
Journal of Machine Learning Research 22 (2021) 1-40 Submitted 8/20; Revised 5/21; Published 8/21

Tighter Risk Certificates for Neural Networks

Maŕıa Pérez-Ortiz maria.perez@ucl.ac.uk
AI Centre, University College London (UK)

Omar Rivasplata o.rivasplata@cs.ucl.ac.uk
AI Centre, University College London (UK)

John Shawe-Taylor j.shawe-taylor@ucl.ac.uk
AI Centre, University College London (UK)

Csaba Szepesvári szepi@google.com

DeepMind Edmonton (Canada)

Editor: Arnak Dalalyan

Abstract

This paper presents an empirical study regarding training probabilistic neural networks
using training objectives derived from PAC-Bayes bounds. In the context of probabilistic
neural networks, the output of training is a probability distribution over network weights.
We present two training objectives, used here for the first time in connection with training
neural networks. These two training objectives are derived from tight PAC-Bayes bounds.
We also re-implement a previously used training objective based on a classical PAC-Bayes
bound, to compare the properties of the predictors learned using the different training
objectives. We compute risk certificates for the learnt predictors, based on part of the data
used to learn the predictors. We further experiment with different types of priors on the
weights (both data-free and data-dependent priors) and neural network architectures. Our
experiments on MNIST and CIFAR-10 show that our training methods produce competitive
test set errors and non-vacuous risk bounds with much tighter values than previous results in
the literature, showing promise not only to guide the learning algorithm through bounding
the risk but also for model selection. These observations suggest that the methods studied
here might be good candidates for self-certified learning, in the sense of using the whole
data set for learning a predictor and certifying its risk on any unseen data (from the same
distribution as the training data) potentially without the need for holding out test data.

Keywords: Deep learning, neural work training, weight randomisation, generalisation,
pathwise reparametrised gradients, PAC-Bayes with Backprop, data-dependent priors.

1. Introduction

In a probabilistic neural network, the result of the training process is a distribution over
network weights, rather than simply fixed weights. Several prediction schemes can be
devised based on a probability distribution over weights. For instance, one may use a
randomised predictor, where each prediction is done by randomly sampling the weights
from the data-dependent distribution obtained as the result of the training process. Another
prediction rule consists of predicting always with the mean of the learned distribution. Yet
another prediction rule is the ensemble predictor based on integrating the predictions of all
possible parameter settings, weighted according to the learned distribution.

c©2021 Maŕıa Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor and Csaba Szepesvári.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-879.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-879.html

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

In this paper we experiment with probabilistic neural networks from a PAC-Bayes ap-
proach. We name ‘PAC-Bayes with Backprop’ (PBB) the family of (probabilistic) neural
network training methods derived from PAC-Bayes bounds and optimised through stochas-
tic gradient descent. The work reported here is the result of our empirical studies undertaken
to investigate three PBB training objectives. For reference, they are the functions fquad,
flambda and fclassic, shown respectively in Eq. (11), Eq. (12) and Eq. (13) below. These
objectives are based on PAC-Bayes bounds with similar names, which are relaxations of
the PAC-Bayes relative entropy bound (Langford and Seeger, 2001), also known as the
PAC-Bayes-kl bound in the literature. The classic PAC-Bayes bound, from which fclassic is
derived, is that of McAllester (1999), but we use it with the improved dependence on the
number of training patterns as clarified by Maurer (2004). The PAC-Bayes-lambda bound
is that of Thiemann et al. (2017). The PAC-Bayes-quadratic bound, from which fquad is
derived, was first introduced by us in the preprint Rivasplata et al. (2019). Importantly, our
work shows tightness of the numerical certificates on the error of the randomised classifiers
generated by these training methods. In each case, the computed certificate is valid on
unseen examples (from the same data distribution as the training data), and is evaluated
using (part of) the data set that was used to learn the predictor for which the certificate
is valid. These properties make our work a first example of self-certified learning, which
proposes to use the whole data set for learning a predictor and certifying its risk on unseen
data, without the need for data splitting protocols both for testing and model selection.

Our line of research owes credit to previous works that have trained a probabilistic neu-
ral network by minimising a PAC-Bayes bound, or used a PAC-Bayes bound to give risk
certificates for trained neural networks. Langford and Caruana (2001) developed a method
to train a probability distribution over neural network weights by randomising the weights
with Gaussian noise (adjusted in a data-dependent way via a sensitivity analysis), and com-
puted an upper bound on the error using the PAC-Bayes-kl bound.1 They also suggested
that PAC-Bayes bounds might be fruitful for computing non-vacuous generalisation bounds
for neural nets. Dziugaite and Roy (2017) used a training objective (essentially equivalent
to fclassic) based on a relaxation of the PAC-Bayes-kl bound. They optimised this objec-
tive using stochastic gradient descent (SGD), and computed a confidence bound on the
error of the randomised classifier following the same approach that Langford and Caruana
(2001) used to compute their error bound. Dziugaite and Roy (2018) developed a two-stage
method, which in the first stage trains a prior mean by empirical risk minimisation via
stochastic gradient Langevin dynamics (Welling and Teh, 2011), and in the second stage
re-uses the same data used for the prior in order to train a posterior Gibbs distribution over
weights; they also evaluate a relaxation of the PAC-Bayes-kl bound, based on ideas from
differential privacy (Dwork et al., 2015a,b), which accounts for the data re-use.

In this paper we report experiments on MINIST and CIFAR-10 with the three training
objectives mentioned above. We used by default the randomised predictor scheme (also
called the ‘stochastic predictor’ in the PAC-Bayes literature), justified by the fact that

1. Inversion of the PAC-Bayes-kl bound (we explain this in Section 6) gives a certificate (upper bound) on
the risk of the randomised predictor, in terms of its empirical error and other quantities. The empirical
error term is evaluated indirectly by Monte Carlo sampling, and a bound on the tail of the Monte Carlo
evaluation (Langford and Caruana, 2001, Theorem 2.5) is combined with the PAC-Bayes-kl bound to
give a numerical risk certificate that holds with high probability over data and Monte Carlo samples.

2

Tighter Risk Certificates for Neural Networks

PAC-Bayes bounds give high-confidence guarantees on the expected loss of the randomised
predictor. Since training is based on a surrogate loss function, optimising a PBB objective
gives a high-confidence guarantee on the randomised predictor’s risk under the surrogate
loss. Accordingly, to obtain guarantees that are valid for the classification error (i.e. the
zero-one loss), we separately evaluate a confidence bound for the error based on part of the
data that was used to learn the randomised predictor (following the procedure that was
used by Langford and Caruana (2001) and Dziugaite and Roy (2017)). For comparison
we also report test set error for the randomised predictor, and for the other two predictor
schemes described above, namely, the posterior mean and the ensemble predictors.

Our work took inspiration from Blundell et al. (2015), whose results showed that ran-
domised weights achieve competitive test set errors; and from Dziugaite and Roy (2017,
2018), whose results gave randomised neural network classifiers with reasonable test set
errors and, more importantly, non-vacuous risk bound values. Our experiments show that
PBB training objectives can (a) achieve competitive test set errors (e.g. comparable to
Blundell et al. (2015) and empirical risk minimisation), while also (b) deliver risk certifi-
cates with reasonably tight values. Our results show as well a significant improvement over
those of Dziugaite and Roy (2017, 2018): we further close the gap between the numerical
risk certificate (bound value) and the risk estimate (test set error rate). As we argue below,
this improvement comes from the tightness of the PAC-Bayes bounds we used, which is
established analytically and corroborated by our experiments on MNIST and CIFAR-10
with deep fully connected networks and convolutional neural networks.

Regarding the tightness, the training objective of Dziugaite and Roy (2017) (which in our
notation takes essentially the form of fclassic shown in Eq. (13) below) has the disadvantage
of being sub-optimal in the regime of small losses. This is because their objective is a
relaxation of the PAC-Bayes-kl bound via an inequality that is loose in this regime. The
looseness was the price paid for having a computable objective. Note that small losses
is precisely the regime of interest in neural network training (although the true loss being
small is data set and architecture dependent). By contrast, our proposed training objectives
(fquad and flambda in Eq. (11) and Eq. (12) below) are based on relaxing the PAC-Bayes-kl
bound by an inequality that is tighter in this same regime of small losses, which is one of the
reasons explaining our tighter risk certificates in MNIST (not for CIFAR-10, which could be
explained by the large empirical loss obtained at the end of the optimisation). Interestingly,
our own re-implementation of fclassic also gave improved results compared to the results of
Dziugaite and Roy, which suggests that besides the training objectives we used, also the
training strategies we used are responsible for the improvements.

A clear advantage of PAC-Bayes with Backprop (PBB) methods is being an instance
of self-certified2 learning: When training probabilistic neural nets by PBB methods the
output is not just a predictor but simultaneously a tight risk certificate that guarantees the
quality of predictions on unseen examples. The value of self-certified learning algorithms
(cf. Freund, 1998) is in the possibility of using of all the available data to achieve both
goals (learning a predictor and certifying its risk) simultaneously, thus making efficient
use of the available data. Note that risk certificates per se will not impress until their
reported values match or closely follow the classification error rates evaluated on a test set,

2. We say that a learning method is self-certified if it uses all the available data in order to simultaneously
output a predictor and a reasonably tight risk certificate that is valid on unseen data.

3

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

so that the risk certificate is informative of the out-of-sample error. This is where our work
makes a significant contribution, since our PBB training methods lead to risk certificates for
neural nets with much tighter values than previous works in the literature. Once again, the
solution found by our learning procedure comes together with a high-confidence guarantee
that certifies its risk under the surrogate training loss, and to obtain a high-confidence
guarantee for the classification error (zero-one loss) we evaluate post training a risk bound.
A more ambitious goal would be to establish calibration3 of the surrogate cross-entropy
loss, so then minimising it would guarantee minimal classification error.

We would like to highlight the elegant simplicity of the methods presented here: Our
results are achieved i) with priors learnt through empirical risk minimisation of the surrogate
loss on a subset of the data set (which does not overlap with the data used for computing
the risk certificate for the randomised predictor, thus in line with classical PAC-Bayes
priors) and ii) via classical SGD optimisation. In contrast, Dziugaite and Roy (2018)
trained a special type of data-dependent PAC-Bayes prior on the whole data set using
SGLD optimisation. They justified this procedure arguing that the limit distribution of
SGLD satisfies the differential privacy property (but a finite-time guarantee was missing),
and relaxed the PAC-Bayes-kl bound with a correction term based on the concept of max-
information4 to account for using the same data to train the prior mean and to evaluate the
bound. Furthermore, our methods do not involve tampering with the training objective, as
opposed to Blundell et al. (2015), who used a “KL attenuating trick” by inserting a tunable
parameter as a factor of the Kullback-Leibler (KL) divergence in their objective. Our work
highlights the point that it is worthwhile studying simple methods, not just to understand
their scope or for the sake of having a more controlled experimental setup, but also to more
accurately assess the real value added by the ‘extras’ of the more complex methods.

Our Contributions:

1. We rigorously study and illustrate ‘PAC-Bayes with Backprop’ (PBB), a generic strategy
to derive (probabilistic) neural network training methods from PAC-Bayes bounds.

2. We propose —and experiment with— two new PBB training objectives: one derived
from the PAC-Bayes-quadratic bound of Rivasplata et al. (2019), and one derived from
the PAC-Bayes-lambda bound of Thiemann et al. (2017).

3. We also re-implement the training objective based on the classic PAC-Bayes bound that
was used by Dziugaite and Roy, for the sake of comparing our training objectives and
training strategy, both with respect to test set accuracy and risk certificates obtained.

4. We connect PAC-Bayes with Backprop (PBB) methods to the Bayes-by-Backprop (BBB)
method of Blundell et al. (2015) which is inspired by Bayesian learning and achieved
competitive test set accuracy. Unlike BBB, our training methods require less heuristics
and also provide a risk certificate; not just an error estimate based on a test set.

5. We demonstrate via experimental results that PBB methods might be able to achieve
self-certified learning with nontrivial certificates: obtaining competitive test set errors
and computing non-vacuous bounds with much tighter values than previous works.

3. This is akin to results on calibration of the surrogate hinge loss, cf. Steinwart and Christmann (2008).
4. Dwork et al. (2015a,b) proposed this concept in the context of adaptive data analysis.

4

Tighter Risk Certificates for Neural Networks

Broader Context. Deep learning is a vibrant research area. The success of deep
neural network models in several tasks has motivated many works that study their optimi-
sation and generalisation properties, some of the collective knowledge is condensed in a few
recent sources such as Montavon et al. (2012); Goodfellow et al. (2016); Aggarwal (2018).
Some works focus on experimenting with methods to train neural networks, others aim at
generating knowledge and understanding about these fascinating learning systems. In this
paper we intend to contribute both ways. We focus on supervised classification problems
through probabilistic neural networks, and we experiment with training objectives that are
principled and consist of interpretable quantities. Furthermore, our work puts an emphasis
on certifying the quality of predictions beyond a specific data set.

Note that known neural network training methods range from those that have been
developed based mainly on heuristics to those derived from sound principles. Bayesian
learning, for instance, offers principled approaches for learning data-dependent distribu-
tions over network weights (see e.g. Buntine and Weigend, 1991, Neal, 1992, MacKay,
1992, Barber and Bishop, 1997), hence probabilistic neural nets arise naturally in this
approach. Bayesian neural networks continue to be developed, with notable recent contri-
butions e.g. by Hernández-Lobato and Adams (2015); Martens and Grosse (2015); Blundell
et al. (2015); Gal and Ghahramani (2016); Louizos and Welling (2016); Ritter et al. (2018);
Khan and Lin (2017); Osawa et al. (2019); Maddox et al. (2019), among others. Our work
is complementary of Bayesian learning in the sense that our methods also offer principled
training objectives for learning probabilistic neural networks. However, there are differences
between the PAC-Bayes and Bayesian learning approaches that are important to keep in
mind (see our discussions in Section 3 and Section 4). It is worth mentioning also that some
works have pointed out the resemblance between PAC-Bayes bounds and the evidence lower
bound (ELBO) of variational Bayesian inference (Alquier et al., 2016; Achille and Soatto,
2018; Thakur et al., 2019; Pitas, 2020). An insightful connection between Bayesian inference
and the frequentist PAC-Bayes approach was discussed by Germain et al. (2016a).

As we pointed out before, we are not the first to train a probabilistic neural network by
minimising a PAC-Bayes bound, or to use a PAC-Bayes bound to give risk certificates for
randomised neural nets. We already mentioned Langford and Caruana (2001) and Dziu-
gaite and Roy (2017, 2018), whose works have directly influenced ours.5 Next, we comment
on some other works that connect PAC-Bayes with neural networks. London (2017) ap-
proached the generalisation of neural networks by a stability-based PAC-Bayes analysis, and
proposed an adaptive sampling algorithm for SGD that optimises its distribution over train-
ing instances using multiplicative weight updates. Neyshabur et al. (2017, 2018) examined
the connection between some specifically defined complexity measures and generalisation,
the part related to our work is that they specialised a form of the classic PAC-Bayes bound
and used Gaussian noise on network weights to give generalisation bounds for probabilistic
neural networks based on the norms of the weights. Zhou et al. (2019) compressed trained
networks by pruning weights to a given target sparsity, and gave generalisation guarantees
on the compressed networks, which were based on randomising predictors according to their
‘description length’ and a specialisation of a PAC-Bayes bound of Catoni (2007).

5. Note that Langford and Caruana (2001) and Dziugaite and Roy (2017) called them stochastic neural
networks, arguably because the distribution over weights moves during training.

5

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

We would like to point out that the present work builds on Rivasplata et al. (2019). In
the meantime, more works have appeared that connect neural networks with PAC-Bayes
bounds in various settings: Letarte et al. (2019), Viallard et al. (2019), Lan et al. (2020),
possibly among others. We do not elaborate on these works as they deal with significantly
different settings than ours. The recent work by Dziugaite et al. (2021) is more closely
related to ours in that they investigate the use of data to learn a PAC-Bayes prior.

Paper Layout. The rest of the paper is organised as follows. In Section 2 we briefly
recall some notions of supervised learning, mainly to set the notation to be used later. In
Section 3 we outline the PAC-Bayes framework and discuss some PAC-Bayes bounds, while
in Section 5 we present the training objectives derived from them. Section 4 discusses the
connection between our work and Blundell et al. (2015). The technical Section 6 describes
the binary KL inversion strategy and the ways we use it. In Section 7 we present our
experimental results. We conclude and discuss future research directions in Section 8.

2. Generalisation through Risk Upper Bounds

An algorithm that trains a neural network receives a finite list of training examples and
produces a data-dependent weight vector ŵ ∈ W ⊂ Rp, which is used to make predictions
on unseen examples. The ultimate goal is for the algorithm to find a weight vector that
generalises6 well, meaning that the decisions arrived at by using the learned ŵ should give
rise to a small loss on unseen examples from the same distribution as the training data.
Turning this into precise statements requires a formal description of the learning setting,
briefly discussed next. The reader familiar with learning theory can skip the next couple of
paragraphs and come back if they need clarifications regarding notation.

The training algorithm receives a size-n random sample S = (Z1, . . . , Zn). Each example
Zi is randomly drawn from a space Z according to an underlying (but unknown) probability
distribution7 P ∈ M1(Z). The example space usually takes the form Z = X × Y in
supervised learning, where X ⊂ Rd and Y ⊂ R, each example being a pair Zi = (Xi, Yi)
consisting of an input Xi and its corresponding label Yi. A space W ⊆ Rp encompasses
all possible weights, and it is understood that each possible weight vector w ∈ W maps to
a predictor function hw : X → Y that will assign a label hw(X) ∈ Y to each new input
X ∈ X . While statistical inference is largely concerned with elucidating properties of the
unknown data-generating distribution, the main focus of machine learning is on the quality
of predictions, measured by the expected loss on unseen examples, also called the risk :

L(w) = E[`(w,Z)] =

∫
Z
`(w, z)P (dz) . (1)

Here ` : W × Z → [0,∞) is a fixed loss function. With these components, regression is
defined as the problem when Y = R and the loss function is the squared loss, namely
`(w, z) = (y− hw(x))2 where z = (x, y) is the input-label pair, while binary classification is
the problem where Y = {0, 1} (or Y = {−1,+1}) and the loss is set to be the zero-one loss:
`(w, z) = I[y 6= hw(x)].

6. In statistical learning theory the meaning of generalisation of a learning method has a precise definition
(see e.g. Shalev-Shwartz and Ben-David, 2014). We use the word in a slightly broader sense here.

7. M1(Z) denotes the set of all probability measures over Z.

6

Tighter Risk Certificates for Neural Networks

The goal of learning is to find a weight vector with small risk L(w). However, since the
data-generating distribution P is unknown, L(w) is an unobservable objective. Replacing
the expected loss with the average loss on the data gives rise to an observable objective
called the empirical risk functional:

L̂S(w) =
1

n

n∑
i=1

`(w,Zi) . (2)

In practice, the minimisation of L̂S is often done with some version of gradient descent.
Since the zero-one loss gives rise to a piecewise constant loss function, which is provably
hard to optimise, in classification it is common to replace it with a smooth(er) loss, such as
the cross-entropy loss, while changing the range of hw to [0, 1].

Under certain conditions, a small empirical risk leads to a weight that is guaranteed
to have a small risk gap8. Examples of such conditions are when the set of functions
{hw : w ∈ Rp} representable has a small capacity relative to the sample size, or the map
that produces the weights given the data is stable. However, often minimising the empirical
risk can lead to a situation where the risk of the learned weight is significantly larger
than the empirical risk —a case of overfitting. To prevent overfitting, various methods are
commonly used. These include complexity regularisation, early stopping, injecting noise in
various places into the learning process, among others (e.g. Srivastava et al., 2014, Wan
et al., 2013, Caruana et al., 2000, Hinton and van Camp, 1993a,b).

An alternative to these is to minimise a surrogate objective which is guaranteed to give
an upper bound on the risk. As long as the upper bound is tight and the optimisation gives
rise to a small value for the surrogate objective, the user can be sure that the risk will also
be small: In this sense, overfitting is automatically prevented, while we also automatically
get a self-bounding learning method (cf. Freund, 1998; Langford and Blum, 2003). In
this paper we follow this last approach, with two specific training objectives derived from
corresponding PAC-Bayes bounds, which we introduce in the next section. The approach to
learning data-dependent distributions over hypotheses by minimising a PAC-Bayes bound
was mentioned already by McAllester (1999), credit for this approach in various contexts
is due also to Germain et al. (2009), Seldin and Tishby (2010), Keshet et al. (2011), Noy
and Crammer (2014), Keshet et al. (2017), among others. Dziugaite and Roy, 2017 used
this approach for training probability distributions over neural network weights, and used
the PAC-Bayes-kl bound for computing numerical risk bound values for the corresponding
randomised classifiers. The work of Dziugaite and Roy brought to attention that their
strategy delivers non-vacuous risk bound values for randomised neural network classifiers
in the regime where the models have (many) more parameters than training data.

As will be demonstrated below, our experiments based on our two training objectives
fquad and flambda (Eq. (11) and Eq. (12) below) lead to (a) test set performance comparable
to that of the Bayesian learning method used by Blundell et al. (2015), while (b) computing
non-vacuous bounds with tighter values than those obtained by fclassic (Eq. (13) below)
which is essentially equivalent to the training objective used by Dziugaite and Roy.

8. The risk gap is the difference between the risk (1) and the empirical risk (2).

7

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

3. PAC-Bayes Bounds

Probabilistic neural networks are realised as probability distributions over the weight space.
While the outcome of a classical (non-probabilistic) neural network training method is a
fixed (but data-dependent) setting of the weights, the outcome of training a probabilistic
neural network is a data-dependent distribution9 QS over network weights.

For a given distribution Q over network weights, the randomised classifier is defined as
follows: Given a fresh input X, the randomised classifier predicts its label by drawing a
weight vector W at random according to Q and applying the predictor hW to X. Each new
prediction requires a fresh draw. The randomised predictor is identified with the distribution
Q that defines it, for simplicity of notation.

One way, which we adopt in this paper, to measure the performance of the randomised
predictor corresponding to the distribution Q over W is to use the Q-weighted losses, since
these are the expected losses over the random draws of weights defining the randomised
predictor. Accordingly, the population loss of Q becomes

L(Q) =

∫
W
L(w)Q(dw) , (3)

and the empirical loss of Q becomes

L̂S(Q) =

∫
W
L̂S(w)Q(dw) . (4)

These definitions extend the loss notions L(w) and L̂S(w) previously defined for a given
weight w, to corresponding notions L(Q) and L̂S(Q) for a given distribution Q over weights.
Then, PAC-Bayes bounds relate the population loss L(Q) to the empirical loss L̂S(Q) and
other quantities, by means of inequalities that hold with high probability.

To introduce the promised PAC-Bayes bounds we need to recall some further definitions.
Given two probability distributions Q,Q′ ∈M1(W), the Kullback-Leibler (KL) divergence
of Q from Q′, also known as relative entropy of Q given Q′, is defined as follows:

KL(Q‖Q′) =

∫
W

log
(dQ
dQ′

)
dQ .

This equation defines KL(Q‖Q′) when dQ/dQ′, the Radon-Nikodym derivative of Q with
respect to Q′, is defined; otherwise KL(Q‖Q′) =∞. For q, q′ ∈ [0, 1] we define

kl(q‖q′) = q log(
q

q′
) + (1− q) log(

1− q
1− q′

) , (5)

which is called the binary KL divergence, and is the divergence of the Bernoulli distribution
with parameter q from the Bernoulli distribution with parameter q′.

The PAC-Bayes-kl inequality, originally called the PAC-Bayes relative entropy bound
(Langford and Seeger, 2001; Seeger, 2002) is a fundamental result from which some other
PAC-Bayes bounds may be derived. We state this result next for easy reference.

9. Formally, a data-dependent distribution over W is a stochastic kernel from S to W. This formalisation
of data-dependent distributions over predictors was covered recently by Rivasplata et al. (2020).

8

Tighter Risk Certificates for Neural Networks

Theorem 1 (PAC-Bayes-kl) Let the triple (W,Z, `) consist of a weight space W ⊂ Rp,
an example space Z, and a loss function ` :W×Z → [0, 1]. Let n be a positive integer, and
let L̂ : Zn×W → [0, 1] be the empirical risk functional defined as L̂(s, w) = n−1

∑n
i=1 `(w, zi)

for s = (z1, . . . , zn) ∈ Zn; and write L̂s(w) = L̂(s, w). Let P ∈ M1(Z), and let the risk
L :W → [0, 1] be the functional defined as L(w) = E[`(w,Z)] with Z ∼ P .

Then, for any data-free distribution Q0 over W, and for any δ ∈ (0, 1), with probability
of at least 1− δ over size-n i.i.d. samples S ∼ P⊗n, simultaneously for all distributions Q
over W we have

kl(L̂S(Q)‖L(Q)) ≤
KL(Q‖Q0) + log(2

√
n
δ)

n
. (6)

The assumption that Q0 is a data-free distribution over W means that Q0 is fixed without
any dependence on the data on which the bound is evaluated (to be very specific, Q0 cannot
depend on the sample S on which L̂S is evaluated). The original form of this bound that
was derived by Langford and Seeger (2001) has a slightly different dependence on n, the
form presented here has the sharp dependence on n as clarified by Maurer (2004).

The PAC-Bayes-kl bound can be relaxed in various ways to obtain other PAC-Bayes
bounds [see e.g. Tolstikhin and Seldin, 2013]. For instance, using the well-known version
of Pinsker’s inequality kl(p̂‖p) ≥ 2(p− p̂)2 one can lower-bound the binary KL divergence,
and then solve the resulting inequality for L(Q), which leads to a PAC-Bayes bound of
equivalent form to that of the classic bound of McAllester (1999), hence we shall call it the
PAC-Bayes-classic bound: for any δ ∈ (0, 1), with probability of at least 1− δ over size-n
i.i.d. random samples S, simultaneously for all distributions Q over W we have

L(Q) ≤ L̂S(Q) +

√
KL(Q‖Q0) + log(2

√
n
δ)

2n
. (7)

Notice that the PAC-Bayes-classic bound is an inequality that holds simultaneously for all
distributions Q over weights, with high probability (over samples). In particular, the upper
bound may be optimised to choose a distribution Q in a data-dependent manner. At a high
level, the interest in finding a Q for which the upper bound is minimal is because then this
may guarantee a small L(Q), since Eq. (7) gives an upper bound on L(Q).

An alternative way to relax the PAC-Bayes-kl bound is using the refined version of
Pinsker’s inequality kl(p̂‖p) ≥ (p − p̂)2/(2p) valid for p̂ < p [see e.g. Boucheron et al.,
2013, Lemma 8.4], which is tighter than the former version when p < 1/4, and this refined
inequality gives

L(Q) ≤ L̂S(Q) +

√
2L(Q)

KL(Q‖Q0) + log(2
√
n
δ)

n
. (?)

The difference to the result one gets from the well-known version of Pinsker’s inequality is
the appearance of L(Q) under the square root on the right hand side. This, in particular,
tells us that the inequality is tighter than Eq. (7) when the population loss, L(Q), is smaller
(specifically when L(Q) < 1/4). But it is exactly because of the appearance of L(Q) on
the right-hand side that this bound is not immediately useful for optimisation purposes.

9

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

However, one can view the inequality (?) as a quadratic inequality on
√
L(Q). Solving this

inequality for L(Q) leads to our PAC-Bayes-quadratic bound which to the best of our
knowledge is new (Rivasplata et al., 2019): for any δ ∈ (0, 1), with probability of at least
1− δ over size-n i.i.d. random samples S, simultaneously for all distributions Q over W we
have

L(Q) ≤


√
L̂S(Q) +

KL(Q‖Q0) + log(2
√
n
δ)

2n
+

√
KL(Q‖Q0) + log(2

√
n
δ)

2n

2

. (8)

Similarly to the PAC-Bayes-classic bound, the PAC-Bayes-quadratic bound is an inequality
that holds uniformly over all Q; hence the upper bound may be optimised with respect to
Q in order to obtain a data-dependent distribution over weights.

Alternatively, using (?) combined with the inequality
√
ab ≤ 1

2(λa + b
λ) valid for all

λ > 0, after some derivations one obtains the PAC-Bayes-λ bound of Thiemann et al.
(2017): for any δ ∈ (0, 1), with probability of at least 1−δ over size-n i.i.d. random samples
S, simultaneously for all distributions Q over W and λ ∈ (0, 2) we have

L(Q) ≤ L̂S(Q)

1− λ/2
+

KL(Q‖Q0) + log(2
√
n/δ)

nλ(1− λ/2)
. (9)

An interesting feature of the PAC-Bayes-λ bound is that this bound holds uniformly over
all Q and λ ∈ (0, 2), hence in principle this bound is optimisable over both these quantities.
The work of Thiemann et al. (2017) discussed conditions under which the PAC-Bayes-λ
bound can be optimised alternatingly over Q and λ. Since this bound holds uniformly over
λ ∈ (0, 2), it is possible to search a grid of λ-values without worsening the bound.

Each of the previous three PAC-Bayes bounds (Eq. (7), Eq. (8) and Eq. (9)) is an upper
bound on L(Q) that holds simultaneously for all distributions Q over weights, with high
probability (over samples). In particular, the bounds allow to choose a distribution QS in a
data-dependent manner, which is why they are usually called ‘posterior’ distributions in the
PAC-Bayesian literature. However, these distributions should not be confused with Bayesian
posteriors. Note that in the frequentist PAC-Bayes learning approach, what is called ‘prior’
is a reference distribution, and what is called ‘posterior’ is an unrestricted distribution, in
the sense that there is no likelihood-type factor connecting these two distributions. Having
said that, Germain et al. (2016a) showed that the optimal PAC-Bayes posterior coincides
with the Bayesian posterior when the loss function is the negative log-likelihood. However,
in general, when learning ‘posteriors’ via PAC-Bayes with Backprop, there is no place for
asking whether “our posterior approximates the true posterior” on account that the notion
of true PAC-Bayes posterior is nonexistent.

Below in Section 5 we discuss training objectives derived from these bounds. Notice
that there are many other PAC-Bayes bounds available in the literature; the usual ones are
by McAllester (1999), Langford and Seeger (2001), Catoni (2007); but see also McAllester
(2003), Keshet et al. (2011), and McAllester (2013). Each bound readily leads to a training
objective by replicating our procedure (described in Section 5 below). Some references for
several kinds of PAC-Bayes bounds are Germain et al. (2009) and Bégin et al. (2014, 2016),
the mini tutorial of van Erven (2014), and the primer of Guedj (2019).

10

Tighter Risk Certificates for Neural Networks

4. The Bayes by Backprop (BBB) Objective

The ‘Bayes by backprop’ (BBB) method of Blundell et al. (2015) is inspired by a variational
Bayes argument (Jordan et al., 1998; Fox and Roberts, 2012), where the idea is to learn a
distribution over weights that approximates the Bayesian posterior distribution. Choosing
a p-dimensional Gaussian Qθ = µ + σN (0, I), parametrised by θ = (µ, σ) ∈ Rp × Rp, the
optimum parameters are those that minimise KL(Qθ‖P (·|S)), i.e. the KL divergence from
Qθ and the Bayesian posterior P (·|S). By a simple calculation, and using the Bayes rule,
one can extract:

KL(Qθ‖P (·|S)) =

∫
W
− log(P (S|w))Qθ(dw) + KL(Qθ‖Q0) ,

where Q0 stands here for the Bayesian prior distribution. Thus, minimising KL(Qθ‖P (·|S))
is equivalent to minimising the right-hand side, which presents a sum of a data-dependent
term (the expected negative log-likelihood) and a prior-dependent term (KL(Qθ‖Q0)). This
optimisation problem is analogous to that of minimising a PAC-Bayes bound, since the latter
balances a fit-to-data term (the empirical loss) and a fit-to-prior term (the KL).

There is indeed a close connection between the PAC-Bayes and Bayesian learning ap-
proaches, as has been pointed out by the work of Germain et al. (2016a), when the loss
function is the negative log-likelihood. Beyond this special case, the PAC-Bayes learning
approach offers more flexibility in design choices, such as the choice of loss functions and
the choice of distributions. This is because the PAC-Bayes ‘prior’ is a reference distribution
and the PAC-Bayes ‘posterior’ does not need to be derived from a prior by a likelihood
update factor. This is a crucial difference with Bayesian learning, and one that makes the
PAC-Bayes framework a lot more flexible in the choice of distributions over parameters,
even compared to generalised Bayesian approaches (Bissiri et al., 2016).

As we mentioned before, the training objective proposed by Blundell et al. (2015) is
inspired by the variational Bayesian argument outlined above, in particular, in our notation
the training objective they proposed and experimented with is as follows:

fbbb(Q) = L̂S(Q) + η
KL(Q‖Q0)

n
. (10)

The scaling factor, η > 0, is introduced in a heuristic manner to make the method more
flexible, while the variational Bayes argument gives (10) with η = 1. When η is treated as
a tuning parameter, the method can be interpreted as searching in “KL balls” centered at
Q0 of various radii. Thus, the KL term then plays the role of penalising the complexity of
the model space searched. Blundell et al. (2015) proposed to optimise this objective (for a
fixed η) using stochastic gradient descent (SGD), which randomises over both mini-batches
and the weights, and used the pathwise gradient estimate (Price, 1958). The resulting
gradient-calculation procedure can be seen to be only at most twice as expensive as standard
backpropagation —hence the name of their method. The hyperparameter η > 0 is chosen
using a validation set, which is also often used to select the best performing model among
those that were produced during the course of running SGD (as opposed to using the model
obtained when the optimisation procedure finishes).

11

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

5. Towards Practical PAC-Bayes with Backprop (PBB) Methods

The essential idea of ‘PAC-Bayes with Backprop’ (PBB) is to train a probabilistic neural
network by minimising a PAC-Bayes bound via stochastic gradient descent (SGD) optimisa-
tion. Here we present two training objectives, derived from Eq. (8) and Eq. (9) respectively,
in the context of classification problems when the loss is the zero-one loss or a surrogate
loss. These objectives are used here for the first time to train probabilistic neural networks.
We also discuss the training objective derived from Eq. (7) for comparison purposes.

To optimise the weights of neural networks the standard idea is to use a form of stochastic
gradient descent, which requires the ability to efficiently calculate gradients of the objective
to be optimised. When the loss is the zero-one loss, the training loss viewed as a function of
the weights, w 7→ L̂01

S (w), is piecewise constant, which makes simple gradient-based methods
fail (since the gradient, whenever it exists, is zero). As such, it is customary to replace
the zero-one loss with a smoother “surrogate loss” that plays well with gradient-based
optimisation. In particular, the standard loss used on multiclass classification problems
is the cross-entropy loss, `x-e : Rk × [k] → R defined by `x-e(u, y) = − log(σ(u)y) where
u ∈ Rk, y ∈ [k] = {1, . . . , k} and σ : Rk → [0, 1]k is the soft-max function defined by
σ(u)i = exp(ui)/

∑
j exp(uj). This choice can be justified on the grounds that `x-e(u, y)

gives an upper bound on the probability of mistake when the label is chosen at random
from the distribution produced by applying soft-max on u (e.g., u = the output of the last
linear layer of a neural network).10 We thus also propose to replace the zero-one loss with
the cross-entropy loss in either Eq. (8) or Eq. (9), leading to the objectives

fquad(Q) =


√
L̂x-e
S (Q) +

KL(Q‖Q0) + log(2
√
n
δ)

2n
+

√
KL(Q‖Q0) + log(2

√
n
δ)

2n

2

(11)

and

flambda(Q,λ) =
L̂x-e
S (Q)

1− λ/2
+

KL(Q‖Q0) + log(2
√
n/δ)

nλ(1− λ/2)
. (12)

For comparison, the training objective derived from Eq. (7) takes the following form:

fclassic(Q) = L̂x-e
S (Q) +

√
KL(Q‖Q0) + log(2

√
n
δ)

2n
. (13)

Here, L̂x-e
S (w) = 1

n

∑n
i=1

˜̀x-e
1 (hw(Xi), Yi) is the empirical error rate under the ‘bounded’

version of cross-entropy loss, namely the loss ˜̀x-e
1 described next, and hw : X → Rk denotes

the function implemented by the neural network that uses weights w. The next issue to
address is that the cross-entropy loss is unbounded, while the PAC-Bayes bounds that
inspired these objectives require a bounded loss with range [0, 1]. This is fixed by enforcing
an upper bound on the cross-entropy loss by lower-bounding the network probabilities by a
value pmin > 0 (Dziugaite and Roy, 2018). This is achieved by replacing σ in the definition

10. Indeed, owning to the inequality log(x) ≤ x − 1, which is valid for any x > 0, given any u ∈ Rk and
y ∈ [k], if Y ∼ σ(u) then E[I{Y 6= y}] = P(Y 6= y) = 1− σ(u)y ≤ `x-e(u, y).

12

Tighter Risk Certificates for Neural Networks

of `x-e by σ̃(u)y = max(σ(u)y, pmin). This adjustment gives a ‘bounded cross-entropy’ loss
function ˜̀x-e(u, y) = − log(σ̃(u)y) with range between 0 and log(1/pmin). Finally, re-scaling
by 1/ log(1/pmin) gives a loss function ˜̀x-e

1 with range [0,1] ready to be used in the PAC-Bayes
bounds and training objectives discussed here. The latter (˜̀x-e

1) is used as the surrogate
loss for training in all our experiments with fquad, flambda, and fclassic.

5.1 Optimisation Problem

Optimisation of fquad and fclassic (Eq. (11) and Eq. (13)) entails minimising over Q only,
while optimisation of flambda (Eq. (12)) is done by alternating minimisation with respect
to Q and λ, similar to the procedure that was used by Thiemann et al. (2017) in their
experiments with SVMs. By choosing Q appropriately, in either case we use the pathwise
gradient estimator (Price, 1958; Jankowiak and Obermeyer, 2018; Mohamed et al., 2020)
as done by Blundell et al. (2015). In particular, assuming that Q = Qθ with θ ∈ Rq is such
that hW (·) with W ∼ Qθ (W ∈ Rp) has the same distribution as hfθ(V)(·) where V ∈ Rp′

is drawn at random from a fixed distribution PV and fθ : Rp′ → Rp is a smooth map,
an unbiased estimate of the gradient of the loss-map θ 7→ Qθ[`(h•(x), y)] at some θ can
be obtained by drawing V ∼ PV and calculating ∂

∂θ `(hfθ(V)(x), y), thereby reducing the
efficient computation of the gradient to the application of the backpropagation algorithm
on the map θ 7→ `(hfθ(v)(x), y) at v = V .11

In our experiments the PAC-Bayes posterior is parametrised as a diagonal Gaussian
distribution over weight space W = Rp. Then a sample of the posterior can be obtained
by sampling a standard Gaussian, scaling each coordinate by a corresponding standard
deviation from the vector σ = (σi)i∈[p] ∈ Rp, and shifting by a mean vector µ ∈ Rp. We
parametrise σ coordinatewise as σ = log(1 + exp(ρ)) so σ is always non-negative. Following
Blundell et al. (2015), the reparametrisation we use is W = µ + σ � V with appropriate
distribution (Gauss or Laplace) for each coordinate of V , although other reparametrisations
are possible (Osawa et al., 2019; Khan and Lin, 2017). Gradient updates are with respect
to vectors µ and ρ, as can be seen in Algorithm 1. Note that after sampling the weights,
the gradients for the mean and standard deviation are shared and are exactly the gradients
found by the usual backpropagation algorithm on a neural network. More specifically, to
learn both the mean and the standard deviation we simply calculate the usual gradients
found by backpropagation, and then scale and shift them as done by Blundell et al. (2015).
Note that Algorithm 1 shows the procedure for optimising fquad with Gaussian noise. The
procedure with Laplace noise is similar. The procedure for fclassic is similar. The procedure
for flambda would be very similar except that flambda has the additional parameter λ.

As discussed in Section 3, the PAC-Bayes bounds from which these training objectives
were derived are relaxations of the PAC-Bayes-kl bound (Theorem 1). We refer the reader
to Eq. (5) for the definition of the binary KL divergence, denoted kl(·‖·). It was explained
that fclassic is a relaxation of PAC-Bayes-kl bound obtained by Pinsker’s inequality:

kl(p̂‖p) ≥ 2(p− p̂)2 for p̂, p ∈ (0, 1) . (14)

11. Indeed, ∂
∂θ

∫
Qθ(dw)`(hw(x), y) = ∂

∂θ

∫
PV (dv)`(hfθ(v)(x), y) =

∫
PV (dv) ∂

∂θ
`(hfθ(v)(x), y), where the in-

terchange of the partial derivative and the integral is justified when the partial derivatives are integrable,
which needs to be verified on a case-by-case basis. See e.g. Ruiz et al. (2016).

13

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

Algorithm 1 PAC-Bayes with Backprop (PBB)
Require:

µ0 . Prior center parameters
ρ0 . Prior scale hyper-parameter
Z1:n . Training examples (inputs + labels)
δ ∈ (0, 1) . Confidence parameter
α ∈ (0, 1), T . Learning rate; Number of iterations

Ensure: Optimal µ ∈ Rp, ρ ∈ Rp . Posterior centers and scales
1: procedure pb quad gauss
2: µ← µ0 . Set initial posterior center to prior center
3: ρ← ρ0 . Set initial posterior scale to prior scale
4: for t← 1 : T do . Run SGD for T iterations.
5: Sample V ∼ N (0, I)
6: W = µ+ log(1 + exp(ρ))� V
7: f = fquad(Z1:n,W, µ, ρ, µ0, ρ0, δ)

8: SGD gradient step using

[
∇µf
∇ρf

]
, ∇µf = ∂f

∂W
+ ∂f
∂µ

, ∇ρf = ∂f
∂W
· V
1+exp(−ρ) + ∂f

∂ρ

9: end for
10: return µ, ρ
11: end procedure

On the other hand, fquad and flambda are relaxations of the PAC-Bayes-kl bound obtained
using the refined version Pinsker’s inequality:

kl(p̂‖p) ≥ (p− p̂)2

2p
for p̂, p ∈ (0, 1), p̂ < p . (15)

One can compare these two inequalities, to find regime of p, p̂ in which one is better than
the other. The result of the comparison is that Eq. (14) is tighter whenever p > 1/4, and
Eq. (15) is tighter whenever p < 1/4. They match if p = 1/4. This comparison might be
relevant for understanding the differences—in terms of tightness of risk certificates but also
test performance—between the solutions found by these training objectives.

5.2 The Choice of the PAC-Bayes Prior Distribution

We experiment both with priors centered at randomly initialised weights and priors learnt
by empirical risk minimisation using the surrogate loss on a subset of the data set which
is independent of the subset used to compute the risk certificate. Note that all n training
data are used by the learning algorithm (n0 examples used to build the prior, n to learn
the posterior and n − n0 to evaluate the risk certificate). This is to avoid needing differ-
entially private arguments to justify learning the prior (Dziugaite and Roy, 2018). Since
the posterior is initialised to the prior, the learnt prior translates to the posterior being
initialised to a large region centered at the empirical risk minimiser. Similar approaches for
building data-dependent priors have been considered before in the PAC-Bayesian literature
(Ambroladze et al., 2007; Parrado-Hernández et al., 2012).

For our PAC-Bayes prior over weights we experiment with Gaussian and with Laplace
distributions. In each case, the PAC-Bayes posterior learnt by PBB is of the same kind
(Gaussian or Laplace) as the prior. Next we give formulas for computing the KL term in
our training objectives for each of these distributions.

14

Tighter Risk Certificates for Neural Networks

5.2.1 Formulas for the KL: Laplace and Gaussian

The Laplace density with mean parameter µ ∈ R and with variance b > 0 is the following:

p(x) = (2b)−1 exp
(
−|x− µ|

b

)
.

The KL divergence for two Laplace distributions is

KL(Lap(µ1, b1)‖Lap(µ0, b0)) = log(
b0
b1

) +
|µ1 − µ0|

b0
+
b1
b0
e−|µ1−µ0|/b1 − 1 . (16)

For comparison, recall that the Gaussian density with mean parameter µ ∈ R and
variance b > 0 has the following form:

p(x) = (2πb)−1/2 exp
(
−(x− µ)2

2b

)
.

The KL divergence for two Gaussian distributions is

KL(Gauss(µ1, b1)‖Gauss(µ0, b0)) =
1

2

(
log(

b0
b1

) +
(µ1 − µ0)2

b0
+
b1
b0
− 1
)
. (17)

The formulas (16) and (17) above are for the KL divergence between one-dimensional
Laplace or Gaussian distributions. It is straightforward to extend them to multi-dimensional
product distributions, corresponding to random vectors with independent components, as
in this case the KL is equal to the sum of the KL divergences of the components. Note
that formula (16) could seem to pose a challenge during gradient-based optimisation due
to the presence of the absolute value. However, auto-differentiation packages solve this by
calculating left or right derivatives which are defined in every case.

6. Computing Risk Certificates

After optimising the distribution over network weights through the previously presented
training objectives, we compute a risk certificate on the error of the stochastic predictor,
following the procedure of Langford and Caruana (2001). This uses the PAC-Bayes-kl
bound (Theorem 1). First we describe how to invert the binary KL (defined in Eq. (5))
with respect to its second argument. For x ∈ [0, 1] and b ∈ [0,∞), we define:

f?(x, b) = sup{y ∈ [x, 1] : kl(x‖y) ≤ b} .

This is easily seen to be well-defined. Furthermore, the crucial property that we rely on is
that kl(x‖y) ≤ b holds precisely when y ≤ f?(x, b).

Note that the function f? provides a way for computing an upper bound on L(Q)
based on the PAC-Bayes-kl bound (given in Eq. (6)): For any confidence δ ∈ (0, 1), with
probability at least 1− δ over size-n random samples S we have:

L(Q) ≤ f?
(
L̂S(Q),

KL(Q‖Q0) + log(2
√
n
δ)

n

)
.

At this point, as noted by Langford and Caruana (2001), the difficulty is evaluating L̂S(Q).
This quantity is not computable. Since f? is a monotonically increasing function of its first
argument (when fixing the second argument), it suffices to upper-bound L̂S(Q).

15

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

6.1 Estimating the Empirical Loss via Monte Carlo Sampling

In fact, f? is also used to estimate the empirical term L̂S(Q) by random weight sampling:
If W1, . . . ,Wm ∼ Q are i.i.d. and Q̂m =

∑m
j=1 δWj is the empirical distribution, then for

any δ′ ∈ (0, 1), with probability at least 1− δ′ we have kl(L̂S(Q̂m)‖L̂S(Q)) ≤ m−1 log(2/δ′)
(see Langford and Caruana, 2001, Theorem 2.5), hence by the inversion formula:

L̂S(Q) ≤ f?
(
L̂S(Q̂m),

1

m
log(

2

δ′
)
)
.

This expression can be applied to upper-bound L̂01
S (Q) or L̂x-e

S (Q) by setting the underlying
loss function to be the 01 (classification) loss or the cross-entropy loss, respectively. This
estimation is valid with high probability (of at least 1− δ′) over random weight samples.

The latter expression also can be combined with any of the PAC-Bayes bounds presented
in Section 3 to upper-bound the loss L(QS) by a computable expression. Just to illustrate,
combining with the classical PAC-Bayes bound we would get the following risk bound:

L(QS) ≤ f?
(
L̂S(Q̂m),

1

m
log(

2

δ′
)
)

+

√
KL(QS‖Q0) + log(2

√
n
δ)

2n
,

which holds with probability at least 1−δ−δ′ over random size-n data samples S and size-m
weight samples W1, . . . ,Wm ∼ QS . The parameter δ ∈ (0, 1) quantifies the confidence over
random data samples, and δ′ ∈ (0, 1) the confidence over random weight samples.

As we said before, our evaluation of risk certificates was based on the PAC-Bayes-kl
bound. The next subsection fills the details.

6.2 Final Expression for Evaluating the Risk Certificate

In our experiments we evaluate the risk certificates (risk upper bounds) for the cross-entropy
loss (`x-e) and the 0-1 loss (`01), respectively, computed using the PAC-Bayes-kl bound and
Monte Carlo weight sampling. For any δ, δ′ ∈ (0, 1), with probability at least 1− δ− δ′ over
random size-n data samples S and size-m weight samples W1, . . . ,Wm ∼ QS we have:

L(Q) ≤ f?
(
f?
(
L̂S(Q̂m),

1

m
log(

2

δ′
)
)
,
KL(Q‖Q0) + log(2

√
n
δ)

n

)
.

In our experiments we used a numerical implementation of the kl inversion f? and the upper
bound just shown to evaluate risk certificates for the stochastic predictors corresponding to
the distributions over weights obtained by our training methods.

7. Experimental Results

We performed a series of experiments on MNIST and CIFAR-10 to thoroughly investigate
the training objectives presented before with regards to their ability to give self-certified
predictors. Specifically, we empirically evaluate the two proposed training objectives fquad

and flambda of Eq. (11) and Eq. (12), and compare these to fclassic of Eq. (13) and fbbb

of Eq. (10). When possible, we also compare to empirical risk minimisation (ferm) with
dropout. In all experiments, training objectives are compared under the same conditions,

16

Tighter Risk Certificates for Neural Networks

i.e. weight initialisation, prior, optimiser (vanilla SGD with momentum) and network ar-
chitecture. The code for our experiments is publicly available12 in PyTorch.

7.1 Choice of Distribution over Weights

We studied Gaussian and Laplace distributions over the model weights. The PAC-Bayes
posterior distribution Q is learned by optimising a PBB training objective, and is of the
same kind as the PAC-Bayes prior (Gaussian or Laplace) in each case.

We also tested in our experiments both data-free random priors (with randomness in
the initialisation of the weights) and data-dependent priors. In both cases, the center
parameters µ0 of the prior were initialised randomly from a truncated centered Gaussian
distribution with standard deviation set to 1/

√
nin, where nin is the dimension of the inputs

to a particular layer, truncating at ±2 standard deviations. The main difference between
our data-free and data-dependent priors is that, after initialisation, the center parameters of
data-dependent priors are optimised through ERM on a subset of the training data (50% if
not indicated otherwise), while we simply use the initial random weights in the case of data-
free priors. The prior scale parameters ρ0 are set to the constant scale hyper-parameter.
The posterior Q is always initialised at the prior (both center and scale parameters). This
means that the posterior center µ is initialised at the empirical risk minimiser in the case
of data-dependent priors, and to the initial random weights in the case of data-free priors.
We find in our experiments that the prior can be over-fitted easily. To avoid this, we use
dropout during the learning process (exclusive to learning the prior, not the posterior).

7.2 Experimental Setup

All risk certificates were computed using the the PAC-Bayes-kl inequality, as explained in
Section 6, with δ = 0.025 and δ′ = 0.01 and m = 150.000 Monte Carlo model samples, as
done by Dziugaite and Roy (2017). The same confidence δ was used in all the PBB training
objectives (fquad, flambda, fclassic). Input data was standardised.

7.2.1 Hyperparameter selection

For all experiments we performed a grid search over all hyper-parameters and selected the
run with the best risk certificate on 0-1 error13 (evaluated as explained in Section 6). We
elaborate more on the use of PAC-Bayes bounds for model selection in the next subsec-
tion. We did a grid sweep over the prior distribution scale hyper-parameter (i.e. standard
deviation σ0) with values in [0.1, 0.05, 0.04, 0.03, 0.02, 0.01, 0.005]. We observed that higher
variance values lead to instability during training and lower variance does not explore the
weight space. For the SGD with momentum optimiser we performed a grid sweep over
learning rate in [1e−3, 5e−3, 1e−2] and momentum in [0.95, 0.99]. We found that learning
rates higher than 1e− 2 caused divergence in training and learning rates lower than 5e− 3
converged slowly. We also found that the best optimiser hyper-parameters for building

12. Code available at https://github.com/mperezortiz/PBB

13. Note that if we use a total of C hyperparameter combinations, the union bound correction would add
no more than log(C)/30000 to the PAC-Bayes-kl upper bound. Even with say C = 42M (forty two
million), the value of our risk certificates, computed via kl inversion, will not be impacted significantly.
The reader can be assured that we used much less than 42M hyperparameter combinations.

17

https://github.com/mperezortiz/PBB

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

the data-dependent prior differ from those selected for optimising the posterior. Because of
this, we also performed a grid sweep over the learning rate and momentum used for learning
the data-dependent prior (testing the same values as before). The dropout rate used for
learning the prior was selected from [0.0, 0.05, 0.1, 0.2, 0.3]. All training objectives derived
from PAC-Bayes bounds used the ‘bounded cross-entropy’ function as surrogate loss during
training, for which we enforced boundedness by restricting the minimum probability (see
Section 5). We observed that the value pmin = 1e − 5 performed well. Values higher than
1e−2 distorts the input to loss function and leads to higher training loss. The lambda value
in flambda was initialised to 1.0 (as done by Thiemann et al., 2017) and optimised using
alternate minimisation using SGD with momentum, using the same choice of learning rate
and momentum as for the posterior optimisation. Notice that fbbb requires an additional
sweep over a KL trade-off coefficient, which was done with values in [1e−5, 1e−4, . . . , 1e−1],
see Blundell et al. (2015).

For ERM, we used the same range for optimising the learning rate, momentum and
dropout rate. However, given that in this case we do not have a risk certificate we need to
set aside some data for validation and hyper-parameter tuning. We set 4% of the data as
validation in MNIST (2400 examples) and 5% in the case of CIFAR-10 (2500 examples). At
this time we have not done model selection with a risk bound for this ERM point estimator
model, since to the best of our knowledge those bounds are notoriously vacuous and we are
not aware of any empirical evidence that they could be used for model selection.

7.2.2 Predictors and metrics reported

For all methods, we compare three different prediction strategies using the final model
weights: i) stochastic predictor, randomly sampling fresh model weights for each test exam-
ple; ii) deterministic predictor, using exclusively the posterior mean; iii) ensemble predictor,
as done by Blundell et al. (2015), in which majority voting is used with the predictions of a
number of model weight samples, in our case 100. We report the test cross entropy loss (x-e)
and 0-1 error of these predictors. We also report a series of metrics at the end of training
(train empirical risk using cross-entropy L̂x-e

S (Q) and 0-1 error L̂01
S (Q) and KL divergence

between posterior and prior) and the risk certificate (obtained via PAC-Bayes-kl inversion)
for the stochastic predictor (`x-e for cross-entropy loss and `01 for 0-1 loss).

7.2.3 Architectures

For MNIST, we tested both a fully connected neural network (FCN) with 3 layers (excluding
the ‘input layer’) and 600 units per hidden layer, as well as a convolutional neural network
(CNN) with 4 layers (two convolutional followed by two fully connected). For the latter, we
learn a distribution over the convolutional kernels and the weight matrix. We trained our
models using the standard MNIST data set split of 60000 training and 10000 test examples.
For CIFAR-10, we tested three convolutional architectures: one with a total of 9 layers with
learnable parameters and the other two with 13 and 15 layers; and we used the standard
data set split of 50000 training and 10000 test examples. ReLU activations were used in
each hidden layer for both data sets. Both for learning the posterior and the prior, we ran
the training for 100 epochs (however we observed that methods converged around 70). We
used a training batch size of 250 for all the experiments.

18

Tighter Risk Certificates for Neural Networks

T
es
t
0-
1
er
ro
r
(d
et
er
m
in
is
tic
 p
re
di
ct
or
)

T
es
t
0-
1
er
ro
r
(s
to
ch
as
tic
 p
re
di
ct
or
)

T
es
t
0-
1
er
ro
r
(s
to
ch
as
tic
 p
re
di
ct
or
)

T
es
t
0-
1
er
ro
r
(d
et
er
m
in
is
tic
 p
re
di
ct
or
)

Figure 1: Model selection results from more than 600 runs with different hyper-parameters.
We use a reduced subset of MNIST for these experiments (10% of training data).
The architecture used is a CNN, with Gaussian distributions over weights and
data-dependent PAC-Bayes priors. The plots show the values of risk certificates
(under `x-e and `01) on the horizontal axes, and the test set error rates on the
vertical axes, for both the stochastic and deterministic predictors.

7.3 Hyper-parameter and Architecture Search through PAC-Bayes Bounds

We show now that PAC-Bayes bounds can be used not only as training objectives to guide
the optimisation algorithm but also for model selection. Specifically, Figure 1 compares the
PAC-Bayes-kl bound for cross-entropy and 0-1 losses (x-axis) to the test 0-1 error for the
stochastic predictor (y-axis, top row) and deterministic predictor (y-axis, bottom row) for
more than 600 runs from the hyper-parameter grid search performed for fquad with a CNN
architecture and a data-dependent Gaussian prior on MNIST. We do a grid search over 6
hyper-parameters: prior scale, dropout rate, and the learning rate and momentum both for
learning the prior and the posterior. To depict a larger range of performance values (thus
avoiding only showing the risk and performance for relatively accurate classifiers) we use
here a reduced training set for these experiments (i.e. 10% of training data from MNIST).

19

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

The test set is maintained. The results show a clear positive correlation between the risk
certificate and test set 0-1 error of the stochastic predictor, especially for the risk certificate
of the 0-1 error, as expected. The results are obviously not as positive for the test 0-1 error
of the deterministic predictor (since the bound is on the stochastic predictor), but there
still exist a linear trend. While the plots also show heteroskedasticity (there is a noticeable
increase of variability towards the right side of the x-axis) the crucial observation is that
for small error values the corresponding values of the risk certificate are reasonable stable.
It is worth keeping in mind, however, that bounds generally get weaker with higher error
values.

Figure 2 shows a different experiment regarding model selection using MNIST and a fully
connected architecture. In this case, we fix the hyperparameters and run several versions
of the network with different number of layers and neurons per layer. All the networks are
trained in the exact same way using fquad. The linear trend between the risk certificate
under `01 and the test 0-1 error further validates the usefulness of the risk certificate under
`01 for model selection.

Figure 2: Risk certificate under `01 vs test 0-1 error on MNIST for a set of fully connected
architectures (varying the number of layers and number of neurons per layer).

Motivated by the results shown in Figure 1 and Figure 2, where it is shown that the
bound could potentially be used for model selection, we use the risk certificate with `01

(evaluated as explained in Section 6) for hyper-parameter tuning in all our subsequent
experiments. Note that the advantage in this case is that our approach obviates the need
of a held-out set of examples for hyper-parameter tuning.

7.4 Comparison of Different Training Objectives and Priors

We first present a comparison of the four considered training objectives on MNIST using
Gaussian distributions over weights. Table 1 shows the results for the two architectures
previously described for MNIST (FCN and CNN) and both data-free and data-dependent
priors (referred to as Rand.Init. and Learnt, respectively). We also include the results

20

Tighter Risk Certificates for Neural Networks

Setup Risk cert. & Train metrics Stch. pred. Det. pred. Ens. pred. Prior

Arch. Prior Obj. `x-e `01 KL/n L̂x-e
S (Q) L̂01

S (Q) x-e 01 err. x-e 01 err. x-e 01 err. 01 err.

FCN

Rand.Init.
(Gaussian)

fquad .2033 .3155 .1383 .0277 .0951 .0268 .0921 .0137 .0558 .0007 .0572 .8792
flambda .2326 .3275 .1856 .0218 .0742 .0211 .0732 .0077 .0429 .0004 .0448 .8792
fclassic .1749 .3304 .0810 .0433 .1531 .0407 .1411 .0204 .0851 .0009 .0868 .8792
fbbb .5163 .5516 .6857 .0066 .0235 .0088 .0293 .0038 .0172 .0003 .0178 .8792

Learnt
(Gaussian)

fquad .0146 .0279 .0010 .0092 .0204 .0084 .0202 .0032 .0186 .0002 .0189 .0202
flambda .0201 .0354 .0054 .0073 .0178 .0082 .0196 .0071 .0185 .0001 .0185 .0202
fclassic .0141 .0284 .0001 .0115 .0247 .0101 .0230 .0089 .0189 .0002 .0191 .0202
fbbb .0788 .0968 .0704 .0025 .0090 .0063 .0179 .0066 .0153 .0001 .0153 .0202

- ferm - - - .0004 .0007 - - .0101 .0152 - - -

CNN

Rand.Init.
(Gaussian)

fquad .1453 .2165 .1039 .0157 .0535 .0143 .0513 .0062 .0257 .0003 .0261 .9478
flambda .1583 .2202 .1256 .0126 .0430 .0109 .0397 .0056 .0207 .0003 .0211 .9478
fclassic .1260 .2277 .0622 .0273 .0932 .0253 .0869 .0111 .0425 .0006 .0421 .9478
fbbb .3400 .3645 .3948 .0034 .0120 .0039 .0154 .0016 .0088 .0001 .0092 .9478

Learnt
(Gaussian)

fquad .0078 .0155 .0001 .0058 .0127 .0045 .0104 .0003 .0105 .0001 .0104 .0104
flambda .0095 .0186 .0010 .0051 .0123 .0044 .0106 .0047 .0098 .0000 .0100 .0104
fclassic .0083 .0166 .0000 .0064 .0139 .0049 .0123 .0048 .0103 .0001 .0103 .0104
fbbb .0447 .0538 .0398 .0012 .0042 .0040 .0104 .0043 .0082 .0002 .0082 .0104

- ferm - - - .0003 .0004 - - .0081 .0092 - - -

Table 1: Training and test set metrics on MNIST using Gaussian distributions over weights.
The table includes two architectures (FCN and CNN), two kinds of PAC-Bayes
priors (a data-free prior centered at the randomly initialised weights, and a data-
dependent prior learnt on a subset of the data set) and four training objectives. For
the stochastic predictor, the best risk certificate and test set error are highlighted
in bold face, and second best are highlighted in italics.

obtained by standard ERM using the cross-entropy loss, for which part of the table can not
be completed (e.g. risk certificates). The last column of the table shows the test set 0-1 error
of the prior mean deterministic predictor (column named Prior). We also report the test
set performance for the stochastic predictor (Stch. pred.), the posterior mean deterministic
predictor (Det. pred.) and the ensemble predictor (Ens pred.). For all the reported results
and tables, we highlight the best risk certificate and stochastic test set error in bold face
and the second best is highlighted in italics.

An important note is that we used the risk certificates for model selection for all training
objectives, including fbbb (with the sole exception of ferm, for which we used a validation
set due to the reasons discussed in Section 7.2.1). The KL trade-off coefficient included in
fbbb (Blundell et al., 2015) relaxes the importance given to the prior in the optimisation,
but obviously not in the computation of the risk certificate, which in practice means that
larger KL attenuating coefficients will lead to worse risk certificates. Because of this, in
all cases, the model selection strategy chose the lowest value (namely, 0.1) for the KL
attenuating coefficient for fbbb, meaning there are cases in which fbbb obtained better test
set performance than the ones we report in this table, but much looser risk certificates. We
present more experiments on this in the next subsection where we experiment with the KL
attenuating trick.

The findings from our experiments on MNIST, reported in Table 1 and Figure 3, are
as follows: i) fquad achieves consistently the best risk certificates for 0-1 error (see `01) in
all experiments, providing as well better test performance than fclassic, as observed when

21

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

Figure 3: Tightness of the risk certificates for MNIST across different architectures, priors
and training objectives. The bottom shaded areas correspond to the test set
0-1 error of the stochastic classifier. The coloured areas on top indicate the
tightness of the risk certificate (smaller is better). The horizontal dashed line
corresponds to the test set 0-1 error of ferm, i.e. the deterministic classifier learnt
by empirical risk minimisation of the surrogate loss on the whole training set
(shown for comparison purposes).

comparing the 0-1 loss of the stochastic predictors. ii) Based on the results of the stochastic
predictor, flambda is the best PAC-Bayes inspired objective in terms of test performance,
although the risk certificates are generally less tight. iii) In most cases, the stochastic
predictor does not worsen the performance of the prior mean predictor, improving it very
significantly for random data-free priors (i.e. Rand.Init). iv) The mean of the weight dis-
tribution is also improved, as shown by comparing the results of the deterministic predictor
(Det. pred.), corresponding to the posterior mean, with the prior mean predictor. The
ensemble predictor also generally improves on the prior. v) The improvements brought by
data-dependent priors (labelled as “Learnt” in the table) are consistent across the two archi-

22

Tighter Risk Certificates for Neural Networks

tectures, showing better test performance and risk certificates (although the use of data-free
priors still produced non-vacuous risk certificates). vi) The application of PBB is successful
not only for learning fully connected layers but also for learning convolutional ones. The
improvements in performance and risk certificates that the use of a CNN brings are also
noteworthy. vii) The proposed PAC-Bayes inspired learning strategies show competitive
performance (specially when using data-dependent priors) when compared to the Bayesian
inspired fbbb and the widely-used ferm. Besides this comparable test set performance, our
training methods also provide risk certificates with tight values.

We now compare our results to those reported by Dziugaite and Roy (2018) for MNIST.
Note that in this case there are differences regarding optimiser, prior chosen and weight
initialisation (however, the neural network architecture used is the same, FCN as described
in this paper). Dziugaite and Roy (2018) evaluated the bound of their Theorem 4.2 and
the bound of Lever et al. (2013) for comparison. We compare the results reported by them
with the results of training with our two training objectives fquad and flambda, and with
fclassic (optimised as per our fquad and flambda). These results are presented in Table 2.

Training method Stch. Pred. 01 Err Risk cert. `01 Bound used

D&R 2018
SGLD

0.1200
0.2100 D&R18 Thm. 4.2

(τ = 3e + 3) 0.2600 Lever et al. 2013

D&R 2018
SGLD

0.0600
0.6500 D&R18 Thm. 4.2

(τ = 1e + 5) 1.0000 Lever et al. 2013

This work

SGD + fquad 0.0202 0.0279 PAC-Bayes-kl

SGD + flambda 0.0196 0.0354 PAC-Bayes-kl

SGD + fclassic 0.0230 0.0284 PAC-Bayes-kl

Table 2: Comparison of test set error rate (0-1 loss) for the stochastic predictor and its
risk certificate for standard MNIST data set. We compare here our results for
the FCN with data-dependent priors to previous published work. All methods use
data-dependent priors (albeit different ones) and exactly the same architecture of
dimensions 784× 600× 600× 10 (with 2 hidden layers of 600 units per layer).

The hyperparameter τ in both Dziugaite and Roy (2018) and Lever et al. (2013) controls

the temperature of a Gibbs distribution with unnormalised density e−τL̂S(w) with respect
to some fixed measure on weight space. In the table we display only the two values of
their τ parameter which achieve best test set error and risk certificate. We note that the
best values reported by Dziugaite and Roy (2018) correspond to test accuracy of 94% or
93% while in those cases their risk certificates (0.650 or 0.350, respectively), although non-
vacuous, were far from being tight. On the other hand, the tightest value of their risk
bound (0.21) only gives an 88% accuracy. In contrast, our PBB methods achieve close
to 98% test accuracy (or 0.0202 test error). At the same time, as noted above, our risk
certificate (0.0279) is much tighter than theirs (0.210), meaning that our training scheme
(not only training objectives but also prior) are a significant improvement with respect to
theirs (an order of magnitude tighter). Even more accurate predictors and tighter bounds
are achieved by the CNN architecture, as shown in Table 1.

23

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

Setup Risk cert. & Train metrics Stch. pred. Det. pred. Ens. pred. Prior

Arch. & Prior Obj. `x-e `01 KL/n L̂x-e
S (Q) L̂01

S (Q) x-e 01 err. x-e 01 err. x-e 01 err. 01 err.

CNN
Rand.Init

(KL
attenuating)

fquad .2292 .2824 .2174 .0097 .0330 .0084 .0305 .0042 .0193 .0002 .0201 .9478

flambda .2840 .3241 .3004 .0066 .0225 .0058 .0222 .0039 .0144 .0002 .0148 .9478

fclassic .2297 .2846 .2167 .0101 .0344 .0096 .0343 .0047 .0208 .0002 .0216 .9478

fbbb .4815 .4974 .6402 .0024 .0082 .0035 .0107 .0024 .0082 .0000 .0079 .9478

CNN
Learnt
(KL

attenuating)

fquad .0191 .0296 .0104 .0030 .0087 .0033 .0101 .0000 .0095 .0000 .0096 .0104

flambda .0245 .0354 .0162 .0025 .0076 .0031 .0092 .0040 .0092 .0000 .0095 .0104

fclassic .0187 .0296 .0100 .0031 .0089 .0037 .0106 .0043 .0095 .0001 .0095 .0104

fbbb .0470 .0557 .0421 .0012 .0041 .0034 .0096 .0025 .0085 .0001 .0083 .0104

Table 3: Training and test set results on MNIST using Gaussian distributions over weights
and a penalty of η = 0.001 on the KL term for all the training objectives shown.
Only a CNN architecture is considered.

7.5 KL Attenuating Trick

As many works have pointed out before (and we have observed in our experiments), the
problem with all the four presented training objectives is that the KL term tends to dominate
and most of the work in training is targeted at reducing it, which effectively means often
the posterior cannot move far from the prior. To address this issue, distribution-dependent
(Lever et al., 2013) or data-dependent (Dziugaite and Roy, 2018) priors have been used in
the literature. Another approach to address this is to add a coefficient that controls the
influence of the KL in the training objective (Blundell et al., 2015). This means that in
the case of fbbb we could see marginal decrease in the KL divergence during the course of
training (specially given small KL attenuating coefficients) and the solution it returns is
expected to be similar to that returned simply using ERM with cross-entropy. However,
this also has its effects on the risk certificate. To show these effects, we run all four training
objectives with a KL penalty of 0.0001 during training and report the results in Table 3.
For simplicity, only a CNN architecture is considered in this experiment. What we can see
comparing these results to the ones reported in Table 1 is that while the 0-1 error for the
stochastic classifier decreases, the KL term increases and so does the final risk certificate.
Practitioners may want to consider this trade-off between test set performance and tightness
of the risk certificates.

7.6 Laplace Weight Distributions

We experimented with both Laplace and Gaussian distributions over weights. The results
are presented in Table 4. Comparing these to the results with Gaussian weight distributions
from Table 1, we did not observe significant and consistent differences in terms of risk
certificates and test set error between the two kinds of prior/posterior distributions. The
distribution to use could be problem-dependent, but we found that both Gaussian and
Laplace distributions achieve good risk certificates and test set performance.

Figure 4 shows a summary of all the results obtained for MNIST (i.e. results reported in
Table 1 and Table 4). This shows clearly the differences between the three training objec-
tives: flambda tends to lead generally to the lowest test set error, but worse risk certificates
than fquad, and fclassic leads to the worse test set performance and looser bounds. Thus,

24

Tighter Risk Certificates for Neural Networks

Setup Risk cert. & Train metrics Stch. pred. Det. pred. Ens. pred. Prior

Arch. prior Obj. `x-e `01 KL/n L̂x-e
S (Q) L̂01

S (Q) x-e 01 err. x-e 01 err. x-e 01 err. 01 err.

CNN

Rand.Init.
(Laplace)

fquad .1548 .2425 .1024 .0207 .0709 .0190 .0677 .0113 .0429 .0004 .0436 .9478
flambda .1844 .2540 .1489 .0147 .0496 .0131 .0461 .0096 .0310 .0003 .0312 .9478
fclassic .1334 .2489 .0610 .0322 .1101 .0296 .1014 .0208 .0719 .0007 .0695 .9478
fbbb .4280 .4487 .5385 .0031 .0107 .0038 .0139 .0006 .0096 .0001 .0090 .9478

Learnt
(Laplace)

fquad .0085 .0167 .0004 .0056 .0126 .0043 .0098 .0011 .0103 .0001 .0103 .0104
flambda .0119 .0216 .0025 .0049 .0118 .0041 .0106 .0052 .0103 .0003 .0100 .0104
fclassic .0076 .0155 .0000 .0060 .0131 .0046 .0107 .0015 .0105 .0001 .0106 .0104
fbbb .0737 .0866 .0673 .0019 .0062 .0031 .0092 .0013 .0093 .0001 .0091 .0104

Table 4: Training and test set results on MNIST using Laplace distributions over weights.
For simplicity, only a CNN architecture is considered here.

Figure 4: Scatter plot of the results obtained for MNIST using different training objectives.
The x-axis shows values of the risk certificate (under `01 loss), and the y-axis
shows the test set error rates, achieved by the stochastic classifier.

fquad gives a reasonable trade-off between test set performance and tight risk certificates.
The general trend of the relationship shows a slight curvature, as also seen in Figure 1.

7.7 CIFAR-10 with Larger Architectures

We evaluate now our training objectives on CIFAR-10 using deep CNN architectures. Note
that this is a much larger scale experiment than the ones presented before (15 layers with
learnable parameters vs 4). As far as we know, we are the first to evaluate PAC-Bayes
inspired training objectives in such deep architectures. The results are presented in Table 5
and Figure 5 for three architectures (with 9, 13 and 15 layers, with around 6M, 10M and
13M parameters, respectively). Note, however, that the number of parameters is doubled
for our probabilistic neural networks. We also experiment with using different amount of
data for learning the prior: 50% and 70%, leaving respectively 25.000 and 15.000 examples

25

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

Setup Risk cert. & Train metrics Stch. pred. Det. pred. Ens. pred. Prior

Arch. Prior Obj. `x-e `01 KL/n L̂x-e
S (Q) L̂01

S (Q) x-e 01 err. x-e 01 err. x-e 01 err. 01 err.

CNN
(9

layers)

Learnt
(50%
data)

fquad .1296 .3034 .0089 .0868 .2428 .0903 .2452 .0726 .2439 .0024 .2413 .2518
flambda .1742 .3730 .0611 .0571 .2108 .0689 .2307 .0609 .2225 .0018 .2133 .2518
fclassic .1173 .2901 .0035 .0903 .2511 .0931 .2537 .0952 .2437 .0025 .2332 .2518
fbbb .8096 .8633 1.5107 .0239 .0926 .0715 .2198 .0735 .2160 .0017 .2130 .2518

Learnt
(70%
data)

fquad .1017 .2502 .0026 .0796 .2179 .0816 .2137 .0928 .2137 .0023 .2100 .2169
flambda .1414 .3128 .0307 .0630 .2022 .0708 .2081 .0767 .2061 .0021 .2049 .2169
fclassic .0957 .2377 .0004 .0851 .2223 .0862 .2161 .0827 .2167 .0021 .2135 .2169
fbbb .6142 .6965 .8397 .0212 .0822 .0708 .1979 .0562 .1992 .0019 .1944 .2169

- ferm - - - .0355 .0552 - - .1400 .1946 - - -

CNN
(13

layers)

Learnt
(50%
data)

fquad .0821 .2256 .0042 .0577 .1874 .0585 .1809 .0519 .1788 .0011 .1783 .1914
flambda .1163 .2737 .0272 .0491 .1741 .0516 .1740 .0466 .1726 .0015 .1690 .1914
fclassic .0757 .2127 .0009 .0635 .1936 .0622 .1880 .0592 .1810 .0017 .1816 .1914
fbbb .6787 .7566 .9999 .0250 .0924 .0505 .1676 .0422 .1646 .0011 .1614 .1914

Learnt
(70%
data)

fquad .0659 .1832 .0015 .0519 .1608 .0517 .1568 .0421 .1553 .0010 .1546 .1587
flambda .0896 .2177 .0145 .0449 .1499 .0479 .1541 .0604 .1522 .0011 .1507 .1587
fclassic .0619 .1758 .0002 .0548 .1644 .0541 .1588 .0605 .1578 .0013 .1557 .1587
fbbb .4961 .5858 .5826 .0213 .0772 .0487 .1508 .0532 .1495 .0016 .1461 .1587

- ferm - - - .0576 .0810 - - .0930 .1566 - - -

CNN
(15

layers)

Learnt
(50%
data)

fquad .0867 .2174 .0053 .0587 .1753 .0584 .1668 .0538 .1662 .0014 .1653 .1688
flambda .1217 .2707 .0304 .0494 .1661 .0506 .1618 .0417 .1639 .0015 .1622 .1688
fclassic .0782 .1954 .0007 .0667 .1783 .0652 .1686 .0594 .1692 .0013 .1674 .1688
fbbb .6069 .7066 .7908 .0287 .1073 .0468 .1553 .0412 .1530 .0012 .1517 .1688

Learnt
(70%
data)

fquad .0756 .1806 .0028 .0559 .1513 .0559 .1463 .0391 .1469 .0016 .1449 .1490
flambda .0922 .2121 .0133 .0486 .1477 .0500 .1437 .0507 .1449 .0012 .1438 .1490
fclassic .0703 .1667 .0003 .0622 .1548 .0615 .1475 .0551 .1480 .0010 .1476 .1490
fbbb .4481 .5572 .4795 .0259 .0947 .0455 .1413 .0395 .1405 .0008 .1409 .1490

- ferm - - - .0208 .0339 - - .0957 .1413 - - -

Table 5: Training and test set results on CIFAR-10 using Gaussian distributions over
weights. The table includes results for three deep CNN architectures (with 9,
13, and 15 layers, respectively) and data-dependent PAC-Bayes priors which are
obtained via empirical risk minimisation for learning the prior mean using two
percentages of the data (50% and 70%, corresponding to 25.000 and 35.000 exam-
ples respectively). For the stochastic predictor, the best risk certificate and test
set error are highlighted in bold face, and second best are highlighted in italics.

to evaluate the bound. The conclusions are as follows: i) In this case, the improvements
brought by learning the posterior through PBB with respect to the prior are much better
and generally consistent across all experiments (e.g. 2 points in test 0-1 error for flambda

when using 50% of the data for learning the prior). ii) Risk certificates are also non-vacuous
and tight (although less than for MNIST). iii) We validate again that flambda shows better
test performance but less tight risk certificates. iv) In this case, however, fclassic and fquad

seem much closer in terms of performance and tightness. In some cases, fclassic provides
slightly tighter bounds, but also often worse test performance. The tighter bounds can be
explained by our findings with the Pinsker inequality, which makes fclassic tighter when true
loss is more than 0.25. This observation can be seen clearly in Figure 6. v) Obtained results
with 15 layers are competitive, achieving similar performance than those reported for VGG-
16 (Simonyan and Zisserman, 2015) (deep network proposed for CIFAR-10 with comparable
architecture to the one tested with only fully connected and convolutional layers). vi) The
results indicate that 50% of the training data is not enough in this data set to build a

26

Tighter Risk Certificates for Neural Networks

Figure 5: Tightness of the risk certificates on CIFAR-10 for 3 different network architectures
and two data-dependent priors (learnt using 50% and 70% of the data).

competitive prior and this influences the test performance and the risk certificates. The
results with 70% of the data are, however, very close to those achieved by ERM across all
three architectures. vii) Similarly than with the rest of the experiments, a major difference
can be seen when comparing the risk certificate achieved by fbbb with the risk certificate

27

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

Figure 6: Scatter plot of the results obtained for CIFAR-10 using three different training
objectives. The x-axis shows values of the risk certificate (under `01 loss), and
the y-axis shows the test set error rates, achieved by the stochastic classifier.

achieved by PAC-Bayes inspired training objectives. viii) Finally, it is noteworthy how
the KL gets generally smaller as we move to deeper architectures (specially from 9 to 13
layers), which is an interesting observation, as there are many more parameters used in the
computation of the KL. This indicates that the posterior in deeper architectures stays much
closer to the prior. We believe this may be because in a higher-dimensional weight space,
the weight updates have a smaller euclidean norms, hence the smaller KL.

Note that more competitive and deeper neural baselines exist for CIFAR-10 nowadays.
However, those deeper architectures often require of more advanced training strategies such
as batch norm, data augmentation, cyclical learning rates, weight decay, etc. In our exper-
iments, we decided to keep the training strategy as simple as possible, in order to focus on
the ability of our training objectives alone to give good predictors and, more importantly,
risk certificates with tight values. It is noteworthy that our training objectives are able to
achieve this with a simple training strategy, and we leave the exploration of all the available
training choices as future work.

7.8 Additional Miscellaneous Experiments

In this section we discuss four interesting observations from our experiments, which we
believe mark promising future research directions.

First, we present a plot of the performance obtained when using different training epochs
to learn the prior and posterior. Figure 7 and 8 show a contour plot of the loss and risk
certificate when training the prior and the posterior for different epochs (e.g. to check the
effect of training the posterior with an under-fitted prior). These plots have been generated
using the FCN architecture on MNIST with Gaussian distributions over weights. Similar
results are obtained for the CNN architecture. Note that for the sake of visualisation in

28

Tighter Risk Certificates for Neural Networks

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Epochs t raining posterior

0

1

2

3

4

5

6

E
p

o
ch

s
tr

a
in

in
g

 p
ri

o
r

Contour plot of the test set error Contour plot of the risk certificate

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

2.5 5.0 7.5 10.0 12.5 15.0 17.5
0

1

2

3

4

5

6

E
p

o
ch

s
tr

a
in

in
g

 p
ri

o
r

0.225

0.300

0.375

0.450

0.525

0.600

0.675

0.750

0.825

0.900

20.0
Epochs t raining posterior

Figure 7: Contour plots of the test set error and risk certificate (under `01) after different
training epochs learning the prior and posterior and initial scale hyper-parameters
value σ0 = 0.1 for the prior.

Figure 7 we are plotting much less epochs that those used to generate the final results (in
this case up to 20, whereas the rest of reported results were with 100 epochs) so the reported
test set errors and risk certificates in this plot differ from those previously reported. Figure
7 shows that both training the prior and the posterior are crucial to improve the final loss
and risk certificates, as the best loss and risk certificate values are found in the top right
corner of the plot. The plot also shows that if the prior is under-fitted (e.g. if trained for
only one or two epochs), then the final predictor can still be much improved with more
training epochs for the posterior. However, a more adequate prior means that less epochs
are needed to reach a reasonable posterior. Nonetheless, this is less apparent if the prior is
not learnt (represented here as a training of 0 epochs, i.e. a random prior), in which case
learning the posterior for longer does not seem to reach such competitive posteriors, which
demonstrates the usefulness of data-dependent priors for obtaining tight risk certificates. In
this experiment depicted in Figure 7 and 8, we also noted that only a few epochs of training
the prior are enough to reach competitive posteriors and that learning the posterior for
much longer (e.g. 1000 epochs) does not lead to overfitting, which reinforces the finding
of Blundell et al. (2015) that the KL term act as a regulariser. Specifically, this can be
seen in Figure 8, which shows that training the posterior for a large number of epochs does
not worsen the test set error and the risk certificate. There are still small scale differences
(of up to 1%) in risk certificate and test set error for the dark blue colour region, but
these can not be visually seen because of the scale of the colour legend. However, the
important observation is that the differences are small across the dark blue region (if there
were significant differences within this region, then that would be an evidence of overfitting).
This is, however, opposed to what we observe when training the prior through empirical
risk minimisation, since the prior overfits easily in that case, which is why we had to learn
the priors using dropout in all our experiments.

29

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

Figure 8: Contour plots of the test set error and risk certificate (under `01) after different
training epochs learning the prior and posterior. Dropout is used when learning
the prior. Note that training the posterior for a large number of epochs does not
worsen the test set error or the risk certificate.

Next, we compare the test set performance of the different predictors considered in this
work (stochastic, deterministic and ensemble). The results for MNIST and CIFAR-10 are
depicted in Figure 9. One can appreciate a very clear linear relationship between predictors.
In the case of CIFAR-10 the results are similar across all predictors, whereas for MNIST
the stochastic predictor obtains significantly worse results (see differences in scales of x and
y axes). In the case of CIFAR-10 this may hint that our training strategy finds a solution
within a large region of comparably good solutions, so that weight randomisation does not
affect significantly the test performance of the classifier. We plan to explore this interesting
phenomenon in future work.

30

Tighter Risk Certificates for Neural Networks

Figure 9: Representation of the results achieved by the different predictors that were studied
(stochastic, deterministic, and ensemble).

Thirdly, in Figure 10 we show a histogram of the final scale parameters σ̂ (i.e. standard
deviation) for the Gaussian posterior distribution (both weights and biases). The plot
shows that the optimisation changes the scale of different weights and biases, reducing
specially those associated to the input and output layer. We think it is worth to experiment
with different scale initialisations per layer in future work, as well as different covariance
structures for the weight and bias distributions.

Finally, we aim to validate the use of the learnt posterior for uncertainty quantification.
To do so, we use the ensemble predictor (100 members) using the CNN architecture in
MNIST. Each member of the ensemble is a sample from the posterior. We define uncertainty
as the number of members of the ensemble that disagree in the prediction.14 Figure 11
shows the test set digits for which the ensemble is most certain (top row) and uncertain
(bottom row). It can be seen that the most uncertain digits indeed look unusual and

14. Similar measures of disagreement have been used in the literature on majority vote classifiers, see e.g.
Lacasse et al. (2006); Germain et al. (2015); Masegosa et al. (2020); and in some related literature on
domain adaptation, e.g. Germain et al. (2013, 2016b, 2020).

31

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

0.025 0.030 0.035 0.040 0.045 0.050
0

5

10

15

20

25

0.030 0.035 0.040 0.045 0.050
0

2000

4000

6000

8000

10000

0.030 0.035 0.040 0.045 0.050
0

200000

400000

600000

800000

1000000

1200000

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
0

50

100

150

200

250

300

350

Figure 10: Histograms of the scale parameters for the Gaussian distribution at the end of
the optimisation for the different layers of the CNN architecture on MNIST. All
scale parameters were initialised to 0.05, i.e. σ0 = 0.05 for all coordinates, and
σ̂ is the scale parameter value of the final output of training.

Figure 11: Representation of the test set digits for three classes (4, 6 and 9) in which the
ensemble predictor is most certain/uncertain. The top row shows the digits with
minimum uncertainty (all 100 members of the ensemble agree in the prediction).
The bottom row shows the digits with highest uncertainty.

could even confuse a human, whereas the most certain digits are easily identifiable as 4, 6
and 9. We believe that this simple visual experiment may indicate that there is promise
in probabilistic neural networks trained by PBB objectives being of use for uncertainty
quantification. However, more experiments in this direction are needed.

32

Tighter Risk Certificates for Neural Networks

7.9 Further Discussion

We now discuss further the probabilistic neural network models studied in this paper, with
a focus on their practical usefulness. We have demonstrated that the randomised predictors
learnt by PBB come with a tight performance guarantee that is valid at population level, and
is evaluated on a subset of the data used to train the PAC-Bayes posterior, i.e. evaluation
of our certificates does not require a held out test set. We have observed that our methods
show promise for self-certified learning, which is a data-efficient principle, and also shown
that the same bound used for post-training evaluation of the risk certificate is useful for
model selection. Practitioners may want to consider all these favourable properties.

However, probabilistic neural networks have additional advantages over their standard
point estimator counterparts. The results of Blundell et al. (2015) have shown that prob-
abilistic neural networks enable an intuitive and principled implementation of uncertainty
quantification and classification reject options (e.g. allow the model to say “I don’t know”
when the classification uncertainty for a new example is higher than a certain threshold).
Similarly, we have also shown the use of our models for uncertainty quantification in a very
simple experiment with the ensemble predictor. This is just one example of the advantages
of probabilistic neural network models (distributions over weights) compared to using point
estimator models (fixed weights), but these models have shown promise towards many other
goals, such as model pruning/distillation. Blundell et al. (2015) also showed that learning a
weight distribution by minimising the empirical loss while constraining its KL divergence to
a prior gives similar results to implicit regularisation schemes (such as dropout). Similarly,
in the experiments with our training objectives we have seen that overfitting was only an
issue while learning the prior through ERM, but not during the posterior learning phase
(as demonstrated by Figure 8).

Even though we have not experimented exhaustively with all of the cases described
above, we hypothesise that all these advantages extend to probabilistic neural networks
learnt by PAC-Bayes inspired objectives. This may make the use of stochastic classifiers
with PAC-Bayes bounds more desirable than point estimator models with a PAC bound.
This is also notwithstanding the tightness of the former, in contrast with the latter, which
are known to be notoriously vacuous for the kinds of models studied in our experiments.
All of these hypotheses should be validated thoroughly in future work.

8. Conclusion and Future Work

In this paper we explored ‘PAC-Bayes with Backprop’ (PBB) methods to train probabilistic
neural networks with different weight distributions, priors and network architectures. The
take-home message is that the training methods presented in this paper are derived from
sound theoretical principles and provide a simple strategy that comes with a performance
guarantee that is valid at population level, i.e. valid for any unseen data from the same
distribution as the training data. This is an improvement over methods derived heuristically
rather than from theoretically justified arguments, and over methods that do not include
a risk certificate valid on unseen examples. Additionally, we empirically demonstrate the
usefulness of data-dependent priors for achieving competitive test set performance and,
importantly, for computing risk certificates with tight values.

33

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

The results of our experiments on MNIST and CIFAR-10 have showed that these PBB
objectives give predictors with competitive test set performance and with non-vacuous risk
certificates that significantly improve previous results and can be used not only for guiding
the learning algorithm and certifying the risk but also for model selection. This shows that
PBB methods are promising examples of self-certified learning, since the values of the risk
certificates output by these training methods are tight, i.e. close to the values of the test
set error estimates. In particular, our results in MNIST with a small convolutional neural
network (2 hidden layers) achieve 1% test set error and a risk certificate of 1.5%. We also
evaluated our training objectives on large convolutional neural networks (up to 15 layers
and around 13M parameters) with CIFAR-10. These results also showed risk certificates
with tight values (18% of risk certificate for a stochastic predictor that achieves 14.6% of
test set error). Note that to claim that self-certified learning is achieved would require
testing a given training method across a wide range or data sets and architectures (so as to
experimentally validate the claim), or theoretically characterising the problems on which a
given learning method is guaranteed to produce tight risk certificates.

In future work we plan to test different covariance structures for the weight distribution
and validate a more extensive list of choices for the weight distributions across a larger
list of data sets. We also plan to experiment how to approach the well-known dominance
of the KL term in the optimisation of these objectives. Data-dependent priors seem like a
promising avenue to do so. We also plan to explore deeper architectures. Finally, we plan to
study risk certificates for the ensemble predictor. We also plan to study different ensemble
methods, for instance the one that Thiemann et al. (2017) used with SVMs looks promising,
it would be interesting to explore such method (and others) with neural networks.

Acknowledgments

We warmly thank the anonymous reviewers and the action editor for their valuable feedback,
which helped us to improve the paper greatly.

For comments on various early parts of this work we warmly thank Yevgeny Seldin,
Charles Blundell, Andriy Mnih, Nando de Freitas, Razvan Pascanu, Benjamin Guedj, and
Pascal Germain. An early version of this work was presented at the NeurIPS 2020 workshop
‘Beyond Backpropagation’ (Pérez-Ortiz et al., 2020).

We warmly acknowledge the AI Centre at University College London, and DeepMind,
for providing friendly and stimulating work environments.

Maŕıa Pérez-Ortiz and John Shawe-Taylor gratefully acknowledge support and funding
from the U.S. Army Research Laboratory and the U. S. Army Research Office, and by the
U.K. Ministry of Defence and the U.K. Engineering and Physical Sciences Research Council
(EPSRC) under grant number EP/R013616/1.

Omar Rivasplata gratefully acknowledges sponsorship from DeepMind for carrying out
research studies in machine learning at University College London. This work was done
while Omar was a research scientist intern at DeepMind.

Csaba Szepesvári gratefully acknowledges funding from the Canada CIFAR AI Chairs
Program, the Alberta Machine Intelligence Institute (Amii), and the Natural Sciences and
Engineering Research Council (NSERC) of Canada.

34

Tighter Risk Certificates for Neural Networks

References

Alessandro Achille and Stefano Soatto. Emergence of invariance and disentanglement in
deep representations. Journal of Machine Learning Research, 19(50):1–34, 2018.

Charu C. Aggarwal. Neural Networks and Deep Learning. Springer, 2018.

Pierre Alquier, James Ridgway, and Nicolas Chopin. On the properties of variational ap-
proximations of Gibbs posteriors. Journal of Machine Learning Research, 17(236):1–41,
2016.

Amiran Ambroladze, Emilio Parrado-Hernández, and John Shawe-Taylor. Tighter PAC-
Bayes bounds. Advances in Neural Information Processing Systems [NIPS], pages 9–16,
2007.

David Barber and Christopher M. Bishop. Ensemble learning for multi-layer networks. In
Advances in Neural Information Processing Systems [NIPS], pages 395–401, 1997.

Luc Bégin, Pascal Germain, François Laviolette, and Jean-Francis Roy. PAC-Bayesian
theory for transductive learning. In International Conference on Artificial Intelligence
and Statistics [AISTATS], pages 105–113. PMLR, 2014.

Luc Bégin, Pascal Germain, François Laviolette, and Jean-Francis Roy. PAC-Bayesian
bounds based on the Rényi divergence. In International Conference on Artificial Intelli-
gence and Statistics [AISTATS], pages 435–444. PMLR, 2016.

Pier Giovanni Bissiri, Chris C. Holmes, and Stephen G. Walker. A general framework for
updating belief distributions. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 78(5):1103–1130, 2016.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight un-
certainty in neural networks. In International Conference on Machine Learning [ICML],
pages 1613–1622. PMLR, 2015.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.

Wray L. Buntine and Andreas S. Weigend. Bayesian back-propagation. Complex Systems,
5(6):603–643, 1991.

Rich Caruana, Steve Lawrence, and Lee Giles. Overfitting in neural nets: Backpropagation,
conjugate gradient, and early stopping. In Advances in Neural Information Processing
Systems [NIPS], pages 402–408, 2000.

Olivier Catoni. PAC-Bayesian Supervised Classification: The Thermodynamics of Statistical
Learning, volume 56 of IMS Lecture Notes-Monograph Series. Institute of Mathematical
Statistics, 2007.

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toni Pitassi, Omer Reingold, and Aaron
Roth. Generalization in adaptive data analysis and holdout reuse. In Advances in Neural
Information Processing Systems [NIPS], pages 2350–2358, 2015a.

35

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron
Roth. Preserving statistical validity in adaptive data analysis. In Symposium on Theory
of Computing [STOC], pages 117–126. ACM, 2015b.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization
bounds for deep (stochastic) neural networks with many more parameters than training
data. In Conference on Uncertainty in Artificial Intelligence [UAI]. AUAI Press, 2017.

Gintare Karolina Dziugaite and Daniel M. Roy. Data-dependent PAC-Bayes priors via
differential privacy. In Advances in Neural Information Processing Systems [NeurIPS],
pages 8440–8450, 2018.

Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, Gabriel Arpino, and Daniel M.
Roy. On the role of data in PAC-Bayes bounds. In International Conference on Artificial
Intelligence and Statistics [AISTATS], pages 604–612. PMLR, 2021.

Charles W. Fox and Stephen J. Roberts. A tutorial on variational Bayesian inference.
Artificial Intelligence Review, 38(2):85–95, 2012.

Yoav Freund. Self bounding learning algorithms. In Computational Learning Theory
[COLT], pages 247–258. ACM, 1998.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning. In International Conference on Machine Learning
[ICML], pages 1050–1059. PMLR, 2016.

Pascal Germain, Alexandre Lacasse, François Laviolette, and Mario Marchand. PAC-
Bayesian learning of linear classifiers. In International Conference on Machine Learning
[ICML], pages 353–360. ACM, 2009.

Pascal Germain, Amaury Habrard, François Laviolette, and Emilie Morvant. A PAC-
Bayesian approach for domain adaptation with specialization to linear classifiers. In
International Conference on Machine Learning [ICML], pages 738–746. PMLR, 2013.

Pascal Germain, Alexandre Lacasse, Francois Laviolette, Mario Marchand, and Jean-Francis
Roy. Risk Bounds for the majority vote: From a PAC-Bayesian analysis to a learning
algorithm. Journal of Machine Learning Research, 16(26):787–860, 2015.

Pascal Germain, Francis Bach, Alexandre Lacoste, and Simon Lacoste-Julien. PAC-
Bayesian theory meets Bayesian inference. In Advances in Neural Information Processing
Systems [NIPS], pages 1884–1892, 2016a.

Pascal Germain, Amaury Habrard, François Laviolette, and Emilie Morvant. A new PAC-
Bayesian perspective on domain adaptation. In International Conference on Machine
Learning [ICML], pages 859–868. PMLR, 2016b.

Pascal Germain, Amaury Habrard, François Laviolette, and Emilie Morvant. PAC-Bayes
and domain adaptation. Neurocomputing, 379:379–397, 2020.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

36

Tighter Risk Certificates for Neural Networks

Benjamin Guedj. A primer on PAC-Bayesian learning. In Emmanuel Breuillard, editor,
Congrès de la Société Mathématique de France, Collection SMF, volume 33, 2019.

José Miguel Hernández-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of Bayesian neural networks. In International Conference on Machine Learning
[ICML], pages 1861–1869. PMLR, 2015.

Geoffrey E. Hinton and Drew van Camp. Keeping the neural networks simple by minimizing
the description length of the weights. In Computational Learning Theory [COLT], pages
5–13. ACM, 1993a.

Geoffrey E. Hinton and Drew van Camp. Keeping neural networks simple. In International
Conference on Artificial Neural Networks [ICANN], pages 11–18. Springer, 1993b.

Martin Jankowiak and Fritz Obermeyer. Pathwise derivatives beyond the reparameteriza-
tion trick. In International Conference on Machine Learning [ICML], pages 2240–2249.
PMLR, 2018.

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An in-
troduction to variational methods for graphical models. In Learning in Graphical Models,
volume 89 of NATO ASI Series, pages 105–161. Springer, 1998.

Joseph Keshet, David McAllester, and Tamir Hazan. PAC-Bayesian approach for minimiza-
tion of phoneme error rate. In IEEE International Conference on Acoustics, Speech and
Signal Processing [ICASSP], pages 2224–2227. IEEE, 2011.

Joseph Keshet, Subhransu Maji, Tamir Hazan, and Tommi Jaakkola. Perturbation models
and PAC-Bayesian generalization bounds. In Perturbations, Optimization, and Statistics,
pages 289–309. MIT Press, 2017.

Mohammad Emtiyaz Khan and Wu Lin. Conjugate-computation variational inference: Con-
verting variational inference in non-conjugate models to inferences in conjugate models.
In International Conference on Artificial Intelligence and Statistics [AISTATS], pages
878–887. PMLR, 2017.

Alexandre Lacasse, François Laviolette, Mario Marchand, Pascal Germain, and Nicolas
Usunier. PAC-Bayes bounds for the risk of the majority vote and the variance of the
Gibbs classifier. In Advances in Neural Information Processing Systems [NIPS], pages
769–776, 2006.

Xinjie Lan, Xin Guo, and Kenneth E. Barner. PAC-Bayesian generalization bounds for
multilayer perceptrons. arXiv:2006.08888, 2020.

John Langford and Avrim Blum. Microchoice bounds and self bounding learning algorithms.
Machine Learning, 51(2):165–179, 2003.

John Langford and Rich Caruana. (Not) bounding the true error. In Advances in Neural
Information Processing Systems [NIPS], pages 809–816, 2001.

37

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

John Langford and Matthias Seeger. Bounds for averaging classifiers. Technical Report
CMU-CS-01-102, Carnegie Mellon University, 2001.

Gaël Letarte, Pascal Germain, Benjamin Guedj, and François Laviolette. Dichotomize and
generalize: PAC-Bayesian binary activated deep neural networks. In Advances in Neural
Information Processing Systems [NeurIPS], pages 6872–6882, 2019.

Guy Lever, François Laviolette, and John Shawe-Taylor. Tighter PAC-Bayes bounds
through distribution-dependent priors. Theoretical Computer Science, 473:4–28, 2013.

Ben London. A PAC-Bayesian analysis of randomized learning with application to stochastic
gradient descent. In Advances in Neural Information Processing Systems [NIPS], pages
2931–2940, 2017.

Christos Louizos and Max Welling. Structured and efficient variational deep learning with
matrix gaussian posteriors. In International Conference on Machine Learning [ICML],
pages 1708–1716. PMLR, 2016.

David J.C. MacKay. A practical Bayesian framework for backpropagation networks. Neural
Computation, 4(3):448–472, 1992.

Wesley J. Maddox, Pavel Izmailov, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon
Wilson. A simple baseline for Bayesian uncertainty in deep learning. In Advances in
Neural Information Processing Systems [NeurIPS], pages 13132–13143, 2019.

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored
approximate curvature. In International Conference on Machine Learning [ICML], pages
2408–2417. PMLR, 2015.

Andrés R. Masegosa, Stephan S. Lorenzen, Christian Igel, and Yevgeny Seldin. Second order
PAC-Bayesian bounds for the weighted majority vote. In Advances in Neural Information
Processing Systems [NeurIPS], pages 5263–5273, 2020.

Andreas Maurer. A note on the PAC Bayesian theorem. arXiv:cs/0411099, 2004.

David A. McAllester. PAC-Bayesian model averaging. In Computational Learning Theory
[COLT], pages 164–170. ACM, 1999.

David A. McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 51(1):
5–21, 2003.

David A. McAllester. A PAC-Bayesian tutorial with a dropout bound. arXiv:1307.2118,
2013.

Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte Carlo gra-
dient estimation in machine learning. Journal of Machine Learning Research, 21(132):
1–62, 2020.

Grégoire Montavon, Genevieve B. Orr, and Klaus-Robert Müller, editors. Neural Networks:
Tricks of the Trade, volume 7700 of Lecture Notes in Computer Science. Springer, 2012.
(2nd edition).

38

Tighter Risk Certificates for Neural Networks

Radford M. Neal. Bayesian training of backpropagation networks by the hybrid Monte
Carlo method. Technical Report CRG-TR-92-1, University of Toronto, 1992.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. In Advances in Neural Information Processing Systems
[NIPS], pages 5947–5956, 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-Bayesian approach
to spectrally-normalized margin bounds for neural networks. In International Conference
on Learning Representations [ICLR], 2018.

Asaf Noy and Koby Crammer. Robust forward algorithms via PAC-Bayes and Laplace
distributions. In International Conference on Artificial Intelligence and Statistics [AIS-
TATS], pages 678–686. PMLR, 2014.

Kazuki Osawa, Siddharth Swaroop, Mohammad Emtiyaz Khan, Anirudh Jain, Runa Es-
chenhagen, Richard E. Turner, and Rio Yokota. Practical deep learning with Bayesian
principles. In Advances in Neural Information Processing Systems [NeurIPS], pages 4289–
4301, 2019.

Emilio Parrado-Hernández, Amiran Ambroladze, John Shawe-Taylor, and Shiliang Sun.
PAC-Bayes bounds with data dependent priors. Journal of Machine Learning Research,
13(112):3507–3531, 2012.

Maŕıa Pérez-Ortiz, Omar Rivasplata, John Shawe-Taylor, and Csaba Szepesvári. Towards
self-certified learning: Probabilistic neural networks trained by PAC-Bayes with back-
prop. NeurIPS 2020 Workshop - Beyond Backpropagation, 2020.

Konstantinos Pitas. Dissecting non-vacuous generalization bounds based on the mean-field
approximation. In International Conference on Machine Learning [ICML], pages 7739–
7749. PMLR, 2020.

Robert Price. A useful theorem for nonlinear devices having Gaussian inputs. IRE Trans-
actions on Information Theory, 4(2):69–72, 1958.

Hippolyt Ritter, Aleksandar Botev, and David Barber. A scalable Laplace approximation
for neural networks. In International Conference on Learning Representations [ICLR],
2018.

Omar Rivasplata, Vikram M. Tankasali, and Csaba Szepesvári. PAC-Bayes with backprop.
arXiv:1908.07380, 2019.

Omar Rivasplata, Ilja Kuzborskij, Csaba Szepesvári, and John Shawe-Taylor. PAC-Bayes
analysis beyond the usual bounds. In Advances in Neural Information Processing Systems
[NeurIPS], pages 16833–16845, 2020.

Francisco R. Ruiz, Michalis Titsias, and David Blei. The generalized reparameterization
gradient. In Advances in Neural Information Processing Systems [NIPS], pages 460–468,
2016.

39

Pérez-Ortiz, Rivasplata, Shawe-Taylor and Szepesvári

Matthias Seeger. PAC-Bayesian generalization error bounds for Gaussian process classifi-
cation. Journal of Machine Learning Research, 3:233–269, 2002.

Yevgeny Seldin and Naftali Tishby. PAC-Bayesian analysis of co-clustering and beyond.
Journal of Machine Learning Research, 11:3595–3646, 2010.

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, Cambridge, 2014.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations [ICLR],
2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(1):1929–1958, 2014.

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer, 2008.

Sanjay Thakur, Herke Van Hoof, Gunshi Gupta, and David Meger. Unifying variational
inference and PAC-Bayes for supervised learning that scales. arXiv:1910.10367, 2019.

Niklas Thiemann, Christian Igel, Olivier Wintenberger, and Yevgeny Seldin. A strongly
quasiconvex PAC-Bayesian bound. In International Conference on Algorithmic Learning
Theory [ALT], pages 466–492. PMLR, 2017.

Ilya O. Tolstikhin and Yevgeny Seldin. PAC-Bayes-Empirical-Bernstein inequality. In
Advances in Neural Information Processing Systems [NIPS], pages 109–117, 2013.

Tim van Erven. PAC-Bayes mini-tutorial: A continuous union bound. arXiv:1405.1580,
2014.

Paul Viallard, Rémi Emonet, Pascal Germain, Amaury Habrard, and Emilie Morvant. In-
terpreting neural networks as majority votes through the PAC-Bayesian theory. NeurIPS
2019 Workshop on Machine Learning with Guarantees, 2019.

Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. Regularization of
neural networks using dropconnect. In International Conference on Machine Learning
[ICML], pages 1058–1066. PMLR, 2013.

Max Welling and Yee Whye Teh. Bayesian learning via Stochastic Gradient Langevin
dynamics. In International Conference on Machine Learning [ICML], pages 681–688.
PMLR, 2011.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams, and Peter Orbanz. Non-
vacuous generalization bounds at the ImageNet scale: A PAC-Bayesian compression ap-
proach. In International Conference on Learning Representations [ICLR], 2019.

40

	Introduction
	Generalisation through Risk Upper Bounds
	PAC-Bayes Bounds
	The Bayes by Backprop (BBB) Objective
	Towards Practical PAC-Bayes with Backprop (PBB) Methods
	Optimisation Problem
	The Choice of the PAC-Bayes Prior Distribution
	Formulas for the KL: Laplace and Gaussian

	Computing Risk Certificates
	Estimating the Empirical Loss via Monte Carlo Sampling
	Final Expression for Evaluating the Risk Certificate

	Experimental Results
	Choice of Distribution over Weights
	Experimental Setup
	Hyperparameter selection
	Predictors and metrics reported
	Architectures

	Hyper-parameter and Architecture Search through PAC-Bayes Bounds
	Comparison of Different Training Objectives and Priors
	KL Attenuating Trick
	Laplace Weight Distributions
	CIFAR-10 with Larger Architectures
	Additional Miscellaneous Experiments
	Further Discussion

	Conclusion and Future Work

