretization (6) of the limiting SDE (33);

c) x(1),∞
T , x(2),∞

T via the analytical transition density (40).

for L = D = 500. We only consider the first dimension because, as observed in Section 5.3, in
the limit of D ↑ ∞ the dimensions are i.i.d. Our analysis imply that a) and b) are equivalent
when L ↑ ∞, and c) is equivalent to b) when additionally D ↑ ∞. As both D and L are
large we expect good agreement between the distributions corresponding to a) b) and c).
Numerical results are reported in Figure 2 where indeed a good agreement with the theory is
observed.

4 2 0 2 4

4

2

0

2

4

6

6 4 2 0 2 4 6 5 0 5

analytical

sde

resnet

Figure 2: For model Ftanh: 2D KDE (kernel density estimator) plot for (ŷ1(z(1)), ŷ1(z(2)))
(left), 1D KDE and histogram plots for ŷ1(z(1)) (center), ŷ1(z(2)) (right) when ŷ1

is sampled from a ResNet (resnet), from the Euler discretization of its limiting
SDE for L ↑ ∞ (sde) and from the analytical SDE transition density for L,D ↑ ∞
(analytical); ŷ denotes a generic model output, hence ŷ1 is its first dimension.

For the same neural network model Ftanh, Figure 3 displays the convergence of the
NTKs K(1,2)

W ,K(1,2)
b to their limits K(1,2),∞

W ,K(1,2),∞
b for z(1) = 1, z(2) = 2. The convergence

is assessed in the setting where both the depth L and the dimension D grow unbounded
jointly. Results displayed in Figure 3 support the numerical analysis of Section 5.4. Results
also support the conjecture that the order in which the limits are taken does not impact the
results for the smooth activation functions considered in the present work.

6.2 Function space distributions

We show empirically that the dependency on the input is retained, and that the output
distribution does not exhibit perfect correlation for very deep residual networks constructed
as in the present paper. Again, we consider the neural network model Ftanh with σ2

w = σ2
b = 1.
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Figure 3: For model Ftanh: NTKs K(1,2)
W ,K(1,2)

b as function of L = D and their analytical
limits K(1,2),∞

W ,K(1,2),∞
b corresponding to D,L ↑ ∞; empirical average plotted with

solid line, shaded areas correspond to ±2 empirical standard deviations.

Figure 2 shows that x(1)
T,1 and x

(2)
T,1 have different distributions. This means that the input

dependency is retained in the neural network. Furthermore, from the left plot we see that
x

(1)
T,1 and x

(2)
T,1 are not perfectly correlated, otherwise the 2D KDE would collapse to a straight

line.
Figure 4 (top panels), which can be contrasted with Figure 1, displays samples of xT,1

from Ftanh in function space for different combinations of L and D. More specifically, we
approximate function draws by considering 400 inputs z(i) equally spaced on [−2, 2]. Using
the ResNet recursion (8) we obtain 400 output values x

(i)
T,1. We repeat this procedure to

obtain 10.000 function draws and report the results in Figure 4 (top). For L = D = 500,
i.e. for jointly large width and depth, the function draws are close to linear in agreement
with Section 5.4. We then replicate this experiment for Fswish and we report the results
in Figure 4 (bottom panels). In this case φ′(0) = φ′′(0) = 1/2 and Assumption 3 is not
satisfied, but in this specific instance we did not observe divergent trajectories for the 10.000
function draws. The impact of adding an input adaptation layer is limited to symmetrizing
the function space distributions around the origin, while Ftanh and Fswish trend upward
with z. Hence, we do not include additional plots for this additional case as they add little
information. Appendix B contains additional 2D plots of samples of xT,1 for both Ftanh and
Fswish.

Finally, Figure 5 (top panels) displays the correlations ρ[x
(1)
T,1,x

(2)
T,1] for the neural network’s

inputs (z(1), z(2)) in the range [−2, 2]× [−2, 2], for the tanh and swish activation functions:
for different inputs, the corresponding output correlations are far from 1. We refer to the
model of Figure 1 with tanh activation as Etanh, and to the model of Figure 1 with ReLU
activation as EReLU. For the sake of comparison, we show in Figure 5 (bottom panels) the
correlations ρ[x

(1)
last,1, x

(2)
last,1] for pre-activation 1 for Etanh and EReLU: all correlations are close

to 1.

6.3 Doubly infinite fully trained fully-connected ResNets

We consider the MNIST dataset (LeCun, 1998). In particular, each observation (z, k) is
composed of an image z and a target k among 10 classes representing the numbers 0 to
9. We flatten the images obtaining z ∈ R784 and, as common, we rescale each z as z/255
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Figure 4: Function samples of xT.1 for Ftanh (top) and Fswish (bottom), see Figure 1 for the
description of the plotted quantities.
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Figure 5: Output correlation heatmap for Ftanh (top-left), Fswish (top-right), Etanh (bottom-
left), EReLU (bottom-right).

to bound the inputs on [0, 1]. We consider the neural network F tanh trained via full-batch
GD training and average MSE loss. In order to frame classification as a regression problem,
we use 1-hot encoding: each class k = 1, . . . , 10 is encoded as yk ∈ R10 which has the k-th
component equal to 1 and all other components equal to 0. The gradients are computed with
respect to (εWt , ε

b
t) in (18) and (19).

We consider F tanh with σ2
w = 1 and σ2

b = 0.12. The use of a smaller bias variance is
common in the NTK literature (Arora et al., 2019). From Section 5.5 we know that as L
and D increase the fully trained F tanh collapses to noiseless Bayesian linear regression. We
consider 20.000 randomly sampled observations from the training portion of the MNIST
dataset, and we compute the test accuracy on the test portion of the MNIST dataset, which
is composed of 10.000 observations. Using 1-hot encoding we perform kernel regression using
kernel (43) via standard kernel regression (Williams and Rasmussen, 2006) for the predictive
posterior mean of Gaussian processes. For numerical stability the model is augmented with a
small noise variance equal to 1/20.000, and we obtain a test accuracy of 85.36%. We compare
this accuracy with test accuracies computed for F tanh under different values of D = L, which
is fully-trained for 120 epochs. We use a single learning rate tuned to optimize final test
accuracy.

In practice, the training of neural networks typically is performed via SGD, or via other
stochastic variants of GD, as full-batch training is prohibitively expensive for large datasets.
Accordingly, here we perform SGD training of F tanh, with batches of 200 observations each.
Again, we consider 120 epochs and different different values of D = L. The same learning rate
is used. In both experiments no further adjustments are performed, such as gradient clipping.
The results are reported in Figure 6 (left). We observe that there is strong agreement between
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Figure 6: Final MNIST test accuracy after 120 epochs of training F tanh via GD (left, blue),
SGD (left, orange), full-batch Adam (right, blue), mini-batch Adam (right, orange)
compared with the theoretical limiting value corresponding to Bayesian linear
regression (dashed gray).

the limiting theoretical test accuracy and the final test accuracy of F tanh fully trained with
GD, which is the case covered by our theory. Moreover this result empirically extends to
SGD.

For completeness, we consider the same training setting with Adam (Kingma and Ba,
2015), a popular adaptive stochastic optimizer, and we report the results in Figure 6 (right)
for both full-batch and mini-batch variants. While there is no strong consensus on whether
Adam outperforms or underperforms SGD when a carefully tuned learning rate is used
(Wilson et al., 2017; Choi et al., 2019), Adam is known to be less sensitive to learning
rate specifications and exhibits more robust behavior in difficult optimization problems. In
particular, the proposed experiment provides an alternative viewpoint: Adam (with mini-
batching, as standard) is able to “escape” the domain of attraction of linear model solutions,
at least up to the largest model size here considered. We suspect that more complex neural
network architectures might exhibit analogous pathologies at initialization when the number
of network’s parameters is very large, and Adam seems more robust to these issues. In any
case, a formal investigation would require new results in the NTK literature to cover adaptive
optimizers.

6.4 Doubly infinite fully trained convolutional ResNets

While a theoretical investigation of the backward properties of CNNs is beyond the scope of
the present paper, in this section we empirically investigate to what extent the observations
of Section 6.3 extends to convolutional neural networks. In particular, we consider Ctanh

with σ2
w = 1 and σ2

b = 0.12. The setting is the same of Section 6.3, with the exception that
the input images are not flattened. We consider training under MSE loss for 120 epochs
with both SGD and Adam. For computation reasons we restrict the maximum model size
to D = L = 150 and do not investigate full-batch training. We report the results of this
experiment in Figure 7. These results suggests convergence as D = L which is reminiscent of
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Figure 7: Final MNIST test accuracy after 120 epochs of training Ctanh with SGD (blue)

and Adam (orange).

what observed in Figure 6. Similarly to Figure 6 Adam exhibits superior performance for
large D = L.

6.5 Empirical Bayes for wide and deep fully-connected ResNets

In this section we present a proof of concept experiment where hyperparameter optimization
is performed via empirical Bayes on a surrogate Bayesian linear model (BLM). In Section 5.5
we established that the prior of a ResNet with fully i.i.d. parameterization and the identity
ψ activation converges to a BLM as width and depths grows unboundedly. We can thus
consider the marginal likelihood of the limiting BLN as a proxy for the marginal likelihood
of a wide and deep ResNet and leverage on it to conduct approximate empirical Bayes
inference for the finite ResNet. More in detail, we consider a fully connected ResNet with
the input adaptation layer detailed in Section 5.5. The corresponding limiting kernel in the
doubly infinite case is given by (41). We consider a simple classification task consisting of
discriminating between the digits ’3’ and ’7’ on the MNIST dataset. We randomly sample 100
images corresponding to the classes ’3’ and ’7’, which we will use to maximize the marginal
likelihood. Each greyscale image z is mapped to the [−1,+1] interval via the transform z ->
z/255*2-1. The ’3’ class is mapped to −1 while ’7’ is mapped to +1. We assume a small
i.i.d. Gaussian observation noise (σe = 0.01) to improve numerical stability. The marginal
likelihood of the limiting BLM is optimized via a differential evolution algorithm (Price,
2013) over the positive hyperparameters σz, σw, σb. We obtain an average, i.e. per sample,
negative marginal log-likelihood (NLL) of 0.65 which suggests a good fit to the data: for
comparison the “default” hyperparameters σz = σw = σb = 1.0 result in a NLL of 3.25. In
Figure 8 we plot the optimal and “default” NLL of the BLM jointly with the NLL of the
ResNet for different widths and depths. The NLL of the finite ResNet is naïvely estimated
via Monte Carlo integration over the hidden layers’ units, with the last layer integrated
out analytically. This estimation can be considered reliable only for large width, where the
stochastic dependency of each layer on the previous layer becomes deterministic (Lee et al.,
2018). Nonetheless, this simple approach suffices to illustrate the convergence of the finite
width and depth NLLs to their limiting counterparts.
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Figure 8: NLL of the limiting BLM (dashed line) and of the corresponding ResNet for

different widths and depths (dots); orange: “default” hyperparameters, blue:
optimal hyperparameters.

7. Discussion

We investigated the large-depth limit of identity ResNets (He et al., 2016b), establishing
convergence to solutions of SDEs. Our results rely on smooth activation functions and on
distributions for network’s parameters which shrink as the total depth increases; further
conditions on activation functions are obtained by restricting the limiting SDEs to be non
explosive. Building upon our connection between infinitely deep fully-connected ResNets
and diffusion processes, we showed that both forward and backward dynamics are well-
behaved. With regards to forward-propagation, we showed that as the total depth grows
unboundedly: i) the dependency of the last layer on the input does not vanish; ii) the
last layer, as a stochastic function on input space, remains flexible without collapsing to
restrictive families of distributions, iii) the last layer does not collapse to a deterministic
limit, nor it diverges. Moreover, we established conditions on the activation functions in
order to avoid explosive dynamics over the layers. With regards to backward-propagation,
under non-explosivity conditions, we showed that the Jacobian of the final layer with respect
to any layer can be expressed as the multiplication of two matrix diffusions which satisfy
the same desiderata i), ii) and iii) in the large-depth limit, and hence it is well-behaved.
Moreover, we addressed the problem of the trainability at initialization of such a neural
network, showing that exploding gradients are not possible in the large-width limit, and that
the ResNet is invertible. In contrast to the information propagation approach, our analysis
covers finitely-wide neural networks and correlated network’s parameters. While we focussed
on fully-connected ResNets, there are no theoretical issues to extend our results to the more
general convolutional architectures, as we have shown for the forward-propagation analysis
of convolutional ResNets.

Limited to fully i.i.d. network’s parameters and fully-connected neural networks without
the second activation ψ, we investigated the case of the doubly infinite ResNets where both
the network’s depth and the network’s width grow unboundedly. The attractiveness of the
doubly infinite setting is mainly related to the potential of obtaining analytical results. We
showed that doubly infinite fully-connected ResNets converge to Gaussian processes whose
kernels can be computed by solving corresponding systems of ODEs. In particular, when
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φ′′(0) = 0 and the model is completed with a fully i.i.d. input adaptation, we showed that
the doubly infinite ResNet collapses to a Bayesian linear model with a fully factorial prior
distribution. To conclude, we obtained the form of the NTK that corresponds to full training
with continuous time gradient descent and quadratic loss of doubly infinite ResNets. In
particular, we observed that such a kernel is qualitatively identical to the kernel of the
Gaussian process arising in this doubly infinite limit, thus implying that fully trained doubly
infinite networks of the considered class are again equivalent to performing linear regression.
Although our results on the doubly infinite setting are not completely mathematically rigorous,
numerical experiments support the validity of the proposed derivations. Our study on doubly
infinite ResNets illustrate the pitfalls that must be overcome in order to derive non-trivial
limits. Architectures, network’s parameters and activation functions need to satisfy precise
conditions. However, still under these conditions, the resulting limiting behavior can be very
unexpressive. While this is an undesirable result if inference via the limiting process is the
final goal, the connection to simple models allows to perform hyper-parameter optimization on
the finitely-sized neural network by means of empirical Bayes procedures on the corresponding
linear model.

The fields of diffusion processes and SDEs are mature and rich fields (Øksendal, 2003;
Karatzas and Shreve, 1999; Revuz and Yor, 1999; Kloeden and Platen, 1992; Stroock and
Varadhan, 2006), with a vast range of theoretical results and simulation methods. We envision
that examining neural networks properties from the point of view of SDEs will bring further
insights. Our study suggests two main research directions of future work. Firstly, to overcome
modeling limitations one could narrow the gap between theory and practice by considering
more realistic residual blocks consisting of multiple layers. This may be approached either
via fractional Brownian motions (Biagini et al., 2008) or via re-scaled Brownian motions;
such an extension would allow to consider neural networks which are infinitely wide only in
the residual blocks internal dimension. Secondly, a mathematically rigorous treatment of of
doubly infinite setting of Section 5 could be developed. This, as a main difficulty, involves to
work with infinite-dimensional stochastic processes (Prato and Zabczyk, 2014). Indeed, the
standard approach to establish large-width limits consists in postulating both the limiting
and the converging processes on the same infinite space, while limiting the connectivity of the
converging processes (Matthews et al., 2018). This approach allows to establish convergence
on a space of fixed (infinite) dimension. While the standard theory of diffusion limits is well
established (Stroock and Varadhan, 2006), it covers only the case of diffusion processes of
finite-dimensions.
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Appendices
A. Proofs

This appendix contains all the proofs of the theorems stated in the main text and the lemmas
required to prove them.
Proof [Proof of Theorem 1] This is (Nelson, 1990, Theorem 2.2): Assumption 1 and the pos-
tulated weakly unique and non-explosive weak solution satisfy all the conditions required for
the application of (Nelson, 1990, Theorem 2.2). Note that we use a stronger non-explosivity
condition (Øksendal (2003)). Alternatively, for this standard result the reader can refer to
the monograph Stroock and Varadhan (2006) on which Nelson (1990) is based; yet another
reference is Ethier and Kurtz (2009).

Lemma 20 If φ satisfies Assumption 5, ε ∼ N (0, σ2) with σ2 ≤ σ2
∗, α > 0, then we can

find M2(α, σ2
∗) <∞ and M3(α, σ2

∗) <∞ such that:

E
[
|φ′′(ε)|α

]
≤M2(α, σ2

∗)

E
[
|φ′′′(ε)|α

]
≤M3(α, σ2

∗)

Proof We prove the result only for φ′′(ε), the case for φ′′′(ε) being identical. Let L large
enough such that |φ′′(x)| ≤ K1e

K2|x| for |x| ≥ L then:

E
[
|φ′′(ε)|α

]
= E

[
|φ′′(ε)|α1|ε|≤L

]
+ E

[
|φ′′(ε)|α1|ε|>L

]
≤ sup
|x|≤L

|φ′′(x)|α +Kα
1 E[eK2α|ε|]

The first term is finite, that the second one can be bounded by a finite and increasing function
in σ2 follows from the symmetry in law of ε and the form of its movement generating function.

Proof [Proof of Theorem 2] We suppress the dependency on t of vector and matrices and
the conditioning in expectations and covariances in this proof to ease the notation. We also
drop the boldness of xt as no confusion arises in this setting. We instead reserve subscripts
for indexing: for example xd denotes the d-th element of a vector x.

Let h = (µW
√

∆t+ εW )ψ(x) + (µb
√

∆t+ εb) so that h
√

∆t = ∆Wψ(x) + ∆b. By second
order Taylor expansion of φ around 0 we have for d = 1, . . . , D

∆xd
∆t

=
φ(hd

√
∆t)

∆t
= φ′(0)hd∆t

−1/2 +
1

2
φ′′(0)h2

d +
1

6
φ′′′(ϑd)h

3
d∆t

1/2

with ϑd ∈ (−hd
√

∆t, hd
√

∆t). To prove (1) we want to show that ∀R > 0

lim
∆t↓0

sup
‖x‖<R

∣∣∣∣µ(x)d − E
[
φ′(0)hd∆t

−1/2 +
1

2
φ′′(0)h2

d +
1

6
φ′′′(ϑ)h3

d∆t
1/2

]∣∣∣∣ = 0.
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Now, hd = (µWd
√

∆t+ εWd )ψ(x) + µbd
√

∆t+ εbd and the distribution assumptions on εW and
εb lead to

E
[
φ′(0)hd∆t

−1/2 +
1

2
φ′′(0)h2

d

]
= φ′(0)(µbd + µWd ψ(x))

+
1

2
φ′′(0)V[εWψ(x) + εb]d,d

+
1

2
φ′′(0)

(
µbd + µWd ψ(x)

)2
∆t

= µ(x)d +
1

2
φ′′(0)

(
µbd + µWd ψ(x)

)2
∆t.

It remains to show that

lim
∆t↓0

sup
‖x‖<R

∣∣∣∣(µbd + µWd ψ(x)
)2
∣∣∣∣∆t = 0,

which holds as ψ is locally bounded, and that

lim
∆t↓0

sup
‖x‖<R

∣∣E [φ′′′(ϑd)h3
d

]∣∣∆t1/2 = 0,

for which it suffices to show that sup‖x‖<R
∣∣E [φ′′′(ϑd)h3

d

]∣∣ can be bounded by M(R) <∞
uniformly in ∆t. By Cauchy–Schwarz

sup
‖x‖<R

∣∣E [φ′′′(ϑd)h3
d

]∣∣ ≤ sup
‖x‖<R

E
[
φ′′′(ϑd)

2
]1/2

sup
‖x‖<R

E
[
h6
d

]1/2
. (45)

Again, as ψ is locally bounded the constraint sup‖x‖<R corresponds to a constraint on the
variance of hd hence the second sup is finite. By Lemma 20 the first sup is finite too and not
increasing in ∆t as |ϑd| ≤

√
∆t|hd| which allows us to produce the desired bound M(R).

Regarding (3), by first order Taylor expansion of φ around 0 we need to show that for
d = 1, . . . , D and R > 0

lim
∆t↓0

sup
‖x‖<R

∣∣∣∣∣E
[(
φ′(0)hd∆t

1/2 + 1
2φ
′′(ϑd)h

2
d∆t

)4
∆t

]∣∣∣∣∣ = 0

with ϑd ∈ (−hd
√

∆t, hd
√

∆t). Note that the term inside the expectation is composed of a
sum of terms of the form khndφ

′′(ϑd)
m∆tα for integers n,m ≥ 0 and reals α > 0, k ∈ R. This

results from repeated applications of the Cauchy–Schwarz inequality and Lemma 20 as we
did previously to prove (1).

Regarding (2), we can compute E[∆x(∆x)>]/∆t instead of V[∆x]/∆t as in the infinitesi-
mal limit of ∆t ↓ 0 the two quantities have to agree due to the convergence of the infinitesimal
mean that we have already established. Hence by first order Taylor expansion of φ around 0
we need to show that for d, u = 1, . . . , D and R > 0:

lim
∆t↓0

sup
‖x‖<R

∣∣∣∣∣σ2(x)d,u
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− E

[(
φ′(0)hd∆t

1/2 + 1
2φ
′′(ϑd)h

2
d∆t

)(
φ′(0)hu∆t1/2 + 1

2φ
′′(ϑu)h2

u∆t
)

∆t

] ∣∣∣∣∣ = 0

with ϑd ∈ (−hd
√

∆t, hd
√

∆t), ϑu ∈ (−hu
√

∆t, hu
√

∆t). The only term inside the expectation
not vanishing in ∆t is

E[φ′(0)2hdhu]

= φ′(0)2 V[εWψ(x) + εb]d,u + φ′(0)2
(
µbd + µWd ψ(x)

)(
µbu + µWu ψ(x)

)
∆t

= σ2(x)d,u + φ′(0)2
(
µbd + µWd ψ(x)

)(
µbu + µWu ψ(x)

)
∆t.

The (uniform on compacts) convergence of all terms aside from σ2(x)d,u to 0 once again
follows from repeated applications of the Cauchy–Schwarz inequality and Lemma 20.

Now, the continuity of µ(x) and σ(x) are a consequence of the continuity of the conditional
covariance V[εWψ(x) + εb], and as V[εWψ(x) + εb] is positive semi-definite so is σ2(x). Hence
all the conditions of Assumption Assumption 1 hold true.

Finally, as ψ is differentiable two times with continuity, it follows from the dependency
of µ and σ2 on x only through V[εWψ(x) + εb] that Assumption 2 is satisfied too. The
application of Theorem 1 completes the proof.

Proof [Proof of Corollary 3] Notice that

d[Wψ(x)]t + d[b]t = d[Wψ(x) + b]t = diag(V[εWt ψ(xt) + εbt |xt])dt

Then expanding dWt and dbt in (13) shows that the drift terms are matched between (12)
and (13). The quadratic variation of (12) is

φ′(0)2 diag(V[εWt ψ(xt) + εbt |xt])dt

which is equal to the quadratic variation of (13) as it is computed as

d[x]t = d[φ′(0)(Wψ(x) + b)]t = φ′(0)2d[Wψ(x) + b]t

This shows the equivalence in law between the solution of (12) and the solution of (13). Then
(14) immediately follows by direct computation.

Proof [Proof of Corollary 4 and Corollary 5] Notice that

d[Wψ(x(i)) + b,Wψ(x(j)) + b]t

= C[εWt ψ(x
(i)
t ) + εbt , ε

W
t ψ(x

(j)
t ) + εbt |x

(i)
t , x

(j)
t ]dt

=
(
Σb + C[εWt ψ(x

(i)
t ), εWt ψ(x

(j)
t )|x(i)

t , x
(j)
t ]
)
dt

and

C[εWt ψ(x
(i)
t ), εWt ψ(x

(j)
t )|x(i)

t , x
(j)
t ]r,c
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= E[(εWt,r,•ψ(x
(i)
t ))(εWt,c,•ψ(x

(j)
t ))|x(i)

t , x
(j)
t ]

=

D∑
d,u=1

ψ(x
(i)
t,d)ψ(x

(j)
t,u)E[Wr,dWc,u]

= ΣWO
r,c

D∑
d,u=1

ψ(x
(i)
t,d)ψ(x

(j)
t,u)ΣWI

d,u

= ΣWO
r,c (ψ(x

(i)
t )>ΣWIψ(x

(j)
t )).

This proves Corollary 4. Corollary 5 follows by setting σb = σb ID, σWI = ID and
σWO = σwD

−1/2 ID.

Proof [Proof of Theorem 14] Here gt is a D ×D matrix-valued SDE instead of standard
D-dimensional (vector) SDEs. All the theory presented in Section 2 continues to hold with
the obvious modifications by working on the vectorization of matrix-valued processes. When
establishing the limits for gt in Assumption 1 the conditioning is both on gt and on xt, indeed
the convergence to the limiting process is obtained jointly in xt and gt. This proof follows
the exact same path of the proofs of Theorem 2 and Corollary 3 so we highlight the main
steps only. And once again we suppress the dependency on t of vector and matrices, the
conditioning in expectations and covariances, and the boldness of xt and gt as no confusion
arises in this setting:

∆g =
(
φ′(∆Wψ(x) + ∆b)1D

> �∆W � 1Dψ
′(x)>

)
g

Let h = (µW
√

∆t+ εW )ψ(x) + (µb
√

∆t+ εb) so that h
√

∆t = ∆Wψ(x) + ∆b. By second
order Taylor expansion of φ′ around 0 we have for d = 1, . . . , D

φ′(hd
√

∆t) = φ′(0) + φ′′(0)hd
√

∆t+
1

2
φ′′′(ϑd)h

2
d∆t

with ϑd ∈ (−hd
√

∆t, hd
√

∆t). Then with ϑ =
[
ϑ1 · · ·ϑD

]
∆g =

(
(φ′(0)1D

√
∆t+ φ′′(0)h∆t+

1

2
φ′′′(ϑ)h2∆t3/2)1D

> � (µW
√

∆t+ εW )� 1Dψ
′(x)>

)
g

In order to obtain the instantaneous mean of g we need to compute

E
[

∆g

∆t

]
= φ′(0)(µW � 1Dψ

′(x)>)g + φ′′(0)(E[εWψ(x)1>D � εW ]� 1Dψ
′(x)>)g + rg,µ(g, x,∆t)

= µg(g, x) + rg,µ(g, x,∆t)

where rµ(g, x,∆t) is a vector-valued remainder term and we want to show that for each
R > 0

lim
∆t↓0

sup
‖g‖+‖x‖<R

‖rg,µ(g, x,∆t)‖ = 0

By first order Taylor expansion of φ′ around 0 we have for d, d′ = 1, . . . , D

∆gd,d′ =
(
(φ′(0) + φ′′(ϑd)hd

√
∆t)1>D �∆Wd,• � ψ′(x)

)
g•,d′
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with ϑd ∈ (−hd
√

∆t, hd
√

∆t). In order to obtain the instantaneous covariance of g we need
to compute for d, d′, u, u′ = 1, . . . , D

E
[

∆gd,d′∆gu,u′

∆t

]
= φ′(0)2 E[(εWd,• � ψ′(x))g•,d′(ε

W
u,• � ψ′(x))g•,u′ ] + rg,σ(g, x,∆t)d,d′,u,u′

= σ2
g(g, x)d,d′,u,u′ + rg,σ2(g, x,∆t)d,d′,u,u′

where rg,σ2(g, x,∆t) is a remainder term (a 4 dimensional tensor, as σ2
g(g, x)) and we want

to show that for each R > 0

lim
∆t↓0

sup
‖g‖+‖x‖<R

‖vec(rg,σ2(g, x,∆t))‖ = 0

Again by first order Taylor expansion of φ′ around 0 we want to prove for d, d′ = 1, . . . , D

lim
∆t↓0

sup
‖g‖+‖x‖<R

‖cg(g, x,∆t)‖ = 0

where

cg(g, x,∆t) = E


((

(φ′(0) + φ′′(ϑ)h
√

∆t)1>D �∆W � 1Dψ
′(x)

)
g
)4

∆t


(here the fourth power is element-wise) with ϑ =

[
ϑ1 · · ·ϑD

]
and ϑd ∈ (−hd

√
∆t, hd

√
∆t) to

satisfy the continuity in probability requirement.
Then the limit

lim
∆t↓0

sup
‖g‖+‖x‖<R

(
‖rg,µ(g, x,∆t)‖+ ‖vec(rg,σ2(g, x,∆t))‖+ ‖cg(g, x,∆t)‖

)
= 0

again follows from repeated applications of the Cauchy–Schwarz inequality and Lemma 20.
Now, Assumption 2 follows from the linearity of the expectation operator and the positive
semi-definiteness of σ2

g(g, x) is easily checked. The equivalence of (31) to the matrix-SDE
defined by µg(g, x) and σ2

g(g, x) is established by comparing the drift and quadratic covaria-
tion terms. This completes the proof.

Proof [Proof of Corollary 15] Let dZt =
(
φ′(0)dWt + φ′′(0)d[Wψ(x)1D

> �W ]t
)
� 1Dψ

′(xt).
Then gt given by dgt = dZtgt is the right stochastic exponential of Zt which we denote,
following Protter (2005), as g = ER(Z). Let define the (left) stochastic exponential u = E(Z)
of Zt by dut = utdZt. From (Protter, 2005, Chapter V, Theorem 48) we know that gt is
invertible and that

E(Z)ER(−Z + [Z,Z]) = ID

It follows that
ER(Z)E(−Z + [Z,Z]) = ID

hence g−1 = E(−Z + [Z,Z]) which completes the proof.
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Lemma 21 When ψ is the identity function SDE (20) is equivalent, in distribution, to the
representation where each data point i has an associated D-dimensional BM B

(i)
t , {B(i)

t }Ni=1

are dependent over i, and each B(i)
t corresponds to both the weights and biases sources of

randomness. That is, the SDE (20) is equivalent to the following

dx
(i)
t = φ′(0)(σ2

b + σ2
wq

(i)
t )1/2dB

(i)
t +

1

2
φ′′(0)(σ2

b + σ2
wq

(i)
t )1Ddt

d[B(i), B(j)]t =
σ2
b + σ2

wλ
(i,j)
t(

(σ2
b + σ2

wq
(i)
t )(σ2

b + σ2
wq

(j)
t )
)1/2 ID dt

Let µ̃x(x) = 1
2φ
′′(0)(σ2

b + σ2
wq(x)), σ̃x(x) = φ′(0)(σ2

b + σ2
wq(x))1/2, σ̃xx(x, y) = φ′(0)(σ2

b +

σ2
wλ(x, y))1/2. Then the processes m(i)

t , q(i)
t , λ(i,j)

t follow the SDEs:

dm
(i)
t = µ̃x(x

(i)
t )dt+ σ̃x(x

(i)
t )

1

D

D∑
d=1

dB
(i)
t,d

dq
(i)
t =

(
2µ̃x(x

(i)
t )m

(i)
t + σ̃2

x(x
(i)
t )
)
dt+ 2σ̃x(x

(i)
t )

1

D

D∑
d=1

x
(i)
t,ddB

(i)
t,d

dλ
(i,j)
t =

(
µ̃x(x

(i)
t )m

(j)
t + µ̃x(x

(j)
t )m

(i)
t + σ̃2

xx(x
(i)
t , x

(j)
t )
)
dt

+
1

D
σ̃x(x

(i)
t )

D∑
d=1

x
(j)
t,ddB

(i)
t,d +

1

D
σ̃x(x

(j)
t )

D∑
d=1

x
(i)
t,ddB

(j)
t,d

where m(i)
t = 1

D

∑D
d=1 x

(i)
t,d.

Proof This is again a direct consequence of multi-dimensional Ito’s formula (Øksendal,
2003, Section 4.2).

Proof [Heuristic for Proposition 18] From Lemma 21 we have

[m(i)]T =
1

D

∫ T

0
σ̃2
x(x

(i)
t )dt

[q(i)]T =
1

D

∫ T

0
4σ̃2

x(x
(i)
t )q

(i)
t dt

[λ(i,j)]T =
1

D

∫ T

0
σ̃2
x(x

(i)
t )q

(j)
t + σ̃2

x(x
(j)
t )q

(i)
t dt

where σ̃2
x(x) = φ′(0)2(σ2

b +σ2
wq(x)). Assuming that q(i)

t can be controlled (for instance bounds
on SDE solutions can be used to bound E[sup0≤t≤T q

(i)
t ] when φ′′(0) = 0) all the quadratic

variations can be shown to converge to 0 leaving out only the deterministic component. The
rest of Proposition 18 follows by assuming that the small noise limit of the SDEs is given by
the corresponding ODEs, and by computing the ODEs solutions.
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Proof [Heuristic for Proposition 19] We know from Proposition 18 that

φ′(0)(σ2
b + σ2

wq
(i)
t )→ φ′(0)(σ2

b + σ2
wq

(i),∞
t )

1

2
φ′′(0)(σ2

b + σ2
wq

(i)
t )→ 1

2
φ′′(0)(σ2

b + σ2
wq

(i),∞
t )

σ2
b + σ2

wλ
(i,j)
t(

(σ2
b + σ2

wq
(i)
t )(σ2

b + σ2
wq

(j)
t )
)1/2 → σ2

b + σ2
wλ

(i,j),∞
t(

(σ2
b + σ2

wq
(i),∞
t )(σ2

b + σ2
wq

(j),∞
t )

)1/2
as D ↑ ∞. Then Proposition 19 follows by assuming that the solution of (33) converges to
the solution of (39) as D ↑ ∞ and by computing the transition density of (39).

B. Additional plots

In Figure 9 we plot 2D function samples of xT,1 for Ftanh and Fswish to complement the
visualizations of Section 4.2.
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Figure 9: Function samples of xT,1 for Ftanh (left) and Fswish (right) for L = 100 andD = 100
on the rectangle [−2, 2]× [−2, 2].
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