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Abstract
The families of f-divergences (e.g. the Kullback–Leibler divergence) and Integral Probability
Metrics (e.g. total variation distance or maximum mean discrepancies) are widely used to
quantify the similarity between probability distributions. In this work, we systematically
study the relationship between these two families from the perspective of convex duality.
Starting from a tight variational representation of the f-divergence, we derive a generalization
of the moment-generating function, which we show exactly characterizes the best lower
bound of the f-divergence as a function of a given IPM. Using this characterization, we
obtain new bounds while also recovering in a unified manner well-known results, such as
Hoeffding’s lemma, Pinsker’s inequality and its extension to subgaussian functions, and the
Hammersley–Chapman–Robbins bound. This characterization also allows us to prove new
results on topological properties of the divergence which may be of independent interest.
Keywords: f-Divergence, Integral Probability Metrics, Probability Inequalities, Convex
Analysis, Convergence of Measures

1. Introduction

Quantifying the extent to which two probability distributions differ from one another is
central in most, if not all, problems and methods in machine learning and statistics. In a
line of research going back at least to the work of Kullback (1959), information theoretic
measures of dissimilarity between probability distributions have provided a fruitful and
unifying perspective on a wide range of statistical procedures. A prototypical example
of this perspective is the interpretation of maximum likelihood estimation as minimizing
the Kullback–Leibler divergence between the empirical distribution—or the ground truth
distribution in the limit of infinitely large sample—and a distribution chosen from a parametric
family.

A natural generalization of the Kullback–Leibler divergence is provided by the family of
ϕ-divergences1 (Csiszár, 1963, 1967) also known in statistics as Ali–Silvey distances (Ali and
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Silvey, 1966).2 Informally, a ϕ-divergence quantifies the divergence between two distributions
µ and ν as an average cost of the likelihood ratio, that is, Dϕ(µ ∥ ν) :=

∫
ϕ(dµ/dν) dν for

a convex cost function ϕ : R≥0 → R≥0. Notable examples of ϕ-divergences include the
Hellinger distance, the α-divergences (a convex transformation of the Rényi divergences),
and the χ2-divergence.

Crucial in applications of ϕ-divergences are their so-called variational representations.
For example, the Donsker–Varadhan representation (Donsker and Varadhan, 1976, Theorem
5.2) expresses the Kullback–Leibler divergence D(µ ∥ ν) between probability distributions µ
and ν as

D(µ ∥ ν) = sup
g∈Lb

{∫
g dµ− log

∫
eg dν

}
, (1)

where Lb is the space of bounded measurable functions. Similar variational representations
were for example used by Nguyen et al. (2008, 2010); Ruderman et al. (2012); Belghazi et al.
(2018) to construct estimates of ϕ-divergences by restricting the optimization problem (1) to
a class of functions G ⊆ Lb for which the problem becomes tractable (for example when G is a
RKHS or representable by a given neural network architecture). In recent work, Nowozin et al.
(2016); Nock et al. (2017) conceptualized an extension of generative adversarial networks
(GANs) in which the problem of minimizing a ϕ-divergence is expressed via representations
such as (1) as a two-player game between neural networks, one minimizing over probability
distributions µ, the other maximizing over g as in (1).

Another important class of distances between probability distributions is given by Integral
Probability Metrics (IPMs) defined by Müller (1997) and taking the form

dG(µ, ν) = sup
g∈G

{∣∣∣∣∫ g dµ−
∫
g dν

∣∣∣∣} , (2)

where G is a class of functions parametrizing the distance. Notable examples include the total
variation distance (G is the class of all functions taking value in [−1, 1]), the Wasserstein
metric (G is a class of Lipschitz functions) and Maximum Mean Discrepancies (G is the unit
ball of a RKHS). Being already expressed as a variational problem, IPMs are amenable to
estimation, as was exploited by Sriperumbudur et al. (2012); Gretton et al. (2012). MMDs
have also been used in lieu of ϕ-divergences to train GANs as was first done by Dziugaite
et al. (2015).

Rewriting the optimization problem (1) as

sup
g∈Lb

{∫
g dµ−

∫
g dν − log

∫
e(g−

∫
g dν) dν

}
(3)

reveals an important connection between ϕ-divergences and IPMs. Indeed, (3) expresses the
divergence as the solution to a regularized optimization problem in which one attempts to
maximize the mean deviation

∫
g dµ −

∫
g dν, as in (2), while also penalizing functions g

which are too “complex” as measured by the centered log moment-generating function of g.
In this work, we further explore the connection between ϕ-divergences and IPMs, guided by
the following question:

2. ϕ-divergences had previously been considered (Rényi, 1961; Morimoto, 1963), though not as an independent
object of study.
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what is the best lower bound of a given ϕ-divergence
as a function of a given integral probability metric?

Some specific instances of this question are already well understood. For example, the best
lower bound of the Kullback–Leibler divergence by a quadratic function of the total variation
distance is known as Pinsker’s inequality. More generally, describing the best lower bound
of a ϕ-divergence as a function of the total variation distance (without being restricted to
being a quadratic), is known as Vajda’s problem, to which an answer was given by Fedotov
et al. (2003) for the Kullback–Leibler divergence and by Gilardoni (2006) for an arbitrary
ϕ-divergence.

Beyond the total variation distance—in particular, when the class G in (2) contains
unbounded functions—few results are known. Using (3), Boucheron et al. (2013, §4.10) shows
that Pinsker’s inequality holds as long as the log moment-generating function grows at most
quadratically. Since this is the case for bounded functions (via Hoeffding’s lemma), this
recovers Pinsker’s inequality and extends it to the class of so-called subgaussian functions.
This was recently used by Russo and Zou (2020) to control bias in adaptive data analysis.

In this work, we systematize the convex analytic perspective underlying many of these
results, thereby developing the necessary tools to resolve the above guiding question. As an
application, we recover in a unified manner the known bounds between ϕ-divergences and
IPMs, and extend them along several dimensions. Specifically, starting from the observation
of Ruderman et al. (2012) that the variational representation of ϕ-divergences commonly
used in the literature is not “tight” for probability measures (in a sense which will be made
formal in the paper), we make the following contributions:

• we derive a tight representation of ϕ-divergences for probability measures, exactly
generalizing the Donsker–Varadhan representation of the Kullback–Leibler divergence.

• we define a generalization of the log moment-generating function and show that it
exactly characterizes the best lower bound of a ϕ-divergence by a given IPM. As
an application, we show that this function grows quadratically if and only if the ϕ-
divergence can be lower bounded by a quadratic function of the given IPM and recover
in a unified manner the extension of Pinsker’s inequality to subgaussian functions and
the Hammersley–Chapman–Robbins bound.

• we characterize the existence of any non-trivial lower bound on an IPM in terms of
the generalized log moment-generating function, and give implications for topological
properties of the divergence, for example regarding compactness of sets of measures
with bounded ϕ-divergence and the relationship between convergence in ϕ-divergence
and weak convergence.

• the answer to Vajda’s problem for bounded functions is re-derived in a principled
manner, providing a new geometric interpretation on the optimal lower bound of
the ϕ-divergence by the total variation distance. From this, we derive a refinement
of Hoeffding’s lemma and generalizations of Pinsker’s inequality to a large class of
ϕ-divergences.

The rest of this paper is organized as follows: Section 2 discusses related work, Section 3
gives a brief overview of concepts and tools used in this paper, Section 4 derives the tight
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variational representation of the ϕ-divergence, Section 5 focuses on the case of an IPM given
by a single function g with respect to a reference measure ν, deriving the optimal bound
in this case and discussing topological applications, and Section 6 extends this to arbitrary
IPMs and sets of measures, with applications to subgaussian functions and Vajda’s problem.

2. Related work

The question studied in the present paper is an instance of the broader problem of the
constrained minimization of a ϕ-divergence, which has been extensively studied in works
spanning information theory, statistics and convex analysis.
Kullback–Leibler divergence. The problem of minimizing the Kullback–Leibler divergence
(Kullback and Leibler, 1951) subject to a convex constraint can be traced back at least to
Sanov (1957) in the context of large deviation theory and to Kullback (1959) for the purpose
of formulating an information theoretic approach to statistics. In information theory, this
problem is known as an I-projection (Csiszár, 1975; Csiszár and Matúš, 2003). The case
where the convex set is defined by finitely many affine equality constraints, which is closest
to our work, was specifically studied in Ben-Tal and Charnes (1977, 1979) via a convex
duality approach. This special case is of particular relevance to the field of statistics, since
the exponential family arises as the optimizer of this problem.
Convex integral functionals and general ϕ. With the advent of the theory of convex integral
functionals, initiated in convex analysis by Rockafellar (1966, 1968), the problem is generalized
to arbitrary ϕ-divergences, sometimes referred to as ϕ-entropies, especially when seen as
functionals over spaces of functions, and increasingly studied via a systematic application
of convex duality (Teboulle and Vajda, 1993). In the case of affine constraints, the main
technical challenge is to identify constraint qualifications guaranteeing that strong duality
holds: Borwein and Lewis (1991, 1993); Broniatowski and Keziou (2006) investigate the
notion of quasi-relative interior for this purpose, and Léonard (2001b,a) consider integrability
conditions on the functions defining the affine constraints. A comprehensive account of
this case can be found in Csiszár and Matúš (2012). We also note the work Altun and
Smola (2006), which shows a duality between approximate divergence minimization—where
the affine constraints are only required to hold up to a certain accuracy—and maximum a
posteriori estimation in statistics.

At a high level, in our work we show in Section 6 that one can essentially reduce the
problem of minimizing the divergence on probability measures subject to a constraint on an
IPM to the problem of minimizing the divergence on finite measures subject to two affine
constraints: the first restricting to probability measures, and the second constraining the
mean deviation of a single function in the class defining the IPM. For the restriction to
probability measures, we prove that constraint qualification always holds, a fact which was
not observed in the aforecited works, to the best of our knowledge. For the second constraint,
we show in Section 5.3 that by focusing on a single function, we can relate strong duality of
the minimization problem to compactness properties of the divergence. In particular, we
obtain strong duality under similar assumptions as those considered in Léonard (2001b),
even when the usual interiority conditions for constraint qualification do not hold.
Relationship between ϕ-divergences. A specific case of the minimization question which
has seen significant work is when the feasible set is defined by other ϕ-divergences, and
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most notably is a level set the total variation distance. The best-known result in this
line is Pinsker’s inequality, first proved in a weaker form in Pinsker (1960, 1964) and then
strengthened independently in Kullback (1967); Kemperman (1969); Csiszár (1967), which
gives the best possible quadratic lower bound on the Kullback–Leibler divergence by the
total variation distance. More recently, for ϕ-divergences other than the Kullback–Leibler
divergence, Gilardoni (2010) identified conditions on ϕ under which quadratic “Pinsker-type”
lower bounds can be obtained.

More generally, the problem of finding the best lower bound of the Kullback–Leibler
divergence as a (possibly non-quadratic) function of the total variation distance was introduced
by Vajda in Vajda (1970) and generalized to arbitrary ϕ-divergences in Vajda (1972), and
is therefore sometimes referred to as Vajda’s problem. Approximations of the best lower
bound were obtained in Bretagnolle and Huber (1979); Vajda (1970) for the Kullback–Leibler
divergence and in Vajda (1972); Gilardoni (2008, 2010) for ϕ-divergences under various
assumptions on ϕ. The optimal lower bound was derived in Fedotov et al. (2003) for the
Kullback–Leibler divergence and in Gilardoni (2006) for any ϕ-divergence. As an example
application of Section 6, in Section 6.3 we rederive the optimal lower bound as well as its
quadratic relaxations in a unified manner.

In Reid and Williamson (2009, 2011), the authors consider the generalization of Vajda’s
problem of obtaining a tight lower bound on an arbitrary ϕ-divergence given multiple values
of generalized total variation distances ; their result contains Gilardoni (2006) as a special case.
Beyond the total variation distance, Harremoës and Vajda (2011) introduced the general
question of studying the joint range of values taken by an arbitrary pair of ϕ-divergences,
which has its boundary given by the best lower bounds of one divergence as a function of the
other. Guntuboyina et al. (2014) generalize this further and consider the general problem of
understanding the joint range of multiple ϕ-divergences, i.e. minimizing a ϕ-divergence subject
to a finite number of constraints on other ϕ-divergences. A key conceptual contribution
in this line of work is to show that these optimization problems, which are defined over
(infinitely dimensional) spaces of measures, can be reduced to finite dimensional optimization
problems. A related line of work (Sason and Verdú, 2016; Sason, 2018) deriving relations
between ϕ-divergences instead approaches the problem by defining integral representations
of ϕ-divergences in terms of simple ones.

Our work differs from results of this type since we are primarily concerned with IPMs
other than the total variation distance, and in particular with those containing unbounded
functions. It was shown in Khosravifard et al. (2006, 2007); Sriperumbudur et al. (2009, 2012)
that the class of ϕ-divergences and the class of pseudometrics (including IPMs) intersect only
at the total variation distance. As such, the problem studied in the present paper cannot
be phrased as the one of a joint range between two ϕ-divergences, and to the best of our
knowledge cannot be handled by the techniques used in studying the joint range.
Transport inequalities. Starting with the work of Marton (1986), transportation inequalities
upper bounding the Wasserstein distance by a function of the relative entropy have been
instrumental in the study of the concentration of measure phenomenon (see e.g. Gozlan
and Léonard (2010) for a survey). These inequalities are related to the question studied in
this work since the 1-Wasserstein distance is an IPM when the probability space is a Polish
space and coincides with the total variation distance when the probability space is discrete
and endowed with the discrete metric. In an influential paper, Bobkov and Götze (1999)
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proved that upper bounding the 1-Wasserstein distance by a square root of the relative
entropy is equivalent to upper bounding the log moment-generating function of all 1-Lipschitz
functions by a quadratic function. The extension of Pinsker’s inequality in Boucheron et al.
(2013, §4.10), which was inspired by Bobkov and Götze (1999), is also based on quadratic
upper bounds of the log moment-generating function and we in turn follow similar ideas in
Sections 4.3 and 5.1 of the present work.

3. Preliminaries

3.1 Measure Theory

Notation. Unless otherwise noted, all the probability measures in this paper are defined on a
common measurable space (Ω,F), which we assume is non-trivial in the sense that {∅,Ω} ⊊ F ,
as otherwise all questions considered in this paper become trivial. We denote by M(Ω,F),
M+(Ω,F) and M1(Ω,F) the sets of finite signed measures, finite non-negative measures,
and probability measures respectively. L0(Ω,F) denotes the space of all measurable functions
from Ω to R, and Lb(Ω,F) ⊆ L0(Ω,F) is the set of all bounded measurable functions. For
ν ∈ M(Ω,F), and 1 ≤ p ≤ ∞, Lp(ν,Ω,F) denotes the space of measurable functions with
finite p-norm with respect to ν, and Lp(ν,Ω,F) denotes the space obtained by taking the
quotient with respect to the space of functions which are 0 ν-almost everywhere. Similarly,
L0(ν,Ω,F) is the space of all measurable functions Ω to R up to equality ν-almost everywhere.
When there is no ambiguity, we drop the indication (Ω,F). For a measurable function f ∈ L0

and measure ν ∈ M, ν(f) :=
∫
f dν denotes the integral of f with respect to ν.

For two measures µ and ν, µ≪ ν (resp. µ ⊥ ν) denotes that µ is absolutely continuous
(resp. singular) with respect to ν and we define Mc(ν) := {µ ∈ M | µ≪ ν} and Ms(ν) :=
{µ ∈ M | µ ⊥ ν}, so that by the Lebesgue decomposition theorem we have the direct sum
M = Mc(ν)⊕Ms(ν). For µ ∈ Mc(ν), dµdν ∈ L1(ν) denotes the Radon–Nikodym derivative of
µ with respect to ν. For a signed measure ν ∈ M, we write the Hahn–Jordan decomposition
ν = ν+ − ν− where ν+, ν− ∈ M+, and denote by |ν| = ν+ + ν− the total variation measure.

More generally, given a σ-ideal Σ ⊆ F we write µ≪ Σ to express that |µ|(A) = 0 for all
A ∈ Σ and define Mc(Σ) := {µ ∈ M | µ≪ Σ}. Similarly, L0(Σ) denotes the quotient of L0

by the space of functions equal to 0 except on an element of Σ. For a measurable function
f ∈ L0, and σ-ideal Σ, ess imΣ(f) :=

⋂
ε>0

{
x ∈ R

∣∣ f−1
(
(x− ε, x+ ε)

)
/∈ Σ
}

is the essential
range of f with respect to Σ, and ess supΣ f := sup ess imΣ(f) and ess infΣ f := inf ess imΣ(f)
denote the Σ-essential supremum and infimum respectively. Finally L∞(Σ) denotes the space
of a functions whose Σ-essential range is bounded, up to equality except on an element of Σ.
When Σ is the σ-ideal of null sets of a measure ν, we abuse notations and write ess imν(f)
for ess imΣ(f) and similarly for the essential supremum and infimum.

Finally, for brevity, we define for a subspace X ⊆ M of finite signed measures the subsets
X+ := X ∩M+ and X1 := X ∩M1, and for ν ∈ M we also define Xc(ν) := X ∩Mc(ν) and
Xs(ν) := X ∩Ms(ν).

6



Optimal Bounds between f-Divergences and IPMs

Integral Probability Metrics.

Definition 1 For a non-empty set of measurable functions G ⊆ L0, the integral probability
metric associated with G is defined by

dG(µ, ν) := sup
g∈G

{∣∣∣∣∫ g dµ−
∫
g dν

∣∣∣∣} ,
for all pairs of measures (µ, ν) ∈ M2 such that all functions in G are absolutely µ- and
ν-integrable. We extend this definition to all pairs of measures (µ, ν) ∈ M2 by dG(µ, ν) = +∞
in cases where there exists a function in G which is not µ- or ν- integrable.

Remark 2 When the class G is closed under negation, one can drop the absolute value in
the definition.

Example 1 The total variation distance TV(µ, ν) is obtained when G is the class of mea-
surable functions taking values in [−1, 1].3

Example 2 Note that the integrals
∫
g dµ and

∫
g dν depend only on the pushforward

measures g∗µ and g∗ν on R. Equivalently, when µ and ν are the probability distributions of
random variables X and Y taking values in Ω, we have that

∫
g dµ =

∫
IdR dg∗µ = E[g(X)],

the expectation of the random variable g(X), and similarly
∫
g dν = E[g(Y )]. The integral

probability metric dG thus defines the distance between random variables X and Y as the
largest difference in expectation achievable by “observing” X and Y through a function from
the class G.

3.2 Convex analysis

Most of the convex functions considered in this paper will be defined over spaces of measures
or functions. Consequently, we will apply tools from convex analysis in its general formulation
for locally convex topological vector spaces. References on this subject include Berg et al.
(1984) and Bourbaki (1987, II. and IV.§1) for the topological background, and Ekeland and
Témam (1999, Part I) and Zălinescu (2002, Chapters 1 & 2) for convex analysis. We now
briefly review the main concepts appearing in the present paper.

Definition 3 (Dual pair) A dual pair is a triplet (X,Y, ⟨ · , · ⟩) where X and Y are real
vector spaces, and ⟨ · , · ⟩ : X × Y → R is a bilinear form satisfying the following properties:

(i) for every x ∈ X \ {0}, there exists y ∈ Y such that ⟨x, y⟩ ≠ 0.

(ii) for every y ∈ Y \ {0}, there exists x ∈ X such that ⟨x, y⟩ ≠ 0.

We say that the pairing ⟨ · , · ⟩ puts X and Y in (separating) duality. Furthermore, a topology
τ on X is said to be compatible with the pairing if it is locally convex and if the topological
dual X⋆ of X with respect to τ is isomorphic to Y . Topologies on Y compatible with the
pairing are defined similarly.

3. Note that total variation distance is sometimes defined as half of this quantity, corresponding to functions
taking values in [0, 1].
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Example 3 For an arbitrary dual pair (X,Y, ⟨ · , · ⟩), the weak topology σ(X,Y ) induced
by Y on X is defined to be the coarsest topology such that for each y ∈ Y , x 7→ ⟨x, y⟩ is a
continuous linear form on X. It is a locally convex Hausdorff topology induced by the family
of seminorms py : x 7→ |⟨x, y⟩| for y ∈ Y and is thereby compatible with the duality between
X and Y .

Note that in finite dimension, all Hausdorff vector space topologies coincide with the
standard topology.

In the remainder of this section, we fix a dual pair (X,Y, ⟨ · , · ⟩) and endow X and Y with
topologies compatible with the pairing. As is customary in convex analysis, convex functions
take values in the set of extended reals R := R ∪ {−∞,+∞} to which the addition over R
is extended using the usual conventions, including (+∞) + (−∞) = +∞. In this manner,
convex functions can always be extended to be defined on the entirety of their domain by
assuming the value +∞ when they are not defined. For a convex function f : X → R,
dom f := {x ∈ X | f(x) < +∞} is the effective domain of f and ∂f(x) := {y ∈ Y |
∀x′ ∈ X, f(x′) ≥ f(x) + ⟨x′ − x, y⟩} denotes its subdifferential at x ∈ X.

Definition 4 (Lower semicontinuity, inf-compactness) The function f : X → R is
lower semicontinuous (lsc) (resp. inf-compact) if for every t ∈ R the sublevel set f−1(−∞, t] :=
{x ∈ X | f(x) ≤ t} is closed (resp. compact).

Lemma 5 If f : X × C → R is a convex function for C a convex subset of some linear
space, then g : X → R defined as g(x) := infc∈C f(x, c) is convex. Furthermore, if for some
topology on C the function f is inf-compact with respect to the product topology, then g is
also inf-compact.

Definition 6 (Properness) A convex function f : X → R is proper if dom f ̸= ∅ and
f(x) > −∞ for all x ∈ X.

Definition 7 (Convex conjugate) The convex conjugate (also called Fenchel dual or
Fenchel–Legendre transform) of f : X → R is the function f⋆ : Y → R defined for y ∈ Y by

f⋆(y) := sup
x∈X

{
⟨x, y⟩ − f(x)

}
.

For a set C ⊆ X, δC : X → R≥0 denotes the characteristic function of C, that is δC(x) is
0 if x ∈ C and +∞ elsewhere. The support function of C is hC : Y → R ∪ {+∞} defined
by hC(y) = supx∈C⟨x, y⟩. If C is closed and convex then (δC , hC) form a pair of convex
conjugate functions.

Proposition 8 Let f : X → R be a function. Then:

1. f⋆ : Y → R is convex and lower semicontinuous.

2. for all x ∈ X and y ∈ Y , f(x) + f⋆(y) ≥ ⟨x, y⟩ with equality iff y ∈ ∂f(x).

3. f⋆⋆ ≤ f with equality iff f is proper convex lower semicontinuous, f ≡ +∞ or f ≡ −∞.

4. if f ≤ g for some g : X → R, then g⋆ ≥ f⋆.
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Remark 9 In Proposition 8, Item 2 is known as the Fenchel–Young inequality and Item 3
as the Fenchel–Moreau theorem.

In the special case of X = R = Y and a proper convex function f : R → R, we can be
more explicit about some properties of f⋆ and f⋆⋆.

Lemma 10 If f : R → R is a proper convex function, then x ∈ R is such that f(x) ̸= f⋆⋆(x)
only if dom f has non-empty interior and x is one of the (at most two) points on its boundary,
in which case f⋆⋆(x) is the limit of f(x′) as x′ → x within dom f .

Definition 11 For f : R → R a proper convex function, we define for ℓ ∈ {−∞,+∞} the
quantity f ′(ℓ) := limx→ℓ f(x)/x ∈ R ∪ {+∞}.

Remark 12 The limit is always well-defined in R∪ {+∞} for proper convex functions. The
name f ′(ℓ) is motivated by the fact that when f is differentiable, we have f ′(ℓ) = limx→ℓ f

′(x).

Lemma 13 If f : R → R is a proper convex function, then the domain of f⋆ : R → R
satisfies int(dom f⋆) =

(
f ′(−∞), f ′(+∞)

)
.

Lemma 14 Let (fi)i∈I be a collection of convex functions from R to R which are non-
decreasing over some convex set C ⊆ R. Then for all x ∈ intC

lim
x′→x−

inf
i∈I

fi(x
′) ≤ inf

i∈I
f⋆⋆i (x) ≤ inf

i∈I
fi(x) .

Proof For each i ∈ I we have by Lemma 10 that f⋆⋆i (x) ∈ {fi(x), limx′→x− fi(x
′)}, so since

fi is non-decreasing over C and f⋆⋆i ≤ fi by Proposition 8, the result follows by taking the
infimum over i ∈ I as limx′→x− infi∈I fi(x

′) ≤ infi∈I limx′→x− fi(x
′).

Fenchel duality theorem is arguably the most fundamental result in convex analysis, and
we will use it in this paper to compute the convex conjugate and minimum of a convex
function subject to a linear constraint. The following proposition summarizes the conclusions
obtained by instantiating the duality theorem to this specific case.

Proposition 15 Let f : X → (−∞,+∞] be a convex function. For y ∈ Y and ε ∈ R, define
fy,ε : X → (−∞,+∞] by

fy,ε(x) := f(x) + δ{ε}
(
⟨x, y⟩

)
=

{
f(x) if ⟨x, y⟩ = ε

+∞ otherwise

for all x ∈ X.

1. Assume that f is lower semicontinuous and define ⟨dom f, y⟩ := {⟨x, y⟩ | x ∈ dom f}.
If ε ∈ int

(
⟨dom f, y⟩

)
, then f⋆y,ε(x

⋆) = infλ∈R f
⋆(x⋆ + λy)− λ · ε for all x⋆ ∈ Y , where

the infimum is reached whenever f⋆y,ε(x⋆) is finite.
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2. Assume that f is non-negative and satisfies f(0) = 0. Define the marginal value
function

Ly,f (ε) := inf
x∈X

fy,ε(x) = inf{f(x) | x ∈ X ∧ ⟨x, y⟩ = ε} . (4)

Then Ly,f is a non-negative convex function satisfying Ly,f (0) = 0 and its convex
conjugate is given by L ⋆

y,f (t) = f⋆(ty). Furthermore, Ly,f is lower semicontinuous at
ε, that is Ly,f (ε) = L ⋆⋆

y,f (ε), if and only if strong duality holds for problem (4), i.e. if
and only if

inf{f(x) | x ∈ X ∧ ⟨x, y⟩ = ε} = sup{t · ε− f⋆(t · y) | t ∈ R} .

Proof

1. This follows from a direct application of Fenchel’s duality theorem (see e.g. Zălinescu
(2002, Corollary 2.6.4, Theorem 2.8.1)).

2. Define the perturbation function F : X × R → R by F (x, ε) := fy,ε(x) = f(x) +
δ{0}

(
⟨x, y⟩ − ε

)
so that Ly,f (ε) = infx∈X F (x, ε). Since F is non-negative, jointly

convex over the convex set X × R and F (0, 0) = 0, we get that Ly,f is itself convex,
non-negative, and satisfies Ly,f (0) = 0. Furthermore, F ⋆(x⋆, t) = f⋆(x⋆ + ty) and
L ⋆
y,f (t) = F ⋆(0, t) = f⋆(ty) by e.g. Zălinescu (2002, Theorem 2.6.1, Corollary 2.6.4).

Finally, we will use the following result giving a sufficient condition for a convex function
to be bounded below. Most such results in convex analysis assume that the function is either
lower semicontinuous or bounded above on an open set. In contrast, the following lemma
assumes that the function is upper bounded on a closed, convex, bounded set of a Banach
space, or more generally on a cs-compact subset of a real Hausdorff topological vector space.

Lemma 16 (cf. König (1986, Example 1.6(0), Remark 1.9)) Let C be a cs-compact
subset of a real Hausdorff topological vector space. If f : C → R is a convex function such
that supx∈C f(x) < +∞, then infx∈C f(x) > −∞. In particular, if f : C → R is linear, then
supx∈C f(x) < +∞ if and only if infx∈C f(x) > −∞.

The notion of cs-compactness (called σ-convexity in König (1986)) was introduced and
defined in Jameson (1972), and Proposition 2 of the same paper states that closed, convex,
bounded sets of Banach spaces are cs-compact. For completeness, we include a proof of
Lemma 16 in Appendix A.1.

3.3 Orlicz spaces

We will use elementary facts from the theory of Orlicz spaces which we now briefly review
(see for example Léonard (2007) for a concise exposition or Rao and Ren (1991) for a more
complete reference). A function θ : R → [0,+∞] is a Young function if it is a convex, lower
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semicontinuous, and even function with θ(0) = 0 and 0 < θ(s) < +∞ for some s > 0. Then
writing Iθ,ν : f 7→

∫
θ(f) dν for ν ∈ M, one defines4 two spaces associated with θ:

• the Orlicz space Lθ(ν) :=
{
f ∈ L0(ν)

∣∣ ∃α > 0, Iθ,ν(αf) <∞
}
,

• the Orlicz heart (Edgar and Sucheston, 1989) Lθ♡(ν) :=
{
f ∈ L0(ν)

∣∣∀α > 0, Iθ,ν(αf) <
∞
}
, also known as the Morse–Transue space (Morse and Transue, 1950),

which are both Banach spaces when equipped with the Luxemburg norm ∥f∥θ := inf{t > 0 |
Iθ,ν(f/t) ≤ 1}. Furthermore, Lθ♡(ν) ⊆ Lθ(ν) ⊆ L1(ν) and L∞(ν) ⊆ Lθ(ν) for all θ, and
L∞(ν) ⊆ Lθ♡(ν) when dom θ = R. If θ⋆ is the convex conjugate of θ, we have the following
analogue of Hölder’s inequality:

∫
f1f2 dν ≤ 2∥f1∥θ∥f2∥θ⋆ , for all f1 ∈ Lθ(ν) and f2 ∈ Lθ

⋆
(ν),

implying that (Lθ, Lθ
⋆
) are in dual pairing. Furthermore, if dom θ = R, we have that the

dual Banach space (Lθ♡, ∥ · ∥θ)⋆ is isomorphic to (Lθ
⋆
, ∥ · ∥θ⋆).

4. Variational representations of ϕ-divergences

In the rest of this paper, we fix a convex and lower semicontinuous function ϕ : R → R∪{+∞}
such that ϕ(1) = 0. After defining ϕ-divergences in Section 4.1, we start with the usual
variational representation of the ϕ-divergence in Section 4.2, which we then strengthen in the
case of probability measures in Section 4.3. A reader interested primarily in optimal bounds
between ϕ-divergences and IPMs can skip Sections 4.2 and 4.3 at a first reading.

4.1 Convex integral functionals and ϕ-divergences

The notion of a ϕ-divergence is closely related to the one of a convex integral functional that
we define first.

Definition 17 (Integral functional) For ν ∈ M+ and f : R → R∪ {∞} a proper convex
function, the convex integral functional associated with f and ν is the function If,ν : L1(ν) →
R ∪ {∞} defined for g ∈ L1(ν) by

If,ν(g) =

∫
f ◦ g dν .

The systematic study of convex integral functionals from the perspective of convex analysis
was initiated by Rockafellar (1968, 1971), who considered more generally functionals of the
form g 7→

∫
f(ω, g(ω)) dν for g : Ω → Rn and f : Ω × Rn → R such that f(ω, ·) is convex

ν-almost everywhere. A good introduction to the theory of such functionals can be found
in Rockafellar (1976); Rockafellar and Wets (1998b). The specific case of Definition 17 is
known as an autonomous integral functional, but we drop this qualifier since it applies to all
functionals studied in this paper.

Definition 18 (ϕ-divergence) For µ ∈ M and ν ∈ M+, write µ = µc + µs with µc ≪ ν
and µs ⊥ ν, the Lebesgue decomposition of µ with respect to ν, and µs = µ+s − µ−s with

4. The definition and theory of Orlicz spaces holds more generally for σ-finite measures. The case of
finite measures already covers all the applications considered in this paper whose focus is primarily on
probability measures.
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Name ϕ ϕ′(∞) <∞? ϕ(0) <∞? Notes

α-divergences xα−1
α(α−1) when α < 1 when α > 0 ϕ†α = ϕ1−α

KL x log x No Yes Limit of α→ 1−

reverse KL − log x Yes No Limit of α→ 0+

squared Hellinger (
√
x− 1)2 Yes Yes Scaling of α = 1

2

χ2-divergence (x− 1)2 No Yes Scaling of α = 2

Jeffreys (x− 1) log x No No KL + reverse KL

χα-divergences |x− 1|α when α = 1 Yes For α ≥ 1
(Vajda, 1973)

Total variation |x− 1| Yes Yes χ1-divergence

Jensen–Shannon
x log x−

(1 + x) log
(
1+x
2

) Yes Yes a.k.a. total divergence
to the average

Triangular
discrimination

(x−1)2

x+1 Yes Yes a.k.a. Vincze–Le Cam
distance

Table 1: Common ϕ-divergences (see e.g. Sason and Verdú (2016))

µ+s , µ
−
s ∈ M+, the Hahn–Jordan decomposition of µs. The ϕ-divergence of µ with respect to

ν is the quantity Dϕ(µ ∥ ν) ∈ R ∪ {∞} defined by

Dϕ(µ ∥ ν) :=
∫
ϕ

(
dµc
dν

)
dν + µ+s (Ω) · ϕ′(∞)− µ−s (Ω) · ϕ′(−∞) ,

with the convention 0 · (±∞) = 0.

Remark 19 An equivalent definition of Dϕ(µ ∥ ν) which does not require decomposing µ is
obtained by choosing λ ∈ M+ dominating both µ and ν (e.g. λ = |µ|+ ν) and defining

Dϕ(µ ∥ ν) =
∫
dν

dλ
· ϕ
(
dµ/dλ

dν/dλ

)
dλ,

with the conventions coming from continuous extension that 0 · ϕ(a/0) = a · ϕ′(∞) if a ≥ 0
and 0 ·ϕ(a/0) = a ·ϕ′(−∞) if a ≤ 0 (see Definition 11). It is easy to check that this definition
does not depend on the choice of λ and coincides with Definition 18.

The notion of ϕ-divergence between probability measures was introduced by Csiszár (1963,
1967) in information theory and independently by Ali and Silvey (1966) in statistics. The
generalization to finite signed measures is from Csiszár et al. (1999). Some useful properties
of the ϕ-divergence include: it is jointly convex in both its arguments, if µ(Ω) = ν(Ω) then
Dϕ(µ ∥ ν) ≥ 0, with equality if and only if µ = ν assuming that ϕ is strictly convex at 1.

Remark 20 If µ≪ ν, the definition simplifies to Dϕ(µ ∥ ν) = ν
(
ϕ ◦ dµ

dν

)
. Furthermore, if

ϕ′(±∞) = ±∞, then Dϕ(µ ∥ ν) = +∞ whenever µ ̸≪ ν. When either ϕ′(+∞) or ϕ′(−∞) is
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finite, some authors implicitly or explicitly redefine Dϕ(µ ∥ ν) to be +∞ whenever µ ̸≪ ν,
thus departing from Definition 18. This effectively defines Dϕ(· ∥ ν) as the integral functional
Iϕ,ν and the rich theory of convex integral functionals can be readily applied. As we will see
in this paper, this change of definition is unnecessary and the difficulties arising from the case
µ ̸≪ ν in Definition 18 can be addressed by separately treating the component of µ singular
with respect to ν.

An important reason to prefer the general definition is the equality Dϕ(ν ∥ µ) = Dϕ†(µ ∥ ν)
where ϕ† : x 7→ xϕ(1/x) is the Csiszár dual of ϕ, which identifies the reverse ϕ-divergence—
where the arguments are swapped—with the divergence associated with ϕ†. Consequently, any
result obtained for the partial function µ 7→ Dϕ(µ ∥ ν) can be translated into results for the
partial function ν 7→ Dϕ(µ ∥ ν) by swapping the role of µ and ν and replacing ϕ with ϕ†. Note
that (ϕ†)′(∞) = limx→0+ ϕ(x) and (ϕ†)′(−∞) = limx→0− ϕ(x), and for many divergences of
interest (including the Kullback–Leibler divergence) at least one of ϕ′(∞) and ϕ(0) is finite.
See Table 1 for some examples.

4.2 Variational representations: general measures

In this section, we fix a finite and non-negative measure ν ∈ M+ \ {0} and study the convex
functional Dϕ,ν : µ 7→ Dϕ(µ ∥ ν) over a vector space X of finite measures containing ν. Our
primary goal is to derive a variational representation of Dϕ,ν , expressing it as the solution of
an optimization problem over Y , a vector space of functions put in dual pairing with X via
⟨µ, h⟩ = µ(h), for a measure µ ∈ X and a function h ∈ Y .

Care must be taken in specifying the dual pair (X,Y ), since the variational representation
we obtain depends on it, or more precisely, on the null σ-ideal Ξ of (Ω,F) consisting of the
measurable sets that are null for all measures in X. Note that, as discussed in Remark 20,
this ideal Ξ is irrelevant when ϕ′(±∞) = ±∞ (e.g. when Dϕ is the KL divergence), since
then Dϕ(µ ∥ ν) = +∞ whenever µ ̸≪ ν, but when, ϕ′(+∞) or ϕ′(−∞) is finite, it is possible
to have Dϕ(µ ∥ ν) <∞ even when µ ̸≪ ν, and we wish to obtain a variational representation
for such discontinuous measures as well. Denoting by N the σ-ideal of ν-null sets, we always
have Ξ ⊆ N since we assume that ν ∈ X. If Ξ = N , then we have X ⊆ Mc(ν), corresponding
to case of only absolutely continuous measures, but if Ξ ⊂ N is a proper subset of N then
N \ Ξ quantifies the “amount of ν-singularities” of measures in X. The extreme case where
Ξ = {∅} allows for arbitrary singularities, since this implies that for any measurable set
A ∈ F , there exists a measure in X with positive variation on A. Furthermore, for common
measurable spaces Ω, there is usually an ambient measure λ for which it is natural to assume
that X ⊆ Mc(λ) (e.g. λ could be the Lebesgue measure on R or more generally the Haar
measure on a locally compact unimodular group). Denoting by L the null σ-ideal of this
ambient measure, we could then take L ⊆ Ξ, thus restricting the singularities of measures in
X.

Formally, we require that the pair (X,Y ) satisfies a decomposability condition that we
define next. It is closely related to Rockafellar’s notion of a decomposable space (Rockafellar,
1976, Section 3) which plays an important role in the theory of convex integral functionals.

Definition 21 (Decomposability) Let X ⊆ M(Ω,F) be a vector space of finite measures
and define Ξ := {A ∈ F | ∀µ ∈ X, |µ|(A) = 0} the σ-ideal of measurable sets that are null
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for all measures in X. Let Y be a vector space of measurable functions and let ν ∈ X be a
finite non-negative measure. We say that the pair (X,Y ) is ν-decomposable if:

1. the pairing (µ, h) 7→
∫
hdµ puts X and Y in separating duality.

2.
{
µ ∈ Mc(ν)

∣∣∣ dµdν ∈ L∞(ν)
}
⊆ X and L∞(Ξ) ⊆ Y ⊆ L0(Ξ).

3. for all A /∈ Ξ, there exists µ ∈ X+ \ {0} such that µ(Ω \A) = 0.

Remark 22 Note that items 2 and 3 together imply that the duality is necessarily separating,
so the definition would remain identical by only requiring in item 1 that µ(h) be finite for each
µ ∈ X and h ∈ Y . Furthermore, if we strengthen condition 2 by requiring that {µ ∈ Mc(µ

′) |
dµ
dµ′ ∈ L∞(µ′)} ⊆ X for all measures µ′ ∈ X, then 3 is implied. Thus, starting from an
arbitrary dual pair (X,Y ) in separating duality, one can extend X by taking its sum with the
space of all measures of bounded derivative with respect to measures in X and extend Y by
taking its sum with L∞(Ξ). The resulting pair of extended spaces will then be decomposable
with respect to any measure in X.

Example 4 If X ⊆ Mc(ν), then item 2 implies item 3, and ν-decomposability then simply
expresses that X and Y form a dual pair of decomposable spaces in the sense of Rockafellar
(1976, Section 3), once Mc(ν) is identified with L1(ν) via the Radon–Nikodym theorem. An
example of a ν-decomposable pair in this case is given by

(
Mc(ν), L

∞(ν)
)
. More generally, if

Ξ is a proper subset of the σ-ideal of ν-null sets, then item 3 requires X to contain “sufficiently
many” ν-singular measures. An example of a ν-decomposable pair for which Ξ = {∅} is given
by X = M and Y = Lb(Ω). An intermediate example which will be useful when considering
IPMs can be obtained by constructing the largest dual pair (X,Y ) such that Y contains a
class of functions G of interest. The details of the construction are given in Definition 41
and decomposability is stated and proved in Lemma 43.

With Definition 21 at hand, our approach to obtain variational representations of the
divergence is simple. We first compute the convex conjugate D⋆

ϕ,ν of Dϕ,ν defined for h ∈ Y
by

D⋆
ϕ,ν(h) = sup

µ∈X
{µ(h)−Dϕ,ν(µ)} (5)

and prove that Dϕ,ν is lower semicontinuous. By the Fenchel–Moreau theorem, we thus
obtain the representation Dϕ,ν(µ) = D⋆⋆

ϕ,ν(µ) = suph∈Y
{
µ(h)−D⋆

ϕ,ν(h)
}
.

We start with the simplest case where X ⊆ Mc(ν), that is when all the measures in X
are ν-absolutely continuous. Since Dϕ,ν coincides with the integral functional Iϕ,ν in this case,
this lets us exploit the well-known fact that under our decomposability condition, (Iϕ,ν , Iϕ⋆,ν)
form a pair of convex conjugate functionals. This fact was first observed in Luxemburg and
Zaanen (1956) in the context of Orlicz spaces, and then generalized in Rockafellar (1968,
1971).

Proposition 23 Let ν ∈ M+ be non-negative and finite, and let (X,Y ) be ν-decomposable
with X ⊆ Mc(ν). Then the convex conjugate D⋆

ϕ,ν of Dϕ,ν over X is given for all h ∈ Y by

D⋆
ϕ,ν(h) = Iϕ⋆,ν(h) =

∫
ϕ⋆ ◦ hdν.
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Furthermore Dϕ,ν is lower semicontinuous, therefore for all µ ∈ X

Dϕ(µ ∥ ν) = sup
h∈Y

{∫
hdµ−

∫
ϕ⋆ ◦ hdν

}
. (6)

Proof Since ν ∈ X by assumption, the function Dϕ,ν is proper and convex over X. The
proposition is then immediate consequence of Rockafellar (1976, Theorem 3C) after iden-
tifying Mc(ν) with L1(ν) by the Radon–Nikodym theorem and noting that X and Y are
decomposable (Rockafellar, 1976, Section 3) by Assumption 21.

Example 5 Consider the case of the Kullback–Leibler divergence, corresponding to the
function ϕ : x 7→ x log x. A simple computation gives ϕ⋆(x) = ex−1 and (6) yields as a
variational representation, for all µ ∈ X

D(µ ∥ ν) = sup
g∈Y

{
µ(g)−

∫
eg−1 dν

}
, (7)

Note that this representation differs from the Donsker–Varadhan representation (1) discussed
in the introduction. This discrepancy will be explained in the next section.

The variational representation of the ϕ-divergence in Proposition 23 is well-known (see e.g.
Ruderman et al. (2012)). However, as already discussed, the case where X contains ν-singular
measures is also of interest and has been comparatively less studied in the literature. The
following proposition generalizes the expression for D⋆

ϕ,ν obtained in Proposition 23 to the
general case of an arbitrary ν-decomposable pair (X,Y ), without requiring that X ⊆ Mc(ν).

Proposition 24 Let ν ∈ M+ be a non-negative and finite measure and assume that (X,Y )
is ν-decomposable. Then, the functional Dϕ,ν over X has convex conjugate D⋆

ϕ,ν given for all
g ∈ Y by

D⋆
ϕ,ν(h) =

{
Iϕ⋆,ν(h) if ess imΞ(h) ⊆ [ϕ′(−∞), ϕ′(∞)]

+∞ otherwise
, (8)

where Ξ := {A ∈ F | ∀µ ∈ X, |µ|(A) = 0} is the null σ-ideal of X.

Proof For h ∈ Y , let C(h) be the right-hand side of Eq. (8), our claimed expression for
D⋆
ϕ,ν(h).

First, we show that supµ∈X
{
µ(h) − Dϕ,ν(µ)

}
≤ C(h). For this, we assume that

ess imΞ(h) ⊆ [ϕ′(−∞), ϕ′(∞)], as otherwise C(h) = +∞ and there is nothing to prove.
For µ ∈ X, write µ = µc + µ+s − µ−s with µc ∈ Mc(ν) and µ+s , µ−s ∈ M+

s (ν), so that

µ(h)−Dϕ,ν(µ) = µc(h)−Iϕ,ν
(
dµc
dν

)
+µ+s (h)−µ+s (Ω) ·ϕ′(∞)−µ−s (h)+µ−s (Ω) ·ϕ′(−∞). (9)

Observe that µc(h) − Iϕ,ν

(
dµc
dν

)
= ν

(
dµc
dν · h− ϕ ◦ dµc

dν

)
≤ ν(ϕ⋆ ◦ h) = Iϕ⋆,ν(h), by the

Fenchel–Young inequality applied to ϕ and monotonicity of the integral with respect to
the non-negative measure ν. Since µ ≪ Ξ by definition of Ξ and thus µ+s ≪ Ξ, we
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have ϕ′(∞) ≥ ess supΞ h ≥ ess supµ+s h so that µ+s (h)− µ+s (Ω) · ϕ′(∞) = µ+s (h− ϕ′(∞)) ≤ 0.
Similarly µ−s (Ω)·ϕ′(−∞)−µ−s (h) ≤ 0. Using these bounds in (9) yields µ(h)−Dϕ,ν(µ) ≤ C(h)
as desired.

Next, we show that supµ∈X
{
µ(h)−Dϕ,ν(µ)

}
≥ C(h). Observe that

sup
µ∈X

{
µ(h)−Dϕ,ν(µ)

}
≥ sup

µ∈Xc(ν)

{
µ(h)−Dϕ,ν(µ)

}
= Iϕ⋆,ν(h) , (10)

where the equality follows from Proposition 23 applied to Xν = Xc(ν) and Yν = Y/∼ν

where ∼ν is the equivalence relation of being equal ν-almost everywhere. If ess imΞ(h) ⊆
[ϕ′(−∞), ϕ′(∞)], then Iϕ⋆,ν(h) = C(h) and (10) gives the desired conclusion. If ess supΞ h >
ϕ′(∞), let α ∈ R such that ϕ′(∞) < α < ess supΞ h. Then A = {ω ∈ Ω | h(ω) > α}
is a measurable set in F \ Ξ. If ν(A) > 0, then Iϕ⋆,ν(h) = ∞ = C(h), since domϕ⋆ ⊆
[ϕ′(−∞), ϕ′(∞)] and (10) again gives the desired conclusion. If ν(A) > 0, then by Definition 21
there exists µA ∈ X+ \ {0} such that µA(Ω \A) = 0. But then

sup
µ∈X

{
µ(h)−Dϕ,ν(µ)

}
≥ sup

c>0

{
(ν + cµA)(h)−Dϕ,ν(ν + cµA)

}
= ν(h) + sup

c>0

{
cµA(h)− cµA(Ω) · ϕ′(∞)

}
≥ ν(h) + sup

c>0

{
cµA(Ω) ·

(
α− ϕ′(∞)

)}
= +∞ = C(h) ,

where the first equality is because Iϕ,ν
(
dν
dν

)
= ϕ(1) = 0 and µA ∈ X+

s (ν), and the second is
because µA(Ω) > 0 and α > ϕ′(∞). The case ess infΞ h(Ω) < ϕ′(−∞) is analogous.

Remark 25 Although the expression of D⋆
ϕ,ν obtained in Proposition 24 should coincide with

the one obtained in Proposition 23 when X ⊆ Mc(ν) (in which case Ξ coincides with the
σ-ideal of ν-null sets), it appears different at first glance because of the explicit constraint
on the Ξ-essential range of g present in (8). However, this constraint is also present,
though implicit, in Proposition 23 since domϕ⋆ = [ϕ′(−∞), ϕ′(∞)] and thus Iϕ⋆,ν(h) = +∞
whenever ess imν(h) ̸⊆ [ϕ′(−∞), ϕ(∞)]. When X is allowed to contain measures which are
not absolutely continuous with respect to ν, this implicit constraint on the ν-essential range
is simply strengthened to restrict the Ξ-essential range instead. In the extreme case where
Ξ = {∅} then the true range of h is constrained.

Finally, we prove that Dϕ,ν is lower semicontinuous over X, yielding a variational
representation of Dϕ(µ ∥ ν) in the general case.

Proposition 26 Let ν ∈ M+ be a non-negative and finite measure and assume that (X,Y )
is ν-decomposable. Then, Dϕ,ν is lower semicontinuous over X. Equivalently, we have for all
µ ∈ X the biconjugate representation

Dϕ(µ ∥ ν) = sup
{
µ(g)− Iϕ⋆,ν(g)

∣∣ g ∈ Y ∧ ess imΞ(g) ⊆ [ϕ′(−∞), ϕ′(∞)]
}
,

where Ξ = {A ∈ F | ∀µ ∈ X, |µ|(A) = 0} is the null σ-ideal of X.
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Proof Since Dϕ,ν is proper, by the Fenchel–Moreau theorem it suffices to show that
D⋆⋆
ϕ,ν ≥ Dϕ,ν . For µ ∈ X, write µ = µc + µ+s − µ−s with µc ∈ Mc(ν), and µ+s , µ

−
s ∈ M+

s (ν)

by the Lebesgue and Hahn–Jordan decompositions. Furthermore, let (C,P,N) ∈ F3 be a
partition of Ω such that |µc|(Ω \ C) = ν(Ω \ C) = 0, µ+s (Ω \ P ) = 0 and µ−s (Ω \N) = 0. By
Proposition 24,

D⋆⋆
ϕ,ν(µ) = sup

{
µc(g)− Iϕ⋆,ν(g) + µ+s (g)− µ−s (g)∣∣ g ∈ Y ∧ ess imΞ(g) ⊆ [ϕ′(−∞), ϕ′(∞)]

}
.

(11)

Let α ∈ R such that α < Iϕ,ν

(
dµc
dν

)
. Applying Proposition 23 with Xν = Mc(ν)

and Yν = L∞(ν), we get the existence of gc ∈ L∞(ν) such that µc(gc) − Iϕ⋆,ν(gc) > α.
Furthermore, since domϕ⋆ ⊆ [ϕ′(−∞), ϕ′(∞)], we have that gc ∈ [ϕ′(−∞), ϕ′(∞)] ν-almost
everywhere. Consequently, there exists a representative g̃c ∈ Lb(Ω) of gc such that g̃c(Ω) ⊆
[ϕ′(−∞), ϕ′(∞)].

For β, γ ∈ R ∩ [ϕ′(−∞), ϕ′(∞)] (which is nonempty since it contains domϕ⋆ and ϕ is
convex and proper), define g̃ : Ω → R by

g̃(ω) =


g̃c(ω) if ω ∈ C

β if ω ∈ P

γ if ω ∈ N

.

By construction g̃ ∈ Lb(Ω), hence its equivalence class g in L∞(Ξ) belongs to Y by Defini-
tion 21. Furthermore, since µ≪ Ξ we have µc(g)− Iϕ⋆,ν(g) = µc(g̃c)− Iϕ⋆,ν(g̃c) = µc(gc)−
Iϕ⋆,ν(gc) > α, µ+s (g) = µ+s (Ω) · β, and µ−s (g) = µ−s (Ω) · γ. Since g̃(Ω) ⊆ [ϕ′(−∞), ϕ′(∞)] by
construction, for this choice of g ∈ Y , the optimand in (11) is at least α+µ+s (Ω) ·β−µ−s (Ω) ·γ.
This concludes the proof since α, β, γ can be made arbitrarily close to Iϕ,ν

(
dµc
dν

)
, ϕ′(∞), and

ϕ′(−∞) respectively.

4.3 Variational representations: probability measures

When applied to probability measures, which are the main focus of this paper, the variational
representations provided by Propositions 23 and 26 are loose. This fact was first explic-
itly mentioned in Ruderman et al. (2012), where the authors also suggested that tighter
representations could be obtained by specializing the derivation to probability measures.

Specifically, given a dual pair (X,Y ) as in Section 4.2, we restrict Dϕ,ν to probability
measures by defining D̃ϕ,ν : µ 7→ Dϕ,ν(µ) + δM1(µ) for µ ∈ X. For g ∈ Y we get

D̃
⋆

ϕ,ν(g) = sup
µ∈X

{
µ(g)− D̃ϕ,ν(µ)

}
= sup

µ∈X1

{
µ(g)−Dϕ,ν(µ)

}
. (12)

Observe that compared to (5), the supremum is now taken over the smaller set X1 = X∩M1,
and thus D̃

⋆

ϕ,ν ≤ D⋆
ϕ,ν . When D̃ϕ,ν is lower semicontinuous we then get for µ ∈ X1

Dϕ(µ ∥ ν) = D̃ϕ,ν(µ) = D̃
⋆⋆

ϕ,ν(µ) = sup
g∈Y

{
µ(g)− D̃

⋆

ϕ,ν(g)
}
. (13)
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This representation should be contrasted with the one obtained in Section 4.2, Dϕ(µ ∥ ν) =
supg∈Y

{
µ(g)−D⋆

ϕ,ν(g)
}
, which holds for any µ ∈ X and in which the optimand is smaller

than in (13) for all g ∈ Y (see also Examples 6 and 7 below for an illustration).
In the rest of this section, we carry out the above program by giving an explicit expression

for D̃
⋆

ϕ,ν defined in (12) and showing that D̃ϕ,ν is lower semi-continuous. We will assume in
the rest of this paper that domϕ contains a neighborhood of 1, as otherwise the ϕ-divergence
on probability measures becomes the discrete divergence Dϕ(µ ∥ ν) = δ{ν}(µ) which is only
finite when µ = ν and for which the questions studied in this work are trivial. We start with
the following lemma giving a simpler expression for D̃ϕ,ν .

Lemma 27 Define ϕ+ : x 7→ ϕ(x) + δR≥0
(x) for x ∈ R. Then for all µ ∈ M

D̃ϕ,ν(µ) = Dϕ+,ν(µ) + δ{1}
(
µ(Ω)

)
.

Proof Using the same notations as in Definition 18, and since ϕ′+(−∞) = −∞, it is easy to
see that Dϕ+,ν(µ) equals +∞ whenever µ−s ̸= 0 or ν

({
ω ∈ Ω

∣∣ dµc
dν (ω) < 0

})
̸= 0 and equals

Dϕ,ν(µ) otherwise. In other words, Dϕ+,ν(µ) = Dϕ,ν(µ) + δM+(µ). This concludes the proof
since δM+(µ) + δ{1}

(
µ(Ω)

)
= δM1(µ).

In the expression of D̃ϕ,ν given by Lemma 27, the non-negativity constraint on µ is
“encoded” directly in the definition of ϕ+ (cf. Borwein and Lewis (1991)), only leaving the
constraint µ(Ω) = 1 explicit. Since µ(Ω) =

∫
1Ω dµ, this is an affine constraint which

is well-suited to a convex duality treatment. In particular, we can use Proposition 15 to
compute D̃

⋆

ϕ,ν .

Proposition 28 Assume that (X,Y ) is a ν-decomposable dual pair for some ν ∈ M1. Then
the convex conjugate of D̃ϕ,ν with respect to (X,Y ) is given for all g ∈ Y , by

D̃
⋆

ϕ,ν(g) = inf

{∫
ϕ⋆+(g + λ) dν − λ

∣∣∣∣ λ+ ess supΞ g ≤ ϕ′(∞)

}
, (14)

where ϕ+ : x 7→ ϕ(x) + δR≥0
(x) and Ξ = {A ∈ F | ∀µ ∈ X, |µ|(A) = 0}.

In (14) the infimum is reached if it is finite, which holds in particular whenever g ∈ L∞(Ξ).

Proof We use Lemma 27 and apply Proposition 15 with f = Dϕ+,ν , y = 1Ω and ε = 1.
We need to verify that 1 ∈ int

(
{µ(1Ω) | µ ∈ domDϕ+,ν}

)
, but this is immediate since

(1± α)ν ∈ domDϕ+,ν for sufficiently small α by the assumption that 1 ∈ int domϕ.
Thus, by Proposition 15, for all g ∈ Y

D̃
⋆

ϕ,ν(g) = inf
λ∈R

{
D⋆
ϕ+,ν(g + λ)− λ

}
,

where the infimum is reached whenever it is finite. Equation (14) follows by using Proposi-
tion 24 and observing that ϕ′+(∞) = ϕ′(∞) and ϕ′+(−∞) = −∞.

It remains to verify the claims about finiteness of D̃
⋆

ϕ,ν(g). For g ∈ L∞(Ξ), write
M := ess supΞ g. Since int(domϕ⋆+) =

(
−∞, ϕ′(∞)

)
, for any A < ϕ′(∞), the choice of

λ = A−M makes the optimand in (14) finite.
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Remark 29 As in Remark 25 above, when X ⊆ Mc(ν) the constraint on λ in (14) can
be dropped, leading to a simpler expression for D̃

⋆

ϕ,ν(g) in this case. Indeed, domϕ⋆+ =(
−∞, ϕ′(∞)

]
and thus the optimand in (14) equals +∞ whenever ess supΞ g = ess supν g >

ϕ′(∞)− λ.

Example 6 The effect of the restriction to probability measures is particularly pronounced for
the total variation distance, which is the ϕ-divergence for ϕ(x) = |x− 1|. In the unrestricted
case, a simple calculation shows ϕ has convex conjugate ϕ⋆(x) = x+ δ[−1,1](x), so that the
conjugate of the unrestricted divergence D⋆

ϕ,ν(g) is +∞ unless ess imΞ(g) ⊆ [−1, 1]. In the
case of probability measures, the restriction ϕ+ of ϕ to the non-negative reals has conjugate
ϕ⋆+(x) = x when |x| ≤ 1, ϕ⋆+(x) = +∞ when x > 1, but ϕ⋆+(x) = −1 when x < −1. Thus,
D⋆
ϕ+,ν

(g) < +∞ whenever ess imΞ(g) ⊆ (−∞, 1]. Furthermore, because of the additive λ
shift in Eq. (14), we have D̃

⋆

ϕ,ν(g) < +∞ whenever ess supΞ g < +∞, in particular whenever
g ∈ L∞(Ξ).

As a corollary, we obtain a different variational representation of the ϕ-divergence, valid for
probability measures and containing as a special case the Donsker–Varadhan representation
of the Kullback–Leibler divergence.

Corollary 30 Assume that (X,Y ) is ν-decomposable for some ν ∈ M1. Then, D̃ϕ,ν is lower
semicontinuous over X. In particular for all probability measures µ ∈ X1 = X ∩M1

Dϕ(µ ∥ ν) = sup
g∈Y

{
µ(g)− inf

{
Iϕ⋆+,ν(g + λ)− λ

∣∣ λ+ ess supΞ g ≤ ϕ′(∞)
}}
,

where ϕ+ : x 7→ ϕ(x) + δR≥0
(x) and Ξ = {A ∈ F | ∀µ ∈ X, |µ|(A) = 0}.

Proof Since 1Ω ∈ Y the linear form µ 7→ µ(1Ω) is continuous for any topology compatible
with the dual pair (X,Y ). Consequently, the function µ 7→ δ{1}

(
µ(Ω)

)
is lower semicon-

tinuous as the composition of the lower semicontinuous function δ{1} with a continuous
function. Finally, Dϕ+,ν is lower semicontinuous by Propositions 23 and 26. Hence D̃ϕ,ν

is lower semicontinuous as the sum of two lower semicontinuous functions, by using the
expression in Lemma 27. The variational representation immediately follows by expressing
D̃ϕ,ν as its biconjugate.

Example 7 As in Example 5, we consider the case of the Kullback–Leibler divergence, given
by ϕ(x) = ϕ+(x) = x log x. For a ν-decomposable dual pair (X,Y ), since ϕ⋆(x) = ex−1

Proposition 28 implies for ν ∈ M1 and g ∈ Y that

D̃
⋆

ϕ,ν(g) = inf
λ∈R

∫
eg+λ−1 dν − λ = log

∫
eg dν ,

where the last equality comes from the optimal choice of λ = − log
∫
eg−1 dν. Using Corol-

lary 30 we obtain for all probability measure µ ∈ X1

D(µ ∥ ν) = sup
g∈Y

{
µ(g)− log

∫
eg dν

}
= sup

g∈Y

{
µ(g)− ν(g)− log

∫
e

(
g−ν(g)

)
dν

}
,
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which is the Donsker–Varadhan representation of the Kullback–Leibler divergence (Donsker
and Varadhan, 1976). For µ ∈ X1, the variational representation obtained in (7) can be
equivalently written

D(µ ∥ ν) = sup
g∈Y

{
1 + µ(g)−

∫
eg dν

}
.

Using the inequality log(x) ≤ x − 1 for x > 0, we see that the optimand in the previous
supremum is smaller than the optimand in the Donsker–Varadhan representation for all
g ∈ Y . We thus obtained a “tighter” representation by restricting the divergence to probability
measures.

Example 8 Consider the family of divergences ϕ(x) = |x − 1|α/α for α ≥ 1. A simple
computation gives ϕ⋆(y) = y + |y|β/β where β ≥ 1 is such that 1

α + 1
β = 1. Jiao et al.

(2017) uses the variational representation given by Proposition 23, that is Dϕ(µ ∥ ν) =
supg µ(g)− ν(ϕ⋆(g)). However, Corollary 30 shows that the tight representation uses ϕ⋆+(y)
which has the piecewise definition y + |y|β/β when y ≥ −1 and the constant −1/α when
y ≤ −1, and writes Dϕ(µ ∥ ν) = supg µ(g) − infλ ν

(
ϕ⋆+(g + λ)

)
. Note that the additive λ

shift, in e.g. the case α = 2, reduces the second term from the raw second moment ν
(
g2
)

to
something no larger than the variance ν

(
(g − ν(g))2

)
, which is potentially much smaller.

5. Optimal bounds for a single function and reference measure

As a first step to understand the relationship between a ϕ-divergence and an IPM, we consider
the case of a single fixed probability measure ν ∈ M1 and measurable function g ∈ L0, and
study the optimal lower bound of Dϕ(µ ∥ ν) as a function of the mean deviation µ(g)− ν(g).
We characterize this optimal lower bound and its convex conjugate in Section 5.1 and then
present implications for topological question regarding the divergence itself in subsequent
sections.

In the remainder of this work, since we are interested in probability measures, which
are in particular non-negative, we assume without loss of generality that ϕ is infinite on the
negative reals, that is ϕ(x) = ϕ+(x) = ϕ(x) + δR≥0(x). As seen in Section 4.3 (in particular
Lemma 27), this does not change the value of the divergence on non-negative measures, that
is Dϕ(µ ∥ ν) = Dϕ+(µ ∥ ν) for µ ∈ M+, but yields a tighter variational representation since
ϕ⋆+ ≤ ϕ⋆.

Furthermore, since for probability measures Dϕ(µ ∥ ν) is invariant to affine shifts of the
form ϕ̃(x) = ϕ(x) + c · (x − 1) for c ∈ R, it will be convenient to assume that 0 ∈ ∂ϕ(1)
(e.g. ϕ′(1) = 0), equivalently that ϕ is non-negative and has global minimum at ϕ(1) = 0. This
can always be achieved by an appropriate choice of c and is therefore without loss of generality.
As an example, we now write for the Kullback–Leibler divergence ϕ(x) = x log x − x + 1
which is non-negative with ϕ′(1) = 0, and equivalent to the standard definition ϕ(x) = x log x
for probability measures.

5.1 Derivation of the bound

We first define the optimal lower bound function, which comes in two flavors depending on
whether the mean deviation or the absolute mean deviation is considered.

20



Optimal Bounds between f-Divergences and IPMs

Definition 31 For a probability measure ν ∈ M1, a function g ∈ L1(ν), and set of probability
measures M integrating g, the optimal lower bound on Dϕ(µ ∥ ν) in terms of the mean
deviation is the function Lg,ν,M defined for ε ∈ R by:

Lg,ν,M (ε) := inf
{
Dϕ(µ ∥ ν)

∣∣∣ µ ∈M ∧ µ(g)− ν(g) = ε
}

= inf
µ∈M

{
Dϕ(µ ∥ ν) + δ{0}(µ(g)− ν(g)− ε)

}
(15)

L{±g},ν,M (ε) := inf
{
Dϕ(µ ∥ ν)

∣∣∣ µ ∈M ∧ |µ(g)− ν(g)| = ε
}

= min{Lg,ν,M (ε),Lg,ν,M (−ε)} (16)

where we follow the standard convention that the infimum of the empty set is +∞.

Lemma 32 For every ν ∈ M1, g ∈ L1(ν), and convex set M of probability measures
integrating g, the function Lg,ν,M is convex and non-negative. Furthermore, Lg,ν,M (0) = 0
whenever ν ∈M , and if ϕ′(∞) = ∞ then Lg,ν,M = Lg,ν,M∩Mc(ν).

Proof Convexity is immediate from Lemma 5 applied to Eq. (15), non-negativity follows
from non-negativity of Dϕ(· ∥ ν), the choice µ = ν implies Lg,ν,M (0) = 0 when ν ∈M , and
if ϕ′(∞) = ∞ then Dϕ(µ ∥ ν) = +∞ when µ ∈M \Mc(ν).

We compute the convex conjugate of Lg,ν by applying Fenchel duality to Eq. (15).

Proposition 33 Let (X,Y ) be a ν-decomposable pair for some probability measure ν ∈ M1

and let Ξ = {A ∈ F | ∀µ ∈ X, |µ|(A) = 0}. Then for all g ∈ Y and t ∈ R,

L ⋆
g,ν,X1(t) = inf

{∫
ϕ⋆(tg + λ) dν − t · ν(g)− λ

∣∣∣∣ λ+ ess supΞ(t · g) ≤ ϕ′(∞)

}
. (17)

Furthermore, Lg,ν,X1(ε) = L ⋆⋆
g,ν,X1(ε) if and only if strong duality holds in Eq. (15).

Proof Define Φ : X → R by Φ(x) = D̃ϕ,ν(x + ν) so that Φ is convex, lsc, non-negative,
and 0 at 0. Furthermore, Φ⋆(h) = D̃

⋆

ϕ,ν(h) − ν(h) for h ∈ Y , and Lg,ν,X1(ε) = inf{Φ(x) |
x ∈ X ∧ ⟨x, g⟩ = ε}. The result then follows by Propositions 15 and 28.

Remark 34 Since domϕ⋆ ⊆ [−∞, ϕ′(∞)], λ is always implicitly restricted in Eq. (17) to
satisfy λ + ess supν tg ≤ ϕ′(∞). When Ξ is a proper subset of the null σ-ideal of ν, the
constraint in Eq. (17) is stronger to account for measures in X which are not continuous
with respect to ν.

If ϕ′(∞) = ∞, then the infimum in Eq. (17) is taken over all λ ∈ R and in particular,
does not depend on Ξ. This is consistent with the fact that, in this case, Dϕ,ν is infinite on
singular measures, hence Lg,ν,X1 = Lg,ν,X1

c (ν)
where Xc(ν) = X ∩Mc(ν).

Remark 35 Unlike in Proposition 28, it is not always true that the interiority constraint
qualification conditions hold, and indeed strong duality does not always hold for the optimiza-
tion problem (15). For example, for Ω = (−1/2, 1/2), ν the Lebesgue measure, g the canonical
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injection into R, and ϕ : x 7→ |x− 1| corresponding to the total variation distance, we have
Lg,ν,M1(±1/2) = ∞ but Lg,ν,M1(x) ≤ 2 for |x| < 1/2. However, as noted in Theorem 40
below, this generally does not matter since it only affects the boundary of the domain of Lg,ν ,
which contains at most two points. Furthermore, we will show in Corollary 62 via a com-
pactness argument that when ϕ′(∞) = ∞ and domL ⋆

g,ν = R—e.g. when g ∈ L∞(ν)—strong
duality holds in (15).

We can simplify the expressions in Proposition 33 by introducing the function ψ : x 7→
ϕ(x+ 1). We state some useful properties of its conjugate ψ⋆ below.

Lemma 36 The function ψ⋆ : x 7→ ϕ⋆(x)−x is non-negative, convex, and inf-compact. Fur-
thermore, it satisfies ψ⋆(0) = 0, ψ⋆(x) ≤ −x when x ≤ 0, and int(domψ⋆) =

(
−∞, ϕ′(∞)

)
.

Recall that at the beginning of Section 5 we assumed, without loss of generality, that
0 ∈ ∂ϕ(1) and domϕ ⊆ R≥0, which is necessary for Lemma 36 to hold. The proof follows
immediately from basic results in convex analysis on R; for completeness, a proof is included
in Appendix A.2.

The right-hand side of Eq. (17), expressed in terms of ψ⋆, will be central to our theory,
so we give it a name in the following definition.

Definition 37 (Cumulant generating function) For a σ-ideal Ξ and probability mea-
sure ν ∈ M1

c(Ξ), the (ϕ, ν,Ξ)-cumulant generating function Kg,ν,Ξ : R → R of a function
g ∈ L0(Ξ) is defined for all t ∈ R by

Kg,ν,Ξ(t) := inf

{∫
ψ⋆(tg + λ) dν

∣∣∣∣ λ+ ess supΞ
(
t · g

)
≤ ϕ′(∞)

}
. (18)

Note that since ν ∈ Mc(Ξ), we always have Ξ ⊆ N := {A ∈ F | ν(A) = 0}, hence
Kg,ν,Ξ ≥ Kg,ν,N . In the common case where Ξ = N we abbreviate Kg,ν := Kg,ν,N .

Note also that ess supΞ
(
t · g

)
is the piecewise-linear function

ess supΞ
(
t · g

)
=

{
t · ess supΞ g t ≥ 0

t · ess infΞ g t ≤ 0
.

Example 9 For the Kullback–Leibler divergence, Kg,ν(t) = log ν
(
et(g−ν(g))

)
by Example 7,

which is the standard (centered) cumulant generating function, thereby justifying the name.

Note that the (ϕ, ν)-cumulant generating function Kg,ν depends only on the pushforward
measure g∗ν of ν through g. In particular, when ν is the probability distribution of a random
variable X, as in Example 2, Kg,ν(t) can be equivalently written as

Kg,ν(t) = inf
λ∈R

E[ψ⋆(t · g(X) + λ)] , (19)

highlighting the fact that Kg,ν only depends on g(X). This contrasts with Kg,ν,Ξ, for an
arbitrary Ξ ≫ ν, for which the constraint on λ depends on the Ξ-essential range of g, which

22



Optimal Bounds between f-Divergences and IPMs

is not solely a property of the random variable g(X) since it can depend on the value of g on
ν-null sets.

Furthermore, since for t ∈ R, the function λ 7→ Iψ⋆,ν(tg + λ) is convex in λ, the (ϕ, ν)-
cumulant generating function is defined by a single-dimensional convex optimization problem
whose objective function is expressed as an integral with respect to a probability measure
(18, 19). Hence, the rich spectrum of stochastic approximation methods, such as stochastic
gradient descent, can be readily applied, leading to efficient numerical procedures to evaluate
Kg,ν(t), as long as the pushforward measure g∗ν is efficiently samplable.

Remark 38 Since the mean deviation, and thus the optimal bound Lg,ν is invariant to
shifting g by a constant, we are in fact implicitly working in the quotient space L1(ν)/R1Ω.
As such, g 7→ infλ∈R Iψ⋆,ν(g + λ) can be interpreted as the integral functional induced by
Iψ⋆,ν on this quotient space, by considering its infimum over all representatives of a given
equivalence class. This is analogous to the definition of a norm on a quotient space.

The following proposition states some basic properties of the cumulant generating function.
As with Lemma 36, they follow from basic results in convex analysis, and we defer the proof
to Appendix A.2.

Proposition 39 For every σ-ideal Ξ, probability measure ν ∈ M1
c(Ξ), and g ∈ L0(Ξ),

Kg,ν,Ξ : R → R is non-negative, convex, lower semicontinuous, and satisfies Kg,ν,Ξ(0) = 0.
Furthermore, if g is not ν-essentially constant then Kg,ν,Ξ is inf-compact. If there exists

c ∈ R such that g = c ν-almost surely, then there exists t > 0 (resp. t < 0) such that
Kg,ν,Ξ(t) > 0 if and only if ϕ′(∞) <∞ and ess supΞ g > c (resp. ess infΞ g < c).

With these definitions, we can state the main result of this section giving an expression
for the optimal lower bound function.

Theorem 40 Let (X,Y ) be a ν-decomposable pair for some probability measure ν ∈ M1

and let Ξ = {A ∈ F | ∀µ ∈ X, |µ|(A) = 0}. Then for all g ∈ Y and ε ∈ int(domLg,ν,X1),

Lg,ν,X1(ε) = K⋆
g,ν,Ξ(ε) . (20)

Furthermore, if Lg,ν,X1 is lower semi-continuous, equivalently if strong duality holds in
(15), then (20) holds for all ε ∈ R.

Proof Lemma 32 implies that Lg,ν,X1 is proper and convex, thus, by the Fenchel–Moreau
theorem, we have Lg,ν,X1 = L ⋆⋆

g,ν,X1 except possibly at the boundary of its domain, so this
is simply a restatement of Proposition 33 using the terminology from Definition 37.

Proposition 33 and Theorem 40 show that the conjugate of the optimal lower bound
only depends on the space of measures X, through the σ-ideal Ξ, as long as X forms a
decomposable dual pair with a space Y of functions containing g. Hence, starting from a
σ-ideal Ξ and a function g—or more generally a class of functions G—a natural dual pair
to consider is the space X ⊆ Mc(Ξ) of all measures integrating functions in G, put in dual
pairing with the subspace of L0(Ξ) of all functions integrable by measures in X. Formally,
we have the following definition.

23



Agrawal and Horel

Definition 41 Let G be a subset of L0(Σ) for some σ-ideal Σ. We define

XG := {µ ∈ Mc(Σ) | ∀g ∈ G, |µ|(|g|) <∞}
and YG := {h ∈ L0(Ξ) | ∀µ ∈ XG , |µ|(|h|) <∞} ,

where Ξ := {A ∈ F | ∀µ ∈ XG , |µ|(A) = 0}.
For brevity, if G = {g} is a singleton, we write Xg for X{g} and Yg for Y{g}.

Remark 42 We would like to use Σ rather than Ξ in the definition of YG, but need to
be careful since if Σ ⊊ Ξ then using Σ would prevent (XG , YG) from being in separating
duality. Unfortunately, there exist pathological σ-ideals for which Σ ⊊ Ξ (Szpilrajn (1934,
2. Corollaire)), but since for non-pathological choices of Σ (e.g. when it is the null ideal of
a σ-finite, semifinite, or s-finite measure) we indeed have Σ = Ξ, we do not dwell on this
distinction.

Lemma 43 Consider a subset G ⊆ L0(Σ) for some σ-ideal Σ. Then for every ν ∈ X+
G , the

pair
(
XG , YG

)
is ν-decomposable.

Proof That µ(h) <∞ for all µ ∈ XG and h ∈ YG is by definition. As discussed in Remark 22,
it suffices to verify that item 2 in Definition 21 is true for all ν ∈ XG , and indeed just for all
ν ∈ X+

G since ν ∈ XG implies |ν| ∈ X+
G . Item 3 and the separability of the duality between

(XG , YG) then follow immediately.
For item 2, consider ν ∈ X+

G and µ ∈ Mc(ν) such that dµ
dν ∈ L∞(ν). Then for all g ∈ G we

have |µ|(|g|) = ν
(∣∣∣dµdν ∣∣∣ · |g|) <∞ by Hölder’s inequality, hence µ ∈ XG . That L∞(Ξ) ⊆ YG

holds is immediate since every µ ∈ Mc(Σ) integrates every h ∈ L∞(Ξ).

The following easy corollary is an “operational” restatement of Theorem 40, specialized
to the dual pair of Definition 41, and highlighting the duality between upper bounding
the cumulant generating function and lower bounding the ϕ-divergence by a convex lower
semicontinuous function of the mean deviation.

Corollary 44 Consider a measurable function g ∈ L0(Σ) for some σ-ideal Σ and let Ξ =
{A ∈ F | ∀µ ∈ Xg, |µ|(A) = 0}. Then for every probability measure ν ∈ X1

g := Xg ∩M1 and
convex lower semicontinuous function L : R → R≥0, the following are equivalent:

(i) Dϕ(µ ∥ ν) ≥ L(µ(g)− ν(g)) for every µ ∈ X1
g .

(ii) Kg,ν,Ξ ≤ L⋆.

Example 10 The Hammersley–Chapman–Robbins bound in statistics is an immediate corol-
lary of Corollary 44 applied to the χ2-divergence given by ϕ(x) = (x− 1)2 + δR≥0(x): The
convex conjugate of ψ(x) = x2 + δ[−1,∞)(x) is

ψ⋆(x) =

{
x2/4 x ≥ −2

−1− x x < −2

and satisfies in particular ψ⋆(x) ≤ x2/4, so that Kg,ν(t) ≤ infλ
∫
(tg+λ)2/4 dν = t2Varν(g)/4.

Since the convex conjugate of t 7→ t2Varν(g)/4 is t 7→ t2/Varν(g), we obtain for all µ, ν ∈ M1

and g ∈ L1(ν) that χ2(µ ∥ ν) ≥ (µ(g)− ν(g))2/Varν(g).
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Theorem 40 also gives a useful characterization of the existence of a non-trivial lower
bound by the absolute mean deviation.

Corollary 45 Consider a measurable function g ∈ L0(Σ) for some σ-ideal Σ and let Ξ =
{A ∈ F | ∀µ ∈ Xg, |µ|(A) = 0}. Then for every ν ∈ X1

g , the optimal lower bound L{±g},ν,X1
g

is non-zero if and only if 0 ∈ int(domKg,ν,Ξ). In other words, the following are equivalent

(i) there exists a non-zero function L : R≥0 → R≥0 such that Dϕ(µ ∥ ν) ≥ L
(
|µ(g)−ν(g)|

)
for every µ ∈ X1

g .

(ii) the function Kg,ν,Ξ is finite on an open interval around 0.

Proof Writing M = X1
g , we have by Eq. (16) that the function L{±g},ν,M is non-zero if and

only if there exists ε > 0 such that Lg,ν,M (ε) ̸= 0 ̸= Lg,ν,M (−ε). Since Lg,ν,M is convex,
non-negative, and 0 at 0 by Lemma 32, such an ε exists if and only if 0 is contained in the
interval

(
L ′
g,ν,M (−∞),L ′

g,ν,M (∞)
)
, the interior of the domain of L ⋆

g,ν,M .

Remark 46 Throughout this section, we have seen the σ-ideal Ξ appear in our results, in
particular via Kg,ν,Ξ in Corollary 45. We will see in Theorem 83 however that when we
consider a true IPM where we require the bound L to hold jointly for all measures ν and µ,
we can ignore the σ-ideal Ξ and consider only Kg,ν .

5.2 Subexponential functions and connections to Orlicz spaces

In Sections 5.2 to 5.4 , we explore properties of the set of functions satisfying the conditions of
Corollary 45, i.e. for which there is a non-trivial lower bound of the ϕ-divergence in terms of
the absolute mean deviation, and show its relation to topological properties of the divergence.
A reader primarily interested in quantitative bounds for IPMs can skip to Section 6.

In light of Corollary 45, we need to consider the set of functions g such that domKg,ν,Ξ

contains a neighborhood of zero. The following lemma shows that this is the case for bounded
functions, and that furthermore, when ϕ′(∞) < ∞, boundedness is necessary. In other
words, when ϕ′(∞) <∞, the ϕ-divergence cannot upper bound the absolute mean deviation
of an unbounded function. This is in sharp contrast with the KL divergence (satisfying
ϕ′(∞) = ∞), for which such upper bounds exist as long as the function satisfies Gaussian-type
tail bounds (Boucheron et al., 2013, §4.10).

Lemma 47 Let Ξ be a σ-ideal and ν ∈ M1
c(Ξ). If g ∈ L∞(Ξ) then domKg,ν,Ξ is all of R,

and in particular contains a neighborhood of zero. Furthermore, when ϕ′(∞) <∞, we have
conversely that if 0 is in the interior of the domain of Kg,ν,Ξ, then g ∈ L∞(Ξ), in which case
Kg,ν(t) = Kg,ν,Ξ(t) whenever |t| ·

(
ess supΞ g − ess infΞ g

)
≤ ϕ′(∞).

Remark 48 As already discussed, Lemma 47 implies that when ϕ′(∞) <∞, boundedness
of g is necessary for the existence of a non-trivial lower bound on Dϕ(µ ∥ ν) in terms of the
|µ(g) − ν(g)|. Moreover, we can deduce from Lemma 47 that in this case, any non-trivial
lower bound must depend on ess supΞ|g| and cannot depend only on properties of g such as
its ν-variance. In particular, any non-trivial lower bound must converge to 0 as ess supΞ|g|
converges to +∞, for if it were not the case, one could obtain a non-trivial lower bound for
an unbounded function g by approximating it with bounded functions g · 1{|g| ≤ n}.
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Proof Recall that (−∞, 0] ⊆ domψ⋆ and that ψ⋆(x) ≤ −x for x ≤ 0 by Lemma 36. For
g ∈ L∞(Ξ), write B for ess supΞ|g|, and for t ∈ R, write λ := −|t| · B. Then we have
that −2|t|B ≤ t · g + λ ≤ 0 ≤ ϕ′(∞) holds Ξ-a.s., and thus also ψ⋆(tg + λ) ≤ 2|t|B holds
Ξ-a.s. Thus Kg,ν,Ξ(t) is at most 2|t| ·B <∞ by definition, and since t is arbitrary, we get
domKg,ν,Ξ = R.

We now assume ϕ′(∞) <∞ and prove the converse claim. If Kg,ν,Ξ(t) is finite for some
t ∈ R, then tg + λ ≤ ϕ′(∞) holds Ξ-a.s. for some λ ∈ R. In particular, if it holds for some
t > 0, then ess supΞ g is finite, and if it holds for some t < 0, then ess infΞ g is finite.

For the remaining claim, since ψ⋆ is non-decreasing on the non-negative reals we have
that Kg,ν(t) = inf

{
Iψ⋆,ν(tg + λ)

∣∣ λ ∈ R
}
= inf

{
Iψ⋆,ν(tg + λ)

∣∣ ess infΞ tg + λ ≤ 0
}
. But if

ess supΞ
(
t·g
)
−ess infΞ

(
t·g
)
≤ ϕ′(∞), then ess infΞ t·g+λ ≤ 0 implies ess supΞ tg+λ ≤ ϕ′(∞)

and Kg,ν(t) ≥ Kg,ν,Ξ(t) ≥ Kg,ν(t).

Since Lemma 47 completely characterizes the existence of a non-trivial lower bound when
ϕ′(∞) <∞, we focus on the case ϕ′(∞) = ∞ in the remainder of this section. Recall that
Kg,ν = Kg,ν,Ξ in this case, so we only need to consider Kg,ν in the following definition.

Definition 49 ((ϕ, ν)-subexponential functions) Let ν ∈ M1 be a probability measure.
We say that the function g ∈ L0(ν) is (ϕ, ν)-subexponential if 0 ∈ int(domKg,ν) and we
denote by Sϕ(ν) the space of all such functions. We further say that g ∈ L0(ν) is strongly
(ϕ, ν)-subexponential if domKg,ν = R and denote by Sϕ♡(ν) the space of all such functions.

Example 11 For the case of the KL-divergence, if the pushforward g∗ν of ν induced by g
on R is the Gaussian distribution (respectively the gamma distribution), then g is strongly
subexponential (respectively subexponential). Furthermore, it follows from Example 9 that
g ∈ Sϕ(ν) iff the moment-generating function of g is finite on a neighborhood of 0, which is
the standard definition of subexponential functions (see e.g. Vershynin (2018, §2.7)) and thus
justifies our terminology.

Example 12 Lemma 47 shows that L∞(ν) ⊆ Sϕ♡(ν) and that furthermore, if ϕ′(∞) < ∞,
then L∞(ν) = Sϕ♡(ν) = Sϕ(ν).

We start with the following key lemma allowing us to relate the finiteness of Kg,ν to the
finiteness of the function t 7→ Iψ⋆,ν(tg).

Lemma 50 For ν ∈ M1, g ∈ L0(ν), and t ∈ domKg,ν , we have that if ϕ′(∞) = ∞ (resp.
ϕ′(∞) > 0) then αtg ∈ dom Iψ⋆,ν for all α ∈ (0, 1) (resp. for sufficiently small α > 0).

Proof Let λ ∈ R be such that
∫
ψ⋆(tg + λ) dν < ∞ (such a λ exists since t ∈ domKg,ν).

Using the convexity of ψ⋆, we get for any α ∈ (0, 1)∫
ψ⋆(αtg) dν =

∫
ψ⋆
(
α(tg + λ) + (1− α)

−αλ
1− α

)
dν

≤ α

∫
ψ⋆(tg + λ) dν + (1− α)ψ⋆

(
−αλ
1− α

)
.
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The first summand is finite by definition, and if −αλ/(1−α) ∈ domψ⋆ ⊇ (−∞, ϕ′(∞)) then
so is the second summand. If ϕ′(∞) = ∞ this holds for all α ∈ (0, 1), and if ϕ′(∞) > 0 it
holds for sufficiently small α > 0.

Remark 51 When ϕ′(∞) <∞, it is not necessarily true that any α ∈ (0, 1) can be used in
Lemma 50. For example, Lemma 47 implies that domKg,ν = R for all g ∈ L∞(ν), but since
domψ⋆ ⊆

(
−∞, ϕ′(∞)

]
we have Iψ⋆,ν(tg) = ∞ for sufficiently large (possibly only positive

or negative) t, unless g is zero ν-a.s.

The following proposition gives useful characterizations of subexponential functions in
terms of the finiteness of different integral functionals of g.

Proposition 52 Suppose that ϕ′(∞) = ∞ and fix ν ∈ M1 and g ∈ L0(ν). Then the
following are equivalent:

(i) g is (ϕ, ν)-subexponential

(ii) K|g|,ν(t) <∞ for some t > 0

(iii) g ∈ Lθ(ν) for θ : x 7→ max{ψ⋆(x), ψ⋆(−x)} (here Lθ(ν) is the Orlicz space defined in
Section 3.3)

Proof (i) =⇒ (ii) If domKg,ν contains an open interval around 0, Lemma 50 and the
convexity of dom Iψ⋆,ν imply that there exists s > 0 such that

∫
ψ⋆(tg) dν <∞ for all |t| < s.

By non-negativity of ψ⋆,
∫
ψ⋆(t|g|) dν ≤

∫
ψ⋆(tg) + ψ⋆(−tg) dν < ∞ for all t ∈ (−s, s),

which in turns implies (−s, s) ⊆ domK|g|,ν .
(ii) =⇒ (iii) Define η(x) := ψ⋆(|x|). Since ψ⋆(x) ≤ −x for x ≤ 0 by Lemma 36, we

have that η(x) ≤ θ(x) ≤ η(x) + |x| for all x ∈ R. Since we also have Lη(ν) ⊆ L1(ν), this
implies that g ∈ Lη(ν) if and only if Lθ(ν). We conclude after observing that K|g|,ν(t) <∞
for some t > 0 implies that g ∈ Lη(ν) by Lemma 50.

(iii) =⇒ (i) Observe that for all t ∈ R,

max{Kg,ν(t),Kg,ν(−t)} ≤ max

{∫
ψ⋆(tg) dν,

∫
ψ⋆(−tg) dν

}
≤
∫
θ(tg) dν , (21)

where the first inequality is by definition of Kg,ν and the second inequality is by monotonicity
of the integral and the definition of θ. Since domKg,ν is convex, if there exists t > 0 such
that Iθ,ν(tg) <∞, then (21) implies that [−t, t] ⊆ domKg,ν and g is (ϕ, ν)-subexponential.

Remark 53 Though Proposition 52 implies that the set of (ϕ, ν)-subexponential functions is
the same as the set Lθ(ν) for θ(x) = max{ψ⋆(x), ψ⋆(−x)}, we emphasize that the Luxemburg
norm ∥ · ∥θ does not capture the relationship between Dϕ(µ ∥ ν) and the absolute mean
deviation |µ(g)− ν(g)|. First, the function θ, being a symmetrization of ψ⋆, induces integral
functionals which are potentially much larger than those defined by ψ⋆, in particular it is
possible to have max{Kg,ν(t),Kg,ν(−t)} < infλ∈R Iθ,ν(tg + λ) < Iθ,ν(tg). Furthermore, the
Luxemburg norm summarizes the growth of t 7→ Iθ,ν(tg) with a single number (specifically its
inverse at 1), whereas Theorem 40 shows that the relationship with the mean deviation is
controlled by K⋆

g,ν , which depends on the growth of Kg,ν(t) with t.
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We are now ready to prove the main result of this section, which is that the space Sϕ(ν)
of (ϕ, ν)-subexponential functions is the largest space of functions which can be put in dual
pairing with (the span of) all measures µ ∈ Mc(ν) such that Dϕ(µ ∥ ν) <∞, i.e. dom Iϕ,ν .

Theorem 54 For ν ∈ M1 and g ∈ L0(ν), the following are equivalent:

(i) g is (ϕ, ν)-subexponential, i.e. g ∈ Sϕ(ν).

(ii) g is µ-integrable for every µ ∈ Mc(ν) with Dϕ(µ ∥ ν) <∞.

(iii) g is µ-integrable for every µ ∈ M1
c(ν) with Dϕ(µ ∥ ν) <∞.

Proof (i) =⇒ (ii) If ϕ′(∞) < ∞ this follows since L∞(ν) = Sϕ(ν), so assume that
ϕ′(∞) = ∞. If g ∈ Sϕ(ν) then g ∈ Lθ(ν) for θ(x) = max{ψ⋆(x), ψ⋆(−x)} by Proposition 52.
Since θ ≥ ψ⋆ we have θ⋆ ≤ ψ, and thus for µ ∈ Mc(ν) with Dϕ(µ ∥ ν) <∞,

Iθ⋆,ν

(
dµ

dν
− 1

)
≤ Iψ,ν

(
dµ

dν
− 1

)
= Dϕ(µ ∥ ν) <∞ ,

implying that dµ
dν − 1 ∈ Lθ

⋆
(ν). Furthermore, since 1 ∈ L∞(ν) ⊆ Lθ

⋆
(ν) we get that

dµ
dν ∈ Lθ

⋆
(ν). Property 2. then follows from the fact that (Lθ

⋆
, Lθ) form a dual pair.

(ii) =⇒ (iii) Immediate.
(iii) =⇒ (i) Define C :=

{
µ ∈ M1

c(ν)
∣∣Dϕ(µ ∥ ν) ≤ 1

}
, which is closed and convex

as a sublevel set of the convex lower semicontinuous functional D̃ϕ,ν on the Banach space
Mc(ν) with the total variation norm (recall that this space is isomorphic to L1(ν) by the
Radon–Nikodym theorem). Since furthermore C ⊆ M1, it is bounded in Mc(ν) and so is cs-
compact (Jameson, 1972, Proposition 2). Then by assumption, the linear function µ 7→ µ(|g|)
is well-defined and bounded below by 0 on C, so Lemma 16 implies that there exists B ∈ R
such that µ(|g|) ≤ B for all µ ∈ C. Thus, we get that for all µ ∈ C, |µ(g) − ν(g)| ≤
µ(|g|) + ν(|g|) ≤ B + ν(|g|). In particular, if |µ(g)− ν(g)| > B + ν(|g|) then Dϕ(µ ∥ ν) > 1,
proving the existence of a non-zero function L such that Dϕ(µ ∥ ν) ≥ L

(
|µ(g)− ν(g)|

)
. This

implies that g ∈ Sϕ(ν) by Corollary 45.

We have the following characterization of the space Sϕ♡(ν) of strongly subexponential
functions. In particular Sϕ♡(ν) can be identified as a set with L∞(ν) or the Orlicz heart Lθ♡(ν)
depending on whether ϕ′(∞) is finite or infinite (with the finite case from Lemma 47).

Proposition 55 Suppose that ϕ′(∞) = ∞ and fix ν ∈ M1 and g ∈ L0(ν). Then the
following are equivalent:

(i) g is strongly (ϕ, ν)-subexponential, i.e. g ∈ Sϕ♡(ν).

(ii) K|g|,ν(t) <∞ for all t > 0.

(iii) g ∈ Lθ♡(ν) for θ : x 7→ max{ψ⋆(x), ψ⋆(−x)}.

Proof (i) =⇒ (ii) Since ϕ′(∞) = ∞, Lemma 50 implies that tg ∈ dom Iψ⋆,ν for all
t ∈ R, and since ψ⋆ is non-negative we have for each t > 0 that K|g|,ν(t) ≤

∫
ψ⋆(t|g|) dν ≤∫

ψ⋆(tg) + ψ⋆(−tg) dν <∞.
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(ii) =⇒ (iii) Define η : x 7→ ψ⋆(|x|), so that by Lemma 50 we have
∫
η(tg) dν =∫

ψ⋆(t|g|) dν < ∞ for all t > 0, and hence Property 2. implies g ∈ Lη♡(ν). As in the proof
of Proposition 52, η(x) ≤ θ(x) ≤ η(x) + |x| for all x ∈ R and since Lη♡(ν) ⊆ L1(ν), we have
that g ∈ Lη♡(ν) iff g ∈ Lθ♡(ν).

(iii) =⇒ (i) Immediate since for t ∈ R, Kg,ν(t) ≤
∫
ψ⋆(tg) dν ≤

∫
θ(tg) dν <∞.

Finally, we collect several statements from this section and express them in a form which
will be convenient for subsequent sections.

Corollary 56 Define θ(x) := max{ψ⋆(x), ψ⋆(−x)}. Then we have Sϕ♡(ν) ⊆ Sϕ(ν) ⊆ L1(ν)
and dom Iϕ,ν ⊆ Lθ

⋆
(ν) ⊆ L1(ν). Furthermore, Lθ⋆(ν) is in dual pairing with both Sϕ(ν)

and Sϕ♡(ν), and when ϕ′(∞) = ∞ the topology induced by ∥ · ∥θ on Sϕ♡(ν) is complete and
compatible with the pairing.

Proof The containment Sϕ(ν) ⊆ L1(ν) is because Sϕ(ν) is equal as a set to the Orlicz
space Lθ(ν) by Proposition 52, and the containment dom Iϕ,ν ⊆ Lθ

⋆
(ν) can be found in the

proof of (i) =⇒ (ii) of Theorem 54. The fact that
(
Lθ

⋆
(ν), Sϕ(ν)

)
form a dual pair is also

immediate from the identification of Sϕ(ν) with Lθ(ν) as a set. Finally, the last claim follows
from the identification of Sϕ♡(ν) with Lθ♡(ν) as a set and the fact that when ϕ′(∞) = ∞,
then dom θ = R implying that the topological dual of the Banach space (Lθ♡(ν), ∥ · ∥θ) is
isomorphic to (Lθ

⋆
(ν), ∥ · ∥θ⋆).

5.3 Inf-compactness of divergences and connections to strong duality

In this section, we study the question of inf-compactness of the functional Dϕ,ν and that of
its restriction D̃ϕ,ν to probability measures. Specifically, we wish to understand under which
topology the information “ball” Bϕ,ν(τ) := {µ ∈ M | Dϕ(µ ∥ ν) ≤ τ} is compact. Beyond
being a natural topological question, it also has implications for strong duality in Theorem 40,
since the following lemma shows that compactness of the ball under suitable topologies
implies strong duality.

Lemma 57 For every g, ν, and M as in Definition 31, if µ 7→ Dϕ(µ ∥ ν) is inf-compact (or
even countably inf-compact) with respect to a topology on M such that µ 7→ µ(g) is continuous,
then Lg,ν,M is inf-compact (and in particular lower semicontinuous), so that strong duality
holds in Theorem 40.

Proof Recall from Eq. (15) that

Lg,ν,M (ε) = inf
µ∈M

Dϕ(µ ∥ ν) + δ{0}(µ(g)− ν(g)− ε)

where f(ε, µ) = Dϕ(µ ∥ ν) + δ{0}(µ(g)− ν(g)− ε) is convex. Furthermore, under the stated
assumption, we have that f is also inf-compact so that Lemma 5 gives the claim.
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Throughout this section, we assume that ϕ′(∞) = ∞,5 which implies that domψ⋆ = R by
Lemma 36, and furthermore that µ ∈ Mc(ν) whenever Dϕ(µ ∥ ν) <∞ and hence Dϕ,ν = Iϕ,ν
and Bϕ,ν(τ) ⊂ Mc(ν) for all τ ≥ 0. It is well known that in this case, Bϕ,ν(τ) is compact
in the weak topology σ

(
L1(ν), L∞(ν)

)
(e.g. Rockafellar (1971, Corollary 2B) or Teboulle

and Vajda (1993)). This fact can be derived as a simple consequence of the Dunford–Pettis
theorem since Bϕ,ν(τ) is uniformly integrable by the de la Vallée-Poussin theorem (see e.g.
Valadier (1970, pages 67–68)). In light of Lemma 57, it is however useful to understand
whether Bϕ,ν(τ) is compact under topologies for which µ 7→ µ(g) is continuous, where g could
be unbounded. Léonard (Léonard, 2001b, Theorem 3.4) showed, in the context of convex
integral functionals on Orlicz spaces, that strong duality holds when g ∈ Sϕ♡(ν), and in this
section we reprove this result in the language of ϕ-divergences by noting (as is implicit in
Léonard (2001b, Lemma 3.1)) that Bϕ,ν(τ) is compact for the initial topology induced by
the maps of the form µ 7→ µ(g) for all strongly subexponential function g ∈ Sϕ♡(ν).

Proposition 58 Fix ν ∈ M1 and define θ : x 7→ max{ψ⋆(x), ψ⋆(−x)} as in Proposition 55.
If ϕ′(∞) = ∞, then the functional Iϕ,ν is σ

(
Lθ

⋆
(ν), Sϕ♡(ν)

)
inf-compact.

Proof By Corollary 56, we know that
(
Sϕ♡(ν), ∥ · ∥θ

)
is a Banach space in dual pairing

with Lθ
⋆
(ν). Thus, from Proposition 23, the integral functional Iϕ⋆,ν defined on Sϕ♡(ν) is

convex, lower semicontinuous, and has conjugate Iϕ⋆⋆,ν = Iϕ,ν on Lθ⋆(ν). Furthermore, from
Lemma 50 we know for every g ∈ Sϕ♡(ν) that Iϕ⋆,ν(g) <∞, so Iϕ⋆,ν is convex, lsc, and finite
everywhere on a Banach space, and thus continuous everywhere by Brøndsted (1964, 2.10).
Finally, Moreau (1964, Proposition 1) implies that its conjugate Iϕ,ν is inf-compact on Lθ⋆(ν)
with respect to the weak topology σ

(
Lθ

⋆
(ν), Sϕ♡(ν)

)
.

Remark 59 This result generalizes Rockafellar (1971, Corollary 2B) since L∞(ν) ⊆ Sϕ♡(ν)
whenever ϕ′(∞) = ∞ (see Example 12).

Corollary 60 Under the same assumptions and notations as Proposition 58, the functional
D̃ϕ,ν is σ

(
Lθ

⋆
(ν), Sϕ♡(ν)

)
inf-compact.

Proof Observe that since ϕ(x) = ∞ for x < 0, we have for every τ ∈ R that {µ ∈ Lθ
⋆
(ν) |

D̃ϕ,ν(µ) ≤ τ} = {µ ∈ M1∩Lθ⋆(ν) | Iϕ,ν(µ) ≤ τ} = {µ ∈ Lθ
⋆
(ν) | Iϕ,ν(µ) ≤ τ}∩f−1(1) where

f : µ→ µ(1Ω) is continuous in the weak topology σ
(
Lθ

⋆
(ν), Sϕ♡(ν)

)
since L∞(ν) ⊆ Sϕ♡(ν) by

Lemma 47. Hence, M1 ∩ Bϕ,ν(τ) is compact as a closed subset of a compact set.

Corollary 61 If ϕ′(∞) = ∞, then for every τ ∈ R the sets Bϕ,ν(τ) and M1 ∩ Bϕ,ν(τ) are
compact in the initial topology induced by {µ 7→ µ(g) | g ∈ Sϕ♡(ν)}.

Proof Immediate from Proposition 58 and Corollary 60.

5. When ϕ′(∞) < ∞, compactness of information balls is very dependent on the specific measure space
(Ω,F , ν), and in this work we avoid such conditions.
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Corollary 62 Let ν ∈ M1 be a probability measure and assume that ϕ′(∞) = ∞. If
g ∈ L0(ν) is strongly (ϕ, ν)-subexponential and M ⊆ M1

c(ν) is a convex set of probability
measures containing every µ ∈ M1

c(ν) with Dϕ(µ ∥ ν) < ∞, then the function Lg,ν,M is
lower semicontinuous.

Proof Follows from Lemma 57 and Corollary 61.

Remark 63 Corollary 62 does not apply when ϕ′(∞) <∞ or g ∈ Sϕ(ν) \ Sϕ♡(ν) (e.g. when
the pushforward measure g∗ν is gamma-distributed in the case of the KL divergence), and it
would be interesting to identify conditions other than inf-compactness of Dϕ,ν under which
Lg,ν is lower semicontinuous.

5.4 Convergence in ϕ-divergence and weak convergence

Our goal in this section is to relate two notions of convergence for a sequence of probability
measures (νn)n∈N and ν ∈ M1: (i) Dϕ(νn ∥ ν) → 0,6 and (ii) |νn(g)−ν(g)| → 0 for g ∈ L0(Ω).
Specifically, we would like to identify the largest class of functions g ∈ L0(Ω) such that
convergence in ϕ-divergence (i) implies (ii). In other words, we would like to identify the
finest initial topology induced by linear forms µ 7→ µ(g) for which (sequential) convergence is
implied by (sequential) convergence in ϕ-divergence.7 This question is less quantitative than
computing the best lower bound of the ϕ-divergence in terms of the absolute mean deviation,
since it only characterizes when |νn(g) − ν(g)| converges to 0, whereas the optimal lower
bound quantifies the rate of convergence to 0 when it occurs.

This has been studied in the specific case of the Kullback–Leibler divergence by Harremoës,
who showed (Harremoës, 2007, Theorem 25) that D(νn ∥ ν) → 0 implies |νn(g)− ν(g)| → 0
for every non-negative function g whose moment generating function is finite at some positive
real (in fact, the converse was also shown in the same paper under a so-called power-dominance
condition on ν). In this section, we generalize this to an arbitrary ϕ-divergence and show that
convergence in ϕ-divergence implies νn(g) → ν(g) if and only if g is (ϕ, ν)-subexponential.

This question is also closely related to the one of understanding the relationship between
weak convergence and modular convergence in Orlicz spaces (e.g. Nakano (1950) or Musielak
(1983)). Although convergence in ϕ-divergence as defined above only formally coincides with
the notion of modular convergence when ϕ is symmetric about 1 (though this can sometimes
be relaxed (Herda, 1967)) and satisfies the so-called ∆2 growth condition, it is possible that
this line of work could be adapted to the question studied in this section.

We start with the following proposition, showing that this question is equivalent to the
differentiability of L ⋆

g,ν at 0.

6. Throughout this section, we restrict our attention to ϕ which are not the constant 0 on a neighborhood
of 1, i.e. such that 1 ̸∈ int{x ∈ R | ϕ(x) = 0}, as otherwise it is easy to construct probability measures
µ ̸= ν such that Dϕ(µ ∥ ν) = 0, hence Dϕ(νn ∥ ν) → 0 does not define a meaningful convergence notion.

7. The natural notion of convergence in ϕ-divergence defines a topology on the space of probability measures
for which continuity and sequential continuity coincide (see e.g. Kisyński (1960); Dudley (1964); Harremoës
(2007)), so it is without loss of generality that we consider only sequences rather than nets in the rest of this
section. Note that the information balls {µ ∈ M1 |Dϕ(µ ∥ ν) < τ} for τ > 0 need not be neighborhoods
of ν in this topology, and the information balls do not in general define a basis of neighborhoods for a
topology on the space of probability measures (Csiszár, 1962, 1964, 1967; Dudley, 1998).
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Proposition 64 Let ν ∈ M1, g ∈ L1(ν), and M ⊆ M1 be a convex set of measures
integrating g and containing ν. Then the following are equivalent:

(i) limn→∞ νn(g) = ν(g) for all (νn)n∈N ∈MN such that limn→∞Dϕ(νn ∥ ν) = 0.

(ii) Lg,ν,M is strictly convex at 0, that is Lg,ν,M (ε) = 0 if and only if ε = 0.

(iii) ∂L ⋆
g,ν,M (0) = {0}, that is L ⋆

g,ν,M is differentiable at 0 and L ⋆′
g,ν,M (0) = 0.

Proof (i) =⇒ (ii) Assume for the sake of contradiction that Lg,ν,M (ε) = 0 for some
ε ̸= 0. Then by definition of Lg,ν,M , there exists a sequence (νn)n∈N ∈MN such that for all
n ∈ N, Dϕ(νn ∥ ν) ≤ 1/n and νn(g)− ν(g) = ε, thus contradicting (i). Hence, Lg,ν,M (ε) = 0
if and only if ε = 0, which is equivalent to strict convexity at 0 since Lg,ν,M is convex with
global minimum Lg,ν,M (0) = 0 by Lemma 32.

(ii) =⇒ (i) Let (νn)n∈N ∈ MN be a sequence such that limn→∞Dϕ(νn ∥ ν) = 0. By
definition of Lg,ν,M , we have that Dϕ(νn ∥ ν) ≥ Lg,ν,M

(
νn(g)−ν(g)

)
≥ 0 for all n ∈ N, and in

particular limn→∞ Lg,ν,M

(
νn(g)−ν(g)

)
= 0. Assume for the sake of contradiction that νn(g)

does not converge to ν(g). This implies the existence of ε > 0 such that |νn(g)−ν(g)| ≥ ε for
infinitely many n ∈ N. But then Lg,ν,M

(
νn(g)− ν(g)

)
≥ min{Lg,ν,M (ε),Lg,ν,M (−ε)} > 0

for infinitely many n ∈ N, a contradiction.
(ii) ⇐⇒ (iii) By a standard characterization of the subdifferential (see e.g. Zălinescu

(2002, Theorem 2.4.2(iii))), we have that ∂L ⋆
g,ν,M (0) = {x ∈ R | L ⋆

g,ν,M (0) + L ⋆⋆
g,ν,M (x) =

0 · x} = {x ∈ R | L ⋆⋆
g,ν,M (x) = 0}. Since Lg,ν,M is convex, non-negative, and 0 at 0, this

subdifferential contains ε ̸= 0 if and only if there exists ε ̸= 0 with Lg,ν,M (ε) = 0.

The above proposition characterizes continuity in terms of the differentiability at 0
of the conjugate of the optimal lower bound function, or equivalently by Proposition 33,
differentiability of the function Kg,ν,Ξ. In the previous section we investigated in detail the
finiteness (or equivalently by convexity, the continuity) of these functions around 0; in this
section we show that continuity at 0 is equivalent to differentiability at 0 assuming that ϕ is
not the constant 0 on a neighborhood of 1.

Proposition 65 Assume that 1 ̸∈ int{x ∈ R | ϕ(x) = 0}. Then for every σ-ideal Ξ,
probability measure ν ∈ M1

c(Ξ), and g ∈ L0(Ξ), we have that 0 ∈ int domKg,ν,Ξ if and only
if K ′

g,ν,Ξ(0) = 0.

Proof The if direction is immediate, since differentiability at 0 implies continuity at 0.
Thus, for the remainder of the proof we assume that Kg,ν,Ξ is finite on a neighborhood of 0.

We first consider the case ϕ′(∞) < ∞, where Lemma 47 implies g ∈ L∞(Ξ). Define
B := ess supΞ|g|, and let σ ∈ {−1, 1} be such that ϕ(1 + σx) > 0 for all x > 0 as exists
by assumption on ϕ. Since ψ is non-negative and 0 at 0, a standard characterization of
the subdifferential (e.g. Zălinescu (2002, Theorem 2.4.2(iii))) implies that the function t 7→
ψ⋆(σ|t|) has derivative 0 at 0. Then for all t ∈ R, by considering λ = σtB in (18), we obtain
Kg,ν,Ξ(t) is at most ν(ψ⋆(tg + σtB))+δ[−∞,ϕ′(∞)](2σ|t|B) ≤ ψ⋆(2σ|t|B)+δ[−∞,ϕ′(∞)](2σ|t|B).
Now, if σ = −1 then 2σ|t|B ≤ 0 ≤ ϕ′(∞) for all t, and if σ = 1 then necessarily ϕ′(∞) > 0
and so 2σ|t|B ≤ ϕ′(∞) for sufficiently small |t|. Thus, we have for sufficiently small |t| that
Kg,ν,Ξ(t) is between 0 and ψ⋆(2σ|t|B), both of which are 0 with derivative 0 at 0, completing
the proof in this case.
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Now, assume that ϕ′(∞) = ∞, so that we have Kg,ν,Ξ = Kg,ν = infλ∈R f(·, λ) for
f(t, λ) := ν(ψ⋆(tg + λ)). Note that ψ ≥ 0 implies f ≥ 0, so since Kg,ν(0) = f(0, 0) = 0
we have by standard results in convex analysis (e.g. Zălinescu (2002, Theorem 2.6.1(ii)))
that ∂Kg,ν(0) = {t⋆ | (t⋆, 0) ∈ ∂f(0, 0)}. Furthermore, by assumption Kg,ν is finite on a
neighborhood of 0, so since Kg,ν = Kg+c,ν for all c ∈ R, Lemma 50 implies int(domKg,ν)×
R ⊆ dom f and in particular (0, 0) ∈ int dom f . Thus, defining for each ω ∈ Ω the
function fω(t, λ) := ψ⋆(t · g(ω) + λ) (where here and in the rest of the proof we fix some
representative g ∈ L0(Ω)), standard results on convex integral functionals (e.g. Levin (1968,
Theorem 1) or Ioffe and Tikhomirov (1969, Formula (7))) imply that (t⋆, λ⋆) ∈ ∂f(0, 0)
if and only (t⋆, λ⋆) =

(
ν(t⋆ω), ν(λ

⋆
ω)
)

for measurable functions t⋆ω, λ⋆ω : Ω → R such that
(t⋆ω, λ

⋆
ω) ∈ ∂fω(0, 0) holds ν-a.s.

Now, for each ω ∈ Ω, we have that (t⋆ω, λ
⋆
ω) ∈ ∂fω(0, 0) if and only if ψ⋆(t · g(ω) + λ) ≥

t⋆ω ·t+λ⋆ω ·λ for all (t, λ) ∈ R2. By considering t = 0, this implies that λ⋆ω ∈ ∂ψ⋆(0) = {x ∈ R |
ψ(x) = 0}, which is contained in either R≥0 or R≤0 since ψ is not 0 on a neighborhood
of 0. Then since the integral of a function of constant sign is zero if and only if it is zero
almost surely, we have that (t⋆, 0) =

(
ν(t⋆ω), ν(λ

⋆
ω)
)

if and only if λ⋆ω = 0 holds ν-a.s. But
(t⋆ω, 0) ∈ ∂fω(0, 0) if and only if for all t ∈ R we have t⋆ω · t ≤ infλ ψ

⋆(t · g(ω)+λ) = ψ⋆(0) = 0,
i.e. if and only if t⋆ω = 0.

Putting this together, we get that ∂Kg,ν(0) = {t⋆ | (t⋆, 0) ∈ ∂f(0, 0)} = {ν(t⋆ω) | (t⋆ω, 0) ∈
∂fω(0, 0) ν-a.s.} = {ν(t⋆ω) | t⋆ω = 0 ν-a.s.} = {0} and K ′

g,ν(0) = 0 as desired.

Remark 66 If ϕ is 0 on a neighborhood of 1, then it is easy to show that Kg,ν is not
differentiable at 0 unless g is ν-essentially constant. Thus, the above proposition shows that
the following are equivalent: (i) 1 ̸∈ int{x ∈ R |ϕ(x) = 0}, (ii) for every g, continuity of Kg,ν

at 0 implies differentiability at 0, (iii) Dϕ(µ ∥ ν) = 0 for probability measures µ and ν if and
only if µ = ν.

A similar (but simpler) proof shows that the following are equivalent: (i) ϕ strictly convex
at 1, (ii) for every g, continuity of t 7→ Iψ⋆,ν(tg) at 0 implies differentiability at 0, and
(iii) Dϕ(µ ∥ ν) = 0 for finite measures µ and ν if and only if µ = ν. The similarity of the
statements in both cases suggest there may be a common proof of the equivalences using more
general techniques in convex analysis.

Thus, combining the previous two propositions and Proposition 33 computing the convex
conjugate of the optimal lower bound function, we obtain the following theorem.

Theorem 67 Assume that 1 /∈ int({x ∈ R | ϕ(x) = 0}). Then for a σ-ideal Σ, g ∈ L0(Σ)
and ν ∈ X1

g , writing Ξ = {A ∈ F | ∀µ ∈ Xg, |µ|(A) = 0}, the following are equivalent:

(i) for all (νn)n∈N ∈ M1
c(Ξ)

N, limn→∞Dϕ(νn ∥ ν) = 0 implies that g is νn-integrable for
sufficiently large n and limn→∞ νn(g) = ν(g).

(ii) for all (νn)n∈N ∈ (X1
g )

N, limn→∞Dϕ(νn ∥ ν) = 0 implies limn→∞ νn(g) = ν(g).

(iii) ∂Kg,ν,Ξ(0) = {0}, i.e. Kg,ν,Ξ is differentiable at 0 with K ′
g,ν,Ξ(0) = 0.

(iv) 0 ∈ int(domKg,ν,Ξ), that is, g ∈ L∞(Ξ) when ϕ′(∞) < ∞ and g ∈ Sϕ(ν) when
ϕ′(∞) = ∞.
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Proof The equivalence of (ii)-(iv) is immediate from Propositions 64 and 65 since Proposi-
tion 33 implies L ⋆

g,ν,X1
g
= Kg,ν,Ξ. That (i) implies (ii) is immediate by definition of X1

g . The
reformulation of 0 ∈ int(domKg,ν,Ξ) depending on the finiteness of ϕ′(∞) uses Lemma 47
and Definition 49. Finally that (ii) and (iv) implies (i) is immediate when ϕ′(∞) < ∞—
since every µ ∈ M1

c(Ξ) integrates every g ∈ L∞(Ξ)—and follows from Theorem 54 otherwise.

6. Optimal bounds relating ϕ-divergences and IPMs

In this section we generalize Theorem 40 on the optimal lower bound function for a single
measure and function to the case of sets of measures and measurable functions.

6.1 On the choice of definitions

When considering a class of functions G, there are several ways to define a lower bound of
the divergence in terms of the mean deviation of functions in G. The first one is to consider
the IPM dG induced by G and to ask for a function L such that Dϕ(µ ∥ ν) ≥ L

(
dG(µ, ν)

)
for

all probability measures µ and ν, leading to the following definition of the optimal bound.

Definition 68 Let G ⊆ L0(Ω) be a non-empty set of measurable functions and let N,M ⊆
M1 be two sets of probability measures such that G ⊆ L1(ν) for every ν ∈ N ∪M . The
optimal lower bound function LG,N,M : R≥0 → R≥0 is defined by

LG,N,M (ε) := inf
{
Dϕ(µ ∥ ν)

∣∣∣ (ν, µ) ∈ N ×M ∧ sup
g∈G

(
µ(g)− ν(g)

)
= ε
}
.

We also for convenience extend the definition to the negative reals by

LG,N,M (ε) := L−G,N,M (−ε) = inf
{
Dϕ(µ ∥ ν)

∣∣∣ (ν, µ) ∈ N ×M ∧ inf
g∈G

(
µ(g)− ν(g)

)
= ε
}

for ε < 0 where −G := {−g | g ∈ G}.

Remark 69 To motivate the definition of LG,N,M on the negative reals, note that the equality
supg∈G µ(g) − ν(g) = ε for ε ≥ 0 constrains by how “much above 0” an element of G can
distinguish µ and ν, whereas the constraint infg∈G µ(g)− ν(g) = −ε analogously constrains
how much below 0 an element of G can distinguish them. When G is closed under negation,
then supg∈G µ(g)− ν(g) = dG(µ, ν) = − infg∈G µ(g)− ν(g) and LG,N,M is even and exactly
quantifies the smallest value taken by the ϕ-divergence given a constraint on the IPM defined
by G.

An alternative definition, using the notations of Definition 68, is to consider the largest
function L such that Dϕ(µ ∥ ν) ≥ L(µ(g) − ν(g)) for all (ν, µ) ∈ N ×M and g ∈ G. It is
easy to see that this function can simply be expressed as

inf
g∈G

Lg,N,M (ε) = inf
g∈G
ν∈N

Lg,ν,M (ε) = inf
{
Dϕ(µ ∥ ν)

∣∣∣ (ν, µ, g) ∈ N ×M ×G ∧ µ(g)−ν(g) = ε
}
.
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Observe that infg∈G Lg,N,M = LG,N,M when G = {g} or G = {−g, g}. More generally, the
goal of this section is to explore the relationship between LG,N,M and infg∈G Lg,N,M . In
particular, we will show that assuming a basic convexity condition on the set of measures M ,
these functions can differ only on their (at most countably many) discontinuity points.

Lemma 70 Let N,M ⊆ M1 be two sets of probability measures with N ⊆ M and M
convex. Then the functions LG,N,M and infg∈G Lg,N,M are non-negative, 0 at 0, and are
non-decreasing on the non-negative reals.

Proof It is sufficient to prove the result for LG,N,M , since the result for infg∈G Lg,N,M

follows from the fact that taking infima preserves sign and monotonicity. Non-negativity and
being 0 at 0 follow from non-negativity of Dϕ(µ ∥ ν) with Dϕ(ν ∥ ν) = 0.

Fix 0 ≤ x ≤ y and consider α > LG,N,M (y), so that by definition there exist µ ∈M and
ν ∈ N with Dϕ(µ ∥ ν) < α and supg∈G

(
µ(g)− ν(g)

)
= y. Define µ′ = x/y · µ+ (1− x/y) · ν,

which is a probability measure in M since ν ∈ N ⊆M and M is convex. Then we have for
every g ∈ G that µ′(g)− ν(g) = x/y ·

(
µ(g)− ν(g)

)
, and thus supg∈G

(
µ′(g)− ν(g)

)
= x. Fur-

thermore, by convexity of Dϕ,ν we have Dϕ(µ
′ ∥ ν) ≤ x/y ·Dϕ(µ ∥ ν)+(1−x/y) ·Dϕ(ν ∥ ν) <

x/y · α ≤ α since x/y ≤ 1. This implies that LG,N,M (x) < α and since α can be made
arbitrarily close to LG,N,M (y) that LG,N,M (x) ≤ LG,N,M (y).

Remark 71 For convex sets of measures M and N and a single function g ∈ L1(ν), a simple
adaptation of Lemma 32 shows that Lg,N,M is convex, non-decreasing, and non-negative on
the non-negative reals. Lemma 70 extends the latter two properties to the case of LG,N,M for
a set of functions G, and in fact its proof shows that LG,N,M (y)/y is non-decreasing, which
is necessary for convexity. It would be interesting to characterize the set of G, N , and M for
which LG,N,M and infg∈G Lg,N,M are in fact convex.

Proposition 72 Under the assumptions of Lemma 70, we have for every ε > 0 that

lim
ε′→ε−

inf
g∈G

Lg,N,M (ε′) ≤ LG,N,M (ε) ≤ inf
g∈G

Lg,N,M (ε) ,

with equality if infg∈G Lg,N,M is lower semicontinuous (equivalently left-continuous) at ε or
if G is compact in the initial topology on L0 induced by the maps ⟨µ− ν, · ⟩ for µ ∈M and
ν ∈ N .

Proof Under the assumptions of Lemma 70 we have infg∈G Lg,N,M and LG,N,M are non-
decreasing on the positive reals. Thus, we have

inf
g∈G

Lg,N,M (ε) = inf
{
Dϕ(µ ∥ ν)

∣∣∣ (ν, µ) ∈ N ×M ∧ ∃g ∈ G, µ(g)− ν(g) = ε
}

≥ inf
{
Dϕ(µ ∥ ν)

∣∣∣ (ν, µ) ∈ N ×M ∧ sup
g∈G

(
µ(g)− ν(g)

)
≥ ε
}

(22)

= inf
ε′≥ε

LG,N,M (ε′) = LG,N,M (ε) (23)

= inf
{
Dϕ(µ ∥ ν)

∣∣∣ (ν, µ) ∈ N ×M ∧ ∀ε′ < ε ∃g ∈ G, µ(g)− ν(g) ≥ ε′
}
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≥ sup
ε′<ε

inf
{
Dϕ(µ ∥ ν)

∣∣∣ (ν, µ) ∈ N ×M ∧ ∃g ∈ G, µ(g)− ν(g) ≥ ε′
}

= sup
ε′<ε

inf
{
Dϕ(µ ∥ ν)

∣∣∣ (ν, µ, g) ∈ N ×M × G ∧ µ(g)− ν(g) ≥ ε′
}

= sup
ε′<ε

inf
g∈G

Lg,N,M (ε′) = lim
ε′→ε−

inf
g∈G

Lg,N,M (ε′) (24)

where Eq. (22) is since if there is g ∈ G with µ(g)− ν(g) = ε then supg∈G µ(g)− ν(g) ≥ ε,
Eq. (23) is because LG,N,M is non-decreasing, and Eq. (24) is because infg∈G Lg,N,M is
non-decreasing.

For the equality claims, since infg∈G Lg,N,M is non-decreasing, lower semicontinuity at
ε is equivalent to left-continuity, and limε′→ε− infg∈G Lg,N,M (ε′) = infg∈G Lg,N,M (ε) in this
case. If G is compact in the claimed topology, then supg∈G

(
µ(g)− ν(g)

)
is the supremum

of the continuous function ⟨µ− ν, · ⟩ on the compact set G, so that supg∈G
(
µ(g)− ν(g)

)
=

maxg∈G
(
µ(g)− ν(g)

)
and thus Eq. (22) is an equality.

Corollary 73 Under the assumptions of Lemma 70 we have that infg∈G Lg,N,M and LG,N,M
are non-increasing on the non-positive reals, non-decreasing on the non-negative reals, 0
at 0, and differ only on their (at most countably many) discontinuity points, at which
infg∈G Lg,N,M ≥ LG,N,M . In particular, they have the same convex conjugate and biconjugate.

Proof Applying Proposition 72 to L−G,N,M (−ε) for ε < 0 gives the claim for the negative
reals. Since the functions share the same lsc regularization (the largest lsc function lower
bounding them pointwise), they also share their convex conjugate and biconjugate.

Remark 74 Corollary 73 is key because, as we will see in Section 6.2, it lets us reduce the
problem of computing the optimal lower bound on an IPM to the case of a single function g
considered in Section 5.

Remark 75 Corollary 73 also implies that infg∈G Lg,N,M and LG,N,M have the same (gen-
eralized) inverse. This inverse consists simply of the best bounds on the mean deviation,
that is the largest non-positive function V and smallest non-negative function U such that
V
(
Dϕ(µ ∥ ν)

)
≤ µ(g)− ν(g) ≤ U

(
Dϕ(µ ∥ ν)

)
for all (µ, ν, g) ∈M ×N × G, or equivalently

such that dG(µ, ν) ≤ U
(
Dϕ(µ ∥ ν)

)
for all (µ, ν) ∈M ×N when G is closed under negation.

In this language, any discontinuity of infg∈G Lg,N,M corresponds to an interval on which U
is constant, i.e. in which changing the value of the divergence does not change the largest
possible value of dG(µ, ν).

We conclude this section with two lemmas showing how the lower bound is preserved
under natural transformations of the sets of functions G or measures M,N .

Lemma 76 For every set G ⊆ L0(Ω) and pair of measures µ, ν ∈ XG, we have that

sup
g∈G

(
µ(g)− ν(g)

)
= sup

g∈coG

(
µ(g)− ν(g)

)
where coG is the σ(YG , XG)-closed convex hull of G.
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Proof We have G ⊆ coG, and furthermore since ⟨µ − ν, · ⟩ is a σ(YG , XG)-continuous
linear function we have that the set

{
h ∈ YG

∣∣ ⟨µ− ν, h⟩ ≤ supg∈G(µ(g)− ν(g))
}

is convex,
σ(YG , XG)-closed, and contains G, and so also contains coG.

Lemma 77 For every g ∈ L0(Ω), we have Lg,X1
g ,X

1
g
= LIdR,g∗X1

g ,g∗X
1
g

where g∗X1
g =

{
g∗ν

∣∣
ν ∈ X1

g

}
is the set of probability measures on R obtained by pushing forward through g the

probability measures ν ∈ X1
g . Furthermore, for every ν ∈ M1 and g ∈ L1(ν) we have that

Lg,ν,X1
g
= LIdR,g∗ν,g∗X1

g
.

Proof We first prove the main claim. As in Example 2, we have for every µ, ν ∈ X1
g that

µ(g)−ν(g) =
∫
IdR dg∗µ−

∫
IdR dg∗ν, so it suffices to show for every µ0, ν0 ∈ X1

g the existence
of µ, ν ∈ X1

g with g∗µ = g∗µ0, g∗ν = g∗ν0, and Dϕ(g∗µ0 ∥ g∗ν0) = Dϕ(µ ∥ ν) ≤ Dϕ(µ0 ∥ ν0).
For this, write ξ = 1

2(µ0 + ν0) so that µ0, ν0 ≪ ξ and ξ ∈ X1
g , and define the measures

µ, ν ∈ M1
c(ξ) by dµ

dξ = dg∗µ0
dg∗ξ

◦ g and dν
dξ = dg∗ν0

dg∗ξ
◦ g (note that these are just the conditional

expectations of dµ0
dξ and dν0

dξ with respect to g). It remains to show that µ and ν have
the desired properties, for which we first note that for every (Borel) measurable function
h : R3 → R ∪ {+∞} we have∫

h

(
dµ

dξ
,
dν

dξ
, g

)
dξ =

∫
h

(
dg∗µ0
dg∗ξ

◦ g, dg∗ν0
dg∗ξ

◦ g, g
)
dξ

=

∫
h

(
dg∗µ0
dg∗ξ

,
dg∗ν0
dg∗ξ

, IdR

)
dg∗ξ .

Then taking h(x, y, z) = x we get µ(Ω) = µ(1Ω) = g∗µ0(1R) = µ0(1Ω) = 1, and similarly by
taking h(x, y, z) = y we get ν(Ω) = 1. Taking h(x, y, z) = x · |z| we get µ(|g|) = µ0(|g|) <∞
so that µ ∈ X1

g , and similarly by taking h(x, y, z) = y · |z| we get ν(|g|) = ν0(|g|) < ∞
and ν ∈ X1

g . Finally, as in Remark 19, taking h(x, y, z) = y · ϕ(x/y) if y ≠ 0 and
h(x, y, z) = x · ϕ′(∞) if y = 0 gives Dϕ(µ ∥ ν) = Dϕ(g∗µ0 ∥ g∗ν0), and furthermore Jensen’s
inequality implies that Dϕ(µ ∥ ν) ≤ Dϕ(µ0 ∥ ν0) since h is convex.

The furthermore claim is analogous after noting that since when µ≪ ν and g ∈ L1(ν)
we can take ξ = ν0 = ν.

6.2 Derivation of the bound

In this section we give our main results computing optimal lower bounds on a ϕ-divergence
given an integral probability metric. Note that from Section 6.1, the optimal lower bound
is simply the infimum of the optimal lower bound Lg,ν for each g ∈ G and ν ∈ N . Since
L ⋆
g,ν = Kg,ν by Proposition 33, and given the order-reversing property of convex conjugacy,

it is natural to consider the best upper bound on Kg,ν which holds uniformly over all g ∈ G
and ν ∈ N . Formally, we have the following definition.

Definition 78 Let Ξ be a σ-ideal, G ⊆ L0(Ξ) be a set of measurable functions, and N ⊆
M1

c(Ξ) be a set of measures. We write KG,N,Ξ(t) := sup{Kg,ν,Ξ(t) | (g, ν) ∈ G × N} and
KG,N (t) := sup{Kg,ν(t) | (g, ν) ∈ G ×N}.
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Note that KG,N,Ξ is convex and lower semicontinuous as a supremum of convex and lower
semicontinuous functions. Furthermore, as alluded to before Definition 78, we expect KG,N,Ξ
to be equal to the conjugate of the optimal lower bound functions. This is stated formally in
the following theorem which also gives a sufficient condition under which the optimal lower
bound functions are convex and lower semicontinuous (see also Remark 81 below).

Theorem 79 Let (X,Y ) be a dual pair with X ⊆ M and Y ⊆ L0(Ξ) where Ξ = {A ∈ F |
∀µ ∈ X, |µ|(A) = 0}. Consider G ⊆ Y and N ⊆ X1 := X ∩M1 and assume that (X,Y ) is
decomposable with respect to all measures in N . Then we have

L ⋆
G,N,X1 =

(
inf
g∈G

Lg,N,X1

)⋆
= KG,N,Ξ . (25)

Proof The first equality in (25) follows from Corollary 73. For the second equality, we have(
inf
g∈G

Lg,N,X1

)⋆
=

(
inf
g∈G
ν∈N

Lg,ν,X1

)⋆
= sup

g∈G
ν∈N

L ⋆
g,ν,X1 = sup

g∈G
ν∈N

Kg,ν,Ξ = KG,N,Ξ ,

where we used successively the definition of Lg,N,X1 , the fact that (infα∈A fα)
⋆ = supα∈A f

⋆
α

for any collection (fα)α∈A of functions, Proposition 33, and Definition 78.

Remark 80 When starting from a set of function G ⊆ L0(Ξ) for some σ-ideal Ξ, a natural
pair to which Theorem 79 can be applied is the pair (XG , YG) from Definition 41.

Remark 81 Theorem 79 computes the conjugate of the optimal lower bound functions, but
if this function is not convex or lsc and so does not coincide with its biconjugate, it is also
useful to discuss what we can be said about LG,N,X1 or infg∈G Lg,N,X1 themselves.

First note that for all g ∈ G and ν ∈ N , Lg,ν,X1 is convex and non-decreasing over the
non-negative reals by Lemma 32 and under the assumptions of Theorem 79, L ⋆⋆

g,ν,X1 = K⋆
g,ν,Ξ

by Proposition 33. Thus, we can apply Lemma 14 and obtain for all ε that

lim inf
ε′→ε

inf
g∈G

Lg,N,X1(ε′) ≤ inf
g∈G
ν∈N

K⋆
g,ν,Ξ(ε) ≤ inf

g∈G
Lg,N,X1(ε) .

Thus the function inf(g,ν)∈G×N K
⋆
g,ν,Ξ allows us to recover the function infg∈G Lg,N,X1 up to

its points of discontinuity which are countable by monotonicity. Similarly, by Corollary 73
we also recover LG,N,X1 up to its countably many points of discontinuity.

More can be said under additional assumptions. If Lg,ν,X1 is lower semicontinuous for
each g ∈ G and ν ∈ N (e.g. when ϕ′(∞) = ∞, X ⊆ Mc(ν), and G ⊆ Sϕ♡(ν) for all ν ∈ N by
Corollary 62), then

inf
g∈G

Lg,N,X1(ε) = inf
g∈G
ν∈N

Lg,ν,X1(ε) = inf
g∈G
ν∈N

K⋆
g,ν,Ξ(ε) ,

Furthermore, if we also know that the function inf(g,ν)∈G×N K
⋆
g,ν,Ξ is itself convex and lsc,

then
inf
g∈G

Lg,N,X1(ε) = LG,N,X1(ε) = K⋆
G,N,Ξ(ε) .
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Similarly to Corollary 44, we give in the following corollary an “operational” restatement
of Theorem 79 emphasizing the duality between upper bounds on KG,N and lower bounds
on Dϕ(µ ∥ ν) in terms of dG(µ, ν).

Corollary 82 Under the assumptions of Theorem 79, for every convex and lower semicon-
tinuous function L : R≥0 → R, the following are equivalent:

(i) Dϕ(µ ∥ ν) ≥ L(dG(µ, ν)) for all ν ∈ N and µ ∈ X1.

(ii) Dϕ(µ ∥ ν) ≥ L(|µ(g)− ν(g)|) for all g ∈ G, ν ∈ N , and µ ∈ X1.

(iii) Kg,ν,Ξ(t) ≤ L⋆(|t|) for all t ∈ R, g ∈ G, and ν ∈ N .

Proof The equivalence of (i) and (iii) follows from applying Theorem 79 to G′ = G ∪ −G,
since dG(µ, ν) = supg∈G′ µ(g)− ν(g) ≥ 0, LG′,N,X1 is even, and KG′,N,Ξ(t) = max{KG,N,Ξ(t),
KG,N,Ξ(−t)}. The equivalence of (i) and (iii) for {g,−g} for each g ∈ G gives the equivalence
of (ii) and (iii).

Example 13 (Subgaussian functions) For the Kullback–Leibler divergence, Boucheron
et al. (2013, Lemma 4.18) shows that D(µ ∥ ν) ≥ 1

2dG(µ, ν)
2 for all µ ∈ M1 if and only

if log
∫
et(g−ν(g)) dν ≤ t2/2 for all g ∈ G and t ∈ R. Such a quadratic upper bound on the

log moment-generating function is one of the characterizations of the so-called subgaussian
functions, which contain as a special case the class of bounded functions by Hoeffding’s lemma
(Hoeffding, 1963) (see also Example 21). Corollary 82 recovers this result by considering the
(self-conjugate) function L : t 7→ t2/2, thus showing that Pinsker’s inequality generalize to all
subgaussian functions.

Theorem 79 generalizes this further to an arbitrary ϕ-divergence, showing that a subset
G ⊆ L0(Ω) of measurable functions satisfies Dϕ(µ ∥ ν) ≥ 1

2dG(µ, ν)
2 for all µ ∈ M1 if

and only if Kg,ν(t) ≤ t2/2 for all g ∈ G and t ∈ R. By analogy, we refer to functions
whose cumulant generating function admits such a quadratic upper bound as ϕ-subgaussian
functions.

Example 14 Recall from Example 10 that the χ2-divergence given by ϕ(x) = (x − 1)2 +
δR≥0(x) satisfies

ψ⋆(x) =

{
x2/4 x ≥ −2

−1− x x < −2

and Kg,ν(t) ≤ infλ
∫
(tg + λ)2/4 dν = t2Varν(g)/4, showing that the class of χ2-subgaussian

functions (see Example 13) includes all those with bounded variance.

Example 15 As a step towards understanding the Wasserstein distance, Bolley and Villani
(2005) define a “weighted total variation distance” between probability measures µ and ν as∫
g d|µ − ν| for some non-negative measurable function g ∈ L0(Ω), and their main result

(Bolley and Villani, 2005, Theorem 2.1) bounds this weighted total variation in terms of the
KL divergence.

We rederive their result by noting that the g-weighted total variation is dgB(µ, ν) for
gB = {g · b | b ∈ B} where B is the set of measurable functions taking values in [−1, 1], so that
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it suffices by Theorem 79 to upper bound Kg·b,ν(t) for each b ∈ B in terms of log
∫
eg dν or

log
∫
eg

2
dν. But since g ≥ 0, we have g · b ≤ |g| = g and we conclude by using the fact that

finiteness of log
∫
eh dν (resp. log

∫
eh

2
dν) implies a quadratic upper bound on the centered

log-moment generating function Kh,ν(t) for |t| ≤ 1/4 (resp. all t ∈ R) for any non-negative
function h (see e.g. Vershynin (2018, Propositions 2.5.2 and 2.7.1)).

Finally, we show that when we take N = X1 in Theorem 79, that is, we want a lower
bound L such that Dϕ(µ ∥ ν) ≥ L(dG(µ, ν)) for all probability measures µ and ν in X, we no
longer need to consider pairs of measures such that µ ̸≪ ν, and in particular we can ignore
the σ-ideal Ξ in the derivation of the bound. Intuitively, this is because when µ ̸≪ ν, we now
have sufficiently many measures in N to approximate ν with a measure ν ′ such that µ≪ ν ′.

Theorem 83 Let (X,Y ) be a dual pair with X ⊆ M and assume that (X,Y ) is decomposable
with respect to all probability measures in X. Then for all subsets of functions G ⊆ Y ,

L ⋆
G,X1,X1 =

(
inf
g∈G

Lg,X1,X1

)⋆
= KG,X1 .

In particular, for any σ-ideal Σ and G ⊆ L0(Σ), the following are equivalent for every convex
lsc L : R≥0 → R:

(i) Dϕ(µ ∥ ν) ≥ L(dG(µ, ν)) for all µ, ν ∈ Mc(Σ) integrating all of G.

(ii) Dϕ(µ ∥ ν) ≥ L(|µ(g)− ν(g)|) for all g ∈ G and µ, ν ∈ Mc(Σ) integrating all of G.

(iii) Kg,ν(t) ≤ L⋆(|t|) for all t ∈ R, g ∈ G, and ν ∈ Mc(Σ) integrating all of G.

Proof The in particular claim follows from the main claim applied to (XG , YG) by an
argument analogous to that of Corollary 82. For the main claim, by Theorem 79, it suffices
to show that infg∈G Lg,X1,X1 = infg∈G,ν∈X1 Lg,ν,X1 and infg∈G,ν∈X1 Lg,ν,X1∩Mc(ν) have the
same conjugate, or simply the same lsc regularization. Since the former is definitionally no
larger than the latter, it suffices to show that any lsc lower bound L for the latter also lower
bounds the former, equivalently, that if Dϕ(µ ∥ ν) ≥ L(µ(g)− ν(g)) for all µ≪ ν ∈ X1 and
g ∈ G, then this also holds for all µ, ν ∈ X1.

Given any µ, ν ∈ X1 and δ ∈ [0, 1], let νδ = (1− δ) · ν + δ · µ so that νδ ∈ X1. Then for
each δ ∈ [0, 1] we have that µ(g)−νδ(g) = (1−δ)(µ(g)−ν(g)) for all g ∈ G, and furthermore,
by convexity of Dϕ(µ ∥ · ) we have for δ ∈ (0, 1] that

(1− δ)Dϕ(µ ∥ ν) = (1− δ)Dϕ(µ ∥ ν) + δDϕ(µ ∥ µ) ≥ Dϕ(µ ∥ νδ) ≥ L
(
(1− δ)(µ(g)− ν(g))

)
where the last inequality is because µ≪ νδ. But since L is lower semicontinuous, we have
that L(µ(g)− ν(g)) ≤ lim infδ→0 L

(
(1− δ)(µ(g)− ν(g))

)
≤ limδ→0− L

(
(1− δ)(µ(g)− ν(g))

)
,

and so we get that Dϕ(µ ∥ ν) ≥ L(µ(g)− ν(g)) as desired.
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6.3 Application to bounded functions and the total variation

In this section, we consider the problem of lower bounding the ϕ-divergence by a function of
the total variation distance. Though it is a well-studied problem and most of the results we
derive are already known, we consider this case to demonstrate the applicability of the results
obtained in Section 6.2. In Section 6.3.1, we study Vajda’s problem (Vajda, 1972): obtaining
the best lower bound of the ϕ-divergence by a function of the total variation distance, and
in Section 6.3.2 we show how to obtain quadratic relaxations of the best lower bound as in
Pinsker’s inequality and Hoeffding’s lemma.

6.3.1 Vajda’s problem

The Vajda problem (Vajda, 1972) is to quantify the optimal relationship between the
ϕ-divergence and the total variation, that is to compute the function

LB,M1,M1(ε) = inf
{
Dϕ(µ ∥ ν)

∣∣ (µ, ν) ∈ M1 ×M1 ∧ TV(µ, ν) = ε
}

= inf
{
Dϕ(µ ∥ ν)

∣∣ (µ, ν) ∈ M1 ×M1 ∧ dB(µ, ν) = ε
}

where B is the set of measurable functions Ω → [−1, 1]. In this section, we use Theorem 83
to give for an arbitrary ϕ an expression for the Vajda function as the convex conjugate of a
natural geometric quantity associated with the function ψ⋆, the inverse of its sublevel set
volume function, which we call the height-for-width function.

Definition 84 The sublevel set volume function slsψ⋆ : R≥0 → R≥0 maps h ∈ R to the
Lebesgue measure of the sublevel set {x ∈ R | ψ⋆(x) ≤ h}. Since ψ⋆ is convex and inf-compact,
the sublevel sets are compact intervals and their Lebesgue measure is simply their length.

The height-for-width function hgtψ⋆ : R≥0 → R is the (right) inverse of the sublevel set
volume function given by hgtψ⋆(w) = inf

{
h ∈ R

∣∣ slsψ⋆(h) ≥ w
}
.

To understand this definition, note that since ψ⋆ is defined on R, the sublevel set volume
function can be interpreted as giving for each height h the length of longest horizontal line
segment that can be placed in the epigraph of ψ⋆ but no higher than h. The inverse, the
height-for-width function, asks for the minimal height at which one can place a horizontal
line segment of length w in the epigraph of ψ⋆. See Fig. 1 for an illustration of this in the
case of ψ⋆(x) = ex − x− 1, corresponding to the Kullback–Leibler divergence.

The following lemma shows that the height-for-width function can be equivalently
formulated as the optimal value of a simple convex optimization problem.

Lemma 85 For all w ∈ R≥0, hgtψ⋆(w) = infλ∈Rmax{ψ⋆(λ+ w/2), ψ⋆(λ− w/2)}. Fur-
thermore, if for w > 0 there exists λw such that ψ⋆(λw − w/2) = ψ⋆(λw + w/2), then
hgtψ⋆(w) = ψ⋆(λw − w/2) = ψ⋆(λw + w/2).

Proof For every w ≥ 0, define the function hw : λ 7→ max{ψ⋆(λ−w/2), ψ⋆(λ+w/2)} which
is the supremum of two convex inf-compact functions with overlapping domain, and so is
itself proper, convex, and inf-compact. In particular, hw achieves its global minimum yw ∈ R,
where by definition and convexity of ψ⋆ we have yw is the smallest number such that there
exists an interval [λ−w/2, λ+w/2] of length w such that ψ⋆([λ−w/2, λ+w/2]) ⊆ (−∞, yw],
and thus yw = inf

{
x ∈ R

∣∣ slsψ⋆(x) ≥ w
}
= hgtψ⋆(w) as desired.
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≈ −0.54 ≈ 0.46 λ(w) + w/2λ(w)− w/2 0

hgtψ⋆(1) ≈ 0.12

hgtψ⋆(w)

hgtψ⋆(3) ≈ 1.01

width 1

width w

width 3

Figure 1: Illustration of height-for-width function for ψ⋆(x) = ex − x− 1

For the remaining claim, consider w > 0 for which there is λw ∈ R such that ψ⋆(λw −
w/2) = ψ⋆(λw + w/2). By convexity of ψ⋆ we have for every λ < λw that ψ⋆(λ− w/2) ≥
ψ⋆(λw − w/2), and analogously for every λ > λw that ψ⋆(λ+ w/2) ≥ ψ⋆(λw + w/2). Thus
for every λ we have max{ψ⋆(λ−w/2), ψ⋆(λ+w/2)} ≥ min{ψ⋆(λw−w/2), ψ⋆(λw+w/2)} =
ψ⋆(λw − w/2) = ψ⋆(λw + w/2), so the result follows from the main claim.

Example 16 For the case of the KL divergence for which ψ⋆(w) = ew−w− 1, one can com-
pute that ψ⋆(λ(w) + w/2) = ψ⋆(λ(w)− w/2) for λ(w) = − log ew/2−e−w/2

w = − log 2 sinh(w/2)
w ,

so that hgtψ⋆(w) = −1 + w
2 coth w

2 + log 2 sinh(w/2)
w .

The duality result of Theorem 83 computes the biconjugate of the optimal bound
LB,M1,M1 , so we first prove that this function is convex and lsc.

Lemma 86 Let M the set of probability measures supported on {−1, 1}. Then LB,M1,M1 =
LId{−1,1},M,M is convex and lower semicontinuous. In particular LB,M1,M1(ε) = K⋆

B,M1(ε)
for ε ≥ 0.

Proof By Theorem 83 we have that L ⋆
B,M1,M1 = KB,M1 , so the in particular statement

follows immediately from the main claim. The main claim, that LB,M1,M1 = LId{−1,1},M,M is
convex and lower semicontinuous, is well-known and can easily be derived using the methods
of e.g. Vajda (1972), but we include a proof here in our language for completeness and to
illustrate how it could be generalized beyond the total variation.

Note that the set B = [−1, 1]Ω ∩ L0(Ω) is convex, and furthermore is σ(Lb(Ω),M)-
compact by the Banach–Alaoglu theorem, and so by the Krein–Milman theorem B is the
σ(Lb(Ω),M)-closed convex hull of its extreme points ext(B) = {−1, 1}Ω ∩ L0(Ω) the set
of measurable {−1, 1}-valued functions. Thus, Lemma 76 implies dB = dext(B), and so
LB,M1,M1 = Lext(B),M1,M1 .

We now prove that infg∈ext(B) Lg,M1 is convex and lsc, which by Proposition 73 also
implies Lext(B),M1,M1 = infg∈ext(B) Lg,M1 is convex and lsc. By Lemma 77, for each
g ∈ ext(B) we have Lg,M1 = LId{−1,1},Mg ,Mg for Mg = {g∗µ | µ ∈ M1}. In particular, if g is
constant this set is the singletonMg = {δg(Ω)}, and if g is non-constant then it is exactly the set
M of probability measures supported on {−1, 1}. Thus, infg∈ext(B) Lg,M1 = LId{−1,1},M,M .
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Note that the set M with the total variation norm is homeomorphic to the unit interval
[0, 1] via the linear map p 7→ p · δ{1} + (1− p) · δ{−1}. Then the function f : R×M2 → R
given by f

(
ε, (µ, ν)

)
= Dϕ(µ ∥ ν) + δ{0}

(
µ
(
Id{−1,1}

)
− ν
(
Id{−1,1}

)
− ε
)

is jointly convex and
lower semicontinuous, and hence since M is compact also inf-compact. Thus, by Lemma 5,
the function LId{−1,1},M,M = inf(µ,ν)∈M2 f

(
· , (µ, ν)

)
is convex and inf-compact as desired.

Lemma 86 implies that it suffices to compute KB,M1 .

Lemma 87 KB,M1(t) = hgtψ⋆(2t) for every t ≥ 0.

Proof For M = {p · δ{1}+(1− p) · δ{−1} | p ∈ [0, 1]}, we have by Lemma 86 and Theorem 83
that KB,M1 = L ⋆

B,M1,M1 = L ⋆
Id{−1,1},M,M = supν∈M KId{−1,1},ν . For p ∈ [0, 1] we have

KId{−1,1},p·δ{1}+(1−p)·δ{−1} = infλ∈R
(
p · ψ⋆(t+ λ) + (1− p) · ψ⋆(−t+ λ)

)
, so that

KB,M1(t) = sup
p∈[0,1]

inf
λ∈R

(
p · ψ⋆(λ+ t) + (1− p) · ψ⋆(λ− t)

)
. (26)

This mixed optimization problem is convex in λ for each p and linear in p for each λ ∈ R,
and the interval [0, 1] is compact, so by the Sion minimax theorem (Sion, 1958) we can swap
the supremum and infimum to get

KB,M1(t) = inf
λ∈R

sup
p∈[0,1]

(
p · ψ⋆(λ+ t) + (1− p) · ψ⋆(λ− t)

)
= inf

λ∈R
max{ψ⋆(λ+ t), ψ⋆(λ− t)}

so the claim follows from Lemma 85.

Example 17 For the Kullback–Leibler divergence, since Kg,ν(t) = log ν
(
et(g−ν(g))

)
as in

Example 7, Lemma 87 and Example 16 imply that the optimal bound on the cumulant
generating function of a random variable g with ν(g) = 0 and m ≤ g ≤ M ν-a.s. is
log ν

(
etg
)
≤ hgtψ⋆ [(M −m)t] = −1 + M−m

2 coth M−m
2 + log 2 sinh((M−m)t/2)

t . This is a
refinement of Hoeffding’s lemma, which gives the upper bound of (M −m)2t2/8, which we
will also derive as consequence of a general quadratic relaxation on the height function in
Example 21.

Corollary 88 LB,M1,M1(ε) = hgt⋆ψ⋆(ε/2) for all ε ≥ 0. In particular, if hgtψ⋆ is differen-
tiable then LB,M1,M1(2 hgt′ψ⋆(x)) = x hgt′ψ⋆(x)− hgtψ⋆(x).

Proof The main claim is immediate from Lemmas 86 and 87, and the supplemental claim
follows from the explicit expression for the convex conjugate for differentiable functions.

Example 18 For the Kullback–Leibler divergence, using Example 16, the supplemental claim
of Corollary 88 applied to x = 2t gives LB,M1,M1(V (t)) = log t

sinh t + t coth t − t2

sinh2 t
for

V (t) = 2 coth t− t
sinh2 t

− 1/t, which is exactly the formula derived by Fedotov et al. (2003).
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Remark 89 Corollary 88 shows that lower bounds on the ϕ-divergence in terms of the total
variation are equivalent to upper bounds on the height-for-width function hgtψ⋆ , equivalently
to lower bounds on the sublevel set volume function of ψ⋆. The complementary problem of
obtaining upper bounds on the sublevel set volume function is of interest in harmonic analysis
due to its connection to studying oscillatory integrals (e.g. Stein (1993, Chapter 8, Proposition
2) and Carbery et al. (1999, §1-2)), and it would be interesting to see if techniques from that
literature could be applied in this context.

Remark 90 Since the total variation TV(µ, ν) is symmetric in terms of µ and ν, the
optimal lower bound on Dϕ(µ ∥ ν) in terms of TV(µ, ν) is the same as the optimal lower
bound on Dϕ(ν ∥ µ) = Dϕ†(µ ∥ ν) for ϕ† = xϕ(1/x). By Corollary 88, this implies that
hgtψ⋆ = hgt(ψ†)⋆ (note that this can also be derived directly from the definition).

6.3.2 Application to Pinsker-type inequalities

Corollary 88 implies that to obtain Pinsker-type inequalities, it suffices to upper bound the
height function hgtψ⋆(t) by a quadratic function of t. In this section, we show such bounds
under mild assumptions on ψ⋆, both rederiving optimal Pinsker-type inequalities for the
Kullback–Leibler divergence and α-divergences for −1 ≤ α ≤ 2 due to Gilardoni (2010), and
deriving new but not necessarily optimal Pinsker-type inequalities for all α ∈ R. We proceed
by giving two arguments approximating the minimizer λ(t) in the optimization problem
defining the height (Lemma 85), and an argument that works directly with the optimal λ(t).

We begin with the crudest but most widely applicable bound.

Corollary 91 If ϕ is twice differentiable on its domain and ϕ′′ is monotone, then hgtψ⋆(t) ≤
t2/(2ϕ′′(1)) for all t ≥ 0. Equivalently, for such ϕ we have that Dϕ(µ ∥ ν) ≥ ϕ′′(1)

8 ·TV(µ, ν)2

for all µ, ν ∈ M1.

Proof If ϕ′′(1) = 0, then the claim is trivial, so we assume that ϕ′′(1) > 0. If ϕ′′ is
non-decreasing, we have by Taylor’s theorem that ϕ(x) ≥ ϕ′′(1)

2 (x − 1)2 for x ≥ 1, equiv-
alently ψ(x) ≥ ϕ′′(1)

2 x2 for x ≥ 0, so that ψ⋆(x) ≤ 1
2ϕ′′(1)x

2 for x ≥ 0. Then hgtψ⋆(t) =

infλ∈Rmax{ψ⋆(λ − t/2), ψ⋆(λ + t/2)} ≤ max{ψ⋆(0), ψ⋆(t)} ≤ t2/(2ϕ′′(1)). On the other
hand, if ϕ′′ is non-increasing, then analogously we have ψ⋆(x) ≤ 1

2ϕ′′(1)x
2 for x ≤ 0, so that

Then hgtψ⋆(t) = infλ∈Rmax{ψ⋆(λ− t/2), ψ⋆(λ+ t/2)} ≤ max{ψ⋆(0), ψ⋆(−t)} ≤ t2/(2ϕ′′(1)).

Example 19 Most of the standard ϕ-divergences satisfy the condition of Corollary 91,
in particular the α-divergences given by ϕα = xα−α(x−1)−1

α(α−1) have ϕ′′α(x) = xα−2 which is
monotone for all α. As a result, we get for all α the (possibly suboptimal) Pinsker inequality
Dϕα(µ ∥ ν) ≥ 1

8 · TV(µ, ν)2 for all µ, ν ∈ M1. Such a bound appears to be new for α > 2,
but for α ∈ [−1, 2] Gilardoni (2010) established the better bound Dϕα(µ ∥ ν) ≥ 1

2 · TV(µ, ν)2,
extending the standard case of the Kullback–Leibler divergence α = 1. We rederive this
optimal constant for these divergences below, and also give general conditions under which
such bounds hold.
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Corollary 91 used the crude linear relaxation −t/2 ≤ λ(t) ≤ t/2. In the following
Corollary, we derive a tighter Pinsker-type inequality by using a Taylor expansion of λ(t).

Corollary 92 Suppose that ϕ strictly convex and twice differentiable on its domain, thrice
differentiable at 1 and that

27ϕ′′(1)

(3− zϕ′′′(1)/ϕ′′(1))3
≤ ϕ′′(1 + z)

for all z ≥ −1. Then hgtψ⋆(t) ≤ t2/(8ϕ′′(1)) for all t ≥ 0, equivalently, for such ϕ we have
Dϕ(µ ∥ ν) ≥ ϕ′′(1)

2 · TV(µ, ν)2 for all µ, ν ∈ M1.

Remark 93 The Pinsker constant in Corollary 92 is best-possible, since if ϕ is twice-
differentiable at 1, then Taylor’s theorem gives the local expansion ϕ(x) = ϕ′′(1)/2 · (x− 1)2 +
o
(
(x− 1)2

)
, and thus the distributions µε = (1/2 + ε/2, 1/2 − ε/2) and ν = (1/2, 1/2) on

the set {0, 1} have TV(µε, ν) = ε and Dϕ(µε ∥ ν) = ϕ′′(1)/2 · ε2 + o(ε2).

Proof Under suitable regularity assumptions on ϕ and ψ⋆, one can easily show that the
second order expansion of the function λ(t) implicitly defined by ψ⋆(λ(t)+t/2) = ψ⋆(λ(t)−t/2)
is L(t) = − ct2

24 for c = (ψ⋆)′′′(0)/(ψ⋆)′′(0) = −ϕ′′′(1)/ϕ′′(1)2. Taking this as given, we show
under the stated assumptions of the proposition that for L(t) = − ct2

24 and c = −ϕ′′′(1)/ϕ′′(1)2,
we have that ψ⋆(L(t) + st/2) ≤ t2/(8ϕ′′(1)) for s ∈ {±1}. Since both sides are 0 at 0, it
thus suffices to show

(
L′(t) + s/2

)
(ψ⋆)′(L(t) + st/2) ≤ t/(4ϕ′′(1)). Now, let ⋚ indicate ≤ if

L′(t) + s/2 ≥ 0 and ≥ if L′(t) + s/2 ≤ 0. Since ϕ strictly convex implies ψ′ = ((ψ⋆)′)−1 is
strictly increasing, we thus have that this is equivalent to

L(t) + st/2 ⋚ ψ′
(
t/(4ϕ′′(1))

L′(t) + s/2

)
(27)

Write z = t/(4ϕ′′(1))
L′(t)+s/2 = t/(4ϕ′′(1))

−ct/12+s/2 so that z has the same sign as L′(t)+ s/2 and t = 6szϕ′′(1)
3+czϕ′′(1) .

Plugging this in and using the fact that s2 = 1, we wish to show that

3zϕ′′(1)(6 + czϕ′′(1))

2(3 + czϕ′′(1))2
− ψ′(z) ⋚ 0 (28)

for all z such that t ≥ 0. The left hand side of Eq. (28) is 0 at 0, so since z > 0 implies ⋚ is
≤ and z < 0 implies ⋚ is ≥, it suffices to show that the derivative of the left-hand side of
Eq. (28) with respect to z is non-positive for all z. This derivative is

27ϕ′′(1)

(3 + czϕ′′(1))3
− ψ′′(z) =

27ϕ′′(1)

(3− zϕ′′′(1)/ϕ′′(1))3
− ϕ′′(1 + z) (29)

which since domψ ⊆ [−1,∞) is non-positive for all z if and only if it is non-positive for all
z ≥ −1.
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Example 20 (Gilardoni (2010)) For the α-divergences, we have ϕ′′α(x) = xα−2, and
ϕ′′′α (x) = (α − 2)xα−3 so that Corollary 92 is equivalent to the condition 27

(3+(2−α)z)3 ≤
(1 + z)α−2 for z ≥ −1. Note that this is true for z = 0 for all α, and the derivative of
27(1+z)2−α

(3+(2−α)z)3 with respect to z is 27(α−2)(α+1)z(1+z)1−α

(3+(2−α)z)4 . Thus, for α ∈ [−1, 2] the sign of the
derivative is the opposite of the sign of z, and the condition holds for all z ≥ −1, recovering
the result of Gilardoni (2010) as desired.

Example 21 For the case of the Kullback–Leibler divergence, Example 20 rederives Pinsker’s
inequality and Hoeffding’s lemma.

Finally, we show that one can also obtain optimal Pinsker-type inequalities while arguing
directly about the optimal λ(t), for which we need the following lemma.

Lemma 94 Suppose that f : R → R is a convex function continuously differentiable on (a, b)
the interior of its domain with a unique global minimum and such that limx→a+ f(x) = ∞ =
limx→b− f(x). Then there is a continuously differentiable function λ : (a− b, b− a) → R such
that hgtf (t) = f(λ(t) + t/2) = f(λ(t)− t/2) and

λ′(t) =
f ′ (λ(t) + t/2) + f ′ (λ(t)− t/2)

2 (f ′ (λ(t)− t/2)− f ′ (λ(t) + t/2))
(30)

hgt′f (t) =
f ′(λ(t) + t/2)f ′(λ(t)− t/2)

f ′(λ(t)− t/2)− f ′(λ(t) + t/2)
. (31)

Proof For each t ∈ (a− b, b− a), the function λ 7→ f(λ+ t/2)− f(λ− t/2) is continuously
differentiable on its domain (a+ |t|

2 , b−
|t|
2 ), with limits −∞ and ∞. Thus, for all such t there

exists λ satisfying the implicit equation f(λ(t) + t/2) = f(λ(t)− t/2), which by Lemma 85
also defines hgtf (t). Furthermore, the fact that f has a unique global minimum implies
this function is strictly increasing in λ for each t, and thus the implicit function theorem
guarantees the existence of the claimed continuously differentiable λ(t).

Given the existence of λ(t), we have by its definition that d
dtf(λ(t)+t/2) =

d
dtf(λ(t)−t/2),

which implies by the chain rule the claimed value for λ′(t), which since hgt′f (t) =
d
dtf(λ(t) +

t/2) implies the claimed expressions for the derivative of hgtf .

Using the previous lemma, we obtain the same optimal Pinsker-type inequality as in
Corollary 92 under related but incomparable assumptions.

Corollary 95 If ϕ is strictly convex, has a positive second derivative on its domain, 1/ϕ′′ is
concave, and limx→ϕ′(∞)− ψ

⋆(x) = ∞ (e.g. if ϕ′(∞) = ∞), then hgtψ⋆(t) ≤ t2/(8ϕ′′(1)) for
all t ≥ 0. Equivalently, for such ϕ we have Dϕ(µ ∥ ν) ≥ ϕ′′(1)

2 · TV(µ, ν)2 for all µ, ν ∈ M1.

Proof By standard results in convex analysis, the existence and positivity of ψ′′ imply
that ψ⋆ is itself twice differentiable (e.g. Hiriart-Urruty and Lemaréchal (1993, Proposition
6.2.5) or Gorni (1991, Proposition 1.1)). Thus, by Lemma 94, it suffices to show that
hgt′ψ⋆(t) ≤ t/(4ϕ′′(1)), or equivalently

(ψ⋆)′(λ(t) + t/2)(ψ⋆)′(λ(t)− t/2)

(ψ⋆)′(λ(t)− t/2)− (ψ⋆)′(λ(t) + t/2)
≤ t

4ϕ′′(1)
. (32)
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Since ψ⋆(λ(t)+t/2) = ψ⋆(λ(t)−t/2) and ψ⋆ has global minimum at 0, we have λ(t)−t/2 ≤ 0
and λ(t) + t/2 ≥ 0, and (ψ⋆)′(λ(t) − t/2) ≤ 0 and (ψ⋆)′(λ(t) + t/2) ≥ 0. Thus, we have
that the left-hand side of Eq. (32) is half the harmonic mean of (ψ⋆)′(λ(t) + t/2) and
−(ψ⋆)′(λ(t)− t/2), so it suffices by the arithmetic mean–harmonic mean inequality to prove

(ψ⋆)′(λ(t) + t/2)− (ψ⋆)′(λ(t)− t/2) ≤ t

ϕ′′(1)
. (33)

Since Eq. (33) holds when t = 0, it suffices to prove that

(1/2 + λ′(t)) · (ψ⋆)′′(λ(t) + t/2) + (1/2− λ′(t)) · (ψ⋆)′′(λ(t)− t/2) ≤ 1

ϕ′′(1)
. (34)

By the relationship between the second derivative of a function and the one of its conjugate
(e.g. Hiriart-Urruty and Lemaréchal (1993, Proposition 6.2.5)), this is equivalent to

1/2 + λ′(t)

ψ′′
(
(ψ⋆)′(λ(t) + t/2)

) + 1/2− λ′(t)

ψ′′
(
(ψ⋆)′(λ(t)− t/2)

) ≤ 1

ϕ′′(1)
. (35)

Now, by Eq. (30), we have that λ′(t) ∈ [−1/2, 1/2], so that by Jensen’s inequality and the
concavity of 1/ψ′′, the left-hand side of Eq. (35) is at most

1/ψ′′
(
(1/2 + λ′(t))(ψ⋆)′(λ(t) + t/2)− (λ′(t)− 1/2)(ψ⋆)′(λ(t)− t/2)

)
. (36)

Finally, since by definition ψ⋆(λ(t) + t/2) = ψ⋆(λ(t)− t/2), the term inside 1/ψ′′ in Eq. (36)
is 0, so since ψ(x) = ϕ(1 + x) we are done.

Example 22 For the α-divergences, we have 1/ϕ′′α(x) = x2−α which is concave for α ∈ [1, 2],
so Corollary 95 applies for these divergences. Furthermore, by Remark 90, we can consider
the reverse α-divergences with ϕ†α(x) = xϕα(1/x) which has 1/(ϕ†α)′′(x) = x1+α, which is
concave for α ∈ [−1, 0].

7. Discussion

Throughout this paper, the ϕ-cumulant generating function has proved central in explicitating
the relationship between ϕ-divergences and integral probability metrics. As a starting point,
the identity Kg,ν = L ⋆

g,ν (Theorem 40) expresses the cumulant generating function as
the convex conjugate of the best lower bound of Dϕ(µ ∥ ν) in terms of µ(g) − ν(g). This
establishes a “correspondence principle” by which properties of the relationship between
ϕ-divergences and integral probability metrics translate by duality into properties of the
cumulant generating function, and vice versa. An advantage of this correspondence is that
the function Kg,ν , being expressed as the solution of a single-dimensional convex optimization
problem (Definition 37), is arguably easier to evaluate and analyze than its counterpart
Lg,ν , expressed as the solution to an infinite-dimensional optimization problem. Following
Theorem 40, several results from the present paper can be seen as instantiations of this
“correspondence principle” and we summarize some of them in Table 2.
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Ref. Property of the ϕ-cumulant
generating function Property of the ϕ-divergence

§5.1 Kg,ν(t) ≤ B(t) for all t ∈ R Dϕ(µ ∥ ν) ≥ B⋆
(
µ(g)− ν(g)

)
for all µ ∈ X1

g

§5.2 0 ∈ int(domKg,ν)
Dϕ(µ ∥ ν) ≥ L

(
|µ(g)− ν(g)|

)
for some L ̸≡ 0, all µ ∈ X1

g

§5.4 Kg,ν differentiable at 0
Dϕ(νn ∥ ν) → 0 implies
νn(g) → ν(g) for all (νn) ∈

(
X1
g

)N
§6.2 Kg,ν(t) ≤ E(t) for all

t ∈ R, g ∈ G, ν ∈ X1
G

Dϕ(µ ∥ ν) ≥ E⋆
(
dG(µ, ν)

)
for all µ, ν ∈ X1

G

§6.3 hgtψ⋆(2t) ≤ B(t) for all t ∈ R Dϕ(µ ∥ ν) ≥ B⋆
(
TV(µ, ν)

)
for all µ, ν ∈ M1

Table 2: Several examples, proved in this paper, of the dual correspondence between prop-
erties of the ϕ-cumulant generating function and properties of the relationship
between the ϕ-divergence and mean deviations. Throughout, µ ∈ M1, g ∈ L1(ν),
B : R → R is arbitrary, E : R → R is even, G ⊆ L0, and X1

g and X1
G are as in

Definition 41.

A limitation of this correspondence is that it only describes the optimal lower bound
function Lg,ν via its convex conjugate. When Lg,ν is lower semicontinuous, this is without
any loss of information by the Fenchel–Moreau theorem, but in general this only provides
information about the biconjugate L ⋆⋆

g,ν . While Lg,ν and L ⋆⋆
g,ν differ in at most two points, as

discussed in Section 5.1, the difference between the optimal lower bound and its biconjugate
is potentially much more important when considering a class of functions G or a class of
measures N as in Section 6.1. Some conditions under which this lower bound LG,N is
necessarily convex and lower semicontinuous were derived in Sections 5.3 and 6.3, and we
gave a characterization of LG,N up to countably many points in Remark 81 regardless, but
this does not completely answer the question (cf. Remarks 63 and 71). We believe that
an interesting direction for future work would be to identify natural necessary or sufficient
conditions under which LG,N is convex or lower semicontinuous.
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Appendix A. Deferred proofs

In this section, for the sake of completeness, we include proofs of results that follow from
standard tools in convex analysis.

A.1 Proof of Lemma 16

Lemma 16 follows immediately from König (1986, Remark 1.9) stated in the general context
of superconvex structures, which applies to cs-compact sets by König (1986, Example 1.6(0)).
For completeness, we include a proof here in the language of topological vector spaces.

First, a convex function which is upper bounded on a cs-closed set in the sense of
Jameson (1972) satisfies an infinite-sum version of convexity called cs-convexity (convex-
series convexity) by Simons (1990).

Lemma 96 Let C be a cs-closed subset of a real Hausdorff topological vector space and let
f : C → R be a convex function such that supx∈C f(x) <∞. Then f is cs-convex.

Proof Let (λn)n∈N ∈ RN be a sequence of real numbers such that
∑∞

i=0 λi = 1 and λn ≥ 0
for all n ∈ N. Let (xn)n∈N ∈ CN be a sequence of elements in C such that r0 :=

∑∞
i=0 λixi

exists, and thus is in C since C is cs-closed. We wish to show that

f(r0) ≤ lim inf
n→∞

n∑
i=0

λif(xi) . (37)

Define for each n ∈ N the partial sums

Λn :=

n∑
i=0

λi and sn := Λ−1
n

n∑
i=0

λixi .

If Λn = 1 for some n ∈ N then Eq. (37) is immediate from convexity. Otherwise, we have
that for each n ≥ 0,

rn :=
r0 − Λn · sn

1− Λn
=

∞∑
i=n+1

λi
1− Λn

· xi

is an element of C since C is cs-closed, so that by convexity of f

f(r0) ≤ Λn · f(sn) + (1− Λn) · f(rn)

≤
n∑
i=0

λif(xi) + (1− Λn) · sup
x∈C

f(x) .

Since supx∈C f(x) <∞ and limn→∞ Λn = 1 by assumption, the previous inequality implies
Eq. (37) as desired.

Second, cs-convex functions are necessarily bounded below on cs-compact sets. Together
with Lemma 96, this implies Lemma 16.
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Lemma 97 Let f : C → R be a cs-convex function on a cs-compact subset C of a real
Hausdorff topological vector space. Then infx∈C f(x) > −∞.

Proof We prove the contrapositive, that if infx∈C f(x) = −∞ then f is not cs-convex.
Indeed, if infx∈C f(x) = −∞, then for each n ∈ N there exists xn ∈ C with f(xn) ≤ −4n.
Since C is cs-compact, the element x :=

∑∞
i=1 2

−i · xi exists and is in C. But then

lim inf
n→∞

n∑
i=1

2−i · f(xi) ≤ lim inf
n→∞

n∑
i=1

2−i · −4i = −∞ < f(x) ,

proving that f is not cs-convex.

A.2 ϕ-cumulant generating function

Lemma 98 (Lemma 36 restated) The function ψ⋆ : x 7→ ϕ⋆(x) − x is non-negative,
convex, and inf-compact. Furthermore, it satisfies ψ⋆(0) = 0, ψ⋆(x) ≤ −x when x ≤ 0, and
int(domψ⋆) =

(
−∞, ϕ′(∞)

)
.

Proof We have that ψ⋆(x) = supy∈R(y · x− ϕ(y + 1)) = supy∈R((y − 1) · x− ϕ(y)) = −x+
supy∈R(y · x− ϕ(y)) = ϕ⋆(x)− x. Non-negativity of ψ⋆ holds since ψ⋆(x) ≥ 0 · x− ψ(0) = 0,
and convexity and lower semicontinuity hold for any convex conjugate. For inf-compactness,
we have since 0 ∈ int domϕ by assumption that there exists α > 0 with [−α, α] ⊆ domψ, so
that ψ⋆(y) ≥ max{α · y − ψ(α),−α · y − ψ(−α)} ≥ α · |y| −max{ψ(α), ψ(−α)}, so that the
sublevel sets of ψ⋆ are closed and bounded and thus compact.

The claim about domψ is immediate from Lemma 13 since domϕ ⊆ R≥0 implies
ϕ′(−∞) = −∞. Finally, domϕ ⊆ R≥0 also implies for x ≤ 0 that ψ⋆(x) = supy≥−1

(
y · x−

ψ(y)
)
≤ supy≥−1 y · x − infy≥−1 ψ(y) = −x where the last equality is because ψ ≥ 0 and

x ≤ 0.

Proposition 99 (Proposition 39 restated) For every σ-ideal Ξ, probability measure ν ∈
M1

c(Ξ), and g ∈ L0(Ξ), Kg,ν,Ξ : R → R is non-negative, convex, lsc, and satisfies Kg,ν,Ξ(0) =
0.

Furthermore, if g is not ν-essentially constant then Kg,ν,Ξ is inf-compact. If there exists
c ∈ R such that g = c ν-almost surely, then there exists t > 0 (resp. t < 0) such that
Kg,ν,Ξ(t) > 0 if and only if ϕ′(∞) <∞ and ess supΞ g > c (resp. ess infΞ g < c).

We prove this in steps, using the following important function:

Definition 100 For every σ-ideal Ξ, probability measure ν ∈ M1
c(Ξ), and g ∈ L0(Ξ), define

Fg,ν,Ξ(t, λ) :=

{∫
ψ⋆(tg + λ) dν if ess supΞ(tg + λ) ≤ ϕ′(∞)

+∞ otherwise

=

∫
ψ⋆(tg + λ) dν +

{
0 if tg + λ ∈ [−∞, ϕ′(∞)] Ξ-a.e.
+∞ otherwise

,

so that Kg,ν,Ξ = infλ∈R Fg,ν,Ξ( · , λ).
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Lemma 101 For every σ-ideal Ξ, probability measure ν ∈ M1
c(Ξ), and g ∈ L0(Ξ), the

function Fg,ν,Ξ is non-negative, convex, lsc, and the set
{
λ ∈ R

∣∣ Fg,ν,Ξ(0, λ) = 0
}

is compact
and contains 0.

Proof Non-negativity of Fg,ν,Ξ is immediate from non-negativity of ψ⋆. The function

(t, λ) 7→

{
0 if tg + λ ∈ [−∞, ϕ′(∞)] Ξ-a.e.
+∞ otherwise

is convex and lsc since [−∞, ϕ′(∞)] is a closed interval.
Similarly, the convexity of ψ⋆ implies the convexity of (t, λ) 7→

∫
ψ⋆(tg + λ) dν. Fur-

thermore, by Fatou’s lemma and since ψ⋆ is lsc we have for every sequence (tn, λn) → (t, λ)
that

lim inf
n→∞

∫
ψ⋆(tng + λn) dν ≥

∫
lim inf
n→∞

ψ⋆(tng + λn) dν ≥
∫
ψ⋆(tg + λ) dν ,

so that this function is also lower semicontinuous.
Finally,

{
λ ∈ R

∣∣ Fg,ν,Ξ(0, λ) = 0
}

is a sublevel set of a non-negative lsc function and so
is closed, it contains 0 since ψ⋆(0) = 0 and ϕ′(∞) ≥ 0, and is bounded since it is contained
in the compact set

{
λ ∈ R

∣∣ ψ⋆(λ) = 0
}
.

Lemma 102 For every σ-ideal Ξ, probability measure ν ∈ M1
c(Ξ), and g ∈ L0(Ξ), we have

R≥0 ⊆ {t ∈ R | ∃λ ∈ R ∧ Fg,ν,Ξ(t, λ) = 0} if and only if g is ν-essentially constant and either
ϕ′(∞) = ∞ or ess supΞ g = ess supν g.

Proof If g = c holds ν-a.s. for some c ∈ R and either ϕ′(∞) = ∞ or ess supΞ g = ess supν g =
c, then for all t ≥ 0 we have Fg,ν,Ξ(t,−t · c) = 0 since tg+λ is 0 ν-a.s. and at most ϕ′(∞) ≥ 0
Ξ-a.e.

Conversely, suppose R≥0 ⊆ {t ∈ R | ∃λ ∈ R ∧ Fg,ν,Ξ(t, λ) = 0}. Then for every t ≥ 0
there is λ ∈ R such that tg + λ ∈ {x ∈ R | ψ⋆(x) = 0} ⊆ [−∞, ψ⋆(∞)] holds ν-a.s. and
tg + λ ∈ [−∞, ϕ′(∞)] holds Ξ-a.e. Since ψ⋆ is non-negative, convex, and inf-compact, the
set {x ∈ R | ψ⋆(x) = 0} is a compact interval [a, b], and thus there is λ ∈ R such that
tg + λ ∈ [a, b] holds ν-a.s. if only if |t| ·

(
ess supν g − ess infν g

)
≤ b − a < ∞. Thus, since

this holds for all t ∈ R, we have ess supν g = ess infν g, equivalently that g = c holds ν-a.s.
for some c ∈ R. Thus, the condition on t reduces to the existence of λ ∈ R such that
tc+ λ ∈ [a, b] and ess supΞ tg + λ = tc+ λ+ t · (ess supΞ g − c) ≤ ϕ′(∞). In particular, this
implies that a+ t · (ess supΞ g − c) ≤ ϕ′(∞) for all t ≥ 0, which implies either ϕ′(∞) = ∞ or
ess supΞ g ≤ c = ess supν g as desired.

We can finally prove Proposition 39.
Proof [Proof of Proposition 39] The main claim is immediate by applying standard results
in convex analysis (e.g. (Rockafellar and Wets, 1998a, Propositions 1.17 and 3.32)) to
Lemma 101. Furthermore, these results imply that {t ∈ R | Kg,ν,Ξ(t) = 0} = {t ∈ R |
∃λ ∈ R ∧ Fg,ν,Ξ(t, λ) = 0}.
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For the supplemental claim, we have since Kg,ν,Ξ is non-negative, convex, lsc, and
0 at 0 that it is inf-compact if and only if there exist t+ > 0 and t− < 0 such that
Kg,ν,Ξ(t+),Kg,ν,Ξ(t−) > 0. The claimed characterization thus follows from applying Lemma
102 to g and −g.

Bibliography

R. Agrawal and T. Horel. Optimal Bounds between f -Divergences and Integral Probability
Metrics. In Proceedings of the 37th International Conference on Machine Learning (ICML
2020), volume 119 of Proceedings of Machine Learning Research. PMLR, July 2020.

S. M. Ali and S. D. Silvey. A general class of coefficients of divergence of one distribution
from another. Journal of the Royal Statistical Society. Series B, 28(1):131–142, 1966. ISSN
00359246. doi: 10.2307/2984279.

Y. Altun and A. Smola. Unifying divergence minimization and statistical inference via convex
duality. In G. Lugosi and H. U. Simon, editors, Learning Theory, pages 139–153, Berlin,
Heidelberg, 2006. Springer. ISBN 978-3-540-35296-9. doi: 10.1007/11776420_13.

M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio, A. Courville, and D. Hjelm.
Mutual information neural estimation. In J. Dy and A. Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 531–540, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

A. Ben-Tal and A. Charnes. A dual optimization framework for some problems of information
theory and statistics. Technical report, Center for Cybernetic Studies, University of Texas,
Austin, 1977.

A. Ben-Tal and A. Charnes. A dual optimization framework for some problems of information
theory and statistics. Problems of Control and Information Theory. Problemy Upravlenija
i Teorii Informacii, 8(5-6):387–401, 1979. ISSN 0370-2529.

C. Berg, J. P. R. Christensen, and P. Ressel. Introduction to Locally Convex Topological Vector
Spaces and Dual Pairs, pages 1–15. Springer, New York, NY, 1984. ISBN 978-1-4612-1128-0.
doi: 10.1007/978-1-4612-1128-0_1.

S. G. Bobkov and F. Götze. Exponential integrability and transportation cost related to
logarithmic Sobolev inequalities. Journal of Functional Analysis, 163(1):1–28, Apr. 1999.
ISSN 0022-1236. doi: 10.1006/jfan.1998.3326.

F. Bolley and C. Villani. Weighted Csiszár-Kullback-Pinsker inequalities and applications to
transportation inequalities. Annales de la Faculté des sciences de Toulouse : Mathématiques,
14(3):331–352, 2005.

J. M. Borwein and A. S. Lewis. Duality relationships for entropy-like minimization problems.
SIAM Journal on Control and Optimization, 29(2):325–338, 1991. doi: 10.1137/0329017.

52



Optimal Bounds between f-Divergences and IPMs

J. M. Borwein and A. S. Lewis. Partially-finite programming in L1 and the existence of
maximum entropy estimates. SIAM Journal on Optimization, 3(2):248–267, 1993. doi:
10.1137/0803012.

S. Boucheron, G. Lugosi, and P. Massart. Concentration Inequalities: A Nonasymptotic
Theory of Independence. Oxford University Press, Oxford, 2013. ISBN 9780199535255. doi:
10.1093/acprof:oso/9780199535255.001.0001.

N. Bourbaki. Topological Vector Spaces. Elements of Mathematics. Springer-Verlag, Berlin,
1987. ISBN 978-3-540-13627-9. doi: 10.1007/978-3-642-61715-7. Translated by H.G.
Eggleston & S. Madan from Espaces vectoriels topologiques, Masson, Paris, 1981.

J. Bretagnolle and C. Huber. Estimation des densités: risque minimax. Zeitschrift für
Wahrscheinlichkeitstheorie und Verwandte Gebiete, 47(2):119–137, Jan 1979. ISSN 1432-
2064. doi: 10.1007/BF00535278.

A. Brøndsted. Conjugate convex functions in topological vector spaces. Matematisk-fysiske
Meddelelser udgivet af det Kongelige Danske Videnskabernes Selskab, 34(2):27, 1964. ISSN
0023-3323.

M. Broniatowski and A. Keziou. Minimization of ϕ-divergences on sets of signed measures.
Studia Scientiarum Mathematicarum Hungarica, 43(4):403–442, 2006. doi: 10.1556/
SScMath.43.2006.4.2.

A. Carbery, M. Christ, and J. Wright. Multidimensional van der Corput and sublevel set
estimates. Journal of the American Mathematical Society, 12(4):981–1015, 1999. ISSN
1088-6834. doi: 10.1090/S0894-0347-99-00309-4.

I. Csiszár. Informationstheoretische Konvergenzbegriffe im Raum der Wahrschein-
lichkeitsverteilungen. A Magyar Tudományos Akadémia. Matematikai Kutató Intézetének
Közleményei, 7:137–158, 1962. ISSN 0541-9514.

I. Csiszár. Über topologische und metrische Eigenschaften der relativen Information der
Ordnung α. In Transactions of the Third Prague Conference on Information Theory,
Statistical Decision Functions, Random Processes, 1962, pages 63–73. Publishing House of
the Czechoslovak Academy of Science, Prague, 1964.

I. Csiszár. On topological properties of f -divergences. Studia Scientiarum Mathematicarum
Hungarica, 2:329–339, 1967.

I. Csiszár and F. Matúš. Information projections revisited. IEEE Transactions on Information
Theory, 49(6):1474–1490, June 2003. ISSN 0018-9448. doi: 10.1109/TIT.2003.810633.

I. Csiszár and F. Matúš. Generalized minimizers of convex integral functionals, Bregman
distance, Pythagorean identities. Kybernetika, 48(4):637–689, 2012. ISSN 0023-5954.

I. Csiszár. Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis
der Ergodizität von Markoffschen Ketten. A Magyar Tudományos Akadémia Matematikai
Kutató Intézetének Közleményei, 8(1–2):85–108, 1963.

53



Agrawal and Horel

I. Csiszár. Information-type measures of difference of probability distributions and indirect
observations. Studia Sci. Math. Hungar, 2:299–318, 1967.

I. Csiszár. I-divergence geometry of probability distributions and minimization problems.
Ann. Probab., 3(1):146–158, 02 1975. doi: 10.1214/aop/1176996454.

I. Csiszár, F. Gamboa, and E. Gassiat. MEM pixel correlated solutions for generalized
moment and interpolation problems. IEEE Transactions on Information Theory, 45(7):
2253–2270, Nov. 1999. doi: 10.1109/18.796367.

M. D. Donsker and S. R. S. Varadhan. Asymptotic evaluation of certain Markov process
expectations for large time—III. Communications on Pure and Applied Mathematics, 29
(4):389–461, 1976. doi: 10.1002/cpa.3160290405.

R. M. Dudley. On sequential convergence. Transactions of the American Mathe-
matical Society, 112(3):483–507, 1964. ISSN 0002-9947, 1088-6850. doi: 10.1090/
S0002-9947-1964-0175081-6.

R. M. Dudley. Consistency of M-Estimators and One-Sided Bracketing. In E. Eber-
lein, M. Hahn, and M. Talagrand, editors, High Dimensional Probability, pages 33–
58. Birkhäuser Basel, Basel, 1998. ISBN 978-3-0348-9790-7 978-3-0348-8829-5. doi:
10.1007/978-3-0348-8829-5_3.

G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via
maximum mean discrepancy optimization. In Proceedings of the Thirty-First Conference
on Uncertainty in Artificial Intelligence, UAI’15, page 258–267, Arlington, Virginia, USA,
2015. AUAI Press. ISBN 9780996643108.

G. A. Edgar and L. Sucheston. On maximal inequalities in Orlicz spaces. In R. D. Mauldin,
R. M. Shortt, and C. E. Silva, editors, Contemporary Mathematics, volume 94, pages
113–129. American Mathematical Society, Providence, Rhode Island, 1989. ISBN 978-0-
8218-5099-2 978-0-8218-7682-4. doi: 10.1090/conm/094/1012982.

I. Ekeland and R. Témam. Convex Analysis and Variational Problems. Society for Industrial
and Applied Mathematics, 1999. doi: 10.1137/1.9781611971088.

A. A. Fedotov, P. Harremoës, and F. Topsøe. Refinements of Pinsker’s inequality. IEEE
Transactions on Information Theory, 49(6):1491–1498, June 2003. doi: 10.1109/TIT.2003.
811927.

G. L. Gilardoni. On the minimum f -divergence for given total variation. Comptes Rendus
Mathematique, 343(11):763 – 766, 2006. ISSN 1631-073X. doi: 10.1016/j.crma.2006.10.027.

G. L. Gilardoni. An improvement on Vajda’s inequality. In V. Sidoravicius and M. E. Vares,
editors, In and Out of Equilibrium 2, volume 60 of Progress in Probability, pages 299–304.
Birkhäuser Basel, Basel, 2008. ISBN 978-3-7643-8786-0. doi: 10.1007/978-3-7643-8786-0_
14.

54



Optimal Bounds between f-Divergences and IPMs

G. L. Gilardoni. On Pinsker’s and Vajda’s type inequalities for Csiszár’s f -divergences. IEEE
Transactions on Information Theory, 56(11):5377–5386, Nov 2010. doi: 10.1109/TIT.2010.
2068710.

G. Gorni. Conjugation and second-order properties of convex functions. Journal of Math-
ematical Analysis and Applications, 158(2):293–315, July 1991. ISSN 0022-247X. doi:
10.1016/0022-247X(91)90237-T.

N. Gozlan and C. Léonard. Transport inequalities. A survey. Markov Processes and Related
Fields, 16(4):635–736, 2010. ISSN 1024-2953. URL http://math-mprf.org/journal/
articles/id1224/.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample
test. J. Mach. Learn. Res., 13(25):723–773, Mar. 2012. ISSN 1532-4435.

A. Guntuboyina, S. Saha, and G. Schiebinger. Sharp inequalities for f -divergences. IEEE
Transactions on Information Theory, 60(1):104–121, Jan 2014. doi: 10.1109/TIT.2013.
2288674.

P. Harremoës. Information Topologies with Applications. In I. Csiszár, G. O. H. Katona,
G. Tardos, and G. Wiener, editors, Entropy, Search, Complexity, volume 16, pages 113–
150. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. ISBN 978-3-540-32573-4. doi:
10.1007/978-3-540-32777-6_5. Series Title: Bolyai Society Mathematical Studies.

P. Harremoës and I. Vajda. On Pairs of f -Divergences and Their Joint Range. IEEE
Transactions on Information Theory, 57(6):3230–3235, June 2011. ISSN 0018-9448, 1557-
9654. doi: 10.1109/TIT.2011.2137353.

H. H. Herda. On non-symmetric modular spaces. Colloquium Mathematicum, 17(2):333–346,
1967. ISSN 0010-1354. doi: 10.4064/cm-17-2-333-346.

J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms
I, volume 305 of Grundlehren Der Mathematischen Wissenschaften. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1993. ISBN 978-3-642-08161-3 978-3-662-02796-7. doi:
10.1007/978-3-662-02796-7.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of
the American Statistical Association, 58(301):13–30, 1963. ISSN 01621459. doi: 10.2307/
2282952.

A. D. Ioffe and V. M. Tikhomirov. On minimization of integral functionals. Functional
Analysis and Its Applications, 3(3):218–227, Jul 1969. ISSN 1573-8485. doi: 10.1007/
BF01676623.

G. J. O. Jameson. Convex series. Mathematical Proceedings of the Cambridge Philosophical So-
ciety, 72(1):37–47, July 1972. ISSN 1469-8064, 0305-0041. doi: 10.1017/S0305004100050933.

J. Jiao, Y. Han, and T. Weissman. Dependence measures bounding the exploration bias for
general measurements. In 2017 IEEE International Symposium on Information Theory
(ISIT), pages 1475–1479, June 2017. doi: 10.1109/ISIT.2017.8006774.

55

http://math-mprf.org/journal/articles/id1224/
http://math-mprf.org/journal/articles/id1224/


Agrawal and Horel

J. H. B. Kemperman. On the optimum rate of transmitting information. The Annals of
Mathematical Statistics, 40(6):2156–2177, 12 1969. doi: 10.1214/aoms/1177697293.

M. Khosravifard, D. Fooladivanda, and T. A. Gulliver. Exceptionality of the Variational
Distance. In Proceedings of the 2006 IEEE Information Theory Workshop, pages 274–276,
Chengdu, China, Oct. 2006. IEEE. ISBN 978-1-4244-0067-6 978-1-4244-0068-3. doi:
10.1109/ITW2.2006.323802.

M. Khosravifard, D. Fooladivanda, and T. A. Gulliver. Confliction of the Convexity and
Metric Properties in f -Divergences. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E90-A(9):1848–1853, Sept. 2007. ISSN 0916-8508.
doi: 10.1093/ietfec/e90-a.9.1848.

J. Kisyński. Convergence du type L. Colloquium Mathematicum, 7(2):205–211, 1960. ISSN
0010-1354. doi: 10.4064/cm-7-2-205-211.

H. König. Theory and applications of superconvex spaces. In Aspects of Positivity in
Functional Analysis (Tübingen, 1985), volume 122 of North-Holland Math. Stud., pages
79–118. North-Holland, Amsterdam, 1986.

S. Kullback. Information theory and statistics. Wiley, New York, 1959.

S. Kullback. A lower bound for discrimination information in terms of variation. IEEE
Transactions on Information Theory, 13(1):126–127, January 1967. doi: 10.1109/TIT.1967.
1053968.

S. Kullback and R. A. Leibler. On Information and Sufficiency. Annals of Mathematical
Statistics, 22(1):79–86, Mar. 1951. ISSN 0003-4851, 2168-8990. doi: 10.1214/aoms/
1177729694.

C. Léonard. Minimizers of energy functionals. Acta Mathematica Hungarica, 93(4):281–325,
2001a. ISSN 02365294. doi: 10.1023/A:1017919422086.

C. Léonard. Minimization of Energy Functionals Applied to Some Inverse Problems. Applied
Mathematics and Optimization, 44(3):273–297, Jan. 2001b. ISSN 0095-4616, 1432-0606.
doi: 10.1007/s00245-001-0019-5.

C. Léonard. Orlicz Spaces. https://leonard.perso.math.cnrs.fr/papers/Leonard-
Orlicz%20spaces.pdf, Apr. 2007. URL https://leonard.perso.math.cnrs.fr/papers/
Leonard-Orlicz%20spaces.pdf.

V. L. Levin. Some properties of support functionals. Mathematical Notes of the Academy
of Sciences of the USSR, 4(6):900–906, Dec. 1968. ISSN 0001-4346, 1573-8876. doi:
10.1007/BF01110826.

W. Luxemburg and A. Zaanen. Conjugate spaces of Orlicz spaces. Indagationes Mathematicae
(Proceedings), 59:217–228, 1956. ISSN 1385-7258. doi: 10.1016/S1385-7258(56)50029-7.

K. Marton. A simple proof of the blowing-up lemma (corresp.). IEEE Transactions on
Information Theory, 32(3):445–446, May 1986. ISSN 1557-9654. doi: 10.1109/TIT.1986.
1057176.

56

https://leonard.perso.math.cnrs.fr/papers/Leonard-Orlicz%20spaces.pdf
https://leonard.perso.math.cnrs.fr/papers/Leonard-Orlicz%20spaces.pdf


Optimal Bounds between f-Divergences and IPMs

J. J. Moreau. Sur la fonction polaire d’une fonction semi-continue supérieurement. Comptes
rendus hebdomadaires des séances de l’Académie des sciences, 258:1128–1130, 1964.

T. Morimoto. Markov processes and the H-theorem. Journal of the Physical Society of Japan,
18(3):328–331, Mar. 1963. ISSN 0031-9015, 1347-4073. doi: 10.1143/JPSJ.18.328.

M. Morse and W. Transue. Functionals f Bilinear Over the Product A×B of Two Pseudo-
Normed Vector Spaces: II. Admissible Spaces A. Annals of Mathematics, 51(3):576–614,
1950. ISSN 0003-486X. doi: 10.2307/1969370.

A. Müller. Integral probability metrics and their generating classes of functions. Advances in
Applied Probability, 29(2):429–443, 1997. ISSN 00018678. doi: 10.2307/1428011.

J. Musielak. Orlicz Spaces and Modular Spaces, volume 1034 of Lecture Notes in Mathematics.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1983. ISBN 978-3-540-38692-6. doi:
10.1007/BFb0072210.

H. Nakano. Modulared Semi-Ordered Linear Spaces. Tokyo Mathematical Book Series,v. 1.
Maruzen Co., Tokyo, 1950.

X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence functionals and the
likelihood ratio by penalized convex risk minimization. In J. C. Platt, D. Koller, Y. Singer,
and S. T. Roweis, editors, Advances in Neural Information Processing Systems 20, pages
1089–1096. Curran Associates, Inc., 2008.

X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence functionals and the
likelihood ratio by convex risk minimization. IEEE Trans. Inf. Theor., 56(11):5847–5861,
Nov. 2010. ISSN 0018-9448. doi: 10.1109/TIT.2010.2068870.

R. Nock, Z. Cranko, A. K. Menon, L. Qu, and R. C. Williamson. f -GANs in an information
geometric nutshell. In Proceedings of the 31st International Conference on Neural Infor-
mation Processing Systems, NIPS’17, page 456–464, Red Hook, NY, USA, 2017. Curran
Associates Inc. ISBN 9781510860964.

S. Nowozin, B. Cseke, and R. Tomioka. f -GAN: Training generative neural samplers using
variational divergence minimization. In Proceedings of the 30th International Conference
on Neural Information Processing Systems, NIPS’16, page 271–279, Red Hook, NY, USA,
2016. Curran Associates Inc. ISBN 9781510838819.

M. S. Pinsker. Informatsiya i informatsionnaya ustoichivost’ sluchainykh velichin i protsessov.
Probl. Peredachi Inf., 7, 1960.

M. S. Pinsker. Information and Information Stability of Random Variables and Processes.
Holden-Day, 1964. Translation of Pinsker (1960) by Amiel Feinstein.

M. M. Rao and Z. D. Ren. Theory of Orlicz Spaces. Number 146 in Monographs and Textbooks
in Pure and Applied Mathematics. M. Dekker, New York, 1991. ISBN 978-0-8247-8478-2.

M. D. Reid and R. C. Williamson. Generalised Pinsker inequalities. In COLT 2009 - The
22nd Conference on Learning Theory, Montreal, Quebec, Canada, June 18-21, 2009, 2009.

57



Agrawal and Horel

M. D. Reid and R. C. Williamson. Information, divergence and risk for binary experiments.
J. Mach. Learn. Res., 12:731–817, 2011. ISSN 1532-4435.

A. Rényi. On measures of entropy and information. In J. Neyman, editor, Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, volume I, pages
547–561. University of California Press, 1961.

R. T. Rockafellar. Level sets and continuity of conjugate convex functions. Transactions of
the American Mathematical Society, 123(1):46–63, 1966. ISSN 0002-9947, 1088-6850. doi:
10.1090/S0002-9947-1966-0192318-X.

R. T. Rockafellar. Integrals which are convex functionals. Pacific J. Math., 24(3):525–539,
1968.

R. T. Rockafellar. Integrals which are convex functionals. II. Pacific J. Math., 39(2):439–469,
1971.

R. T. Rockafellar. Integral functionals, normal integrands and measurable selections. In J. P.
Gossez, E. J. Lami Dozo, J. Mawhin, and L. Waelbroeck, editors, Nonlinear Operators
and the Calculus of Variations, pages 157–207, Berlin, Heidelberg, 1976. Springer Berlin
Heidelberg. ISBN 978-3-540-38075-7. doi: 10.1007/BFb0079944.

R. T. Rockafellar and R. J.-B. Wets. Variational Analysis, volume 317 of Grundlehren Der
Mathematischen Wissenschaften. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998a.
ISBN 978-3-642-02431-3. doi: 10.1007/978-3-642-02431-3.

R. T. Rockafellar and R. J.-B. Wets. Measurability. In Rockafellar and Wets (1998a),
chapter 14, pages 642–683. ISBN 978-3-642-02431-3. doi: 10.1007/978-3-642-02431-3_14.

A. Ruderman, M. Reid, D. García-García, and J. Petterson. Tighter variational representa-
tions of f -divergences via restriction to probability measures. In J. Langford and J. Pineau,
editors, Proceedings of the 29th International Conference on Machine Learning (ICML
’12), pages 671–678, New York, NY, USA, July 2012. Omnipress. ISBN 978-1-4503-1285-1.

D. Russo and J. Zou. How much does your data exploration overfit? Controlling bias via
information usage. IEEE Transactions on Information Theory, 66(1):302–323, Jan 2020.
ISSN 1557-9654. doi: 10.1109/TIT.2019.2945779.

I. N. Sanov. On the probability of large deviations of random variables. Mat. Sb. (N.S.), 42
(84):11–44, 1957.

I. Sason. On f -Divergences: Integral Representations, Local Behavior, and Inequalities.
Entropy, 20(5):383, May 2018. doi: 10.3390/e20050383.

I. Sason and S. Verdú. f -Divergence Inequalities. IEEE Transactions on Information Theory,
62(11):5973–6006, Nov. 2016. doi: 10.1109/TIT.2016.2603151.

S. Simons. The occasional distributivity of ◦ over +
e and the change of variable formula

for conjugate functions. Nonlinear Analysis: Theory, Methods & Applications, 14(12):
1111–1120, Jan. 1990. ISSN 0362546X. doi: 10.1016/0362-546X(90)90071-N.

58



Optimal Bounds between f-Divergences and IPMs

M. Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171–176, Mar.
1958. ISSN 0030-8730, 0030-8730. doi: 10.2140/pjm.1958.8.171.

B. K. Sriperumbudur, A. Gretton, K. Fukumizu, G. R. G. Lanckriet, and B. Schölkopf. A
note on integral probability metrics and ϕ-divergences. CoRR, abs/0901.2698v1, 2009.

B. K. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, and G. R. G. Lanckriet. On
the empirical estimation of integral probability metrics. Electronic Journal of Statistics, 6:
1550–1599, 2012. doi: 10.1214/12-EJS722.

E. M. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory
Integrals. Number 43 in Princeton Mathematical Series. Princeton University Press,
Princeton, NJ, 1993. ISBN 978-0-691-03216-0.

E. Szpilrajn. Remarques sur les fonctions complètement additives d’ensemble et sur les
ensembles jouissant de la propriété de Baire. Fundamenta Mathematicae, 22(1):303–311,
1934. ISSN 0016-2736. doi: 10.4064/fm-22-1-303-311.

M. Teboulle and I. Vajda. Convergence of best ϕ-entropy estimates. IEEE Transactions on
Information Theory, 39(1):297–301, 1993.

I. Vajda. Note on discrimination information and variation. IEEE Transactions on Informa-
tion Theory, 16(6):771–773, November 1970. doi: 10.1109/TIT.1970.1054557.

I. Vajda. On the f -divergence and singularity of probability measures. Periodica Mathematica
Hungarica, 2(1):223–234, Mar 1972. ISSN 1588-2829. doi: 10.1007/BF02018663.

I. Vajda. χα-divergence and generalized Fisher’s information. In Transactions of the
Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random
Processes, pages 873–886. Academia, Prague, 1973.

M. Valadier. Intégration de convexes fermés notamment d’épigraphes. Inf-convolution
continue. Rev. Française Informat. Recherche Opérationnelle, 4(Sér. R-2):57–73, 1970.

R. Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Number 47 in Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, Cambridge, 2018. ISBN 978-1-108-41519-4.

C. Zălinescu. Convex Analysis in General Vector Spaces. World Scientific, River Edge, N.J. ;
London, 2002. ISBN 978-981-238-067-8.

59


	Introduction
	Related work
	Preliminaries
	Measure Theory
	Convex analysis
	Orlicz spaces

	Variational representations of phi-divergences
	Convex integral functionals and phi-divergences
	Variational representations: general measures
	Variational representations: probability measures

	Optimal bounds for a single function and reference measure
	Derivation of the bound
	Subexponential functions and connections to Orlicz spaces
	Inf-compactness of divergences and connections to strong duality
	Convergence in phi-divergence and weak convergence

	Optimal bounds relating phi-divergences and IPMs
	On the choice of definitions
	Derivation of the bound
	Application to bounded functions and the total variation
	Vajda's problem
	Application to Pinsker-type inequalities


	Discussion
	Deferred proofs
	Proof of Lemma 16
	phi-cumulant generating function

	Bibliography

