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Abstract

Learning a function from a finite number of sampled data points (measurements) is a
fundamental problem in science and engineering. This is often formulated as a minimum
norm interpolation (MNI) problem, a regularized learning problem or, in general, a semi-
discrete inverse problem (SDIP), in either Hilbert spaces or Banach spaces. The goal of
this paper is to systematically study solutions of these problems in Banach spaces. We aim
at obtaining explicit representer theorems for their solutions, on which convenient solution
methods can then be developed. For the MNI problem, the explicit representer theorems
enable us to express the infimum in terms of the norm of the linear combination of the
interpolation functionals. For the purpose of developing efficient computational algorithms,
we establish the fixed-point equation formulation of solutions of these problems. We reveal
that unlike in a Hilbert space, in general, solutions of these problems in a Banach space
may not be able to be reduced to truly finite dimensional problems (with certain infinite
dimensional components hidden). We demonstrate how this obstacle can be removed,
reducing the original problem to a truly finite dimensional one, in the special case when
the Banach space is `1(N).

Keywords: representer theorem, minimum norm interpolation, regularized learning,
sparse learning, semi-discrete inverse problem, Banach space

1. Introduction

A core issue in data science is to learn a function from a finite number of sampled data
points. This may be modeled as an interpolation problem, an optimization problem or, a
semi-discrete inverse problem (SDIP). Learning such a function is an ill-posed problem in
the sense that a small error in sampled data may result in a large error in the resulting
function. Because sampled data inevitably contain noise, the ill-posedness of these problems
is unavoidable. It is well-recognized that minimum norm interpolation (MNI) and the regu-
larization method are effective approaches to treat the ill-posedness. The goal of this paper
is to systematically study the solution representation of the three types of problems: MNI,
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regularized learning and regularized SDIPs in Banach spaces. Regularized learning and reg-
ularized SDIPs are originated from different sources. The SDIP often refers to a physical
problem described by a physical law expressed via a certain integral equation, which relates
its solution with a finite number of measurements. While a regularized learning problem
has a fidelity term describing a certain learning approach such as a network (not necessarily
a physical law). However, these two types of problems have the same general mathematical
formulation in the sense that both of them have a fidelity term involving a finite number
of measurements and a regularization term specifying prior solution information. For this
reason, we will not distinguish them in this paper since as far as the solution representation
is concerned, there is little distinct between them. For simplicity we may use the term the
“regularization problem” to refer to both of these problems, when necessary.

Classical regularization methods aim at finding a target function in a reproducing kernel
Hilbert space (RKHS) on which point-evaluation functionals are continuous, from a finite
number of point-evaluation functionals. The point-evaluation functionals on an RKHS can
be represented by the reproducing kernel (Aronszajn, 1950). Applications of kernels in
machine learning were reviewed by Cucker and Smale (2002). Connections of reproducing
kernels with sampling were discussed by Smale and Zhou (2004). Recent applications of
kernel functions in numerical solutions of partial differential equations may be found in
Schaback and Wendland (2006). Reproducing kernels and associated RKHSs over infinite,
discrete and countable sets were studied by Jorgensen and Tian (2015). The success of ker-
nel based regularization methods lies on the celebrated representer theorem (Argyriou et al.,
2009; Cox and O’Sullivan, 1990; Kimeldorf and Wahba, 1970; Schölkopf et al., 2001), which
states that a solution of the regularization problem is a linear combination of kernel sessions
(the kernel with one of its variable evaluated at given data points). The earliest form of the
representer theorem in a Hilbert space may be traced back to de Boor and Lynch (1966)
and Kimeldorf and Wahba (1970). The representer theorem of Kimeldorf and Wahba has
been found applicable to the solution of the SDIP (Krebs et al., 2009; Wendland, 2005). A
multivariate version of the L-spline smoothing problem was investigated by De Figueiredo
and Chen (1990), giving a representer theorem for its solution. In the context of machine
learning, the representer theorem for the solution of the regularized empirical risk mini-
mization in an RKHS was established by Schölkopf, Herbrich and Smola (2001). Argyriou,
Micchelli and Pontil (2009) gave necessary and sufficient conditions to ensure that a general
regularized empirical risk minimization problem in an RKHS has a representer theorem.
Moreover, we obtained in our recent work (Wang and Xu, 2019, 2021) representer theorems
for solutions of the regularized SDIPs in the functional RKHSs naturally introduced by the
inverse problems.

The representer theorem is useful in both theory and computation. Representer theo-
rems for the regularization problem reveal exactly in what sub-class its solution lies. Ac-
cording to the representer theorem, a solution of the problem is a linear combination of the
kernel sessions. This leads to the study of universality of a kernel by Micchelli, Xu and
Zhang (2006), which gives necessary and sufficient conditions on a kernel so that a linear
combination of the kernel sessions can arbitrarily approximate a given continuous function.
Moreover, motivated by representing a solution of the regularized learning in a multiscale
manner, refinement of a reproducing kernel was studied in (Xu and Zhang, 2007, 2009;
Zhang et al., 2012). From a practical standpoint, representer theorems for either MNI or
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regularization problems are useful, because they dramatically reduce an infinite dimensional
problem to a finite dimensional one whose solution can be obtained by solving either a linear
system or a finite dimensional optimization problem.

Compared to Hilbert spaces, Banach spaces with more choices of norms enjoy more
geometric structures, some of which can promote sparsity for learning solutions in these
spaces. Several recent research directions point to consideration of MNI, regularized learning
or SDIPs in Banach spaces. Compress sensing (Candès et al., 2006; Donoho, 2006) motivates
us to study MNI or the regularized learning problem in Banach spaces. Image restoration
using TV norms for regularization (Cai et al., 2012; Rudin et al., 1992) leads to searching
an optimization solution in a Banach space. SDIPs were recently considered in Banach
spaces (Schuster et al., 2012). Regularized learning in Banach spaces was originated in
Micchelli and Pontil (2004). Since then, regularized learning in a Banach space and a desired
representer theorem of its solutions have received considerable attention in the literature.
The MNI or its related regularization problem in a Banach space is also motivated from
a theoretical point of view: the functional extension problem in such a space. Recently,
extension of a given function on a finite set in Rn to a function on the entire Rn was studied
in a series of papers (Fefferman, 2005, 2009; Fefferman and B. Klartag, 2009a,b).

The notion of reproducing kernel Banach space (RKBS) was originally introduced in
Zhang et al. (2009) and further developed in Sriperumbudur et al. (2011); Song and Zhang
(2011); Song et al. (2013); Xu and Ye (2019); Zhang and Zhang (2012). In the framework
of a semi-inner-product RKBS, the representer theorem of the solutions of the regularized
learning problem was derived from the dual elements and the semi-inner-product (Zhang et
al., 2009; Zhang and Zhang, 2012). In Xu and Ye (2019), an alternative definition of RKBS
was provided by the dual bilinear form. In that paper, for a reflexive and smooth RKBS, the
representer theorem of the solutions of the regularized learning problem was also obtained
using the Gâteaux derivative of the norm function and the reproducing kernel. The above
RKBSs, in which the representer theorem was well established for the regularized learning
problem, are all reflexive and smooth. In fact, the reflexivity guarantees the existence of so-
lutions of the regularized learning problem and the smoothness allows us to use the Gâteaux
derivative of the norm function to describe the representer theorem. In the special case of
a semi-inner-product RKBS, the Gâteaux derivative can be represented by the semi-inner-
product. In addition, the reproducing kernel provides a closed-form function representation
for the point-evaluation functionals. The representer theorem was generalized to a non-
reflexive and non-smooth Banach space which has a pre-dual space (Huang et al., 2020;
Unser, 2016, 2019b). Having a pre-dual space guarantees that the Banach space has the
weak∗ topology, which together with the continuity of the loss function and the regularizer,
also leads to the existence of the solutions. Due to lack of the Gâteaux derivative, other
tools need to be used to describe the representer theorem. The representer theorem was
obtained in Huang et al. (2020) by employing the subdifferential of the norm function for
a lower semi-continuous loss function and the quadratic regularizer. Representer theorems
for a class of inverse problems with a convex and continuous loss function and regularizer
was established in Unser (2019b) by the duality mapping. Moreover, representer theorems
for deep kernel learning and deep neural networks were obtained in Bohn (2019) and Unser
(2019a), respectively.
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It is the main purpose of this paper to understand the solution representation of the
MNI problem and the regularization problem in a Banach space. In the literature there are
a few existing representer theorems for regularized learning problems in a Banach space.
However, all of them are in implicit forms, which may not be convenient for direct solution
representations. We will first bridge different approaches used in the literature for establish-
ing representer theorems for a solution of the MNI problem in a Banach space and its related
regularization problem, to deepen the understanding of the underlying functional analytic
ideas. As such, we will provide novel explicit representer theorems in a general setting,
potentially useful for direct solution representations. We aim at revealing the simplicity,
beauty, generality and unity of the representer theorem and commit to developing solution
representations of these problems suitable for further design of numerical algorithms. Major
mathematical contributions made in this paper include the following five aspects:

• We have conducted a systematic study of the representer theorems for a solution of
the MNI problem and the regularization problem in a Banach space, by using both
functional analytic and convex analytic approaches.

• We have established explicit solution representations for the MNI problem and the
regularization problem in a Banach space which has a dual space in both smooth and
non-smooth cases.

• We have developed approaches to determine the coefficients appearing in solution rep-
resentations of these problems, which can be determined by solving a linear/nonlinear
system, or a finite dimensional optimization problem, leading to solution methods for
solving them.

• We have expressed the infimum of the MNI in a Banach space in terms of the in-
terpolation functionals, by using its solution representations and properties of the
subdifferential of the norm function of the Banach space.

• We have observed that although the representer theorem in a Banach space converts
the originally infinite dimensional problem to a finite dimensional one, unlike in a
Hilbert space where the resulting linear system is truly finite dimensional, the resulting
finite dimensional problem has certain hidden infinite dimensional components, and
we have demonstrated a way to overcome this challenge in the special Banach space
`1(N).

The MNI problem is closely related to the regularized learning problem, see Micchelli
and Pontil (2004). We first establish solution representations for the MNI problem, and
then convert the resulting representer theorems to the regularization problem through the
relation between the two problems. The essence of the representer theorem refers to that the
original optimization problem in an infinite dimensional space can be reduced to one possi-
bly in a finite dimensional space. This profits from the fact that the number of data points
used to learn a function is finite. A crucial issue about the representer theorem concerns
how to characterize the relation between the solutions of the original infinite dimensional
optimization problem and the finite dimensional one. To address it, we characterize the
MNI problem through two different approaches. Firstly, the MNI problem is interpreted
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as a problem of best approximation. Due to the Hahn-Banach theorem, the latter can be
characterized by the functionals which peak at the best approximation point. The set of
such functionals is defined by the value of the duality mapping at the point. Accordingly,
the duality mapping becomes a suitable tool for the representer theorem of the solutions of
the MNI problem and then the regularization problem. Secondly, as a classical optimiza-
tion problem with constraints, the MNI problem can be solved by the Lagrange multiplier
method. Due to lack of the smoothness of general Banach spaces (not necessarily smooth),
the subdifferential of the norm function needs to be used here. In a special case that the Ba-
nach space is smooth, the duality mapping and the subdifferential of the norm function are
both reduced to the Gâteaux derivative of the norm function. The representer theorem for
this case has a simple form which is described by the Gâteaux derivative. In summary, the
fact that the number of data used to learn a function is finite leads to the desired representer
theorems and the mathematical tools, such as the duality mapping, the subdifferential and
the Gâteaux derivative of the norm function help us describe the representer theorems.

It is desirable to develop solution representations of the MNI problem and the regu-
larization problem convenient for algorithmic development. Inspired by the success of the
fixed-point approach used in solving several types of finite dimensional problems such as
machine learning (Li et al., 2020; Li et al., 2018, 2019; Polson et al., 2015), image processing
(Chen et al., 2013; Li et al., 2012; Li et al., 2015; Lu et al., 2016; Micchelli et al., 2011),
medical imaging (Krol et al., 2012; Li et al., 2015; Zheng et al., 2019) and solutions of
SDIPs (Fan et al., 2014; Jin and Lu, 2014), we develop solution representations for the
MNI problem and the regularization problem by using a fixed-point formulation via the
proximity operator of the functions appearing in the objective function or constraints. This
formulation is convenient for designing iterative algorithms for solving these problems. Dif-
ficulty of extending the existing work which is either in a finite dimensional space or in a
Hilbert space to the current setting lies in the infinite dimensional component of the Banach
space. In particular, we reformulate solutions of the MNI problem and the regularization
problem in the special Banach space `1(N) as fixed-points of a nonlinear map defined on a
finite dimensional space by making use of special properties of a pre-dual space of `1(N),
leading to implementable iterative algorithms for solving the problem. We remark that a
solution method for the MNI problem in `1(N) was proposed in Cheng and Xu (2020) by
reformulating it as a linear programming problem. However, solving the resulting linear
programming problem requires an exponential computational cost, and thus the method is
not feasible for practical computation in the context of big data analytic. The fixed-point
equation approach presented in this paper overcomes this difficulty.

In passing, we would like to point it out that although the representer theorem reduces
an infinite dimensional problem to a finite dimensional one, in general, often certain infinite
dimensional component is hidden in the resulting finite dimensional problem. We will
single out these hidden infinite dimensional component and for certain special cases of
practical importance, we will show how this obstacle can be removed to obtain a truly
finite dimensional one. Developing efficient computational algorithms based on the solution
representations provided by this paper requires further investigation. Nevertheless, the
theory established here furnishes a solid mathematical foundation for this practical goal.

This paper is organized in eight sections and an appendix. In section 2, we describe the
MNI problem in a Banach space and present a sufficient condition to ensure the existence
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of its solutions. We characterize in section 3 a solution of the MNI problem by two different
approaches in which either of the duality mapping or the subdifferentail of the norm func-
tion is used to describe the representer theorem for the problem. We first establish implicit
representer theorems and then derive explicit representer theorems by using duality argu-
ments. We also consider several special cases of practical importance and provide special
results for these cases. In section 4, we develop approaches to determine the coefficients
involved in the representer theorems when the Banach space has a pre-dual space and the
linear functionals appearing in the problem belong to the pre-dual space. These approaches
of determining the coefficients lead to solution methods for solving the MNI problem. We
also present the infimum of the MNI problem in a Banach space. In section 5, we propose
fixed-point equations for the MNI problem in a Banach space. This fixed-point formulation
will serve as a basis for further development of efficient convergence guaranteed algorithms.
We describe in section 6 the regularization problem in a Banach space and propose a suf-
ficient condition that ensures the existence of its solutions. We also elaborate an intrinsic
relation between the regularization problem and a related MNI problem. In section 7, we
establish both implicit and explicit representer theorems for the regularization problem. We
also deliver special results for several cases of practical importance. Moreover, the second
portion of section 7 is devoted to the presentation of solutions of regularization problems in
Banach spaces. We present the representer theorems based solution representations and as
well as the fixed-point formulation for the regularization problems. We discuss in section 8
the connection of the representer theorems established in this paper for the MNI problem
and the regularization problem with the existing results in the literature. In Appendix A,
we describe an example of using RKBSs in developing sparse machine learning methods,
to illustrate the relevance of RKBSs to machine learning. Technical proofs for theorems of
this paper are included in Appendices B-G.

2. MNI in a Banach Space

MNI aims at finding an element, in a suitable space, having the smallest norm and inter-
polating a given set of sampled data. In this section, we describe the MNI problem in a
Banach space and present a sufficient condition which ensures the existence of its solutions.

We first describe the MNI problem in a Banach space. Let B denote a real Banach space
with norm ‖ · ‖B. By B∗ we denote the dual space of B, the space of all continuous linear

functionals on B with the norm ‖ν‖B∗ := supf∈B,f 6=0
|ν(f)|
‖f‖B , for all ν ∈ B∗. The dual bilinear

form 〈·, ·〉B on B∗ × B is defined as 〈ν, f〉B := ν(f), for all ν ∈ B∗ and all f ∈ B. For each
m ∈ N, let Nm := {1, 2, . . . ,m}. Suppose that νj ∈ B∗, j ∈ Nm, are a finite number of
linearly independent elements. Associated with these functionals, we introduce an operator
L : B → Rm by

L(f) := [〈νj , f〉B : j ∈ Nm], for all f ∈ B. (1)

According to the continuity of the linear functionals νj , j ∈ Nm, on B, we have for each
f ∈ B that

‖L(f)‖Rm =

∑
j∈Nm

|〈νj , f〉B|2
1/2

≤

∑
j∈Nm

‖νj‖2B∗

1/2

‖f‖B,
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which yields that ‖L‖ ≤
(∑

j∈Nm
‖νj‖2B∗

)1/2
. For a given vector y := [yj : j ∈ Nm] ∈ Rm,

we set
My := {f ∈ B : L(f) = y}. (2)

In particular, when y is the zero vector, we write M0. The MNI problem with given data
set {(νj , yj) : j ∈ Nm} has the form

inf{‖f‖B : f ∈My}. (3)

We now consider the existence of a solution of problem (3). The linear independence
of the functionals νj , j ∈ Nm, ensures that My is nonempty for any given y ∈ Rm. By
employing standard arguments in convex analysis (Ekeland and Temam, 1999; Zălinescu,
2002), we establish a sufficient condition that ensures the existence of a solution of the
problem. To this end, we recall some notions in Banach spaces. Since the natural map is
the isometrically imbedding map from B into B∗∗, there holds

〈ν, f〉B = 〈f, ν〉B∗ , for all f ∈ B and all ν ∈ B∗. (4)

The weak∗ topology of the dual space B∗ is the smallest topology for B∗ such that, for each
f ∈ B, the linear functional ν → 〈ν, f〉B on B∗ is continuous with respect to the topology. A
sequence νn, n ∈ N, in B∗ is said to converge weakly∗ to ν ∈ B∗ if lim

n→+∞
〈νn, f〉B = 〈ν, f〉B,

for all f ∈ B. A normed space B∗ is called a pre-dual space of a Banach space B if (B∗)∗ = B.
It follows from equation (4) with B∗ being replaced by B∗ that

〈ν, f〉B = 〈f, ν〉B∗ , for all f ∈ B and all ν ∈ B∗. (5)

A pre-dual space B∗ guarantees that the Banach space B enjoys the weak∗ topology. A
consequence of the Banach-Alaoglu theorem (Megginson, 1998) ensures that if a Banach
space B has a pre-dual space B∗, then any bounded and weakly∗ closed subsets of B is
weakly∗ compact. In the special case that B has a separable pre-dual space B∗, any bounded
sequence fn, n ∈ N, in B has a weak∗ accumulation point f ∈ B. That is, there exists a
subsequence fnk

, k ∈ N, such that limk→+∞〈ν, fnk
〉B = 〈ν, f〉B, for all ν ∈ B∗. A Banach

space B is said to be reflexive if (B∗)∗ = B. It is clear that a reflexive Banach space B
always takes the dual space B∗ as a pre-dual space B∗. However, a Banach space B having
a pre-dual space may not be reflexive. For example, the Banach space `1(N) of all real
sequences x := (xj : j ∈ N), with ‖x‖1 :=

∑
j∈N |xj | < +∞, has c0 as its pre-dual space,

where c0 denotes the space of all real sequences u := (uj : j ∈ N) such that lim
j→+∞

uj = 0,

with ‖u‖∞ := sup{|uj | : j ∈ N} < +∞. Clearly, the Banach space `1(N) has a pre-dual
space but it is not reflexive.

We now turn to considering the existence of a solution of problem (3) in a Banach space
B having a pre-dual space B∗. In this case, the linear functionals appearing in (3) need to
be restricted to the pre-dual space B∗. The complete proof of the following existing result
is included in Appendix B.

Proposition 1 If the Banach space B has a pre-dual space B∗ and νj ∈ B∗, j ∈ Nm, are
linearly independent, then for any y ∈ Rm problem (3) has at least one solution.
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We note that solutions of problem (3) may not be unique unless the Banach space B is
strictly convex. In the special case that B = `1(N), the existence of a solution of problem
(3) was given in Cheng and Xu (2020) by an elementary argument. As a consequence of the
above proposition, when B is reflexive, we also have the existence of a solution of problem
(3), since in this case the dual space B∗ is its pre-dual space.

3. Representer Theorems for MNI

In this section, we establish several representer theorems for a solution of the MNI problem,
with proofs included in Appendix C. The resulting representer theorems show that even
though the MNI problem with a finite number of data points is a minimization problem in
an infinite dimensional space, it can be transferred to one possibly in a finite dimensional
space.

The representer theorems for the MNI problem established in the literature are often
stated with restricted assumptions on the Banach space (Xu and Ye, 2019; Zhang et al.,
2009). We realize that most of the assumptions were used to ensure the existence and
uniqueness of the solution of the MNI problem. For example, as we have established in
the last section, if B is a Banach space having a pre-dual space or being reflexive, then the
MNI problem has at least a solution. If B is strictly convex, then there exists at most a
solution of the MNI problem. The smoothness of the Banach space allows us to describe
the representer theorem by using the Gâteaux derivative of the norm function. We shall
clarify in this section that the validity of the representer theorem does not depend on these
properties of the Banach space.

We first present implicit representer theorems for a solution of problem (3), obtained
from two different approaches: functional analytic and convex analytic. In the functional
analytic approach, we convert problem (3) as a best approximation problem and then use the
duality theory to characterize the best approximation from a linear translate of a subspace.
The duality theory was used extensively in the literature (Braess, 1986; Chui, 1990; Deutsch,
2001; Deutsch et al., 1995; Deutsch et al., 1996; Micchelli et al., 1985; Pinkus, 1989; Swetits
et al., 1990a,b, 1991; Ubhaya and Xu, 1995; Xu, 1989) to characterize a best approximation
from a convex set or a subspace in Banach spaces. For a nonempty subset M of B, we
define the distance from f ∈ B to M by d(f,M) := inf{‖f − h‖B : h ∈ M}. An element
f0 ∈ M is said to be a best approximation to f from M if ‖f − f0‖B = d(f,M). A subset
M of B is called a convex set if tf + (1 − t)g ∈ M, for all f, g ∈ M and all t ∈ [0, 1]. It
is easy to see that for any y ∈ Rm\{0}, My defined by (2) is a closed convex subset and
M0 is a closed subspace of B. In fact, My is a translate of M0: My =M0 + f , for each
f ∈ My. This relation between My and M0 allows us to develop a characterization of
solutions of problem (3) in terms of best approximation from a subspace. To simplify our
presentations, we state frequently used conditions in the following assumption.

(A1) B is a Banach space with the dual space B∗ and νj ∈ B∗, j ∈ Nm, are linearly
independent.

Proposition 2 Suppose that Assumption (A1) holds and y ∈ Rm\{0}. Then f̂ ∈ B is a
solution of problem (3) with y if and only if f̂ ∈ My and 0 is a best approximation to f̂
from M0.
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Proposition 2 enables us to characterize a solution of problem (3) via identifying a
best approximation from M0 with continuous linear functionals by using the duality ap-
proach (the Hahn-Banach theorem), see, Braess (1986). To this end, we recall the defi-
nition of annihilators of subsets in Banach spaces. Let M and M′ be subsets of B and
B∗, respectively. According to Megginson (1998), the annihilator of M in B∗ is defined by
M⊥ := {ν ∈ B∗ : 〈ν, f〉B = 0, for all f ∈ M}. The annihilator of M′ in B is defined by
⊥M′ := {f ∈ B : 〈ν, f〉B = 0, for all ν ∈M′}. Proposition 2 together with Corollary 2.3 in
Braess (1986) leads to the next proposition.

Proposition 3 Suppose that Assumption (A1) holds and y ∈ Rm\{0}. Then f̂ ∈ B is
a solution of problem (3) with y if and only if f̂ ∈ My and there is a continuous linear
functional ν ∈M⊥0 such that

‖ν‖B∗ = 1 and 〈ν, f̂〉B = ‖f̂‖B. (6)

We next identify the subspace M⊥0 of B∗ with the linear span of the finite number of
continuous linear functionals Vm := {νj : j ∈ Nm} . The following lemma may be proved by
Proposition 2.6.6 of Megginson (1998).

Lemma 4 If Assumption (A1) holds, then M⊥0 = spanVm, where Vm is defined above.

Lemma 4 indicates that subspace M⊥0 is of finite dimension. This is a consequence of
the fact that the number of continuous linear functionals appearing inM0 is finite. Lemma
4 together with Proposition 3 leads to a solution representation of problem (3).

Proposition 5 Suppose that Assumption (A1) holds and y ∈ Rm. Then f̂ ∈ B is a solution
of problem (3) with y if and only if f̂ ∈ My and there exist cj ∈ R, j ∈ Nm, such that the
linear functional ν :=

∑
j∈Nm

cjνj satisfies equations (6).

We now turn to establishing the representer theorem for a solution of problem (3) by
using a convex analytic approach. Specifically, as a special convex programming problem
with constraints, problem (3) can be solved by the Lagrange multiplier method. We recall
the notion of the subdifferential of a convex function in a Banach space B. For a convex
function φ : B → R ∪ {+∞}, the subdifferential ∂φ(f) of φ at f is defined by

∂φ(f) := {ν ∈ B∗ : φ(g)− φ(f) ≥ 〈ν, g − f〉B, for all g ∈ B}. (7)

In convex programming, the Lagrange multiplier method provides a necessary and sufficient
condition for solutions of optimization problems with constraints (Zălinescu, 2002). This
leads to an alternative form of the representer theorem for a solution of problem (3).

Theorem 6 Suppose that Assumption (A1) holds and y ∈ Rm. Then f̂ ∈ B is a solution
of problem (3) with y if and only if f̂ ∈ My and there exist cj ∈ R, j ∈ Nm, such that∑

j∈Nm
cjνj ∈ ∂‖ · ‖B(f̂).
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Both Proposition 5 and Theorem 6 reveal that the MNI problem with a finite number of
data points, as a minimization problem in an infinite dimensional space, can be transferred
to one in a finite dimensional space about finitely many coefficients cj , j ∈ Nm. Although
the two representer theorems are derived from two different viewpoints and described by
different mathematical tools, they are intimately connected to each other. The bridge of
these two viewpoints is the known result (Cioranescu, 1990) that the subdifferential of the
norm ‖ · ‖B at f̂ coincides with the set of all the functionals satisfying equations (6). That
is, for each f ∈ B\{0}, there holds

∂‖ · ‖B(f) = {ν ∈ B∗ : ‖ν‖B∗ = 1, 〈ν, f〉B = ‖f‖B}. (8)

Another well-known notion related to the functionals satisfying equations (6) is the peak
functional. For a real Banach space B and for each ν ∈ B∗, there holds 〈ν, f〉B ≤ ‖ν‖B∗‖f‖B,
for all f ∈ B. For a fixed f ∈ B, we are particularly interested in identifying functionals
ν ∈ B∗\{0} that allow 〈ν, f〉B assuming the upper bound in the above inequality. We
say that a functional ν ∈ B∗ peaks at f ∈ B if 〈ν, f〉B = ‖ν‖B∗‖f‖B. This gives rise to
the notion of the duality mapping on a Banach space (Cioranescu, 1990). Specifically, the
duality mapping J from B to the collection of all subsets in B∗ is defined for all f ∈ B by
J (f) := {ν ∈ B∗ : ‖ν‖B∗ = ‖f‖B, 〈ν, f〉B = ‖ν‖B∗‖f‖B}. A solution of problem (3) may
be described by these functionals. In the next proposition, we summarize various solution
representations of problem (3), developed by using various notions. This proposition may
be proved by using the relations among these notions.

Proposition 7 Suppose that Assumption (A1) holds. Let y ∈ Rm and f̂ ∈ B. Then the
following statements are equivalent:

(i) f̂ is a solution of problem (3) with y.
(ii) f̂ ∈ My and there exist cj ∈ R, j ∈ Nm, such that the linear functional ν :=∑
j∈Nm

cjνj satisfies ‖ν‖B∗ = 1 and 〈ν, f̂〉B = ‖f̂‖B.
(iii) f̂ ∈ My and there exist cj ∈ R, j ∈ Nm, such that the linear functional ν :=∑
j∈Nm

cjνj peaks at f̂ , that is, 〈ν, f̂〉B = ‖ν‖B∗ ‖f̂‖B.
(iv) f̂ ∈My and there exist cj ∈ R, j ∈ Nm, such that

∑
j∈Nm

cjνj ∈ J (f̂).

(v) f̂ ∈My and there exist cj ∈ R, j ∈ Nm, such that
∑

j∈Nm
cjνj ∈ ∂‖ · ‖B(f̂).

Proposition 7 gives four characterizations of a solution of problem (3), which will serve
as a basis for further developing the representer theorems.

We next consider the special case when B is a smooth Banach space. In this case,
the representer theorem can enjoy a nice simple form. To this end, we recall that the
norm ‖ · ‖B is said to be Gâteaux differentiable at f ∈ B \ {0} if for all h ∈ B, the limits

limt→0
‖f+th‖B−‖f‖B

t exist. If the norm ‖ · ‖B is Gâteaux differentiable at f ∈ B \ {0}, then
there exists a continuous linear functional, denoted by G(f), in B∗ such that

〈G(f), h〉B = lim
t→0

‖f + th‖B − ‖f‖B
t

, for all h ∈ B. (9)

We call G(f) the Gâteaux derivative of ‖·‖B at f ∈ B. It follows from (9) that |〈G(f), h〉B| ≤
‖h‖B, for all h ∈ B, and 〈G(f), f〉B = ‖f‖B, which leads to ‖G(f)‖B∗ = 1. Since for f = 0,

10
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the limit defined as in (9) does not exist, the Gâteaux derivative of the norm ‖ · ‖B can not
be defined at f = 0. To simplify the presentation, we define the Gâteaux derivative of the
norm ‖ · ‖B at f = 0 by G(f) := 0. A Banach space B is said to be smooth if the norm
‖ · ‖B is Gâteaux differentiable at every f ∈ B\{0}. By employing the equivalence of (i) and
(v) in Proposition 7 and showing that the subdifferential of ‖ · ‖B at any f ∈ B\{0} is the
singleton G(f), we have the following special result.

Theorem 8 Suppose that Assumption (A1) holds and y ∈ Rm. If B is smooth, then f̂ ∈ B
is a solution of problem (3) with y if and only if f̂ ∈ My and there exist cj ∈ R, j ∈ Nm,
such that G(f̂) =

∑
j∈Nm

cjνj .

We next derive explicit representer theorems for problem (3). Theorems 6 and 8 provide
implicit representer theorems for a solution f̂ of problem (3). It would be more informative
to have an explicit representation. To this end, we establish a duality lemma.

Lemma 9 Suppose that B is a Banach space with the dual space B∗, f ∈ B\{0} and
ν ∈ B∗\{0}. Then

ν

‖ν‖B∗
∈ ∂‖ · ‖B(f) if and only if

f

‖f‖B
∈ ∂‖ · ‖B∗(ν). (10)

Lemma 9 enables us to “solve” f̂ from the implicit representer theorems. We present
these explicit representer theorems next.

Theorem 10 Suppose that Assumption (A1) holds and y ∈ Rm. Then f̂ ∈ B is a solution
of problem (3) with y if and only if f̂ ∈My and there exist cj ∈ R, j ∈ Nm, such that

f̂ ∈ γ∂‖ · ‖B∗

∑
j∈Nm

cjνj

 , with γ :=

∥∥∥∥∥∥
∑
j∈Nm

cjνj

∥∥∥∥∥∥
B∗

. (11)

We may get a special representer theorem when B is a Banach space having the smooth
dual space B∗. It can be proved by employing Theorem 10 and noticing that the subdif-
ferential of ‖ · ‖B∗ at nonzero ν ∈ B∗ is the singleton G∗(ν), the Gâteaux derivative of the
norm ‖ · ‖B∗ at ν.

Remark 11 If the dual space B∗ of B is smooth, then f̂ ∈ B is a solution of problem (3)
with y if and only if f̂ ∈My and there exist cj ∈ R, j ∈ Nm, such that

f̂ = γG∗
∑
j∈Nm

cjνj

 . (12)

Next, we establish the representer theorems in a special case when the Banach space B
has a pre-dual space B∗ and νj ∈ B∗, j ∈ Nm. We state the following assumption.

(A2) B is a Banach space having a pre-dual space B∗ and νj ∈ B∗, j ∈ Nm, are linearly
independent.

11
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Theorem 12 Suppose that Assumption (A2) holds and y ∈ Rm. Then f̂ ∈ B is a solution
of problem (3) with y if and only if f̂ ∈ My and there exist cj ∈ R, j ∈ Nm, such that

f̂ ∈ ρ∂‖ · ‖B∗
(∑

j∈Nm
cjνj

)
, with ρ :=

∥∥∥∑j∈Nm
cjνj

∥∥∥
B∗
.

Theorem 12 may be reduced to a nice simple form when B is a Banach space having a
smooth pre-dual space B∗. We denote by G∗(ν) the Gâteaux derivative of the norm ‖ · ‖B∗
at ν ∈ B∗.

Remark 13 If B has a smooth pre-dual space B∗ and y ∈ Rm, then f̂ ∈ B is a solution
of problem (3) with y if and only if f̂ ∈ My and there exist cj ∈ R, j ∈ Nm, such that

f̂ = ρG∗
(∑

j∈Nm
cjνj

)
.

In the remaining part of this section, we consider several specific cases of practical
interest. An immediate consequence of Remark 11 is the classical representer theorem
for MNI in an RKHS (Wendland, 2005). In this special case, the functionals νj ∈ B∗,
j ∈ Nm, are the point-evaluation functionals δxj , j ∈ Nm, where xj , j ∈ Nm, are points
in an input set X. We call a Hilbert space H of functions on X an RKHS if the point-
evaluation functionals are continuous on H. According to the Riesz representation theorem,
for each RKHS H there exists a unique reproducing kernel K : X × X → R satisfying
K(x, ·) ∈ H for all x ∈ X and the reproducing property f(x) = 〈f,K(x, ·)〉H, for all
x ∈ X and all f ∈ H. By the reproducing property, the kernel K provides a closed-form
function representation for the point-evaluation functionals, that is, νj := K(xj , ·), j ∈ Nm.

Remark 11 ensures that the unique solution f̂ of problem (3) with y can be represented
by f̂ = ‖

∑
j∈Nm

cjK(xj , ·)‖HG(
∑

j∈Nm
cjK(xj , ·)) for some cj ∈ R, j ∈ Nm. It is known

that when H is a Hilbert space, f = ‖f‖HG(f) for all f ∈ H. By using this equation with
f :=

∑
j∈Nm

cjK(xj , ·), we get a special form f̂ =
∑

j∈Nm
cjK(xj , ·) when H is a RKHS

with the kernel K.
We next consider the MNI problem in a Banach space B that is uniformly Fréchet

smooth and uniformly convex. Such a space can provide a semi-inner-product as a useful
tool for representing the solution of the problem. The norm of a normed space B is said to
be uniformly Fréchet differentiable if the limit in (9) exists for every f ∈ B \{0} and h ∈ B,
and the convergence is uniform for all f , h in the unit sphere of B. Accordingly, a normed
space is uniformly Fréchet smooth if its norm is uniformly Fréchet differentiable. A normed
space B is uniformly convex if for all ε > 0 there exists a δ > 0 such that ‖f+g‖B ≤ 2−δ for
all f , g in the unite sphere of B with ‖f−g‖B ≥ ε. The Milman-Pettis Theorem (Megginson,
1998) states that every uniformly convex Banach space B is reflexive.

It follows from Giles (1967) that for a smooth Banach space B, there exists a unique

semi-inner-product [·, ·]B : B × B → R that induces its norm by ‖ · ‖B := [·, ·]1/2B . Note
that the semi-inner-product [·, ·]B is not linear with respect to its second variable. For
each g ∈ B, we introduce the linear functional ν on B by ν(f) := [f, g]B, for all f ∈ B.
Then by the Cauchy-Schwarz inequality, the linear functional ν is continuous. Following
Zhang et al. (2009), this functional, denoted by g], is called the dual element of g. That
is, 〈g], f〉B = [f, g]B for all f ∈ B. A generalization of the Riesz Representation Theorem
in Banach spaces given in Giles (1967) states that if B is a uniformly Fréchet smooth and
uniformly convex Banach space, then for each ν ∈ B∗, there exists a unique g ∈ B such

12
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that ν = g] and ‖ν‖B∗ = ‖g‖B. Accordingly, the mapping f → f ] is bijective from B to B∗.
There is a well-known relation between uniform Fréchet smoothness and uniform convexity
(Megginson, 1998). Specifically, a normed space is uniformly convex if and only if its dual
space is uniformly Fréchet smooth, and is uniformly Fréchet smooth if and only if its dual
space is uniformly convex. Hence, if a Banach space B is uniformly Fréchet smooth and
uniformly convex, then so is its dual space B∗.

As a consequence of Theorem 8 and Remark 11, we get the following representer the-
orems for the MNI problem in a uniformly Fréchet smooth and uniformly convex Banach
space B. In this case, the linearly independent functionals νj can be identified with g]j for
gj ∈ B, j ∈ Nm. We state the following assumption.

(A3) B is a uniformly Fréchet smooth and uniformly convex Banach space with the dual
space B∗ and gj ∈ B, j ∈ Nm.

Theorem 14 Suppose that Assumption (A3) holds and g]j ∈ B∗, j ∈ Nm, are linearly
independent. Then

(1) problem (3) with y ∈ Rm has a unique solution f̂ such that f̂ ] =
∑

j∈Nm
cjg

]
j , for

some cj ∈ R, j ∈ Nm;

(2) problem (3) with y ∈ Rm has a unique solution f̂ in the form f̂ =
(∑

j∈Nm
cjg

]
j

)]
,

for some cj ∈ R, j ∈ Nm.

The explicit representation stated in statement (2) of Theorem 14 can also be obtained
directly from statement (1) with the following simple fact.

Lemma 15 If B is a uniformly Fréchet smooth and uniformly convex Banach space, then
for any f ∈ B, there holds f ]] = f.

As a special example, we consider the MNI problem in the Banach space `p(N) with
1 < p < +∞, which is the Banach space of all real sequences x := (xj : j ∈ N), with
‖x‖p := (

∑
j∈N |xj |p)1/p < +∞. The space `p(N) is uniformly Fréchet smooth and uniformly

convex and has `q(N) as its dual space, where 1/p+ 1/q = 1. The dual bilinear form 〈·, ·〉`p
on `q(N)× `p(N) is defined by 〈u,x〉`p :=

∑
j∈N ujxj , for all u := (uj : j ∈ N) ∈ `q(N) and

all x := (xj : j ∈ N) ∈ `p(N). In this case, we suppose that uj , j ∈ Nm, are a finite number
of linearly independent elements in `q(N) and the operator L : `p(N)→ Rm, defined by (1),
has the form

L(x) := [〈uj ,x〉`p : j ∈ Nm], for all x ∈ `p(N). (13)

Applying statement (2) of Theorem 14 to the MNI problem with y ∈ Rm\{0} in `p(N) and

noticing that for any u = (uj : j ∈ N) ∈ `q(N), u] = (uj |uj |q−2/‖u‖q−2q : j ∈ N), we get the

explicit representation of the unique solution x̂ := (x̂j : j ∈ N) as x̂j = uj |uj |q−2/‖u‖q−2q ,
with u = (uj : j ∈ N) :=

∑
j∈Nm

cjuj , for some cj ∈ R, j ∈ Nm.
We next consider the MNI problem in two types of RKBSs B. In these spaces, the

functionals νj ∈ B∗, j ∈ Nm, also refer to point-evaluation functionals δxj , j ∈ Nm, where
xj , j ∈ Nm, are finite points in an input set X. The notion of RKBSs was originally
introduced in Zhang et al. (2009) based on the semi-inner-product. We begin by reviewing
the notion of semi-inner-product RKBSs. A Banach space B of functions on a domain
X is called a semi-inner-product RKBS if it is uniformly Fréchet smooth and uniformly
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convex, and the point-evaluation functionals are continuous linear functionals on B. If B is
a semi-inner-product RKBS, then there exists a unique (semi-inner-product) reproducing
kernel G : X ×X → R satisfying G(x, ·) ∈ B for all x ∈ X and the reproducing property
f(x) = [f,G(x, ·)]B, for all x ∈ X and all f ∈ B. Since a semi-inner-product RKBS
is uniformly Fréchet smooth and uniformly convex, Theorems 14 lead to the following
representer theorems for the MNI problem in a semi-inner-product RKBS. It suffices to
note by the reproducing property that for each x ∈ X, the dual element G(x, ·)] of G(x, ·)
coincides with the point-evaluation functional δx.

Corollary 16 If B is a semi-inner-product RKBS with the reproducing kernel G and xj ∈
X, j ∈ Nm, such that G(xj , ·)] ∈ B∗, j ∈ Nm, are linearly independent, then

(1) problem (3) with y ∈ Rm has a unique solution f̂ such that f̂ ] =
∑

j∈Nm
cjG(xj , ·)],

for some cj ∈ R, j ∈ Nm;

(2) problem (3) with y ∈ Rm has a unique solution f̂ such that f̂ =
(∑

j∈Nm
cjG(xj , ·)]

)]
,

for some cj ∈ R, j ∈ Nm.

An alternative definition of RKBSs was introduced in Xu and Ye (2019). This definition
is a natural generalization of RKHSs by replacing the inner product in the Hilbert spaces
with the dual bilinear form in introducing the reproducing properties in RKBSs. We now
apply Theorem 8 and Remark 11 to the MNI problem in such an RKBS, whose definition is
given below. Suppose that B is a Banach space of functions on X and the dual space B∗ is
isometrically equivalent to a Banach space of functions on X

′
. A Banach space B is called a

right-sided RKBS and K : X ×X ′ → R is its right-sided reproducing kernel if K(x, ·) ∈ B∗
for all x ∈ X and f(x) = 〈K(x, ·), f〉B, for all x ∈ X and all f ∈ B. In the framework of
right-sided RKBSs, we consider the MNI problem with a finite number of point-evaluation
functionals δxj , j ∈ Nm, where xj ∈ X, j ∈ Nm. The representer theorem for this case can
be obtained directly from Theorem 8. We state the following assumption.

(A4) B is a right-sided RKBS with the right-sided reproducing kernel K and xj ∈ X,
j ∈ Nm.

Corollary 17 Suppose that Assumption (A4) holds and K(xj , ·) ∈ B∗, j ∈ Nm, are linearly
independent. If B is reflexive, strictly convex, and smooth, then problem (3) with y ∈ Rm
has a unique solution f̂ such that G(f̂) =

∑
j∈Nm

cjK(xj , ·), for some cj ∈ R, j ∈ Nm.

An explicit formula derived from Remark 11 is presented next.

Theorem 18 Suppose that Assumption (A4) holds and K(xj , ·) ∈ B∗, j ∈ Nm, are linearly
independent. If B is reflexive and strictly convex, then problem (3) with y ∈ Rm has a
unique solution f̂ in the form f̂ = ρG∗(

∑
j∈Nm

cjK(xj , ·)), for some cj ∈ R, j ∈ Nm, where
ρ := ‖

∑
j∈Nm

cjK(xj , ·)‖B∗.

Finally, we consider the MNI problem in the Banach space `1(N), which was studied
in Cheng and Xu (2020). MNI in `1(N) is a “compressed sensing” (Candès et al., 2006;
Donoho, 2006) in the infinite dimensional space. The difference between these two problems
is that the latter obtains a sparse solution for a finite dimensional problem while the former
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secures a sparse solution in a finite dimensional space for an infinite dimensional problem.
The use of the `1 norm in machine learning can induce sparsity in learning algorithms, see
(Unser, 2016, 2019; Zhu et al., 2004). For example, the 1-norm support vector machine uses
the `1 norm to promote sparsity of its solution for approximate accuracy and computational
efficiency. Furthermore, RKBSs with the 1-norm were considered recently by Song et al.
(2013) and Xu and Ye (2019) in developing sparse learning methods. It is known that `1(N)
is a typical RKBS and some RKBSs with the 1-norm are in fact isometrically isomorphic
to `1(N). Note that `1(N) has c0 as its pre-dual space (Benyamini and Lindenstrauss, 1972)
and `∞(N) as its dual space. The space `1(N) is not reflexive since the dual space of `∞(N)
is not `1(N), and its pre-dual space c0 is not smooth. The dual bilinear form 〈·, ·〉`1 on
`∞(N) × `1(N) is defined by 〈u,x〉`1 :=

∑
j∈N ujxj , for all u := (uj : j ∈ N) ∈ `∞(N) and

all x := (xj : j ∈ N) ∈ `1(N). In this case, the functionals in the MNI problem belong to
c0. Specifically, we suppose that uj , j ∈ Nm, are a finite number of linearly independent
elements in c0. The operator L : `1(N)→ Rm, defined by (1), has the form

L(x) := [〈uj ,x〉`1 : j ∈ Nm], for all x ∈ `1(N). (14)

To obtain the representer theorem for this case from Theorem 12, we need to compute
explicitly the subdifferentials of the norm ‖ · ‖∞ of c0. Let X be a vector space and V a
subset. The convex hull of V, denoted by co(V), is the collection of all convex combinations
of elements of V, that is,

co(V) :=

∑
j∈Nn

tjxj : xj ∈ V, tj ∈ R+ := [0,+∞),
∑
j∈Nn

tj = 1, j ∈ Nn, n ∈ N

 .

For each u ∈ c0, we let N(u) denote the index set on which the sequence u attains its norm
‖u‖∞, that is, ‖u‖∞ = |uj |, j ∈ N(u) and ‖u‖∞ > |uj |, j /∈ N(u). For each u ∈ c0, since
uj tends to zero as j → +∞, we have that #N(u) < +∞. To present the subdifferentials
of the norm ‖ · ‖∞ of c0 at any u := (uj : j ∈ N) ∈ c0, we introduce a subset of `1(N) as

V(u) := {sign(uj)ej : j ∈ N(u)}, (15)

where for each j ∈ N, ej denotes the vector in `1(N) whose jth component is equal to 1 and
all other components are zero.

The following lemma which was essentially proved in Cheng and Xu (2020) presents the
subdifferential of the norm ‖ · ‖∞ of c0 at any nonzero u := (uj : j ∈ N) ∈ c0.

Lemma 19 If u := (uj : j ∈ N) is a nonzero element in c0 and V(u) is defined by (15),
then ∂‖ · ‖∞(u) = co(V(u)).

Combining Lemma 19 and Theorem 12, we get the following result.

Theorem 20 Suppose that uj , j ∈ Nm, are a finite number of linearly independent elements
in c0. Let y ∈ Rm and L and My be defined by (14) and (2), respectively. Then x̂ ∈ `1(N)
is a solution of problem (3) in `1(N) with y if and only if x̂ ∈ My and there exist cj ∈ R,
j ∈ Nm, such that x̂ ∈ ‖u‖∞co(V(u)), with u :=

∑
j∈Nm

cjuj .

15



Wang and Xu

4. Representer Theorem Based Solution Methods for MNI

The representer theorems presented in the last section for the MNI problem (3) give only
forms of the solutions for the problem, not providing methods to determine the coefficients cj
involved in the solution representations. We develop in this section approaches to determine
these coefficients, leading to solution methods for problem (3) when the Banach space B has
a pre-dual space B∗ and νj ∈ B∗, for j ∈ Nm. We will consider both cases when the pre-dual
space is smooth and non-smooth. Proofs of these results will be presented in Appendix D.

As a preparation, we express the adjoint operator L∗ of L defined by (1). According to
the continuity of the linear operator L on B, there exists a unique bounded linear operator
L∗ : Rm → B∗, called the adjoint operator of L, such that 〈L∗(c), f〉B = 〈c,L(f)〉Rm

for all f ∈ B and all c := [cj : j ∈ Nm] ∈ Rm. It follows from definition (1) of L that

〈L∗(c), f〉B =
∑

j∈Nm
cj〈νj , f〉B =

〈∑
j∈Nm

cjνj , f
〉
B
, which leads to L∗(c) =

∑
j∈Nm

cjνj .

We first provide the complete solution of problem (3) in a Banach space having a smooth
pre-dual space B∗. In this case, the solution of problem (3) with data y can be obtained by
employing Remark 13 with the coefficients cj involved in it being chosen as a solution of a
system, possibly nonlinear. In the following presentations, we always assume that L is the
operator defined by (1) and L∗ the associated adjoint operator.

Theorem 21 Suppose that Assumption (A2) holds. If B∗ is smooth and y := [yj : j ∈
Nm] ∈ Rm, then

f̂ := ‖L∗(c)‖B∗G∗(L∗(c)), (16)

is a solution of problem (3) with y if and only if c ∈ Rm is a solution of the system

〈νk, ‖L∗(c)‖B∗G∗(L∗(c))〉B = yk, k ∈ Nm. (17)

There are two interesting special cases. The first one concerns the MNI problem in a
Hilbert space, that is, B = H is a Hilbert space. In this case, H∗ = H and the linearly
independent functionals νj can be identified with gj ∈ H, for j ∈ Nm. We then introduce
the Gram matrix as G := [〈gj , gk〉H : j, k ∈ Nm]. In this special case, Theorem 21 implies a
known result in Wendland (2005). To see this, substituting

‖L∗(c)‖B∗G∗(L∗(c)) = L∗(c) (18)

into (16), we represent f̂ =
∑

j∈Nm
cjgj . Again substituting (18) into (17), we get that

〈gk,L∗(c)〉H = yk, k ∈ Nm. By the representation of the adjoint operator L∗, these equations
can be rewritten in the form Gc = y. Note that according to the linear independence of
gj ∈ H, j ∈ Nm, the Gram matrix G is symmetric and positive definite. Therefore, the linear

system Gc = y has a unique solution. Hence, Theorem 21 ensures that f̂ :=
∑

j∈Nm
cjgj

is the unique solution of problem (3) with y if and only if c := [cj : j ∈ Nm] ∈ Rm is the
solution of the linear system of equations Gc = y.

We remark that in the case of Hilbert spaces, the infinite dimensional MNI problem
is reduced to solving an equivalent finite dimensional linear system. The only infinite
dimensional component in the linear system is computing the entries of the Gram matrix
G which requires calculating the inner produces of gk and gj , elements in the infinite
dimensional space H.
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As shown above, the MNI problem in a Hilbert space is reduced to solving a linear
system. However, in a Banach space, not Hilbert, the problem cannot be reduced to a
linear system. This will be demonstrated in the next case, where B is a uniformly Fréchet
smooth and uniformly convex Banach space (thus, in this case B∗ = B∗).

Corollary 22 Suppose that Assumption (A3) holds and g]j ∈ B∗, j ∈ Nm, are linearly

independent. Let y := [yj : j ∈ Nm] ∈ Rm. Then f̂ = (L∗(c))], is the unique solution of
problem (3) with y if and only if c ∈ Rm is the solution of the system of equations

[g]k,L
∗(c)]B∗ = yk, k ∈ Nm. (19)

Observing from above results, a solution of the MNI problem in a Banach space having a
smooth pre-dual can be represented by a finite number of functionals νj , whose coefficients
can be obtained by solving a system of equations. The resulting systems of equations are
generally nonlinear unless B is a Hilbert space. In particular, in the Banach space B defined
by the semi-inner-product, equations (19) are truly nonlinear due to the nonlinearity of the
semi-inner-product with respect to the second variable. Similar to the Hilbert space case,
the infinite dimensional component of this case lies in the computation of the semi-inner-
product of two elements of the infinite dimensional Banach space.

We next consider solving problem (3) in a Banach space having a non-smooth pre-dual
space by making use the representer theorem obtained in section 3. In this case, we do
not assume that the pre-dual space is smooth. The solution methods presented here is
mainly a continuation of Theorem 12. Recall that Theorem 12 provides a characterization
of a solution of problem (3) in the case when a Banach space B has a non-smooth pre-dual
space B∗. However, the theorem does not furnish a way to obtain the m coefficients cj
involved in the solution representation. Our task is to show that the coefficients cj can, in
deed, be obtained by solving an optimization problem in Rm. To this end, we introduce the
finite dimensional minimization problem with y ∈ Rm \ {0} as

inf {‖L∗(c)‖B∗ : 〈c,y〉Rm = 1, c ∈ Rm} . (20)

Note that minimization problem (20) is a somewhat twisted version of the compressed
sensing problem (Candès et al., 2006; Donoho, 2006).

We begin with characterizing the solutions of (20) by standard arguments in convex
analysis. The solutions of the minimization problem (20) can be first characterized by the
Lagrange multiplier method, stated in Lemma 69, and the chain rule of the subdifferential
(Showalter, 1997).

Proposition 23 Suppose that Assumption (A2) holds and y ∈ Rm \ {0}. Then ĉ ∈ Rm is
a solution of the minimization problem (20) with y if and only if 〈ĉ,y〉Rm = 1, and there
exist λ ∈ R and f ∈ ∂‖ · ‖B∗(L∗(ĉ)) such that L(f) = λy.

We next present an alternative characterization of solutions of problem (20), which will
be used to reveal the relation of solutions of minimization problems (3) and (20).

Proposition 24 Suppose that Assumption (A2) holds and y ∈ Rm \ {0}. Then ĉ ∈ Rm is
a solution of the minimization problem (20) with y if and only if

‖L∗(ĉ)‖−1B∗ ∂‖ · ‖B∗(L
∗(ĉ)) ∩My 6= ∅. (21)
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We show below that the coefficients cj appearing in the representer theorem (Theorem
12) can be obtained by solving the finite dimensional minimization problem (20). This yields
a complete solution of problem (3) in a Banach space having a (non-smooth) pre-dual space.

Theorem 25 Suppose that Assumption (A2) holds and y ∈ Rm \ {0}. Then f̂ ∈ B is
a solution of problem (3) with y if and only if f̂ ∈ ‖L∗(ĉ)‖−1B∗ ∂‖ · ‖B∗(L

∗(ĉ)) ∩My for a
solution ĉ of problem (20) with y.

Theorem 25 provides a road map for finding a solution of problem (3). We describe
major steps for solving the problem as follows:

Step 1: Find the solution c := [cj : j ∈ Nm] ∈ Rm of the optimization problem (20).

Step 2: Construct ν :=
∑

j∈Nm
cjνj using components cj of c obtained from step 1.

Step 3: Find an element g ∈ ∂‖·‖B∗(ν) which satisfies L(g) = ‖ν‖B∗y, with ν constructed
in step 2.

Step 4: Obtain a solution of problem (3) by f̂ := g
‖ν‖B∗

, using ν and g obtained respec-

tively from steps 2 and 3.

Actual implementation of the above procedure requires further investigation. Note that
although the minimization problem (20) in step 1 is of finite dimension, it still involves
computation of the norm ‖ · ‖B∗ , a hidden infinite dimensional component. Moreover, step
3 also involves solving an infinite dimensional problem. In order to make the above scheme
implementable, we have to deal with these hidden infinite dimensional components. One
could use approximation approaches to replace the infinite dimensional components by finite
dimensional ones. This approach will introduce “truncation errors”, which we do not adopt
here. Our idea is to make use intrinsic properties of these infinite dimensional components
to remove their berries, developing equivalent implementable finite dimensional schemes.

Our approach to be described in section 5 is inspired by a recent result presented in
Cheng and Xu (2020), where problem (3) with B = `1(N) was solved by a different ap-
proach. In this special case, the infinite dimensional components we mentioned above can
be removed. This benefits from the characterization of the space c0, a pre-dual space
of `1(N). Firstly, the minimization problem (20) was reformulated as a linear program-
ming problem. Specifically, suppose that uj , j ∈ Nm, are m given linearly independent
elements in c0 and the operator L : `1(N) → Rm is defined by (14). Instead of solv-
ing the minimization problem (20), it was proposed to solve an equivalent dual problem
sup{〈c,y〉Rm/‖

∑
j∈Nm

cjuj‖∞ : c = [cj : j ∈ Nm] ∈ Rm}. It was proved there that the unit
sphere in Rm under the norm ‖ · ‖∗, defined by ‖c‖∗ := ‖

∑
j∈Nm

cjuj‖∞, c ∈ Rm, is the
surface of a convex polytope, which are formed by a finite number of planes. Hence, the dual
optimization problem is equivalent to a linear programming problem: finding a maximizer
of the linear function g(c) := 〈c,y〉Rm , c ∈ Rm on the unit sphere {c : c ∈ Rm, ‖c‖∗ = 1}.
Moreover, Lemma 19 shows that finding the subdifferentials of the norm ‖ · ‖∞ of c0 at a
nonzero element u ∈ c0 is of finite dimension and any vector in the subdifferentials has at
most finite many nonzero components. Therefore, a solution of the MNI problem in `1(N)
can be obtained by solving a linear system of m coefficients.

Although the MNI problem in `1(N) can be solved as a truly finite dimensional problem,
as described above, solving the resulting linear programming problem requires an exponen-
tial order O(2m) of computational costs, where m is the number of interpolation conditions
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involved in the problem. When m is large, which is often the case in data science, this
method is not computationally efficient. It is desirable to develop alternative representa-
tions of solutions of the MNI problem convenient for algorithmic development. Motivated
by the success of the fixed-point approach used in machine learning (Li et al., 2020; Li et
al., 2018, 2019; Polson et al., 2015), image processing (Chen et al., 2013; Li et al., 2012;
Li et al., 2015; Lu et al., 2016; Micchelli et al., 2011), medical imaging (Krol et al., 2012;
Li et al., 2015; Zheng et al., 2019) and solutions of inverse problems (Fan et al., 2014;
Jin and Lu, 2014), we will develop representations of a solution of the MNI problem or
the regularization problem in a Banach space, as fixed-points of nonlinear maps defined by
proximity operators of functions involved in the problem. The fixed-point formulation well
fits for designing iterative algorithms. Difficulty of developing implementable algorithms
for this problem in a Banach space lies in infinite dimensional components of the problem.
This challenge motivates us to develop a finite dimensional fixed-point approach to solve
the MNI problem in the special Banach space `1(N) by making use of special structures of
this space and its pre-dual space. We present this approach in section 5. Extension of this
approach to a general non-smooth Banach space will be a future research topic.

To close this section, we present the infimum of the MNI problem in a Banach space as
a result of the explicit representer theorems. The next theorem identifies the infimum with
the norm of the functional appearing in the explicit solution representation.

Theorem 26 Suppose that Assumption (A1) holds and y ∈ Rm. If f̂ is a solution of
problem (3) with y, which has either the form (11) or (12) with the coefficients cj ∈ R,

j ∈ Nm, then ‖f̂‖B = ‖
∑

j∈Nm
cjνj‖B∗ .

When the Banach space B has a pre-dual space B∗ and νj ∈ B∗, for j ∈ Nm, approaches
were developed above to determine the coefficients cj ∈ R, j ∈ Nm, appearing in the solution
representations. Accordingly, the infimum of problem (3) can be obtained from the resulting
coefficients. The following result may be proved by Theorem 21 and similar arguments to
those used in the proof of Theorem 26. We omit details of the proof.

Theorem 27 If Assumption (A2) holds, B∗ is smooth and y ∈ Rm, then the infimum m0

of problem (3) with y has the form m0 = ‖
∑

j∈Nm
cjνj‖B∗ , where cj ∈ R, j ∈ Nm, are the

solution of the system (17) of equations.

For the case that the pre-dual space B∗ of the Banach space B may not be smooth, we
have the following representation of the infimum by employing Theorem 25 and arguments
similar to those used in the proof of Theorem 26. We also omit details of the proof.

Theorem 28 If Assumption (A2) holds and y ∈ Rm\{0}, then the infimum m0 of problem
(3) with y has the form m0 = ‖

∑
j∈Nm

ĉjνj‖−1B∗ , where ĉ := [ĉj : j ∈ Nm] is a solution of
the minimization problem (20) with y.

For the special cases discussed in section 3, infimum results similar to those stated in
the above theorems remain valid. That is, in all the cases considered there, the infimum of
the MNI problem is equal to the norm of the functional appearing in each corresponding
explicit solution representation. We state these results below.
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Remark 29 If B is a uniformly Fréchet smooth and uniformly convex Banach space and
B∗ is its dual space, then the infimum m0 of problem (3) with y has the form m0 =

‖
∑

j∈Nm
cjg

]
j‖B∗ , where cj ∈ R, j ∈ Nm, are the solution of the system (19) of equations.

Remark 30 If B is a semi-inner-product RKBS with the semi-inner-product reproducing
kernel G and B∗ is its dual space, then the infimum m0 of problem (3) with y has the form
m0 = ‖

∑
j∈Nm

cjG(xj , ·)]‖B∗ , where cj ∈ R, j ∈ Nm, are the solution of the system (19) of
equations with gk := G(xk, ·), k ∈ Nm.

Remark 31 Suppose that B is a right-sided RKBS with the right-sided reproducing kernel
K and B∗ is its dual space. If B is reflexive and strictly convex, then the infimum m0 of
problem (3) with y has the form m0 = ‖

∑
j∈Nm

cjK(xj , ·)‖B∗ , where cj ∈ R, j ∈ Nm, are
the solution of the system (17) of equations with νj := K(xj , ·), j ∈ Nm.

Remark 32 The infimum m0 of problem (3) in `1(N) has the form m0 = ‖
∑

j∈Nm
ĉjuj‖−1∞ ,

where ĉ := [ĉj : j ∈ Nm] is a solution of the minimization problem (20) with y and B∗ = c0.

5. Fixed-Point Approach for MNI

The solution method established in section 4 for the MNI problem in a Banach space with
non-smooth pre-dual space provides a foundation for further development of implementable
schemes to find its solution by determining the coefficients cj which appear in the solution
representations. Specifically, using the solution representation described in Theorem 25 to
find a solution of problem (3) requires to solve the minimization problem (20) and to verify
the inclusion relation. Both of these steps involve solving inclusion relations. It is not
computationally convenient to solve an inclusion relation, especially, when the set involved
in the inclusion is described by sophisticated equations and/or inequalities. It requires
further investigation to develop computationally efficient schemes based on the theoretical
results that we have obtained.

In this section, we take a different point of view to develop a fixed-point approach
for the MNI problem in a Banach space. Specifically, we reformulate problem (3) as an
unconstrained minimization problem, and then re-express its solution as a fixed-point of
a nonlinear map defined via the proximity operator of functions involved in the problem.
The resulting fixed-point equations can be solved efficiently by iteration schemes. The
reformulation will be done by using the fact that an inclusion involving subdifferential
of a convex function can be converted to a fixed-point equation defined by the proximity
operator of the function. The fixed-point formulation provides a sound basis for algorithmic
development for numerical solutions of the problem. In particular, when B is the special
Banach space `1(N), we develop an implementable fixed-point equation for finding a solution
of this problem. Proofs of the results in this section will be included in Appendix E.

We now formulate fixed-point equations for a solution of problem (3) in a general Ba-
nach space. We first reformulate problem (3) as an equivalent unconstrained minimization
problem. Suppose that B is a real Banach space with the dual space B∗ and νj ∈ B∗,
j ∈ Nm, are linearly independent. Let L be defined by (1) and L∗ its adjoint operator.
For a given vector y ∈ Rm, we define the indicator function ιy : Rm → R ∪ {+∞} of y at
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c ∈ Rm as

ιy(c) :=

{
0, if c = y,

+∞, if c 6= y.
(22)

Note that the indicator function ιy is convex but not continuous at c = y. Using this
function, problem (3), a constrained minimization problem, is rewritten as an equivalent
unconstrained one. We state this result in the next lemma for convenient reference.

Lemma 33 If for a given y ∈ Rm, the indicator function ιy is defined by (22), then problem
(3) with y is equivalent to the unconstrained minimization problem

inf{‖f‖B + ιy(L(f)) : f ∈ B}. (23)

Proof By the definition of the indicator function, the infimum in (23) will be assumed
at an element f ∈ B such that L(f) = y. Thus, the minimization problem (23) can be
rewritten as inf{‖f‖B : f ∈ B,L(f) = y}, which coincides with problem (3) with y.

We characterize a solution of problem (23) in terms of fixed-point equations. To this
end, we need the notion of the proximity operator on both spaces Rm and B. We begin
with reviewing the proximity operator on Rm which was originally introduced in (Moreau,
1962). Let ψ : Rm → R ∪ {+∞} be a convex function such that dom(ψ) := {c ∈ Rm :
ψ(c) < +∞} 6= ∅. The proximity operator proxψ : Rm → Rm of ψ is defined for a ∈ Rm by

proxψ(a) := arg inf

{
1

2
‖a− c‖2Rm + ψ(c) : c ∈ Rm

}
. (24)

The proximity operator of a convex function in an infinite dimensional Hilbert space
may be found in Bauschke and Combettes (2011). We now define the proximity operator
of a convex function in a Banach space B. This requires the availability of a Hilbert space
and a linear map between it and the Banach space B. Suppose that H is a Hilbert space,
T : B → H is a bounded linear operator and T ∗ is its adjoint operator from H to B∗. The
proximity operator proxψ,H,T : B → B of a convex function ψ : B → R∪{+∞} with respect
to H and T is defined by

proxψ,H,T (f) := arg inf

{
1

2
‖T (f − h)‖2H + ψ(h) : h ∈ B

}
, for all f ∈ B. (25)

The proximity operator proxψ defined by (24) is a special case of the definition (25). Specif-
ically, let B be the Euclidean space Rm with a norm ‖ · ‖. If we choose H := Rm with the
Euclidean norm ‖ · ‖Rm and T as the identity operator from Rm with the norm ‖ · ‖ to Rm
with the Euclidean norm ‖ · ‖Rm , the proximity operator proxψ,H,T reduces to proxψ.

We also need the notion of the conjugate function of a convex function to develop a
characterization for the solution of problem (23) in terms of fixed-point equations. The
conjugate function of a convex function ψ : Rm → R ∪ {+∞} is defined as ψ∗(c) :=
sup{〈a, c〉Rm − ψ(a) : a ∈ Rm}, for all c ∈ Rm. There is a relation between the subdiffer-
ential of a convex function and that of its conjugate function. Specifically, if ψ is a convex
function on Rm, then for all a ∈ dom(ψ) and all b ∈ dom(ψ∗) there holds

a ∈ ∂ψ∗(b) if and only if b ∈ ∂ψ(a). (26)
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This leads to the relation between the proximity operators of ψ and ψ∗, that is, proxψ =
I − proxψ∗ , where I denotes the m × m identity matrix. As an example, the conjugate
fucntion ι∗y of the indicator function ιy has the form ι∗y(c) := 〈y, c〉Rm , for all c ∈ Rm.

We turn to characterizing a solution of problem (23) as a fixed-point of a nonlinear map
defined via the proximity operators of the norm ‖ · ‖B and the conjugate function ι∗y. It
is proved by the chain rule for the subdifferential and the relations between the proximity
operator of a convex function and its subdifferential, which are all stated in Appendix E.
For convenience, we set V := span {νj : j ∈ Nm}.

Theorem 34 Suppose that Assumption (A1) holds and y ∈ Rm. Let L and ιy be defined
by (1) and (22), respectively, V be defined as above and L∗ be the adjoint operator of L. Let
H be a Hilbert space and T a bounded linear operator from B to H with the adjoint operator
T ∗. If T ∗T is a one-to-one mapping from the inverse image of V onto V, then f̂ ∈ B is a
solution of problem (23) with y if and only if there exists c ∈ Rm such that

c = proxι∗y(c + L(f̂)) and f̂ = prox‖·‖B,H,T

(
f̂ − (T ∗T )−1L∗(c)

)
. (27)

Theorem 25 shows that when the Banach space B has a non-smooth pre-dual space B∗
and νj ∈ B∗, j ∈ Nm, the coefficients cj , j ∈ Nm, appearing in Theorem 12 can be obtained
by solving the finite dimensional minimization problem (20). A solution of (20) can be
alternatively characterized via fixed-point equations. We next present this result.

Theorem 35 Suppose that Assumption (A2) holds and y ∈ Rm \ {0}. Let L and ιy be
defined by (1) and (22), respectively, V be defined earlier and L∗ be the adjoint operator of
L. Let H be a Hilbert space and T a bounded linear operator from B to H with the adjoint
operator T ∗. If T ∗T is a one-to-one mapping from the inverse image of V onto V, then
ĉ ∈ Rm is a solution of problem (20) with y if and only if there exists f̂ ∈ B such that the
pair f̂ and c := −‖f̂‖Bĉ satisfies the fixed-point equations (27).

Theorem 34 shows that solving problem (3) can be done by solving fixed-point equations
(27). These two fixed-point equations are coupled together and they have to be solved
simultaneously by iteration. In general, the second fixed-point equation in (27) is of infinite
dimension, which requires further investigation to reduce it to a finite dimensional fixed-
point equation. We demonstrate this point by considering the case when B = `1(N) whose
special property will enable us to reduce the corresponding fixed-point equation to a finite
dimensional one.

Next, we establish a fixed-point characterization for a solution of problem (3) in the
special Banach space `1(N). We are especially interested in showing how the fixed-point
equations (27) of infinite dimension is reduced to equivalent finite dimensional fixed-point
equations.

We first derive the proximity operator of convex functions on `1(N). According to
definition (25), we need to choose an appropriate Hilbert space H and the operator T :
`1(N) → H. Noting that there hold the inclusion relations `1(N) ⊂ `2(N) ⊂ c0, we define
the embedding operator T0 : `1(N)→ `2(N) as

T0(x) := x, for all x ∈ `1(N). (28)
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Since there holds ‖x‖2 ≤ ‖x‖1, for all x ∈ `1(N), we conclude that T0 is bounded. We next
express the adjoint operator T ∗0 of T0. There holds for all u ∈ `2(N) and all x ∈ `1(N) that
〈T ∗0 (u),x〉`1 = 〈u, T0(x)〉`2 =

∑
j∈N ujxj . This yields that T ∗0 : `2(N)→ `∞(N) has the form

T ∗0 (u) = u, for all u ∈ `2(N). By choosing H := `2(N) and T := T0 defined by (28), the
proximity operator proxψ,`2(N),T0 : `1(N)→ `1(N) of a convex function ψ : `1(N)→ R∪{+∞}
defined by (25) has the form

proxψ,`2(N),T0(x) = arg inf

{
1

2
‖x− z‖22 + ψ(z) : z ∈ `1(N)

}
, for all x ∈ `1(N). (29)

We can explicitly calculate the proximity operator (29) of the norm ψ := ‖ · ‖1 of `1(N) and
its subdifferential. Specifically, for each x := (xj : j ∈ N) ∈ `1(N) there holds

∂‖ · ‖1(x) = {u ∈ `∞(N) : u = (uj : j ∈ N), uj ∈ ∂| · |(xj), j ∈ N},

where for each x ∈ R, ∂| · |(x) := sign(x), if x 6= 0, and ∂| · |(x) := [−1, 1], if x = 0, and

prox‖·‖1,`2(N),T0(x) = (max{|xj | − 1, 0}sign(xj) : j ∈ N) . (30)

We now turn to solving the minimization problem (23) in the case that B := `1(N):

inf{‖x‖1 + ιy(L(x)) : x ∈ `1(N)}, (31)

where L is defined by (14) with uj ∈ c0, j ∈ Nm. The solution of the minimization problem
(31) can be characterized as a fixed-point of a map defined on a finite dimensional space.
This benefits from an important property of the space c0. Specifically, for each u ∈ c0,
since uj tends to zero as j → +∞, u attains its norm ‖u‖∞ on the finite index set N(u).
By virtue of this property, we introduce a truncation operator. We denote by cc the space
of all real sequences on N having at most a finite number of nonzero components. Clearly,
we have that cc ⊂ c0. For each x ∈ cc, the support of x, denoted by supp(x), is defined to
be the index set on which x is nonzero. We define the truncation operator S : c0 → cc as
S(u) := (ũj : j ∈ N) with ũj := uj , if j ∈ N(u), and 0 otherwise. Clearly, we have that
‖u‖∞ = ‖S(u)‖∞, for all u ∈ c0.

We are now ready to characterize the solution of the minimization problem (31) by
fixed-point equations. We let L, ιy and T0 be defined by (14), (22) and (28), respectively,
and S be the truncation operator.

Theorem 36 Suppose that uj ∈ c0, j ∈ Nm, are linearly independent and y ∈ Rm. Then
x̂ ∈ `1(N) is a solution of the minimization problem (31) with y if and only if there exists
c ∈ Rm such that

c = proxι∗y(c + L(x̂)) and x̂ = prox‖·‖1,`2(N),T0(x̂− SL∗(c)). (32)

Following Theorem 36, we can give a characterization by fixed-point equations for the
solution of the dual problem inf {‖L∗(c)‖∞ : 〈c,y〉Rm = 1, c ∈ Rm} of the MNI problem in
the space `1(N).

Theorem 37 Suppose that uj ∈ c0, j ∈ Nm, are linearly independent and y ∈ Rm \ {0}.
Then ĉ ∈ Rm is a solution of the dual problem with y if and only if there exists x̂ ∈ `1(N)
such that the pair x̂ and c := −‖x̂‖1ĉ satisfy the fixed-point equations (32).
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The fixed-points equations (32) appearing in both Theorems 36 and 37 are in fact of
finite dimension. We unfold this fact in the remaining part of this section. It is convenient
to write the fixed-point equations (32) in a compact form. To this end, we stack the vector

c ∈ Rm on the top of finite dimensional vector x̂ to form a new vector s :=

[
c
x̂

]
. We also

introduce two matrices of operators by

P :=

[
proxι∗y

prox‖·‖1,`2(N),T0

]
and R :=

[
I L
−SL∗ I

]
. (33)

In the above notion, we rewrite equations (32) in the following compact form s = (P◦R)(s).
The following theorem implies that this fixed-point equation (or equivalently the system of
the fixed-points equations (32)) is of finite dimension.

Theorem 38 If operators P and R are defined as in (33), then P ◦R is an operator from

(Rm, `1(N)) to (Rm, cc) and its fixed-point s =

[
c
x̂

]
∈ (Rm, `1(N)) satisfies x̂ ∈ cc and

supp(x̂) ⊆ supp(S(L∗(c)).

A solution of problem (3) with B := `1(N) guaranteed by Theorems 36 and 38 has an
additional property.

Remark 39 Each solution x̂ ∈ `1(N) of problem (3) with B := `1(N) together with c ∈ Rm
satisfying the fixed-point equations (32) is of finite dimension, that is, it satisfies x̂ ∈ cc and
supp(x̂) ⊆ supp(S(L∗(c)).

Theorem 36 reveals that to solve problem (3) with B := `1(N), it suffices to find a
solution of the fixed-point equations (32) by iterative algorithms designed based on these
fixed-point equations. A remarkable fact is that according to Theorem 38, the fixed-point
equations in (32) are both of finite dimension. Therefore, solving the infinitely dimensional
problem (3) with B := `1(N) reduces to finding a fixed-point of a nonlinear map defined on
a finite dimensional space.

To develop efficient iterative algorithms with convergence guaranteed based on these
fixed-point equations, we need to consider additional issues: The first issue is the computa-
tion of the proximity operators of the two functions involved in the fixed-point equations.
Moreover, the direct iteration from (32) may not lead to convergent algorithms. One needs
to reformulate these fixed-point equations to equivalent ones guided by the theory of firmly
non-expansive maps. This is the second issue. The third issue is how convergence of the
resulting convergent iterative schemes can be accelerated by introducing some parameters
or matrices.

We now address the first issue. Note that the closed-form formula for the proximity
operator prox‖·‖1,`2(N),T0 has been given in (30). We now present the proximity operator
of ι∗y below. Clearly, by the definition of the indicator function ιy, its proximity operator
has the form proxιy(a) := y for all a ∈ Rm. Then the relation between the proximity
operators of ιy and ι∗y leads to closed-form formula of the proximity operator proxι∗y as

proxι∗y(a) = a− y, for all a ∈ Rm. The two closed-form formulas enable us to implement
the iteration efficiently.
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We next discuss the second issue. Since the equations (32) are represented in the equiv-
alent compact form, one may define the Picard iteration based on the compact form fixed-
point equation to find the fixed-point s, that is sk+1 = (P ◦ R)(sk), for k = 0, 1, . . .. When
it converges, the Picard sequence sk, k = 0, 1, . . ., generated by the Picard iteration, con-
verges to a fixed-point of the map P ◦ R, which gives a solution of problem (3). However,
convergence of the Picard sequence is not guaranteed. Normally, we need to reformulate
the fixed-point equation by appropriately split the matrix R guided by the theory of the
non-expansive map. That is, we will construct from the map P ◦ R a non-expansive map
M which has the same fixed-point set as P ◦ R, so that the Picard sequence of the new
map M converges to a fixed-point of M, guaranteed by its non-expansiveness. Interested
readers are referred to (Li et al., 2015) for further algorithmic development along this line.
We will address this issue together with other computational issues in a different occasion.

6. Regularization Problem and its Connection with MNI

We now consider regularization problems. In the remaining part of this paper, the term
“regularization problem” will refer to both regularized learning and other semi-discrete in-
verse problems unless stated otherwise. Regularization problems are closely related to MNI
problems. We shall translate the representer theorems obtained in section 3 for solutions of
MNI problems to those of regularization problems. Since the regularization problem in a
general Banach space is described as an infinity dimensional minimization problem, we first
comment on the existence of a solution of the problem following general results regarding
the existence of a solution of an infinity dimensional minimization problem. Moreover, we
establish an intrinsic connection between the regularization problem and the MNI problem.
Specifically, we shall show that there always exists a solution of the regularization problem
which is also a solution of the MNI problem with specific data.

We first describe the regularization problem in a Banach space, review its background
and several examples of practical importance, and establish existence of its solution under
a rather mild condition. We begin with describing the regularization problem under in-
vestigation. Let B be a real Banach space with the dual space B∗. Suppose that a set of
linearly independent functionals νj ∈ B∗, j ∈ Nm, is given and operator L : B → Rm is
defined by equation (1). Learning a target element in B from the given set of sampled data
{(νj , yj) : j ∈ Nm} consists of solving the following first kind operator equation

L(f) = y (34)

for f ∈ B, where y := [yj : j ∈ Nm] ∈ Rm. Equation (34) is a typical ill-posed problem.
That is, the inverse of L is not bounded. A commonly used approach to address the ill-
posedness of (34) is regularization. Specifically, we define a data fidelity term Qy(L(f))
from (34) by using a loss function Qy : Rm → R+, and solve the minimization problem

inf{Qy(L(f)) + λϕ(‖f‖B) : f ∈ B}, (35)

where ϕ : R+ → R+ is a regularizer and λ is a positive regularization parameter.

The regularization problem (35) appears in many applied areas. We present several
examples of the loss function and the regularizer that are used frequently in applications.
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In machine learning, classical regularization network and support vector machines for both
classification and regression are reformulated as (35) (Evgeniou et al., 2000; Schölkopf and
Smola, 2002). Specifically, if for y ∈ Rm the loss function is chosen as

Qy(z) := ‖z− y‖2Rm , z ∈ Rm, (36)

and the quadratic regularizer as ϕ(t) := t2, t ∈ R+, then the regularization problem (35)
reduces to the regularization networks. The support vector machine regression has the form
(35) with the loss function being chosen as

Qy(z) :=
∑
j∈Nm

max{|yj − zj | − ε, 0}, z := [zj : j ∈ Nm] ∈ Rm, (37)

where ε is a positive constant and the regularizer as the quadratic function. If the loss
function is chosen as

Qy(z) :=
∑
j∈Nm

max{1− yjzj , 0}, z := [zj : j ∈ Nm] ∈ {−1, 1}m, (38)

for y := [yj : j ∈ Nm] ∈ {−1, 1}m and the regularizer as the quadratic function, the
regularization problem (35) describes the support vector machine classification. Moreover,
`1 support vector machine regression and classification (Li et al., 2018, 2019; Schölkopf and
Smola, 2002; Zhu et al., 2004) are formulated as (35) with the loss function (37) and (38),
respectively, and the linear regularizer ϕ(t) := t, t ∈ R+. The Lasso regularized model
(Tibshirani, 1996; Zhao and Yu, 2006) is also formulated as (35) with the loss function as
(36) and the regularizer as the linear function with an appropriate choice of the Banach
space. Another example concerns the lp-norm regularization (Zhang, 2002) in which the
regularizer is chosen as ϕ(t) := tp, t ∈ R+.

Most data science problems are described as SDIPs (Daubechies et al., 2004; Wendland,
2005). Such inverse problems cover many important application areas including image
restoration (Cai et al., 2012; Lu et al., 2010) and medical imaging (Chen et al., 2020; Jiang
et al., 2019). SDIPs often solved by regularization methods (Chen et al., 2015; Chen et
al., 2008) are formulated in the form (35) with appropriate choices of the loss function
and regularizer. The form of the loss function is normally determined by types of noise
contaminated in given data.

We now consider the existence of a solution of the regularization problem (35). By using
arguments similar to those used in the proof of the existence of solutions of problem (3),
we can get the existence of solutions of (35) under the conditions that B has a pre-dual
space B∗ and νj ∈ B∗, j ∈ Nm. To this end, we review a few useful properties of functions
appearing in (35). A function T mapping from a topological space X into R is said to be
lower semi-continuous if T (f) ≤ lim infα T (fα), whenever fα, α ∈ I, for some index set I is
a net in X converging to some element f ∈ X . The notion of weakly∗ lower semi-continuous
is defined accordingly under the weak∗ topology. We say a function T mapping from a
normed space X into R is coercive if lim‖x‖→+∞ T (x) =∞.

We establish in the following proposition a sufficient condition which ensures the ex-
istence of a solution of the regularization problem (35). Its complete proof is included in
Appendix F.
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Proposition 40 Suppose that y ∈ Rm, both Qy : Rm → R+ and ϕ : R+ → R+ are lower
semi-continuous, λ > 0 and moreover, ϕ is increasing and coercive. If B is a Banach space
having a pre-dual space B∗ and the functionals νj , j ∈ Nm, appearing in the definition of L
are in B∗, then the regularization problem (35) has at least one solution.

The reflexive Banach space is a special case of the Banach space having a pre-dual space.
In this special case, we can also have the existence result for a solution of the regularization
problem (35).

We now turn to investigating the connection between a solution of the regularization
problem (35) and that of the MNI problem (3). Specifically, we shall show that if the
regularizer is increasing then there always exists a solution of the regularization problem
(35) which is also a solution of the MNI problem with specific data. Furthermore, if the
regularizer is strictly increasing then every solution of the regularization problem (35) is
also a solution of the MNI problem with specific data. Throughout the rest of this paper, we
always assume that each of the two minimization problems has a solution without further
mention. In particular, it is guaranteed by Proposition 40 that this assumption holds when
B has a pre-dual space B∗, νj ∈ B∗, j ∈ Nm, Qy, ϕ are both lower semi-continuous and ϕ
is increasing and coercive.

Proposition 41 Suppose that B is a Banach space with the dual space B∗, νj ∈ B∗, j ∈ Nm,
and L is defined by (1). For a given y0 ∈ Rm, let Qy0 : Rm → R+ be a loss function,

ϕ : R+ → R+ be an increasing regularizer and λ > 0. Let f̂ ∈ B be a solution of the
regularization problem (35) with y := y0. Then the following statements hold true:

(i) A solution ĝ ∈ B of problem (3) with y := L(f̂) is a solution of the regularization
problem (35) with y := y0.

(ii) If ϕ is strictly increasing, then f̂ is a solution of problem (3) with y := L(f̂).

Statement (ii) of Proposition 41 was claimed in Micchelli and Pontil (2004) without de-
tails of proof. We provide a complete proof for this statement in Appendix F for convenience
of the readers.

7. Representer Theorems and Solution Methods for Regularization
Problems

In this section, we establish representer theorems and solution methods for solutions of the
regularization problem (35), with proofs included in Appendix G. Using the connection
enacted in the last section between a solution of the MNI problem and that of the regu-
larization problem, we first present both implicit and explicit representer theorems for a
solution of the regularization problem (35). We then develop solution methods for solving
the regularization problem. We present two types of solution methods: one based on the
representer theorems and the other being direct methods. We also consider special cases
and give special results for them. In particular, for the regularization problem in `1(N), we
put forward a fixed-point formulation which serves as a basis for further development of
efficient iterative algorithms for solving the problem. Although results to be presented in
this section are parallel to those for MNI, they will provide a foundation for applications due
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to wide utilizations of regularization problems in many areas. We will keep our presentation
concise by skipping some details.

We first present representer theorems for the regularization problem (35). Recall that
we have established several implicit representer theorems in Proposition 7 for solutions of
the MNI problem (3). Through the connection between a solution of the regularization
problem (35) and that of problem (3), in the next proposition we first translate the results
in Proposition 7 originally for problem (3) to those for the regularization problem (35). In
this section, we always assume that for a given y0 ∈ Rm, Qy0 : Rm → R+ is a loss function,
ϕ : R+ → R+ is a regularizer and λ > 0.

Proposition 42 Suppose that B is a Banach space with the dual space B∗, νj ∈ B∗, j ∈ Nm,
y0 ∈ Rm and L is defined by (1). If ϕ is increasing, then there exists a solution f0 of the
regularization problem (35) with y := y0 satisfying the following conditions:

(i) There exist cj ∈ R, j ∈ Nm, such that the linear functional ν :=
∑

j∈Nm
cjνj satisfying

‖ν‖B∗ = 1 and 〈ν, f0〉B = ‖f0‖B.
(ii) There exist cj ∈ R, j ∈ Nm, such that the linear functional ν :=

∑
j∈Nm

cjνj peaks
at f0, that is, 〈ν, f0〉B = ‖ν‖B∗ ‖f0‖B.

(iii) There exist cj ∈ R, j ∈ Nm, such that
∑

j∈Nm
cjνj ∈ J (f0).

(iv) There exist cj ∈ R, j ∈ Nm, such that
∑

j∈Nm
cjνj ∈ ∂‖ · ‖B(f0).

If ϕ is strictly increasing, then every solution f0 of the regularization problem (35) with
y := y0 satisfies the above conditions (i)-(iv).

When the Banach space B is smooth, we may get a representer theorem for a solution
of the regularization problem (35) in a simple form. The desired result can be obtained by
translating representer Theorem 8 for problem (3) to problem (35) through Proposition 41
and using the arguments similar to those in the proof of Proposition 42.

Remark 43 Suppose that B is a smooth Banach space. If ϕ is increasing, then there exists
a solution f0 of the regularization problem (35) with y := y0 such that G(f0) =

∑
j∈Nm

cjνj,
for some cj ∈ R, j ∈ Nm. Moreover, if ϕ is strictly increasing, then every solution f0 of
the regularization problem (35) with y := y0 has the form G(f0) =

∑
j∈Nm

cjνj, for some
cj ∈ R, j ∈ Nm.

We next develop explicit representer theorems for the regularization problem (35). These
explicit representer theorems are obtained from the explicit representer theorems for prob-
lem (3) presented in section 3 in conjunction with Proposition 41. We first consider the
case when a Banach space B has the dual space B∗. The following theorem results from
Theorem 10.

Theorem 44 Suppose that B is a Banach space with the dual space B∗, νj ∈ B∗, j ∈ Nm,
y0 ∈ Rm and L is defined by (1).

(i) If ϕ is increasing, then there exists a solution f0 of the regularization problem (35)
with y := y0 such that f0 ∈ γ∂‖ · ‖B∗(

∑
j∈Nm

cjνj), for some cj ∈ R, j ∈ Nm, with
γ := ‖

∑
j∈Nm

cjνj‖B∗.
(ii) If ϕ is strictly increasing, then every solution f0 of the regularization problem (35)

with y := y0 satisfies f0 ∈ γ∂‖ · ‖B∗(
∑

j∈Nm
cjνj), for some cj ∈ R, j ∈ Nm.
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When the Banach space B has the smooth dual space B∗, we have a special representer
theorem for a solution of problem (35).

Remark 45 Suppose that the dual space B∗ of the Banach space B is smooth. If ϕ is
increasing, then there exists a solution f0 of the regularization problem (35) with y := y0

in the form f0 = γG∗(
∑

j∈Nm
cjνj), for some cj ∈ R, j ∈ Nm. Moreover, if ϕ is strictly

increasing, then every solution f0 of the regularization problem (35) with y := y0 has the
form f0 = γG∗(

∑
j∈Nm

cjνj), for some cj ∈ R, j ∈ Nm.

Below, we derive representer theorems for a solution of problem (35) in the case when
the Banach space B has a pre-dual space B∗ and νj ∈ B∗, j ∈ Nm. We first obtain an
explicit solution representation from Theorem 12.

Theorem 46 Suppose that B is a Banach space having a pre-dual space B∗, νj ∈ B∗,
j ∈ Nm, y0 ∈ Rm and L is defined by (1).

(i) If ϕ is increasing, then there exists a solution f0 of the regularization problem (35)
with y := y0 such that f0 ∈ ρ∂‖ · ‖B∗(

∑
j∈Nm

cjνj), for some cj ∈ R, j ∈ Nm, with ρ :=
‖
∑

j∈Nm
cjνj‖B∗.

(ii) If ϕ is strictly increasing, then every solution f0 of the regularization problem (35)
with y := y0 satisfies f0 ∈ ρ∂‖ · ‖B∗(

∑
j∈Nm

cjνj), for some cj ∈ R, j ∈ Nm.

When the Banach space B has a smooth pre-dual space B∗, we have a special representer
theorem for a solution of problem (35).

Remark 47 Suppose that the Banach space B has a smooth pre-dual space B∗. If ϕ is
increasing, then there exists a solution f0 of the regularization problem (35) with y := y0

in the form f0 = ρG∗(
∑

j∈Nm
cjνj), for some cj ∈ R, j ∈ Nm. Moreover, if ϕ is strictly

increasing, then every solution f0 of the regularization problem (35) with y := y0 has the
form f0 = ρG∗(

∑
j∈Nm

cjνj), for some cj ∈ R, j ∈ Nm.

Observing from the above representer theorems, the essence of the representer theorems
is that the original optimization problem in an infinite dimensional space can be converted
to one in a finite dimensional space. This benefits from the fact that the number of data
points, used in the regularization problem, is finite.

We consider below representer theorems for several special cases of Banach spaces and
present special results. Regularized learning was originally considered to learn a function
in an RKHS from a finite number of point-evaluation functional data, that is, νj := δxj ,
j ∈ Nm, where xj , j ∈ Nm, are finite points in an input set X. Suppose that H is an
RKHS on X with the reproducing kernel K. If for a given y0 ∈ Rm, Qy0 and ϕ are
continuous and convex and moreover, ϕ is strictly increasing and coercive, then there exists
a unique solution f0 of problem (35) with y := y0. Note that for each j ∈ Nm, K(xj , ·)
refers to a closed-form function representation of νj := δxj . Since ϕ is strictly increasing,
by Remark 45 with B := H and νj := K(xj , ·), j ∈ N, we express f0 in the form f0 =
‖
∑

j∈Nm
cjK(xj , ·)‖H∗G∗(

∑
j∈Nm

cjK(xj , ·)) for some cj ∈ R, j ∈ Nm. Note that H∗ = H.
Substituting f = ‖f‖HG(f) with f :=

∑
j∈Nm

cjK(xj , ·) into the above form, we get the
representation of f0 as f0 =

∑
j∈Nm

cjK(xj , ·).
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We next consider regularization problems in a functional reproducing kernel Hilbert
space (FRKHS). Motivated by learning a function from a finite number of non-point-
evaluation functional data, we introduce in Wang and Xu (2019) the notion of FRKHSs.
Let H be a Hilbert space and F a family of linear functionals on H. Space H is called an
FRKHS with respect to F if the norm of H is compatible with F and each linear functional
in F is continuous on H. An FRKHS is expected to admit a reproducing kernel, which
reproduces the linear functionals defining the space. Specifically, for an FRKHS H with
respect to a family F := {να : α ∈ Λ} of linear functionals, there exists a unique functional
reproducing kernel K : Λ→ H such that K(α) ∈ H, for all α ∈ Λ, and να(f) = 〈f,K(α)〉H,
for all f ∈ H and for all α ∈ Λ. The representer theorem for regularization problems in
an FRKHS from a finite number of non-point-evaluation functional data ναj := K(αj),
j ∈ Nm, can also be derived from Remark 45. It suffices to notice that for each α ∈ Λ, K(α)
is an explicit representation for the functionals να. Specifically, if for a given y0 ∈ Rm, Qy0

and ϕ are continuous and convex and moreover, ϕ is strictly increasing and coercive, then
there exists a unique solution f0 of the regularization problem (35) with y := y0 and it has
the form f0 =

∑
j∈Nm

cjK(αj), for some cj ∈ R, j ∈ Nm.
We now turn to considering regularization problems in a uniformly Fréchet smooth and

uniformly convex Banach space B. Recall that in such a Banach space, the semi-inner-
product may be taken as a substitute of the inner product in a Hilbert space. Accordingly,
each continuous linear functional on B can be represented by the dual element of a unique
element in B, which is defined via the semi-inner-product. In particular, the Gâteaux
derivative of the norm ‖ · ‖B has the form (66).

Applying Remark 43 to the regularization problem (35) in a uniformly Fréchet smooth
and uniformly convex Banach space, we get the representer theorem as follows. Note that
in this case, the linearly independent functionals have the form νj := g]j for gj ∈ B, j ∈ Nm.

Theorem 48 Suppose that Assumption (A3) holds and y0 ∈ Rm.

(i) If ϕ is increasing, then there exists a solution f0 of the regularization problem (35)

with y := y0 such that f ]0 =
∑

j∈Nm
cjg

]
j for some cj ∈ R, j ∈ Nm.

(ii) If ϕ is strictly increasing, then every solution f0 of the regularization problem (35)

with y := y0 satisfies f ]0 =
∑

j∈Nm
cjg

]
j for some cj ∈ R, j ∈ Nm.

It is desirable to have a representation for f0 in addition to that for f ]0. Since the
uniformly Fréchet smooth and uniformly convex Banach space B has the smooth dual space
B∗, Remark 45 allows us to have a representation for f0 in such a Banach space B.

Theorem 49 Suppose that Assumption (A3) holds and y0 ∈ Rm.

(i) If ϕ is increasing, then there exists a solution f0 of the regularization problem (35)

with y := y0 such that f0 =
(∑

j∈Nm
cjg

]
j

)]
, for some cj ∈ R, j ∈ Nm.

(ii) If ϕ is strictly increasing, then every solution f0 of the regularization problem (35)

with y := y0 satisfies f0 =
(∑

j∈Nm
cjg

]
j

)]
, for some cj ∈ R, j ∈ Nm.

We now apply Theorem 49 to problem (35) in `p(N) with 1 < p < +∞, special uniformly
Fréchet smooth and uniformly convex Banach spaces. Suppose that uj ∈ `q(N), j ∈ Nm,

30



Representer Theorems in Banach Spaces

with 1/p+ 1/q = 1, and operator L is defined by (13). If for a given y0 ∈ Rm, Qy0 and ϕ
are continuous and convex and moreover, ϕ is strictly increasing and coercive, then there
exists a unique solution x̂ := (x̂j : j ∈ N) of the regularization problem (35) in `p(N) with

y = y0. If x̂ 6= 0, then x̂j = uj |uj |q−2/‖u‖q−2q , where u = (uj : j ∈ N) :=
∑

j∈Nm
cjuj , for

some cj ∈ R, j ∈ Nm.
The semi-inner-product RKBS is uniformly Fréchet smooth and uniformly convex. A

regularization problem in such a space is considered to learn a function from the sample
data produced by point-evaluation functionals νj := δxj , j ∈ Nm, where xj , j ∈ Nm, are a
finite number of points in an input set X. By the reproducing property, the dual element
G(xj , ·)] of G(xj , ·) coincides exactly with the point-evaluation functional δxj for j ∈ Nm.
Applying Theorem 48 with gj := G(xj , ·), j ∈ Nm, to the regularization problem (35) in a
semi-inner-product RKBS, we get the representer theorem as follows.

Corollary 50 Suppose that B is the semi-inner-product RKBS with the semi-inner-product
reproducing kernel G and xj ∈ X, j ∈ Nm. Let y0 ∈ Rm.

(i) If ϕ is increasing, then there exists a solution f0 of the regularization problem (35)

with y := y0 such that f ]0 =
∑

j∈Nm
cjG(xj , ·)] for some cj ∈ R, j ∈ Nm.

(ii) If ϕ is strictly increasing, then every solution f0 of the regularization problem (35)

with y := y0 satisfies f ]0 =
∑

j∈Nm
cjG(xj , ·)], for some cj ∈ R, j ∈ Nm.

An explicit representation for the solution of the regularization problem in the semi-
inner-product RKBS B can also be obtained. The desired result is an immediate conse-
quence of Theorem 49 with gj := G(xj , ·), for j ∈ Nm.

Theorem 51 Suppose that B is the semi-inner-product RKBS with the semi-inner-product
reproducing kernel G and xj ∈ X, j ∈ Nm. Let y0 ∈ Rm.

(i) If ϕ is increasing, then there exists a solution f0 of the regularization problem (35)

with y := y0 such that f0 =
(∑

j∈Nm
cjG(xj , ·)]

)]
for some cj ∈ R, j ∈ Nm.

(ii) If ϕ is strictly increasing, then every solution f0 of the regularization problem (35)

with y := y0 satisfies f0 =
(∑

j∈Nm
cjG(xj , ·)]

)]
for some cj ∈ R, j ∈ Nm.

We turn to the regularization problem in a right-sided RKBS B with the right-sided
reproducing kernel K. Note that the right-sided reproducing kernel K provides the closed-
from function representation for the point-evaluation functionals. By Remark 43 with νj :=
K(xj , ·), j ∈ Nm, we have the following representer theorem. In this case, the assumptions
on Qy0 , ϕ and the right-sided RKBS ensure the existence and uniqueness of the solution of
problem (35).

Corollary 52 Suppose that Assumption (A4) holds and B is reflexive, strictly convex and
smooth. If for a given y0 ∈ Rm, Qy0 and ϕ are continuous and convex and moreover, ϕ
is strictly increasing and coercive, then the regularization problem (35) with y := y0 has a
unique solution f0 and it has the form G(f0) =

∑
j∈Nm

cjK(xj , ·), for some cj ∈ R, j ∈ Nm.

It is known that the reflexive Banach space B is strict convexity if and only if the
dual space B∗ is smooth. Hence, by Remark 45 with νj := K(xj , ·), j ∈ Nm, an explicit
reprsentation for f0 can be obtained as follows.
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Theorem 53 Suppose that Assumption (A4) holds and B is reflexive and strictly convex.
If for a given y0 ∈ Rm, Qy0 and ϕ are continuous and convex and moreover, ϕ is strictly
increasing and coercive, then the regularization problem (35) with y := y0 has a unique
solution f0 and it has the form f0 = σG∗(

∑
j∈Nm

cjK(xj , ·)), for some cj ∈ R, j ∈ Nm,
where σ := ‖

∑
j∈Nm

cjK(xj , ·)‖B∗.

Finally, we specialize Theorem 46 to the regularization problem in the space `1(N).

Theorem 54 Suppose that uj ∈ c0, j ∈ Nm, y0 ∈ Rm and operator L is defined by (14).
(i) If ϕ is increasing, then there exists a solution x̂ ∈ `1(N) of the regularization problem

(35) in `1(N) with y := y0 such that x̂ ∈ ‖u‖∞co(V(u)), for some cj ∈ R, j ∈ Nm, where
u :=

∑
j∈Nm

cjuj .
(ii) If ϕ is strictly increasing, then every solution x̂ of the regularization problem (35)

in `1(N) with y := y0 satisfies x̂ ∈ ‖u‖∞co(V(u)), for some cj ∈ R, j ∈ Nm.

The representer theorems presented above for the regularization problem give only forms
of the solutions for the problem, the same as those for MNI developed in section 3. To pro-
vide solution methods for the regularization problem, one has to determine the coefficients
cj involved in the solution representations. Next, we develop approaches to determine
these coefficients, leading to solution methods for solving the regularization problem. We
also consider solving directly the regularization problem (35) by the fixed-point approach,
which has been discussed in section 5 for the MNI problem.

We begin with considering the case that the Banach space B has a smooth pre-dual
space B∗ and νj ∈ B∗, for j ∈ Nm. In this case, Remark 47 provides a simple and explicit
representation for the solutions of the regularization problem (35). By employing this
solution representation, problem (35) can be converted to a finite dimensional minimization
problem about the coefficients appearing in the representation.

Theorem 55 Suppose that B is a Banach space having a smooth pre-dual space B∗, and
νj ∈ B∗, j ∈ Nm. Let L be the linear operator defined by (1) and L∗ be the adjoint operator.
For a given y0 ∈ Rm, let Qy0 : Rm → R+ be a loss function, ϕ : R+ → R+ be a strictly
increasing regularizer and λ > 0. Then

f0 := ‖L∗(ĉ)‖B∗G∗(L∗(ĉ)), ĉ ∈ Rm, (39)

is a solution of the regularization problem (35) with y := y0 if and only if ĉ ∈ Rm is a
solution of the minimization problem

inf{Qy0(‖L∗(c)‖B∗L(G∗(L∗(c)))) + λϕ(‖L∗(c)‖B∗) : c ∈ Rm}. (40)

As a special case, we consider the regularization problem (35) in a Hilbert space H,
that is B := H. In this case, the regularizer ϕ has the form ϕ(t) := t2, t ∈ R+, which is
strictly increasing on R+, B∗ = H and the linearly independent functionals νj , j ∈ Nm, are
identified with gj ∈ H.

Corollary 56 Suppose that H is a Hilbert space and gj ∈ H, j ∈ Nm. Let L be the linear
operator defined by (1) with νj := gj, j ∈ Nm, L∗ be the adjoint operator and G be the
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Gram matrix. For a given y0 ∈ Rm, let Qy0 : Rm → R+ be a loss function and λ > 0.
Then f0 :=

∑
j∈Nm

ĉjgj is a solution of the regularization problem (35) with y := y0 if and
only if ĉ := [ĉj : j ∈ Nm] ∈ Rm is a solution of the minimization problem

inf{Qy0(Gc) + λc>Gc : c ∈ Rm}. (41)

Below, we discuss how to solve the finite dimensional minimization problem (41). Ap-
proaches that may be adopted to solve the problem (41) depend on the smoothness of
the function Qy0 appearing in the fidelity term of (41). When Qy0 is differentiable, the
minimization problem (41) may be solved by using standard methods such as the gradient
descent method. When Qy0 is not differentiable, standard methods for solving minimization
problems are not applicable to problem (41) and it requires special treatment. We will pay
a special attention to the case when Qy0 is not differentiable.

We now consider solving the finite dimensional minimization problem (41). The fol-
lowing solution methods are described for both differentiable and non-differentiable loss
functions.

Remark 57 For a given y0 ∈ Rm, let Qy0 be a convex loss function. If Qy0 is non-
differentiable, then ĉ ∈ Rm is the unique solution of the minimization problem (41) if and
only if ĉ satisfies ĉ = 1

−2λproxQ∗y0
(−2λĉ + Gĉ).

In the case that the loss function is differentiable, the solution of the finite dimensional
minimization problem (41) satisfies a system which usually is nonlinear. For the loss function
with a special form, the nonlinear system reduces to a linear one.

Remark 58 If the convex function Qy0 is differentiable, then ĉ is the unique solution of
the minimization problem (41) if and only if ĉ satisfies the system −2λĉ = ∇Qy0(Gĉ).
Particularly, if Qy0 has the form (36), then the system reduces to the linear system (G +
λI)ĉ = y0.

Our second example concerns the regularization problem in a uniformly Fréchet smooth
and uniformly convex Banach space B. In such a space, there exists a unique semi-inner-
product [·, ·]B that induces the norm ‖ · ‖B. Moreover, for each ν ∈ B∗, there exists a unique
g ∈ B such that ν = g]. Thus, in this case, the linear functional νj appearing in (35) is

identified with g]j , for gj ∈ B, j ∈ Nm. With respect to the sequence gj ∈ B, j ∈ Nm, we
introduce a nonlinear operator Gs.i.p from Rm to itself. Specifically, set

Gs.i.p(c) :=

[[
g]j ,

∑
k∈Nm

ckg
]
k

]
B∗

: j ∈ Nm

]
, for all c := [ck : k ∈ Nm] ∈ Rm. (42)

We present the solution methods for this case in the following two results.

Corollary 59 Suppose that B is a uniformly Fréchet smooth and uniformly convex Banach
space and gj ∈ B, j ∈ Nm. Let L be the linear operator defined by (1) with νj := g]j,
j ∈ Nm, L∗ be the adjoint operator of L and Gs.i.p be the operator defined by (42). For a
given y0 ∈ Rm, let Qy0 : Rm → R+ be a loss function, ϕ : R+ → R+ be a strictly increasing
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regularizer and λ > 0. Then f0 :=
(∑

j∈Nm
ĉjg

]
j

)]
, is a solution of the regularization

problem (35) with y := y0 if and only if ĉ := [ĉj : j ∈ Nm] ∈ Rm is a solution of the
minimization problem

inf
{
Qy0(Gs.i.p(c)) + λϕ

(
(c>Gs.i.p(c))1/2

)
: c ∈ Rm

}
. (43)

In the following, we show that the finite dimensional minimization problem (43) reduces
to a nonlinear system in a special case that both Qy0 and ϕ are convex and differentiable.

Remark 60 For a given y0 ∈ Rm, let Qy0 be a convex loss function and ϕ be a strictly
increasing and convex regularizer. If Qy0 and ϕ are both differentiable, then ĉ 6= 0 is the
unique solution of the minimization problem (43) if and only if ĉ is the solution of the
nonlinear system

∇Qy0(Gs.i.p(ĉ)) + λ
ϕ
′ (

(ĉ>Gs.i.p(ĉ))1/2
)

(ĉ>Gs.i.p(ĉ))1/2
ĉ = 0. (44)

The nonlinear system was established in Zhang and Zhang (2012) in the case that B is a
semi-inner-product RKBS and for y0 := [yj : j ∈ Nm] ∈ Rm, the loss function Qy0 has the
form Qy0(z) :=

∑
j∈Nm

Qj(zj , yi), for all z := [zj : j ∈ Nm] ∈ Rm, where Qj : R× R→ R+,
j ∈ Nm, are a finite number of bivariate loss functions.

Below, we develop a fixed-point approach for solving the regularization problem in
a Banach space. Following the idea in section 5, we now consider solving directly the
regularization problem (35) in a Banach space B. We will characterize the solutions of the
problem via fixed-point equations. Again, we need to consider both cases when the loss
function Qy0 is differentiable and when it is not differentiable.

Theorem 61 Suppose that B is a Banach space with the dual space B∗, νj ∈ B∗, j ∈ Nm
and that L is defined by (1), L∗ is the adjoint operator of L and V is defined earlier. Let H
be a Hilbert space and T a bounded linear operator from B to H such that T ∗T is a one-to-
one mapping from the inverse image of V onto V. For a given y0 ∈ Rm, let Qy0 : Rm → R+

be a convex loss function, ϕ : R+ → R+ be a convex regularizer and λ > 0. Then f0 ∈ B is
a solution of problem (35) with y := y0 if and only if there exists ĉ ∈ Rm such that

ĉ = proxQ∗y0
(ĉ + L(f0)) and f0 = proxϕ◦‖·‖B,H,T

(
f0 −

1

λ
(T ∗T )−1L∗(ĉ)

)
. (45)

In the special case when the loss function Qy0 is differentiable, the fixed-point equations
(45) can reduce to only one fixed-point equation.

Corollary 62 Suppose that the hypotheses of Theorem 61 hold. If in addition the loss
function Qy0 : Rm → R+ is differentiable, then f0 ∈ B is a solution of the regularization
problem (35) with y := y0 if and only if it satisfies the fixed-point equation

f0 = proxϕ◦‖·‖B,H,T

(
f0 −

1

λ
(T ∗T )−1L∗∇Qy0L(f0)

)
. (46)
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In particular, for the learning network problem, in which the loss function Qy0 has
the form (36), we have the following special result. Note that in this case there holds
∇Qy0(L(f0)) = 2(L(f0)− y0).

Remark 63 If for a given y0 ∈ Rm, the loss function Qy0 has the form (36), the fixed-point
equation (46) reduces to

f0 = proxϕ◦‖·‖B,H,T

(
f0 −

2

λ
(T ∗T )−1L∗(L(f0)− y0)

)
.

According to Theorem 61 the solution of the regularization problem (35) can be obtained
by solving fixed-point equations (45) or (46). Note that either the second equation in (45) or
equation (46) is of infinite dimension. In section 5, we have demonstrated that a solution of
problem (3) with B = `1(N) can be formulated as finite dimensional fixed-point equations.
We next show that a solution of the regularization problem (35) with B = `1(N) can also be
formulated as finite dimensional fixed-point equations. The regularization problem in the
space `1(N) has the form

inf{Qy(L(x)) + λ‖x‖1 : x ∈ `1(N)}. (47)

With the help of Lemma 74 stated in Appendix E, a solution of the regularization
problem (47) can be characterized via finite dimensional fixed-point equations as follows.

Theorem 64 Suppose that uj ∈ c0, j ∈ Nm, L is defined by (14) and L∗ is the adjoint
operator. Let T0 be defined by (28) and S be the truncation operator. For a given y0 ∈ Rm,
let Qy0 : Rm → R+ be a convex loss function and λ > 0. Then x0 ∈ `1(N) is a solution of
the regularization problem (47) with y := y0 if and only if there exists ĉ ∈ Rm such that

ĉ = proxQ∗y0
(ĉ + L(x0)) and x0 = prox‖·‖1,`2(N),T0

(
x0 −

1

λ
SL∗(ĉ)

)
. (48)

If the loss function Qy0 is differentiable, the solution of the regularization problem (47)
with y := y0 can be characterized via a single fixed-point equation. We present this result
in the next corollary.

Corollary 65 Suppose that the hypotheses of Theorem 64 hold. If in addition the loss
function Qy0 : Rm → R+ is differentiable, then x0 ∈ `1(N) is a solution of the regularization
problem (47) with y := y0 if and only if

x0 = prox‖·‖1,`2(N),T0

(
x0 −

1

λ
SL∗∇Qy0L(x0)

)
. (49)

Once again, for the learning network problem, in which the loss function Qy0 has the
form (36), we have the following special result.

Remark 66 If for a given y0 ∈ Rm, the loss function Qy0 has the form (36), the fixed-point
equation (49) reduces to

x0 = prox‖·‖1,`2(N),T0

(
x0 −

2

λ
SL∗(L(x0)− y0)

)
. (50)

35



Wang and Xu

Below, we point out the finite dimensional component of the fixed-points equations (48),
the same as those for MNI stated in Theorem 38. To see this, we rewrite the fixed-point
equations (48) in the following compact form sr = (Pr◦Rr)(sr), where sr denotes the vector

sr :=

[
ĉ
x0

]
and two matrices Pr and Rr of operators have the form

Pr :=

[
proxQ∗y0

prox‖·‖1,`2(N),T0

]
and Rr :=

[
I L

− 1
λSL

∗ I

]
. (51)

We show in the following theorem that the compact form fixed-point equation is of finite
dimension. This theorem may be proved by similar arguments in the proof of Theorem 38
and we omit the details.

Theorem 67 If operators Pr and Rr are defined as in (51), then Pr ◦ Rr is an operator

from (Rm, `1(N)) to (Rm, cc) and its fixed-point sr =

[
ĉ
x0

]
∈ (Rm, `1(N)) satisfies x0 ∈ cc

and supp(x0) ⊆ supp(S(L∗(ĉ)).

A solution of the regularization problem (47) with B := `1(N) guaranteed by Theorems
64 and 67 has an additional property.

Remark 68 Each solution x0 ∈ `1(N) of the regularization problem (47) together with
ĉ ∈ Rm satisfying the fixed-point equations (48) is of finite dimension, that is, it satisfies
x0 ∈ cc and supp(x0) ⊆ supp(S(L∗(ĉ)).

Theorem 64 provides a theoretical foundation for algorithmic development for solving
the regularization problem (35) with B := `1(N). Specifically, the fixed-point equations (48)
on the finite dimensional space will serve as a starting point to design efficient fixed-point
iterative algorithms. We postpone further algorithmic development for a future project.

To close this section, we comment on closed-form formulas for the proximity operator
of loss functions, required to find a fixed-point according to equations (48). The closed-
form of prox‖·‖1,`2(N),T0 has been given in (30). When the loss function is not differentiable,
we also need a closed-form formula for its proximity operator. The proximity operator of
certain commonly used loss functions can also be computed explicitly (Li et al., 2019). For
example, if Qy is defined as in (38), the proximity operator proxQy

at a := [aj : j ∈ Nm]

has the form proxQy
(a) := [bj : j ∈ Nm], where for all j ∈ Nm, bj := aj +yj , if yjaj < 1−y2j ,

bj := 1/yj , if 1− y2j ≤ yjaj < 1, bj := aj , if yjaj ≥ 1. If Qy is defined as in (37), we present
the proximity operator proxQy

at a := [aj : j ∈ Nm] as follows. If ε ≥ 1/2, then for all
j ∈ Nm

bj :=



aj + 1, if aj < −ε− 1 + yj ,
−ε+ yj , if − ε− 1 + yj ≤ aj < −ε+ yj ,
aj + 1 if − ε+ yj ≤ aj < ε− 1 + yj ,
aj , if ε− 1 + yj ≤ aj < ε+ yj ,
ε+ yj , if ε+ yj ≤ aj < ε+ 1 + yj ,
aj − 1, if aj ≥ ε+ 1 + yj .
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If ε < 1/2, then for all j ∈ Nm

bj :=


aj + 1, if aj < −ε− 1 + yj ,
−ε+ yj , if − ε− 1 + yj ≤ aj < −ε+ yj ,
aj , if − ε+ yj ≤ aj < ε+ yj ,
ε+ yj , if ε+ yj ≤ aj < ε+ 1 + yj ,
aj − 1, if aj ≥ ε+ 1 + yj .

8. Note on the Related Existing Work

In this note, we identify the relation of the representer theorems obtained in this paper with
those that have already existed in the literature.

Certain forms of implicit solution representations of the MNI problem in some Banach
spaces exist in the literature. In Proposition 7 that summarizes four implicit solution
representations of the MNI problem in Banach spaces, the equivalence of (i) and (iii) was
established in Micchelli and Pontil (2004). From Remark 11 which gives a special explicit
representer theorem when B is a Banach space having the smooth dual space B∗, one can
immediately obtain the classical representer theorem for the MNI problem in an RKHS H
(Wendland, 2005), by employing the facts that H = H∗ and f = ‖f‖HG(f) for any f ∈ H
in this special case. The implicit representer theorems for the MNI problem in a semi-inner-
product RKBS, stated in (1) of Corollary 16 was originally obtained in Zhang et al. (2009)
by a different approach: the orthogonality in a semi-inner-product RKBS, characterized
through the dual element and the semi-inner-product. The implicit representer theorems
for the MNI problem in a right-sided RKBS, stated in Corollary 17, were originally obtained
in Xu and Ye (2019) by a different approach: the orthogonality in these Banach spaces,
described through the Gâteaux derivatives and reproducing properties.

Likewise, certain forms of implicit solution characterizations for the regularization prob-
lem have also been established in some Banach spaces, in the literature. Among the four
implicit solution characterizations established in Proposition 42 for the regularization prob-
lem in a general Banach space, (iv) for a special regularizer ϕ(t) := t2, t ∈ R+, was obtained
in Huang et al. (2020) and (iii) was derived in Unser (2019b) via a different approach, the
duality mapping. The well-known representer theorem in an RKHS which was originally
established in Kimeldorf and Wahba (1970) and was generalized for non-quadratic loss
functions and nondecreasing regularizers (Argyriou et al., 2009; Cox and O’Sullivan, 1990;
Schölkopf et al., 2001) can be obtained from Remark 45 by specifying the smooth Banach
space B to be the RKHS H and noting that H = H∗ and f = ‖f‖HG(f) for any f ∈ H
in this special case. Remark 45 also leads directly to the representer theorem for regu-
larization problems in an FRKHS from a finite number of non-point-evaluation functional
data, which was originally established in Wang and Xu (2019). The implicit representer
theorem for the regularization problem in a semi-inner-product RKBS (stated in Corollary
50) was originally proved in Zhang et al. (2009) and Zhang and Zhang (2012) and that in
a right-sided RKBS (stated in Corollary 52) was established in Xu and Ye (2019), both by
a different approach: the orthogonality in Banach spaces.

The explicit representer theorems for Banach spaces have not been seen in the literature,
to our best knowledge, except for the Hilbert spaces.
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Appendix A. Sparse Classification in Reproducing Kernel Banach Spaces

We discuss briefly in this appendix the relevance of RKBSs to machine learning, by recalling
an example of sparse classification.

We consider a typical machine learning problem of classifying two groups of data points.
Suppose that training data D := {(xk, yk) : k ∈ Nn} composed of input data points X :=
{xk : k ∈ Nn} ⊂ Rd and output data values Y := {yk : k ∈ Nn} ⊂ {−1, 1} are given. We
wish to find a hyperplane s(x) = 0, where

s(x) := wTs x− bs, for all x ∈ Rd, (52)

that separates the data D into two groups: one with label yk = 1 which corresponds to
s(xk) > 0 and the other with label yk = −1 which corresponds to s(xk) < 0.

We first review an RKHS approach to this problem. The parameters (ws, bs) ∈ Rd × R
appearing in function s defined by (52) are chosen such that the hyperplane maximizes its
distances to the two groups of points in D. The function s will give us a decision rule

r(x) := sign(s(x)), for x ∈ Rd (53)

to predict labels for new data points. To determine the parameters (ws, bs) ∈ Rd × R, we
select two hyperplanes wTx− b = 1 and wTx− b = −1 that both parallel to s(x) = 0 and
separate the two groups of data in the way that the distance between them is as large as
possible. The region bounded by these two hyperplanes is called the margin. Note that the
distance between these two hyperplanes is 2

‖w‖2 . Maximizing the distance between the two

hyperplanes is equivalent to minimizing ‖w‖22 . To prevent data points from falling into the
margin, we add the constraints

yk(w
Txk − b) ≥ 1, k ∈ Nn. (54)

Thus, the parameters (ws, bs) are obtained by solving a constrained minimization problem

min

{
1

2
‖w‖2 : (w, b) ∈ Rd × R, subject to constraints (54)

}
. (55)

The constrained minimization problem (55) may be reformulated in a regularization form
by using the hinge loss function

L(y, t) := max{0, 1− yt}, for y ∈ {−1, 1} and t ∈ R,
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to write the constraints (54) as a fidelity term. That is, we consider regularization problem

(ws, bs) := argmin

 1

n

∑
k∈Nn

L(yk, w
Txk − b) + λ‖w‖22 : (w, b) ∈ Rd × R

 . (56)

The solution (ws, bs) of (56) yields the function s for the decision rule (53).
Model (56) may lead to misclassification, since not all data sets in Rd can be separated

by a hyperplane in the same space Rd. To alleviate misclassification, one possible approach
is to map the given data sets in Rd to a higher dimensional space (or even an infinite
dimensional space) and perform classification in the new space. The idea is to choose an
appropriate feature map Φ : Rd → RD with d � D. When D = +∞, RD will be replaced
by a Hilbert space H. We shall discuss the choice of the feature map below.

It is worth to comment the advantage of developing learning methods in an infinite-
dimensional space of functions over a finite-dimensional space. An infinite-dimensional space
of functions has much more capacity of representing a function than a finite dimensional
one. In particular, for the classification problem, given data sets are more likely separable
by a hyperplane in an infinite dimensional space than by that in a finite dimensional one.
One may argue that a learning method in an infinite dimensional space may require more
computational complexity to implement it than in a finite dimensional one. This may be
the case if the infinite dimensional space is arbitrarily chosen. When an RKHS is used, due
to the masterful representer theorem of learning in an RKHS, the learning method in such
a space reduces to finding a finite number of coefficients of elements in it. It is the main
focus of this article to study representer theorems of learning in RKBSs.

Let us return to our original problem. Due to the fact that function values are used,
we would require that the Hilbert space of functions that we choose to work with has the
property that the point evaluation functionals are continuous in the space. This naturally
leads to the choice of a RKHS that is a Hilbert space in which the point evaluation func-
tionals are continuous. For this reason, we choose a RKHS H, with the reproducing kernel
K, as the feature space and Φ : Rd → H, defined by Φ(x) := K(x, ·), as the feature map.
In this way, one can extend the regularization problem (56) to

min

 1

n

∑
k∈Nn

L(yk, f(xk)) + λ‖f‖2H : f ∈ H

 (57)

to determine a function f that define a decision rule. The representer theorem (Schölkopf et
al., 2001) yields the representation of the optimal solution f∗ of the optimization problem
(57) as

f∗(x) =
∑
k∈Nn

ckK(xk, x), (58)

for some suitable parameters ck ∈ R, k ∈ Nn. We remark that the regularization problem
(56) with b = 0 is a special case of (57), with K(x, y) := 〈x, y〉, for all x, y ∈ Rd, and
H := {〈·, x〉 : x ∈ Rd}, f(x) = wTx, for x ∈ Rd, and ‖f‖H = ‖w‖2.

We next describe how the RKBS comes into play in classification. Learning methods
in an RKHS result in dense representations (58) of learning solutions, that is, most of the
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terms in (58) are nonzero. A dense representation of a learning solution requires large com-
putational costs to implement it. In the context of big data analytics, it is desirable to have
sparse learning methods. To this end, we appeal to Banach spaces, since nonsmoothness of
certain Banach spaces such as the 1-norm space may lead to sparse learning methods. This
may be illustrated by an example given in (Cheng and Xu, 2021). Specifically, consider
seeking x∗p ∈ `p(N) for p = 1, 2 such that

‖x∗p‖p = inf{‖x‖p : x ∈ `p(N), 〈uj , x〉`p = yj , j = 1, 2}, (59)

where y1 = 3, y2 = 4, u1 =
(
1
n : n ∈ N

)
, u2 =

(
1

(−2)n−1 : n ∈ N
)
. The solutions of problem

(59) with p = 1 and p = 2 are given by x∗1 = (72 ,−1, 0, 0, . . .) and x∗2 = (0.4924584n + 2.7004714
(−2)n−1 :

n ∈ N), respectively. Clearly, the solution x∗1 in the Banach space `1(N) is sparse while the
solution x∗2 in the Hilbert space `2(N) is dense. Solutions of regularized learning methods
in the 1-norm space also exhibit sparsity but those in the 2-norm space do not.

Aiming at obtaining a sparse solution, instead of solving the regularization problem
(57), we consider solving the regularization problem

min

 1

n

∑
k∈Nn

L(yk, f(xk)) + λ‖f‖B : f ∈ B

 , (60)

where B denotes an RKBS. Problems (57) and (60) have the same fidelity term but different
regularization terms, one in an RKHS and one in an RKBS. The solution of the regular-
ization problem (60) may lead to sparse classification solutions if B is chosen to be the
1-norm RKBS. The reason for which a reproducing kernel is required is due to the use of
the function values f(xk) in the fidelity term of problem (60). Specific numerical examples
of classification in RKBSs which demonstrate the accuracy and sparsity of the resulting
learning solutions may be found in (Li et al., 2018; Xu and Ye, 2019; Lin et al., 2021).

To close this section, we mention a recent paper Adcock et al. (2021) which studied
infinite-dimensional compressed sensing. According to Adcock et al. (2021), there are ad-
vantages of using an infinite-dimensional compressed sensing model for analog problems.
Although much of the compressive imaging literature considers the recovery of discrete
images from discrete measurements, modalities such as MRI and NMR are naturally ana-
log. Hence, better modeled them over the continuum. Applying finite-dimensional recovery
procedures to analog problems can result in artefacts. The setting of MNI or regulariza-
tion problems in Banach spaces considered in this paper covers the infinite-dimensional
compressed sensing model.

Appendix B. Proofs for Section 2

Proof [of Proposition 1] We prove the existence for the case that B has a separable pre-dual
space B∗ by a weak∗ minimizing sequence argument. Since for any y ∈ Rm, the set My is
nonempty, there exists a sequence fn, n ∈ N, inMy satisfying limn→+∞ ‖fn‖B = inf{‖f‖B :
f ∈ My}. This ensures that the sequence fn, n ∈ N, is bounded. By the Banach-Alaoglu

theorem, there exists a subsequence fnk
, k ∈ N, which weakly∗ converges to f̂ ∈ B. It

suffices to prove that the weak∗ accumulation point f̂ is a solution of the MNI problem (3).
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We first verify that f̂ satisfies the interpolation condition. Since νj ∈ B∗, j ∈ Nm, the

linear functionals νj are weakly∗ continuous. This leads to 〈νj , f̂〉B = limk→+∞〈νj , fnk
〉B, for

all j ∈ Nm. By the fact that fn ∈ My, n ∈ N, we get L(f̂) = y. That is, the interpolation
condition holds. Note that the norm ‖·‖B is weakly∗ lower semi-continuous on B. According
to the weak∗ convergence of fnk

, k ∈ N, there holds ‖f̂‖B ≤ lim infk→+∞ ‖fnk
‖B, which

yields that f̂ is a solution of problem (3).
In the case that the pre-dual space B∗ is non-separable, the desired result may be proved

by the generalized Weierstrass theorem in the weak∗ topology (Kurdila and Zabarankin,
2005).

Appendix C. Proofs for Section 3

Proof [of Proposition 2] We first remark that the relation between My and M0 leads to
the following fact: If y ∈ Rm\{0}, then d(f,M0) = d(g,My), for all f ∈My and g ∈M0.

An element f̂ ∈ B is a solution of problem (3) with y if and only if f̂ ∈ My and

‖f̂‖B = inf{‖f‖B : f ∈ My} = d(0,My). By the fact established earlier, we get that f̂ is

a solution of (3) if and only if f̂ ∈ My and ‖f̂‖B = d(f̂ ,M0). The latter is equivalent to

f̂ ∈My and 0 being a best approximation to f̂ from M0.

To prove Lemma 4, we recall Proposition 2.6.6 of Megginson (1998) which states that for a
subset M′ in B∗, the set (⊥M′)⊥ coincides with the closed linear span of M′ in the weak∗

topology of B∗. For a subset M′ of B∗, we denote by M′w∗ the closure of M′ in the weak∗

topology of B∗.
Proof [of Lemma 4] We prove this lemma by appealing to Proposition 2.6.6 of Megginson
(1998). The definition of the annihilator leads to M0 = ⊥Vm. Applying Proposition 2.6.6
of Megginson (1998) with M′ := Vm yields that M⊥0 = (⊥Vm)⊥ = spanVm

w∗
. Since the

linear span of Vm is a finite dimensional subspace of B∗, there holds spanVm
w∗

= spanVm.
Substituting this equation into the right hand side in the equation above leads to the desired
result of this lemma.

Proof [of Proposition 5] We first consider the case that y := [yj : j ∈ Nm] = 0. Note that

the MNI problem (3) with y = 0 has a unique solution f̂ = 0.On one hand, it is clear that the
trivial solution f̂ = 0 belongs toM0. Moreover, equations (6) also hold by choosing cj ∈ R,
j ∈ Nm such that the norm of the functional ν :=

∑
j∈Nm

cjνj equals to 1. On the other

hand, if f̂ ∈My and there exist cj ∈ R, j ∈ Nm, such that the functional ν :=
∑

j∈Nm
cjνj

satisfying 〈ν, f̂〉B = ‖f̂‖B, then ‖f̂‖B =
∑

j∈Nm
cj〈νj , f̂〉B =

∑
j∈Nm

cjyj = 0, which further

implies f̂ = 0. That is, we get the desired conclusion for y = 0 .
If y 6= 0, Proposition 3 ensures that f̂ ∈ B is a solution of the MNI problem (3) with y if

and only if f̂ ∈My and there is a continuous linear functional ν ∈M⊥0 satisfying equations
(6). By Lemma 4, there exist cj ∈ R, j ∈ Nm, such that this continuous linear functional ν
has the form ν =

∑
j∈Nm

cjνj . This establishes the desired result of this proposition.

To prove Theorem 6, we review the Lagrange multiplier method as follows.
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Lemma 69 If φ and ψj, j ∈ Nm, are all convex functions from B to R, then f̂ ∈ B is a
solution of the optimization problem

inf{φ(f) : f ∈ B, ψj(f) = 0, j ∈ Nm}

if and only if ψj(f̂) = 0, j ∈ Nm, and there exist λj ∈ R, j ∈ Nm, such that 0 ∈
∂
(
φ+

∑
j∈Nm

λjψj

)
(f̂). Moreover, if ψj, j ∈ Nm, are continuous at f̂ , then the inclu-

sion is equivalent to 0 ∈ ∂φ(f̂) +
∑

j∈Nm
λj∂ψj(f̂).

By Lemma 69 we provide a complete proof of Theorem 6 in the following.

Proof [of Theorem 6] According to Lemma 69 with φ := ‖ · ‖B and ψj := 〈νj , ·〉B − yj ,
j ∈ Nm, we have that f̂ is a solution of (3) if and only if 〈νj , f̂〉B = yj , j ∈ Nm, and there
exist λj ∈ R, j ∈ Nm, such that

0 ∈ ∂

‖ · ‖B +
∑
j∈Nm

λj (〈νj , ·〉B − yj)

 (f̂). (61)

Since νj , j ∈ Nm, are continuous on B, Lemma 69 ensures that equation (61) is equivalent
to

0 ∈ ∂‖ · ‖B(f̂) +
∑
j∈Nm

λj∂(〈νj , ·〉B − yj)(f̂). (62)

It follows from the linearity of 〈νj , ·〉B, j ∈ Nm, that ∂〈νj , ·〉B(f̂) = νj , j ∈ Nm. Substituting

these equations into (62) leads to −
∑

j∈Nm
λjνj ∈ ∂‖ · ‖B(f̂). Choosing cj := −λj , for

j ∈ Nm, completes the proof of this theorem.

Proof [of Proposition 7] The equivalence of statements (i) and (ii) and that of (i) and (v)
have been proved in Proposition 5 and Theorem 6, respectively. It remains to verify the
equivalence of statements (ii), (iii) and (iv).

We first show the equivalence of statements (ii) and (iii). On one hand, if statement (ii)
holds, there exist cj ∈ R, j ∈ Nm, such that the linear functional ν :=

∑
j∈Nm

cjνj satisfies

the equations in (ii). It is clear that this functional ν peaks at f̂ . That is, statement (iii)
holds. On the other hand, if statement (iii) holds, there exist cj ∈ R, j ∈ Nm, such that
the nonzero linear functional ν :=

∑
j∈Nm

cjνj satisfies the equation in (iii). By setting
c̃ := c

‖ν‖B∗
and ν̃ :=

∑
j∈Nm

c̃jνj , we get that ν̃ satisfies the two equations in (ii) and thus

statement (ii) holds.

We next prove the equivalence of statements (ii) and (iv). Note that if f̂ = 0, state-
ments (ii) and (iv) both hold without any assumptions. Specifically, the two equations in
(ii) hold by choosing cj ∈ R, j ∈ Nm, such that the norm of ν :=

∑
j∈Nm

cjνj equals to
1. On the other hand, the inclusion relation in (iv) can be obtained by choosing cj = 0,

j ∈ Nm. Hence, it remains to prove the equivalence for the case that f̂ 6= 0. For each
c := [cj : j ∈ Nm] ∈ Rm, we scale it by setting c̃ := ‖f̂‖Bc. Set ν :=

∑
j∈Nm

cjνj and
ν̃ :=

∑
j∈Nm

c̃jνj . Clearly, ν satisfies the equations in (ii) if and only if ν̃ satisfies that

‖ν̃‖B∗ = ‖f̂‖B and 〈ν̃, f̂〉B = ‖ν̃‖B∗‖f̂‖B, which is equivalent to that ν̃ satisfies the inclusion
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relation in (iv).

Proof [of Theorem 8] If y := [yj : j ∈ Nm] = 0, the MNI problem (3) has a unique solution

f̂ = 0. It is clear that the trivial solution f̂ ∈ M0 and equation G(f̂) =
∑

j∈Nm
cjνj holds

by choosing cj = 0, j ∈ Nm. Conversely, if f̂ ∈ M0 and satisfies G(f̂) =
∑

j∈Nm
cjνj for

some cj ∈ R, j ∈ Nm, we have that 〈G(f̂), f̂〉B =
∑

j∈Nm
cj〈νj , f̂〉B =

∑
j∈Nm

cjyj = 0,

which together with 〈G(f̂), f̂〉B = ‖f̂‖B implies f̂ = 0.
We prove this theorem for the case that y 6= 0 by employing the equivalent conditions

(i) and (v) in Proposition 7. To this end, we first show that the subdifferential of the norm
‖ · ‖B at any f ∈ B\{0} is the singleton G(f), that is, ∂‖ · ‖B(f) = {G(f)}. Suppose that
ν ∈ ∂‖ · ‖B(f). Let t ∈ R and h ∈ B. Then the definition of the subdifferentiable of
φ := ‖ · ‖B with g := f + th leads to t〈ν, h〉B ≤ ‖f + th‖B − ‖f‖B, which further implies

lim
t→0−

‖f + th‖B − ‖f‖B
t

≤ 〈ν, h〉B ≤ lim
t→0+

‖f + th‖B − ‖f‖B
t

.

Since B is smooth, the norm ‖ · ‖B is Gâteaux differentiable at f . Hence, we get that

〈ν, h〉B = limt→0
‖f+th‖B−‖f‖B

t . It follows from equation (9) that ν = G(f). Due to the
arbitrariness of ν ∈ ∂‖ · ‖B(f), we obtain ∂‖ · ‖B(f) = {G(f)}.

According to Proposition 7, f̂ ∈ B is a solution of the MNI problem (3) with y if and
only if f̂ ∈ My and there exist cj ∈ R, j ∈ Nm, such that the functional ν :=

∑
j∈Nm

cjνj

belongs to ∂‖·‖B(f̂). By equation ∂‖·‖B(f̂) = {G(f̂)} and noting that f̂ 6= 0, the functional
ν coincides with the Gâteaux derivative of the norm ‖ · ‖B at f̂ , which completes the proof
of the desired result.

Proof [of Lemma 9] According to equation (8), ν ∈ B∗ satisfies the inclusion in the left hand

side of (10) if and only if
〈

ν
‖ν‖B∗

, f
〉
B

= ‖f‖B, which is equivalent to 〈ν, f〉B = ‖ν‖B∗‖f‖B.
It follows from equation (4) that the above equation is equivalent to 〈f, ν〉B∗ = ‖ν‖B∗‖f‖B,
which holds if and only if

〈
f
‖f‖B , ν

〉
B∗

= ‖ν‖B∗ . Again by equation (8) with B being replaced

by B∗, the latter equation is equivalent to that f ∈ B satisfies the inclusion in the right
hand side of (10). Consequently, we obtain the equivalence between the two inclusions in
(10).

Proof [of Theorem 10] We first prove this result for y = 0. In this case, the MNI problem
(3) has a unique solution f̂ = 0. On one hand, if f̂ = 0, there hold f̂ ∈ M0 and equation
(11) with cj = 0, j ∈ Nm. On the other hand, suppose that f̂ ∈ M0 and equation (11)

holds for some cj ∈ R, j ∈ Nm. Set ν :=
∑

j∈Nm
cjνj . It follows that 〈ν, f̂〉B = 0 and

f̂ ∈ ‖ν‖B∗∂‖ · ‖B∗(ν). If ν = 0, the inclusion above leads to f̂ = 0. If ν 6= 0, by the inclusion

above we have that
〈

f̂
‖ν‖B∗

, ν
〉
B∗

= ‖ν‖B∗ , which together with (4) leads to 〈ν, f̂〉B = ‖ν‖2B∗ .

Since 〈ν, f̂〉B = 0, we get that ν = 0, which is a contradiction.
We prove this theorem for y 6= 0 by employing condition (v) in Proposition 7 and

Lemma 9. Proposition 7 ensures that f̂ ∈ B is a solution of the MNI problem (3) if and
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only if f̂ ∈My and there exist ĉj ∈ R, j ∈ Nm, such that∑
j∈Nm

ĉjνj ∈ ∂‖ · ‖B(f̂). (63)

Set cj := ‖f̂‖B ĉj , j ∈ Nm. It suffices to prove that ĉj ∈ R, j ∈ Nm, satisfies (63) if and only
if cj ∈ R, j ∈ Nm, satisfies (11).

On one hand, suppose that ĉj ∈ R, j ∈ Nm, satisfies (63). Note that since y 6= 0, f̂ 6= 0.
Then by equation (63), the functional ν̂ :=

∑
j∈Nm

ĉjνj satisfies that ‖ν̂‖B∗ = 1. By Lemma
9 we get that

f̂ ∈ ‖f̂‖B∂‖ · ‖B∗(ν̂). (64)

Set ν :=
∑

j∈Nm
cjνj . It follows that ν = ‖f̂‖Bν̂ which together with ‖ν̂‖B∗ = 1 yields

that ‖ν‖B∗ = ‖f̂‖B. Noting by equation (8) that ∂‖ · ‖B∗(ν̂) = ∂‖ · ‖B∗(ν). Substituting this
equation and ‖ν‖B∗ = ‖f̂‖B into (64), we get that f̂ ∈ ‖ν‖B∗∂‖ · ‖B∗(ν). That is, cj ∈ R,
j ∈ Nm, satisfies (11).

On the other hand, suppose that cj ∈ R, j ∈ Nm, satisfies (11). Since f̂ 6= 0, we have

that the functional ν :=
∑

j∈Nm
cjνj are nonzero and then there holds ‖ν‖B∗ = ‖f̂‖B. By

Lemma 9 we obtain that ν
‖ν‖B∗

∈ ∂‖ · ‖B(f̂), which together with the equation above yields

that ĉj ∈ R, j ∈ Nm, satisfies (63).

Proof [of Theorem 12] Theorem 10 ensures that f̂ ∈ B is a solution of (3) with y if and
only if f̂ ∈ My and there exist cj ∈ R, j ∈ Nm, satisfying (11). It suffices to show that

f̂ ∈ B satisfies (11) if and only if it satisfies the desired representation of this theorem. Set
ν :=

∑
j∈Nm

cjνj . According to equation (8), f̂ satisfies (11) if and only if 〈f̂ , ν〉B∗ = ‖ν‖2B∗ .
Since ν ∈ B∗, by equations (4) and (5), the above equation is equivalent to 〈f̂ , ν〉B∗ = ‖ν‖2B∗ .
Again by (8) with B being replaced by B∗, we get that the above equation holds if and only
if f̂ satisfies the desired representation.

Proof [of Theorem 14] Since B is uniformly convex, we have that B is reflexive and strictly
convex. By Proposition 1, the reflexivity of B ensures the existence of a solution of (3).
The uniqueness of the solution can also be obtained by the strict convexity of B. That is,
the MNI problem (3) has a unique solution f̂ .

Since B is smooth, Theorem 8 ensures that there exist coefficients c̃j ∈ R, j ∈ Nm, such
that

G(f̂) =
∑
j∈Nm

c̃jg
]
j . (65)

It suffices to identify the Gâteaux derivative G(f̂) with the dual element f̂ ] of f̂ . The
relation between the semi-inner-product and the Gâteaux derivative of the norm ‖ · ‖B was
given in Giles (1967), that is,

lim
t→0

‖g + tf‖B − ‖g‖B
t

=
[f, g]B
‖g‖B

, for all f, g ∈ B and g 6= 0.
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This together with (9) and the definition of the dual element leads to G(g) = g]

‖g‖B , for all g ∈
B \ {0}. Notice that for g = 0 there holds g] = 0 and G(g) = 0. Hence, we can get a gener-
alized formula as

g] = ‖g‖BG(g), for all g ∈ B. (66)

Substituting this representation with g := f̂ into the left hand side of equation (65), we

get that f̂ ] =
∑

j∈Nm
‖f̂‖B c̃jg]j . Choosing cj := ‖f̂‖B c̃j , j ∈ Nm, we obtain the desired

representation of f̂ as in statement (1).

The fact that B is uniformly convex guarantees that B∗ is uniformly Fréchet smooth.
Thus, the hypotheses of Remark 11 are satisfied. By Remark 11 there exist cj ∈ R, j ∈ Nm,
such that f̂ = ρG∗

(∑
j∈Nm

cjg
]
j

)
, with ρ :=

∥∥∥∑j∈Nm
cjg

]
j

∥∥∥
B∗
. Combining this equation

with (66), we get the desired representation of f̂ as in statement (2).

To prove Lemma 15, we need the notion of the dual element of ν ∈ B∗. Since the dual
space B∗ is also uniformly Fréchet smooth and uniformly convex, there also exists a unique
semi-inner-product [·, ·]B∗ : B∗ ×B∗ → R that induces the norm of B∗. Furthermore, it was
pointed out in Giles (1967) that

[f ], g]]B∗ = [g, f ]B, for all f, g ∈ B, (67)

defines the semi-inner-product on B∗. Again, the semi-inner-product [·, ·]B∗ is not linear
with respect to the second variable. Note that B is reflexive. According to the semi-inner-
product (67) on B∗, we can also define the dual element ν] ∈ B of ν ∈ B∗ as

〈µ, ν]〉B := [µ, ν]B∗ , for all µ ∈ B∗. (68)

Proof [of Lemma 15] On one hand, since f ]] is the dual element of f ] ∈ B∗, for any g] ∈ B∗
there holds 〈g], f ]]〉B = 〈f ]], g]〉B∗ = [g], f ]]B∗ . On the other hand, for any g] ∈ B∗ there
holds 〈g], f〉B = [f, g]B. Hence, according to (67), we get that 〈g], f ]]〉B = 〈g], f〉B, for all
g] ∈ B∗, which further implies f ]] = f.

Proof [of Corollary 17] The reflexivity and strict convexity of the RKBS B ensure that
problem (3) has a unique solution f̂ . Since B is smooth, Theorem 8 with νj := δxj , j ∈ Nm,

ensures that there exist cj ∈ R, j ∈ Nm, such that G(f̂) =
∑

j∈Nm
cjδxj . It follows from

the reproducing property that the right-sided reproducing kernel K provides a closed-form
function representation for the point-evaluation functionals. Hence, the above representa-
tion coincides with the desired one.

Proof [of Theorem 18] As pointed out in Corollary 17, problem (3) has a unique solution
f̂ . Since B is reflexive, it follows from the strict convexity of B that B∗ is smooth. The
hypotheses of Remark 11 are satisfied. Hence, by Remark 11, there exist cj ∈ R, j ∈ Nm,
such that f̂ = ρG∗

(∑
j∈Nm

cjδxj

)
, with ρ :=

∥∥∥∑j∈Nm
cjδxj

∥∥∥
B∗
. By using the reproduc-

tion property, we obtain from the above equation the desired formula.

45



Wang and Xu

Proof [of Theorem 20] We first consider the case when y = 0. The MNI problem (3) with
y = 0 has a unique solution x̂ = 0. On one hand, if x̂ = 0, there hold x̂ ∈ M0 and the
desired representation of x̂ with cj = 0, j ∈ Nm. On the other hand, suppose that x̂ ∈ M0

and the desired representation holds for some cj ∈ R, j ∈ Nm. Set u := (uj : j ∈ N). It
follows that 〈u, x̂〉`1 = 0 and

x̂ = ‖u‖∞
∑
k∈Nn

tksign(ujk)ejk , (69)

for some n ∈ N, jk ∈ N(u), tk ∈ R+, k ∈ Nn, with
∑

k∈Nn
tk = 1. If u = 0, equation (69)

leads to x̂ = 0. If u 6= 0, by equation (69) we have that

〈u, x̂〉`1 = ‖u‖∞
∑
k∈Nn

tksign(ujk)〈u, ejk〉`1 = ‖u‖∞
∑
k∈Nn

tk|ujk |. (70)

By definition of N(u), there holds |ujk | = ‖u‖∞, for all k ∈ Nn. Substituting the equations
above and the fact that

∑
k∈Nn

tk = 1 into the right hand side of equation (70), we obtain
that 〈u, x̂〉`1 = ‖u‖2∞, which together with 〈u, x̂〉`1 = 0 yields u = 0. This is a contradiction.

We prove this result for y 6= 0 by employing Theorem 12. Note that the MNI problem
(3) with y 6= 0 has no trival solution. Since `1(N) has c0 as its pre-dual space, Theorem 12
ensures that x̂ ∈ `1(N) is a solution of the MNI problem (3) if and only if x̂ ∈My and there

exist cj ∈ R, j ∈ Nm, such that x̂ ∈ γ∂‖ · ‖∞
(∑

j∈Nm
cjuj

)
, with γ :=

∥∥∥∑j∈Nm
cjuj

∥∥∥
∞
.

Substituting the subdifferential formula of Lemma 19 into the right hand side of the above
equation and letting u :=

∑
j∈Nm

cjuj , we get the desired representation of x̂.

Appendix D. Proofs for Section 4

Proof [of Theorem 21] Suppose that f̂ in the form (16) for some c ∈ Rm is a solution of
(3) with y. Substituting (16) into the interpolation condition L(f̂) = y, we have that the
vector c satisfies (17).

Conversely, we suppose that the vector c satisfies the system of equations (17). We
first comment that f̂ in the form (16) is in B since the operator G∗ maps B∗ to B. We
will prove by Remark 13 that f̂ is a solution of the MNI problem (3) with y. Substituting
(16) into (17) leads to the interpolation condition L(f̂) = y. Then by Remark 13 and the
representation of the adjoint operator L∗, we conclude that f̂ ∈ B is a solution of the MNI
problem (3) with data y.

Proof [of Corollary 22] By Proposition 21 we have that f̂ in the form (16) is the solution of
the MNI problem (3) with y if and only if c ∈ Rm satisfies (17). According to the relation
between the semi-inner-product and the Gâteaux derivative of the norm ‖ · ‖B

‖L∗(c)‖B∗G∗(L∗(c)) = (L∗(c))], (71)

we represent f̂ as in f̂ = (L∗(c))]. Substituting (71) into (17), with noting that νk := g]k
for all k ∈ Nm, we have that 〈g]k, (L

∗(c))]〉B = yk, k ∈ Nm. This together with (68) leads to
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(19). That is, f̂ having the form f̂ = (L∗(c))] is a solution of the MNI problem (3) with y
if and only if c ∈ Rm is a solution of (19).

To prove Proposition 23, for any c ∈ Rm, we set φ(c) := ‖L∗(c)‖B∗ and ψ(c) := 〈c,y〉Rm−1.
We also need to describe the chain rule of the subdifferential (Showalter, 1997). Let B1 and
B2 be two real Banach spaces. Supposet that ϕ : B2 → R∪ {+∞} is a convex function and
T : B1 → B2 is a bounded linear operator. If ϕ is continuous at some point of the range of
T , then for all f ∈ B1

∂(ϕ ◦ T )(f) = T ∗∂ϕ(T (f)). (72)

Proof [of Proposition 23] As a composition of the linear function L∗(·) and the convex
function ‖·‖B∗ , the function φ is convex on Rm. Moreover, it is easy to see the convexity and
the continuity of the function ψ. By Lemma 69, ĉ is a solution of the optimization problem
(20) with y if and only if 〈ĉ,y〉Rm = 1 and there exists η ∈ R such that 0 ∈ ∂φ(ĉ) +η∂ψ(ĉ).
Note that φ = ‖ · ‖B∗ ◦ L∗, L∗ : Rm → B∗ is a bounded linear operator and the norm
‖ · ‖B∗ is continuous on B∗. Then by the chain rule (72) of subdifferentials, we have that
∂φ(ĉ) = L∂‖ ·‖B∗(L∗ĉ). Since ψ is linear, there holds ∂(ψ)(ĉ) = y. Accordingly, we get that
∂φ(ĉ) + η∂ψ(ĉ) = L∂‖ · ‖B∗(L∗(ĉ)) + ηy. It follows that ĉ is a solution of (20) if and only
if 〈ĉ,y〉Rm = 1 and there exist η ∈ R and f ∈ ∂‖ · ‖B∗(L∗(ĉ)) such that L(f) + ηy = 0. By
setting λ = −η, we get the desired conclusion.

Proof [of Proposition 24] We first suppose that ĉ ∈ Rm is a solution of the minimization
problem (20) with y. Proposition 23 ensures that 〈ĉ,y〉Rm = 1 and there exists λ ∈ R
and f ∈ ∂‖ · ‖B∗(L∗(ĉ)) such that L(f) = λy. It follows from f ∈ ∂‖ · ‖B∗(L∗(ĉ)) that
〈L∗(ĉ), f〉B = ‖L∗(ĉ)‖B∗ , which further yields that 〈ĉ,L(f)〉Rm = ‖L∗(ĉ)‖B∗ . Substituting
L(f) = λy into the latter equation, we have that λ〈ĉ,y〉Rm = ‖L∗(ĉ)‖B∗ . This together
with 〈ĉ,y〉Rm = 1 leads to λ = ‖L∗(ĉ)‖B∗ . Set f̂ := 1

λf. We will show that f̂ belongs to the
intersection in the left side hand of equation (21). Combining inclusion f ∈ ∂‖ · ‖B∗(L∗(ĉ))
with the definition of f̂ , we get that

f̂ ∈ ‖L∗(ĉ)‖−1B∗ ∂‖ · ‖B∗(L
∗(ĉ)). (73)

Moreover, equation L(f) = λy leads directly to the interpolation condition L(f̂) = y. That
is, f̂ ∈ My. Consequently, we conclude that f̂ belongs to the intersection in the left hand
side of equation (21), which leads to the validity of (21).

Conversely, we suppose that (21) holds. That is, there exists f̂ ∈ B satisfying f̂ ∈ My

and inclusion (73). We will prove by employing Proposition 23 that ĉ is a solution of the
minimization problem (20). By inclusion (73) we get that 〈L∗(ĉ), f̂〉B = 1, which yields
that 〈ĉ,L(f̂)〉Rm = 1. Substituting the interpolation condition L(f̂) = y into the above
equation, we have that 〈ĉ,y〉Rm = 1. It suffices to verify that there exists λ ∈ R and
f ∈ ∂‖ · ‖B∗(L∗(ĉ)) such that L(f) = λy. Set f := ‖L∗(ĉ)‖B∗ f̂ and λ := ‖L∗(ĉ)‖B∗ . In-
clusion (73) leads directly to f ∈ ∂‖ · ‖B∗(L∗(ĉ)) and the interpolation condition L(f̂) = y
leads to L(f) = λy. Hence, by using Proposition 23 we conclude that ĉ is a solution of the
minimization problem (20) with y.
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Proof [of Theorem 25] We first suppose that f̂ ∈ B is a solution of the MNI problem (3)
with y. Theorem 12 ensures that

f̂ ∈ ‖L∗(c)‖B∗∂‖ · ‖B∗(L∗(c)) ∩My (74)

for some c ∈ Rm. By setting ĉ := c
‖L∗(c)‖2B∗

, we get that

‖L∗(c)‖B∗ =
1

‖L∗(ĉ)‖B∗
and ∂‖ · ‖B∗(L∗(c)) = ∂‖ · ‖B∗(L∗(ĉ)). (75)

Substituting equations in (75) into the right hand side of inclusion (74), we get the desired
inclusion relation, which further leads to (21). Thus, by employing Proposition 24 we
conclude that ĉ is a solution of the minimization problem (20) with y.

Conversely, we suppose that ĉ is a solution of the minimization problem (20) with y.
Note by Proposition 24 that (21) holds. We also suppose that f̂ is an element satisfying the
inclusion relation in this theorem. We will prove by Theorem 12 that f̂ is a solution of the
MNI problem (3). Set c := ĉ

‖L∗(ĉ)‖2B∗
. It follows that equations in (75) hold. Substituting

these two equations into the inclusion relation leads to (74). Hence, Theorem 12 ensures
that f̂ is a solution of (3).

Proof [of Theorem 26] As has been shown in the proof of Theorem 10 and Remark 11, for
the trivial solution f̂ = 0, the coefficients appearing in the solution representations of these

theorems are all zeros. Clearly, we have that ‖f̂‖B =
∥∥∥∑j∈Nm

cjνj

∥∥∥
B∗

= 0.

It remains to consider the case of having a nontrivial solution f̂ 6= 0. In this case, the
function ν :=

∑
j∈Nm

cjνj is also nonzero. When f̂ satisfies the inclusion relation (11), we

get that f̂
‖ν‖B∗

∈ ∂‖ · ‖B∗ (ν). Equation (8) ensures that ‖f̂‖B
‖ν‖B∗

= 1, that is, ‖f̂‖B = ‖ν‖B∗ .

When f̂ satisfies the equality (12), equation ‖G∗(ν)‖B = 1. ensures that ‖f̂‖B = ‖ν‖B∗ .

Appendix E. Proofs for Section 5

To prove the theorems in section 5, we first present several useful results. The following
relation between the proximity operator of ψ : Rm → R∪ {+∞} and its subdifferential can
be found in Bauschke and Combettes (2011) and Micchelli et al. (2011).

Lemma 70 If ψ is a convex function from Rm to R ∪ {+∞} and a ∈ dom(ψ), then

b ∈ ∂ψ(a) if and only if a = proxψ(a + b). (76)

In a manner similar to Lemma 70, the proximity operator defined by (25) of a convex
function ψ defined on B is intimately related to the subdifferential of ψ.

Proposition 71 Suppose that B is a Banach space with the dual space B∗ and H is a Hilbert
space. Let T be a bounded linear operator from B to H and T ∗ be its adjoint operator from
H to B∗. If ψ : B → R ∪ {+∞} is a convex function, then for all f ∈ dom(ψ) and g ∈ B

T ∗T (g) ∈ ∂ψ(f) if and only if f = proxψ,H,T (f + g). (77)
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Proof By definition (25) of the proximity operator on the Banach space B, for each
f ∈ dom(ψ) and g ∈ B, the equation f = proxψ,H,T (f + g) is equivalent to

f = arg inf

{
1

2
‖T (f + g − h)‖2H + ψ(h) : h ∈ B

}
.

According to the Fermat rule (Zălinescu, 2002), the above equation holds if and only if
0 ∈ ∂

(
1
2‖T (· − f − g)‖2H + ψ(·)

)
(f). By employing the chain rule (72) of the subdifferential

and noting that the subdifferential of the function ‖ ·‖2H at any element in the Hilbert space
H is a singleton, the inclusion relation above is thus equivalent to 0 ∈ T ∗T (f−f−g)+∂ψ(f).
This inclusion relation is further equivalent to T ∗T (g) ∈ ∂ψ(f), proving the desired result.

Proposition 71 is a generalization of Lemma 70. We explain this point below. Let B be the
Euclidean space Rm with a norm ‖ · ‖. For the norm ‖ · ‖, its dual norm ‖ · ‖] is defined, for
all b ∈ Rm by ‖b‖] := max{|〈a,b〉Rm | : ‖a‖ = 1,a ∈ Rm}. Accordingly, the dual space B∗
is identified with Rm with the dual norm ‖ · ‖]. Choose the Hilbert space H as Rm with the
Euclidean norm ‖ · ‖Rm and the operator T as the identity operator from B to H. Clearly,
the adjoint operator T ∗ is the identity operator from H to B∗. Hence, T ∗T coincides with
the identity operator from B to B∗. In this special case, relation (77) in Proposition 71
reduces to relation (76) in Lemma 70.

The minimization problem (23) involves the composition of the indicator function ιy and
the linear operator L. We need to compute the subdifferential of the composition function
by the chain rule (72) of the subdifferential. However, the pair ιy and L does not satisfy
the hypothesis of the chain rule (72) of the subdifferential since ιy is not continuous at
every point in the range of L. Thus, we cannot use the chain rule (72) directly. In the next
lemma, we verify that the chain rule for the subdifferential of the composition of these two
functions remains valid by using special property of the indicator function ιy.

Lemma 72 Suppose that B is a Banach space with the dual space B∗ and νj ∈ B∗, j ∈ Nm,
are linearly independent. Let L be defined by (1) and L∗ be the adjoint operator. If for a
given y ∈ Rm, My is defined by (2) and the indicator function ιy is defined by (22), then
for all f ∈My

∂(ιy ◦ L)(f) = L∗∂ιy(L(f)). (78)

Proof Let f ∈My. By definition (7) of the subdifferential, we have that ν ∈ ∂(ιy ◦ L)(f)
if and only if

ιy(L(g))− ιy(L(f)) ≥ 〈ν, g − f〉B, for all g ∈ B. (79)

By the definition of the indicator function ιy, we observe that ιy(L(f)) = 0 and ιy(L(g)) =
0, for all f, g ∈My. Thus, condition (79) is equivalent to

〈ν, g − f〉B ≤ 0, for all g ∈My. (80)

The relation ofMy andM0 ensures that condition (80) is equivalent to 〈ν, h〉B ≤ 0, for all
h ∈ M0. Since M0 is a subspace of B, we can rewrite these inequalities in their equivalent
forms 〈ν, h〉B = 0, for all h ∈ M0. That is, ν ∈ M⊥0 , which guaranteed by Lemma 4 is
equivalent to ν ∈ span {νj : j ∈ Nm}. Therefore, we conclude that

∂(ιy ◦ L)(f) = span {νj : j ∈ Nm}. (81)
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On the other hand, clearly, we have that ∂ιy(y) = Rm. Hence, for L(f) = y we get that
L∗∂ιy(L(f)) = L∗∂ιy(y) = L∗(Rm). By the representation of L∗, we conclude that

L∗∂ιy(L(f)) = span {νj : j ∈ Nm}. (82)

Combining equations (81) and (82), we obtain the desired chain rule (78).

Proof [of Theorem 34] By using the Fermat rule together with the chain rule (78) for
the subdifferential of the composition function ιy ◦ L, we see that f̂ ∈ B is a solution of

the minimization problem (23) with y if and only if 0 ∈ ∂‖ · ‖B(f̂) + L∗∂ιy(L(f̂)). This is
equivalent to that there exists c ∈ Rm such that

c ∈ ∂ιy(L(f̂)) (83)

and

−L∗(c) ∈ ∂‖ · ‖B(f̂). (84)

According to the relation (26), we rewrite the inclusion relation (83) as L(f̂) ∈ ∂ι∗y(c).
Lemma 70 ensures the equivalence between the inclusion relation above and the first equa-
tion in (27). By the assumptions on T and noting that L∗(c) ∈ V, we rewrite (84) as

−(T ∗T )(T ∗T )−1L∗(c) ∈ ∂‖ · ‖B(f̂). (85)

By employing Proposition 71 with ψ := ‖ · ‖B, g := −(T ∗T )−1L∗(c) and f := f̂ , we get
that the inclusion relation (85) is equivalent to the second equation in (27). Consequently,
we conclude that f̂ ∈ B is a solution of the minimization problem (23) with y if and only
if there exists c ∈ Rm such that (27).

Proof [of Theorem 35] Proposition 24 ensures that ĉ ∈ Rm is a solution of (20) with y if
and only if there exists f̂ ∈ B such that f̂ ∈My and

f̂ ∈ 1

‖L∗(ĉ)‖B∗
∂‖ · ‖B∗(L∗(ĉ)). (86)

Set c := −‖f̂‖Bĉ. It suffices to verify that f̂ ∈ B satisfies f̂ ∈ My and (86) if and only if

the pair f̂ and c satisfies the fixed-point equations (27). Note that f̂ ∈My is equivalent to

L(f̂) = y. According to the representation of the conjugate function ι∗y, its subdifferential

at each a ∈ Rm is a singleton, that is, ∂ι∗y(a) = {y}. We then conclude that L(f̂) = y if and

only if L(f̂) ∈ ∂ι∗y(c), which guaranteed by Lemma 70 is equivalent to the first equation in

(27). Therefore, we have that f̂ ∈ My if and only if f̂ and c satisfies the first fixed-point
equation in (27).

We next show that f̂ ∈ B satisfies (86) if and only if f̂ and c satisfies the second
fixed-point equation in (27). We rewrite (86) as

‖L∗(ĉ)‖B∗ f̂ ∈ ∂‖ · ‖B∗(L∗(ĉ)). (87)
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Note by the definition of c that

∂‖ · ‖B∗(L∗(ĉ)) = ∂‖ · ‖B∗(−L∗(c)) (88)

and
‖L∗(c)‖B∗ = ‖f̂‖B‖L∗(ĉ)‖B∗ . (89)

According to (88), we have that (87) holds if and only if

‖L∗(ĉ)‖B∗ f̂ ∈ ∂‖ · ‖B∗(−L∗(c)), (90)

which guaranteed by (8) is equivalent to

‖f̂‖B‖L∗(ĉ)‖B∗ = 1 (91)

and
f̂

‖f̂‖B
∈ ∂‖ · ‖B∗(−L∗(c)). (92)

Note by equation (89) that (91) is equivalent to ‖L∗(c)‖B∗ = 1. Accordingly, we conclude
that (90) holds if and only if there hold ‖ − L∗(c)‖B∗ = 1 and (92). Lemma 9 ensures
the equivalence between the latter and inclusion relation (84). As has been shown in the
proof of Theorem 34, inclusion relation (84) is equivalent to the second equation in (27).
Consequently, we have that f̂ ∈ B satisfies (86) if and only if f̂ and c satisfies the second
fixed-point equation in (27). This completes the proof of this theorem.

To prove Theorems 36 and 37, we also need the following result. Since T0 and T ∗0 are both
embedding operator, there holds T ∗0 T0z = z, for all z ∈ `1(N). Hence, as a consequence
of Proposition 71, we may get the relation between the proximity operator (29) of ψ and
its subdifferential. Specifically, if ψ : `1(N) → R ∪ {+∞} is a convex function, then for all
x ∈ dom(ψ) and z ∈ `1(N) that

z ∈ ∂ψ(x) if and only if x = proxψ,`2(N),T0(x + z). (93)

As a direct consequence of Lemma 19, we get the following relation between the subd-
ifferential of the norm ‖ · ‖∞ of c0 at nonzero u ∈ c0 and that at S(u).

Lemma 73 If the truncation operator S : c0 → cc is the truncation operator, then for each
nonzero u ∈ c0,

∂‖ · ‖∞(u) = ∂‖ · ‖∞(S(u)). (94)

Proof It follows from the definition of S that for each u ∈ c0, there holds N(u) = N(S(u)),
which together with definition (15) leads to V(u) = V(S(u)). Hence, by Lemma 19 we get
that ∂‖ · ‖∞(u) = co(V(u)) = co(V(S(u))) = ∂‖ · ‖∞(S(u)), proving the desired result.

By employing the above lemma, we get below a technical lemma, which is useful for es-
tablishing the finite dimensional fixed-point equations for a solution of the minimization
problem (31).

Lemma 74 If S : c0 → cc is the truncation operator, then for all x ∈ `1(N) and all u ∈ c0,

u ∈ ∂‖ · ‖1(x) if and only if S(u) ∈ ∂‖ · ‖1(x). (95)
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Proof By the definition of the subdifferential, we have that ∂‖ · ‖1(0) = {v ∈ `∞(N) :
‖v‖∞ ≤ 1}. This together with the fact that ‖u‖∞ = ‖S(u)‖∞ ensures that (95) holds for
x = 0. It remains to prove the desired conclusion in the case that x 6= 0. By Lemma 9,
there holds u ∈ ∂‖ · ‖1(x) if and only if x

‖x‖1 ∈ ∂‖ · ‖∞(u). Lemma 73 ensures that the last

inclusion relation is equivalent to x
‖x‖1 ∈ ∂‖ · ‖∞(S(u)). Again, using Lemma 9 and noting

that ‖S(u)‖∞ = ‖u‖∞ = 1, we conclude that the above inclusion relation is equivalent to
S(u) ∈ ∂‖ · ‖1(x), proving the desired result (95).

Proof [of Theorem 36] As has been shown in the proof of Theorem 34, x̂ ∈ `1(N) is a
solution of the minimization problem (31) with y if and only if there exists c ∈ Rm such
that

c ∈ ∂ιy(L(x̂)) and − L∗(c) ∈ ∂‖ · ‖1(x̂). (96)

By relation (26), the first inclusion relation of (96) has the equivalent form L(x̂) ∈ ∂ι∗y(c),
which guaranteed by Lemma 70 is equivalent to the first fixed-point equation in (32). Since
uj ∈ c0, j ∈ Nm, we have that L∗(c) ∈ c0. Hence, by Lemma 74, we conclude that the
second inclusion relation of (96) holds if and only if

−SL∗(c) ∈ ∂‖ · ‖1(x̂). (97)

Note that −SL∗(c) ∈ `1(N). Relation (93) ensures that the inclusion relation (97) is equiv-
alent to the second fixed-point equation in (32). Consequently, we have that x̂ ∈ `1(N)
is a solution of the minimization problem (31) with y if and only if there exists c ∈ Rm
satisfying (32).

Proof [of Theorem 37] By Proposition 24, we have that ĉ ∈ Rm is a solution of the dual
problem with y if and only if there exists x̂ ∈ `1(N) such that x̂ ∈ ‖L∗(ĉ)‖−1∞ ∂‖·‖∞(L∗(ĉ))∩
My. It suffices to verify that x̂ ∈ `1(N) satisfies the above inclusion relation if and only if
the pair x̂ and c := −‖x̂‖1ĉ satisfy (32). As pointed out in the proof of Theorem 35, we
conclude that x̂ ∈My if and only if x̂ and c satisfy the first equation in (32). We also have
that

x̂ ∈ ‖L∗(ĉ)‖−1∞ ∂‖ · ‖∞(L∗(ĉ)) (98)

if and only if −L∗(c) ∈ ∂‖·‖1(x̂). This guaranteed by Lemma 74 is equivalent to −SL∗(c) ∈
∂‖ · ‖1(x̂). By relation (93) and noting that −SL∗(c) ∈ `1(N), the conclusion relation above
can be characterized by the second fixed-point equation in (32). Therefore, we get the
conclusion that x̂ satisfies (98) if x̂ and c satisfy the second equation in (32). This completes
the proof of this theorem.

To prove Theorem 38, we first present a technical lemma and a proposition.

Lemma 75 If u ∈ c0 is nonzero, then for each x ∈ ∂‖ · ‖∞(u), there hold

x ∈ cc and supp(x) ⊆ supp(S(u)). (99)

Proof Note that for all nonzero element u ∈ c0, there holds supp(S(u)) = N(u). By
Lemma 19, each x ∈ ∂‖ ·‖∞(u) is a convex combination of elements of V(u) whose supports
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are contained in N(u). This leads to the inclusion relation in (99) and thus, x ∈ cc.

The next proposition ensures that the proximity operator of the norm function ‖ · ‖1 is a
mapping from `1(N) to cc.

Proposition 76 If T0 : `1(N) → `2(N) is defined by (28) and the proximity operator
prox‖·‖1,`2(N),T0 is defined by (29) with ψ := ‖ · ‖1, then prox‖·‖1,`2(N),T0(x) ∈ cc, for all
x ∈ `1(N).

Proof For x := (xj : j ∈ N), we let y = (yj : j ∈ N) := prox‖·‖1,`2(N),T0(x). It follows
from equation (30) that yj = max{|xj | − 1, 0}sign(xj), for all j ∈ N. Since x ∈ `1(N), there
exists an positive integer N such that |xj | < 1, for all j > N . This together with the above
equations leads to yj = 0, for all j > N . That is, y ∈ cc.

Proof [of Theorem 38] Proposition 76 ensures that the proximity operator prox‖·‖1,`2(N),T0
is a mapping from `1(N) to cc. Thus, for any s ∈ (Rm, `1(N)), we get that x̂−SL∗(c) ∈ `1(N)
and then

prox‖·‖1,`2(N),T0(x̂− SL∗(c)) ∈ cc. (100)

On the other hand, the proximity operator proxι∗y is a mapping from Rm to itself. Note

that for any s ∈ (Rm, `1(N)), there holds c + L(x̂) ∈ Rm. Therefore, we have that

proxι∗y(c + L(x̂)) ∈ Rm. (101)

Combining (100) with (101), we conclude that P ◦ R is an operator from (Rm, `1(N)) to
(Rm, cc).

It remains to verify that the fixed-point s of operator P ◦ R satisfies the assertion of
this theorem. Suppose that s is a fixed-point of operator P ◦ R. That is, x̂ and c satisfy
the fixed-point equations (32). According to the proof of Theorem 36, we observe that
x̂ satisfies the second inclusion relation of (96), which guaranteed by Lemma 9 leads to
x̂
‖x̂‖1 ∈ ∂‖ · ‖∞(−L∗(c)). By Lemma 75, the above inclusion ensures that s satisfies x̂ ∈ cc
and supp(x̂) ⊆ supp(S(L∗(c)).

Appendix F. Proofs for Section 6

To prove Proposition 40 for the case that B has a separable pre-dual space B∗, we provide
the following lemma which ensures the existence of a bounded minimizing sequence in B.
For notational convenience, we set

R(f) := Qy(L(f)) + λϕ(‖f‖B), for all f ∈ B. (102)

Lemma 77 Suppose that B is a Banach space with the dual space B∗, νj ∈ B∗, j ∈ Nm,
and L is defined by (1). Let y ∈ Rm, Qy : Rm → R+, ϕ : R+ → R+, λ > 0 be as those
appearing in (35) and R be defined by (102). If ϕ is coercive, then there exists a bounded
sequence fn, n ∈ N, in B such that

lim
n→+∞

R(fn) = inf
f∈B
R(f). (103)
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Proof For any ε > 0, there exists an element g ∈ B such that inff∈BR(f) ≤ R(g) <
inff∈BR(f) + ε. Hence, there exists a sequence fn, n ∈ N, in B satisfying (103). It remains
to show that the sequence is bounded. It follows from (103) that {R(fn) : n ∈ N} is a
bounded set. Moreover, by the definition (102) of R, we have that R(fn) ≥ λϕ(‖fn‖B),
for all n ∈ N. This together with the boundedness of the set {R(fn) : n ∈ N} implies that
{ϕ(‖fn‖B) : n ∈ N} is also a bounded set. By the coercivity of ϕ, the boundedness of the
set {ϕ(‖fn‖B) : n ∈ N} leads to the boundedness of the sequence fn, n ∈ N.

With the help of Lemma 77, we prove Proposition 40 as follows.
Proof [of Proposition 40] We prove the existence for the case that B has a separable pre-
dual space B∗. Since ϕ is coercive, by Lemma 77 there exists a bounded sequence fn, n ∈ N,
in B satisfying (103) with R being defined by (102). It follows from the Banach-Alaoglu
theorem that there exists a subsequence fnk

, k ∈ N, weakly∗ converges to f̂ ∈ B. We shall
prove that the weak∗ accumulation point f̂ is a solution of the regularization problem (35).
This is done by showing that

R(f̂) ≤ lim inf
j→+∞

R(fnkj
), (104)

where fnkj
, j ∈ N, is a subsequence of the sequence fnk

, k ∈ N.

By the definition (102) of R, we consider the fidelity term Qy(L(f̂)) and the regulariza-

tion term ϕ(‖f̂‖B) separately. We first consider the fidelity term. Since νj ∈ B∗, j ∈ Nm,
the linear functionals νj , j ∈ Nm, are weakly∗ continuous. Hence, we conclude that the
linear operator L defined by (1) in terms of the linear functionals νj , j ∈ Nm, is weakly∗

continuous. The assumption that Qy is lower semi-continuous yields Qy◦L is weakly∗ lower
semi-continuous. Hence, by the weak∗ convergence of the sequence fnk

, j ∈ N, we obtain
that

Qy(L(f̂)) ≤ lim inf
j→+∞

Qy(L(fnk
)). (105)

We now consider the regularization term. Noting that the norm ‖·‖B is weak∗ continuous
on B, by the weak∗ convergence of the sequence fnk

, k ∈ N, we get that

‖f̂‖B ≤ lim inf
k→+∞

‖fnk
‖B. (106)

Let fnkj
, j ∈ N, be the subsequence of the sequence fnk

, k ∈ N, which attains the limit

inferior in (106). It follows that ‖f̂‖B ≤ limj→+∞ ‖fnkj
‖B. Since ϕ is lower semi-continuity

and increasing, we have that

ϕ(‖f̂‖B) ≤ ϕ
(

lim
j→+∞

‖fnkj
‖B
)
≤ lim inf

j→+∞
ϕ(‖fnkj

‖B). (107)

Finally, combining inequalities (105) and (107) yields the inequality (104), which to-
gether with (103) leads to R(f̂) ≤ inff∈BR(f). Clearly, this inequality ensures that f̂ is a
solution of the regularization problem (35).

In the case that the pre-dual space B∗ is not separable, the existence of the solution may
be proved by the generalized Weierstrass theorem in the weak∗ topology.
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Proof [of Proposition 41] We first prove statement (i). Suppose that ĝ is a solution of the
MNI problem (3) for data y := L(f̂). It follows from f̂ ∈My with y := L(f̂) that

L(ĝ) = L(f̂) and ‖ĝ‖B ≤ ‖f̂‖B. (108)

On one hand, the equality in (108) further implies that

Qy0(L(ĝ)) = Qy0(L(f̂)). (109)

On the other hand, since ϕ is increasing, from the inequality in (108) we have that

ϕ(‖ĝ‖B) ≤ ϕ(‖f̂‖B). (110)

Combining (109) and (110), with noting that λ is positive, we obtain that Qy0(L(ĝ)) +

λϕ(‖ĝ‖B) ≤ Qy0(L(f̂)) + λϕ(‖f̂‖B). This ensures that ĝ is a solution of the regularization
problem (35) with given data y := y0.

We next show statement (ii). Suppose that ϕ is strictly increasing. Set ŷ := L(f̂). It
suffices to verify that ‖f̂‖B ≤ ‖f‖B, for all f ∈ Mŷ. On one hand, for all f ∈ Mŷ we have

that L(f̂) = L(f), which leads to

Qy0(L(f̂)) = Qy0(L(f)), for all f ∈Mŷ. (111)

On the other hand, since f̂ is a solution of (35) with given data y := y0, we get that

Qy0(L(f̂)) + λϕ(‖f̂‖B) ≤ Qy0(L(f)) + λϕ(‖f‖B), for all f ∈ B. (112)

Combining (111) and (112), with noting that λ is positive, we have that ϕ(‖f̂‖B) ≤ ϕ(‖f‖B)
for all f ∈ Mŷ. Since ϕ is strictly increasing, we get from the above inequalities that

‖f̂‖B ≤ ‖f‖B, for all f ∈Mŷ. This ensures that f̂ is a solution of the MNI problem (3) for

data y := L(f̂).

Appendix G. Proofs for Section 7

Proof [of Proposition 42] Suppose that f̂ is a solution of the regularization problem (35)
with y := y0. Let f0 be a solution of the MNI problem (3) with y := L(f̂). Proposition
41 ensures that f0 is also a solution of the regularization problem (35) with y := y0. As
a solution of the MNI problem, f0 has the representations as described in Proposition 7.
Hence, f0 satisfies conditions (i)-(iv) of this proposition.

We now consider the case that ϕ is strictly increasing. Suppose that f0 is a solution of
the regularization problem (35) with y := y0. Statement (2) of Proposition 41 ensures that
f0 is also a solution of the MNI problem (3) with y := L(f0). Again by Proposition 7, we
get that f0 satisfies conditions (i)-(iv). Due to the arbitrariness of f0, we obtain the desired
conclusion.
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Proof [of Theorem 48] Note that the Banach space B is smooth. If ϕ is increasing, by

Remark 43 with νj := g]j , j ∈ Nm, we have that there exists a solution f0 of the regulariza-

tion problem (35) with y := y0 such that G(f0) =
∑

j∈Nm
ĉjg

]
j , for some ĉj ∈ R, j ∈ Nm.

Substituting (66) with g := f0 into the above equation and choosing cj := ‖f0‖B ĉj , j ∈ Nm,
we obtain the desired representation. We now consider the case when ϕ is strictly increas-
ing. In this case, Remark 43 ensures that every solution f0 of (35) with y := y0 has the

form G(f0) =
∑

j∈Nm
ĉjg

]
j , for some ĉj ∈ R, j ∈ Nm. Combining (66) with this equation, we

obtain the desired representation for cj := ‖f0‖B ĉj , j ∈ Nm.

Proof [of Theorem 49] Note that the uniformly Fréchet smooth and uniformly convex
Banach space B has the smooth dual space B∗. If ϕ is increasing, Remark 45 with νj :=

g]j , j ∈ Nm, shows that there exists a solution f0 of the regularization problem (35) with

y := y0 such that there exist cj ∈ R, j ∈ Nm, satisfying f0 = ρG∗
(∑

j∈Nm
cjg

]
j

)
, with

ρ := ‖
∑

j∈Nm
cjg

]
j‖B∗ . Substituting (66) with B being replaced by B∗ and g by

∑
j∈Nm

cjg
]
j

into the above representation leads to the desired representation.

Moreover, if ϕ is strictly increasing, Remark 45 ensures that every solution f0 of (35)
with y := y0 has the above representation. Arguments similar to those presented above
leads to the desired representation.

Proof [of Theorem 54] Suppose that ϕ is increasing. If the regularization problem (35)
in `1(N) with y := y0 has x̂ = 0 as a solution, then the trival solution has the desired
form for some cj = 0, j ∈ Nm. We consider the case that the regularization problem (35)
in `1(N) with y := y0 has no trival solution. Since `1(N) has c0 as its pre-dual space, by
Theorem 46 with νj := uj , j ∈ Nm, there exists a nonzero solution x̂ of (35) such that
x̂ ∈ ‖u‖∞∂‖ · ‖∞(u), for some cj ∈ R, j ∈ Nm, where u :=

∑
j∈Nm

cjuj . Substituting the
subdifferential formula of Lemma 19 into above equation we get the desired representation.

If ϕ is strictly increasing, the trival solution x̂ = 0, provided its existence, has the desired
form for some cj = 0, j ∈ Nm. Moreover, Theorem 46 ensures that any nontrival solution
satisfies x̂ ∈ ‖u‖∞∂‖ · ‖∞(u). This together with the subdifferential formula of Lemma 19
completes the proof of this theorem.

Proof [of Theorem 55] Since ϕ is strictly increasing, Remark 47 ensures that every solution
f0 of the regularization problem (35) with y := y0 has the form (39), for some ĉ ∈ Rm.
It suffices to show that f0 in the form (39) is a solution of (35) if and only if ĉ is a
solution of the minimization problem (40). To this end, we define a subset A of B by
A := {f ∈ B : f = ‖L∗(c)‖B∗G∗(L∗(c)), c ∈ Rm}. Clearly, the regularization problem (35)
with y := y0 is equivalent to

inf{Qy0(L(f)) + λϕ(‖f‖B) : f ∈ A}. (113)

Note that each f ∈ A has the form

f := ‖L∗(c)‖B∗G∗(L∗(c)). (114)
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Since there holds ‖G∗(L∗(c))‖B = 1, we have that

‖f‖B = ‖L∗(c)‖B∗ . (115)

Substituting the representation (114) of f ∈ A and the norm representation (115) into the
first term and second term of the objective function of the minimization problem (113),
respectively, we observe that the minimization problem (113) is equivalent to (40), proving
the desired result.

Proof [of Corollary 56] We conclude from Theorem 55 that f0 in the form (39) is a
solution of the regularization problem (35) with y := y0 if and only if ĉ is a solution of the
minimization problem (40). It surfaces to represent f0 in the form f0 :=

∑
j∈Nm

ĉjgj and to
reformulate the minimization problem (40) in the form (41). Note that H∗ = H. It follows
that

‖L∗(c)‖HG(L∗(c)) = L∗(c), for all c ∈ Rm. (116)

Substituting equation (116) with c := ĉ and the representation of L∗ into (39), we get the
desired form of f0. Again by equation (116), we rewrite (40) as

inf{Qy0(LL∗(c)) + λ‖L∗(c)‖2H : c ∈ Rm}.

According to the definition of the Gram matrix G, we have that LL∗(c) = Gc and
‖L∗(c)‖2H = c>Gc, for all c ∈ Rm. Substituting these equations into the above mini-
mization problem leads to (41).

Proof [of Remark 57] Note that the assumption that Qy0 is convex ensures the uniqueness
of the solution of the minimization problem (41). Because of the linear independence of
gj ∈ H, j ∈ Nm, the Gram matrix G is symmetric and positive definite. Then by the Fermat
rule and the chain rule (72), ĉ is the solution of (41) if and only if 0 ∈ G∂Qy0(Gĉ) + 2λGĉ,
which is equivalent to −2λĉ ∈ ∂Qy0(Gĉ). If Qy0 is non-differentiable, we can characterize
the solution of (41) via a fixed-point equation. According to (26), the above inclusion rela-
tion holds if and only if Gĉ ∈ ∂Q∗y0

(−2λĉ). Hence, by Lemma 70 we obtain the equivalence
between this inclusion relation and the desired fixed-point equation.

Proof [of Remark 58] Note that ĉ is the solution of (41) if and only if it satisfies −2λĉ ∈
∂Qy0(Gĉ). If Qy0 is differentiable, then we have that ∂Qy0(Gĉ) = {∇Qy0(Gĉ)}. Substi-
tuting this equation into the above inclusion, we obtain the system −2λĉ = ∇Qy0(Gĉ). If
Qy0 has the form (36), then there holds ∇Qy0(Gĉ) = 2(Gĉ− y0), which together with the
above system leads to the linear system (G + λI)ĉ = y0.

Proof [of Corollary 59] Theorem 55 ensures that f0 with the form (39) is a solution of the
regularization problem (35) with y := y0 if and only if ĉ is a solution of the minimization
problem (40). By making use of the semi-inner-product, we will represent f0 in the form

f0 :=
(∑

j∈Nm
ĉjg

]
j

)]
and the minimization problem (40) in the form (43). Note that for

the uniformly Fréchet smooth and uniformly convex Banach space B, its dual space B∗ is
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identified with the pre-dual space B∗. Substituting (66) with B being replaced by B∗ and g

by
∑

j∈Nm
ĉjg

]
j into (39), f0 may be rewritten as f0 :=

(∑
j∈Nm

ĉjg
]
j

)]
. Again by (66), we

rewrite (40) as
inf{Qy0(L(L∗(c))]) + λϕ(‖L∗(c)‖B∗) : c ∈ Rm}. (117)

It follows from (68) that
〈
g]j , (L∗(c))]

〉
B

=
[
g]j ,L∗(c)

]
B∗

, for all j ∈ Nm, which together

with the representations of L∗ and Gs.i.p leads to

L(L∗(c))] = Gs.i.p(c). (118)

There holds for all c ∈ Rm that ‖L∗(c)‖2B∗ = [L∗(c),L∗(c)]B∗ =
∑

j∈Nm
cj

[
g]j ,L∗(c)

]
B∗
. By

the definition of the nonlinear operator Gs.i.p, the above equation leads to

‖L∗(c)‖2B∗ = c>Gs.i.p(c). (119)

Substituting equations (118) and (119) into the minimization problem (117), we get the
equivalent form (43).

Proof [of Remark 60] The assumptions about Qy0 and ϕ ensure the uniqueness of the solu-
tion of the minimization problem (43). Note that ĉ 6= 0 is the solution of the minimization
problem (43) if and only if

0 ∈ L∗∂Qy0

(
L(L∗(ĉ))]

)
+ λ∂(ϕ ◦ ‖ · ‖B)

(
(L∗(ĉ))]

)
. (120)

Since Qy0 is differentiable, there holds

∂Qy0

(
L(L∗(ĉ))]

)
=
{
∇Qy0

(
L(L∗(ĉ))]

)}
. (121)

The linear independence of g]j , j ∈ Nm, leads to L∗(ĉ) 6= 0. Then by the differentiability of

ϕ and equation (66) with g := (L∗(ĉ))], we have that

∂(ϕ ◦ ‖ · ‖B)
(

(L∗(ĉ))]
)

=
{
ϕ
′
(‖(L∗(ĉ))]‖B)/‖(L∗(ĉ))]‖BL∗(ĉ)

}
. (122)

Note that the two sets in the right hand side of (121) and (122) are singleton. Substituting
(121) and (122) into the right hand side of inclusion (120), with noticing that ‖(L∗(ĉ))]‖B =
‖L∗(ĉ)‖B∗ , we get that ĉ 6= 0 is the solution of the minimization problem (43) if and only
if ĉ is the solution of the nonlinear system

L∗∇Qy0(L(L∗(ĉ))]) + λ(ϕ
′
(‖L∗(ĉ)‖B∗)/‖L∗(ĉ)‖B∗)L∗(ĉ) = 0.

Combining (118) with (119) and using the linearity of L∗, we rewrite the above system as

L∗
[
∇Qy0(Gs.i.p(ĉ)) + λ[ϕ

′
((ĉ>Gs.i.p(ĉ))1/2)/(ĉ>Gs.i.p(ĉ))1/2]ĉ

]
= 0.

By the linear independence of g]j , j ∈ Nm, the above system is equivalent to (44).
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Proof [of Theorem 61] By employing the Fermat rule, we have that f0 ∈ B is a solution of
the regularization problem (35) with y := y0 if and only if 0 ∈ ∂(Qy0(L(·))+λϕ◦‖·‖B)(f0).
According to the chain rule (72) of the subdifferential, this inclusion relation can be rewritten
as 0 ∈ L∗∂Qy0(L(f0)) + λ∂(ϕ ◦ ‖ · ‖B)(f0). This is equivalent to that there exists ĉ ∈ Rm
such that

ĉ ∈ ∂Qy0(L(f0)) and − L∗(ĉ)/λ ∈ ∂(ϕ ◦ ‖ · ‖B)(f0). (123)

Relation (26) ensures that the first inclusion relation of (123) holds if and only if L(f0) ∈
∂Q∗y0

(ĉ), which is equivalent to the second equation in (45). Since − 1
λL
∗(ĉ) ∈ V, we repre-

sent the second inclusion relation of (123) as (T ∗T )(T ∗T )−1
(
− 1
λL
∗(ĉ)

)
∈ ∂(ϕ ◦ ‖ · ‖B)(f0).

By Proposition 71, we conclude that the above relation is equivalent to the second equation
in (45). Therefore, f0 ∈ B is a solution of the regularization problem (35) with y := y0 if
and only if there exists ĉ ∈ Rm satisfying the fixed-point equations (45).

Proof [of Corollary 62] Theorem 61 ensures that f0 ∈ B is a solution of the regularization
problem (35) with y := y0 if and only if there exists ĉ ∈ Rm satisfying (45). Note that the
first equation in (45) is equivalent to the inclusion relation (123). Since Qy0 is differentiable,
the subdifferential of Qy0 at L(f0) is the singleton ∇Qy0(L(f0)). That is, ĉ = ∇Qy0(L(f0)).
Substituting this equation into the second equation in (45) leads to (46).

Proof [of Theorem 64] As in the proof of Theorem 61, x0 ∈ `1(N) is a solution of the
regularization problem (47) with y := y0 if and only if there exists ĉ ∈ Rm such that

ĉ ∈ ∂Qy0(L(x0)) and − L∗(ĉ)/λ ∈ ∂‖ · ‖1(x0). (124)

By relation (26) between the subdifferentials of Qy0 and its conjugate Q∗y0
, we rewrite the

first inclusion relation of (124) as L(x0) ∈ ∂Q∗y0
(ĉ), which is equivalent to the first equa-

tion in (48). Lemma 74 ensures that the second inclusion relation of (124) is equivalent to
− 1
λS(L∗(ĉ)) ∈ ∂‖ · ‖1(x0). Relation (93) with ψ := ‖ · ‖1 leads to the equivalence between

the above relation and the second equation in (48).

Proof [of Corollary 65] By Theorem 64, x0 ∈ `1(N) is a solution of the regularization prob-
lem (47) with y := y0 if and only if there exists ĉ ∈ Rm satisfying (48). As has been shown
in the proof of Theorem 64, the first equation in (48) is equivalent to the first inclusion
relation of (124). Since Qy0 is differentiable, we have that ∂Qy0(L(x0)) = {∇Qy0(L(x0))}.
Substituting the above equation into the first inclusion of (124) leads to ĉ = ∇Qy0(L(x0)),
which together with the second equation in (48) leads to (49).
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