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Abstract

In this paper, we develop novel perturbation bounds for the higher-order orthogonal itera-
tion (HOOI) (De Lathauwer et al., 2000a). Under mild regularity conditions, we establish
blockwise tensor perturbation bounds for HOOI with guarantees for both tensor recon-
struction in Hilbert-Schmidt norm } pT ´T }HS and mode-k singular subspace estimation in

Schatten-q norm } sin ΘppUk,Ukq}q for any q ě 1. We show the upper bounds of mode-k sin-
gular subspace estimation are unilateral and converge linearly to a quantity characterized
by blockwise errors of the perturbation and signal strength. For the tensor reconstruction
error bound, we express the bound through a simple quantity ξ, which depends only on
perturbation and the multilinear rank of the underlying signal. Rate matching determinis-
tic lower bound for tensor reconstruction, which demonstrates the optimality of HOOI, is
also provided. Furthermore, we prove that one-step HOOI (i.e., HOOI with only a single
iteration) is also optimal in terms of tensor reconstruction and can be used to lower the
computational cost. The perturbation results are also extended to the case that only par-
tial modes of T have low-rank structure. We support our theoretical results by extensive
numerical studies. Finally, we apply the novel perturbation bounds of HOOI on two ap-
plications, tensor denoising and tensor co-clustering, from machine learning and statistics,
which demonstrates the superiority of the new perturbation results.
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1. Introduction

The past decades have seen a large body of work on tensors or multiway arrays (Kolda and
Bader, 2009; Sidiropoulos et al., 2017; Cichocki et al., 2015; Kroonenberg, 2008). Tensors
arise in numerous applications involving multiway data (e.g., brain imaging (Zhou et al.,
2013), hyperspectral imaging (Li and Li, 2010), recommender system design (Bi et al.,
2018)). In addition, various methods have been developed and applied to fundamental
tensor problems such as tensor completion (Yuan and Zhang, 2016; Xia et al., 2020; Yuan
and Zhang, 2017; Zhang, 2019), tensor regression (Zhang et al., 2020; Zhou et al., 2013;
Raskutti et al., 2019; Chen et al., 2019), tensor PCA/SVD (Zhang and Xia, 2018; Richard
and Montanari, 2014; Liu et al., 2017), generalized tensor learning (Han et al., 2020). In
many other problems where the observations are not necessarily tensors, tensor parameters
arise, such as topic and latent variable models (Anandkumar et al., 2014a), additive index
models (Balasubramanian et al., 2018), high-order interaction pursuit (Hao et al., 2020).
We refer readers to recent survey papers (Kolda and Bader, 2009; Sidiropoulos et al., 2017;
Cichocki et al., 2015).

Among these methods, tensor decomposition is one of the most important and a flurry of
research have been devoted to it. Tensor decomposition plays a similar role to singular value
decomposition (SVD) or eigendecomposition for matrices which is of fundamental impor-
tance throughout a wide range of fields including computer science, applied mathematics,
machine leaning, statistics, signal processing, etc. For matrices, truncated SVD achieves
the best low-rank approximation in terms of any unitarily invariant norm by the well-known
Eckart-Young-Mirsky theorem (Eckart and Young, 1936; Mirsky, 1960; Golub et al., 1987)
and more importantly it is computationally efficient. Despite the well-established theory
for low-rank decomposition of matrices, tensors present unique challenges. First there are
several notions of low-rankness in tensors, moreover it has been shown that computing var-
ious best low-rank approximations of a given tensor is NP hard in general (Hillar and Lim,
2013).

Fortunately, many computationally efficient algorithms have been proposed to approxi-
mate the best low-rank tensor decomposition (Kroonenberg and De Leeuw, 1980; De Lath-
auwer et al., 2000a; Elden and Savas, 2009; Ishteva et al., 2011, 2009; Savas and Lim, 2010;
De Lathauwer et al., 2000b; Vannieuwenhoven et al., 2012). One popular choice is the
higher-order orthogonal iteration (HOOI) proposed in De Lathauwer et al. (2000a). HOOI
is based on alternating least-squares. It can be seen as a “spectral” algorithm for tensors,
generalizations of the 2D-PCA (Sheehan and Saad, 2007), and the power iteration refine-
ment of HOSVD (De Lathauwer et al., 2000b) and sequential HOSVD (Vannieuwenhoven
et al., 2012). Convergence properties of HOOI have been studied in Zhang and Golub
(2001); Wang and Chu (2014); Uschmajew (2015); Xu (2018); Zhang and Xia (2018).

In addition to computing low-rank approximations of matrices and tensors, there is the
more nuanced question of computing low-rank approximations under noise perturbation
and determining how the perturbation impacts the quality of the decomposition. For ma-
trices, perturbation theory is well studied and a number of results has been established
(Bhatia, 2013; Stewart, 1990). However, perturbation theory for tensors is still in its in-
fancy. It is difficult to extend results for matrices to tensors due to the complexity of tensor
algebra and the fact many well established theories and concepts in matrices such as SVD
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or eigendecomposition do not exist or are not easy to use for tensors. There are several
attempts in the literature and most of them require the noise tensor to be random (Richard
and Montanari, 2014; Zhang and Xia, 2018; Liu et al., 2017; Zhang and Han, 2019; Zheng
and Tomioka, 2015; Xia and Zhou, 2019). In this paper, we move one step forward in this
direction and provide the first general perturbation bounds of HOOI for tensors under the
signal-plus-noise model

rT “ T `Z (1)

without putting any structural assumption on the perturbation noise Z. Like the classical
Wedin’s perturbation theory for matrices, we provide perturbation guarantees of estimated
mode-k singular subspace in tensors. In addition, we also provide the perturbation bounds
for tensor reconstruction. By providing the deterministic rate matching lower bound, we
can further show HOOI with good initialization is optimal for tensor reconstruction.

1.1 Problem Statement

Formally, this paper considers the tensor perturbation model (1), where T is the low-rank
order-d signal tensor and Z is the perturbation tensor with the same dimension as T .
Two popular choices of low-rankness in tensors are canonical polyadic (CP) low-rank and
multilinear/Tucker low-rank and each of them has their respective benefits (see the surveys
Kolda and Bader (2009); Sidiropoulos et al. (2017); Cichocki et al. (2015); Grasedyck et al.
(2013)). The CP low-rank decomposition which approximates the original tensor by a sum of
rank-1 outer products gives a compact and unique (under certain conditions) representation
and multilinear/Tucker low-rank decomposition generally finds a better fit for the data by
estimating the subspace of each mode. Since any CP low-rank tensor can be written as
a multilinear low-rank tensor with a diagonal core tensor, we focus on the latter (Tucker
rank) in this paper. Specifically, we assume T admits the following low multilinear rank
(Tucker) decomposition:

T “ S ˆΩ1 U1 ˆ ¨ ¨ ¨ ˆΩm Um. (2)

Here, S is an order-d core tensor; tUiu
m
i“1 are group-i singular subspaces; tΩiu

m
i“1 are

symmetric index groups which will be introduced next; and “ˆΩi” is the tensor matrix
product along modes in Ωi. The formal definition of Tucker decomposition and tensor
matrix product will be given in equations (5), (6) and (7) in Section 2.

The symmetric index groups tΩiu
m
i“1 represent the specific symmetricity structure of

T and satisfy Ωi Ď rds,Ωi ‰ H, Ωi
Ş

Ωj “ H for i ‰ j, and
Ťm
i“1 Ωi “ rds, where

rds :“ t1, . . . , du. It means by fixing indices outside the group and any permutation of indices
within the group does not change the value of tensor corresponding to those indices. For
example, if Ω1 “ t1, 2, . . . , ku, then fixing coordinates in tΩiu

m
i“2 i.e., coordinates k`1, . . . , d

and for any permutation δ of rks, we have Triδp1q,...,iδpkq,ik`1,...,ids “ Tri1,...,ids. In addition to
T , we also assume S and Z have the same symmetric structure characterized by tΩiu

m
i“1.

The symmetric index groups have two extreme cases:

• Asymmetric: Ωi “ tiu for i “ 1, . . . , d,

• Supersymmetric: Ω1 “ t1, 2, . . . , du.
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To simplify the notation, if mode j P Ωi, then we denote j1 :“ i as the group index of mode
j. For symmetric group i, the dimension of T in this group is denoted as pi and its mode
rank is denoted as ri. The rigorous definition of mode rank is postponed to Section 2. Also
throughout the paper, for i P rms, let ī “ mintj : j P Ωiu be the smallest index in Ωi,
and denote qΩi :“ Ωizt̄iu,Ωi :“

Ťi´1
j“1 Ωj ,Ωi :“

Ťd
j“i`1 Ωj with Ω1 “ Ωd “ H. Finally, we

define the signal strength of T as λ “ mini“1,...,m σripMīpT qq, the smallest singular values
of matricization of T in modes t̄iumi“1. Here for any matrix D, σipDq denotes the ith largest
singular values of D andMīpT q represents the matricization of tensor T along mode ī and
its formal definition will be given in (4) in Section 2.

In summary, for the dimensions of the perturbation model (1), we have rT ,T ,Z P

Rp11ˆ¨¨¨ˆpd1 with symmetric index groups tΩiu
m
i“1. The HOOI algorithm we study is pro-

vided in Algorithm 1. It is worth noting the original HOOI algorithm in De Lathauwer
et al. (2000a) mainly focuses on asymmetric tensor decomposition and we generalize it to
accommodate arbitrary symmetric structures of T characterized by tΩiu

m
i“1. In addition,

in the literature (De Lathauwer et al., 2000a; Kolda and Bader, 2009), HOOI often refers to

the overall procedure including both the initialization of rU
p0q
i by HOSVD and the orthogo-

nal iteration updates as detailed in Algorithm 1. We shall point out that this paper studies
the orthogonal iteration with any initializers satisfying some mild conditions. Our results
accommodate different types of initialization scheme and can be applied to a wide range of
scenarios (see Remark 2). We conclude the algorithm by remarking that the matricization
mode we choose in group i to perform SVD in (3) does not matter due to symmetry. For
simplicity, we choose the smallest index in group i.

Algorithm 1 Higher-Order Orthogonal Iteration for Tensor Decomposition

Input: rT P Rp11ˆ¨¨¨ˆpd1 , symmetric index groups tΩiu
m
i“1, initialization trU

p0q
i u

m
i“1 with

rU
p0q
i P Opi,ri having orthonormal columns, maximum number of iterations tmax.

Output: tpUiu
m
i“1,

pT .

1: For t “ 1, . . . , tmax, do

(a) For i “ 1 to m, update

rU
pt`1q
i “ SVDri

`

Mīp
rT ˆΩ1 p

rU
pt`1q
1 qJ ˆ ¨ ¨ ¨

ˆΩi´1 p
rU
pt`1q
i´1 qJ ˆ

qΩi
prU

ptq
i q

J ˆ ¨ ¨ ¨ ˆΩd p
rU
ptq
d q

Jq
˘

,
(3)

where for any matrix D, SVDrpDq computes the subspace composed of the leading
r left singular vectors of D.

2: Let pUi “ rU
ptmaxq

i for i “ 1, . . . ,m and compute

pT “ rT ˆΩ1 P pU1
ˆ ¨ ¨ ¨ ˆΩm P pUm

.
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1.2 Our Contributions

Under the perturbation model (1) and the HOOI Algorithm 1, we make the following major
contributions to the tensor perturbation theory of low-rank tensor decomposition based on
HOOI.

• We provide the first sharp blockwise perturbation bounds of HOOI for tensors with
guarantees for both the estimated mode-k singular subspace and the tensor reconstruc-
tion induced by low-rank approximation of the noise corrupted tensor. Specifically,

in Theorem 3, we show that under suitable initialization trU
p0q
i u

m
i“1 in Algorithm 1,

the upper bound of maxi

›

›

›
sin Θ

´

pUi,Ui

¯›

›

›

q
converges linearly with respect to the it-

eration number to a fixed quantity characterized by Z and the signal strength. In
addition, a practically useful tensor reconstruction error bound in Hilbert-Schmidt
norm is provided. Surprisingly, we found the upper bound of tensor reconstruction
is free of the “condition number” of the signal tensor and can be expressed by a uni-
fied simple quantity ξ characterized only by the noise tensor Z and the underlying
multilinear rank of T . ξ is closely related to the Gaussian width (Gordon, 1988), a
common measure for the complexity of a given set, and its formal definition and more
explanations will be given in Sections 2.1 and 6.

• In addition, we also generalize the main results to the case that only a subset of modes
of T have low-rank structure.

• Furthermore, we provide a deterministic minimax lower bound for the tensor recon-
struction error under perturbation model (1) in Theorem 2. The lower bound matches
the perturbation upper bound in Theorem 3 when the tensor order d is fixed, which
demonstrates the optimality of HOOI for tensor reconstruction.

• In addition, by combining Theorems 2 and 3, we prove that the tensor reconstruc-
tion error rate of HOOI with only one iteration is also optimal and further iterations
improve the coefficient in front of the error rate ξ. This suggests that in some ap-
plications where running full HOOI is too expensive and prohibitive compared to
truncated HOSVD (De Lathauwer et al., 2000b) or sequentially truncated HOSVD
(Vannieuwenhoven et al., 2012), we can just run HOOI for one iteration to obtain
an optimal (up to constant) reconstruction. Details are provided in Remark 6 and
numerical comparison is given in Section 7.2.

• In addition, we apply the new perturbation bounds of HOOI in two modern applica-
tions, tensor denoising and tensor co-clustering, from machine learning and statistics.
Based on our perturbation results, we can easily recover the results of tensor denois-
ing in current literature with a much shorter proof and provide the first guarantee of
HOOI on tensor cocluster recovery that improves the state-of-the-art results.

• Finally, we perform extensive numerical studies to support our perturbation bounds
and do a comparison with other existing low-rank tensor decomposition algorithms.
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1.3 Related Literature

In this section, we give a brief overview of the literature on Tucker decomposition of ten-
sors, matrix/tensor perturbation theory related to this article. Tensor decomposition has
become one of the most important topics in the literature on tensors (Kolda and Bader, 2009;
Sidiropoulos et al., 2017; Cichocki et al., 2015). An analogy of matrix SVD for Tucker de-
composition of tensors, which is today commonly called high-order singular value decompo-
sition (HOSVD), was first proposed in Tucker (1966) and then popularized by De Lathauwer
et al. (2000b). However, unlike the truncated matrix SVD, truncated HOSVD (T-HOSVD)
can provide a reasonable but not necessarily optimal low-multilinear-rank approximation
for a given tensor. It has been shown that computing the best low multilinear rank ap-
proximation is NP hard in general (Hillar and Lim, 2013). On the other hand, various
computationally efficient algorithms have been proposed to obtain better approximations
than HOSVD (De Lathauwer et al., 2000a; Elden and Savas, 2009; Ishteva et al., 2011,
2009; Savas and Lim, 2010). Among them, the higher-order orthogonal iteration (HOOI)
in De Lathauwer et al. (2000a) has become a popular choice in literature. HOOI has been
applied to problems including but not limited to tensor PCA/tensor SVD (Richard and
Montanari, 2014; Zhang and Xia, 2018), tensor completion (Xia et al., 2020), tensor regres-
sion (Zhang et al., 2020), hypergraph community recovery (Ke et al., 2019; Jing et al., 2020),
independent component analysis (De Lathauwer and Vandewalle, 2004), tensor clustering
(Luo and Zhang, 2020). Many variants of HOOI such as sparse high-order singular value de-
composition (STAT-SVD) for tensors (Zhang and Han, 2019), regularized HOOI (Ke et al.,
2019; Jing et al., 2020), generalized higher-order orthogonal iteration (gHOI) (Liu et al.,
2014) have been proposed. Nowadays, HOOI has become a prevalent choice to compute
the low-rank tensor approximation in many applications and been coded in common tensor
software such as Matlab “Tensor Toolbox” (Bader and Kolda, 2012), “Tensorlab” (Sorber
et al., 2014) and R “rTensor” package (Li et al., 2018). Moreover, it has been regarded
as the gold standard guideline for comparison when developing even faster randomized or
memory-efficient algorithms for low-rank tensor approximation (Sun et al., 2020; Malik and
Becker, 2018; Tsourakakis, 2010; Kolda and Sun, 2008).

Perturbation theory is a long-existing field in mathematics. In particular, the perturba-
tion theory on matrices has attracted much attention. The original work in matrix dated
back to Weyl, Davis-Kahan and Wedin (Davis and Kahan, 1970; Wedin, 1972; Weyl, 1912;
Stewart, 1998) (see Bhatia (2013); Stewart (1990) for an overview of classical perturba-
tion results and historical development) and recently it has been further developed in Yu
et al. (2014); Cai and Zhang (2018); Cape et al. (2019b). In addition, various generaliza-
tions and extensions have been made in different settings including random perturbation
(Vu, 2011; Shabalin and Nobel, 2013; O’Rourke et al., 2018; Wang, 2015; Benaych-Georges
and Nadakuditi, 2011; Abbe et al., 2020; Koltchinskii and Xia, 2016; Benaych-Georges and
Nadakuditi, 2012; Cape et al., 2019a; Chen et al., 2018), structured perturbation (Fan et al.,
2018; Stewart, 2006) and many others (Eldridge et al., 2017). Also the perturbation theory
for matrices has been widely applied to a number of applications such as community detec-
tion (Rohe et al., 2011; Chaudhuri et al., 2012; Chin et al., 2015; Sussman et al., 2012; Cape
et al., 2019b), covariance matrix estimation (Fan et al., 2018; Cape et al., 2019b), matrix
denoising (Cai and Zhang, 2018), matrix completion (Cai et al., 2016), etc.
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Studying perturbation theory for low-rank tensor approximation is much harder than
matrices and there are only a few attempts in literature. Perturbation results for the best
low multilinear rank approximation have been developed in De Lathauwer (2004); Elden
and Savas (2011). These results are promising but less practically useful due to the com-
putational hardness of the best multilinear rank approximation (Hillar and Lim, 2013).
Hence more attention are given to the perturbation results for polynomial-time low-rank
tensor approximation algorithms. A line of work has been done when the perturbation
is random (Richard and Montanari, 2014; Zhang and Xia, 2018; Hopkins et al., 2015; Liu
et al., 2017; Zhang and Han, 2019; Zheng and Tomioka, 2015; Xia and Zhou, 2019) and
various perturbation results for robust tensor decomposition with sparse noise have been
studied in Goldfarb and Qin (2014); Gu et al. (2014); Shah et al. (2015); Anandkumar et al.
(2016). Perturbation bounds for orthogonally decomposable tensors have been studied in
Mu et al. (2017); Auddy and Yuan (2020). In addition, Anandkumar et al. (2014a,b) pro-
vided perturbation guarantees for power iteration algorithm for symmetric orthogonal and
non-orthogonal CP low-rank decomposition. However, we are not aware of any perturbation
result for polynomial time algorithms under partial symmetric multilinear low-rank setting.
In this paper, we make the first attempt in this direction and provide the first perturbation
bounds of HOOI for tensors with guarantees for both singular subspaces and tensor recon-
struction in the general setting. It is worth mentioning that the reconstruction error bound
of this paper is often significantly better than the simple estimator and truncated HOSVD
without power iteration. This is fundamentally different from the perturbation results in
Anandkumar et al. (2014a). See further discussions in Remarks 5 and 8.

We end this section by remarking that in most situations there is a trade-off about the
quality of low-rank tensor decomposition and computational cost of the algorithm. For
example, computing truncated HOSVD and sequentially truncated HOSVD (ST-HOSVD)
(Vannieuwenhoven et al., 2012) may be much faster than iterative algorithms such as HOOI,
(quasi-)Newton-Grassmann method (Elden and Savas, 2009; Savas and Lim, 2010), geo-
metric Newton method (Ishteva et al., 2009) and Riemannian trust region scheme (Ishteva
et al., 2011) in the large scale settings. On the other hand, these iterative algorithms achieve
higher accuracy. In the perturbation model (1), we show HOOI could achieve optimal tensor
reconstruction error, which is not true for HOSVD and ST-HOSVD in general.

1.4 Organization of the Paper

The remainder of the article is organized as follows. In Section 2, after a brief introduction
of notation and preliminaries, we define various blockwise errors of Z as the key quantities
in our perturbation bounds. We illustrate our main perturbation theorem in asymmetric
order-3 case in Section 3 and at the end of the same section, we provide the deterministic
lower bound for tensor reconstruction. In Section 4, we provide the perturbation bounds of
HOOI applying on a corrupted general partial symmetric order-d tensor. In Section 5, we
discuss the tensor perturbation bounds when the target tensor has the low-rank structure
only along a subset of modes. In Section 6, we apply our perturbation bounds to two
applications, tensor denoising and tensor co-clustering. In Section 7, we corroborate our
theoretical results by extensive numerical studies. Conclusion and discussions are provided
in Section 8. Due to space constraints, all technical proofs are postponed to the Appendix.
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2. Notation and Preliminaries

The following notation will be used throughout this article. For any non-negative integer
n, let rns “ t1, . . . , nu. Lowercase letters (e.g., a, b), lowercase boldface letters (e.g., u,v),
uppercase boldface letters (e.g., U,V), and boldface calligraphic letters (e.g., T ,Z) are used
to denote scalars, vectors, matrices, and order-3-or-higher tensors, respectively. For any two
series of numbers, say tanu and tbnu, denote a — b or a “ Opbq if can ď bn ď Can or an ď
Cbn for some uniform constants c, C ą 0. For any matrix D P Rmˆn with singular value
decomposition

řm^n
i“1 σipDquiv

J
i (σ1pDq ě ¨ ¨ ¨ ě σm_npDq), let Dmaxprq “

řr
i“1 σipDquiv

J
i

be the leading rank-r SVD approximation of D and Dmaxp´rq “
řm^n
i“r`1 σipDquiv

J
i be its

complement. We also denote SVDrpDq :“ ru1 ¨ ¨ ¨urs as the subspace composed of the
leading r left singular vectors of D. The Schatten-q norm of matrix D for q ě 1 is defined

as }D}q :“ p
řm^n
i“1 σqi pDqq

1{q
. Frobenius norm } ¨ }F and spectral norm } ¨ } of a matrix

are special cases of Schatten-q norm with q “ 2 and q “ 8. In addition, Ir represents the
r-by-r identity matrix. Let Op,r “ tU : UJU “ Iru be the set of all p-by-r matrices with
orthonormal columns. For any U P Op,r, PU “ UUJ represents the projection matrix onto
the column span of U; we also use UK P Op,p´r to represent the orthonormal complement
of U. We use bracket subscripts to denote sub-matrices. For example, Dri1,i2s is the entry
of D on the i1-th row and i2-th column; Drpr`1q:m,:s contains the pr ` 1q-th to the m-th
rows of D. For any matrices U P Rp1ˆp2 and V P Rm1ˆm2 , let

UbV “

»

—

–

Ur1,1s ¨V ¨ ¨ ¨ Ur1,p2s ¨V
...

...
Urp1,1s ¨V ¨ ¨ ¨ Urp1,p2s ¨V

fi

ffi

fl

P Rpp1m1qˆpp2m2q

be the Kronecker product of U and V.
For any order-d tensor T P Rp1ˆ¨¨¨ˆpd , let Mkp¨q be the matricization operation that

unfolds or flattens the order-d tensor T P Rp1ˆ¨¨¨ˆpd along mode k into the matrixMkpT q P
Rpkˆp´k and here p´k :“

ś

j‰k pj . Specifically, the mode-k matricization of T is formally
defined as

MkpT q P Rpkˆp´k , pMkpT qqrik,js “ Tri1,...,ids, j “ 1`
d
ÿ

l“1
l‰k

$

’

&

’

%

pil ´ 1q
l´1
ź

m“1
m‰k

pm

,

/

.

/

-

(4)

for any 1 ď il ď pl, l “ 1, . . . , d. Also see (Kolda and Bader, 2009, Section 2.4) for more
discussion on tensor matricizations. Given two tensors T1,T2 P Rp1ˆ¨¨¨ˆpd , define their
inner product as xT1,T2y “

ř

i1,...,id
xT1ri1,...,ids,T2ri1,...,idsy. The Hilbert-Schmidt norm of T

is defined as }T }HS “ pxT ,T yq1{2 . The multilinear rank of a tensor T , rankpT q, is defined
as a d-tuple pr1, . . . , rdq, where rk “ rankpMkpT qq is the mode-k rank. For any multilinear
rank-pr1, . . . , rdq tensor T , it has Tucker decomposition (Tucker, 1966):

T “ JS; U1, . . . ,UdK :“ S ˆ1 U1 ˆ ¨ ¨ ¨ ˆd Ud, (5)

where S P Rr1ˆ¨¨¨ˆrd is the core tensor and Uk “ SVDrkpMkpT qq is the mode-k singular
subspace. Here, the mode-k product of T P Rp1ˆ¨¨¨ˆpd with a matrix U P Rpkˆrk is denoted
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by T ˆk UJ and is of size p1 ˆ ¨ ¨ ¨ ˆ pk´1 ˆ rk ˆ pk`1 ˆ ¨ ¨ ¨ ˆ pd, such that

pT ˆk UJqri1,...,ik´1,j,ik`1,...,ids “

pk
ÿ

ik“1

Tri1,i2,...,idsUrik,js. (6)

Given S “ ti1, . . . , idu, it is convenient to denote the product of T along the modes indexed
by S with the same matrix U and with different matrices tUiu respectively as

T ˆS U :“ T ˆi1 Uˆ ¨ ¨ ¨ ˆid U, T ˆiPS Ui :“ T ˆi1 Ui1 ˆ ¨ ¨ ¨ ˆid Uid . (7)

Given T “ JS; U1, . . . ,UdK, the following relationship of tensor matricization is used fre-
quently in the proof:

Mk pS ˆ1 U1 ˆ2 ¨ ¨ ¨ ˆd Udq “ UkMkpSqpUJ
d b ¨ ¨ ¨ bUJ

k`1 bUJ
k´1 b ¨ ¨ ¨ bUJ

1 q. (8)

We refer the readers to Kolda (2001); Kolda and Bader (2009) for a more comprehensive
survey on tensor algebra.

Finally, we use sin Θ distance to measure the difference between two p-by-r column
orthogonal matrices pU and U. Suppose the singular values of pUJU are σ1 ě σ2 ě . . . ě
σr ě 0. Then ΘppU,Uq is defined as

ΘppU,Uq “ diag
`

cos´1pσ1q, cos´1pσ2q, . . . , cos´1pσrq
˘

.

Common properties of sin Θ distance can be found in (Cai and Zhang, 2018, Lemma 1) and
(Luo et al., 2020, Lemma 6).

2.1 Blockwise Errors of Z

In this subsection, we introduce key quantities appearing in the perturbation bounds that
characterize the blockwise errors of Z. For simplicity, we consider order-3 tensors and
Ω1 “ t1u,Ω2 “ t2u,Ω3 “ t3u perturbation setting for illustration.

Define the blockwise errors of Z that characterize the tensor perturbation:

τ1 “ max
kPr3s

τ1k, τ1k “

›

›

›

`

MkpZ ˆk`1 UJ
k`1 ˆk`2 UJ

k`2q
˘

maxprkq

›

›

›

q
, k “ 1, 2, 3;

τ2 “ max
kPr3s

!

max
VPRppk`1´rk`1qˆrk`1

}V}qď1

›

›

›

`

MkpZ ˆk`1 pUk`1KVqJ ˆk`2 UJ
k`2q

˘

maxprkq

›

›

›

q
,

max
VPRppk`2´rk`2qˆrk`2

}V}qď1

›

›

›

`

MkpZ ˆk`1 UJ
k`1 ˆk`2 pUk`2KVqJq

˘

maxprkq

›

›

›

q

)

;

τ3 “ max
kPr3s

max
VPRppk`1´rk`1qˆrk`1

V1PRppk`2´rk`2qˆrk`2

}V}qď1,}V1}qď1

›

›

›

`

MkpZ ˆk`1 pUk`1KVqJ ˆk`2 pUk`2KV1qJq
˘

maxprkq

›

›

›

q
.

(9)

Here all mode indices p¨qk of an order-3 tensor are in the sense of modulo-3, e.g., r1 “ r4,
p2 “ p5.

9
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(a) τ11 (b) τ12 (c) τ13

Figure 1: Illustration of τ11, τ12, τ13. Here, we assume UJ
k “ rIrk 0rkˆppk´rkqs, k “ 1, 2, 3,

for a better visualization. The red, green, blue blocks represent the corresponding
blockwise errors τ11, τ12, τ13 in Z.

τ1, τ2, τ3 represent the maximum of blockwise errors of Z in the projection spaces ex-
panded by U1,U2,U3 and their complements. For example, in Figure 1 we illustrate the
blockwise errors characterized by τ11, τ12, τ13. τ2, τ3 characterize blockwise errors of Z in a
similar fashion but with more complicated projections.

These blockwise errors of Z are in fact a generalization of error terms in matrix per-
turbation theory. In the matrix setting rT “ T` Z, let pU, pV and U,V be leading left and
right singular vectors of rT and T, respectively. Then by Wedin’s perturbation theory, the

upper bounds of
›

›

›
sin ΘppU,Uq

›

›

›
and

›

›

›
sin ΘppV,Vq

›

›

›
involve }ZpV} and }pUJZ}, which are also

blockwise errors of Z.
Next, we introduce a simple quantity ξ that characterizes the error bound for tensor

reconstruction. In this order-3 asymmetric setting, ξ is defined as

ξ :“ sup
}Y}HSď1,rankpYqďpr1,r2,r3q

xZ,Yy. (10)

In the following Lemma 1, we give another equivalent characterization of ξ.

Lemma 1 (Equivalent Characterizations of ξ)

ξ :“ sup
}Y}HSď1,rankpYqďpr1,r2,r3q

xZ,Yy

“ sup
UiPOpi,ri ,1ďiď3

}Z ˆ1 UJ
1 ˆUJ

2 ˆd UJ
3 }HS.

By Lemma 1, ξ measures the maximum magnitude of the projection of Z onto low rank
subspaces in Hilbert-Schmidt norm. Another interpretation of ξ is from Gaussian width
(Gordon, 1988), which will be discussed in Section 6.

Although the exact values of τj and ξ may be hard to compute in general, it is often
practical to provide probabilistic bounds when we impose distributional assumptions on
Z. For example, if Z is a random tensor with i.i.d. standard normal entries and consider
r1 “ r2 “ r3 “ r, p1 “ p2 “ p3 “ p, q “ 8, then by random matrix theory (Vershynin,

10
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2010), we can show that with high probability τ1i — p
?
p ` rq, τ2 —

?
pr, τ3 —

?
pr and

ξ — pr
3
2 `

?
prq. More details about the upper bounds for τj and ξ can be found in tensor

denoising and tensor co-clustering applications in Section 6.

3. Illustration of Perturbation Bounds for d “ 3 Asymmetric Case

In this section, we present our main results in the d “ 3 asymmetric case to better illustrate
the main ideas in this paper. The specialized HOOI algorithm for the d “ 3 asymmetric
case is given in Algorithm 2 and its guarantee is provided in Theorem 1.

Algorithm 2 Higher-Order Orthogonal Iteration for Tensor Decomposition (d “ 3)

Input: rT P Rp1ˆp2ˆp3 , initialization trU
p0q
i u

3
i“1 with rU

p0q
i P Opi,ri , maximum number of

iterations tmax.
Output: tpUiu

3
i“1,

pT .

1: For t “ 1, . . . , tmax, do

rU
pt`1q
1 “ SVDr1

´

M1

´

rT ˆ2 prU
ptq
2 q

J ˆ3 prU
ptq
3 q

J
¯¯

,

rU
pt`1q
2 “ SVDr2

´

M2

´

rT ˆ1 prU
pt`1q
1 qJ ˆ3 prU

ptq
3 q

J
¯¯

,

rU
pt`1q
3 “ SVDr3

´

M3

´

rT ˆ1 prU
pt`1q
1 qJ ˆ2 prU

pt`1q
2 qJ

¯¯

.

2: Let pUi “ rU
ptmaxq

i for i “ 1, 2, 3 and compute

pT “ rT ˆ1 P
pU1
ˆ2 P

pU2
ˆ3 P

pU3
.

Theorem 1 (Tensor Perturbation Bounds for HOOI (d = 3)) Consider the per-
turbation model (1) with rT ,T ,Z P Rp1ˆp2ˆp3. Suppose q ě 1. Define the block-

wise errors as in (9) (10) and denote the initialization errors of trU
p0q
k u

3
k“1 as ẽ0 :“

maxk“1,2,3 }
rU
p0qJ
kK Uk}, e0 :“ maxk“1,2,3 }

rU
p0qJ
kK Uk}q. Assume the initialization error and

the signal strength satisfy

ẽ0 ď
?

2{2 and λ ě p20` 28
?

2qξ. (11)

Let rT ptq :“ rT ˆ1 P
rU
ptq
1
ˆ2 P

rU
ptq
2
ˆ3 P

rU
ptq
3

be the estimator of T after t steps in Algorithm 1.

Then with inputs rT , trU
p0q
i u

3
i“1, the mode-k singular subspace updates in Algorithm 2 after

t iterations satisfy

max
k“1,2,3

›

›

›
sin Θ

´

rU
ptq
k ,Uk

¯
›

›

›

q
ď

8τ1

λ
`
e0

2t
, (12)

and the t-step tensor estimation satisfies

›

›

›

rT ptq ´ T
›

›

›

HS
ď

˜

1`
6

1´
`

8 τ1λ `
ẽ0

2t´1

˘2

¸

ξ. (13)

11
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Moreover, when tmax ě C logpe0λ{τ1q _ 1 for some C ą 0, the outputs of the estimated
mode-k singular subspaces of Algorithm 2 satisfy

max
k“1,2,3

›

›

›
sin Θ

´

pUk,Uk

¯
›

›

›

q
ď

9τ1

λ
, (14)

›

›

›
sin Θ

´

pUk,Uk

¯›

›

›

q
“

›

›

›

pUJ
kKUk

›

›

›

q
ď 4

ˆ

τ1k

λ
`

18τ1τ2

λ2
`

81τ2
1 τ3

λ3

˙

, k “ 1, 2, 3, (15)

and the output of tensor reconstruction pT satisfies

›

›

›

pT ´ T
›

›

›

HS
ď

›

›

›
JZ; pUJ

1 ,
pUJ

2 ,
pUJ

3 K
›

›

›

HS
`

3
ÿ

k“1

›

›

›

pUJ
kKMkpT q

›

›

›

F
ď 13ξ. (16)

Remark 1 (Noise Tolerance and Least Singular Value λ) Our theory relies on a
lower bound assumption of the least singular value: λ ě Cξ, which is in the same vein
as the classical matrix perturbation theory (Davis and Kahan, 1970; Wedin, 1972). More-
over, in the existing results on perturbation analysis for Canonical-Polyadic (CP) decom-
position, e.g., Theorem 5.1 of Anandkumar et al. (2014a) and Theorem 1 of Anandkumar
et al. (2014b), one assumes λ ě C}Z}. Since }Z} “ supY:}Y}HSď1,rankpYq“p1,¨¨¨ ,1qxZ,Yy, ξ
defined in (10) can be seen as a counterpart of }Z} in Tucker decomposition.

Remark 2 (Initialization) In Theorem 1, we assume the initialization trU
p0q
i u

3
i“1 is warm

in the sense that the maximum error ẽ0 is upper bounded by a constant. The constant
?

2{2
in this upper bound is chosen for convenience and can be replaced by any fixed constant
less than 1. Our perturbation bound applies to HOOI with any initialization as long as this
condition holds, although the original HOOI algorithm was proposed with the initialization

scheme named HOSVD, i.e., Û
p0q
k “ SVDrk

´

Mk

´

rT
¯¯

. Next, we briefly discuss two spe-

cific initialization schemes: HOSVD for tensor PCA/SVD (Richard and Montanari, 2014;
Zhang and Xia, 2018) and diagonal-deletion SVD for tensor completion (Xia et al., 2020).
For convenience of presentation, we focus on the setting p1 “ p2 “ p3 “ p.

• (Tensor Denoising) Suppose we observe a tensor rT “ T ` Z P Rpˆpˆp and aim to
recover T from rT . To this end, we can apply HOOI by inputting rT . When Z has
i.i.d. Np0, σ2q entries, Theorem 1 in Zhang and Xia (2018) showed if one initializes

by HOSVD, as long as λ ě Cp3{4, the initialization condition } sin ΘprU
p0q
k ,Ukq} ď

?
2

2
holds with high probability. Zhang and Xia (2018) also showed the signal strength
requirement λ ě Cp3{4 is essential, which means HOSVD is a proper initialization in
the tensor denoising model.

• (Tensor Completion) Suppose we observe a set of entries, selected uniformly at random
and indexed by Ω, from a noisy tensor T̄ “ T `Z. Denote T̄Ω as

pT̄Ωqri1,...,ids “

"

T̄ri1,...,ids, pi1, ¨ ¨ ¨ , idq P Ω;

0 otherwise.

12
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Suppose Z has i.i.d. Np0, σ2q entries. Then, it is easy to check that T̄Ω{ρ is an
unbiased estimator of T , where ρ is the sampling ratio. Xia et al. (2020) proposed to

apply HOOI on rT :“ T̄Ω{ρ to estimate T . They proposed to set rU
p0q
k as the leading

rk singular vectors of Mkp
rT qMkp

rT qJ with diagonal deletion (i.e., zero the diagonal

values of Mkp
rT qMkp

rT qJ) and showed that } sin ΘprU
p0q
k ,Ukq} ď

?
2

2 holds with high

probability when |Ω| ě Cp3{2, where |Ω| is the cardinality of Ω. At the same time, they
proved that HOSVD requires |Ω| ě Cp2 to achieve the same initialization performance
and may not be an ideal initialization scheme for tensor completion.

In addition, the random initialization is also widely considered in the literature. For exam-
ple, Anandkumar et al. (2014a) proposed to pick the best one among many random trials. It
can be proved that if the number of random trials is large enough (usually polynomial in the
dimension), one can find a trial such that the initialization is good enough (Anandkumar
et al., 2014a).

Remark 3 (Mode-k Singular Subspace Linear Convergence Property) The up-
per bound in (12) includes two parts: a fixed quantity that represents the intrinsic
estimation error, and another quantity that decays linearly to 0 with respect to iteration
index t. The linear convergence of HOOI was observed in Ishteva et al. (2011), while
Theorem 1 gives a rigorous proof for it. Note that HOOI can be viewed as a special
alternating minimization method, which was shown to have asymptotic linear convergence
rate in solving nonlinear least squares problems (Ruhe and Wedin, 1980). This fact also
sheds light on the linear convergence of HOOI.

Remark 4 (Unilateral Perturbation Bounds for Mode-k Singular Subspace)
Our tensor perturbation bounds on singular subspace share the same spirit as the unilateral
perturbation bounds on singular subspaces of matrix SVD in Cai and Zhang (2018).
Consider the matrix perturbation setting mentioned in Section 2.1 with the additional
assumption that T is rank-r and has SVD UΣVJ. Cai and Zhang (2018) showed that
the upper bound of } sin ΘppU,Uq} can be written as a1

λ `
a2
λ2 , which can be interpreted

as the sum of first and second order perturbations. In Theorem 1, the upper bound of
›

›

›
sin Θ

´

pUk,Uk

¯
›

›

›

q
can be also written as

ř3
i“1

ai
λi

which can be interpreted as summation

of the first, second, and third order perturbations. This phenomenon also generalizes to
order-d case in Theorem 3.

Due to the unilateral property, when the tensor dimension of each mode is at different
order, the estimation error rate of singular subspace in each mode can vary significantly. For
example in the tensor denoising setting, rT “ T `Z where T P Rp1ˆp2ˆp3 is a multilinear
rank-pr1, r2, r3q tensor and Z is a random tensor with i.i.d. standard normal entries. Let

rmax “ maxi ri and suppose p1 ! p2 ! p3, rmax ! p
1{2
1 . Consider q “ 8, then by random

matrix theory (Vershynin, 2010), we can show τ1i ď C
?
pi, τ2 ď Cp

?
p3rmaxq and τ3 ď

Cp
?
p3rmaxq with high probability. Thus when λ ě Cp3

b

rmax
p1

, Theorem 1 immediately

implies, with high probability

›

›

›
sin Θ

´

pUk,Uk

¯›

›

›
ď C

?
pk

λ
, k “ 1, 2, 3

13
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for some C ą 0. So we can see the perturbation of pUk depends on pk. Also as λ decreases,
for different k, different order perturbations in (15) could dominate in the perturbation

bound of pUk. For example, when λ — Cp3

b

rmax
p2

, Theorem 1 yields

›

›

›
sin Θ

´

pU1,U1

¯›

›

›
ď C

a

p2
3rmax

λ2
,

›

›

›
sin Θ

´

pU2,U2

¯›

›

›
ď C

?
p2

λ
` C 1

a

p2
3rmax

λ2
,

›

›

›
sin Θ

´

pU3,U3

¯
›

›

›
ď C

?
p3

λ

for constants C,C 1 ą 0. More details about the application of HOOI perturbation bounds
in order-d tensor denoising and numerical studies for this unilateral property of singular
subspace perturbation can be found in Sections 6.1 and 7.1, respectively.

Remark 5 (Comparing Perturbation Bounds of truncated HOSVD and HOOI)
It is worth mentioning that the power iteration in Algorithm 1 plays an impor-
tant role for refining tensor reconstruction. Without power iteration, the estimator
pT T´HOSVD “ rT ˆ1 P

rU
p0q
1
ˆ2 P

rU
p0q
2
ˆ3 P

rU
p0q
3

with rU
p0q
i “ SVDripMip rT qq is called truncated

HOSVD (T-HOSVD) in the literature (De Lathauwer et al., 2000b). It is not hard to show
} pT T´HOSVD ´ T }HS ď C}Z}HS for some C ą 0. Since }Z}HS “ sup

}Y}HSď1
xZ,Yy and may

be much larger than ξ, we can see the power iteration can greatly improve the accuracy for
tensor reconstruction, and this echos the findings in literature in tensor denoising setting
(Zhang and Xia, 2018).

The following lemma provides an alternative way to bound
›

›

›
JZ; pUJ

1 ,
pUJ

2 ,
pUJ

3 K
›

›

›

HS
ap-

pearing in the reconstruction error bound (16).

Lemma 2 Suppose Z P Rp1ˆ¨¨¨ˆpd is a general order-d tensor and Uk, pUk P Opk,rk are
general matrices with orthonormal columns. For any subset Ω Ď t1, . . . , du, we further
define projections of Z on Ω as follows,

θΩ “
›

›Z ˆkPΩ UJ
k ˆkPΩc UJ

kK

›

›

HS
.

Then,
›

›

›
JZ; pUJ

1 ,
pUJ

2 , . . . ,
pUJ
d K
›

›

›

HS
ď

ÿ

ΩĎt1,...,du

θΩ

ź

kPΩc

›

›

›
sin ΘppUk,Ukq

›

›

›
.

We end this section by introducing a deterministic rate matching lower bound for tensor
reconstruction. Since the statement of the lower bound is relative simple, we state it in
general order-d setting. In particular, we consider the following class of pT ,Zq pairs of
p1 ˆ ¨ ¨ ¨ ˆ pd tensors and perturbations,

Frpξq “

$

’

&

’

%

pT ,Zq : rankpT q “ pr1, ¨ ¨ ¨ , rdq ď r, sup
}Y}HSď1,

rankpYqďpr1,...,rdq

xZ,Yy ď ξ

,

/

.

/

-

,

here r “ pr, . . . , rq and the comparison is entrywise.
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Theorem 2 (Tensor Reconstruction Lower Bound under Perturbation)
Consider perturbation model (1), we have the following deterministic lower bound
for reconstructing T ,

inf
pT

sup
pT ,ZqPFrpξq

} pT ´ T }HS ě

?
2

2
ξ.

Remark 6 (Optimality of HOOI and one-step HOOI for Tensor Reconstruction)
When tensor order d is fixed, combining Theorem 1 and 2, we have shown that HOOI with
good initialization is optimal for tensor reconstruction in the class pT ,Zq P Frpξq. At the
same time, from (13), we see the error rate of tensor reconstruction is optimal even after
one iteration of HOOI i.e., tmax “ 1 and more iterations can improve the coefficient in
front of ξ. This suggests that in some applications where running HOOI until convergence
is prohibitive, we can just run it for one iteration to get a fairly good reconstruction. See
more in Section 7.2 about a numerical comparison of HOOI and one-step HOOI.

Apart from the optimality of our perturbation bound in tensor reconstruction, it is also
interesting to study whether the perturbation bounds in (14), (15) for singular subspaces are
optimal or not and we leave it as an interesting future work.

4. A Blockwise Perturbation Bound of Higher-order Orthogonal
Iteration for Tensor Decomposition

In this section, we present the main results of perturbation bounds of HOOI given in
Algorithm 1. In contrast with Theorem 1, Theorem 3 in this section covers the general
order-d perturbation setting with rT having symmetric index groups tΩiu

m
i“1. Before stating

the theorem, we first define the blockwise errors of Z in this general setting. Let Sp´k̄qi :“
 

S Ď rdsztk̄u : |S| “ i
(

be the collection of all possible index sets with i elements from

rdsztk̄u and Sp´k̄q0 :“ H. For S P Sp´k̄qi , we let Sc “ prdsztk̄uqzS. Now we define the
blockwise errors of Z as

τ1 “ max
k“1,...,m

τ1k, τ1k “

›

›

›

`

Mk̄pZ ˆi‰k̄ UJ
i1 q
˘

maxprkq

›

›

›

q
, k “ 1, . . . ,m;

τj “ max
kPrms

!

max
SPSp´k̄qj´1

sup
Vi1PR

pp
i1
´r
i1
qˆr

i1 ,
}Vi1}qď1,iPS

›

›

›

›

´

Mk̄pZ ˆiPS pUi1KVi1q
J
ˆiPSc UJ

i1

¯

maxprkq

›

›

›

›

q

)

,

for j “ 2, . . . ,m.

(17)

Finally, ξ in this setting is defined as

ξ :“ sup
}Y}HSď1,rankpYqďpr11 ,...,rd1 q

xZ,Yy. (18)

Theorem 3 (General Perturbation Bounds for Tensor Power Iteration)
Consider the perturbation model (1) with rT ,T ,Z P Rp11ˆ¨¨¨ˆpd1 , symmetric index
groups pΩ1, . . . ,Ωmq and blockwise errors in (17) (18). Suppose q ě 1. Denote the initial-

ization errors of trU
p0q
k u

m
k“1 as ẽ0 :“ maxk“1,...,m }

rU
p0qJ
kK Uk}, e0 :“ maxk“1,...,m }

rU
p0qJ
kK Uk}q.
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Assume the initialization error and the signal strength satisfy

ẽ0 ď

?
2

2
and λ ě 2

d`4
2

ˆ

1`

?
2

2

˙d

ξ. (19)

Let rT ptq :“ rT ˆΩ1P rU
ptq
1
ˆ¨ ¨ ¨ˆΩmP rU

ptq
m

be the estimator of T after t steps in Algorithm 1.

Then with inputs rT , trU
p0q
k u

m
k“1, tΩiu

m
i“1, the mode-k singular subspace updates in Algorithm

1 after t iterations satisfy

max
kPrms

›

›

›
sin Θ

´

rU
ptq
k ,Uk

¯›

›

›

q
ď 2

d`3
2
τ1

λ
`
e0

2t
, (20)

and the t-step tensor estimation satisfies

›

›

›

rT ptq ´ T
›

›

›

HS
ď

¨

˝1` 2d

˜

1´

ˆ

2
d`3

2
τ1

λ
`

ẽ0

2t´1

˙2
¸´ d´1

2

˛

‚ξ. (21)

Moreover, when tmax ě C logpe0λ{τ1q _ 1 for some C ą 0, the outputs of estimated
mode-k singular subspace of Algorithm 1 satisfy

max
kPrms

›

›

›
sin Θ

´

pUk,Uk

¯›

›

›

q
ď

´

2
d`3

2 ` 1
¯ τ1

λ
,

›

›

›
sin Θ

´

pUk,Uk

¯›

›

›

q
ď

2

p1´ c˚pτ1, λ, dqq
d´1

2

¨

˚

˝

τ1k

λ
`

d´1
ÿ

j“1

`

d´1
j

˘

´

2
d`3

2 ` 1
¯j
τ j1τj`1

λj`1

˛

‹

‚

. (22)

for k “ 1, . . . ,m where c˚pτ1, λ, dq :“

ˆ

2
d`3

2 `2

˙2

τ2
1

λ2 ď 1
2 , and the output of tensor recon-

struction pT satisfies

›

›

›

pT ´ T
›

›

›

HS
ď

›

›

›
Z ˆΩ1

pUJ
1 ˆ ¨ ¨ ¨ ˆΩm

pUJ
m

›

›

›

HS
`

m
ÿ

k“1

|Ωk|

›

›

›

pUJ
kKMk̄pT q

›

›

›

F

ď

´

1` 2d p1´ c˚ pτ1, λ, dqq
´ d´1

2

¯

ξ.

(23)

Remark 7 (Size of c˚pτ1, λ, dq) It is easy to check c˚pτ1, λ, dq ď
1
2 based on τ1 ď ξ and

the requirement of the signal strength λ. So we have p1´ c˚pτ1, λ, dqq
´ d´1

2 ď 2
d´1

2 in the

upper bounds of
›

›

›
sin Θ

´

pUk,Uk

¯›

›

›

q
and

›

›

›

pT ´ T
›

›

›

HS
. However, in many practical applica-

tions, such as tensor denoising to be introduced in Section 6.1, tensor order d is fixed and

λ " p2
d`3

2 ` 2qτ1. In this case c˚pτ1, λ, dq could be much smaller than 1
2 and the scale of

p1´ c˚pτ1, λ, dqq
´ d´1

2 can be very close to 1.
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Remark 8 (Comparison with Anandkumar et al. (2014a)) Compared with the per-
turbation bounds of power iteration for supersymmetric CP-low-rank decomposition (Anand-
kumar et al., 2014a, Theorem 5.1), our Theorem 3 covers more general symmetric and par-
tial symmetric multilinear low-rank decomposition settings. Also in Theorem 5.1 of Anand-
kumar et al. (2014a), the tensor reconstruction error bound of power iteration is given in
terms of tensor spectral norm, which does not improve upon the guarantee by the trivial
estimator rT . On the other hand, the tensor reconstruction error of pT in Theorem 3 is
given in Hilbert-Schmidt norm and can be significantly better than the guarantee for rT as
}Z}HS " ξ in most of the applications.

Remark 9 (Dependence on Tensor Order d) We note that in Theorem 3, the con-
stants in our condition (19) and perturbation bounds (20) and (21) scales exponentially
w.r.t. the tensor order d. We think this exponential dependence on d is not sharp. In fact,
in Theorem 1 of the recent work Luo and Zhang (2021), they show the dependence on d in
(19) and (21) can be reduced to polypdq.

Remark 10 (A Proof Sketch of Theorem 3) We provide a sketch on how to prove
(20) and (21). The rest of the results (22) and (23) follow easily from (20), (21) by plugging

in tmax ě logpe0λ{τ1q _ 1. The idea is to develop the recursive error bounds of rU
pt`1q
k , i.e.,

the estimate of Uk at iteration t` 1, based on the error bound of rU
ptq
k , i.e., the estimate at

iteration t. The argument can be divided into three steps. It is worth mentioning that all
three steps involves complex tensor algebra and this makes the proof even more difficult.

First, we denote

ẽt “ max
k

ẽt,k, ẽt,k “
›

›

›
prU

ptq
kKq

JUk

›

›

›
,

et “ max
k

et,k, et,k “
›

›

›
prU

ptq
kKq

JUk

›

›

›

q
, k “ 1, . . . ,m; t “ 0, 1, . . . .

Step 1. In HOOI procedure, the update for the mode-k singular subspace satisfies

rU
pt`1q
k “SVDrk

ˆ

Mk̄

´

T ˆiPΩk
rU
pt`1qJ
i1 ˆ

qΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯

`Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 ˆ

qΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯

˙

,

here Ωi :“
Ťi´1
j“1 Ωj ,Ωi :“

Ťd
j“i`1 Ωj. To give an upper bound for et`1,k, we aim to give an

upper bound for
›

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 ˆ

qΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯¯

maxprkq

›

›

›

›

q

(24)

by using τ1, . . . , τm, et, et`1. The main idea to bound (24) is to introduce I “ PUi1
` PUi1K

in each mode multiplication, expand the mode products, then write the whole term into
summation of many small terms.

Step 2. After getting an upper bound for (24), we use induction to prove the following
claim,

et ď 2pd`3q{2τ1{λ` e0{2
t, ẽt ď 2pd`3q{2τ1{λ` ẽ0{2

t; t “ 0, 1, . . . .
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One technical difficulty is to deal with the sequential updating of singular subspaces in HOOI
and we use the induction idea again to tackle it. Tools we use in this step include the singular
subspace bound in (Luo et al., 2020, Theorem 5).

Step 3. The final and most challenging step involves upper bounding the tensor recon-
struction error } rT ˆΩ1P pU1

ˆ¨ ¨ ¨ˆΩmP pUm
´T }HS by the unified quantity ξ. By decomposing

T onto the estimated singular subspaces, we can show that

›

›

›

rT ˆΩ1 P pU1
ˆ ¨ ¨ ¨ ˆΩm P pUm

´ T
›

›

›

HS

ď

›

›

›
Z ˆΩ1 P pU1

ˆ ¨ ¨ ¨ ˆΩm P pUm

›

›

›

HS
`

d
ÿ

k“1

›

›

›

pUJ
k1KMkpT q

›

›

›

F
.

By definition,
›

›

›
Z ˆΩ1 P pU1

ˆ ¨ ¨ ¨ ˆΩm P pUm

›

›

›

HS
ď ξ. We further show

›

›

›

pUJ
k1KMkpT q

›

›

›

F

paq
ď Cpτ1, d, λq ξ.

Here Cpτ1, d, λq is a quantity that depends on τ1, d, λ. The main challenge to prove (a) is
that pUk1 is not the left singular subspace of Mkp

rT q. So to leverage the SVD property of
pUk1K, we have to project rT onto rU

ptmaxq

i and rU
ptmax´1q
i , then use the subspace perturbation

bounds established before.

Note that Theorem 3 covers the general situation where T may have partial symmetric
modes. We provide a corollary for the common asymmetric case, i.e., Ωi “ tiu, i “ 1, . . . , d
in the Appendix.

5. Perturbation Bounds of Power Iteration for Tensors with Partial Low
Multilinear Rank Structure

In some applications, e.g., multilayer network analysis (Lei et al., 2019), the tensor rT only
has low-rank structure on a subset of modes. Both the tensor power iteration algorithm
and our perturbation theory can be generalized to such cases. For a better illustration, we
present the modified algorithm and theory for order-3 tensor perturbation with mode 1 to
be dense. Specifically, we consider

rT “ T `Z P Rp1ˆp2ˆp3 , (25)

where T is the signal tensor and Z is the noise. We assume T is low-rank on modes 2
and 3, i.e., T “ S ˆ2 U2 ˆ3 U3, where S P Rp1ˆr2ˆr3 is the core tensor and Ui P Opi,ri

for i “ 2, 3. In this setting, we consider the modified tensor power iteration algorithm for
low-rank tensor decomposition in Algorithm 3.
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Algorithm 3 Power Iteration for Tensor Decomposition in Partial Multilinear Low-Rank
Setting (25)

Input: rT P Rp1ˆp2ˆp3 , initialization trU
p0q
i P Opi,riu

3
i“2, maximum number of iterations

tmax.
Output: tpUiu

3
i“2,

pT .

1: For t “ 1, . . . , tmax, do

rU
pt`1q
2 “ SVDr2

´

M2

´

rT ˆ3 prU
ptq
3 q

J
¯¯

rU
pt`1q
3 “ SVDr3

´

M3

´

rT ˆ2 prU
pt`1q
2 qJ

¯¯

.

2: Let pUi “ rU
ptmaxq

i for i “ 2, 3 and compute

pT “ rT ˆ2 P
pU2
ˆ3 P

pU3
.

In the setting (25), we can define the blockwise errors of Z as follows:

τ1 “ max
k“2,3

τ1k, τ12 “

›

›

›

`

M2pZ ˆ3 UJ
3 q
˘

maxpr2q

›

›

›

q
, τ13 “

›

›

›

`

M3pZ ˆ2 UJ
2 q
˘

maxpr3q

›

›

›

q

τ2 “ max
!

max
VPRpp3´r3qˆr3

}V}qď1

›

›

›

`

M2pZ ˆ3 pU3KVqJq
˘

maxpr2q

›

›

›

q
,

max
VPRpp2´r2qˆr2

}V}qď1

›

›

›

`

M3pZ ˆ2 pU2KVqJq
˘

maxpr3q

›

›

›

q

)

;

ξ “ sup
rankpYqďpp1,r2,r3q,}Y}HSď1

xZ,Yy .

(26)

We have the following perturbation bounds for the outputs of Algorithm 3.

Theorem 4 (Tensor Perturbation Bounds with Partial Multilinear Low-Rank)
Consider the perturbation model (25) with rT ,T ,Z P Rp1ˆp2ˆp3. Suppose q ě 1. Define

the blockwise errors as in (26) and denote the initialization errors of trU
p0q
k u

3
k“2 as

ẽ0 :“ maxk“2,3 }
rU
p0qJ
kK Uk}, e0 :“ maxk“2,3 }

rU
p0qJ
kK Uk}q. Assume the initialization error

and the signal strength satisfy

ẽ0 ď
?

2{2 and λ ě 16ξ. (27)

Then with inputs rT , trU
p0q
i u

3
i“2, the mode-k singular subspace updates in Algorithm 3 after

t iterations satisfy

max
k“2,3

›

›

›
sin Θ

´

rU
ptq
k ,Uk

¯
›

›

›

q
ď

4
?

2τ1

λ
`
e0

2t
. (28)

Moreover, when tmax ě C logpe0λ{τ1q _ 1 for some C ą 0, the outputs of estimated mode-k
singular subspace of Algorithm 3 satisfy

max
k“2,3

›

›

›
sin Θ

´

pUk,Uk

¯›

›

›

q
ď
p4
?

2` 1qτ1

λ
,
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›

›

›
sin Θ

´

pUk,Uk

¯›

›

›

q
“

›

›

›

pUJ
kKUk

›

›

›

q
ď 2

?
2

ˆ

τ1k

λ
`
p4
?

2` 1qτ1τ2

λ2

˙

, k “ 2, 3. (29)

The output of tensor reconstruction pT satisfies

›

›

›

pT ´ T
›

›

›

HS
ď

›

›

›
Z ˆ2 P

pU2
ˆ3 P

pU3

›

›

›

HS
`

3
ÿ

k“2

›

›

›

pUJ
kKMkpT q

›

›

›

F
ď p4

?
2` 1qξ.

The proof of Theorem 4 follows the proof of Theorem 3 easily. For simplicity, we omit it
here.

6. Implications in Statistics and Machine Learning

In this section, we consider a couple of applications of the HOOI perturbation bounds we
developed in statistics and machine learning. Specifically, here we consider the perturbation
model (1) and assume Zi1,...,id ’s are independent, mean-zero σ-subgaussian, where σ ą 0 is
the subgaussianity parameter. More precisely,

E exppλZi1,...,idq ď exppCλ2σ2q, for all pi1, . . . , idq P rp1s ˆ ¨ ¨ ¨ ˆ rpds and all λ P R,

where C ą 0 is some absolute constant. For convenience, we let pmax “ maxi pi, pmin “

mini pi, rmax “ maxi ri, rmin “ mini ri.
In this setting, the quantity ξ is in fact closely related to the Gaussian width (Gordon,

1988) studied in literature that measures the size or complexity of a given set. Recall the
Gaussian width of a set S Ă Rp1ˆ¨¨¨ˆpd is defined to be

wpSq :“ E
ˆ

sup
YPS

xB,Yy
˙

,

where B P Rp1ˆ¨¨¨ˆpd is a tensor whose entries are independent Np0, 1q random variables.
In view of wpSq, we can regard ξ as the Gaussian width with no expectation and S “ tY :
}Y}HS ď 1, rankpYq ď pr1, . . . , rdqu. It can be shown in the case that Z has i.i.d. Np0, 1q
entries, ξ and wpSq are the same up to constant with high probability (Raskutti et al.,
2019).

In the following subsections, we consider two particular structures of T , one is pure low
multilinear rank structure, namely tensor denoising/tensor PCA/tensor SVD studied in
literature (Richard and Montanari, 2014; Zhang and Xia, 2018; Perry et al., 2020; Hopkins
et al., 2015) and another one is tensor co-clustering/block structure (Chi et al., 2020; Wang
and Zeng, 2019).

6.1 HOOI for Tensor Denoising

In tensor denoising, we assume T has the following structure,

T “ S ˆ1 U1 ˆ ¨ ¨ ¨ ˆd Ud, (30)

where S P Rr1ˆ¨¨¨ˆrd is the core tensor and tUi P Opi,riu
d
i“1 are loading matrices. With the

established tensor perturbation bounds, we can establish the following theoretical guarantee
for the performance of HOOI on tensor denoising with a very short proof.
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Theorem 5 (Tensor Denoising: General Order d) Consider the tensor denoising

problem “(1) ` (30)” and Algorithm 1 with inputs rT , Ωi “ tiu, initialization trU
p0q
i u

d
i“1

and tmax “ C
´

log λ{σ
?
pmax

_ 1
¯

for some C ą 0, where λ “ mink σrk pMkpSqq is

the minimal singular value of each matricization of S. Assume rmax ď p
1{pd´1q
min and

maxi }rU
p0qJ
iK Ui} ď

?
2{2. Then if λ{σ ě 2pd`4q{2p1 `

?
2{2qd

?
pmaxrmax, with probability

at least 1´ expp´cpminq, the output pUk, pT satisfy

›

›

›
sin Θ

´

pUk,Uk

¯›

›

›
ď C

ˆ

1´
c

rmax

˙´pd´1q{2
˜?

pk

λ{σ
`

a

p2
maxrmax

pλ{σq2

¸

and

} pT ´ T }HS ď C

˜

1` 2d

ˆ

1´
c

rmax

˙´ d´1
2

¸

σ

g

f

f

e

d
ÿ

i“1

piri, (31)

for some constants c, C ą 0.

When d is a constant, the upper bound for tensor reconstruction error matches the lower
bound in (Zhang and Xia, 2018, Theorem 3), which shows HOOI achieves the optimal tensor
reconstruction error in the tensor denoising problem.

6.2 Tensor Co-clustering/Block Model

Co-clustering is among the most important unsupervised learning methods that reveals the
checkerbox-like association pattern in data. A number of algorithms have been proposed
(Wang et al., 2015; Wu et al., 2016; Kolda and Sun, 2008; Papalexakis et al., 2012; Sun et al.,
2009; Jegelka et al., 2009) for tensor co-clustering in the literature, however most of the work
does not provide statistical guarantees for recovering the underlying co-clustering structure.
Very recently, Chi et al. (2020) and Wang and Zeng (2019) studied the performance of co-
clustering estimation and cocluster recovery based on convex relaxation and combinatorial
search algorithms. By using the tools of perturbation bounds of HOOI given in Section 4, we
are able to provide the first guarantee for co-clustering estimation and cocluster recovery
based on computational efficient HOOI algorithm. Compared to the convex relaxation
approach (Chi et al., 2020), HOOI has a better guarantee for tensor reconstruction and
it also gives guarantee for cocluster membership recovery. Specifically, in the tensor co-
clustering/block model, we assume T has the following structure,

T “ B ˆ1 Π1 ˆ ¨ ¨ ¨ ˆd Πd, (32)

where Πi PMpi,ri and Mpi,ri is the collection of all piˆri membership matrices with each row
has exactly one 1 and pri´1q 0’s. For any Πi, the cocluster membership of node k is denoted

by g
pkq
i P rris, which satisfies pΠiqrk,gpkqi s

“ 1. Let G
pjq
i ” G

pjq
i pΠiq “ tk P rpis : g

pkq
i “ ju be

the set of ith mode node indices that belongs to cocluster j and p
pjq
i “ |G

pjq
i | for all j P rris.

For simplicity, we assume the cocluster sizes for each cluster are on the same order for every
mode, i.e.,

p
p1q
i — p

p2q
i — ¨ ¨ ¨ — p

priq
i —

pi
ri
, for i “ 1, . . . , d. (A1)
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We consider two cocluster membership recovery error metrics:

1. Let }M}0 be the number of nonzero entries in matrix M. Suppose Eri is the set of
all ri ˆ ri permutation matrices. Define

errp pΠi,Πiq “
1

pi
min
JPEri

} pΠiJ´Πi}0 (33)

as the misclassification rate of pΠi.

2. Define

Ăerrp pΠi,Πiq “ min
JPEri

max
1ďjďri

1

p
pjq
i

}p pΠiJqrGpjqi ,:s
´ pΠiqrGpjqi ,:s

}0.

Intuitively speaking, Ăerrp pΠi,Πiq measures the worst relative misclassification rates
over all communities.

It is easy to check that 0 ď errp pΠi,Πiq ď Ăerrp pΠi,Πiq ď 2.

The following lemma gives a Tucker decomposition of T in the tensor block model (32).
This decomposition bridges the tensor co-clustering model and the tensor signal-plus-noise
model, which explains why HOOI would work for tensor co-clustering.

Lemma 3 Suppose T has the tensor co-clustering/block structure (32), where B is a mul-
tilinear rank-pr1, . . . , rdq tensor. Assume Sˆ1 V1ˆ¨ ¨ ¨ˆdVd with Vi P Ori,ri is the Tucker

decomposition of B ˆ1 pΠ
J
1 Π1q

1
2 ˆ ¨ ¨ ¨ ˆ pΠJ

d Πdq
1
2 . Then

T “ S ˆ1 U1 ˆ ¨ ¨ ¨ ˆd Ud

with Ui “ ΠipΠ
J
i Πiq

´ 1
2 Vi P Opi,ri for i “ 1, . . . , d.

The following Theorem 6 gives the theoretical guarantee on the performance of Algo-
rithm 4 for tensor reconstruction and cocluster membership recovery.

Algorithm 4 HOOI for Tensor Co-clustering/Block Model

Input: Tensor rT P Rp1ˆ¨¨¨ˆpd , indices group Ωi “ tiu, initialization rU
p0q
i P Rpiˆri for

i “ 1, . . . , d, maximum number of iterations tmax,
Output: pΠi PMpi,ri ,i “ 1, . . . , d and pT .

1: Apply Algorithm 1 with input rT , tΩiu
d
i“1, trU

p0q
i u

d
i“1, maximum number of iterations

tmax and get outputs tpUiu
d
i“1 and pT .

2: For each mode i, apply ε-approximation K-means (Kumar et al., 2004) on pUi, i.e.,
compute pΠi, PMpi,ri ,

pXi P Rriˆri such that

} pΠi
pXi ´ pUi}

2
F ď p1` εq min

ΠPMpi,ri ,XPR
riˆri

}ΠX´ pUi}
2
F . (34)
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Theorem 6 (HOOI for Tensor Co-clustering/Block Model) Consider the tensor
co-clustering/block model “(1) ` (32)” and the Algorithm 4 with inputs rT , initializa-

tions trU
p0q
i u

d
i“1 and tmax “ C

ˆ

log

ˆ

λ{σ
?
pmax

c

śd
i“1 pi

śd
i“1 ri

˙

_ 1

˙

for some C ą 0, where

λ “ mink σrk pMkpBqq is the minimal singular value at each matricization of the core tensor

parameter B. Assume rmax ď p
1{pd´1q
min , maxi }rU

p0qJ
iK Ui} ď

?
2

2 , and (A1) holds. Then if

λ{σ ě C

d

p2
maxrmax

śd
i“1 ri

pmin
śd
i“1 pi

,

for sufficiently large constant C ą 0, with probability at least 1 ´ expp´cpminq for some
c ą 0, pUk, pT satisfy

} sin ΘppUk,Ukq} ď Cpdq

?
pk

λ{σ

d

śd
i“1 ri

śd
i“1 pi

, k “ 1, . . . , d

} pT ´ T }HS ď Cpdqσ

g

f

f

e

d
ÿ

i“1

piri;

and we also have the following upper bound on cocluster recovery error,

errp pΠi,Πiq ď C1pd, εq
p1i,maxri

pλ{σq2

śd
i“1 ri

śd
i“1 pi

,

Ăerrp pΠi,Πiq ď C2pd, εq
piri
pλ{σq2

śd
i“1 ri

śd
i“1 pi

.

Here Cpdq, C1pd, εq, C2pd, εq ą 0 are some constants depending only on d and ε, p1i,max is the
second largest cocluster size at mode i.

Note that our cocluster recovery guarantee is new for polynomial-time algorithms. When
p “ p1 “ ¨ ¨ ¨ “ pd, the best polynomial time algorithm guarantee for tensor reconstruction
is pd´1 in Chi et al. (2020) and our result can be significantly better.

7. Numerical Studies

In this section, we first provide numerical studies to support the main theoretical results in
Section 4 and then compare HOOI with other existing algorithms for tensor decomposition
in applications of tensor denoising and tensor co-clustering. Throughout the simulation,
we consider order-3 tensor perturbation setting rT “ T `Z with Z being the noise tensor
with i.i.d. Np0, σ2q entries. Without particular specification, we set p “ p1 “ p2 “ p3, r “
r1 “ r2 “ r3. The error metrics we consider for tensor reconstruction and mode-k singular
subspace estimation are root mean square error (RMSE) } pT ´ T }HS and } sin ΘppUk,Ukq},
respectively. All simulations are repeated 100 times and the average statistics are reported.
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Figure 2: HOOI with good initialization. (a) Tensor reconstruction error } pT ´ T }HS for
p P t20, 30, . . . , 100u, r “ 5, σ P t1, 2, 3, 4u and λ “ 5

?
prσ; (b) Mode-k singular

subspace estimation with and without rescaling under p1 “ 10, p2 “ 100, p3 “

500, r P t3, 5u, σ “ 1 and λ “ α ¨ p3

?
r1

?
p1

with varying α

7.1 Perturbation Bounds of HOOI with good initialization

In this simulation, we study the perturbation bounds of HOOI with randomly generated
good initialization. Let T “ Sˆ1 U1ˆ2 U2ˆ3 U3, where Ui P Rpiˆr is generated uniformly
at random from Opi,r and S P Rrˆrˆr is a diagonal tensor with diagonal values tiλuri“1. The

initializations of Ui of Algorithm 1 are rU
p0q
i “ 1?

2
Ui `

1?
2
U1
i, where U1

i “ UiKO for some

random orthogonal matrix O P Opi´r,r. It is easy to check that } sin ΘpUi, rU
p0q
i q} “

?
2

2 for
i “ 1, 2, 3.

First for tensor reconstruction, let p P t20, 30, . . . , 100u, r “ 5, σ P t1, 2, 3, 4u and

λ “ 5
?
prσ. We can check that with high probability, }Z}HS ď Cp

3
2σ and ξ ď C

?
prσ

for some C ą 0 following the same proof as Theorem 5. In Figure 2(a), the RMSE of
tensor reconstruction of HOOI is presented. We find as the perturbation results in Section
4 suggest, } pT ´ T }HS can be much smaller than }Z}HS. This demonstrates the superior
performance of the HOOI estimator compared to the trivial estimator rT . At the same time,
the RMSE for tensor reconstruction increases as p and σ become bigger and this matches
our theoretical findings in Theorem 3 that the error bound of HOOI for } pT ´T }HS is Opξq,
which increases as p, σ increase.

Next we demonstrate the unilateral perturbation bounds for mode-k singular subspace
estimation. Specifically, we consider p1 “ 10, p2 “ 100, p3 “ 500, r P t3, 5u, σ “ 1 and

λ “ α ¨p3

?
r

?
p1

with varying α. The errors of the mode-1, mode-2, mode-3 estimated singular

subspaces with and without rescaling are provided in Figure 2(b). We can see from Figure
2(b) left panel the errors of estimated singular subspaces converge to different values de-
pending on the corresponding mode size pi, and a further rescaling of estimation error by
?
pi makes them roughly on the same level (see Figure 2(b) right panel). This matches the

unilateral property of the singular subspace perturbation results in Remark 4 that when

λ “ Opp3

?
r

?
p1
q, } sin ΘppUk,Ukq} ď C

?
pi

λ{σ for some C ą 0, and this upper bound increases

linearly with respect to
?
pi.
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HOOI O-HOOI ST-HOSVD T-HOSVD

Complexity Oppd`1 ` tmaxdrp
dq Oppd`1 ` drpdq Oppd`1q Opdpd`1q

Table 1: Time Complexity of HOOI, O-HOOI, ST-HOSVD and T-HOSVD under setting
p1 “ ¨ ¨ ¨ “ pd “ p, r1 “ ¨ ¨ ¨ “ rd “ r, r ! p. HOOI and O-HOOI is initialized by
ST-HOSVD.

7.2 Comparison of HOOI with other Algorithms

In this section, we do a comparison of HOOI with truncated HOSVD (T-HOSVD) (De Lath-
auwer et al., 2000b) and sequentially truncated HOSVD (ST-HOSVD) (Vannieuwenhoven
et al., 2012) in the tensor denoising and tensor co-clustering applications. We also in-
clude one-step HOOI (O-HOOI), since it might be useful as a surrogate of HOOI in
large scale tensor decomposition settings as we mentioned in Remark 6. The initializa-
tion we consider for HOOI and O-HOOI are ST-HOSVD with natural truncation order,

i.e., rU
p0q
i “ SVDrpMip rT ˆjăi rU

p0q
j qq. In Table 1, we give the time complexity of HOOI,

O-HOOI, ST-HOSVD and T-HOSVD. We can see that as long as dr ď p, a common case
in practice, the time complexity of O-HOOI and ST-HOSVD are on the same order, and
they could be faster than full HOOI and HOSVD in general.

In tensor denoising, the generating process of T is the same as before. Let p “ 100,
r “ 5, σ P t1, 2u, λ “ α ¨ p

3
4σ with varying α. The comparison of these algorithms for

tensor reconstruction and singular subspace estimation are given in Figure 3. First, we find
that HOOI is best in both tensor reconstruction and singular subspace estimation among
four algorithms. Meanwhile, O-HOOI is slightly worse than HOOI for small α and has
very close performance with HOOI when α is relative large, which suggests that in some
computationally heavy applications, we can just run HOOI for one iteration to achieve
reasonable estimation. Part of this phenomenon can be explained by the one-iteration
optimality of HOOI for tensor reconstruction as we discussed in Remark 6. On the other
hand, HOOI and O-HOOI are often much better than T-HOSVD and ST-HOSVD for
both tensor reconstruction and mode-k singular subspace estimation within a wide range
of settings.

Finally, we study the performance of the HOOI-based Algorithm 4 in tensor co-clustering
recovery and do a comparison of it with T-HOSVD, ST-HOSVD, and O-HOOI based clus-
tering algorithms. In this simulation, we generate T “ B ˆ1 Π1 ˆ2 Π2 ˆ3 Π3 such that

tΠiu
3
i“1 have balanced cluster size and B “ B0

mini σrpMipB0qq
λ with B0

i.i.d.
„ Np0, 1q. The

error metric we consider is the average cocluster membership misclassification error rate in

(33). The performance of Algorithm 4 under p P t50, 80u, r P t3, 5, 8u, σ “ 1, λ “ α ¨ r
3{2

p3{4σ

is presented in Figure 4(a). We can see the misclassification error decreases as the signal
strength increases and cocluster number decreases. The comparison of Algorithm 4 and
T-HOSVD, ST-HOSVD, O-HOOI based spectral clustering is given in Figure 4(b) under
the same setting with r “ 5. Again, HOOI-based algorithm has the best performance in
cocluster recovery. O-HOOI and ST-HOSVD perform similarly here and both of them are
much better than T-HOSVD.
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(Û
i,U

i||
3 sig

●

●
1
2

Algorithm

●
HOOI
O−HOOI
ST−HOSVD
T−HOSVD

(b) Singular Subspace Estimation

Figure 3: Comparison of HOOI, one-step HOOI (O-HOOI), truncated HOSVD (T-
HOSVD), sequentially truncated HOSVD (ST-HOSVD) in tensor denoising under

p “ 100, r “ 5, σ P t1, 2u, λ “ α ¨ p
3
4σ with α P r1, 4s. (a) Tensor reconstruction;

(b) Averaged singular subspace estimation
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Figure 4: Tensor cocluster recovery under σ “ 1, λ “ α ¨ r
3{2

p3{4σ with varying α. (a) HOOI

on tensor cocluster recovery under p P t50, 80u, r P t3, 5, 8u. (b) Comparison of
HOOI, one-step HOOI (O-HOOI), truncated HOSVD (T-HOSVD), sequentially
truncated HOSVD (ST-HOSVD) in cocluster recovery under p “ 80, r “ 5.
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8. Conclusion and Discussion

In this paper, we provide the first sharp blockwise perturbation bounds of HOOI for tensors
with guarantees for both tensor reconstruction and mode-k singular subspace estimation.
Furthermore, we show both HOOI and one-step HOOI with good initialization is optimal in
terms of tensor reconstruction by providing rate matching lower bound. Finally, we support
our theoretical results with extensive numerical studies and apply them to tensor denoising
and tensor co-clustering applications. Apart from the applications mentioned above, the
main perturbation results can be applied to many other applications where tensor “spectral
method” HOOI is applicable, such as tensor completion (Yuan and Zhang, 2016, 2017; Xia
et al., 2020; Xia and Yuan, 2017), hypergraphic stochastic block model (Ghoshdastidar
and Dukkipati, 2014, 2017; Ke et al., 2019; Chien et al., 2019; Ahn et al., 2018; Kim et al.,
2018), multilayer network (Lei et al., 2019; Jing et al., 2020), MPCA (Lu et al., 2008), latent
variable model (Anandkumar et al., 2014a), etc. In tensor completion (Xia et al., 2020) and
many other applications, more specialized initializers can achieve better performance than
HOSVD – the classic initializers for HOOI in the literature (De Lathauwer et al., 2000a).
Our tensor perturbation bounds still apply to these cases as our theoretical analysis admits
all initializers satisfying certain mild conditions.

At the same time, due to the NP hardness of computing many tensor quantities (Hillar
and Lim, 2013), the Alternating Least Square (ALS) and Power iteration have been the
“workhorse” algorithms in computing low-rank tensor approximation and solving many
other tensor problems (Kolda and Bader, 2009). Our induction proof idea in Theorem 3
could also shed light on how to analyze other iterative ALS/Power iteration procedures for
tensor problems (Zhou et al., 2013; Lu et al., 2008; Wang and Zeng, 2019; Xu et al., 2005;
Yan et al., 2005, 2006; Lee and Wang, 2020).

The convergence rate of HOOI is another important topic related to the results in this
paper. Savas and Lim (2010); Elden and Savas (2009) observed that HOOI converge fast
when the target tensor has fast-decaying multilinear singular values (in other words, the
tensor is approximately Tucker low-rank). On the other hand, HOOI may converge slowly
when the target tensor is high-rank or approximately sparse (Savas and Lim, 2010; Elden
and Savas, 2009). In this paper, we studied how HOOI converges when the target tensor is
approximately Tucker low-rank. It is interesting to further explore how HOOI converges in
the less ideal settings, such as for the high-rank or approximately sparse tensors.

In addition to the perturbation results for HOOI, it is also interesting to develop pertur-
bation results for the second-order algorithms, such as (quasi-)Newton-Grassmann method
(Elden and Savas, 2009; Savas and Lim, 2010), geometric Newton method (Ishteva et al.,
2009), Riemannian trust region scheme (Ishteva et al., 2011) since these second-order meth-
ods may take much fewer iterations than HOOI to converge. Also, this paper mainly focuses
on Tucker format of tensor decomposition. Although Tucker format has many advantages,
in ultra higher-order tensor problems, the storage cost of the core tensor in Tucker format
scales exponentially with respect to the tensor order and it is more desirable to consider
other low-rank tensor decomposition formats, such as the hierarchical Tucker decomposition
(Ballani and Grasedyck, 2013; Grasedyck, 2010; Hackbusch and Kühn, 2009) and Tensor-
Train decomposition (Oseledets, 2011; Oseledets and Tyrtyshnikov, 2009; Zhou et al., 2020).
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It is interesting to develop the perturbation bounds for algorithms on Hierarchical Tucker
or Tensor Train tensor decompositions.
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Appendix A. Tensor Perturbation Bounds for HOOI in Asymmetric Case

In this section, we present a Corollary of Theorem 3 in the case where Ωi “ tiu, i “ 1, . . . , d,
which appears frequently in practice.

Corollary 1 (Tensor Perturbation Bounds for HOOI in Asymmetric Case)
Consider the perturbation model (1) with rT ,T ,Z P Rp1ˆ¨¨¨ˆpd and Ωi “ tiu, i “ 1, . . . , d.

Define Sp´kqi :“ tS Ď rdsztku : |S| “ iu as the set of all possible index sets with i elements

from rdsztku and Sp´kq0 :“ H. For S P Sp´kqi , let Sc “ prdsztkuqzS. Now we define the
blockwise errors as

τ1 “ max
k“1,...,d

τ1k, τ1k “

›

›

›

`

MkpZ ˆi‰k UJ
i q
˘

maxprkq

›

›

›

q
, k “ 1, . . . , d;

τj “ max
k“1,...,d

!

max
SPSp´kqj´1

sup
ViPRppi´riqˆri ,
}Vi}qď1,iPS

›

›

›

›

´

MkpZ ˆiPS pUiKViq
J
ˆiPSc UJ

i

¯

maxprkq

›

›

›

›

q

)

,

for j “ 2, . . . , d;

Denote the initialization errors of trU
p0q
k u

d
k“1 as ẽ0 :“ maxk“1,...,d }

rU
p0qJ
kK Uk}, e0 :“

maxk“1,...,d }
rU
p0qJ
kK Uk}q. Assume the initialization error and the signal strength satisfy

ẽ0 ď

?
2

2
and λ ě 2

d`4
2

ˆ

1`

?
2

2

˙d

ξ,

where ξ :“ sup
}Y}HSď1,rankpYqďpr1,...,rdq

xZ,Yy.

Then with inputs rT , trU
p0q
k u

d
k“1, tΩiu

d
i“1, the estimated mode-k singular subspaces up-

dates in Algorithm 1 after t iterations satisfy

max
kPrds

›

›

›
sin Θ

´

rU
ptq
k ,Uk

¯›

›

›

q
ď 2

d`3
2
τ1

λ
`
e0

2t
.

Moreover, when tmax ě logpe0λ{τ1q_ 1, the outputs of estimated mode-k singular subspaces
of Algorithm 1 satisfy

max
kPrds

›

›

›
sin Θ

´

pUk,Uk

¯
›

›

›

q
ď

´

2
d`3

2 ` 1
¯ τ1

λ
,
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›

›

›
sin Θ

´

pUk,Uk

¯›

›

›

q
ď

2

p1´ c˚pτ1, λ, dqq
d´1

2

¨

˚

˝

τ1k

λ
`

d´1
ÿ

j“1

`

d´1
j

˘

´

2
d`3

2 ` 1
¯j
τ j1τj`1

λj`1

˛

‹

‚

,

for k “ 1, . . . , d, where c˚pτ1, λ, dq “
´

2
d`3

2 ` 2
¯2 τ2

1
λ2 ď

1
2 , and the output of tensor recon-

struction pT satisfies

›

›

›

pT ´ T
›

›

›

HS
ď

›

›

›
JZ; pUJ

1 , . . . ,
pUJ
d K
›

›

›

HS
`

d
ÿ

k“1

›

›

›

pUJ
kKMkpT q

›

›

›

F

ď

´

1` 2d p1´ c˚pτ1, λ, dqq
´ d´1

2

¯

ξ.

Appendix B. Additional Proofs

B.1 Proof of Lemma 1

For generality, here we present the proof for order d case. First we show the first equivalent
characterization.

sup
}Y}HSď1,rankpYqďpr1,...,rdq

xZ,Yy ě sup
}S}HSď1,UiPOpi,ri

xZ,S ˆ1 U1 ˆ ¨ ¨ ¨ ˆd Udy

“ sup
}S}HSď1,UiPOpi,ri

xZ ˆ1 UJ
1 ˆ ¨ ¨ ¨ ˆUJ

d ,Sy

“ sup
UiPOpi,ri

}Z ˆ1 UJ
1 ˆ ¨ ¨ ¨ ˆd UJ

d }HS.

On the other hand by Theorem 2 of De Lathauwer et al. (2000b), we have

Y “

´

Y ˆ1
rUJ

1 ˆ ¨ ¨ ¨ ˆ
rUJ
d

¯

ˆ1
rU1 ˆ ¨ ¨ ¨ ˆd

rUd,

where rUi P Rpiˆri is the left singular space of MipYq. Since }Y ˆ1
rUJ

1 ˆ ¨ ¨ ¨ ˆ
rUJ
d }HS ď 1,

sup
}Y}HSď1,rankpYqďpr1,...,rdq

xZ,Yy ď sup
}S}HSď1,UiPOpi,ri

xZ,S ˆ1 U1 ˆ ¨ ¨ ¨ ˆd Udy.

So, we have proved the lemma. �

B.2 Proof of Lemma 2

This proof idea of this lemma is to project Z onto orthogonal subspaces Uk and UkK at
each modes.

Z ˆ1
pUJ

1 ˆ ¨ ¨ ¨ ˆ
pUJ
d

“pZ ˆ1 pPU1 ` PU1K
q ˆ ¨ ¨ ¨ ˆd pPUd

` PUdK
qq ˆ1

pUJ
1 ˆ ¨ ¨ ¨ ˆd

pUJ
d

“

¨

˝

ÿ

ΩĎrds

Z ˆkPΩ PUk
ˆkPΩc PUkK

˛

‚ˆ1
pUJ

1 ˆ ¨ ¨ ¨ ˆd
pUJ
d

“
ÿ

ΩĎrds

Z ˆkPΩ
rUJ
k PUk

ˆkPΩc
rUJ
k PUkK

.
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So by triangle inequality, we have

›

›

›
JZ; pUJ

1 , . . . ,
pUJ
d K
›

›

›

HS
ď

ÿ

ΩĎrds

›

›

›
Z ˆkPΩ

rUJ
k PUk

ˆkPΩc
rUJ
k PUkK

›

›

›

HS

ď
ÿ

ΩĎrds

›

›Z ˆkPΩ UJ
k ˆkPΩc UJ

kK

›

›

HS

ź

kPΩ

}rUJ
k Uk}

ź

kPΩc

}rUJ
k UkK}

ď
ÿ

ΩĎrds

›

›Z ˆkPΩ UJ
k ˆkPΩc UJ

kK

›

›

HS

ź

kPΩc

} sin ΘppUk,Ukq}

“
ÿ

ΩĎt1,...,du

θΩ

ź

kPΩc

›

›

›
sin ΘppUk,Ukq

›

›

›
.

Here the second inequality is due to the fact that }Z ˆi AB}HS “ }ABMipZq}HS ď

}A}}BMipZq}HS “ }A}}ZˆiB}HS and we apply iteratively for each mode with A “ rUJ
k Uk

(or rUJ
k UkK) and B “ UJ

k (or UJ
kK). The third inequality is due to that }rUJ

k Uk} ď 1 and
›

›

›

rUJ
k UkK

›

›

›
“

›

›

›
sin ΘppUk,Ukq

›

›

›
. �

B.3 Proof of Theorem 2

The proof is done by construction. Let’s denote Ir P pRrqbd as the order-d identity tensor
with entries pi, i, . . . , iq to be 1 and others are 0. We construct

Z1 “
ξ
?
r
Ir ˆ1

¨

˝

0rˆr
Ir

0pp1´2rqˆr

˛

‚ˆ ¨ ¨ ¨ ˆd

¨

˝

0rˆr
Ir

0ppd´2rqˆr

˛

‚,

where 0mˆn denotes a mˆ n matrix with all entries to be 0.

It is easy to check that sup
}Y}HSď1,rankpYqďpr,...,rq

xZ1,Yy ď }Z1}HS “ ξ. Similarly we

construct

T1 “
ξ
?
r
Ir ˆ1

¨

˝

Ir
0rˆr

0pp1´2rqˆr

˛

‚ˆ ¨ ¨ ¨ ˆd

¨

˝

Ir
0rˆr

0ppd´2rqˆr

˛

‚.

Also we let Z2 “ T1 and T2 “ Z1, and it is easy to check pT1,Z1q, pT2,Z2q P Frpξq. At
the same time, we have Z1 ` T1 “ T2 `Z2. Thus

inf
pT

sup
pT ,ZqPFrpξq

} pT ´ T }HS ě inf
pT

max
!

} pT ´ T1}HS, } pT ´ T2}HS

)

ě inf
pT

1

2

´

} pT ´ T1}HS ` } pT ´ T2}HS

¯

ě
1

2
}T1 ´ T2}HS “

?
2

2
ξ.

�
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B.4 Proof of Theorem 3

The proof is long and nontrivial. The main idea of the proof is to develop the recursive

error bound of rU
pt`1q
k i.e., the estimate of Uk at iteration t` 1, based on the error bound

of rU
ptq
k , i.e., the estimate at iteration t. The outline of the proof is the following: after a

briefly introduction of notations, the main proof could be divided into three steps.

• Step 1: Recall in HOOI procedure, the update for the mode-k singular subspace
satisfies

rU
pt`1q
k “SVDrk

ˆ

Mk̄

´

T ˆiPΩk
rU
pt`1qJ
i1 ˆ

qΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯

`Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 ˆ

qΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯

˙

.

To give an upper bound for et`1,k, we aim to give an upper bound for

›

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 ˆ

qΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯¯

maxprkq

›

›

›

›

q

by using τ1, . . . , τm, et, et`1 in this step..

• Step 2: After getting an upper bound for (24), in this step we use induction to prove
the following claim,

et ď 2pd`3q{2τ1{λ` e0{2
t; t “ 0, 1, . . . .

ẽt ď 2pd`3q{2τ1{λ` ẽ0{2
t; t “ 0, 1, . . . .

• Step 3: Derive the error bound for } pT ´ T }HS by the unified quantity ξ.

For convenience, in this proof we denote

Tk “Mk̄pT q, rTk “Mk̄p
rT q, Zk “Mk̄pZq, k “ 1, . . . ,m.

Suppose

et “ max
k

et,k, et,k “
›

›

›
prU

ptq
kKq

JUk

›

›

›

q
, k “ 1, . . . ,m; t “ 0, 1, . . . .

ẽt “ max
k

ẽt,k, ẽt,k “
›

›

›
prU

ptq
kKq

JUk

›

›

›
, k “ 1, . . . ,m; t “ 0, 1, . . . .

(35)

Step 1. Recall the procedure of HOOI that

rU
pt`1q
k “SVDrk

´

Mk̄

´

rT ˆiPΩk
rU
pt`1qJ
i1 ˆ

iPqΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯¯

“SVDrk

ˆ

Mk̄

´

T ˆiPΩk
rU
pt`1qJ
i1 ˆ

qΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯

`Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 ˆ

qΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯

˙

.

(36)
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Notice that rank
´

Mk̄

´

T ˆiPΩk
rU
pt`1qJ
i1 ˆ

qΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯¯

ď rk, to apply Theorem

5 in Luo et al. (2020), the key is to give an upper bound for
›

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 ˆ

qΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯¯

maxprkq

›

›

›

›

q

.

To simplify the notation, for Sj P Sp´k̄qj , we let Sj1 “ Sj
Ş

Ωk, Sj2 “ Sj
Ş

pqΩk
Ť

Ωkq

and Scj1 “ Scj
Ş

Ωk, S
c
j2 “ Scj

Ş

pqΩk
Ť

Ωkq. First we can introduce I “
`

PUi1
` PUi1K

˘

in the
expression,

›

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 ˆ

qΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯¯

maxprkq

›

›

›

›

q

“

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1

`

PUi1
` PUi1K

˘

ˆ
qΩk

rU
ptqJ
k pPUk

` PUkK
q

ˆiPΩk
rU
ptqJ
i1

`

PUi1
` PUi1K

˘

¯¯

maxprkq

›

›

›

q
.

(37)

Then

(37)
paq
ď

›

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 PUi1

ˆ
qΩk

rU
ptqJ
k PUk

ˆiPΩk
rU
ptqJ
i1 PUi1

¯¯

maxprkq

›

›

›

›

q

`
ÿ

S1PSp´k̄q1

›

›

›

´

Mk̄

´

Z ˆiPS11
rU
pt`1qJ
i1 PUi1K

ˆiPSc11
rU
pt`1qJ
i1 PUi1

ˆiPS12
rU
ptqJ
i1 PUi1K

ˆiPSc12
rU
ptqJ
i1 PUi1

¯¯

maxprkq

›

›

›

q
` ¨ ¨ ¨

`
ÿ

SjPSp´k̄qj

›

›

›

´

Mk̄

´

Z ˆiPSj1
rU
pt`1qJ
i1 PUi1K

ˆiPScj1
rU
pt`1qJ
i1 PUi1

ˆiPSj2
rU
ptqJ
i1 PUi1K

ˆiPScj2
rU
ptqJ
i1 PUi1

¯¯

maxprkq

›

›

›

q
` ¨ ¨ ¨

`

›

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 PUi1K

ˆ
qΩk

rU
ptqJ
k PUkK

ˆiPΩk
rU
ptqJ
i1 PUi1K

¯¯

maxprkq

›

›

›

›

q

“

›

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 PUi1

ˆ
qΩk

rU
ptqJ
k PUk

ˆiPΩk
rU
ptqJ
i1 PUi1

¯¯

maxprkq

›

›

›

›

q

`

d´1
ÿ

j“1

ÿ

SjPSp´k̄qj

›

›

›

´

Mk̄

´

Z ˆiPSj1
rU
pt`1qJ
i1 PUi1K

ˆiPScj1
rU
pt`1qJ
i1 PUi1

ˆiPSj2
rU
ptqJ
i1 PUi1K

ˆiPScj2
rU
ptqJ
i1 PUi1

¯¯

maxprkq

›

›

›

q
.

(38)

Here paq is due to the triangle inequality for truncated Schatten-q norm given in Lemma 4
of Luo et al. (2020). The right hand side of (38) can be divided into the sum of d groups
and the value of jth group is denoted as Gj where

G0 :“

›

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 PUi1

ˆ
qΩk

rU
ptqJ
k PUk

ˆiPΩk
rU
ptqJ
i1 PUi1

¯¯

maxprkq

›

›

›

›

q
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and for 1 ď j ď d´ 1, define Gj to be,

Gj “
ÿ

SjPSp´k̄qj

›

›

›

´

Mk̄

´

Z ˆiPSj1
rU
pt`1qJ
i1 PUi1K

ˆiPScj1
rU
pt`1qJ
i1 PUi1

ˆiPSj2
rU
ptqJ
i1 PUi1K

ˆiPScj2
rU
ptqJ
i1 PUi1

¯¯

maxprkq

›

›

›

q
.

Next we are going to upper bound Gj p0 ď j ď d´ 1q.

• Upper Bound of G0.

G0 “

›

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 PUi1

ˆ
qΩk

rU
ptqJ
k PUk

ˆiPΩk
rU
ptqJ
i1 PUi1

¯¯

maxprkq

›

›

›

›

q

“

›

›

›

´

Mk̄

´

`

Z ˆi‰k̄ UJ
i1
˘

ˆiPΩk
rU
pt`1qJ
i1 Ui1 ˆqΩk

rU
ptqJ
k Uk

ˆiPΩk
rU
ptqJ
i1 Ui1

¯¯

maxprkq

›

›

›

q

ď

›

›

›

`

Mk̄

`

Z ˆi‰k̄ UJ
i1
˘˘

maxprkq

›

›

›

q
“ τ1k.

Here the inequality is due to the fact }rU
ptqJ
i1 Ui1} ď 1 for any t and the following fact: for

any matrix A s.t. }A} ď 1,

σk pMipZ ˆj Aqq “ σk
`

MipZq ¨AJ
˘

ď σk pMipZqq }A} ď σk pMipZqq , (39)

where the first inequality is due to Lemma 7 of Luo et al. (2020).

• Upper Bound of Gj p1 ď j ď d´ 1q.

Gj ď

ˆ

d´ 1

j

˙

ˆ max
SjPSp´k̄qj

›

›

›

´

Mk̄

´

Z ˆiPSj1
rU
pt`1qJ
i1 PUi1K

ˆiPScj1
rU
pt`1qJ
i1 PUi1

ˆiPSj2
rU
ptqJ
i1 PUi1K

ˆiPScj2
rU
ptqJ
i1 PUi1

¯¯

maxprkq

›

›

›

q

paq
ď

ˆ

d´ 1

j

˙

max
SjPSp´k̄qj

¨

˝

ź

iPSj1

›

›

›

rU
pt`1qJ
i1 Ui1K

›

›

›

q

ź

iPSj2

›

›

›

rU
ptqJ
i1 Ui1K

›

›

›

q

˛

‚ˆ

›

›

›

›

›

›

›

›

¨

˚

˝

Mk̄

¨

˚

˝

Z ˆiPSj1

rU
pt`1qJ
i1 PUi1K

›

›

›

rU
pt`1qJ
i1 PUi1K

›

›

›

q

ˆiPSj2

rU
ptqJ
i1 PUi1K

›

›

›

rU
ptqJ
i1 PUi1K

›

›

›

q

ˆiPScj UJ
i1

˛

‹

‚

˛

‹

‚

maxprkq

›

›

›

›

›

›

›

›

q

,

(40)
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where (a) is due to the fact that }Ũ
ptqJ
i Ui1} ď 1 for any t. By simplifying (40), we get

Gj ď

ˆ

d´ 1

j

˙

max
SjPSp´k̄qj

¨

˝

ź

iPSj1

›

›

›

rU
pt`1qJ
i1 Ui1K

›

›

›

q

ź

iPSj2

›

›

›

rU
ptqJ
i1 Ui1K

›

›

›

q

˛

‚

ˆ

›

›

›

´

Mk̄

´

Z ˆiPSj1

rU
pt`1qJ
i1 Ui1K

›

›

›

rU
pt`1qJ
i1 Ui1K

›

›

›

q

UJ
i1K

ˆiPSj2

rU
ptqJ
i1 Ui1K

›

›

›

rU
ptqJ
i1 Ui1K

›

›

›

q

UJ
i1K ˆiPScj UJ

i1

¯¯

maxprkq

›

›

›

q

pbq
ď

ˆ

d´ 1

j

˙

max
SjPSp´k̄qj

¨

˝

ź

iPSj1

›

›

›

rU
pt`1qJ
i1 Ui1K

›

›

›

q

ź

iPSj2

›

›

›

rU
ptqJ
i1 Ui1K

›

›

›

q

˛

‚ˆ τj`1

ď

ˆ

d´ 1

j

˙

max
SjPSp´k̄qj

petq
|Sj2| pet`1q

|Sj1| τj`1

(41)

where (b) is due to the fact that

›

›

›

›

›

rU
pt`1qJ

i1
Ui1K

›

›

›

rU
pt`1qJ

i1
Ui1K

›

›

›

q

›

›

›

›

›

q

ď 1 and the definition of τj`1.

So in summary, plug (41) into (38), now we have the following bound
›

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
pt`1qJ
i1 ˆ

qΩk
rU
ptqJ
k ˆiPΩk

rU
ptqJ
i1

¯¯

maxprkq

›

›

›

›

q

ďτ1k `

d´1
ÿ

j“1

ˆ

d´ 1

j

˙

max
SjPSp´k̄qj

petq
|Sj2| pet`1q

|Sj1| τj`1.

(42)

Step 2. In this step we want to use induction to prove the following claims,

et ď 2
d`3

2
τ1

λ
` e0{2

t and ẽt ď 2
d`3

2
τ1

λ
` ẽ0{2

t; t “ 0, 1, . . . . (43)

Since the proof of two statements in (43) are similar, we mainly focus on the proof of
the first statement. Claim (43) clearly holds if t “ 0. Assume the first claim of (43) holds
for t and next we show it also holds for t` 1.

Let’s first show the upper bound of et can be used to upper bound et`1,1. Notice

2

›

›

›

›

´

M1̄

´

Z ˆi‰1̄
rU
ptqJ
i1

¯¯

maxpr1q

›

›

›

›

q

paq
ě

›

›

›

rU
pt`1qJ
1K U1

›

›

›

q
σr1

´

M1̄

´

T ˆi‰1̄
rU
ptqJ
i1

¯¯

pbq
ě pet`1,1qσr1

´

T1 pbi‰1̄Ui1q ¨

´

bi‰1̄U
J
i1
rU
ptq
i1

¯¯

pcq
ě pet`1,1qλ

˜

ź

i‰1̄

σmin

´

UJ
i1
rU
ptq
i1

¯

¸

pdq
ě pet`1,1qλp1´ ẽ

2
t q

d´1
2 .

(44)
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Here (a) is due to Theorem 5 in Luo et al. (2020) and the fact the left singular space of

M1̄

´

T ˆi‰1̄
rU
ptqJ
i1

¯

is U1 and its rank is less than r1, (b) is due to the fact that the right

singular space of T1 is bi‰1̄Ui1 , equation (8), (c) is by Lemma 7 of Luo et al. (2020) and

(d) is due to the fact σmin

´

UJ
i1
rU
ptq
i

¯

“

b

1´ }UJ
i1K

rU
ptq
i }

2 ě
a

1´ ẽ2
t by Lemma 1 of Cai

and Zhang (2018).

Plugging the upper bound of

›

›

›

›

´

M1̄

´

Z ˆi‰1̄
rU
ptqJ
i1

¯¯

maxpr1q

›

›

›

›

q

in (42) into (44), we get

et`1,1 ď 2
τ11 `

řd´1
j“1

`

d´1
j

˘

petq
j τj`1

λp1´ ẽ2
t q

d´1
2

. (45)

Next we show under condition (19), et`1,1 ď 2
d`3

2
τ1
λ ` e0{2

t, i.e., the upper bound of et
can be used to upper bound et`1,1. First, under (19), we have

λ ě 2
d`6

2 τ1 _

˜

d´1
ÿ

j“1

2
d`4´j

2

ˆ

d´ 1

j

˙

τj`1

¸

, (46)

due to the fact that ξ ě τj for j “ 1, . . . , d. And under the assumption of λ, we have
ẽt ď

?
2{2. So by (45), we have

ˆ

1

2

˙
d´1

2

et`1,1 ď 2
τ11 `

řd´1
j“1

`

d´1
j

˘

petq
j τj`1

λ

ď 2

¨

˝

τ11

λ
`

řd´1
j“1

`

d´1
j

˘

p
?

2
2 q

j´1τj`1

λ
et

˛

‚

(46)
ď 2

´τ11

λ
` 2´

d`3
2 et

¯

(47)

Since (43) holds for t and plug in the upper bound of et in (47), multiply 2
d´1

2 at both
side of (47), we get

et`1,1 ď 2
d`3

2
τ1

λ
`

e0

2t`1
ď 2

d`3
2
τ1

λ
`
e0

2t
.

So the upper bound of et can be used to bound et`1,1 and by doing similar analysis for all
modes, we conclude that the upper bound for et also holds for et`1, i.e., we have

et`1 ď 2
d`3

2
τ1

λ
`
e0

2t
. (48)

Now we can show the first statement in (43) also holds for t ` 1 given it holds for t.
With (48), when we do the similar analysis of (44) for other modes, we can use the same
upper bound of et to bound et`1. So repeat (44), for any 1 ď k ď m, we have

et`1,k

`

1´ ẽ2
t

˘

d´1
2 ď 2

τ1k `
řd´1
j“1

`

d´1
j

˘

petq
j τj`1

λ
. (49)
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Since it is true for every k, we obtain the following recursive inequality for et`1,

et`1

ˆ

1

2

˙
d´1

2

ď 2
τ1 `

řd´1
j“1

`

d´1
j

˘

petq
j τj`1

λ
. (50)

By applying the same argument as in (47), we can show that

et`1 ď 2
d`3

2
τ1

λ
`

e0

2t`1
,

given (43) holds for et. Similarly we can show ẽt`1 ď 2
d`3

2
τ1
λ `

ẽ0
2t`1

Thus, (43) holds for all t. Given tmax ě logpe0λ{τ1q _ 1, we get the upper bounds for et
and ẽt:

et ď
´

2
d`3

2 ` 1
¯ τ1

λ
, ẽt ď

´

2
d`3

2 ` 1
¯ τ1

λ
(51)

Plug (50) and (46) into the upper bound (49), we get

et`1,k ď 2

¨

˚

˝

1´

´

2
d`3

2 ` 1
¯2
τ2

1

λ2

˛

‹

‚

´ d´1
2

¨

˚

˝

τ1k

λ
`

d´1
ÿ

j“1

`

d´1
j

˘

´

2
d`3

2 ` 1
¯j
τ j1τj`1

λj`1

˛

‹

‚

,

for k “ 1, . . . ,m.
Finally the perturbation of signal subspaces follows by observing that et,k :“

›

›

›
prU

ptq
kKq

JUk

›

›

›

q
“

›

›

›
sin Θ

´

rU
ptq
k ,Uk

¯
›

›

›

q
due to Lemma 6 of Luo et al. (2020).

Step 3. In this step, we are going to give an upper bound for the tensor reconstruction
error for } rT ˆΩ1 P pU1

ˆ ¨ ¨ ¨ ˆΩm P pUm
´ T }HS.

First, notice the following decomposition

T “T ˆ1

´

P
pU11
` P

pU11K

¯

ˆ2

´

P
pU21
` P

pU21K

¯

ˆ ¨ ¨ ¨ ˆd

´

P
pUd1
` P

pUd1K

¯

“T ˆ1 P
pU11
ˆ ¨ ¨ ¨ ˆd P pUd1

` T ˆ1 P
pU11K

ˆ2 P
pU21
ˆ ¨ ¨ ¨ ˆd P pUd1

` T ˆ1 Ip11
ˆ2 P

pU21K
ˆ ¨ ¨ ¨ ˆd P pUd1

` T ˆ1 Ip11
ˆ2 Ip21

ˆ ¨ ¨ ¨ ˆd P pUd1K

` . . .` T ˆiďd´1 Ipi1 ˆd P pUd1K

“T ˆΩ1 P pU1
ˆ ¨ ¨ ¨ ˆΩm P pUm

`

d
ÿ

k“1

T ˆiăk Ipi1 ˆk P pUk1K
ˆiąk P pUi1

.

Thus,

›

›

›

rT ˆΩ1 P pU1
ˆ ¨ ¨ ¨ ˆΩm P pUm

´ T
›

›

›

HS

ď

›

›

›
p rT ´ T q ˆΩ1 P pU1

ˆ ¨ ¨ ¨ ˆΩm P pUm

›

›

›

HS
`

d
ÿ

k“1

›

›

›
T ˆiăk Ipi1 ˆk P pUk1K

ˆiąk P pUi1

›

›

›

HS

ď

›

›

›
Z ˆΩ1 P pU1

ˆ ¨ ¨ ¨ ˆΩm P pUm

›

›

›

HS
`

d
ÿ

k“1

›

›

›

pUJ
k1KMkpT q

›

›

›

F
.

(52)
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Notice that for k1, k2 P Ωk, Mk1pT q “Mk2pT qP1 where P1 is a permutation matrix. So
řd
k“1

›

›

›

pUJ
k1KMkpT q

›

›

›

F
“

řm
k“1 |Ωk|

›

›

›

pUJ
kKTk

›

›

›

F
.

›

›

›

pUJ
kKTk

›

›

›

F

¨

˚

˝

1´

´

2
d`3

2 ` 2
¯2
τ2

1

λ2

˛

‹

‚

d´1
2

paq
ď

›

›

›

pUJ
kKTk

›

›

›

F
σmin

´´

biPΩkU
J
i1
rU
ptmaxq

i b
iPqΩk

Ť

Ωk
UJ
i1
rU
ptmax´1q
i1

¯¯

pbq
“

›

›

›

pUJ
kKTk bi‰k̄ Ui1

›

›

›

F
σmin

´´

biPΩkU
J
i1
rU
ptmaxq

i b
iPqΩk

Ť

Ωk
UJ
i1
rU
ptmax´1q
i1

¯¯

pcq
ď

›

›

›

pUJ
kKTk

`

bi‰k̄Ui1
˘ `

bi‰k̄Ui1
˘J

´

biPΩk
rU
ptmaxq

i1 b
iPqΩk

Ť

Ωk
rU
ptmax´1q
i1

¯›

›

›

F

pdq
ď2

›

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
ptmaxqJ

i1 ˆ
iPqΩk

Ť

Ωk
rU
ptmax´1qJ
i1

¯¯

maxprkq

›

›

›

›

F

peq
ď 2ξ,

(53)

where ξ :“ sup
}Y}HSď1,rankpYqďpr11 ,...,rd1 q

xZ,Yy. (a) is due to the fact σmin

´

UJ
i1
rU
ptq
i

¯

“

b

1´ }UJ
i1K

rU
ptq
i }

2 ě
a

1´ ẽ2
t and maxpẽtmax , ẽtmax´1q ď

ˆ

2
d`3

2 `2

˙

τ1

λ ; (b) is due to the fact
that the right singular space of Tk is bi‰k̄Ui1 ; (c) is due to Lemma 7 of Luo et al. (2020),
equation (8) and properties of Kronecker product, (d) is due to Theorem 2 in Luo et al.
(2020) and

rank
´

pUJ
kKTk

´

biPΩk
rU
ptmaxq

i1 b
iPqΩk

Ť

Ωk
rU
ptmax´1q
i1

¯¯

ď rk;

and the last inequality (e) is due to the fact that
›

›

›

›

´

Mk̄

´

Z ˆiPΩk
rU
ptmaxqJ

i1 ˆ
iPqΩk

Ť

Ωk
rU
ptmax´1qJ
i1

¯¯

maxprkq

›

›

›

›

F

“ sup
}X}Fď1,rankpXqďrk

A

Mk̄

´

Z ˆiPΩk
rU
ptmaxqJ

i1 ˆ
iPqΩk

Ť

Ωk
rU
ptmax´1qJ
i1

¯

,X
E

ď ξ,

for k “ 1, . . . , d and the equality is due to Lemma 2 of Luo et al. (2020).

Combined with the fact
›

›

›
Z ˆΩ1 P pU1

ˆ ¨ ¨ ¨ ˆΩm P pUm

›

›

›

HS
ď ξ and (53) and plug them

into (52), we have
›

›

›

rT ˆΩ1 P pU1
ˆ ¨ ¨ ¨ ˆΩm P pUm

´ T
›

›

›

HS

ď

›

›

›
Z ˆΩ1 P pU1

ˆ ¨ ¨ ¨ ˆΩm P pUm

›

›

›

HS
`

d
ÿ

k“1

›

›

›

pUJ
k1KMkpT q

›

›

›

F

“

›

›

›
Z ˆΩ1

pUJ
1 ˆ ¨ ¨ ¨ ˆΩm

pUJ
m

›

›

›

HS
`

m
ÿ

k“1

|Ωk|

›

›

›

pUJ
kKMkpT q

›

›

›

F

ď

¨

˚

˚

˝

1` 2d

¨

˚

˝

1´

´

2
d`3

2 ` 2
¯2
τ2

1

λ2

˛

‹

‚

´ d´1
2

˛

‹

‹

‚

ξ.

(54)
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Finally, notice that (21) follows exact the same proof as Step 3 except that in (53), we

need to replace rU
ptmaxq

i , rU
ptmax´1q
i with rU

ptq
i ,

rU
pt´1q
i and use maxpẽt, ẽt´1q ď 2

d`3
2

τ1
λ `

ẽ0
2t´1 .

Therefore, we have finished the proof of this theorem. �

B.5 Proof of Theorem 5

In this setting, we consider applying Corollary 1. To apply Corollary 1, we only need to
compute τ1i, ξ.

Consider the case q “ 8 and let’s first bound τ1k. Notice

MkpZ ˆi‰k UJ
i q “MkpZq bi‰k Ui.

Each row of MkpZq bi‰k Ui is independent multivariate Gaussian with covariance matrix
σIr´k where r´k “

ś

i‰k ri. By random matrix theory (Vershynin, 2010), we have

P
`

}MkpZ ˆi‰k UJ
i q}{σ ď

?
pk `

?
r´k

˘

ě 1´ c expp´ppk ` r´kq{2q.

Since rmax ď p
1
d´1

min , we have τ1k ď Cσ
?
pk with probability at least 1´c expp´ppk`r´kq{2q.

Similarly by Lemma 5 of Zhang and Xia (2018), we have

ξ ď Cσ

g

f

f

e

d
ÿ

i“1

piri

w.p. at least 1´ expp´cpminq.

As we mentioned in Remark 7, τj ď ξ. So the results follows by plugging the bound of
τj , ξ into Corollary 1 and noticing that

řd´1
j“1

`

d´1
j

˘

´´

2
d`3

2 ` 1
¯

τ1{λ
¯j
τj`1

λ
ď C

τ1 maxj τj
λ2

,

under the assumption of the signal to ratio λ{σ. �

B.6 Proof of Lemma 3

The proof of this Lemma is straight forward.

T “ B ˆ1 Π1 ˆ ¨ ¨ ¨ ˆd Πd

“ B ˆ1 Π1pΠ
J
1 Π1q

´ 1
2 pΠJ

1 Π1q
1
2 ˆ ¨ ¨ ¨ ˆd ΠdpΠ

J
d Πdq

´ 1
2 pΠJ

d Πdq
1
2

“

´

B ˆ1 pΠ
J
1 Π1q

1
2 ˆ ¨ ¨ ¨ ˆd pΠ

J
d Πdq

1
2

¯

ˆ1 Π1pΠ
J
1 Π1q

´ 1
2 ˆ ¨ ¨ ¨ ˆd ΠdpΠ

J
d Πdq

´ 1
2

“ S ˆ1 Π1pΠ
J
1 Π1q

´ 1
2 V1 ˆ ¨ ¨ ¨ ˆd ΠdpΠ

J
d Πdq

´ 1
2 Vd,

where the last inequality comes from the assumption about the decomposition of B ˆ1

pΠJ
1 Π1q

1
2 ˆ ¨ ¨ ¨ ˆd pΠ

J
d Πdq

1
2 . �
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B.7 Proof of Theorem 6

First by the same argument in the proof of Theorem 5, with probability at least 1 ´

expp´cpminq, τ1k ď Cσ
?
pk and ξ ď Cσ

b

řd
i“1 piri.

Under the assumption (A1), we have λpSq :“ mini σripMipSqq ě Cλ

c

śd
i“1 pi

śd
i“1 ri

ě

C
b

p2
maxrmax

pmin
by the definition of S.

Notice that under the signal strength in Theorem 6, the first order perturbation error
in } sin ΘppUi,Uiq} dominates as we discussed in Remark 4. So from Corollary 1 we have

} sin ΘppUi,Uiq} ď C

?
pk

λ{σ

d

śd
i“1 ri

śd
i“1 pi

,

and the bound for } pT ´ T }HS.

For the cocluster membership recovery, first we have

} sin ΘppUi,Uiq}F ď
?
ri} sin ΘppUi,Uiq} ď C

?
piri

λ{σ

d

śd
i“1 ri

śd
i“1 pi

. (55)

The following proof is relative standard for proving misclassification error based on
singular subspace estimation. Without loss of generality, we focus on the mode-1 clustering

analysis. Take δk “
b

1

p
pkq
1

` 1

maxtp
plq
1 :l‰ku

, and let Sk “ ti P G
pkq
1 : }p pΠ1

pX1qri,:s´ pU1qri,:s} ě

δk
2 u where U1 is defined in Lemma 3. Here we can imagine Sk as the set of nodes in cluster
k of mode 1 that may not be correctly clustered. By Lemma 5.3 of Lei and Rinaldo (2015)
and (55), we have

r1
ÿ

k“1

|Sk|δ
2
k ď C

piri
pλ{σq2

śd
i“1 ri

śd
i“1 pi

.

Moreover, under the signal strength condition in Theorem 6, we have that there exists a

permutation matrix such that after permutation, the nodes in G1 “
Ťr1
k“1pG

pkq
1 zSkq can

be perfectly recovered based on Lemma 5.3 of Lei and Rinaldo (2015). So to analyze the
misclassification error, we just need to consider about Sk.

Ăerrp pΠ1,Π1q ď max
1ďkďr1

|Sk|

p
pkq
1

ď
ÿ

1ďkďr1

|Sk|

p
pkq
1

paq
ď

r1
ÿ

k“1

|Sk|δ
2
k ď C

p1r1

pλ{σq2

śd
i“1 ri

śd
i“1 pi

,

where (a) is because of the choice of δk and

errp pΠ1,Π1q ď
ÿ

1ďkďr1

|Sk|

p1
ď C

p11,maxr1

pλ{σq2

śd
i“1 ri

śd
i“1 pi

.

The proof for other modes are similar and this finishes the proof of this theorem. �
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