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Abstract

Graph matching aims to find the latent vertex correspondence between two edge-correlated
graphs and has found numerous applications across different fields. In this paper, we
study a seeded graph matching problem, which assumes that a set of seeds, i.e., pre-
mapped vertex-pairs, is given in advance. While most previous work requires all seeds
to be correct, we focus on the setting where the seeds are partially correct. Specifically,
consider two correlated graphs whose edges are sampled independently from a parent Erdős-
Rényi graph G(n, p). A mapping between the vertices of the two graphs is provided as
seeds, of which an unknown β fraction is correct. We first analyze a simple algorithm
that matches vertices based on the number of common seeds in the 1-hop neighborhoods,
and then further propose a new algorithm that uses seeds in the 2-hop neighborhoods.
We establish non-asymptotic performance guarantees of perfect matching for both 1-hop
and 2-hop algorithms, showing that our new 2-hop algorithm requires substantially fewer
correct seeds than the 1-hop algorithm when graphs are sparse. Moreover, by combining
our new performance guarantees for the 1-hop and 2-hop algorithms, we attain the best-
known results (in terms of the required fraction of correct seeds) across the entire range of
graph sparsity and significantly improve the previous results in Kazemi et al. (2015); Lubars
and Srikant (2018) when p ≥ n−5/6. For instance, when p is a constant or p = n−3/4, we
show that only Ω(

√
n log n) correct seeds suffice for perfect matching, while the previously

best-known results demand Ω(n) and Ω(n3/4 log n) correct seeds, respectively. Numerical
experiments corroborate our theoretical findings, demonstrating the superiority of our 2-
hop algorithm on a variety of synthetic and real graphs.
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1. Introduction

Given a pair of two edge-correlated graphs, graph matching (also known as network align-
ment) aims to find a bijective mapping between the vertex sets of the two graphs so that
their edge sets are maximally aligned. This is a ubiquitous but difficult problem arising
in many important applications, such as social network de-anonymization (Narayanan and
Shmatikov, 2009), computational biology (Singh et al., 2008; Kazemi et al., 2016), computer
vision (Conte et al., 2004; Schellewald and Schnörr, 2005), and natural language processing
(Haghighi et al., 2005). For instance, from one anonymized version of the “follow” relation-
ships graph on the Twitter microblogging service, researchers were able to re-identify the
users by matching the anonymized graph to a correlated cross-domain auxiliary graph, i.e.,
the “contact” relationships graph on the Flickr photo-sharing service, where user identities
are known (Narayanan and Shmatikov, 2009).

Existing graph matching algorithms can be classified into two categories, seedless and
seeded matching algorithms. Seedless matching algorithms only use the topological in-
formation and do not rely on any additional side information. Various seedless matching
algorithms have been proposed based on either degree information (Dai et al., 2018; Ding
et al., 2021), spectral method (Umeyama, 1988; Cour et al., 2007; Feizi et al., 2019; Fan
et al., 2019a,b), random walk (Gori et al., 2005), convex relaxations (Aflalo et al., 2015;
Fiori and Sapiro, 2015; Lyzinski et al., 2016; Dym et al., 2017; Bernard et al., 2018), or
non-convex methods (Zaslavskiy et al., 2008; Fiori et al., 2013; Vogelstein et al., 2015; Yu
et al., 2018; Maron and Lipman, 2018; Zhang et al., 2019; Xu et al., 2019). However, to
the best of our knowledge, these algorithms either only provably succeed when the fraction
of edges that differ between the two graphs is low, i.e., on the order of O

(
1/ log2 n

)
(Ding

et al., 2021) or require at least quasi-polynomial runtime (nO(logn)) (Barak et al., 2018;
Cullina and Kiyavash, 2016, 2017; Cullina et al., 2019), where n is the number of vertices
in one graph. The only exception is the neighborhood tree matching algorithm recently
proposed in Ganassali and Massoulié (2020), which can output a partially-correct matching
in polynomial-time only when two graphs are sparse and differ by a constant fraction of
edges.

The other category is seeded matching algorithms (Pedarsani and Grossglauser, 2011;
Yartseva and Grossglauser, 2013; Korula and Lattanzi, 2014; Lyzinski et al., 2013; Fishkind
et al., 2018; Shirani et al., 2017; Mossel and Xu, 2019; Chiasserini et al., 2016). These
algorithms require “seeds”, which are a set of pre-mapped vertex-pairs. Let G1 and G2

denote two graphs. For each pair of vertices (u, v) with u in G1 and v in G2, a seed (w,w′)
is called a 1-hop witness for (u, v) if w is a neighbor of u in G1 and w′ is a neighbor of v in
G2. The basic idea of seeded matching algorithms is that a candidate pair of vertices are
expected to have more witnesses if they are a true pair than if they are a fake pair. Assuming
that the seeds are correct, seeded matching algorithms can find the correct matching for
the remaining vertices more efficiently than seedless matching algorithm. In social network
de-anonymization, such initially matched seeds are often available, thanks to users who have
explicitly linked their accounts across different social networks. For other applications, the
seeds can be obtained by prior knowledge or manual labeling.

However, most existing seeded matching algorithms crucially rely on all seeds being
correct, which is often difficult to guarantee in practice. For example, the seeds may be
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provided by seedless matching algorithms, which will likely produce some incorrect seeds.
To overcome this limitation, Kazemi et al. (2015) and Lubars and Srikant (2018) extend
the idea of seeded matching algorithms to allow for incorrect seeds. In particular, Kazemi
et al. (2015) proposes a NoisySeeds algorithm, which uses percolation (Janson et al., 2012;
Yartseva and Grossglauser, 2013) to grow the number of 1-hop witnesses from partially-
correct seeds and iteratively matches pairs whose number of witnesses exceeds a threshold
r. However, NoisySeeds is very sensitive to the choice of the threshold r and matching
errors, and thus is only guaranteed to perform well when the graphs are very sparse. More
specifically, when the two graphs are correlated Erdős-Rényi graphs, whose edges are in-
dependently sub-sampled with probability s from a parent Erdős-Rényi graph G(n, p), and
when β fraction of seeds are correct, it is shown in Kazemi et al. (2015) that NoisySeeds
with the best choice of threshold r = 2 can correctly match all but o(n) vertex-pairs with

high probability, provided that n−1 � p ≤ n−
5
6
−ε for ε ∈ (0, 1/6), and

β ≥ 1

2n2p2s4
. (1)

However, for denser graphs with p ≥ n−
5
6 , no performance guarantees are established in

Kazemi et al. (2015) for the setting with incorrect seeds.

In contrast, Lubars and Srikant (2018) proposes a different algorithm that uses the
numbers of 1-hop witnesses for each candidate pair of vertices as weights, and then uses
Greedy Maximum Weight Matching (GMWM) to find the vertex correspondence between
the two graphs such that the total number of witnesses is large. Lubars and Srikant (2018)
shows that their 1-hop algorithm can work over a much wider range of p (up to p ≤ 3

8) than
Kazemi et al. (2015), and it can correctly match all vertices with high probability if

β ≥ max

{
16 log n

nps2
,

8

3
p

}
. (2)

In order to illustrate the limitations of these existing results, we plot in Fig. 1 the
scalings corresponding to the two conditions (1) and (2), as the black dotted curve and
green dashed curve, respectively, where the x-axis is the graph sparsity p (which is bounded
away from 1 and much greater than n−1) and the sampling probability s is a constant.
We observe that, when the graphs are sparse, condition (2) (β = Ω (log n/np)) requires
substantially more correct seeds than condition (1) (β = Ω

(
1/n2p2

)
), suggesting that the

1-hop algorithm in Lubars and Srikant (2018) is suboptimal. However, condition (1) only
extends to p ≤ n−5/6, and is not applicable to denser graphs. When the graphs are dense,
condition (2) requires β to increase proportionally in p. In particular, when p is a constant,
condition (2) demands a constant fraction of correct seeds. Such a requirement seems rather
stringent as well. In summary, the existing conditions on the required number of correct
seeds are either pessimistic or only applicable to very sparse graphs. Since the number of
correct seeds is often limited in practice, it is of paramount importance in both theory and
practice to understand how to better utilize partially-correct seeds to attain more accurate
matching results for both sparse and dense graphs.

In this paper, we propose a new algorithm based on the number of j-hop witnesses and
establish performance guarantees for the 1-hop and 2-hop algorithms, significantly relaxing
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the existing requirements in (1) and (2). Specifically, we first provide a much tighter analysis
than Lubars and Srikant (2018), showing that the 1-hop algorithm can correctly match all
vertices with high probability, provided that

β ≥ max

{
45 log n

np(1− p)2s2
, 30

√
log n

n(1− p)2s2

}
. (3)

Moreover, we show that the 2-hop algorithm can exactly match all vertices with high prob-
ability, provided that np2 ≤ (log n)−1, nps2 ≥ 128 log n, and

β ≥ max

{
600 log n

n2p2s4
, 600

√
log n

ns4
, 600

√
np3(1− s) log n

s

}
. (4)

See Section 4 for intuitive interpretations of the various terms in (4).

The new conditions (3) and (4), are also plotted in Fig. 1 as the solid red and blue
curves, respectively, to illustrate the improvement compared to the previous conditions (1)
and (2). (Note that there is a factor 1 − s in our condition (4). As a consequence, the
corresponding blue curve has two branches: the top one holds for s < 1 and the bottom
one holds for s = 1.)
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Our condition (4) for new 2-hop

Our improved condition (3) for 1-hop

Condition (2) for 1-hop (Lubars and Srikant, 2018)

Condition (1) for NoisySeeds (Kazemi et al., 2015)

Figure 1: Comparison of the requirements on the fraction β of correct seeds, when s is a
fixed constant and p is bounded away from 1. The lower the curve, the fewer
correct seeds it requires.

From Fig. 1, we can see that by combining our two conditions (3) and (4) (i.e., the lower
envelope of blue and red solid curves), we attain the lowest requirements on the number
of correct seeds across the entire range of graph sparsity p, and significantly improve the
previous conditions when p ≥ n−5/6. In particular,

• Comparing the green dashed curve with the red solid curve, we see that when p �
n−1/2 our condition (3) requires many fewer correct seeds than (2) for the 1-hop
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algorithm to succeed. For instance, when p is a constant, only Ω(
√
n log n) correct

seeds suffice for the 1-hop algorithm to achieve perfect matching according to our
condition (3), while the previous condition (2) requires Ω(n) correct seeds.

• Comparing the green dashed curve with the blue solid curve, we see that when
p � n−1/2 for s = 1 or when p � n−3/5 for s < 1, our condition (4) also requires
substantially fewer correct seeds than (2). This shows that our new 2-hop algorithm
is significantly better than the 1-hop algorithm when the graphs are sparse. For in-
stance, when p = n−3/4, only Ω(

√
n log n) correct seeds suffice for our 2-hop algorithm

to achieve perfect matching, while the 1-hop algorithm requires Ω
(
n3/4 log n

)
correct

seeds.

• Comparing the black dotted curve with the blue solid curve, we see that our condi-
tion (4) is comparable to condition (1) when p � n−5/6. However, our condition (4)
continues to hold up to p � n−1/2. This shows that our 2-hop algorithm enjoys
competitive performance compared to NoisySeeds when graphs are very sparse, but
is more versatile and continues to perform well over a much wider range of graph
sparsity.

Furthermore, our results precisely characterize the graph sparsity at which the 2-hop
algorithm starts to outperform 1-hop. This reveals an interesting and delicate trade-off
between the quantity and the quality of witnesses: while the 2-hop algorithm exploits more
seeds as witnesses than the 1-hop algorithm, the 2-hop witnesses can also be less discrimi-
nating (as they are further away from the node-pair under consideration). Thus, while the
increased quantity helps when the graphs are sparse, the decreased quality can confuse the
matching algorithm when the graphs are dense (e.g., even the fake pairs are likely to have
many 2-hop witnesses).

Our results also significantly outperform the existing performance guarantees for poly-
nomial-time seedless graph matching algorithms. The best known polynomial-time seedless
algorithms require 1 − s = o(1) (Ding et al., 2021) to achieve perfect matching. The
neighborhood tree matching algorithm proposed in Ganassali and Massoulié (2020) only
provably outputs partially-correct matching when np and s are very close to 1. Compared
to polynomial-time seedless algorithms, our proposed algorithm with enough seeds can tol-
erate a constant s much lower than 1.

Finally, using numerical experiments on both synthetic and real graphs, we show that
our 2-hop algorithm significantly outperforms the state-of-the-art. Specifically, when the
initial seeds are randomly chosen, the 2-hop algorithm significantly outperforms the 1-hop
algorithm in Lubars and Srikant (2018) on sparse graphs, which agrees with our theoretical
analysis. Further, the performance of our 2-hop algorithm is comparable to the NoisySeeds
algorithm when the synthetic graphs are very sparse, and much better than the NoisySeeds
algorithm on other graphs. When there are enough seeds, our experiments confirm that our
2-hop algorithm also outperforms the state-of-the-art polynomial-time seedless algorithms.
Our 2-hop algorithm is also much more robust to power-law degree variations in real graphs
than the NoisySeeds algorithm. Moreover, we conduct an experiment on matching 3D de-
formable shapes in which the initial seeded mapping is generated by a seedless algorithm
(instead of randomly chosen). We demonstrate that our 2-hop algorithm drastically boosts
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the matching accuracy by cleaning up most initial matching errors, and the performance
enhancement is more substantial than the 1-hop algorithm and NoisySeeds algorithm. Com-
putationally, our 2-hop algorithm is comparable to the 1-hop and NoisySeeds algorithm and
runs efficiently on networks with ∼ 10K nodes on a single PC, and can potentially scale up
to even larger networks using parallel implementation.

In passing, we remark that although we focus on matching two graphs of the same
number of vertices, our 2-hop algorithm can be directly applied to matching two graphs
of different sizes and return an accurate correspondence between nodes in the common
subgraph of the two graphs. Indeed, the simulation results with real data in Section 6.2
show that our 2-hop algorithm still achieves outstanding matching performance, even when
two graphs are of very different sizes.

1.1 Key Ideas and Analysis Techniques

Our improved performance guarantees for perfect matching exploit several key ideas and
analysis techniques, which we present below and will elaborate further in later sections. For
ease of discussion, we assume the true vertex correspondence between the two graphs is
given by the identity permutation. We use π : [n]→ [n] to denote the initial seed mapping.
Then, each seed (i, π(i)) is correct if π(i) = i and incorrect otherwise.

u i π(i) u

π−1(i) i

π(i) π(π(i))

G1 G2

Figure 2: The two green/purple edges are correlated, because they correspond to the same
edge in the parent graph. Thus, the event that an incorrect seed (i, π(i)) be-
comes a 1-hop witness for (u, u) is dependent on the events that (π−1(i), i) and
(π(i), π(π(i))) become 1-hop witnesses for (u, u).

To obtain a much tighter condition than (2) for the success of the 1-hop algorithm,
our key observation is that, when counting the number of witnesses for the true pairs,
the analysis of Lubars and Srikant (2018) only considers the correct seeds and ignores the
incorrect seeds. It is non-trivial to consider the incorrect seeds for a true pair, because
the events that the incorrect seeds become witnesses depend on each other. In particular,
the event that an incorrect seed (i, π(i)) becomes a 1-hop witness for true pair (u, u) is
dependent on the events that (π−1(i), i) and (π(i), π(π(i))) become 1-hop witnesses for
(u, u), as these events may involve the same edges in the parent graph (See Fig. 2 for an
illustrating example). Our analysis takes into account the incorrect seeds for the true pairs
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and carefully deals with the above dependency issue using concentration inequalities for
dependent random variables (Janson, 2004). See Section 5.1 for details.

Further, to better utilize seeds in sparse graphs, our key idea is to match vertices by
comparing the number of witnesses in the 2-hop neighborhoods. In sparse graphs, the
number of 1-hop witnesses for most vertices will be very low. (For example, when p =
O(n−1/2), β = O(n−1/2), and s is a constant, the number of 1-hop witnesses for even a true
pair is about βnps2 + (1 − β)np2s2 = O(1).) Therefore, it will be difficult to use 1-hop
witnesses alone to distinguish true pairs from fake pairs. In contrast, the number of 2-hop
witnesses will be much larger. Thus, compared to the algorithm in Lubars and Srikant
(2018) that uses only 1-hop witnesses, our 2-hop algorithm can leverage more witnesses to
distinguish the true pairs from the fake pairs. The idea of using multi-hop neighborhoods
to match vertices is analyzed previously in Mossel and Xu (2019) when all seeds are correct.
In comparison, our results on the 2-hop algorithm make several significant contributions.
First, our analysis with incorrect seeds is considerably more challenging, as we need to take
care of the dependency on the size of the 1-hop neighborhood and the dependency between
incorrect seeds. Unfortunately, unlike the setting in the previous paragraph, here directly
using the results of Janson (2004) will not work because the number of dependencies that
we have to deal with may be very large (see Section 5.2 for details). Instead we deal with
the dependency issues by first conditioning on the 1-hop neighborhood; and then analyzing
different seeds according to different situations and applying the concentration inequalities
for dependent random variables (Janson, 2004). Second, our condition (4) characterizes the
influence of the incorrect seeds and reveals the delicate behavior of the 2-hop algorithm. In
particular, we show that the 2-hop algorithm requires at least Ω(

√
n log n) correct seeds,

irrespective of the graph sparsity. Also, somewhat surprisingly, we discover that when
s < 1, the 2-hop algorithm may require more seeds as p increases from n−2/3, due to the
larger fluctuation of 1-hop neighborhood sizes. All these new phenomenons are absent when
seeds are all correct and thus are not captured by the theoretical results in Mossel and Xu
(2019). Third, the computational complexity of the algorithm in Mossel and Xu (2019) is
O(n3), which is much higher than that of our algorithm – O(nω + n2 log n), where nω with
2 ≤ ω ≤ 2.373 denotes the time complexity for n × n matrix multiplication (see Section 3
for detail).

2. Model

In this section, we formally introduce the model and the graph matching problem with
partially-correct seeds.

We use the G(n, p; s) graph model proposed by Pedarsani and Grossglauser (2011), which
has been widely used in the study of graph matching. Let G0 denote the parent graph with
n vertices {1, 2, ..., n} , [n]. The parent graph G0 is generated from the Erdős-Rényi model
G(n, p), i.e., we start with an empty graph on n vertices and connect any pair of two vertices
independently with probability p. Then, we obtain a subgraph G1 by sampling each edge
of G0 into G1 independently with probability s. Repeat the same sub-sampling process
independently and relabel the vertices according to an unknown permutation π∗ : [n]→ [n]
to construct another subgraph G2. Throughout the paper, we denote a vertex-pair by (u, v),
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where u ∈ G1 and v ∈ G2. For each vertex-pair (u, v), if v = π∗(u), then (u, v) is a true
pair; if v 6= π∗(u), then (u, v) is a fake pair.

As a motivating example, the parent graph G0 can be some underlying friendship net-
work among n persons, while G1 is the Flicker contact network and G2 is a Twitter follow
network among these n persons.

Prior literature proposes various algorithms to recover π∗ based on G1 and G2. The
output of these graph matching algorithms can be interpreted as a set of partially correct
seeds. Taking these partially correct seeds as input, we wish to efficiently correct all of
the errors. However, it is difficult to perfectly model the correlation between the output
of these algorithms and the graphs. One way to get around this issue is to treat these
partially correct seeds as adversarially chosen and to design an algorithm that with high
probability corrects all errors for all possible initial error patterns. However, the existing
theoretical guarantees in this adversarial setting are pessimistic, requiring the fraction of
incorrectly matched seeds to be o(1) (cf. Barak et al. (2018, Lemma 3.21) and Ding et al.
(2021, Lemma 5)).

In this paper, we adopt a mathematically more tractable model introduced by Lubars
and Srikant (2018), where the partially correct seeds are assumed to be generated inde-
pendently from the graphs G1 and G2. More specifically, we use π : [n] → [n] to denote
an initial mapping and generate π in the following way. For β ∈ [0, 1), we assume that
π is uniformly and randomly chosen from all the permutations σ : [n] → [n] such that
σ(u) = π∗(u) for exactly βn vertices. The benefit of this model is that π is independent of
the graph G and the sampling processes that generate G1 and G2, and it is convenient for
us to obtain theoretical results. For each seed (u, π(u)), if π(u) = π∗(u), then (u, π(u)) is a
correct seed; if π(u) 6= π∗(u), then (u, π(u)) is an incorrect seed. Thus, only β fraction of
the seeds are correct. Given G1, G2 and π, our goal is to find a mapping π̃ : [n]→ [n] such
that lim

n→∞
P {π̃ = π∗} = 1.

Notation For any n ∈ N, let [n] = {1, 2, · · · , n}. We use standard asymptotic notation:
for two positive sequences {an} and {bn}, we write an = O(bn) or an . bn, if an ≤ Cbn
for some an absolute constant C and for all n; an = Ω(bn) or an & bn, if bn = O(an);
an = Θ(bn) or an � bn, if an = O(bn) and an = Ω(bn); an = o(bn) or bn = ω(an), if
an/bn → 0 as n→∞.

3. Algorithm Description

In this section, we present a general class of algorithms, shown in Algorithm 1, that we
will use to recover π∗. Similar to Lubars and Srikant (2018), our algorithm also uses the
notion of “witnesses”. However, unlike Lubars and Srikant (2018), our algorithm leverages
witnesses that are j-hop away. Given any graph G and two vertices u, v in G, we denote the
length of the shortest path from u to v in G by dG(u, v). Then, for each vertex-pair (u, v),
the seed (w, π(w)) becomes a j-hop witness for (u, v) if dG1(u,w) = j and dG2(v, π(w)) = j.

We define the j-hop adjacency matrices Aj ∈ {0, 1}n×n of G1. Each element of Aj
indicates whether a pair of vertices are j-hop neighbors in graph G1, i.e., Aj(u, v) = 1 if
dG1(u, v) = j and Aj(u, v) = 0 otherwise. Similarly, let Bj ∈ {0, 1}n×n denote the j-hop
adjacency matrix of G2. Equivalently express the seed mapping π by forming a permutation
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matrix Π ∈ {0, 1}n×n, where Π(u, v) = 1 if π(u) = v, and Π(u, v) = 0 otherwise. We
can then count the number of j-hop witnesses for all vertex-pairs by computing Wj =
AjΠBj , where the (u, v)-th entry of Wj is equal to the number of j-hop witnesses for the
vertex-pair (u, v). This step has computational complexity same as matrix multiplication
O(nω) with 2 ≤ ω ≤ 2.373 (Le Gall, 2014). As we have mentioned, a true pair tends to
have more witnesses than a fake pair, and thus we want to find the vertex correspondence
between the two graphs that maximizes the total number of witnesses. In other words,
given a weighted bipartite graph Gm with the vertex set being a collection of all vertices
in G1 and G2, the edges connecting every possible vertex-pairs, and weight of an edge
defined as w(u, v) = Wj(u, v), we want to find the matches in Gm with large weights.
This linear assignment problem can be solved by the Hungarian algorithm in O(n3) time
(Edmonds and Karp, 1972), which is computationally expensive for large values of n. To
reduce computational complexity, we use Greedy Maximum Weight Matching (GMWM)
with computational complexity O(n2 log n). As we will show in Section 5, using GMWM
is sufficient for finding the exact matching. GMWM first chooses the vertex-pair with
the largest weight from all candidate vertex-pairs in Gm, removes all edges adjacent to
the chosen vertex-pair, and then chooses the vertex-pair with the largest weight among
the remaining candidate vertex-pairs, and so on. The total computational complexity of
Algorithm 1 for any constant j is O(nω + n2 log n) for 2 ≤ ω ≤ 2.373.

When graphs are sufficiently sparse with average degree c, we can improve the time
complexity of Algorithm 1 to O(nc2j+n2 log n) by computing the number of j-hop witnesses
via neighborhood exploration. Moreover, we can further improve the scalability of the j-hop
algorithm via parallel implementation. See Appendix B for details.

Algorithm 1 Graph Matching based on Counting j-hop Witnesses.

1: Input: G1, G2, π, j
2: Generate j-hop adjacency matrices Aj and Bj based on G1 and G2, and Π based on π;
3: Output π̃ = GMWM(Wj), where Wj = AjΠBj .

4. Main Results

In this section, we present the performance guarantees for the 1-hop and 2-hop algorithms.

Theorem 1 If condition (3) holds and n is sufficiently large, then Algorithm 1 with j = 1
outputs π̃ such that P {π̃ = π∗} ≥ 1− n−1.

Comparing our condition (3) with the previous condition (2) in (Lubars and Srikant,
2018) as depicted in Fig. 1, we see that condition (3) requires significantly fewer correct
seeds than condition (2) for dense graphs when p = Ω(

√
log n/n); thus, the 1-hop algorithm

succeeds in exact recovery even when the fraction of correct seeds is significantly lower than
the theoretical prediction in Lubars and Srikant (2018).

However, when p = O(
√

log n/n), condition (3) still requires β to grow inversely pro-
portional to np. As we have discussed, this is because when the graph is sparse, there are
not enough 1-hop witnesses among the true pairs. Next, we show that by utilizing 2-hop
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witnesses, our 2-hop algorithm succeeds in exact recovery with many fewer correct seeds in
sparse graphs.

Theorem 2 Suppose that np2 ≤ 1
logn and nps2 ≥ 128 log n. If condition (4) holds and n is

sufficiently large, then Algorithm 1 with j = 2 outputs π̃ such that P {π̃ = π∗} ≥ 1− n−1.

Our condition (4) is depicted as the blue curve in Fig. 1. At a high level, the three terms
in (4) can be interpreted as follows:

• The first term β & logn
n2p2s4

is to ensure that every true pair has more 2-hop witnesses
contributed by the correct seeds than every fake pair. To see this, recall that there
are nβ correct seeds. Since a true pair has about nps2 1-hop common neighbors,
each correct seed becomes a 2-hop witness for a true pair with probability about
nps2 · ps2 = np2s4. In contrast, for a fake pair, assuming independence of the 1-hop
neighborhoods of the two vertices corresponding to the fake pair, the probability that
each correct seed becomes a 2-hop witness for the fake pair is roughly (nps)2 · (ps)2 =
n2p4s4. Hence, to ensure that a true pair has more 2-hop witnesses from the correct
seeds than a fake pair, we at least need the difference between their means, i.e.,
(nβ)np2s4− (nβ)n2p4s4, to be positive. This is guaranteed by np2 . 1, in which case
the mean difference can be approximated by βn2p2s4. However, due to randomness,
we also need this mean difference to be larger than the standard deviation, which is
on the order of

√
βn2p2s4. This is guaranteed by β & 1

n2p2s4
. Adding the extra log n

factor ensures that the above claim holds for every pair with high probability. This
condition coincides with the seed requirement established in Mossel and Xu (2019)
when the seeds are all correct;

• The second term β &
√

logn
ns4

is due to the negative impact of the incorrect seeds.

Note that there are n(1− β) incorrect seeds, and each seed becomes a 2-hop witness
for both a true pair and a fake pair with probability about n2p4. Although this
contributes the same mean number of witnesses to both a true pair and fake pair, its
randomness may contribute more to a fake pair than to a true pair. Thus, we need
its standard deviation (on the order of

√
n(1− β)n2p4s4) to be less than the mean

difference βn2p2s4 estimated in the first bullet. This is guaranteed by β &
√

1
ns4

.

Again, adding the log n factor ensures that the above claim holds for every pair with
high probability.

• The third term β &
√
np3(1− s) log n is also caused by the incorrect seeds. However,

the reason is more subtle than the second bullet, and is due to the fluctuation of the
number of 1-hop neighbors of a true pair. Note that if s = 1, then, in both G1 and G2,
the two vertices corresponding to a true pair have the same set of 1-hop neighbors,
and thus the aforementioned fluctuation disappears. If instead s < 1, then the vertices
corresponding to a true pair will have a different set of 1-hop neighbors in G1 and G2.
This variation makes it even harder to distinguish the true pairs from the fake pairs
based on the number of 2-hop witnesses as p increases, which gives to the condition
β &

√
np3(1− s) log n. Please refer to (30) in Section 5.2.4 for detailed derivation.
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As a consequence, the blue curve has two branches: the top branch holds for s < 1
and the bottom one holds for s = 1.

As readers can see, in the latter two cases, our condition captures the new effect of the
incorrect seeds and thus are significantly different from the theoretical results in Mossel and
Xu (2019) where the seeds are all correct. Please refer to Remark 5.2.3 in Section 5.2 for
more detailed discussions.

Pictorially, the three terms lead to the three segments in the blue curve in Fig. 1:

• When p .
(
logn
n3

) 1
4
, the first term of (4) dominates, as the graphs are so sparse that

the 2-hop witnesses contributed by the incorrect seeds become negligible;

• When
(
logn
n3

) 1
4
. p . n−

2
3 , the second term dominates, as the influence of the incor-

rect seeds cannot be ignored. In this case, the bottleneck for the success of the 2-hop
algorithm is due to the statistical fluctuation of the 2-hop witnesses contributed by
the incorrect seeds;

• When n−
2
3 . p . (n log n)−

1
2 and s < 1, the third term dominates, as the fluctuation

of the 1-hop neighborhood sizes of the true pair increases with p and becomes the new
bottleneck.

From Fig. 1, we observe that our 2-hop algorithm requires substantially fewer correct
seeds to succeed than the 1-hop algorithm when the graphs are sparse. Moreover, our
2-hop algorithm is comparable to the NoisySeeds algorithm for very sparse graphs when
p � n−

5
6 , but continues to perform well over a much wide range of graph sparsity up to

p . (n log n)−1/2.
Next, we present the necessary condition for the exact recovery with partially-correct

seeds and compare it to our achievable results.

Theorem 3 If
nps2 − log n = O(1),

then any algorithm outputs π̃ 6= π∗ with at least a probability of Ω((1− β)3).

The intuition behind Theorem 3 is as follows. Let Gπ
∗

1 denote the graph obtained by
relabeling every vertex i in G1 by π∗(i). In this way, any two vertices corresponding to a
true pair have the same label in Gπ

∗
1 and G2. Denote the intersection graph by Gπ

∗
1 ∧ G2

which includes the common edges in both Gπ
∗

1 and G2. The main idea of Theorem 3 is
that it is impossible to recover the true matching of any isolated vertex in Gπ

∗
1 ∧ G2 that

is incorrectly seeded. Therefore, we need nps2 − log n → +∞ so that there is no isolated
vertex in Gπ

∗
1 ∧G2. Detailed proof of Theorem 3 is provided in Appendix F.

Note that the above information-theoretic limit of exact recovery with partially-correct
seeds coincides with that without seeds (Cullina and Kiyavash, 2016, 2017; Wu et al., 2021).
Thus, seeds do not improve the information-theoretic limit for exact recovery compared to
that without seeds. However, to our best knowledge, achieving these information-theoretic
limits requires algorithms with super-polynomial time. Seeds do help in designing polyno-
mial-time algorithms as our polynomial-time seeded matching algorithms can tolerate lower
values of s than polynomial-time seedless matching algorithms (see discussions in Section 1).

11
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Further, we acknowledge that there is a gap between the sufficient conditions for our
algorithms and the above information-theoretic limit of exact recovery. Recall that the 1-hop
algorithm requires a sufficient condition nps2 ≥ 45 logn

(1−p)2β , and our 2-hop algorithm requires

a sufficient condition nps2 ≥ 128 log n. It remains open whether the information-theoretic
limit can be achieved in polynomial time.

5. Analysis

In this section, we explain the intuition and sketch the proofs for Theorem 1 and Theorem 2.
In the analysis, we assume without loss of generality that the true mapping π∗ is the identity
mapping, i.e., π∗(i) = i.

5.1 Intuition and Proof of Theorem 1

To understand the intuition behind Theorem 1 and why it provides a better result than
Lubars and Srikant (2018), recall that the 1-hop algorithm will succeed (in recovering π∗) if
the number of 1-hop witnesses for any true pair is larger than the number of 1-hop witnesses
for any fake pair. For any correct seed, it is a 1-hop witness for a true pair with probability
ps2 and is a 1-hop witness for a fake pair with probability p2s2. In contrast, for any incorrect
seed, it is a 1-hop witness with probability p2s2 for both true pairs and fake pairs. Since
there are nβ seeds that are correct, it follows that

W1(u, v)
·∼

{
Binom

(
nβ, ps2

)
+ Binom

(
n(1− β), p2s2

)
if u = v,

Binom(n, p2s2) if u 6= v.

(5a)

(5b)

where
·∼ denotes “approximately distributed”.

For fake pair u 6= v, using Bernstein’s inequality given in Theorem 15 in Appendix
C, we show that W1(u, v) is upper bounded by np2s2 + O(

√
np2s2 log n) + O(log n) with

high probability. More precisely, we have the following lemma, with the proof deferred to
Appendix D.1.

Lemma 4 For any two vertices u, v ∈ [n] with u 6= v and sufficiently large n, the following
holds

P {W1(u, v) < ψmax} ≥ 1− n−
7
2 , (6)

where ψmax = np2s2 +
√

7np2s2 log n+ 7
3 log n+ 2.

For true pair u = v, the first binomial distribution in (5a) can be lower bounded by
nβps2 − O(

√
nβps2 log n) − O(log n) with high probability using Bernstein’s inequality.

However, the second Binomial distribution in (5a) is not precise because the events that
each incorrect seed becomes a witness for a true pair are dependent on each other, as
we discussed in Section 1.1. We address this dependency issue using the concentration
inequality for dependent random variables (Janson, 2004), and get the following lower bound
on the number of 1-hop witnesses for the true pairs.

Lemma 5 For any vertex u ∈ [n] and sufficiently large n, the following holds

P {W1(u, u) > xmin + ymin} ≥ 1− n−
7
3 , (7)

12
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where

xmin = (nβ − 1)ps2 −
√

5nβps2 log n− 5

3
log n,

ymin = (n(1− β)− 2)p2s2 − 5
√
np2s2 log n− 25

3
log n.

Proof [Proof of Lemma 5] Recall that A1 and B1 are the adjacency matrix for G1 and G2,
respectively. Let F , {i : π(i) = i} denote the set of fixed points of π. Then F corresponds
to the set of correct seeds with |F | = nβ (recall that we assume the true matching π∗ to be
the identity mapping). By the definition of 1-hop witness, we have

W1(u, u) =
∑
i∈F

A1(u, i)B1(u, i) +
∑

i∈[n]\F

A1(u, i)B1(u, π(i))

=
∑

i∈F\{u}

A1(u, i)B1(u, i) +
∑

i∈[n]\(F∪{u,π−1(u)})

A1(u, i)B1(u, π(i)), (8)

where the second equality holds because A1(u, u) = B1(u, u) = 0. Let Xi , A1(u, i)B1(u, i)
for i ∈ F \ {u} and Yi , A1(u, i)B1(u, π(i)) for i ∈ [n] \ (F ∪ {u, π−1(u)}).

For all i ∈ F \ {u}, Xi
i.i.d.∼ Bern(ps2). It follows that

P

{∑
i∈F

Xi ≤ xmin

}
≤ P

{
Binom(nβ − 1, ps2) ≤ xmin

}
≤ n−

5
2 , (9)

where that last inequality follows from Bernstein’s inequality given in Theorem 15 with
γ = 5

2 log n and K = 1.
For all i ∈ [n] \

(
F ∪ {u, π−1(u)}

)
, Yi ∼ Bern(p2s2). However, Yi’s are dependent and

thus we cannot directly apply Bernstein’s inequality. To see this, A1(u, i) and B1(u, i)
are correlated, but {A1(u, i), B1(u, i)} are independent across different (u, i). Let Si =
{{u, i}, {u, π(i)}}. Thus, Yi only depends on the set Si of entries of A1 and B1. Since
Si ∩ Si′ 6= ∅ if and only if i′ = π(i) or i′ = π−1(i), it follows that Yi is dependent on Yi′ if
and only if i′ = π(i) or i′ = π−1(i). Then we can construct a dependency graph Γ for {Yi},
where the maximum degree of Γ, ∆(Γ), equals to two. Hence, applying the concentration
inequality for the sum of dependent random variables given in Theorem 18 with γ = 8

3 log n
and K = 1 yields that

P

 ∑
i∈[n]\(F∪{u,π−1(u)})

Yi ≤ ymin

 ≤ n− 8
3 . (10)

Finally, combining (8), (9) and (10) and applying union bound yields the desired con-
clusion (7).

Combining Lemma 4 and Lemma 5, for the 1-hop algorithm to succeed, it suffices to
ensure that xmin + ymin ≥ ψmax. Note that

xmin + ymin − ψmax ≥ 0

13
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⇐1

3
nβp(1− p)s2 ≥

√
5nβps2 log n, and

1

3
nβp(1− p)s2 ≥ (5 +

√
7)
√
np2s2 log n, and

1

3
nβp(1− p)s2 ≥ 37

3
log n+ 2 + ps2 + 2p2s2, (11)

which is implied by condition (3) in Theorem 1. Thus, by taking the union bound over (6)
and (7), we complete the proof of Theorem 1. Please refer to Appendix D.2 for details. The
above argument suggests that the sufficient condition (3) is also close to necessary (differing
from the necessary condition by a constant factor) for the 1-hop algorithm to succeed, which
is confirmed by our simulation results in Appendix A.

5.2 Intuition and Proof of Theorem 2

We next explain the intuition and sketch the proof of Theorem 2 when np2 ≤ 1
logn and

nps2 ≥ 128 log n.
We start by explaining why Theorem 2 requires np2 ≤ 1

logn and nps2 ≥ 128 log n. First,

note that the intersection graph Gπ
∗

1 ∧ G2 (which includes edges appearing in both G1

and G2) is an Erdős-Rényi random graph with average degree (n − 1)ps2. Thus, we need
nps2 ≥ 128 log n so that there is no isolated vertex in Gπ

∗
1 ∧G2. Otherwise, it is impossible

to match the isolated vertices and reach the goal of perfect matching (Cullina and Kiyavash,
2016, 2017; Wu et al., 2021). Moreover, we will use this condition in Section 5.2.1 to ensure
that the number of 1-hop neighbors is concentrated. Second, the condition np2 ≤ 1/ log n
ensures that the graph is not too dense so that the true pair is expected to have more 2-hop
witnesses than the fake pair. Please see later in (15) how this condition arises.

Then, analogous to the 1-hop algorithm, we derive the condition on β by comparing
the number of 2-hop witnesses for true pairs and for fake pairs. However, the dependency
issue is more severe here when we bound the number of 2-hop witnesses. Specifically, in
the analysis of Lemma 5, the event that an incorrect seed becomes a 1-hop witness for
a true pair is dependent on that of at most two other incorrect seeds. However, for 2-
hop witnesses, any two seeds could be dependent through the 1-hop neighborhoods of the
candidate vertex-pair (see Fig. 3 for an example). Thus, directly using the concentration
inequality in Janson (2004) will lead to a poor bound. To address this new difficulty, we
will condition on the 1-hop neighborhoods first. After this conditioning, the remaining
dependency becomes more manageable, which is handled by either classifying the seeds or
by applying the concentration inequality in Janson (2004) again.

5.2.1 Bound on the 1-hop Neighbors

In order to condition on the typical sizes of the 1-hop neighborhoods, we first bound the
number of 1-hop neighbors. For any vertex u in graph G, we use NG(u) to denote the set
of 1-hop neighbors of u in G, i.e., NG(u) =

{
v ∈ G : dG(u, v) = 1

}
. For any two vertices

u, v ∈ [n], let C(u, v) denote the set of 1-hop “common” neighbors of u and v across G1 and
G2, i.e., C(u, v) = NG1(u) ∩NG2(v). For ease of notation, let

du =
∣∣NG0(u)

∣∣ , au =
∣∣NG1(u)

∣∣ , bv =
∣∣NG2(v)

∣∣ , cuv = |C(u, v)| .

By definition, we have au, bv ∼ Binom(n − 1, ps), cuu ∼ Binom(n − 1, ps2), and cuv ∼
Binom(n− 1, p2s2) for u 6= v. Thus, by using concentration inequalities for binomial distri-
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u v uv

i π(i)

j π(j)

G1 G2

Figure 3: The events that any seed (i, π(i)) or (j, π(j)) becomes a 2-hop witness for (u, u) are
dependent through the 1-hop neighbors of u. Specifically, knowing that (i, π(i)) is
a 2-hop witness for (u, u) means that some vertex v is connected to u, which will
influence the probability that any other seed (j, π(j)) becomes a 2-hop witness
for (u, u). Thus, there exists dependency across any two seeds.

butions and letting

ε =

√
12 log n

(n− 1)ps2
≤ 1

3
, (12)

where the last inequality holds due to the assumption nps2 ≥ 128 log n, We can show that
with high probability, au and bu are bounded by (1± ε)nps, cuu is bounded by (1± ε)nps2,
and cuv is upper bounded by ψmax in Lemma 6 below. In particular, we arrive at the
following lemma with the proof deferred to Appendix E.1.

Lemma 6 Given any two vertices u, v ∈ [n] with u 6= v, let Ruv denote the event such that
the followings hold simultaneously:

(1− ε)(n− 1)ps < au, av, bu, bv < (1 + ε)(n− 1)ps,

(1− ε)(n− 1)ps2 < cuu, cvv < (1 + ε)(n− 1)ps2,

cuv, W1(v, u) < ψmax,

where ψmax = np2s2 +
√

7np2s2 log n+ 7
3 log n+ 2.

If nps2 ≥ 128 log n, then for all sufficiently large n,

P {Ruv} ≥ 1− n−
7
2 . (13)

5.2.2 Bound on the 2-hop Witnesses

In the sequel, we condition on the 1-hop neighborhoods of u and v such that event Ruv
holds, and bound the 2-hop witnesses for both the true pairs and fake pairs. To compute
the probability that a seed (j, π(j)) becomes a 2-hop witness for pair (u, v), we calculate the
joint probability that j connects to some 1-hop neighbor of u in G1 and π(j) connects to some
1-hop neighbor of v in G2. For any correct seed, it is a 2-hop witness for a true pair (u, u)
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with probability1 about cuups
2 + (aubu − cuu)p2s2, where the first term is the dominating

term, and is a 2-hop witness for a fake pair (u, v) with probability about aubvp
2s2. In

contrast, for any incorrect seed, it is a 2-hop witness for a true pair (u, u) with probability
about aubup

2s2 and is a 2-hop witness for a fake pair (u, v) with probability about aubvp
2s2.

Thus we have

W2(u, v)
·∼

{
Binom

(
nβ, cuups

2
)

+ Binom
(
n(1− β), aubup

2s2
)

if u = v,

Binom
(
n, aubvp

2s2
)

if u 6= v.

(14a)

(14b)

To ensure that the numbers of 2-hop witnesses are separated between true pairs and
fake pairs, we need E [W2(u, u)] ≥ E [W2(u, v)] for u 6= v, which, in view of (14a) and (14b),
au, bu, bv ≈ nps, and cuu ≈ nps2, amounts to

nβ(nps2)ps2 + n(1− β)(nps)2p2s2 − n(nps)2p2s2 ≥ 0⇔ np2 ≤ 1. (15)

This shows that the 2-hop algorithm is only effective when the graphs are sufficiently sparse.
For this reason, we assume np2 ≤ 1/ log n so that (15) is satisfied.

For the 2-hop algorithm to be effective, we also need to consider the statistical fluctu-
ation of W2(u, v). For true pair u = v, using Bernstein’s inequality, Binom(nβ, cuups

2) is
lower bounded by nβcuups

2 −O(
√
nβcuups2 log n)−O(log n) with high probability. How-

ever, the second Binomial distribution in (14a) is not precise because the events that each
incorrect seed becomes a 2-hop witness for a true pair are dependent on other incorrect
seeds. Fortunately, similar to the proof of Lemma 5, we can deal with this dependency
issue using the concentration inequality for dependent random variables (Janson, 2004).
Thus, we can get the following lower bound on the number of 2-hop witnesses for the true
pairs conditional on the 1-hop neighborhoods.

Lemma 7 Given any two vertices u, v ∈ [n] with u 6= v, we use Quv to collect all informa-
tion of 1-hop neighborhood of u and v, i.e.,

Quv =
{
NG1(u), NG2(u), NG1(v), NG2(v)

}
.

If n is sufficiently large and nps2 ≥ 128 log n, then

P {W2(u, u) ≤ lmin +mmin | Quv} · 1(Ruv) ≤ n−
7
2 , (16)

where

lmin =
7

24
(1− δ1)βn2p2s4 −

√
35

16
βn2p2s4 log n− 5

2
log n, (17)

mmin =n(1− β) (1− (1− ps)au\v)
(

1− (1− ps)bu\v
)

− 21n3p5s5 − 15

2

√
3

2
n3p4s4 log n− 25

2
log n, (18)

with δ1 = 6ps
β , au\v =

∣∣NG1(u) \ {v}
∣∣, and bu\v =

∣∣NG2(u) \ {v}
∣∣.

1. Among all aubu possible cases that a correct seed connects to 1-hop neighbors of (u, u), there are only
cuu cases that the correct seed connects to the common 1-hop neighbors of (u, v). Thus, we have cuu in
the first term and (aubu − cuu) in the second term.
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Remark 8 Note that lmin is contributed by the correct seeds and mmin is contributed by the
incorrect seeds. Specifically, conditional on the 1-hop neighbors, a correct seed becomes a 2-
hop witness for the true pair (u, u) with probability about cuups

2 ≈ np2s4. Multiplying by nβ
gives an expression close to the first term of lmin. Similarly, an incorrect seed becomes a 2-
hop witness for the true pair (u, u) with probability about (1− (1− ps)au\v)

(
1− (1− ps)bu\v

)
.

Multiplying by n(1 − β) gives the first term of mmin. In summary, the first term in lmin

and mmin is a lower bound of the expectation, and the rest of the terms are due to the tail
bounds.

Due to the conditioning of 1-hop neighborhoods, we exclude seeds that are 1-hop neigh-
bors of u when bounding W2(u, u), giving rise to the additional δ1 and 21n3p5s5 terms in
Lemma 7. Please refer to Appendix E.2 for the proof.

For the fake pair u 6= v, we have the following upper bound on the number of 2-hop
witnesses for the fake pairs conditional on the 1-hop neighborhoods.

Lemma 9 For any two vertices u, v ∈ [n] with u 6= v, if nps2 ≥ 128 log n, then for all
sufficiently large n,

P {W2(u, v) ≥ xmax + ymax + 2zmax + ψmax + 28 log n | Quv} · 1 (Ruv) ≤ n−
7
2 . (19)

where

xmax = 2nβ

(
ψmaxps

2 +
9

4
n2p4s4

)
, (20)

ymax = n(1− β) (1− (1− ps)au\v)
(

1− (1− ps)bv\u
)

+ n2p3s3 +
5

2

√
15n3p4s4 log n, (21)

zmax =
9

2
n2p3s3,

ψmax = np2s2 +
√

7np2s2 log n+
7

3
log n+ 2. (22)

Remark 10 Note that if u and v are connected in G1, the conditioning on Quv changes
the probability that the seed (j, π(j)) with j ∈ NG1(v) becomes a 2-hop witness for (u, v).
Thus, we have to divide the seeds into several types depending on whether j ∈ NG1(v) or
π(j) ∈ NG2(u), and consider their contribution to the number of 2-hop witnesses separately:

1) xmax + ymax is the major term in (19) and is contributed by the seeds such that
j /∈ NG1(v) ∪ π−1

(
NG2(u)

)
(see Fig. 4(a) for an example). In the analysis, we

further divide such seeds into two categories, where xmax is contributed by the cor-
rect seeds, and ymax is contributed by the incorrect seeds. Specifically, conditional on
the 1-hop neighbors, a correct seed becomes a 2-hop witness for the fake pair (u, v)
either when the two vertices of the seed connect to different 1-hop neighbors of u
and v, respectively, or when they connect to a common 1-hop neighbor of u and v.
Thus, the conditional probability of such event is about cuvps

2 + aubvp
2s2. Accord-

ing to Lemma 6, ψmax is an upper bound estimate of cuv, and both au and bv are
approximately nps. Therefore, the above conditional probability can be approximately
estimated as ψmaxps

2 + n2p4s4. Multiplying by nβ gives an expression close to xmax.
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Similarly, an incorrect seed becomes a 2-hop witness for the fake pair (u, v) with prob-
ability about (1− (1− ps)au\v)

(
1− (1− ps)bv\u

)
. Multiplying by n(1 − β) gives the

first term of ymax. In summary, the first term in xmax and ymax is an upper bound of
the expectation, and the rest of the terms are due to the tail bounds.

2) One multiple of zmax in (19) is contributed by the seeds such that j ∈ NG1(v) \
π−1

(
NG2(u)

)
(see Fig. 4(b) for an example). To see this, note that there are roughly

nps such seeds (j, π(j)). If u and v are connected in G1, then j must be a 2-hop
neighbor of u, i.e., A2(u, j) = 1. On the other hand, the probability that π(j) becomes
a 2-hop neighbor of v is approximately np2s2. Thus, the expected number of 2-hop
witnesses contributed by this type of seeds is approximately n2p3s3. The other multiple
of zmax in (19) is for the opposite case: it is contributed by the seeds such that j ∈
π−1

(
NG2(u)

)
\NG1(v).

3) The term ψmax in (19) is contributed by the seeds such that j ∈ NG1(v)∩π−1
(
NG2(u)

)
(see Fig. 4(c) for an example). In this case, (j, π(j)) becomes a 1-hop witness for
(v, u). Since W1(v, u) < ψmax according to Lemma 6, there are at most ψmax such
seeds.

4) The term 28 log n in (19) comes from the sub-exponential tail bounds when applying
concentration inequalities.

Please refer to Appendix E.3 for the proof.

5.2.3 Derivation of a Sub-optimal Version of Condition (4)

By combining Lemma 7 and Lemma 9, we are ready to derive a sufficient (but not tight)
condition for the success of the 2-hop algorithm. First, analogous to the proof of Theorem 1,
for the 2-hop algorithm to succeed, it suffices that

min
u
W2(u, u) > max

u6=v
W2(u, v). (23)

Then by combining Lemma 7 and Lemma 9, (23) is guaranteed when

lmin +mmin ≥ xmax + ymax + 2zmax + ψmax + 28 log n. (24)

Finally, to ensure (24) is satisfied when np2 ≤ 1
logn and nps2 ≥ 128 log n, we arrive at the

following sufficient condition:

β & max

{
log n

n2p2s4
,

√
log n

ns4
,

√
np3 log n

s

}
. (25)

Note that condition (25) is similar to condition (4) except for the third term. It is instructive
to see how (25) implies (24):

• When β & logn
n2p2s4

, β &
√

logn
ns4

, and np2 ≤ 1
logn , we have from (17) that lmin ≥

c · βn2p2s4 for some constant c. In other words, the true pair should have sufficiently
many 2-hop witnesses from the correct seeds.
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u u

v v

j π(j)

G1 G2

(a) j /∈ NG1(v) ∪ π−1
(
NG2(u)

)
.

u u

v v

j π(j)

G1 G2

(b) j ∈ NG1(v) \ π−1
(
NG2(u)

)
.

u u

v v

j π(j)

G1 G2

(c) j ∈ NG1(v) ∩ π−1
(
NG2(u)

)
.

Figure 4: We divide the seeds into several types based on whether j ∈ NG1(v) or π(j) ∈
NG2(u).

• When np2 ≤ 1
logn and nps2 ≥ 128 log n, we have from (20) that xmax . βnps2 log n ≤

c
3βn

2p2s4, ensuring that the fake pairs have fewer 2-hop witnesses from the correct
seeds than the true pairs.

• For the 2-hop witnesses from the incorrect seeds, we have from (18) and (21) that

mmin ≈ n(1− β)aubup
2s2 −∆

ymax ≈ n(1− β)aubvp
2s2 + ∆,

where ∆ = O(
√
n3p4s4 log n) +O(log n) captures the statistical deviation.

– When β & logn
n2p2s4

and β &
√

logn
ns4

, we have ∆ ≤ c
3βn

2p2s4.

– When β &
√

np3 logn
s , in view of au . nps and bv − bu .

√
nps log n (the latter

one is due to the fluctuation of the 1-hop neighborhood sizes), we have that

n(1− β)aubvp
2s2−n(1− β)aubup

2s2 . n(1− β)nps
√
nps log np2s2 ≤ c

3
βn2p2s4.

(26)
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The above two claims together ensure that ymax−mmin, i.e., the difference between the
true pairs and fake pairs of the 2-hop witnesses from the incorrect seeds, is dominated
by 2c

3 βn
2p4s4.

• Finally, when np2 ≤ 1
logn , 2zmax + ψmax + 28 log n . ∆ and hence is negligible.

In sum, if condition (25) holds, then with high probability (23) is satisfied and thus the
2-hop algorithm exactly recovers the true vertex mapping π∗.

5.2.4 Derivation of the Tight Condition (4)

Unfortunately, condition (25) does not completely coincide with the desired condition (4).
This is because the criteria (23) that we used for GMWM to succeed is too strict. Indeed,
the GMWM algorithm may succeed even when (23) does not hold. For example, consider
the case in Fig. 5 when au and bu are both small, while bv is large . Then, W2(u, v) may
be larger than W2(u, u) and hence (4) is not satisfied. However, since NG1(v) and NG2(v)
are expected to overlap significantly, when bv is large, av is also likely to be large. Hence
W2(v, v) is likely to be larger than W2(u, v). Thus, GMWM will still select the true pair
(v, v) and eliminate the fake pair (u, v). From the above example, we can see that, for the
2-hop algorithm to succeed, it is sufficient to satisfy the following new criteria:

W2(u, v) < W2(u, u) or W2(u, v) < W2(v, v), ∀u 6= v. (27)

Next, we show that under condition (4), with high probability the new criteria (27) is

u u

v v

au

av

bu

bv

G1 G2

Figure 5: The 2-hop algorithm with GMWM still selects the true pair (v, v) and eliminate
the fake pair (u, v) when W2(u, v) > W2(u, u) but W2(v, v) > W2(u, v).

satisfied and hence the 2-hop algorithm succeeds. Since NG1(u) and NG2(u) are both
generated by sampling with probability s from NG0(u) in the parent graph G0, we have
au, bu ∼ Binom(du, s). Similarly, av, bv ∼ Binom(dv, s). Therefore, if du ≤ dv, we expect
au− av not to be too large. If instead du > dv, we expect bv − bu not to be too large. More
precisely, we have the following lemma, with the proof deferred to Appendix E.4.

Lemma 11 Given any u, v ∈ [n], let Tuv denote the event:

Tuv = {au − av ≤ τ} ∪ {bv − bu ≤ τ} , (28)
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where

τ , 2
√

10nps(1− s) log n+ 5 log n. (29)

If n is sufficiently large and nps2 ≥ 128 log n, then

P(Tuv) ≥ 1− n−
7
2 .

Next we show the new criteria (27) is satisfied by separately considering two cases:

bv−bu ≤ τ and au−av ≤ τ . We first consider the case bv−bu ≤ τ . When β &
√

np3(1−s) logn
s ,

β &
√

logn
ns4

and np2 ≤ 1
logn , in view of au . nps, we can get a tighter upper bound to the

left hand side of (26):

n(1− β)aubvp
2s2 − n(1− β)aubup

2s2

.n(1− β)nps
(√

nps(1− s) log n+ log n
)
p2s2

(a)

≤n2p3s3
√
nps(1− s) log n+ n2p2s3

√
log n

n

(b)

≤ c

3
βn2p2s4, (30)

where the inequality (a) holds due to p ≤
√

1/(n log n); the inequality (b) is guaranteed by
the last two terms in condition (4).

To be more precise, the following lemma combined with Lemma 7 and Lemma 9 ensures
that W2(u, u) > W2(u, v) with high probability.

Lemma 12 Given any two vertices u, v ∈ [n] with u 6= v, if Ruv occurs, bv − bu ≤ τ ,
nps2 ≥ 128 log n, np2 ≤ 1

logn , and condition (4) holds, then for sufficiently large n,

lmin +mmin ≥ xmax + ymax + 2zmax + ψmax + 28 log n.

where lmin, mmin, xmax, ymax, zmax and ψmax are given in Lemma 7 and Lemma 9.

Please refer to Appendix E.5 for details.
For the other case that au−av ≤ τ , we instead bound W2(v, v) from below analogous to

Lemma 7, and prove that W2(v, v) > W2(u, v) with high probability analogous to Lemma 12.
Thus, by combining the two cases and applying union bound, we ensure that with

high probability the new criteria (27) is satisfied and hence the GMWM outputs the true
matching, completing the proof of Theorem 2. Please refer to Appendix E.6 for details.
Note that, when 1−s = o(1), condition (4) given by the new criteria (27) requires a smaller
β than (25) given by the old criteria (23).

6. Numerical experiments

In this section, we present numerical studies, comparing the performance of our 2-hop al-
gorithm to the 1-hop algorithm (Lubars and Srikant, 2018) and the NoisySeeds algorithm
(Kazemi et al., 2015), which are the state-of-the-art for graph matching with imperfect seeds.
Additional numerical studies to verify our theoretical results are deferred to Appendix A. In
all our experiments except for the last one on the computer vision data set in Section 6.2.3,
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the initial seeded mappings are constructed in the same way as our model given in Section 2,
i.e., the initial mappings are uniformly chosen at random with a given number of correctly
matched pairs. To be more precise, we choose βn correct seeds among all true pairs uni-
formly, and then we permute the rest of the vertices uniformly at random such that they all
form incorrect seeds. In contrast, in the computer vision experiment in Section 6.2.3, the ini-
tial seeded mapping is from the output of a seedless matching algorithm. The computational
environment is MATLAB R2017a on a standard PC with 2.4 GHz CPU and 8 GB RAM.
Our code has been released on GitHub at https://github.com/Leron33/Graph-matching.

6.1 Performance Comparison with Synthetic Data

For our experiments on synthetic data, we generate G1, G2 and π∗ according to the corre-
lated Erdős-Rényi model. We calculate the accuracy rate as the median of the proportion
of vertices that are correctly matched, taken over 10 independent simulations.

6.1.1 Performance Comparison between Seeded Algorithms

In this section, we compare the graph matching algorithms using partially-correct seeded. In
Fig. 6, we fix n = 10000 and s = 0.9, and plot the accuracy rates for p = n−

3
4 and p = n−

6
7 .

We observe that the 2-hop algorithm significantly outperforms the 1-hop algorithm. For
the NoisySeeds algorithm, its performance is sensitive to the threshold value r. The 2-
hop algorithm performs either comparably or better than the NoisySeeds algorithm even
with the best choice of r. Note that it is a priori unclear how to choose the best value
of r for the NoisySeeds algorithm, while our 2-hop algorithm does not need to tune any
parameters. Computationally, when we match two graphs of size 10000 with p = n−

6
7 and

β = 0.5, the average running times of the 1-hop algorithm, 2-hop algorithm, and NoisySeeds
algorithm are about 52s, 86s and 101s, respectively. Similar to the NoisySeeds algorithm,
we can modify GMWM for parallel implementation to make our 2-hop algorithm even more
scalable. Please refer to Appendix B for details.

0 0.2 0.4 0.6 0.8 1

 

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y
 R

a
te

2-hop

NoisySeeds r=2

NoisySeeds r=3

NoisySeeds r=4

1-hop

(a) p = n−
3
4 .

0 0.2 0.4 0.6 0.8 1

 

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y
 R

a
te

2-hop

NoisySeeds r=2

NoisySeeds r=3

NoisySeeds r=4

1-hop

(b) p = n−
6
7 .

Figure 6: Performance comparison of the 1-hop algorithm, 2-hop algorithm and NoisySeeds
algorithm with p = n−

3
4 and p = n−

6
7 . Fix n = 10000 and s = 0.9.
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In Lubars and Srikant (2018), the authors suggest iteratively applying the 1-hop algo-
rithm to further boost its accuracy. Thus, we further iteratively apply the 1-hop algorithm,
2-hop algorithm and NoisySeeds algorithm and compare their performance. By using the
matching output of the previous iteration as the new partially-correct seeds for the next
iteration, we run the three algorithms with a given number of iterations L = 0, 1, 2. In
Fig. 7, we consider the same setup as in Fig. 6. We fix n = 10000 and s = 0.9, and plot
the accuracy rates for p = n−

3
4 and p = n−

6
7 . For the NoisySeeds algorithm, we choose the

threshold r = 3 for p = n−
3
4 and r = 2 for p = n−

6
7 . We observe that iteratively applying

these algorithms boost their performance and the 2-hop algorithm still performs the best
among the three algorithms when the number of iterations is the same. In particular, when
p = n−

6
7 , while the matching accuracy of the 2-hop with multiple iterations gets close to

1, the matching accuracy of NoisySeeds saturates at 0.8 ∼ 0.9. This is because about 10%
true pairs have only one common 1-hop neighbor and thus cannot be correctly matched by
the NoisySeeds algorithm with r = 2.
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Figure 7: Performance comparison of the 1-hop algorithm, 2-hop algorithm and NoisySeeds
algorithm applied iteratively with p = n−

3
4 and p = n−

6
7 . Fix n = 10000 and

s = 0.9.

6.1.2 Performance Comparison between seeded and seedless algorithms

In this section, we compare the performance of the seeded algorithms (the 1-hop, 2-hop
algorithms, and the NoisySeeds algorithm) with that of the seedless algorithms (including
degree profile matching algorithm (Ding et al., 2021), quadratic programming relaxation of
QAP based on doubly stochastic relaxation (QP), and GRAph Matching by Pairwise eigen-
Alignments (GRAMPA) (Fan et al., 2019b)). The results are shown in Fig. 8 as a function
of s with n = 1000, p = n−3/4 and β = 0.5. Clearly, our 2-hop algorithm outperforms other
algorithms, including the seedless ones.

6.1.3 Comparison between GMWM and the Hungarian algorithm

In this section, we compare the Greedy Maximum Weight Matching algorithm with the
Hungarian matching algorithm (for solving the linear assignment problem), when they are
used as a component of the 1-hop algorithm and the 2-hop algorithm. In Figure 9 be-
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Figure 8: Performance comparison on correlated Erdős-Rényi random graph model with
n = 1000, p = n−3/4 and β = 0.5.

low, we fix n = 1000, s = 0.9, and plot the matching accuracy rates for p = n−
3
4 . The

simulation results show that the Hungarian algorithm has slightly better matching accu-
racy. However, the improvement over GMWM is quite small. Further, the running time
of the Hungarian algorithm is much larger. Specifically, the average running time of using
GMWM algorithm and the Hungarian algorithm in the 1-hop algorithm is about 0.12s and
1.1s, respectively. Thus, the GMWM algorithm saves a lot of running time. In summary,
the GMWM algorithm strikes a good balance between time complexity and accuracy.
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Figure 9: Performance comparison of using GMWM and the Hungarian algorithm in the
1-hop algorithm and the 2-hop algorithm.

6.2 Performance Comparison with Real Data

In this section, we will show that our 2-hop algorithm also performs well on real-world
graphs. Further, departing from our simulation with synthetic data where the two corre-
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lated graphs have the same number of vertices, we will evaluate the performance of the
algorithms when the two correlated graphs have a different number of vertices. In Sec-
tion 6.2.1, we consider de-anonymizing social networks, which is a popular application of
graph matching. In this example, the two correlated graphs are generated by sampling a
Facebook friendship network. In Section 6.2.2, we match networks of Autonomous Systems
in which the correlated graphs are povided by the real data set. In both Section 6.2.1 and
Section 6.2.2, the initial seeds are chosen uniformly randomly. In Section 6.2.3, we match
deformable 3D shapes, where not only the correlated graphs are provided by the real data
set, but also the initial seeds are generated by a seedless graph match algorithm.

6.2.1 Facebook Friendship Networks

We use a Facebook friendship network of 11621 students and staffs from Standford university
provided in Traud et al. (2012) as the parent graph G0. There are 1136660 edges in G0. The
Facebook social network has an approximate power-law degree distribution with p(d) ∼ d−1
with average degree about 100. To obtain two correlated subgraphs G1 and G2 of different
sizes, we independently sample each edge of G0 twice with probability s = 0.9 and sample
each vertex of G0 twice with probability α = 0.8. Then, we relabel the vertices in G2

according to a random permutation π∗ : [n2] → [n2], where n2 is the number of nodes
in G2. Let m denote the number of common vertices that appear in both G1 and G2.
The initial seed mapping is constructed by uniformly and randomly choosing a mapping
π : [m] → [m] between the common vertices of the two subgraphs such that β fraction
of vertices are correctly matched, i.e., π(u) = π∗(u) for exactly βm common vertices. We
treat G1 as the public network and G2 as the private network, and the goal is to de-
anonymize the node identities in G2 by matching G1 and G2. We show the performance of
the 1-hop algorithm, 2-hop algorithm, and NoisySeeds algorithm in Fig. 10. We choose the
threshold r = 5, 10, 15 for the NoisySeeds algorithm to search for the best value of r. We
observe that our proposed 2-hop algorithm significantly outperforms the 1-hop algorithm
and NoisySeeds algorithm. Note that the matching accuracy is saturated at around 80%,
because there are about 15% common vertices that are isolated in the intersection graph
Gπ
∗

1 ∧ G2 and thus can not be correctly matched. Due to the power-law degree variation,
the number of witnesses for some fake pairs could be larger than the threshold r. Thus,
even the NoisySeeds algorithm with the best value of r does not perform well.

6.2.2 Autonomous Systems Networks

Following Fan et al. (2020), we use the Autonomous Systems (AS) data set from Leskovec
and Krevl (2014) to test the graph matching performance on real graphs. The data set
consists of 9 graphs of Autonomous Systems peering information inferred from Oregon
route-views between March 31, 2001, and May 26, 2001. Since some vertices and edges are
changed over time, these nine graphs can be viewed as correlated versions of each other. The
number of vertices of the 9 graphs ranges from 10,670 to 11,174 and the number of edges
from 22,002 to 23,409. The Autonomous Systems networks have an approximate power-law
degree distribution with p(d) ∼ d−2 with average degree about 2. We apply the 1-hop
algorithm, 2-hop algorithm and NoisySeeds algorithm (with the best-performing threshold
r = 2) to match each graph to that on March 31, with vertices randomly permuted. To
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Figure 10: Performance comparison of 1-hop algorithm, 2-hop algorithm and NoisySeeds
algorithm applied to the Facebook networks.

obtain the initial seed mapping, we uniformly and randomly choose the mapping between the
common vertices among the two given graphs such that β fraction of vertices are correctly
matched.

The performance comparison of the three algorithms is plotted in Fig. 11 for β =
0.3, 0.6, 0.9. We observe that our proposed 2-hop algorithm significantly outperforms the
1-hop algorithm and NoisySeeds Algorithm. The NoisySeeds algorithm does not perform
well due to its thresholding component: There exists high degree variation in these real
graphs and thus a significant fraction of true pairs have only 1 witness, which falls below
even the smallest threshold r = 2. Note that the accuracy rates for all algorithms decay in
time because over time the graphs become less correlated with the initial one on March 31.
Computationally, when we match two real graphs with β = 0.6, the average running time
of the 1-hop algorithm, 2-hop algorithm, and NoisySeeds algorithm is about 46s, 73s and
91s, respectively.

6.2.3 Computer Vision Data Set

In this experiment, we use the output of seedless graph matching algorithms as partially
correct seeds, and test the performance of 1-hop, 2-hop, and NoisySeeds in correcting the
initial matching errors. We focus on the application of deformable shape matching. Match-
ing 3D deformable shapes is a fundamental and ubiquitous problem in computer vision
with numerous applications such as object recognition, and has been extensively studied for
decades (see Van Kaick et al. (2011) and Sahillioğlu (2020) for surveys). At a high-level,
each 3D shape is represented as a mesh graph. For two 3D shapes corresponding to the same
object but with different poses, their mesh graphs are approximately isomorphic. However,
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Figure 11: Performance comparison of 1-hop algorithm, 2-hop algorithm and NoisySeeds
algorithm applied to the Autonomous Systems graphs.

the exact vertex mapping is not knowm. Thus, the goal of deformable shape matching is
to retrieve the correct vertex correspondence by matching the two mesh graphs.

The previous work Fan et al. (2020) applied the 1-hop algorithm iteratively to boost
the matching accuracy of their seedless graph matching algorithm, GRAMPA (GRAph
Matching by Pairwise eigen-Alignments). Their experiment is carried on the SHREC’16
data set in Lähner et al. (2016). The SHREC’16 data set provides 25 deformable 3D shapes
(15 for training and 10 for testing) undergoing different topological changes. At the lower
resolution, each shape is represented by a triangulated mesh graph consisting of around 8K-
11K vertices with 3D coordinates and 17K-22K triangular faces, with vertex degrees highly
concentrated on 6. It is demonstrated in Fan et al. (2020) that the GRAMPA followed
by the iterative 1-hop algorithm achieves much higher matching accuracy compared to the
existing methods tested in Lähner et al. (2016).

We also use the SHRED’16 data set in our experiment. When we match each pair
of test shapes, we first apply the GRAMPA algorithm, and then repeatedly use the 1-
hop algorithm, 2-hop algorithm and NoisySeeds algorithm with 100 iterations to boost the
matching accuracy of the output of the GRAMPA algorithm. Fig. 12 provides a visualization
of our results, where the matched vertices are colored with the same color. We can see that
the 2-hop algorithm corrects most matching errors of the GRAMPA algorithm.

We follow the Princeton benchmark protocol in Kim et al. (2011) to evaluate the match-
ing quality. Assume that a vertex-pair (i, j) ∈ M×N is matched between shapes M and
N , while the ground-truth correspondence is (i, j∗). Then the normalized geodesic error of

this correspondence at vertex i is defined as ε(i) = dN (j,j∗)√
area(N )

, where dN denotes the geodesic

distance on N and area(N ) is the total surface area of N . Finally, we plot the cumulative
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(a) (b) (c)

Figure 12: Visualization of the matching results. Fig. 12(a) is the mesh graph of a 3D shape
randomly chosen from the SHREC’16 data set, whose vertices are colored in a
gradient. Fig. 12(b) and Fig. 12(c) are the same mesh graph with a different
pose that needs to be matched with Fig. 12(a), where vertices in Fig. 12(b) and
Fig. 12(c) are labeled with the same color as that of the vertices in Fig. 12(a)
matched by the corresponding graph matching algorithms. Fig. 12(b) shows
the matching result of the GRAMPA algorithm. Fig. 12(c) shows the matching
result when we use the output of the GRAMPA algorithm as the initial seeds and
apply the 2-hop algorithm iteratively. We can observe that the 2-hop algorithm
corrects most matching errors of the GRAMPA algorithm.

distribution function of {ε(i)}ni=1 in Fig. 13, where cdf(ε) is the fraction of vertices i such
that ε(i) ≤ ε. In particular, cdf(0) is the fraction of correctly matched vertices in shapeM.

In Fig. 13, we observe that all three algorithms improve the initial matching accuracy of
the GRAMPA algorithm, but the performance improvement of our 2-hop algorithm is most
substantial. In particular, our 2-hop algorithm increases the fraction of correctly matched
vertices to more than 80%, while the 1-hop algorithm and NoisySeeds (with the best choice
threshold r = 2) only correctly match around 60% and 30% of vertex-pairs, respectively.

7. Conclusion

In this work, we tackle the graph matching problem with partially-correct seeds. Under the
correlated Erdős-Rényi model, we first present a sharper characterization of the condition
for the 1-hop algorithm to perfectly recover the vertex matching for dense graphs, which
requires many fewer correct seeds than the prior art when graphs are dense. Then, for
sparse graphs, by exploiting 2-hop neighbourhoods, we propose an efficient 2-hop algorithm
that perfectly recovers the true vertex correspondence with even fewer correct seeds than
the 1-hop algorithm in sparse graphs. Our performance guarantees for the 1-hop and 2-
hop algorithm combined together achieve the best-known results across the entire range of
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Figure 13: Performance comparison of 1-hop algorithm, 2-hop algorithm and NoisySeeds
algorithm applied to the SHREC’16 data set, with initial noisy seeds generated
by the GRAMPA algorithm. The higher the curve, the better the algorithm
performance.

graph sparsity and significantly improve the state-of-the-art. Moreover, our results precisely
characterize the graph sparsity at which the 2-hop algorithm starts to outperform 1-hop.
This reveals an interesting and delicate trade-off between the quantity and the quality of
witnesses: while the 2-hop algorithm exploits more seeds as witnesses than 1-hop, the 2-hop
witnesses are less accurate than the 1-hop counterparts in distinguishing true pairs from
fake pairs when graphs are dense.

Experimental results validate our theoretical analysis, demonstrating that our 2-hop
algorithm continues to perform well in real graphs with power-law degree variations and
different number of nodes. There are many exciting future directions such as analyzing the
performance of j-hop algorithms for j ≥ 3, investigating partial recovery when nps2−log n =
O(1), and studying graph matching under other random graph models beyond Erdős-Rényi
random graphs.
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Appendix A. Numerical Experiments to Verify The Scalings

In this section, we conduct numerical studies to verify the scaling results given in Theorem 1
and Theorem 2. We observe that conditions (3) and (4) are not only sufficient, but also
close to necessary (differing from the necessary conditions by a constant factor) for the
1-hop and 2-hop algorithms to succeed, respectively. Throughout, we generate G1, G2 and
π∗ according to the correlated Erdős-Rényi model with fixed sampling probability s = 0.8,
and vary the number of vertices from 2000 to 8000.

We first simulate the performance of the 1-hop algorithm for p = n−
1
3 and p = n−

2
3 . The

results are presented in Fig. 14(a) and Fig. 15(a) as a function of β. Theorem 1 predicts

that the 1-hop algorithm succeeds in exact recovery when β &
√

log n/n for p = n−
1
3 and

when β & logn
np for p = n−

2
3 . Thus, we rescale the x-axis in Fig. 14(b) and Fig. 15(b) as

β/
√

logn
n and β/

(
logn
np

)
, respectively. We see that after rescaling the curves for different

n align well with each other, suggesting that condition (3) is both sufficient and close to
necessary for the 1-hop algorithm to succeed.

0 0.2 0.4 0.6 0.8 1

 

0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy
 R

at
e

n=2000

n=4000

n=6000

n=8000

(a) x-axis is β.

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

A
cc

u
ra

cy
 R

at
e

n=2000

n=4000

n=6000

n=8000

(b) x-axis is β/
√

logn/n.

Figure 14: The 1-hop algorithm with varying n and p = n−
1
3 . Fix s = 0.8.
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Figure 15: The 1-hop algorithm with varying n and p = n−
2
3 . Fix s = 0.8.
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Next, we simulate the performance of the 2-hop algorithm for p = n−
3
5 , p = n−

17
24 , and

p = n−
4
5 . The results are presented in Fig. 16(a), Fig. 17(a) and Fig. 18(a). Since Theorem 2

predicts that the 2-hop algorithm succeeds in exact recovery with high probability when

β & max

{√
np3 log n,

√
logn
n , logn

n2p2

}
, we rescale the x-axis in Fig. 16(b), Fig. 17(b) and

Fig. 18(b) as β/
√
np3 log n for p = n−

3
5 , β/

√
logn
n for p = n−

17
24 and β/

(
logn
n2p2

)
for p = n−

4
5 .

As we can see in Fig. 16(b), Fig. 17(b) and Fig. 18(b), the curves for different n align well
with each other, suggesting that condition (4) is both sufficient and close to necessary for
the 2-hop algorithm to succeed.
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Figure 16: The 2-hop algorithm with varying n and p = n−
3
5 . Fix s = 0.8.
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Figure 17: The 2-hop algorithm with varying n and p = n−
17
24 . Fix s = 0.8.
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Figure 18: The 2-hop algorithm with varying n and p = n−
4
5 . Fix s = 0.8.

In addition, if s = 1 and p = n−
1
2 , we show in Fig. 19 that the curves for different n align

well when we rescale the x-axis as β/
√

logn
n , but they do not align well with each other when

the x-axis is rescaled as β/
√
np3 log n. This result agrees with Theorem 2, demonstrating

that condition (25) derived from the old criteria (23) is not tight.
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Figure 19: The 2-hop algorithm with varying n and p = n−
1
2 . Fix s = 1.

Appendix B. The scalability of our algorithm and feasible parallel
implementation

We may further improve the time complexity of our 2-hop algorithm by exploiting graph
sparsity and parallel computing. Recall that the theoretical worst-case computational com-
plexity of our algorithm is O(nω + n2 log n) for 2 ≤ ω ≤ 2.373, where nω denotes the
complexity of n× n matrix multiplication. For sparse graphs, the computational complex-
ity of our 2-hop algorithm is comparable to that of the NoisySeeds algorithm in Kazemi
et al. (2015) and the 1-hop algorithm in Lubars and Srikant (2018). To see this, note that
there are only two differences in the execution of our 2-hop algorithm: (i) To compute the
number of 2-hop witnesses for all vertex-pairs, for every seed (w, π(w)), our algorithm needs
to compute the set of 2-hop neighbors of w (resp. π(w)) in G1 (resp. G2), which takes O

(
c4
)
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steps, where c denotes the average degree. Thus in total it takes O
(
nc4
)

steps. Hence, for
sparse graphs with small average degree c, finding 2-hop witnesses only increases complex-
ity slightly compared to finding 1-hop witnesses; (ii) We use greedy max weight matching
(GMWM) rather than simple thresholding in Kazemi et al. (2015). As the time complexity
of GMWM is O(n2 log n) and the thresholding procedure needs to go through all the n2

vertex-pairs, GMWM only incurs an additional log n factor to time complexity. Thus, the
computational complexity of our 2-hop algorithm is comparable to others.

For very large graphs, one may want to run these algorithms parallelly. Our 2-hop
algorithm can be executed in parallel as follows. First, it is easy to turn (i) into parallel
implementation. Second, if the complexity of (ii) is an issue, we can instead run the following
modification: For each vertex u in G1, matches it to v in G2 that has the largest number
of 2-hop witnesses; Output failure if there is any inconsistency in the final matching. This
procedure can then be executed across all nodes in G1 (or G2) in parallel. This parallelizable
version of the 2-hop algorithm can still provide perfect recovery if criteria (23) holds. This
criteria is satisfied with high probability under condition (25), as discussed in Remark 5.2.3.
Hence the parallelizable version of the 2-hop algorithm can achieve perfect recovery under
condition (25). Thus, we believe our 2-hop algorithm can scale to very large graphs with
strong matching performance.

Appendix C. Preliminary Results

We first present some useful concentration inequalities for the sum of independent random
variables.

Theorem 13 Chernoff Bound (Dubhashi and Panconesi (2009)): Let X =
∑

i∈[n]Xi,
where Xi’s are independent random variables taking values in {0, 1}. Then, for δ ∈ (0, 1),

P {X ≤ (1− δ)E [X]} ≤ exp

(
−δ

2

2
E [X]

)
, P {X ≥ (1 + δ)E [X]} ≤ exp

(
−δ

2

3
E [X]

)
.

As a corollary of Theorem 13, we obtain the following lemma, which will be useful for
the proofs of Lemma 6 and Lemma 11.

Lemma 14 Let X denote a random variable such that X ∼ Binom(n−1, α). If α ∈
[
ps2, 1

)
and nps2 ≥ 128 log n, then

P {X ≤ (1− ε)(n− 1)α} ≤ n−6, P {X ≥ (1 + ε)(n− 1)α} ≤ n−4,

where ε is given in (12), i.e., ε =
√

12 logn
(n−1)ps2 ≤

1
3 .

Proof Since X ∼ Binom (n − 1, α) and ε =
√

12 logn
(n−1)ps2 <

1
3 , applying Chernoff bound in

Theorem 13 and using α ≥ ps2 yields

P {X ≤ (1− ε)(n− 1)α} ≤ exp

(
−ε

2(n− 1)α

2

)
≤ n−6,

P {X ≤ (1 + ε)(n− 1)α} ≤ exp

(
−ε

2(n− 1)α

3

)
≤ n−4.
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Theorem 15 Bernstein’s Inequality (Dubhashi and Panconesi (2009)): Let X =
∑

i∈[n]Xi,
where Xi’s are independent random variables such that |Xi| ≤ K almost surely. Then, for
t > 0, we have

P {X ≥ E [X] + t} ≤ exp

(
− t2

2(σ2 +Kt/3)

)
,

where σ2 =
∑

i∈[n] var(Xi) is the variance of X. It follows then for γ > 0, we have

P
{
X ≥ E [X] +

√
2σ2γ +

2Kγ

3

}
≤ exp(−γ).

Similarly, by considering −X, it follows that

P
{
X ≤ E [X]−

√
2σ2γ − 2Kγ

3

}
≤ exp(−γ).

Corollary 16 Let X denote a random variable such that X ∼ Binom(n, α). If n ∈
[nmin, nmax], then for γ > 0,

P
{
X ≤ nminα−

√
2nmaxαγ −

2γ

3

}
≤ exp(−γ), (31)

P
{
X ≥ nmaxα+

√
2nmaxαγ +

2γ

3

}
≤ exp(−γ). (32)

Moreover,

P
{
X ≥ 2nmaxα+

4γ

3

}
≤ exp(−γ) (33)

Proof The proof of (31) and (32) follows by invoking Theorem 15 with σ2 = nα(1 − α)
and K = 1 and using the assumption that n ∈ [nmin, nmax]. In view of 2

√
ab ≤ a+ b, (33)

follows from (32).

Next, we present a concentration inequality for the sum of dependent random variables.
To this end, we first introduce the notion of dependency graph.

Definition 17 Given random variables {Xi}i∈[n], the dependency graph is a graph Γ with
vertex set [n] such that if i ∈ [n] is not connected by an edge to any vertex in J ⊂ [n], then
Xi is independent of {Xj}j∈J .

Theorem 18 (Janson (2004)) Let X =
∑

i∈[n]Xi, where Xi’s are random variables such
that Xi−E [Xi] ≤ K for some K > 0. Let Γ denote a dependency graph for {Xi} and ∆(Γ)
denote the maximum degree of Γ. Let σ2 =

∑
i∈[n] var(Xi). Then, for t ≥ 0,

P {X ≥ E [X] + t} ≤ exp

(
− 8t2

25∆1(Γ)(σ2 +Kt/3)

)
,
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where ∆1(Γ) = ∆(Γ) + 1. It follows then for γ > 0, we have

P

{
X ≥ E [X] +

√
25∆1(Γ)

8
σ2γ +

25∆1(Γ)Kγ

24

}
≤ exp(−γ).

If the assumption Xi−E [Xi] ≤ K is reversed to Xi−E [Xi] ≥ −K, then by considering
−X, it follows that

P

{
X ≤ E [X]−

√
25∆1(Γ)

8
σ2γ − 25∆1(Γ)Kγ

24

}
≤ exp(−γ).

Finally, we will repeatedly use the following simple inequality.

Theorem 19 For r ≥ 0, every real number x ∈ (0, 1) and rx ≤ 1, it holds that

r log (1− x) ≤ log
(

1− rx

2

)
.

Proof Set f(x) = r log(1− x)− log
(
1− rx

2

)
. Then f(0) = 0 and f ′(x) = r(rx−x−1)

(2−rx)(1−x) ≤ 0.

Thus f(x) ≤ 0, completing the proof.

Appendix D. Postponed Proofs for Theorem 1

D.1 Proof of Lemma 4

Recall that A1 and B1 are the adjacency matrix for G1 and G2, respectively. By the
definition of 1-hop witness, we have

W1(u, v) =
∑

i∈[n]\{u,π−1(v)}

A1(u, i)B1(v, π(i)).
(34)

Let Zi , A1(u, i)B1(v, π(i)). Note that Zv is dependent on Zπ−1(u). Thus, we exclude
these two seeds and consider the remaining seeds. For all i ∈ [n] \ {u, v, π−1(u), π−1(v)},
Zi

i.i.d.∼ Bern(p2s2). It follows that

P

 ∑
i∈[n]\{u,v,π−1(u),π−1(v)}

Zi ≥ ψmax − 2

 ≤ P
{

Binom(n, p2s2) ≥ ψmax − 2
}
≤ n−

7
2 , (35)

where that last inequality follows from Bernstein’s inequality given in Theorem 15 with
γ = 7

2 log n and K = 1.

Finally, adding back Zv and Zπ−1(u) yields the desired conclusion (6).
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D.2 Proof of Theorem 1

Since the bound of the number of 1-hop witnesses is provided by Lemma 4 and Lemma 5,
it remains to verify xmin + ymin − ψmax ≥ 0 under the condition of Theorem 1. Note that

xmin + ymin − ψmax

=nβp(1− p)s2 −
√

5nβps2 log n− (5 +
√

7)
√
np2s2 log n− ps2 − 2p2s2 − 37

3
log n− 2.

First, by assumption that β ≥ 45 logn
np(1−p)2s2 , we have

1

3
nβp(1− p)s2 ≥

√
45 log n

np(1− p)2s2
· 1

3
n
√
βp(1− p)s2 =

√
5nβps2 log n. (36)

Second, by assumption that β ≥ 30
√

logn
n(1−p)2s2 , we have

1

3
nβp(1− p)s2 ≥ 30

√
log n

n(1− p)2s2
· 1

3
np(1− p)s2 ≥ (5 +

√
7)
√
np2s2 log n. (37)

Third, by assumption that β ≥ 45 logn
np(1−p)2s2 and n is sufficiently large, we have

1

3
nβp(1− p)s2 ≥ 45 log n

np(1− p)2s2
· 1

3
np(1− p)s2 ≥ 37

3
log n+ 2 + ps2 + 2p2s2. (38)

Combining (36)-(38), we have xmin + ymin − ψmax ≥ 0. Thus,

P
{

min
u∈[n]

W1(u, u) > max
u,v∈[n]:u6=

W1(u, v)

}

≥1− P

 ⋃
u∈[n]

{W1(u, u) ≤ xmin + ymin}

− P

 ⋃
u,v∈[n]:u6=v

{W1(u, v) ≥ ψmax}


≥1− n−

4
3 − n−

3
2 ≥ 1− n−1,

where the second inequality holds by combining Lemma 4 and Lemma 5 with the union
bound. Thus, GMWM outputs π̃ with P {π̃ = π∗} ≥ 1− n−1 under the 1-hop algorithm.

Appendix E. Postponed Proofs for Theorem 2

E.1 Proof of Lemma 6

By definition, we have au ∼ Binom(n− 1, ps). It follows from Lemma 14 that

P {au ≤ (1− ε)(n− 1)ps} ≤ n−6, P {au ≥ (1 + ε)(n− 1)ps} ≤ n−4. (39)

The same lower and upper bounds hold for bu analogously.
Note that cuu ∼ Binom(n− 1, ps2). Applying Lemma 14 yields that

P
{
cuu ≤ (1− ε)(n− 1)ps2

}
≤ n−6, P

{
cuu ≥ (1 + ε)(n− 1)ps2

}
≤ n−4. (40)
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Also, for fake pairs u 6= v, cuv ∼ Binom(n − 2, p2s2). Therefore, applying Bernstein’s
inequality given in Theorem 15 with γ = 7

2 log n and K = 1, we can get

P {cuv ≥ ψmax} ≤ P
{

Binom(n− 2, p2s2) ≥ np2s2 +
√

7np2s2 log n+
7

3
log n

}
≤ n−

7
2 .

(41)

According to Lemma 4, we can get

P {W1(v, u) ≥ ψmax} ≤ n−
7
2 . (42)

Taking the union bound over (39)–(42) yields the desired conclusion (13).

E.2 Proof of Lemma 7

Fixing any two vertices u 6= v, we condition on Quv such that the event Ruv holds. Note
that

W2(u, u) =
n∑
j=1

A2(u, j)B2 (u, π(j)) ,

where A2 and B2 are the 2-hop adjacency matrix of G1 and G2, respectively. Note that for
all j ∈ NG1(u) ∪ {u}, A2(u, j) = 0 by definition. Similarly, for all π(j) ∈ NG2(u) ∪ {u},
B2 (u, π(j)) = 0. Thus, we define

Ju = NG1(u) ∪ {u} ∪ π−1
(
NG2(u)

)
∪ π−1(u)

and exclude the seeds in Ju. Furthermore, note that we have conditioned on the 1-hop
neighborhoods of v in G1 and G2. In either G1 or G2, if u and v are connected, then a
1-hop neighbor of v may automatically become the 2-hop neighbor of u. Hence, if j is
connected to v in G1 or π(j) is connected to v in G2, then conditioning on Quv can change
the probability that A2(u, j)B2 (u, π(j)) = 1. To circumvent this issue, we further exclude
the set Jv of seeds and get that

W2(u, u) ≥
∑

j∈[n]\(Ju∪Jv)

A2(u, j)B2 (u, π(j))

=
∑

j∈F\(Ju∪Jv)

A2(u, j)B2 (u, j) +
∑

j∈[n]\(F∪Ju∪Jv)

A2(u, j)B2 (u, π(j)) , (43)

where F = {j : π(j) = j} corresponds to the set of correct seeds with |F | = nβ. Since the
event Ruv holds, it follows that |Ju ∪ Jv| ≤ 4(1 + ε)(n − 1)ps + 4 ≤ 6nps, where the last
inequality holds due to ε ≤ 1/3 and nps ≥ 6. Thus, nR , |F \ (Ju ∪ Jv)| ≥ n(β − 6ps).

We first count the contribution to W2(u, u) by correct seeds. For each correct seed
j ∈ F \ (Ju ∪ Jv), define an indicator variable χj = 1{∃i∈C(u,u)\{v}:j∈C(i,i)}. In other words,
χj = 1 if j is connected to some “common” 1-hop neighbor of true pair (u, u) in both G1

and G2, and χj = 0 otherwise. By definition A2(u, j)B2 (u, j) ≥ χj . Moreover,

P {χj = 1 | Quv} =1− P

 ⋂
i∈C(u,u)\{v}

{j /∈ C(i, i)} | Quv


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(a)
=1−

∏
i∈C(u,u)\{v}

P {j /∈ C(i, i) | Quv}

(b)
=1−

(
1− ps2

)|C(u,u)\{v}|

(c)

≥ 1

2
(cuu − 1) ps2

(d)

≥ 7

24
np2s4,

where (a) holds because {j /∈ C(i, i)} = {A1(i, j) = 0} ∪ {B1(i, j) = 0}, which are inde-
pendent across different vertices i conditional on Quv; (b) holds due to P {j ∈ C(i, i)} =
P {A1(i, j) = B1(i, j) = 1} = ps2; (c) follows from Theorem 19 and the fact that cuups

2 ≤
(1+ε)(n−1)p2s4 ≤ 4

3np
2s4 < 1; (d) holds as cuu−1 ≥ (1−ε)(n−1)ps2−1 ≥ 2

3(n−1)ps2−1 ≥
7
12nps

2.

Furthermore, note that χj depends on A1 and B1 only through the set of entries Sj ,
{{i, j} : i ∈ C(u, u)\{v}}. Since Sj ∩ Sj′ = ∅ for all j, j′ ∈ F \ (Ju ∪ Jv), it follows that χj ’s
are mutually independent. Therefore,

P

 ∑
j∈F\(Ju∪Jv)

A2(u, j)B2 (u, j) ≤ lmin | Quv


≤P

 ∑
j∈F\(Ju∪Jv)

χj ≤ lmin | Quv


≤P
{

Binom

(
nR,

7

24
np2s4

)
≤ lmin | Quv

}
≤ n−

15
4 , (44)

where lmin = 7
24(β−6ps)n2p2s4−

√
35
16n

2βp2s4 log n− 5
2 log n, and the last inequality follows

from Corollary 16 with γ = 15
4 log n and n(β − 6ps) ≤ nR ≤ nβ.

Next, we count the contribution to W2(u, u) by the incorrect seeds. Fix an incorrect
seed (j, π(j)) where j ∈ [n]\(F ∪Ju∪Jv). Note that A2(u, j) depends on A1 through the set
of entries given by Tj , {{i, j} : i ∈ NG1(u)} and B2(u, π(j)) depends on B1 through the

set of entries given by T̃π(j) , {{i, π(j)} : i ∈ NG2(u)}. Thus A2(u, j) and B2(u, π(j)) are

independent when Tj ∩ T̃π(j) = ∅, which occurs if and only j /∈ NG2(u) or π(j) /∈ NG1(u).
Thus to ensure the independence between A2(u, j) and B2(u, π(j)) in order to facilitate
computing the probability of A2(u, j)B2(u, π(j)) = 1, we also exclude the set of seeds given
by J̃u = NG2(u) ∩ π−1

(
NG1(u)

)
. Let nW , |[n] \ (F ∪ Ju ∪ Jv ∪ J̃u)|. Since the event Ruv

holds, it follows that nW ≥ n(1− β)− 9nps. Now, for each j ∈ [n] \ (F ∪ Ju ∪ Jv ∪ J̃u), we
have

P {A2(u, j)B2(u, π(j)) = 1 | Quv}
=P {A2(u, j) = 1 | Quv} × P {B2(u, π(j)) = 1 | Quv}
=
(
1− P

{
A1(i, j) = 0, ∀i ∈ NG1(u) | Quv

}) (
1− P

{
B1(i, π(j)) = 0,∀i ∈ NG2(u) | Quv

})
= (1− (1− ps)au\v)

(
1− (1− ps)bu\v

)
, λ,

where the last equality holds because A1(i, j) = 0 if i = v as j /∈ Jv; otherwise A1(i, j) ∼
Bern(ps); and similarly for B1(i, π(j)).
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Finally, note that A2(u, j)B2(u, π(j)) are dependent across different j and thus we can-
not directly apply Bernstein’s inequality. To see this, observe that conditional on Quv,
A2(u, j)B2(u, π(j)) depends on A1 and B1 through the set of entries given by Tj∪T̃π(j) , Uj .

Therefore, for any pair of j, j′ ∈ [n] \ (F ∪Ju ∪Jv ∪ J̃u) with j 6= j′, A2(u, j)B2(u, π(j)) and
A2(u, j

′)B2(u, π(j′)) are dependent if and only if Uj∩Uj′ 6= ∅, which occurs if and only if j′ =
π(j) or j′ = π−1(j). Hence, we construct a dependency graph Γ for {A2(u, j)B2(u, π(j))},
where the maximum degree ∆(Γ) equals to 2. Thus, applying Theorem 18 with K = 1,
σ2 = nWλ(1− λ), and γ = 4 log n yields that

P

 ∑
j∈[n]\F ′

A2(u, j)B2(u, π(j)) ≤ nWλ− 5

√
3

2
nWλ(1− λ) log n− 25

2
log n | Quv


≤ n−4,

where F ′ = F ∪ Ju ∪ Jv ∪ J̃u.
Since n(1− β − 9ps) ≤ nW ≤ n, we have

nWλ(1− λ) ≤n (1− (1− ps)au) (1− (1− ps)bu)
(a)

≤ naubup
2s2

(b)

≤ 9

4
n3p4s4,

where (a) holds as (1 + x)r ≥ 1 + rx for every integer r ≥ 0 and every real number x ≥ −2;
(b) holds because au, bu ≤ (1 + ε)(n− 1)ps ≤ 3

2nps under event Ruv. And

nWλ ≥ n(1− β)λ− 9npsλ ≥ n(1− β)λ− 21n3p5s5.

Therefore, recalling that mmin = n(1 − β)λ − 21n3p5s5 − 15
2

√
3
2n

3p4s4 log n − 25
2 log n, we

get that

mmin ≤ nWλ− 5

√
3

2
nWλ(1− λ) log n− 25

2
log n.

It follows that

P

 ∑
j∈[n]\(F∪Ju∪Jv∪J̃u)

A2(u, j)B2(u, π(j)) ≤ mmin | Quv

 ≤ n−4. (45)

Combining (43), (44), (45) with a union bound, we get that

P {W2(u, u) ≤ lmin +mmin | Quv} · 1 (Ruv) ≤ n−
15
4 + n−4 < n−

7
2 .

Remark 20 In (44), we bound A2(u, j)B2(u, j) from below by χj, by neglecting the case
that j is connected to different 1-hop neighbors of u in G1 and G2. This lower bound is
relatively tight, because

P {A2(u, j)B2(u, j) = 1, χj = 0 | Quv} ≈ P {A2(u, j) = 1 | Quv}P {B2(u, j) = 1 | Quv}

≈ aubup2s2 ≤
9

4
n2p4s4,

which is much smaller than P {χj = 1 | Quv} when np2 ≤ 1
logn .

39



Yu, Xu, and Lin

E.3 Proof of Lemma 9

Fixing any two vertices u 6= v, we condition on Quv such that event Ruv holds. Note that

W2(u, v) =
n∑
j=1

A2(u, j)B2 (v, π(j)) ,

where A2 and B2 are the 2-hop adjacency matrix of G1 and G2, respectively. Let

J0 = NG1(u) ∪ {u} ∪ π−1
(
NG2(v)

)
∪ π−1(v)

Then A2(u, j)B2 (v, π(j)) = 0 for all j ∈ J0. Thus,

W2(u, v) =
∑

j∈[n]\J0

A2(u, j)B2 (v, π(j)) .

Note that we have conditioned on the 1-hop neighborhoods of u and v in G1 and G2.
In either G1 or G2, if u and v are connected, then a 1-hop neighbor of u (or v) may
automatically become the 2-hop neighbor of v (or u). Hence, if j is connected to v in G1

or π(j) is connected to u in G2, then conditioning on Quv can change the probability that
A2(u, j)B2 (v, π(j)) = 1. To circumvent this issue, we further divide the remaining seeds
into five types depending on whether j ∈ NG1(v) ∪ {v} and π(j) ∈ NG2(u) ∪ {u}, and get

W2(u, v) =
5∑

k=1

∑
j∈Jk

A2(u, j)B2 (v, π(j)) . (46)

Let Xk =
∑

j∈Jk A2(u, j)B2 (v, π(j)) denote the contribution from type k. In the sequel, we
will separately bound Xk from the above for each k ∈ [5].

Type 1: J1 , {v, π−1(u)} \ J0. We have X1 ≤ |J1| ≤ 2.

Type 2: J2 , NG1(v)∩π−1
(
NG2(u)

)
\J0. For j ∈ J2, since A1(v, j) = 1 andB1(u, π(j)) =

1, it follows that (j, π(j)) is a 1-hop witness for (v, u). Thus, we have X2 ≤ |J2| ≤W1(v, u) ≤
ψmax on event Ruv.

Type 3: J3 , NG1(v) \
(
π−1

(
NG2(u)

)
∪ {π−1(u)} ∪ J0

)
. We have |J3| ≤ av ≤ 3

2nps on
event Ruv. By definition, A2(u, j)B2(v, π(j)) ≤ B2(v, π(j)). Moreover,

P {B2(v, π(j)) = 1 | Quv} =P
{
B1(i, π(j)) = 1,∃i ∈ NG2(v) | Quv

}
=1− P

{
B1(i, π(j)) = 0,∀i ∈ NG2(v) | Quv

}
(a)
=1− (1− ps)bv\u

(b)

≤ bvps
(c)

≤ 3

2
np2s2, (47)

where (a) holds because B1(i, π(j)) = 0 if i = u as π(j) /∈ NG2(u); otherwise B1(i, π(j))
i.i.d.∼

Bern(ps) across different i; (b) follows from (1 + x)r ≥ 1 + rx for every integer r ≥ 0 and
every real number x ≥ −2; (c) holds due to bv <

3
2nps on event Ruv.
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Note that B2(v, π(j)) only depends on B1 through the set of entries Uπ(j) , {{i, π(j)} :

i ∈ NG2(v)}. Since Uπ(j) ∩ Uπ(j′) = ∅ for all j 6= j′ /∈ J0, it follows that B2(v, π(j)) are
mutually independent across j ∈ J3. Therefore,

P
{
X3 ≥

9

2
n2p3s3 + 5 log n | Quv

}

≤ P

∑
j∈J3

B2(v, π(j)) ≥ 9

2
n2p3s3 + 5 log n | Quv


≤ P

{
Binom

(
|J3| ,

3

2
np2s2

)
≥ 9

2
n2p3s3 + 5 log n | Quv

}
≤ n−

15
4 , (48)

where the last inequality follows from Corollary 16 with γ = 15
4 log n and |J3| ≤ 3

2nps.

Type 4: J4 , π−1
(
NG2(u)

)
\
(
NG1(v) ∪ {v} ∪ J0

)
. Following the similar proof as in Type

3, we can get

P
{
X4 ≥

9

2
n2p3s3 + 5 log n | Quv

}
≤ n−

15
4 . (49)

Type 5: j ∈ J5 , [n] \
(
∪4k=0Jk

)
. This is the major type. We bound X5 by separately

considering the correct and incorrect seeds.

Correct Seeds in Type 5: Recall that F = {j : π(j) = j} corresponds to the set of
correct seeds. We have |F ∩ J5| ≤ |F | = nβ. Note that A2(u, j) depends on A1 through
the set of entries given by Tj , {{i, j} : i ∈ NG1(u)} and B2(v, j) depends on B1 through

the set of entries given by T̃j , {{i, j} : i ∈ NG2(v)}. Thus A2(u, j) and B2(v, j) are

dependent on each other because Tj ∩ T̃j = {{i, j} : i ∈ C(u, v)} 6= ∅. Thus, we bound
P {A2(u, j)B2(v, j) = 1} by separately considering whether j is connected to some vertices
in C(u, v). Specifically, on the one hand,

P {{A2(u, j)B2(v, j) = 1} ∩ {A1(i, j)B1(i, j) = 1,∃i ∈ C(u, v)} | Quv}
≤P {A1(i, j)B1(i, j) = 1, ∃i ∈ C(u, v)} | Quv}
=1− P {A1(i, j)B1(i, j) = 0, ∀i ∈ C(u, v)} | Quv}
(a)
=1− (1− ps2)cuv

(b)

≤1− (1− cuvps2)
(c)

≤ ψmaxps
2, (50)

where (a) holds because A1(i, j)B1(i, j)
i.i.d.∼ Bern(ps2); (b) follows from (1 + x)r ≥ 1 + rx for

every integer r ≥ 0 and every real number x ≥ −2; (c) holds due to cuv < ψmax on event
Ruv.

On the other hand, letting Au(X) , {∃i ∈ X : A1(i, j) = 1},

P {{A2(u, j)B2(v, j) = 1} ∩ {A1(i, j)B1(i, j) = 0, ∀i ∈ C(u, v)} | Quv}
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=P

 ⋃
X∈NG1 (u)

Au(X) ∩ {∃i ∈ NG2(u) \X : B1(i, j) = 1} | Quv


≤

∑
X∈NG1 (u)

P
{
Au(X) ∩ {∃i ∈ NG2(u) \X : B1(i, j) = 1} | Quv

}
(a)
=

∑
X∈NG1 (u)

P {Au(X) | Quv}P
{
∃i ∈ NG2(u) \X : B1(i, j) = 1 | Quv

}
≤P
{
∃i ∈ NG2(u) : B1(i, j) = 1 | Quv

} ∑
X∈NG1 (u)

P {Au(X) | Quv}

≤P
{
A1(i, j) = 1, ∃i ∈ NG1(u) | Quv

}
× P

{
B1(i, j) = 1,∃i ∈ NG2(v) | Quv

} (b)

≤ 9

4
n2p4s4,

(51)

where the equality (a) holds as Au(X) and {∃i ∈ NG2(u)\X : B1(i, j) = 1} are independent
conditional on X. This is because Au(X) depends on T ′j , {{i, j} : i ∈ X}, which is disjoint

from T̃j = {{i, j} : i ∈ NG2(v) \X}; (b) follows from the similar reasoning as in (47).
Thus, by taking the union bound over (50) and (51), we have

P {A2(u, j)B2(v, j) = 1 | Quv} ≤ ψmaxps+
9

4
n2p4s4 , µ1.

Note that A2(u, j)B2(v, j) only depends on A1 and B1 only through the set of entries
Tj ∪ T̃j , Uj . Since Uj ∩ Uj′ = ∅ for all j 6= j′ /∈ J0, it follows that A2(u, j)B2(v, j) are
mutually independent for all j ∈ F ∩ J5. Therefore,

P

 ∑
j∈F∩J5

A2(u, j)B2(v, j) ≥ xmax + 5 log n | Quv


≤P {Binom(nβ, µ1) ≥ xmax + 5 log n | Quv} ≤ n−

15
4 , (52)

where xmax = 2nβ
(
ψmaxps+ 9

4n
2p4s4

)
and the last inequality follows from Corollary 16

with γ = 15
4 log n.

Incorrect Seeds in Type 5: Let F , [n] \ F denote the complement of F in [n]. Then,
F corresponds to the set of incorrect seeds with

∣∣F ∣∣ = n(1−β). Note that A2(u, j) depends

on A1 through the set of entries given by Tj , {{i, j} : i ∈ NG1(u)} and B2(v, π(j)) depends

on B1 through the set of entries given by T̃π(j) , {{i, π(j)} : i ∈ NG2(v)}. Thus A2(u, j)

and B2(v, π(j)) are independent when Tj∩ T̃π(j) = ∅, which occurs if and only if j /∈ NG2(v)

or π(j) /∈ NG1(u). We define J̃ = NG2(v)∩π−1
(
NG1(u)

)
, and have

∣∣∣J̃∣∣∣ ≤ bv ≤ 3
2nps under

the event Ruv. Then, we separately consider the incorrect seeds depending on whether
j ∈ J̃ .

• For j ∈ F ∩ J5 \ J̃ ,

µ2 ,P {A2(u, j)B2(v, π(j)) = 1 | Quv}
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=P {A2(u, j) = 1 | Quv} × P {B2(v, π(j)) = 1 | Quv}

= (1− (1− ps)au\v)
(

1− (1− ps)bv\u
)
≤ 9

4
n2p4s4,

where the last two steps follow from the similar reasoning as in (47).

• For j ∈ F ∩ J5 ∩ J̃ , we divide the analysis into two cases depending on whether
A1(j, π(j)) = 1. On the one hand,

P {{A2(u, j)B2(v, π(j) = 1} ∩ {A1(j, π(j)) = 1} | Quv}
≤P {{A1(j, π(j)) = 1} | Quv} ≤ ps.

On the other hand, letting A′u , {∃i ∈ NG1(u) \ {π(j)} : A1(i, j) = 1},

P {{A2(u, j)B2(v, π(j) = 1} ∩ {A1(j, π(j)) = 0} | Quv}
= P

{
A′u ∩ {B2(v, j) = 1} | Quv

}
(a)
= P

{
A′u | Quv

}
× P {{B2(v, j) = 1} | Quv}

≤ P
{
A1(i, j) = 1, ∃i ∈ NG1(u) | Quv

}
× P

{
B1(i, j) = 1,∃i ∈ NG2(v) | Quv

}
(b)

≤ 9

4
n2p4s4,

where the equality (a) holds as Au and {B2(v, π(j)) = 1} are independent. This is
because Au depends on T ′j , {{i, j} : i ∈ NG1(u) \ {π(j)}}, which is disjoint with

T̃π(j) = {{i, π(j)} : i ∈ NG2(v)}; (b) follow from the similar proof in (47).

Combining the last two displayed equations yields that

µ3 , P {A2(u, j)B2(v, π(j) = 1 | Quv} ≤ ps+
9

4
n2p4s4 ≤ 2

3
np2s2.

Note that A2(u, j)B2(v, π(j)) are dependent across different j ∈ F ∩ J5 and thus
we cannot directly apply Bernstein’s inequality. To see this, observe that conditional
on Quv, A2(u, j)B2(v, π(j)) depends on A1 and B1 through the set of entries given by
Tj ∪ T̃π(j) , Uj . Therefore, for any pair of j, j′ ∈ F ∩J5 with j 6= j′, A2(u, j)B2(v, π(j)) and
A2(u, j

′)B2(v, π(j′)) are dependent if and only if Uj∩Uj′ 6= ∅, which occurs if and only if j′ =
π(j) or j′ = π−1(j). Hence, we construct a dependency graph Γ for {A2(u, j)B2(v, π(j))},
where the maximum degree ∆(Γ) equals to 2. Thus, applying Theorem 18 with K = 1,

σ2 =
∣∣∣F ∩ J5 \ J̃∣∣∣µ2(1− µ2) +

∣∣∣F ∩ J5 ∩ J̃∣∣∣µ3(1− µ3), and γ = 4 log n yields that

P

 ∑
j∈F∩J5

A2(u, j)B2(v, π(j)) ≥ ymax +
25

2
log n | Quv

 ≤ n−4, (53)

where ymax = n(1− β)µ2 + n2p3s3 + 5
2

√
15n3p4s4 log n.
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Finally, combining all types of seeds and taking an union bound on (48), (49), (52) and
(53), we get

P {W2(u, v) ≥ xmax + ymax + 2zmax + ψmax + 28 log n | Quv} · 1 (Ruv)

≤3 · n−
15
4 + n−4 < n−

7
2 ,

where zmax = 9
2n

2p3s3.

E.4 Proof of Lemma 11

Recall that du =
∣∣NG0(u)

∣∣ ∼ Binom(n − 1, p). In view of assumption nps2 ≥ 128 log n,
applying Lemma 14 gives that

P
{
du ≥

4

3
(n− 1)p

}
≤ n−4. (54)

Let Ru denote the event
{
du <

4
3(n− 1)p

}
.

For any two vertices u, v ∈ [n] with u 6= v, let Euv denote

Euv =
{
NG0(u), NG0(v)

}
.

Conditioning on Euv such that Ru and Rv are true, we separately consider two cases:
du ≤ dv and du > dv.

Case 1: du ≤ dv. By definition, we have au ∼ Binom (du, s) and av ∼ Binom (dv, s).
Applying with Bernstein’s inequality given in Theorem 15 with γ = 15

4 log n and K = 1
implies that

P

{
au ≥ dus+

√
15

2
dus(1− s) log n+

5

2
log n | Euv

}
≤ n−

15
4 , (55)

P

{
av ≤ dvs−

√
15

2
dvs(1− s) log n− 5

2
log n | Euv

}
≤ n−

15
4 . (56)

Under the events Ru and Rv, we have

dus+

√
15

2
dus(1− s) log n+

5

2
log n−

(
dvs−

√
15

2
dvs(1− s) log n− 5

2
log n

)

≤
√

15

2
dus(1− s) log n+

√
15

2
dvs(1− s) log n+ 5 log n

≤ 2
√

10nps(1− s) + 5 log n = τ.

Taking the union bound over (55) and (56), and noting that Tuv ⊂ {au − av ≥ τ}, we have

P
{
Tuv | Euv

}
≤ P {au − av ≥ τ | Euv} ≤ n−

15
4 .
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Case 2: du > dv. Following the similar proof, we can get

P
{
Tuv | Euv

}
≤ P {bv − bu ≥ τ | Euv} ≤ n−

15
4 .

Combining the two cases gives that

P
{
Tuv | Euv

}
· 1 (Ru ∩Rv) ≤n−

15
4 . (57)

Finally, since n is sufficiently large, applying (54), (57) and the union bound yields

P
{
Tuv
}

=EEuv
[
P
{
Tuv | Euv

}]
=EEuv

[
P
{
Tuv | Euv

}
· 1 (Ru ∩Rv) + P

{
Tuv | Euv

}
· 1
(
Ru ∩Rv

)]
≤EEuv

[
P
{
Tuv | Euv

}
· 1 (Ru ∩Rv)

]
+ EEuv

[
1
(
Ru ∩Rv)

)]
≤n−

15
4 + 2 · n−4 ≤ n−

7
2 .

E.5 Proof of Lemma 12

Since ψmax = np2s2 +
√

7np2s2 log n+ 7
3 log n+ 2 ≤ 3 log n due to np2 ≤ 1

logn , we have

lmin +mmin − xmax − ymax − 2zmax − ψmax − 28 log n

≥ 7

24
n2βp2s4 − 7

4
n2p3s5 − 21n3p5s5 −

√
35

16
n2βp2s4 log n− 5

2

√
15n3p4s4 log n

− 15

2

√
3

2
n3p4s4 log n− 2nβ

(
3ps2 log n+

9

4
n2p4s4

)
− 10n2p3s3 − 46 log n

+ n(1− β) (1− (1− ps)au\v)
(

(1− ps)bv\u − (1− ps)bu\v
)
. (58)

To bound from below the last term in (58), we have

(1− (1− ps)au\v)
(

(1− ps)bv\u − (1− ps)bu\v
)

(a)

≥ (1− (1− ps)au) ((1− ps)τ − 1)

(b)

≥ −auτp2s2

(c)

≥ −3np3s3
√

10nps(1− s) log n− 15

2
np3s3 log n,

where (a) follows from bv\u − bu\v = bv − bu ≤ τ and (1− ps)x − (1− ps)y ≥ (1− ps)τ − 1
when x− y ≤ τ ; (b) holds due to Bernoulli’s Inequality: (1 + x)r ≥ 1 + rx for every integer
r ≥ 0 and every real number x ≥ −2; (c) follows from au <

3
2nps and the definition of τ

given in (29).
Combining the last two displayed equation gives that

lmin +mmin − xmax − ymax − 2zmax − ψmax − 28 log n

≥ 7

24
n2βp2s4 − 7

4
n2p3s5 − 21n3p5s5 −

√
35

16
n2βp2s4 log n− 5

√
15n3p4s4 log n
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− 2nβ

(
3ps2 log n+

9

4
n2p4s4

)
− 10n2p3s3 − 46 log n

− 3n2p3s3
√

10nps(1− s) log n− 15

2
n2p3s3 log n. (59)

In view of (59), we can guarantee lmin+mmin−xmax−ymax−2zmax−ψmax−28 log n ≥ 0
if the following inequalities (60)-(65) hold. We next verify (60)-(65) hold.

By assumption that β ≥ 600
√

logn
ns4

, np2 ≤ 1
logn , and n is sufficiently large, we have

1

40
n2βp2s4 ≥ 1

40
n2p2s4 · 600

√
log n

ns4

≥15n2p2s2 · p log n

≥n2p3s3(15

2
log n+ 10 +

7

4
s2 + 21np2s2),

(60)

By assumption β ≥ 600 logn
n2p2s4

, we have

1

15
n2βp2s4 ≥ 1

15
n2
√
βp2s4 ·

√
600 log n

n2p2s4
>

√
35

16
n2βp2s4 log n. (61)

By assumption β ≥ 600
√

logn
ns4

, we have

1

30
n2βp2s4 ≥ 1

30
n2p2s4 · 600

√
log n

ns4
> 5
√

15n3p4s4 log n. (62)

By assumption β ≥ 600 logn
n2p2s4

, we have

1

12
n2βp2s4 ≥ 1

12
n2p2s4 · 600 log n

n2p2s4
> 46 log n. (63)

By the assumption that nps2 ≥ 128 log n, np2 ≤ 1
logn , and n is sufficiently large, we have

1

15
n2βp2s4 ≥ 1

20
nβps2 · 128 log n+

1

60
n2βp2s4 · np2 log n

≥2nβ

(
3ps2 log n+

9

4
n2p4s4

)
,

(64)

By the assumption β ≥ 600

√
np3(1−s) logn

s , we have

1

60
n2βp2s4 ≥ 1

60
n2p2s4 · 600

√
np3(1− s) log n

s
≥ 3n2p3s3

√
10nps(1− s) log n. (65)

Thus, we arrive at lmin +mmin ≥ xmax + ymax + 2zmax + ψmax + 28 log n.
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E.6 Proof of Theorem 2

Given any two vertices u, v ∈ [n] with u 6= v, we let Wuv denote

Wuv = {W2(u, u) > W2(u, v)} ∪ {W2(v, v) > W2(u, v)} .

We will prove Wuv happens with high probability. We condition on Quv such that the event
Ruv is true. Then, we consider two cases: bv − bu ≤ τ and au − av ≤ τ .

Case 1: bv − bu ≤ τ .
Let wmin , lmin +mmin and wmax , xmax +ymax +2zmax +ψmax +28 log n. According to

Lemma 7 and Lemma 9, W2(u, u) > wmin with high probability, and W2(u, v) < wmax with
high probability. Since wmin ≥ wmax according Lemma 12, we get that W2(u, u) > W2(u, v)
with high probability. More precisely, if Ruv occurs,

P {W2(u, u) ≤W2(u, v) | Quv}
(a)

≤P {W2(u, u) ≤ wmin | Quv}+ P {W2(u, v) ≥ wmax | Quv}
(b)

≤ 2 · n−
7
2 ,

where (a) is based on the union bound; (b) is based on Lemma 7 and Lemma 9.
Since {W2(u, u) > W2(u, v)} ⊂Wuv, it follows that,

P
{
Wuv | Quv

}
≤ P {W2(u, u) ≤W2(u, v) | Quv} ≤ 2 · n−

7
2 .

Case 2: au − av ≤ τ .
We can lower bound W2(v, v) analogous to Lemma 7, and prove that the lower bound

is no smaller than the upper bound of W2(u, v) in this case. Then,

P
{
Wuv | Quv

}
≤ P {W2(v, v) ≤W2(u, v) | Quv} ≤ 2 · n−

7
2 .

Since Tuv = {au − av ≤ τ} ∪ {bv − bu ≤ τ}, applying the union bound yields that

P
{
Wuv | Quv

}
· 1 (Ruv ∩ Tuv)

=P
{
Wuv | Quv

}
· 1 (Ruv) · 1 (Tuv)

≤P
{
Wuv | Quv

}
· 1 (Ruv) · 1 (bv − bu ≤ τ)

+ P
{
Wuv | Quv

}
· 1 (Ruv) · 1 (au − av ≤ τ) ≤ 4 · n−

7
2 .

Then, applying Lemma 6 and Lemma 11 yields that

P
{
Wuv

}
=EQuv

[
P
{
Wuv | Quv

}
· 1 (Ruv ∩ Tuv) + P

{
Wuv | Quv

}
· 1
(
Ruv ∩ Tuv

)]
≤EQuv

[
P
{
Wuv | Quv

}
· 1 (Ruv ∩ Tuv)

]
+ EQuv

[
1
(
Ruv ∩ Tuv

)]
≤6 · n−

7
2 .

Finally, applying the union bound over all pairs (u, v) with u 6= v, we get that

P

 ⋂
u,v∈[n],u6=v

Wuv

 ≥ 1−
∑
u6=v

P
{
Wuv

}
≥ 1− 6 · n−

3
2 ≥ 1− n−1.
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Assuming
⋂
u,v∈[n],u6=vWuv is true, we next show that the output of GMWM, π̃, must

be equal to π∗.
We prove this by contradiction. Suppose in contrary that π̃ 6= π∗. Assume the first

fake pair is chosen by GMWM in the k-th iteration, which implies that GMWM selects
true pairs in the first k − 1 iterations. We let

(
uk, vk

)
denote the fake pair chosen at

the k-th iteration. Because
⋂
u,v∈[n],u 6=vWuv is true, we have W2

(
uk, uk

)
> W2

(
uk, vk

)
or

W2

(
vk, vk

)
> W2

(
uk, vk

)
. We consider two cases. The first case is that

(
uk, uk

)
or
(
vk, vk

)
has been selected in the first k − 1 iterations, in which case the fake pair

(
uk, vk

)
would

have been eliminated before the k-th iteration. The second case is that
(
uk, uk

)
and

(
vk, vk

)
have not been selected in the first k−1 iterations. Then, GMWM would select one of them
instead of

(
uk, vk

)
in the k-th iteration. Thus, both cases contradict to the assumption that

GMWM picks a fake pair in the k-th iteration.

Hence, GMWM outputs n true pairs. Then, we have P {π̃ = π∗} ≥ P

 ⋂
u,v∈[n]
u6=v

Wuv

 ≥
1− n−1.

Appendix F. Proof of Theorem 3

Suppose nps2 − log n = c for c < +∞. Recall that Gπ
∗

1 is the graph obtained by relabeling
every vertex i in G1 by π∗(i), and the intersection graph Gπ

∗
1 ∧ G2 includes the common

edges in both Gπ
∗

1 and G2. Since Gπ
∗

1 ∧G2 ∼ G(n, ps2), Bollobás (2001, Section 3.1) shows
that the distribution of the number of isolated vertices in Gπ

∗
1 ∧G2 converges to Pois(e−c).

Let F1 denote the event that there are at least three isolated vertices in Gπ
∗

1 ∧ G2. Then
P {F1} = Ω(1).

Let F2 denote the event that there are at least three isolated vertices that are incorrectly
seeded in Gπ

∗
1 ∧G2. Since we construct the seed set by choosing nβ correct seeds uniformly

from n vertices, it follows that P {F2} ≥ P {F1}
(n−3
nβ )

( nnβ)
= P {F1} (n−3)!

n! ·
(n(1−β))!

(n(1−β)−3)! = Ω((1−

β)3).
Since the prior distribution of the ground truth permutation π∗ is uniform, the maxi-

mum likelihood estimator (MLE) π̂ML is equivalent to the maximum a posterior probability
(MAP) estimator, both of which minimize the error probability P {π̂ 6= π∗} among all pos-
sible estimators. Below, we will show that the probability with which MLE recovers the
correct matching π∗ is at most Ω((1− β)3).

Recall that A1 and B1 are the adjacency matrix for G1 and G2, respectively, and π is
the partially-correct seed mapping. Let S(π) denote the set of all possible permutations
π̂ on {1, 2, ..., n} such that π̂(i) = π(i) for exactly nβ vertices. Under the model given in
Section 2, the maximum likelihood estimator π̂ML is

π̂ML = arg max
π̂∈S(π)

P {A1, B1, π | π̂} .

We next prove that π̂ML may not be π∗. Our key idea is to show that there exist multiple
π̃ ∈ S(π) that differ from π∗, with

P {A1, B1, π | π̃} ≥ P {A1, B1, π | π∗} .
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Towards this end, we first derive an expression for P {A1, B1, π | π̂} given that the true
mapping is π̂ in S(π). Note that

P {A1, B1, π | π̂} = P {π | π̂}P {A1, B1 | π, π̂} = P {π | π̂}P {A1, B1 | π̂} , (66)

where the last equality holds because the seed mapping π is generated independently from
the graphs G1 and G2. For any π̂ ∈ S(π), since π̂ and π coincide at exactly nβ vertices, we
can get

P {π | π̂} =
1(

n
nβ

)
·!(n(1− β))

= P {π | π∗} , (67)

where !k is the k-th derangement number. A derangement is a permutation of the elements
of a set, such that no element appears in its original position. The k-th derangement number
is the total number of such derangements when the set has k elements.

For P {A1, B1 | π̂}, by definition of the correlated Erdős-Rényi model, we have

P {A1(i, j), B1(π̂(i), π̂(j)) | π̂} =


ps2 if A1(i, j) = B1(π̂(i), π̂(j)) = 1,

ps(1− s) if A1(i, j) +B1(π̂(i), π̂(j)) = 1,

1− p+ p(1− s)2 if A1(i, j) = B1(π̂(i), π̂(j)) = 0.

This formula can be rewritten as

logP {A1(i, j), B1(π̂(i), π̂(j)) | π̂} =A1(i, j)B1(π̂(i), π̂(j)) log
ps2(1− 2ps+ ps2)

p2s2(1− s)2

+ (A1(i, j) +B1(π̂(i), π̂(j))) log
ps(1− s)

1− 2ps+ ps2

+ log(1− 2ps+ ps2).

Since {A1(i, j), B1(π̂(i), π̂(j))} is independent across different pairs of vertices, we have

logP {A1, B1 | π̂} =
∑

1≤i<j≤n
logP {A1(i, j), B1(π̂(i), π̂(j)) | π̂}

=
1

2
〈A1, Π̂B1Π̂

T 〉 log
ps2(1− 2ps+ ps2)

p2s2(1− s)2

+ (1TA11 + 1TB11) log
ps(1− s)

1− 2ps+ ps2

+ (n2 − n) log(1− 2ps+ ps2), (68)

where Π̂ is the permutation matrix corresponding to π̂, 〈·, ·〉 is the Frobenius inner prod-
uct, and 1 is a n × 1 vector whose entries are all 1’s. Because A1 and B1 are observed
and fixed, maximizing logP {A1, B1 | π̂} is equivalent to maximizing 〈A1, Π̂B1Π̂

T 〉 over all
permutations π̂ ∈ S(π).

Based on (68), we can now specify the alternative π̃ ∈ S(π) such that P {A1, B1 | π̃} ≥
P {A1, B1 | π∗}. Let I denote the union of the set of correct seeds and the set of all non-
isolated vertices in Gπ

∗
1 ∧ G2. Then, its compliment Ic is the set of isolated vertices that
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are incorrectly seeded in Gπ
∗

1 ∧ G2. Let S̃(π) denote the set of all possible permutations
π̃ ∈ S(π) such that π̃ coincides with π∗ on the set I, i.e., π̃(i) = π∗(i) for i ∈ I. Then, we
must have π∗ ∈ S̃(π) ⊂ S(π). Note that for any π̃ ∈ S̃(π) ⊂ S(π), we have

〈A1, Π̃B1Π̃
T 〉 ≥

∑
(i,j)∈I×I

A1(i, j)B1(π̃(i), π̃(j))

(a)
=

∑
(i,j)∈I×I

A1(i, j)B1(π
∗(i), π∗(j))

(b)
=

∑
(i,j)∈[n]×[n]

A1(i, j)B1(π
∗(i), π∗(j)), (69)

where (a) follows from π̃(i) = π∗(i) for i ∈ I, and (b) holds due to A1(i, j)B1(π
∗(i), π∗(j)) =

0 for all (i, j) /∈ I × I.
Combining (66), (67) and (69), for any π̃ ∈ S̃(π), we have

P {A1, B1, π | π̃} =P {A1, B1 | π̃}P {π | π̃}
≥P {A1, B1 | π∗}P {π | π∗}
=P {A1, B1, π | π∗} .

It remains to count the number of such π̃ ∈ S̃(π). Towards this end, we first show below
that every derangement of Ic corresponds to a distinct π̃. Let X = {k : k = π(i), i ∈ Ic}
and Y = {k : k = π∗(i), i ∈ Ic}. Note that |X| = |Y | = |Ic|. We let f : X → Y
denote an injective mapping such that f(x) = x for every x ∈ X ∩ Y . We thus have
Y = {k : k = f(π(i)), i ∈ Ic}. Then, let π′ be a permutation on {1, 2, ..., n} such that
π′(i) = π∗(i) for i ∈ I and π′(i) 6= f(π(i)) for i ∈ Ic. Thus, {k : k = π′(i), i ∈ Ic} must be
a derangement of Y = {k : k = f(π(i)), i ∈ Ic}. We can conclude that every derangement
of Ic corresponds to a distinct π′. It only remains to show that every such π′ ∈ S̃. First,
for i ∈ Ic, we have π′(i) 6= π(i). This is because, (i) if π(i) ∈ X ∩ Y , then π′(i) 6= π(i)
due to f(π(i)) = π(i) and π′(i) 6= f(π(i)); (ii) if π(i) /∈ X ∩ Y , then π′(i) 6= π(i) due to
π(i) /∈ Y . Second, we have π′(i) = π∗(i) for i ∈ I. Thus, we must have π′ ∈ S̃. In summary,
every derangement of Ic corresponds to a distinct π̃ ∈ S̃(π). By counting the number of

derangement of Ic, we can then conclude that
∣∣∣S̃(π)

∣∣∣ ≥ (! |Ic|).

Note that π∗ also belongs to S̃(π). Hence, there are at least (! |Ic|−1) different incorrect
permutations in S̃(π) whose likelihood is at least as large as the ground truth π∗. Thus,
the MLE is correct with probability at most 1/(! |Ic|). Note that on the event F2, we have
|Ic| ≥ 3. Therefore, MLE is correct with probability at most 1/2 conditioned on F2. In
conclusion, MLE is correct with probability at most (1/2)P {F2} = Ω((1− β)3).
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