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Abstract

Contrastive learning is an approach to representation learning that utilizes naturally oc-
curring similar and dissimilar pairs of data points to find useful embeddings of data. In
the context of document classification under topic modeling assumptions, we prove that
contrastive learning is capable of recovering a representation of documents that reveals
their underlying topic posterior information to linear models. We apply this procedure
in a semi-supervised setup and demonstrate empirically that linear classifiers trained on
these representations perform well in document classification tasks with very few training
examples.

Keywords: contrastive estimation, latent Dirichlet allocation, representation learning

1. Introduction

Using unlabeled data to find useful embeddings is a central challenge in representation
learning. Classical approaches to this task often start by fitting some type of structure
to the unlabeled data, such as a generative model or a dictionary, and then embed future
data via inference with the fitted structure (Blei et al., 2003; Raina et al., 2007). While
principled, this approach is not without its drawbacks. One issue is that learning structures
and performing inference is often hard in general (Sontag and Roy, 2011; Arora et al.,
2012). Another issue is that we must a priori choose a structure and method for fitting the
unlabeled data, and unsupervised methods for learning these structures can be sensitive to
model misspecification (Kulesza et al., 2014).

Contrastive learning (also called noise contrastive estimation, or NCE) is an alternative
representation learning approach that tries to capture the latent structure in unlabeled data
implicitly. At a high level, these methods formulate a classification problem in which the
goal is to distinguish examples that naturally occur in pairs, called positive samples, from
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randomly paired examples, called negative samples. The particular choice of positive sam-
ples depends on the setting. In image representation problems, for example, patches from
the same image or neighboring frames from videos may serve as positive examples (Wang
and Gupta, 2015; Hjelm et al., 2018). In text modeling, the positive samples may be neigh-
boring sentences (Logeswaran and Lee, 2018; Devlin et al., 2018). The idea is that in the
course of learning to distinguish between semantically similar positive examples and ran-
domly chosen negative examples, we will capture some of the latent semantic information.

In this work, we look “under the hood” of contrastive learning and consider its appli-
cation to document modeling, where the goal is to construct useful vector representations
of text documents in a corpus. In this setting, there is a natural source of positive and
negative examples: a positive example is simply a document from the corpus, and a neg-
ative example is one formed by pasting together the first half of one document and the
second half of another (independently chosen) document.1 We prove that when the corpus
is generated by a topic model, learning to distinguish between these two types of documents
yields representations that are closely related to their underlying latent variables.

One potential application of contrastive learning is in a semi-supervised setting, where
there is a small amount of labeled data as well as a much larger collection of unlabeled data.
In these situations, purely supervised methods that fit complicated models may have poor
performance due to the limited amount of labeled data. On the other hand, when the labels
are well-approximated by some function of the latent structure, our results show that an
effective strategy is to fit linear functions, which may be learned with relatively little labeled
data, on top of contrastive representations. In our experiments, we verify empirically that
this approach produces reasonable results.

1.1 Contributions

The primary goal of this work is to shed light on what contrastive learning techniques un-
cover in the presence of latent structure. To this end, we focus on the setting of document
modeling where latent structure is induced by a topic model. Here, our contrastive learning
objective is to distinguish true documents from “fake” documents that are composed by ran-
domly pasting together two document halves from the corpus. We consider two functional
forms of solutions for this problem, both trained with logistic loss.

The first of these, on which our theoretical analysis will focus, consists of general func-
tions of the form f(·, ·). Here, we have trained f so that f(x, x′) indicates the confidence
of the model that x and x′ are two halves of the same document. To embed a new doc-
ument x using f , we propose a landmark embedding procedure: fix documents l1, . . . , lM
(our so-called landmarks) and create the embedding φ(x) using a function of the predictions
f(x, l1), . . . , f(x, lM ). In Section 4, we show that the embedding φ(x) is a linear transfor-
mation of the underlying topic posterior moments of x. Moreover, under certain conditions
this linear relationship is invertible, so that linear functions of φ(x) correspond to polyno-
mial functions of the topic posterior moments of document x. In Section 5, we show that
errors in f on the contrastive learning objective transfer smoothly to errors in φ(x) as a
linear transformation of the topic posterior of x. Thus, as the quality of f improves, linear

1. In this context, “half” is used liberally; the two halves need not be of the same length.
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functions of φ(x) more closely approximate polynomial functions of the topic posterior of
document x.

Unfortunately, the landmark embedding can require quite a few landmarks before our
theoretical results kick in. Moreover, embedding a single document requires M evaluations
of f , which can be expensive. To circumvent this, in Section 7 we introduce a direct embed-
ding procedure that more closely matches what is done in practice. We learn a predictor of
the form f1(x)Tf2(x

′) where f1, f2 are functions with d-dimensional outputs, and we train
this predictor using the same contrastive learning task as before. To embed a document x,
we simply use the evaluation f1(x). In Section 7, we evaluate this embedding on a semi-
supervised learning task, and we show that it has reasonable performance. Indeed, the
direct embedding method generally outperforms the landmark embedding method, which
raises the question of whether or not anything can be theoretically proven about the direct
embedding method. We leave this question to future work.

1.2 Related Work

Reducing an unsupervised problem to a synthetically-generated supervised problem is a
well-studied technique. In dynamical systems modeling, Langford et al. (2009) showed that
the solutions to a few forward prediction problems can be used to track the underlying state
of a dynamical system, generalizing ideas seen in autoregressive models for linear dynamical
systems (Yule, 1927). Related ideas can also be found in other multi-view models (Ando and
Zhang, 2005, 2007; Lee et al., 2020), which are related to techniques like canonical correlation
analysis (Hotelling, 1936; Kakade and Foster, 2007; Foster et al., 2009). In anomaly/outlier
detection, a useful technique is to learn a classifier that distinguishes between true samples
from a distribution and fake samples from some synthetic distribution (Steinwart et al.,
2005; Abe et al., 2006). Similarly, estimating the parameters of a probabilistic model can be
reduced to learning to classify between true data and randomly generated noise (Gutmann
and Hyvärinen, 2010).

In the context of natural language processing, methods such as skip-gram and contin-
uous bag-of-words turn the problem of finding word embeddings into a prediction prob-
lem (Mikolov et al., 2013a,b). Modern language representation training algorithms such
as BERT and QT also use naturally occurring classification tasks such as predicting ran-
domly masked elements of a sentence or discriminating whether or not two sentences are
adjacent (Devlin et al., 2018; Logeswaran and Lee, 2018). Training these models often em-
ploys a technique called negative sampling, in which softmax prediction probabilities are
estimated by randomly sampling examples; this bears close resemblance to the way that
negative examples are produced in contrastive learning.

Most relevant to the current paper, Arora et al. (2019) gave a theoretical analysis of
contrastive learning. They specifically study minimization of the contrastive loss

L(f) = Ex,x+,x− [`
(
f(x)T(f(x+)− f(x−))

)
],

where (x, x+) is a positive pair and (x, x−) is a negative pair. They showed that if there
is an underlying collection of latent classes and positive examples are generated by draws
from the same class, then minimizing the contrastive loss over embedding functions f yields
good representations for the classification task of distinguishing latent classes.
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The main difference between our work and that of Arora et al. (2019) is that we adopt
a generative modeling perspective and induce the contrastive distribution endogenously,
while Arora et al. do not make generative assumptions but do assume that the contrastive
distribution is directly induced by the downstream classification task. The focus of our
work is therefore complementary to theirs: we study the types of functions that can be
succinctly expressed with the contrastive representation in our generative modeling setup.
In addition, our results apply to semi-supervised regression, but it is unclear how to define
their contrastive distribution in this setting; this makes it difficult to apply their results
here. Finally, Arora et al. point out the method they study has limitations that arise when
the number of latent classes is small and the probability of negative samples having the
same class is high. The embedding method we study is quite different from the one studied
by Arora et al., and this difference allows us to side-step the class collision issues.

There is a line of works on efficiently (and provably) recovering topic models from
unlabeled data under certain structural assumptions (e.g., Arora et al., 2012; Anandkumar
et al., 2012; Arora et al., 2013; Ding et al., 2013). Although we assume a topic modeling
generative process in this paper, our goal is not to provide another topic recovery algorithm.
We instead take a different path and examine contrastive learning in the context of a topic
modeling generative process in order to provide some explanations for its recent successes
in representation learning.

In a follow-up to the initial version of the present article, we studied the same embedding
method proposed here under a multi-view redundancy condition (Tosh et al., 2021). That
condition can be viewed as a non-linear generalization of redundancy conditions considered
by Kakade and Foster (2007) and Foster et al. (2009). The focus in the present article is
different, because here we provide concrete, model-specific semantics to the learned represen-
tation, whereas in the follow-up work, we study the predictive capacity of the representation
under a specific assumption that involves the downstream task.

1.3 Paper Organization

In Section 3, we present our contrastive learning procedure and the algorithm to embed
future documents. In Section 4, we show that under certain topic modeling assumptions,
the document embeddings we construct from contrastive learning capture underlying topic
structure. In Section 5, we analyze the errors that arise in the finite sample setting and show
that whenever we can achieve low prediction error on the contrastive learning task, linear
functions learned on the resulting representations must also be high quality. In Section 6, we
validate our theoretical findings on a simulated topic recovery task, demonstrating that con-
trastive learning in our setting leads to recovery of topic posterior information. In Section 7,
we apply our contrastive learning procedure to a semi-supervised document classification
task. We show that these embeddings generally outperform several natural baselines, par-
ticularly in the scarce labeled data regime. All proofs are presented in Section 8.

2. Setup

Let V denote a finite vocabulary. A topic is a distribution over V. We will assume that there
are K such topics, and denote the corresponding distributions as O(· | k) for k = 1, . . . ,K.
To generate a length m document x, one first draws a vector w from ∆K−1, the probability
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Algorithm 1 Contrastive Estimation with Documents

Input: Corpus U of unlabeled documents. Initialize: S = ∅.
for i = 1, . . . , n do

Sample x and x̃ independently from unif(U); S ← S ∪

{(x
(1), x(2), 1)} w.p. 1/2

{(x(1), x̃(2), 0)} w.p. 1/2

end for
Solve the optimization problem

f̂ = min
f

∑
(x(1),x(2),y)∈S

y log
(

1 + e−f(x
(1),x(2))

)
+ (1− y) log

(
1 + ef(x

(1),x(2))
)

Select landmark documents l1, . . . , lM and embed φ̂(x) =
(

exp
(
f̂(x, li)

)
: i ∈ [M ]

)
.

simplex in RK , and then samples each of the m words x1, . . . , xm by first sampling the
latent variable zi from the categorical distribution induced by w, that is P(zi = k) = wk,
and then drawing xi ∼ O(· | zi). We note that documents are allowed to take different
lengths.

We will also be interested in the case where each document has an associated label
` ∈ R. One natural restriction to make on a label is that it is conditionally independent
of the document given the topic distribution of the document. Thus, we will assume that
there is a joint distribution D of triples (x,w, `), where (x,w) are generated according to
the topic model described above, and then ` is drawn from some distribution conditioned on
w. One of the goals of this paper is to characterize the functional forms of this conditional
distribution that are most suited to contrastive learning.

In the representation learning approach to the semi-supervised setting, we are given a
large collection U of documents with no labels, and a small collection L of labeled documents.
Using U , we learn a feature map φ̂ that will form the basis of our predictions. Then, using
L, we learn a simple predictor based on φ̂, such as a linear function, to predict the label `
given φ̂(x).

3. Contrastive Learning Algorithm

In contrastive learning, examples come in the form of similar and dissimilar pairs of
points, where the exact definition of similar/dissimilar depends on the task at hand. Our
construction of similar pairs will take the form of randomly splitting a document into two
documents, and our dissimilar pairs will consist of subsampled documents from two ran-
domly chosen documents. In the generative modeling setup, since the words are i.i.d. con-
ditional on the topic distribution, a natural way to split a document x into two is to call
the first half of the words x(1) and the second half x(2).

The contrastive representation learning procedure is displayed in Algorithm 1. It uses
a finite-sample approximation to the contrastive distribution Dcontrast described as follows:

(a) sample a document x and partition it into (x(1), x(2)),
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(b) with probability 1/2 output (x(1), x(2), 1),

(c) with probability 1/2, sample a second document (x̃(1), x̃(2)) and output (x(1), x̃(2), 0).

For (x, x′, y) ∼ Dcontrast, the parts x and x′ are the two halves of a (possibly synthetic)
document, and y is the binary label. Our contrastive learning objective is to minimize the
binary cross-entropy loss of discriminating between positive and negative examples:

Lcontrast(f) := E(x,x′,y)∼Dcontrast

[
y log

(
1 + e−f(x,x

′)
)

+ (1− y) log
(

1 + ef(x,x
′)
)]
. (1)

In our algorithm, we approximate this expectation via sampling and optimize the empirical
objective, which yields an approximate minimizer f̂ (chosen from some function class F).

To see why optimizing this contrastive learning objective is so useful, let f? be the global
minimizer of Eq. (1), which is known to be the log-odds ratio, cf. Section 3 of Buja et al.
(2005). By Bayes’ theorem we have that g? := exp(f?) satisfies the following:

g?(x, x′) := exp(f?(x, x′)) =
P(y = 1 | x, x′)
P(y = 0 | x, x′)

=
P(x(1) = x, x(2) = x′)

P(x(1) = x)P(x(2) = x′)
.

Thus, g?(x, x′) captures the ratio of the probability of x and x′ co-occurring as the first and
second halves of the same document and the product of their marginal probabilities.

In Eq. (1), we have not imposed any constraints on the functions over which we are
optimizing. Thus, we seek to extract a useful embedding from g? using only black box access
to g?. Our approach is to select some set of fixed documents, which we call landmarks, and
to embed by utilizing the predictions of g? on these landmarks.

Formally, we select documents l1, . . . , lM and represent document x as2

φ?(x) := (g?(x, l1), . . . , g
?(x, lM )). (2)

This yields the final document-level representation, which can be used for downstream tasks.
As we shall see in Section 4, when the documents have an underlying topic structure, φ?(x)
is related to the posterior information of the topics by a linear transformation and this linear
transformation is invertible whenever the landmarks l1, . . . , lM are sufficiently diverse.

In practice, we only have access to an approximate minimizer f̂ of Eq. (1). Thus, we
define an embedding based only on f̂ (or ĝ, a corresponding approximation of g?) by

φ̂(x) := (exp(f̂(x, l1)), . . . , exp(f̂(x, lM ))) = (ĝ(x, l1), . . . , ĝ(x, lM )). (3)

In Section 5 we will see that, under some mild assumptions, our claims about φ? also hold
true for φ̂ up to some small errors.

We make two observations about the computational complexity of this approach. First,
the optimization problem in Eq. (1) is highly non-convex for many function classes. Never-
theless, first-order optimization methods such as gradient descent routinely find reasonable
solutions to such problems in practice. As we will show in Section 6 and Section 7, this

2. Strictly speaking, we should first partition x = (x(1), x(2)), only use landmarks that occur as second-
halves of documents, and embed x 7→ (g?(x(1), l1), . . . , g?(x(1), lM )). For the sake of clarity, we will ignore
this small technical issue here and in the remainder of the paper.
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appears to be true in our situation as well. Second, embedding a single document in the
landmark approach requires M evaluations of the learned function f̂ . Thus, embedding a
large corpus with a reasonably large value of M can be quite expensive. Partly motivated
by this observation, as well as by what is typically done in practice, Section 7 introduces an
alternative approach that only requires a single evaluation of a learned (multidimensional-
valued) function in order to embed a document.

Finally, we point out that there is nothing special about the binary cross-entropy loss.
We may replace this loss in Eq. (1) with any proper scoring rule (Shuford et al., 1966; Buja
et al., 2005), so long as the appropriate non-linear transformation is applied to the resulting
predictions.

4. Recovering Topic Structure

In this section, we focus on the expressiveness of our contrastive representation, showing
that polynomial functions of the topic posterior can be represented as linear functions of
the representation. To do so, we ignore statistical issues and assume that we have access to
the oracle representations g?(x, ·). In Section 5, we address statistical issues.

Recall the generative topic model process for a document x. We first draw a topic
vector w ∈ ∆K−1. Then for each word i = 1, . . . , length(x), we draw zi ∼ Categorical(w)
and xi ∼ O(· | zi). We will show that when documents are generated according to the
above model, the embedding of a document x in Eq. (2) is closely related its underlying
topic vector w.

4.1 The Single Topic Case

To build intuition for the embedding in Eq. (2), we first consider the case where each
document’s probability vector w is supported on a single topic, i.e., w ∈ {e1, . . . , eK} where
ei is the ith standard basis element. Then we have the following lemma.

Lemma 1 For any documents x, x′, we can write g?(x, x′) = η(x)Tψ(x′), where

η(x)k := P(w = ek | x(1) = x)

is the topic posterior distribution and

ψ(x′)k := P(x(2) = x′ | w = ek)/P(x(2) = x′).

The characterization from Lemma 1 shows that g? contains information about the pos-
terior topic distribution η(·). To recover it, we must make sure that the ψ(·) vectors for our
landmark documents span RK . Formally, if l1, . . . , lM are the landmarks, and we define the
matrix L ∈ RK×M by

L :=
[
ψ(l1) · · · ψ(lM )

]
, (4)

then our representation satisfies φ?(x) = LTη(x). If our landmarks are chosen so that L has
rank K, then L†φ?(x) = η(x), where † denotes the matrix pseudo-inverse. Thus, there is a
linear transformation of φ?(x) that recovers the posterior distribution of w given x.

There are two observations to be made here. The first is that this argument naturally
generalizes beyond the single topic setting to any setting where w can take values in a
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finite set S, which may include some mixtures of multiple topics, though the number of
landmarks needed would grow at least linearly with |S|. The second is that we have made
no use of the structure of x(1) and x(2), except for that they are independent conditioned
on w. Thus, this argument applies to more exotic ways of partitioning a document beyond
the bag-of-words approach.

4.2 The General Setting

In the general setting, we allow document vectors to be any probability vector in ∆K−1, and
we do not hope to recover the full posterior distribution over ∆K−1. However, the intuition
from the single topic case largely carries over, and we will show that we can still recover
the posterior moments.

Let mmax be the length of the longest landmark document. Let

Sm :=

{
α ∈ ZK+ :

K∑
k=1

αk = m

}

denote the set of non-negative integer vectors that sum to m and let S≤mmax denote the
union of S1, S2, . . . , Smmax . Let π(w) denote the degree-mmax monomial vector in w:

π(w) := (wα1
1 · · ·w

αk
k : α ∈ S≤mmax).

For a positive integer m and a vector α ∈ Sm, we let(
[m]

α

)
:=

{
z ∈ [K]m :

m∑
i=1

1I[zi = k] = αk ∀k ∈ [K]

}
.

For a document x of length m, the degree-m polynomial vector ψm is defined by

ψm(x) :=

( ∑
z∈([m]

α )

m∏
i=1

O(xi | zi) : α ∈ Sm

)
,

and let ψd(x) = ~0 for all d 6= m. The cumulative polynomial vector ψ is given by

ψ(x) :=
1

P(x(2) = x)
(ψ0(x), ψ1(x), · · · , ψmmax(x)). (5)

Given these definitions, we have the following general case analogue of Lemma 1.

Lemma 2 For any documents x, x′, we may write g?(x, x′) = η(x)Tψ(x′) where η(x) :=
E[π(w) | x(1) = x] and ψ is defined in Eq (5).

Thus, we again have φ?(x) = LTη(x), but the columns of L are now vectors ψ(li) from
Eq. (5).

Our analysis, so far, shows that if we choose the landmarks such that LLT is invertible,
then our representation captures all moments of the topic posterior up to degree mmax. As
the next theorem shows, we can ensure that LLT is invertible whenever each topic has an
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associated anchor word (Arora et al., 2012), i.e., each topic k satisfies that there is some
word j satisfying O(j | k) > 0 and O(j | k′) = 0 for all k′ 6= k; word j is said to be an
anchor word for topic k in this case. Under this anchor word assumption, there is a set of
landmarks l1, . . . , lM such that any polynomial of η(x) can be expressed as a linear function
of φ?(x).

Theorem 3 Suppose that (i) each topic has an associated anchor word, and (ii) the marginal
distribution of w has positive probability on the interior of ∆K−1. For any do ≤ mmax, there
is a collection of M = O(Kdo) landmark documents l1, . . . , lM such that if Q(w) is a degree-
do polynomial in w, then there is a vector θ ∈ RM such that 〈θ, φ?(x)〉 = E[Q(w) | x(1) = x]
for all documents x.

Coupling Theorem 3 with the Stone-Weierstrass theorem (Stone, 1948) shows that, in prin-
ciple, the posterior mean of any continuous function of w can be approximated using our
representation.

5. Error Analysis

Given a finite amount of data, we cannot hope to solve Eq. (1) exactly. Thus, our solution
f̂ will only be an approximation to f?. Since f̂ is the basis of our representation, one may
worry that errors incurred in this approximation will cascade and cause the approximate
representation φ̂(x) to differ so wildly from φ?(x) that the results of Section 4 do not even
approximately hold.

In this section, we will show that, under certain conditions, such fears are unfounded.
Specifically, we will show that there is an error transformation from the approximation
error of f̂ to the approximation error of linear functions in φ̂. That is, if the target func-
tion is η(x)Tθ?, then we will show that the best mean squared error achievable using our
approximate representation φ̂ (from Eq. (3)), given by

R(φ̂) := min
v

Ex∼µ(1)(η(x)Tθ? − φ̂(x)Tv)2,

is bounded in terms of the approximation quality of f̂ as well as some other terms. Here,
µ(1) is the marginal distribution over first halves of documents drawn from D. Thus, for
the specific setting of semi-supervised learning, an approximate solution to Eq. (1) is good
enough.

There are a number of reasonable ways to choose landmark documents. Here we consider
a simple method: randomly sample them from µ(2), the marginal distribution of x(2). We
will assume that this distribution satisfies certain regularity properties.

Assumption 1 There is a constant σmin > 0 such that for any δ ∈ (0, 1), there is a number
M0 such that for an i.i.d. sample l1, . . . , lM from µ(2), with M ≥M0, with probability 1− δ,
the matrix L in Eq. (4) (with ψ as defined in Lemma 1 or Eq. (5)) has minimum singular
value at least σmin

√
M .

Note that the smallest non-zero singular value of 1√
M
L is the square-root of the smallest

eigenvalue of a certain empirical second-moment matrix. Hence, Assumption 1 holds under
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appropriate conditions on the landmark distribution, for instance via tail bounds for sums
of random matrices (Tropp, 2012) combined with matrix perturbation analysis (e.g., Weyl’s
inequality). In the single topic setting with anchor words, it can be shown that for long
enough documents, σmin is lower-bounded by a constant when M0 grows polynomially with
K. We defer a detailed proof of this to Section 8.2.

Notice that the magnitude of the predictions made by f̂ and f? affect the scale of the
embeddings φ̂ and φ?, which in turn can affect the difficulty of approximating η(x)Tθ?. To
control this, we will need to assume that the predictions of f̂ and f? are bounded above by
some finite value.

Assumption 2 There exists some gmax > 0 such that each of f̂(x, li) and f?(x, li) is at
most log gmax, for all documents x and landmarks li.

Note that if Assumption 2 holds for f?, then it can be made to hold for f̂ by clipping.
Moreover, it holds for f? whenever the vocabulary and document sizes are constants:

f?(x, x′) = log
P(x(1) = x, x(2) = x′)

P(x(1) = x)P(x(2) = x′)
= log

P(x(2) = x′ | x(1) = x)

P(x(2) = x′)
≤ log

1

P(x(2) = x′)
.

Since landmarks are sampled, and the number of possible documents is finite, there exists
a constant pmin > 0 such that P(x(2) = l) ≥ pmin. Thus, Assumption 2 holds for gmax ≤
1/pmin.

Given these assumptions, we have the following error transformation guarantee.

Theorem 4 Fix any δ ∈ (0, 1), and suppose Assumption 1 and Assumption 2 hold (with
M0, σmin, and gmax). Let f̂ be the function returned by the contrastive learning algorithm,
and let ε := Lcontrast(f̂)− Lcontrast(f

?) denote its excess contrastive loss. If M ≥M0, then
with probability at least 1− δ over the random sample of l1, . . . lM ,

R(φ̂) ≤
‖θ?‖22 (1 + gmax)4

σ2min

(
ε+

√
2 log(2/δ)

M

)
.

We make a few observations here. First, ‖θ?‖22 is a measure of the complexity of the
target function. Thus, if the target function is some reasonable function (e.g., a low-degree
polynomial) of the posterior document vector, then we can expect ‖θ?‖22 to be small. Second,
the dependence on gmax is probably not very tight and can likely be improved. Third, note
that M can grow and ε can shrink with the number of unlabeled documents; indeed, none
of the terms in Theorem 4 deal with labeled data.

Finally, it is possible to establish guarantees in a semi-supervised setting using our
analysis. If we have nL i.i.d. labeled examples, and we learn a linear predictor v̂ with the
representation φ̂ using ERM (say), then the bias-variance decomposition grants

mse(v̂) := Ex∼µ(1)(η(x)Tθ? − φ̂(x)Tv̂)2 = R(φ̂) + Ex∼µ(1)(φ̂(x)T(v∗ − v̂))2,

where v∗ is the minimizer of mse(·). The final term Ex∼µ(1)(φ̂(x)T(v∗−v̂))2 is the excess risk
in linear regression, which goes to zero as nL →∞.
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6. Topic Modeling Simulations

To test our theory, we ran simulation experiments where we trained neural networks in the
style of Algorithm 1 on synthetic data generated from topic models and tested how well
the resulting landmark representations could reconstruct the underlying document-topic
vectors.

6.1 Extracting the Document-topic Vectors

Recall the generative model of a document x:

• Draw a weight vector w ∈ ∆K−1.

• For i = 1, . . . , n, sample zi ∼ Categorical(w) and draw xi ∼ O(· | zi).

Given an approximation ĝ of g?, the results of Section 4 offer a natural way to approximate
E[w | x] using the document x and knowledge of the true topics O(· | ·). First, choose land-
mark documents l1, . . . , lM to be single-word documents, that is documents of length one
consisting of one word chosen from the vocabulary. Then, create the landmark embedding
φ̂ according to Eq. (3). Finally, we construct the matrix

L :=


O(l1|1)
P (l1)

· · · O(lM |1)
P (lM )

...
. . .

...
O(l1|K)
P (l1)

· · · O(lM |K)
P (lM )


and compute η̂(x) = L†φ̂(x). The results of Section 4 imply that if L is well-conditioned,
then we should have η̂(x) ≈ E[w | x]. In many of our simulation settings, we have access to
w, but not to E[w | x]. To give a better approximation of w, which is a probability vector,
we take the extra step of projecting, in `2 distance, η̂(x) onto the probability simplex ∆K−1.

6.2 Methodology

To solve the optimization problem in Eq. (1), we trained three-layer neural networks with
fully-connected layers using 512 nodes per hidden layer. We used ReLU nonlinearities, layer
normalization, and the default PyTorch initialization (Paszke et al., 2019). We optimized
using Adam with learning rate 10−3 for 1k epochs and then continued training using SGD
with learning rate 10−4 for 100 epochs, the principle of switching from Adam to SGD being
suggested by Keskar and Socher (2017). At every epoch, we resampled fresh training data
from the generative model, varying the number of documents as a parameter to be explored.
In our figures, the number of documents we sampled at each epoch is denoted by N .

For most of our experiments, the underlying document-topic vector w was drawn from
a symmetric Dirichlet(β) distribution. We also performed experiments in the single-topic
setting, where w was sampled uniformly from the set of one-hot vectors {e1, . . . , eK}. The
lengths of the documents were sampled from a Poisson(100) distribution. As our landmark
documents are restricted to single-word documents, we created the document splits by
letting x(2) consist of a single randomly selected word from the document, and letting x(1)
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Figure 1: Inter-topic distances and document-topic vector entropies. The solid line in the
left panel refers to the fully-synthetic setting. The horizontal dashed lines refer to
the topics from the AG News dataset and the 20 Newsgroup datasets. Recall that
α = 0.0 denotes the block model setting, and β = 0.0 denotes the single-topic
setting.

contain the remainder of the words.3 To construct the embedding in Eq. (3), we randomly
sampled 1k words from the vocabulary according to their frequency.

In all of our experiments, we used K = 20 topics. We considered two settings for our
topic distributions: fully synthetic and semi-synthetic.

• In the fully synthetic setting, we sampled the topics independently from a symmetric
Dirichlet(α) distribution over a vocabulary of size 5k. Note that the guarantees of
Section 4 and Section 5 only apply to recovery of the posterior mean E[w | x] and
not the vector w itself. Unfortunately, computing E[w | x], even when the generating
topics are known, seems to be intractable in general. Thus, we also considered another
fully synthetic setting, which we call the block model setting, where each word in the
vocabulary is randomly assigned to a single topic, and the topics are uniform over
the words assigned to them. In the block model setting, E[w | x] can be computed in
closed form, allowing us to directly measure recovery of the posterior means.

• In the semi-synthetic setting, we fit an LDA topic model using batch variational
Bayes (Blei et al., 2003) on a dataset with scikit-learn’s default choices of α = β = 1/K
and used the resulting topics to generate the data. We considered two datasets for
fitting the topic models: AG News, described in more detail in Section 7, and the
classical 20 Newsgroups dataset. After standard preprocessing, these datasets had
vocabularies of size 16692 and 19148, respectively.

Note that in the fully synthetic setting, the Dirichlet parameter α governs the sparsity
of the topic distributions, effectively determining the similarity of the topics: as α increases
the prior concentrates on the interior of the simplex, forcing the topic distributions to be
more similar. This is visualized in the left panel of Figure 1, where we display the expected

3. We also experimented with evenly splitting the documents, but the method presented here led to a small
but noticeable improvement in reconstruction performance, possibly due to our restriction of landmark
documents.

12
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average inter-topic `2 distance

E

 1

K(K − 1)

∑
k 6=k′
‖O(· | k)−O(· | k′)‖2


for independently drawn O(· | k) ∼ Dirichlet(α) as a function of α. Thus, we would expect
topic recovery to be harder as α increases. For comparison, the left panel of Figure 1 also
shows the average inter-topic `2 distance between the topic distributions that we obtained
from fitting LDA topic models to the AG News and 20 Newsgroups datasets.

Similarly, in both the fully-synthetic and semi-synthetic settings, the Dirichlet parameter
β determines the sparsity of the document-topic vectors w, with smaller values of β being
more sparse. This is visualized in the right panel of Figure 1, where we display the expected
entropy

E

 K∑
k=1

wk log2
1

wk


for w ∼ Dirichlet(β) as a function of β. One would expect that as β increases, the topic
recovery task should become harder, up to a point. At some point, the underlying topic-
vectors should be close to uniform, and thus predicting the uniform vector (or approximately
the uniform vector) should lead to reasonable results.

We tracked two metrics of recovery. The first of these is the top topic accuracy, i.e.,
the probability of recovery of the underlying top topic; a successful recovery is declared
if the highest probability entry in our predicted vector matched the highest probability
entry in the underlying document-topic vector. The second is the `2 distance between the
predicted vector and the underlying document-topic vector. For both of these metrics, we
used a heldout test set of 5k documents. All results in this section were averaged over 5
independent runs. For heatmap plots, we adjusted color scales to remain consistent across
tables.

6.3 Results

6.3.1 Fully Synthetic Setting

The left two panels of Figure 2 show the results for the fully synthetic setting where 120k
documents were sampled at every epoch. Here we see the general trend of recovery becom-
ing more difficult as α increases or β increases. For the top topic accuracy metric, this trend
appears to be nearly monotonic. Note that random guessing would lead to a top topic accu-
racy of 0.05. For the `2 recovery metric, we see that there is a slight deviation in this trend,
particularly for large values of α and β. We suspect that this is because when both α and
β are large, the model may not be confident in its predictions which leads to reconstructed
vectors that are close to uniform and therefore are also reasonable approximations of the
underlying vector. Meanwhile, when only α is large, and β is smaller, our model may make
confident but wrong predictions, leading to worse `2 recovery.

The middle two panels of Figure 2 show the results for block model setting where we
varied β and the number of training documents sampled in every epoch. The top panel
displays the recovery of the underlying top topic. However, the bottom panel displays `2
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Figure 2: Synthetic topic modeling results. Top row : accuracy of recovering the underlying
top topic. Bottom row : `2 error of recovering the entire document-topic vector.
For the block model setting, this is recovery of the posterior mean of this vector,
while for the other two settings it is recovery of the true underlying vector. Left
column: α and β were varied as 120k documents were sampled at every epoch.
Middle column: N and β were varied in the block model setting. Right column:
N and α were varied in the single-topic setting. In all figures, α = 0 denote the
block model setting, and β = 0 denotes the single-topic setting.

recovery of the posterior mean vector. In both panels, we again see the general trend where
recovery is easier for smaller values of β. Moreover, we also see that as the amount of
training data increases, recovery in both metrics generally improves.

The right two panels of Figure 2 show the results for single-topic setting where we
varied α and the number of training documents sampled in every epoch. Both panels
display recovery with respect to the underlying document-topic vector, which is one-hot in
this setting. As seen in the top panel, recovery of the top topic is relatively easy in this
setting, even for smaller amounts of training data. The bottom panel shows that, even
though the correct topic is consistently recovered, recovery in `2 distance is somewhat more
challenging, although this too generally seems to improve for larger training set sizes.
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Figure 3: Semi-synthetic topic modeling results. Top row : accuracy of recovering the un-
derlying top topic. Bottom row : `2 error of recovering the entire underlying
document-topic vector. Left column: varying N and β on the AG News semi-
synthetic dataset. Right column: varying N and β on the 20 Newsgroups semi-
synthetic dataset. In all plots, β = 0.0 denotes the single-topic setting.

6.3.2 Semi-synthetic Setting

Figure 3 shows the results for the semi-synthetic setting. The results here are very similar
in spirit to those of the fully synthetic settings, where we observe better performance for
larger datasets and worse performance for larger values of β. Moreover, comparing the last
rows of the semi-synthetic tables to the left two panels of Figure 2, we see that, for a fixed
dataset size, recovery in the semi-synthetic settings appears to be easier than in the purely
synthetic setting for many values of α. This is despite the fact that the vocabularies in
the semi-synthetic settings are approximately 3-4x larger than those used in the synthetic
setting. However, the situation is perhaps less surprising in light of Figure 1, which shows
large inter-topic distances for both AG News and 20 Newsgroups topic models.

7. Semi-supervised Experiments

We also conducted experiments with our document-level contrastive representations in a
semi-supervised setting. The goal of these experiments is to demonstrate that the con-
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trastive representations yield non-trivial performance, as consistent with the theory. Note
that our intention is not to show state-of-the-art performance using contrastive learning;
that is beyond the scope of the paper.

7.1 A Closely Related Representation

In the worst-case, the guarantees from Section 4 and Section 5 require the number of
landmarks to be quite large. To develop a more practical representation, and to more closely
mirror what is done in practice, we consider training models of the form f1, f2 : X → Rd
where (x, x′) 7→ f1(x)Tf2(x

′). Plugging this into Eq. (1), we solve the following bivariate
optimization problem:

min
f1,f2

EDcontrast

[
y log

(
1 + exp

(
−f1(x)Tf2(x

′)
))

+ (1− y) log
(

1 + exp
(
f1(x)Tf2(x

′)
))]

.

(6)
Given f1, f2, we embed a document x according to f1(x). We call the resulting scheme the
direct embedding approach (and label it Direct-NCE) to distinguish it from the landmark
embedding approach (labeled Landmark-NCE) from Section 3.

7.2 Methodology

To solve the optimization problems in Eqs. (1) and (6), we trained three-layer neural net-
works with fully-connected layers using 512 nodes per hidden layer. We used ReLU non-
linearities, layer normalization, and the default PyTorch initialization (Paszke et al., 2019).
We optimized using Adam with learning rate 10−3 and trained until convergence (between
100-500 epochs, depending on the dataset). On each unlabeled dataset, we held out 10% of
documents as a validation set and used early stopping based on the contrastive loss on this
validation set to choose the final model.

We considered two ways to generate document “halves” from which the positive and
negative pairs were created: randomly partitioning a document in half and randomly sam-
pling from the empirical distribution of words in a document. We tested both of these
methods as well as a third that alternates between these two method with equal proba-
bility. We found that this last method generally outperformed the others. Thus, unless
indicated otherwise, Landmark-NCE and Direct-NCE were trained by alternating between
randomly partitioning and sampling from the empirical distribution with replacement. In
the appendix, we provide some experiments comparing these different methods.

We compared our representations, Landmark-NCE and Direct-NCE, against several em-
bedding baselines.

• BOW—The standard bag-of-words representation.

• BOW+SVD—A bag-of-words representation with dimensionality reduction. We perform
SVD on the bag-of-words representation using the unsupervised dataset to compute
a low dimensional subspace. Bag-of-words documents are then projected onto this
subspace.

• LDA—A representation derived from LDA. We fit LDA on the unsupervised dataset
using batch variational Bayes (Blei et al., 2003), and our representation is the in-
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Figure 4: Semi-supervised learning comparisons demonstrating test accuracy of methods as
number of supervised training examples increases.

ferred posterior distribution over topics given a document. For the topic modeling
hyperparameters, we used the scikit-learn’s default choices of α = β = 1/# of topics.4

• word2vec—Skip-gram word embeddings (Mikolov et al., 2013b). We fit the skip-gram
word embeddings model on the unsupervised dataset. To obtain a document-level
representation, we averaged the word embeddings for each word in a document.

We note that all of these methods ignore word order in the final document-level representa-
tion, and all of them (with the exception of word2vec) ignore word order in their training.
Each of these methods, with the exception of BOW, comes with a choice of embedding di-
mension. We tested all methods using embeddings of dimensions 100, 500, and 1000. As
inference with LDA can be difficult with a large number of topics, we additionally tested
LDA embeddings with 50 dimensions. All experiments in this section were performed us-
ing ten independent replicates, and shaded regions correspond to 95% confidence intervals.
In all comparison plots where dimensions are not explicitly stated, we took the average
performance of each method under each embedding dimension and plotted the point-wise
maximum average accuracy.

For all methods, we used `2-regularized logistic regression to fit a linear classifier on
the labeled data, where the regularization parameter was chosen using three-fold cross-
validation.

4. We found that tuning the hyperparameters using perplexity on a held-out validation set did not lead to
a noticeable improvement in downstream performance.
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7.3 Datasets

We evaluated our methods on four datasets, each of which we preprocessed by filtering out
uncommon words by document frequency.

• The AG news topic classification dataset is a collection of short news articles. The
dataset as compiled by Zhang et al. (2015) has 4 classes (world, sports, business,
and science/technology), 30k training examples per class, and 1900 test examples per
class. We randomly selected 1k examples per class from the training set as labeled
training data and used the remaining training examples for representation learning.
After filtering, the vocabulary was of size 16692.

• The IMDB movie review sentiment classification dataset (Maas et al., 2011) is a col-
lection of movie reviews that are classified as either positive or negative in sentiment.
The dataset comes pre-separated into an unlabeled dataset of 50k examples, a training
set of 12.5k examples per class, and a test set of 12.5k examples per class. We held
out 1k examples from each class in the training set as labeled training data and 3.5k
examples from each class in the test set as labeled testing data and used the remaining
91k examples for representation learning. After filtering, the vocabulary was of size
35648.

• The DBpedia ontology dataset consists of short descriptions of entities extracted from
Wikipedia articles. As compiled by Zhang et al. (2015), the dataset has 14 classes, each
with 40k training examples and 5k test examples. We randomly selected 1k examples
per class from the training set as labeled training data and used the remaining training
examples for representation learning. After filtering, the vocabulary was of size 25707.

• We created the Small DBpedia ontology dataset by taking the subset of the DBpedia
dataset corresponding to 4 classes—company, artist, athlete, and office holder. We
again held out 1k examples per class from the training set as labeled training data
and used the remaining training examples for representation learning. After filtering,
the vocabulary was of size 10416.

For Landmark-NCE, we randomly selected the landmark documents from the unlabeled
data on all datasets.

7.4 Results

In the top left panel of Figure 4, we visualize the semi-supervised performance of NCE

and the baselines on the AG news dataset. Direct-NCE outperforms all the other methods,
with dramatic improvements over all except Landmark-NCE and word2vec in the low labeled
data regime. BOW is reasonably competitive when there is an abundance of labeled data,
but as the dimensionality of this representation is quite large, it performs poorly with
limited samples. However, unsupervised dimensionality reduction on this representation
appears to be unhelpful and actually degrades performance uniformly. Finally, we point
out that word embedding representations (word2vec) perform quite well, but our document-
level Direct-NCE and Landmark-NCE procedures are slightly better. This may reflect some
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Figure 5: Semi-supervised performance of Landmark-NCE as the number of landmarks are
varied. Number of landmarks used is in parentheses.

advantage in learning document-level non-linear representations, as opposed to averaging
word-level ones.

The top right and bottom left panels of Figure 4 tell a similar story on the DBpedia and
Small DBpedia ontology dataset. Again, we see that Direct-NCE outperforms the other
methods, with good performance by word2vec. However, Landmark-NCE does markedly
worse than some of the baselines on the full DBpedia dataset, while performing quite well
on the Small DBpedia dataset. We conjecture that this may be due to the larger number
of classes, which could indicate richer topic structure and thus necessitates a larger number
(or perhaps more careful selection) of landmark documents for the embedding.

The bottom right panel of Figure 4 shows worse performance for both Direct-NCE

and Landmark-NCE when compared with word2vec on the IMDB sentiment dataset. One
possible explanation for this relative change in performance of the NCE methods across
datasets is that the sentiment of a movie review may not be as related to the underlying
topic structure of the document as the category of a news or Wikipedia article. Indeed, LDA
also experiences a similar relative drop in performance when moving from the AG news and
DBpedia ontology datasets to the IMDB movie review dataset.

7.4.1 Number of Landmarks

Figure 5 shows the effects of varying the number of landmarks in the Landmark-NCE em-
bedding. Across all datasets, a larger number of landmarks leads to better performance on
the semi-supervised learning task, consistent with the theory established in Section 4 and
Section 5.
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Figure 6: Contrastive loss on held-out validation set plotted against accuracy on down-
stream classification tasks. On all datasets, Direct-NCE used 100-dimensional
embeddings and Landmark-NCE used 1k-dimensional embeddings. We used the
full labeled training sets to train the linear classifier (4k points on AG News and
Small DBpedia, 2k points on IMDB, and 14k points on DBpedia).

7.4.2 Accuracy v.s. Contrastive Loss

We also compared the evolution of the contrastive loss of a model and the downstream
linear classifcation accuracy of its resulting embeddings. To do so, we tracked the con-
trastive losses of a model on the held-out validation contrastive dataset. Simultaneously,
we checkpointed the models, trained a linear classifier on the embeddings produced by the
model, and evaluated their supervised test accuracy. Figure 6 shows how contrastive loss
and downstream classification accuracy evolve over training epochs. We see that on all
datasets and for both Direct-NCE and Landmark-NCE, classification accuracy steadily im-
proves as contrastive loss decreases, suggesting that in these settings, contrastive loss (which
we can measure using an unlabeled validation set) can be a good surrogate for downstream
performance (which may not be measurable until we have a task at hand).

We also observe that on all datasets, the Landmark-NCE models achieved lower con-
trastive loss than their Direct-NCE counterparts. This is perhaps due to the difficulty of
optimizing models of the form given in Eq. (6). Nevertheless, despite their inferior perfor-
mance on the contrastive learning tasking, the direct embedding models generally produced
embeddings with higher downstream classification accuracy, suggesting that the landmark
approach (at least with randomly chosen landmarks) is somewhat inefficient in utilizing the
knowledge extracted from the contrastive learning task.

7.4.3 Visualizing Embeddings

For a qualitative perspective, we visualize the embeddings from both NCE methods using t-
SNE with the default scikit-learn parameters (van der Maaten and Hinton, 2008; Pedregosa
et al., 2011). To compare, we also used t-SNE to visualize the document-averaged word2vec

embeddings. Figure 7 shows these visualizations on the 7,600 test documents of the AG
News dataset colored according to their true label. While qualitative, the visualizations of
the Direct-NCE and Landmark-NCE embeddings appear to be more clearly separated into
label-homogeneous regions than that of word2vec.
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Figure 7: t-SNE visualizations of different embedding methods on the AG news dataset.
From left to right: Direct-NCE, Landmark-NCE, and word2vec. All embedding
methods used dimension 1k.

8. Proofs

8.1 Proofs from Section 4

Proof [Proof of Lemma 1] Conditioned on the topic vector w, x(1) and x(2) are independent.
Thus,

g?(x, x′) =
P(x(1) = x, x(2) = x′)

P(x(1) = x)P(x(2) = x′)

=

K∑
k=1

P(w = ek)P(x(1) = x | w = ek)P(x(2) = x′ | w = ek)

P(x(1) = x)P(x(2) = x′)

=
K∑
k=1

P(w = ek | x(1) = x)P(x(2) = x′ | w = ek)

P(x(2) = x′)

= η(x)Tψ(x′)

where the third equality follows from Bayes’ rule.

Proof [Proof of Lemma 2] Fix a document x of length m and a document probability
vector w. Recall the generative process of a such document spelled out in Section 2: each
of the m words x1, . . . , xm are sampled independently by first drawing the latent variable
zi according to P(zi = k) = wk, and then by drawing xi ∼ O(· | zi).

Thus, by marginalizing over and conditioning on the zi’s, the probability of a document
factorizes as

P(x | w) =
∑

z∈[K]m

m∏
i=1

wziO(xi | zi) =
∑

z∈[K]m

 m∏
i=1

wzi

 m∏
i=1

O(xi | zi)

 = πm(w)Tψm(x),
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where πm(w) := (wα1
1 · · ·w

αk
k : α ∈ SKm ) consists of the degree-m monomials. Thus,

g?(x, x′) =
P(x(1) = x, x(2) = x′)

P(x(1) = x)P(x(2) = x′)

=

∫
w P(x(1) = x | w)P(x(2) = x′ | w) dP(w)

P(x(1) = x)P(x(2) = x′)

=

∫
w P(x(2) = x′ | w) dP(w | x(1) = x)

P(x(2) = x′)

=

∫
w πm(w)Tψm(x) dP(w | x(1) = x)

P(x(2) = x′)

= η(x)Tψ(x′).

Proof [Proof of Theorem 3] By assumption (i), there exists an anchor word ak for each topic
k = 1, . . . ,K. By definition this means that O(ak | j) > 0 if and only if j = k. For each
vector α ∈ ZK+ such that

∑
αk ≤ do, create a landmark document consisting of αk copies

of ak for k = 1, . . . ,K. This will result in
(
K+do
do

)
landmark documents. Moreover, from

assumption (ii), we can see that each of these landmark documents has positive probability
of occurring under the marginal distribution of x(2) for (x(1), x(2), y) ∼ Dcontrast, which
implies g?(x, l) is well-defined for all our landmark documents l.

Let l denote one of our landmark documents and let α ∈ ZK+ be its associated vector.
Since l only contains anchor words, ψ(l)β > 0 if and only if α = β. To see this, note that

ψ(l)α =
∑

z∈([m]
α )

m∏
i=1

O(li | zi) ≥
K∏
k=1

O(ak | k)αk > 0.

On the other hand, if β 6= α but
∑

k βk =
∑

k αk, then there exists an index k such that

βk ≥ αk + 1. Thus, for any z ∈
([m]
β

)
, there will be more than αk words in l assigned to

topic k. Since every word in l is an anchor word and at most αk of them correspond to
topic k, we will have

m∏
i=1

O(li | zi) = 0.

Rebinding ψ(l) = (ψ0(l), . . . , ψd0(l)) and forming the matrix L using this definition, we see
that LT can be diagonalized and inverted.

For any target degree-do polynomial Q(w), there exists a vector v such that Q(w) =
〈v, πd0(w)〉, where πd0(w) denotes the degree-d0 monomial vector. Thus, we may take
θ = L−1v and get that for any document x:

〈θ, g?(x, l1:M )〉 = (L−1v)TLTη(x) = E[〈v, πd0(w)〉 | x(1) = x] = E[Q(w) | x(1) = x].
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8.2 Proofs from Section 5

8.2.1 Proof of error transformation guarantee

We first recall and setup some notation. For (x(1), x(2), y) ∼ Dcontrast (our contrastive distri-
bution defined in Section 3), we let µi denote the marginal distribution of x(i). Furthermore,
recall the contrastive loss, conditional probability, odds ratio, and oracle representation
functions:

Lcontrast(f) := E(x,x′,y)∼Dcontrast

[
y log

(
1 + e−f(x,x

′)
)

+ (1− y) log
(

1 + ef(x,x
′)
)]

f?(x, x′) := log
P(y = 1 | x(1) = x, x(2) = x′)

P(y = 0 | x(1) = x, x(2) = x′)
,

g?(x, x′) := exp
(
f?(x, x′)

)
=

P(x(1) = x, x(2) = x′)

P(x(1) = x)P(x(2) = x′)
,

φ?(x) := (g?(x, l1), . . . , g
?(x, lM ))

where l1, . . . , lM are landmark documents. The learned approximation to f? is f̂ , and from
it we derive

ĝ(x, x′) := exp
(
f̂(x, x′)

)
,

φ̂(x) := (ĝ(x, l1), . . . , ĝ(x, lM ))

Let η(x), ψ(x) denote the posterior/likelihood vectors from Lemma 1 or the poste-
rior/likelihood polynomial vectors from Lemma 2. Say the length of this vector is N ≥ 1.

Our goal is to show that linear functions in the representation φ̂(x) can provide a good
approximation to the target function

x 7→ η(x)Tθ?

where θ? ∈ RN is some fixed vector. To this end, define

R(φ̂) := min
v

Ex∼µ(1)(η(x)Tθ? − φ̂(x)Tv)2,

which is the best mean squared error achievable using the representation φ̂.
By Lemma 1 or Lemma 2, we know that for any x, x′ we have

g?(x, x′) = η(x)Tψ(x′).

Recall the matrix

L :=
(
ψ(l1), . . . , ψ(lM )

)
.

This matrix is in RN×M . If L has full row rank, then

η(x)Tθ? = η(x)TLL†θ? = φ?(x)Tv?

where
φ?(x) := (g?(x, l1), . . . , g

?(x, lM ))

and v? = L†θ?. Thus, R(φ?) = 0. We will show that R(φ̂) can be bounded as well.
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Theorem 5 (Restatement of Theorem 4) Suppose the following assumptions hold.

(1) There is a constant σmin > 0 such that for any δ ∈ (0, 1), there is a number M0(δ)
such that for an i.i.d. sample l1, . . . , lM with M ≥ M0(δ), with probability 1 − δ, the
matrix

L =
[
ψ(l1) · · · ψ(lM )

]
has minimum singular value at least σmin

√
M .

(2) There exists a value gmax > 0 such that for all documents x and landmarks li

max{f̂(x, li), f
?(x, li)} ≤ log gmax.

Let f̂ be the function returned by the contrastive learning algorithm, and let

ε := Lcontrast(f̂)− Lcontrast(f
?)

denote its excess contrastive loss. For any δ ∈ (0, 1), if M ≥M0(δ/2), then with probability
at least 1− δ over the random draw of l1, . . . , lM , we have

R(φ̂) ≤
‖θ?‖22 (1 + gmax)4

σ2min

(
ε+

√
2 log(2/δ)

M

)
.

Proof We first condition on two events based on the sample l1, . . . , lM . The first is the
event that L has full row rank and smallest non-zero singular value at least

√
Mσmin > 0;

this event has probability at least 1− δ/2. The second is the event that

1

M

M∑
j=1

Ex∼µ(1)
(
p?(x, x′)− p̂(x, x′)

)2 ≤ E(x,x′)∼µ(1)⊗µ(2)
(
p?(x, lj)− p̂(x, lj)

)2
+

√
2 log(2/δ)

M

(7)

where we make the definitions

p̂(x, x′) :=
1

1 + e−f̂(x,x′)
=

ĝ(x, x′)

1 + ĝ(x, x′)

p?(x, x′) :=
1

1 + e−f?(x,x′)
=

g?(x, x′)

1 + g?(x, x′)
.

By Hoeffding’s inequality and the fact that p̂ and p? have range [0, 1], this event also has
probability at least 1 − δ/2. By the union bound, both events hold simultaneously with
probability at least 1− δ. We condition on these two events for the remainder of the proof.

Since L has full row rank, via Cauchy-Schwarz, we have

R(φ̂) = min
v

Ex∼µ(1)(η(x)Tθ? − φ̂(x)Tv)2

≤ Ex∼µ(1)(η(x)Tθ? − φ̂(x)Tv?)2

= Ex∼µ(1)((φ
?(x)T − φ̂(x))Tv?)2

≤ Ex∼µ(1)
∥∥v?∥∥2

2

∥∥∥φ?(x)T − φ̂(x)
∥∥∥2
2

=
∥∥v?∥∥2

2
· Ex∼µ(1)

∥∥∥φ?(x)T − φ̂(x)
∥∥∥2
2
.
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We analyze the two factors on the right-hand side separately.

Analysis of v?. For v?, we have

∥∥v?∥∥2
2
≤
∥∥∥L†∥∥∥2

2

∥∥θ?∥∥2
2
≤ 1

Mσ2min

∥∥θ?∥∥2
2
,

where we have used the fact that L has smallest non-zero singular value at least
√
Mσmin.

Analysis of φ? − φ̂. For the other term, we first note that

p?(x, x′) = 1/(1 + e−f
?(x,x′)) = P(y = 1 | x(1) = x, x(2) = x′).

Thus, we have

ε = Lcontrast(f̂)− Lcontrast(f
?)

= E(x,x′,y)∼Dcontrast

[
y log

(
p?(x, x′)

p̂(x, x′)

)
+ (1− y) log

(
1− p?(x, x′)
1− p̂(x, x′)

)]

= E(x,x′)∼Dcontrast

[
p?(x, x′) log

(
p?(x, x′)

p̂(x, x′)

)
+ (1− p?(x, x′)) log

(
1− p?(x, x′)
1− p̂(x, x′)

)]
= E(x,x′)∼Dcontrast

[
KL(p?(x, x′), p(x, x′))

]
where KL(p, p′) denotes the KL-divergence between two Bernoulli distributions with biases
p and p′, respectively. Pinkser’s inequality tells us that KL(p, p′) ≥ 2(p − p′)2. Combining
this with the fact that Dcontrast is a mixture distribution that places half its probability
mass in µ(1) ⊗ µ(2) implies

ε ≥ 2E(x,x′)∼Dcontrast

[(
p̂(x, x′)− p?(x, x′)

)2] ≥ E(x,x′)∼µ(1)⊗µ(2)
[(
p̂(x, x′)− p?(x, x′)

)2]
.

Combining the above with Eq. (7) and the definitions of p̂, p?, we have

Ex∼µ(1)
∥∥∥φ?(x)− φ̂(x)

∥∥∥2
2

=
M∑
j=1

Ex∼µ(1)(g
?(x, lj)− ĝ(x, lj))

2

≤ (1 + gmax)4
M∑
j=1

Ex∼µ(1)(p
?(x, lj)− p̂(x, lj))2

≤ M(1 + gmax)4

(
E(x,x′)∼µ(1)⊗µ(2)

(
p?(x, lj)− p̂(x, lj)

)2
+

√
2 log(2/δ)

M

)

≤ M(1 + gmax)4

(
ε+

√
2 log(2/δ)

M

)
.
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Wrapping up. To conclude, we have

R(φ̂) ≤
∥∥v?∥∥2

2
· Ex∼µ(1)

∥∥∥φ?(x)T − φ̂(x)
∥∥∥2
2

≤

(
1

Mσ2min

∥∥θ?∥∥2
2

)M(1 + gmax)4

(
ε+

√
2 log(2/δ)

M

)
=
‖θ?‖22 (1 + gmax)4

σ2min

(
ε+

√
2 log(2/δ)

M

)
.

8.2.2 Satisfying Assumption 1

Suppose we are in the single topic case where w ∈ {e1, . . . , eK}. Assume that mink Pr(w =
ek) ≥ wmin. Further assumes that each topic k has an anchor word ak, satisfying O(ak |
z = ek) ≥ amin. Then we will show that when M and m are large enough, the matrix L
whose columns are ψ(x)/P(x) will have large singular values.

First note that if document x contains ak then ψ(x) is one sparse, and satisfies

ψ(x) =
P(x | w = ek)∑

k′ P(w = k′)P(x | w = k′)
ek =

1

P(w = k)
ek.

Therefore, the second moment matrix satisfies

E
[
ψ(x)ψ(x)T

]
�

K∑
k=1

P(w = ek)P(ak ∈ x | ek)E
[
ψ(x)ψ(x)T | ak ∈ x,w = ek

]
=

K∑
k=1

P(ak ∈ x | ek)
P(w = ek)

eke
T
k.

Now, if the number of words per document is m ≥ 1/amin then

P(ak ∈ x | ek) = 1− (1−O(ak | ek))m ≥ 1− exp(−mO(ak | ek))
≥ 1− exp(−mamin)

≥ 1− 1/e.

Finally, using the fact that P(w = ek) ≤ 1, we see that the second moment matrix satisfies

E
[
ψ(x)ψ(x)T

]
� (1− 1/e)IK×K .

For the empirical matrix, we perform a crude analysis and apply the Matrix-Hoeffding
inequality (Tropp, 2012). We have

∥∥ψ(x)ψ(x)T
∥∥
2
≤ Kw−2min and so with probability at least

1− δ, we have ∥∥∥∥∥∥ 1

M

M∑
i=1

ψ(li)ψ(li)
T − E

[
ψ(x)ψ(x)T

]∥∥∥∥∥∥
2

≤

√
8K log(K/δ)

Mw2
min

.

If we take M ≥ Ω(K log(K/δ)/w2
min) then we will have that the minimum eigenvalue of the

empirical second moment matrix will be at least 1/2.
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9. Discussion
Our analysis shows that document-level contrastive learning under topic modeling assump-
tions yields a representation that exposes posterior topic information to linear predictors,
and hence is suitable for certain downstream supervised learning tasks. We validated our
theoretical results in a simulated topic modeling study, demonstrating that neural networks
trained on the contrastive learning task can recover underlying topic posterior information.
In semi-supervised learning experiments, we show that our contrastive learning procedure
yields representations that improve classification accuracy over several natural baselines,
and the improvement is most striking when we have few labeled examples.

There are a number of interesting future directions for this line of work.

• How robust or amenable to transfer learning are the representations studied in this
work? For example, what guarantees can be made if we build a representation by
training a contrastive model on one distribution but learn a classifier on documents
from a different distribution? Such scenarios are common in document modeling
settings where it is easy to scrape large corpora from websites such as Wikipedia
but the classification problem of interest involves a smaller domain-specific dataset.
It is natural to expect a deviation in distribution between the two datasets in this
scenario, and one might reasonably wonder how contrastive learning behaves under
such distributional shifts.

• Is there a better way to select landmarks? In this work, we have mostly focused on the
setting where landmarks were randomly selected. However, this may not be optimal.
Indeed, the results of Section 4 suggest that there are certain qualities that we might
want our landmarks to have in order to guarantee some type of “coverage” of the
underlying topics. This naturally opens up the question of how to go about finding
good landmarks with which to embed future documents.

• In what other settings can contrastive learning be shown to extract useful underlying
information? While we have focused on document representations and topic modeling
assumptions in this work, our analysis more generally sheds light on the power of
contrastive learning, which is empirically known to be useful in many settings. As-
pects of our analysis may help characterize the expressiveness of contrastive learning
representations under other modeling assumptions, for example in time-series data
(see, e.g., Liu et al., 2021).
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Figure 8: Effect of the choice of contrastive learning signal on downstream classification
task for the AG News dataset. Both Direct-NCE and Landmark-NCE used 1k-
dimensional embeddings.

Appendix A. Other Semi-supervised Experimental Results

A.1 Contrastive Learning Signal

On the AG News dataset, we also investigated the effect of contrastive learning signal on
downstream accuracy. Recall that we considered two ways of creating document halves:
randomly partitioning a document in half (which we call “sampling without replacement”)
and randomly sampling from the empirical distribution of words in a document (which we
call “sampling with replacement”). We tested both of these methods as well as a third
that alternates between these two method with equal probability (which we call “both”).
Figure 8 shows a comparison of these methods, where we can see that sampling without
replacement outperforms sampling with replacement, but each are generally outperformed
by alternating between the two methods.

A.2 Effect of Dimension on Direct-NCE

Figure 9 shows the results of varying the dimension of the embedding used by Direct-NCE

on the downstream classification accuracy. In contrast with Figure 5, Figure 9 does not
show a strong effect of dimension on downstream classification accuracy.
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