
Journal of Machine Learning Research 22 (2021) 1-28 Submitted 2/21; Revised 8/21; Published 10/21

Non-linear, Sparse Dimensionality Reduction via Path Lasso
Penalized Autoencoders

Oskar Allerbo allerbo@chalmers.se
Mathematical Sciences
University of Gothenburg and Chalmers University of Technology
SE-412 96 Gothenburg, Sweden

Rebecka Jörnsten jornsten@chalmers.se

Mathematical Sciences

University of Gothenburg and Chalmers University of Technology

SE-412 96 Gothenburg, Sweden

Editor: Pradeep Ravikumar

Abstract

High-dimensional data sets are often analyzed and explored via the construction of a la-
tent low-dimensional space which enables convenient visualization and efficient predictive
modeling or clustering. For complex data structures, linear dimensionality reduction tech-
niques like PCA may not be sufficiently flexible to enable low-dimensional representation.
Non-linear dimension reduction techniques, like kernel PCA and autoencoders, suffer from
loss of interpretability since each latent variable is dependent of all input dimensions. To
address this limitation, we here present path lasso penalized autoencoders. This structured
regularization enhances interpretability by penalizing each path through the encoder from
an input to a latent variable, thus restricting how many input variables are represented in
each latent dimension. Our algorithm uses a group lasso penalty and non-negative matrix
factorization to construct a sparse, non-linear latent representation. We compare the path
lasso regularized autoencoder to PCA, sparse PCA, autoencoders and sparse autoencoders
on real and simulated data sets. We show that the algorithm exhibits much lower recon-
struction errors than sparse PCA and parameter-wise lasso regularized autoencoders for
low-dimensional representations. Moreover, path lasso representations provide a more ac-
curate reconstruction match, i.e. preserved relative distance between objects in the original
and reconstructed spaces.

Keywords: Sparse Dimensionality Reduction, Non-linear Dimensionality Reduction,
Regularized Neural Networks, Group Lasso, Autoencoders

1. Introduction

Dimensionality reduction is a key component in data compression, data visualization and
feature extraction. One of the most widely used techniques is principal component analysis
(PCA), that uses the eigendecomposition of the sample covariance matrix to construct
latent dimensions as linear combinations of the original dimensions. The interpretability
of the latent representation is increased if each latent dimension consists only of a subset
of the original dimensions, as in sparse PCA (Zou et al., 2006). Since the introduction of
sparse PCA, several variants have been presented, such as non-negative sparse PCA (Zass

c©2021 Oskar Allerbo and Rebecka Jörnsten.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/21-0203.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/21-0203.html

Allerbo and Jörnsten

and Shashua, 2007), where the loadings are all non-negative; multilinear sparse PCA (Lai
et al., 2014), that operates on tensors instead of vectors; and robust PCA (Meng et al.,
2012; Croux et al., 2013), that is less affected by outliers.

While more interpretable than standard PCA, sparse PCA and its variants are still
linear and therefore cannot capture more complex relations in the data. Furthermore,
they have limitations on how efficiently they make use of the latent dimensions, something
that is especially important when the number of latent dimensions is small. Several non-
linear generalizations of PCA exist, the most important ones being kernel PCA (Schölkopf
et al., 1998) and autoencoders (Kramer, 1991). In kernel PCA, a kernel function is used to
implicitly and non-linearly map the data to a space with higher dimensionality than dx (the
original dimensionality) in which linear PCA is performed. Autoencoders use an hourglass
shaped neural network with dx input and output nodes and dz (the latent dimensionality)
nodes in the middle layer. The same data is used both as input and output, so the goal of
the autoencoder is to reconstruct the original data from a lower dimensional representation,
that is found in the middle layer.

Although there do exist several algorithms for sparse kernel PCA, see work by Tipping
(2001), Smola et al. (2002), Wang and Tanaka (2016) and Guo et al. (2019), as well as for
sparse autoencoders (e.g. Ng et al., 2011), the terminology might be a little confusing, since
the algorithms are sparse in a different sense than sparse PCA. Instead of being sparse in
the sense original to latent dimensions, they are sparse in the sense observations to latent
dimensions, which means that each observation is active only in a subset of the latent
dimensions (and vice versa, each latent dimension depends only on a subset of the data).
To further illustrate this, we look at the linear case, with dx and dz as before and with n
being the number of observations. For Z ∈ Rn×dz , X ∈ Rn×dx and W ∈ Rdx×dz , the latent
representation Z is obtained from the original representation X as

Z = X ·W . (1)

Then sparsity in the sense original to latent dimensions means that W is sparse, while
sparsity in the sense observations to latent dimensions means that Z is sparse. A third
notion of sparsity is feature selection, where only a subset of the original dimension are
included in the model. This corresponds to entire rows of W being zero, allowing the
remaining rows to be dense.

The sparse autoencoder generalizes Equation (1) to Z = Enc(X), where Enc is the
non-linear encoder and, to produce a sparse Z, it includes a constraint on how frequently
a latent unit is allowed to be non-zero, where frequency is measured among observations.
This means that the architecture of the encoder might still be dense, in contrast to sparsity
corresponding to a sparse W , which requires a sparse architecture.

Neural networks with sparse architectures are usually obtained using different versions
of lasso, or l1-, regularization (Tibshirani, 1996), and there are numerous examples of these.
Scardapane et al. (2017) used group lasso (Yuan and Lin, 2006) to remove all the links to or
from a node, while Yoon and Hwang (2017) combined group lasso with exclusive lasso (Zhou
et al., 2010) on filters in convolutional neural networks to, on one hand, totally eliminate
some filters (using group lasso) and, on the other hand, make filters as different as possible
(using exclusive lasso). Lasso regularized autoencoders include work by Wu et al. (2019),
with a linear encoder and a lasso regularized decoder; Dabin et al. (2020), with a lasso

2

Path Lasso Penalized Autoencoders

regularized encoder and a linear decoder; and Ainsworth et al. (2018), which uses group
lasso and variational autoencoders to split the original dimensions into pre-defined groups
and then uses one decoder per group, with a shared latent space.

In this paper we propose path lasso, that uses group lasso regularization to eliminate all
connections between two nodes in two non-adjacent layers of a fully connected feedforward
neural network. We apply path lasso, in combination with exclusive lasso, to an autoencoder
to introduce sparsity between original and latent variables, obtaining non-linear, sparse
dimensionality reduction in the same sense as in sparse PCA. Path lasso forces each latent
dimension to be a function only of a subset of the original dimensions, while exclusive lasso
encourages these subsets to differ. To the best of our knowledge this is the first non-linear
dimensionality reduction algorithm that is sparse in this sense.

The rest of this paper is organized as follows: In Section 2 we introduce the path lasso
penalty and the path lasso penalized autoencoder. In Section 3 we run experiments on real
and simulated data sets, comparing path lasso to PCA, autoencoders, sparse autoencoders,
sparse PCA and an autoencoder with parameter-wise l1-regularization. We show that,
for a given sparsity, path lasso results in a lower reconstruction error and is better at
reconstruction match, i.e. retaining relative positioning of objects in the reconstructed space
as in the original space. We conclude with a discussion in Section 4.

2. Method

This section is structured in the following way: Sections 2.1 and 2.2 present short reviews
of different flavours of the lasso algorithm and of proximal gradient descent, while Sections
2.3 to 2.6 describe different aspects of path lasso. Section 2.3 and 2.4 describe how paths
between nodes in two non-adjacent layers are defined and penalized, and how the path
penalties are transformed to individual link penalties. Section 2.5 discusses when and how
to apply the path penalty and Section 2.6 describes how we adapt path lasso when using it
in an autoencoder. In Appendix A we discuss different methods to accelerate training.

2.1 Review of Lasso Penalties

The lasso algorithm sets some model parameters exactly equal to zero, thus eliminating
them from the model. There are different versions of the lasso, four of which are used in
this paper. Here follows a short summary to these.

(Standard) Lasso applies an l1-penalty to all the parameters in the parameter vector
θ ∈ Rd, and is defined as

λ‖θ‖1 = λ

d∑
i=1

|θi|,

where λ > 0 is the regularization strength. Due to the non-differentiability of the absolute
value at zero, some of the θi’s are set to exactly zero and thus eliminated from the model.

Adaptive Lasso applies an individual l1-penalty to all the parameters in the parameter
vector θ ∈ Rd, and is defined as

d∑
i=1

λi|θi|,

3

Allerbo and Jörnsten

where λi := λ
|θ̂Ri |γ

for some γ > 0 (common practice is γ = 2), and θ̂Ri is the ridge regression

estimate of θi. The idea is that important parameters will have larger values of θ̂Ri and thus
be penalized less than unimportant parameters.

Group Lasso penalizes pre-defined groups of parameters together, which means that
either all, or none, of the parameters in the group are set to zero. The group lasso penalty
for a group g ∈ G is defined as

λ‖θg‖2 = λ

√∑
i∈g

θ2i ,

where G = {g1, . . . gG} is a disjoint partition of the index set {1, . . . , d}, i.e. each g is a
set of indices defining a group, and, for a given θ ∈ Rd, θg is a d-dimensional vector with
components equal to θ for indices within g and zero otherwise. The total group lasso penalty
is then taken as the sum of the penalties over the different groups. As seen, for a given
group g, √∑

i∈g
θ2i = 0 ⇐⇒ θi = 0 ∀i ∈ g.

The Exclusive Lasso can be seen as the opposite of the group lasso. Again, the pa-
rameters are split into pre-defined groups, but now the goal is instead to impose a similar
number of non-zero parameters in every group. With g as before, its exclusive lasso penalty
defined as

λ‖θg‖21 = λ

∑
i∈g
|θi|

2

,

and, again, the total penalty is defined as the sum over the groups. Since the number of
mixed terms in the squared sum grows with the number of elements in the sum, the total
number of mixed terms over all the groups is minimized when the non-zero elements are
evenly distributed among the groups.

2.2 Review of Proximal Gradient Descent

The reason that some parameters in lasso penalized models are set exactly to zero, is that

the derivative of the absolute value is not unique at zero: ∂|θ|
∂θ

∣∣∣
θ=0
∈ [−1, 1]. Gradient

descent methods are unable to use this non-uniqueness and as a consequence no parameters
are set exactly to zero. Proximal gradient descent (Rockafellar, 1976) on the other hand
takes the non-uniqueness into account, resulting in exact zeros.

If the objective function, f(θ), can be decomposed into f(θ) = g(θ) + h(θ), where g is
differentiable (typically a reconstruction error) and h is not (typically a lasso regularization
term), then a standard gradient descent step, followed by a proximal gradient descent step,
is defined as

θt+1 = proxαh(θt − α∇g(θt)),

where α > 0 is the learning rate and prox is the proximal operator that depends on h.
For lasso, with h(θ) = λ||θ||1 =

∑
i λ|θi|, the proximal operator decomposes component-

wise and is, with (x)+ := max(x, 0),

proxαh(θi) = sign(θi) · (|θi| − αλ)+. (2)

4

Path Lasso Penalized Autoencoders

I.e., each θi is additively shrunk towards zero, and once it changes sign it becomes
exactly zero.

For group lasso, with h(θ) = λ
∑

g∈G ||θg||2 = λ
∑

g∈G

√∑
i∈g θ

2
i , where θg are the θi’s

that belong to group g and G is the set of all groups, the proximal operator for θi is

proxαh(θi) = θi ·

1− αλ√∑
j∈gi θ

2
j

+

, (3)

where gi is the group that θi belongs to. Thus all members of the group are penalized
equally and set to zero at the exact same time.

2.3 Path Penalties

Let {ol}Ll=0, ol ∈ Rdl , denote the outputs of L + 1 consecutive layers in a fully connected
feedforward neural network, where the first and last layers are also denoted by x and y
respectively, i.e. x := o0 and y := oL. Then y depends on x as

y = ΦL(WLΦL−1(WL−1ΦL−2(. . .Φ1(W1x+ b1) . . .) + bL−1) + bL), (4)

where {Wl}Ll=1, Wl ∈ Rdl×dl−1 , are the weight matrices, {bl}Ll=1, bl ∈ Rdl , the bias vectors,
and {Φl}Ll=1 the (not necessarily identical) element-wise activation functions. Thinking of
Equation (4) as a graph, each weight matrix element, wli1i2 := (Wl)i1i2 , corresponds to a
link between two nodes in two adjacent layers

By combining links from multiple weight matrices, paths between nodes in non-adjacent
layers can be constructed. Between a given node in layer x, xi0 , and a node in layer y, yiL ,
there are in total

∏L−1
l=1 dl paths, each consisting of L links, see Figure 1 for an illustration.

A path is broken if at least one of its links has value zero and to disconnect the two nodes,
all paths between them need to be broken. Just as Neyshabur et al. (2015), we define the
value of a path as the product of its absolute valued links; see Definition 1.

Definition 1 (Path Value) For k = 1, 2, . . . ,
∏L−1
l=1 dk, where each k corresponds to a

unique combination of the indices i1 to iL−1

pkiLi0 := |wL
iLi

k
L−1
| · |wL−1

ikL−1i
k
L−2

| · . . . |w1
ik1 i0
|.

With this definition a broken path, where at least one link is zero, has the value zero. We
further define a group of paths so that all paths connecting xi0 to yiL form one group; then
if all paths in the group are zero, the nodes are disconnected. Applying the group lasso
proximal operator to path pkiLi0 , belonging to group giLi0 then amounts to

pkiLi0 ·

1− αλ√∑
l∈giLi0

(pliLi0)2

+

, (5)

which according to Proposition 3 can be written as

pkiLi0 ·
(

1− αλ

(WPL)iLi0

)+

with WPL according to Definition 2.

5

Allerbo and Jörnsten

x y

Figure 1: Illustration of two of the 33 (where the exponent is the number of inner layers and
the base is their width) possible paths between node one in layer one and node
two in layer five. Each arrow denotes a link, which corresponds to an element in
a weight matrix.

Definition 2 (Path Lasso Matrix) With the square and the square root taken element-
wise,

WPL :=

√ ∏
l=L,...,1

(Wl)2 =
√

(WL)2 · (WL−1)2 · . . . (W1)2. (6)

Proposition 3 The element (iL, i0) in WPL is the group lasso penalty on the group con-
sisting of all paths between nodes xi0 and yiL, i.e.

(WPL)iLi0 =

√ ∑
k∈giLi0

(pkiLi0)2

For a proof, see Appendix B.

We call each element in WPL a connection, i.e. (WPL)iLi0 is the strength of the connec-
tion between nodes xi0 and yiL and if it is zero, meaning that all paths between the nodes
are broken, then the nodes are disconnected. Proposition 4 gives a theoretical justification
for this definition of connections, stating that if there is no connection between xi0 and yiL ,
then the derivative of yiL with respect to xi0 is zero, regardless of the value of x.

Proposition 4 Let the vector y depend on the vector x as stated in Equation (4) and let
WPL be the path lasso matrix defined in Equation (6). Then, if all weights and activations
are bounded,

(WPL)iLi0 = 0 =⇒ ∂yiL
∂xi0

=

(
∂y

∂x

)
iLi0

= 0 ∀x ∈ Rd0 .

For a proof, see Appendix B.

6

Path Lasso Penalized Autoencoders

2.4 From Paths to Links

Equation (5) describes how all paths between two nodes in the network are penalized towards
zero, but it does not tell how this penalization affects the individual links. However, since
the neural network is expressed in terms of the individual links, rather than in paths, the
penalized paths must be translated into penalized links, i.e. the penalty must be expressed
on link level, rather than on path level. Proposition 5 describes how this translation can be
done, i.e. how applying the proximal group lasso operator to the paths can be translated
into applying a standard lasso proximal operator to each individual link.

Proposition 5 The group lasso proximal step in path space can be transformed to standard
lasso proximal steps in link space by first solving the matrix equation

∏
l=L,...,1

|(Wl)
t| �

(
1− αλ

(WPL)t

)+

=
∏

l=L,...,1

W̃l (7)

for {W̃l}Ll=1, and then set (Wl)
t+1 := sign((Wl)

t)�W̃l, where w̃lij =: (|(wlij)t|−αλ
l,t
ij)+ for

some λl,tij > 0.
The absolute value, sign and division are taken element-wise and � denotes element-wise
multiplication.

The proof, which is presented in Appendix B, contains a step where the paths in each
group are summed over. This step transforms the system of non-linear equations from one
equation per path to one equation per connection, i.e. from

∏L
l=0 dl to d0 ·dL equations, and

to a form can be solved efficiently using non-negative matrix factorization, NMF, with the
extra requirement that w̃lilil−1

≤ |(wlilil−1
)t|, or equivalently λl,tilil−1

≥ 0. We describe this
algorithm in Appendix C.

The reduced number of equations leads to an undetermined system (unless the hidden
layers are very narrow). Therefore, all equations can hold, although there might be more
than one solution. Since we are interested in a solution that lies close to the unpenalized
weight matrices, we use |Wl| as the seed for each W̃l in the matrix factorization.

An optimization step using proximal gradient descent on paths is summarized in Algo-
rithm 1. The bottleneck of this algorithm is the matrix factorization step from Equation
(7). In Appendix A, different methods to alleviate this bottleneck are discussed.

2.5 Applying the Path Lasso Penalty

Since training a neural network is a non-convex optimization problem, with multiple local
optima, how and when the regularization is added might affect which optimum is found.
If a too high penalty is added too early during training, the risk of getting stuck in a bad
local optimum is larger than if the regularization is added later. To mitigate this, training
was split into three stages:

• Following the adaptive lasso approach of Allerbo and Jörnsten (2020), we first trained
the network without path regularization to obtain individual penalties for each con-
nection during the path lasso stage.

7

Allerbo and Jörnsten

Algorithm 1 Proximal Path Lasso Optimization Step

Input: Parameters at time t, {(Wl)
t, (bl)

t}Ll=l; data, x; learning rate, α; regularization
strength, λ.
Output: Parameters at time t+ 1: {(Wl)

t+1, (bl)
t+1}Ll=l.

1: Update all weights and biases using one step of standard (stochastic) gradient descent:

{(Wl)
t+ 1

2 , (bl)
t+ 1

2 }Ll=1 ← {(Wl)
t, (bl)

t}Ll=1 − α · ∇
(
NN({(Wl)

t, (bl)
t}Ll=1;x)

)
,

where NN denotes the neural network.
2: Penalize paths, by applying the group lasso proximal operator, and update the path

values accordingly:
a: Construct the path lasso penalty matrix for the weight outputs from step 1, according
to Equation (6):

(WPL)t+
1
2 ←

√ ∏
l=L,...,1

(
(Wl)

t+ 1
2

)2
.

b: Penalize paths according to Equation (7):

P t+1 ←
∏

l=L,...,1

|(Wl)
t+ 1

2 | �

(
1− αλ

(WPL)t+
1
2

)+

.

3: Translate penalized paths to penalized links:
a: Translate penalized paths to absolute valued penalized links, using modified non-
negative matrix factorization:{

(W̃l)
t+1
}L
l=1
← NMF

(
P t+1

)
.

b: Restore signs:
(Wl)

t+1 ← sign((Wl)
t)� (W̃l)

t+1.

• In a second stage, we added path regularization with an individual penalty to each
connection, depending on the magnitude of the connection after the first stage:

λiL,i0 :=
λ

((ŴPL)iLi0)γ
,

where ŴPL is the value of WPL after the first optimization stage and γ > 0. Through-
out this paper, γ = 2 was used.

• To reduce bias and thus improve performance, we finally added a stage of unregular-
ized training after the path lasso stage, with the links set to zero in the previous stage
kept to zero.

All stages were trained until convergence and stages two and three were warm started with
the solutions from the previous stage.

8

Path Lasso Penalized Autoencoders

2.6 Path Lasso for Dimensionality Reduction

Path lasso as described so far is applicable to any two non-adjacent layers in any feedforward
neural network. To use it for sparse non-linear dimensionality reduction, it was applied to
an autoencoder, with the following adaptations:

• Path penalties were applied between the input (x ∈ Rdx) and latent (z ∈ Rdz) vari-
ables, and between the latent and output (x̂ ∈ Rdx) variables.

• To enforce the encoder and the decoder to be symmetric, the group lasso groups were
defined as all paths connecting xi and zj , together with all paths connecting zj and
x̂i, i.e.

WPL :=

√√√√√ ∏
l=L,...,1

(WE
l)2 +

 ∏
l=L,...,1

(WD
l)2

>,
where {WE

l }Ll=1 and {WD
l }Ll=1 are the weight matrices of the encoder and the decoder,

respectively. This means that if an input is disconnected to a latent variable, so is the
corresponding output, by construction.

• To encourage the algorithm to make equal use of the latent dimensions, we added
an exclusive lasso penalty to the elements in WPL, with as many groups as there
are latent dimensions, each group being defined as the connections to a given latent
dimension.

3. Experiments

In order to evaluate path lasso for dimensionality reduction we applied it to three different
data sets, one with synthetic data, consisting of Gaussian clusters on a hypercube, one with
text documents from newsgroup posts, and one with images of faces. In each experiment, 20
% of the data was set aside for testing and the remaining 80 % was split 90-10 into training
and validation data; all visualizations were made using the testing data. All autoencoders
used one hidden layer with tanh activations in the encoder and decoder respectively, and
were trained with l2-loss. For optimization stages not using proximal gradient descent, the
Adam optimizer (Kingma and Ba, 2014) was used.

In addition to path lasso, we used a standard autoencoder, a sparse autoencoder, an
autoencoder with parameter-wise l1-regularization and thresholding (hereafter referred to
as standard lasso), PCA and sparse PCA. The reason for adding thresholding in standard
lasso is because unless proximal methods are used, no parameters are set exactly to zero,
but instead to very small values, as discussed in Section 2.2. It should also be noted that
the sparse autoencoder is sparse in terms of observations to latent dimensions, and not in
terms of original to latent dimensions, as we are interested in; see the text associated to
Equation (1) for details. The standard autoencoder and PCA are of course not sparse in
any sense. Since ”observation sparse” algorithms are not as relevant to us as the ”truly
sparse” algorithms, we omit them in some of the comparisons.

The following measures were calculated on the testing data:

• Reconstruction error as explained variance (R2).

9

Allerbo and Jörnsten

• Fraction of correctly identified reconstructions. A reconstructed observation is con-
sidered correctly identified if it is closer to its own original observation than any of
the other ones, measured in l2-distance, i.e. ‖x̂i − xi‖2 < ‖x̂i − xj‖2, i 6= j. This is
hereafter referred to as observation reconstruction match.

• Fraction of correctly reconstructed labels. The reconstructed label is defined as the
label of the original observation that is closest to the reconstructed observation, where
distance is measured as above, i.e. the label of xj , where ‖x̂i − xj‖2 < ‖x̂i − xk‖2,
j 6= k. This is hereafter referred to as label reconstruction match.

3.1 Synthetic Data Set

Sixteen clusters were generated in R4, centered at each of the sixteen vertices in the hyper-
cube {0, 1}4. For cluster i, 100 data points were sampled according to xi ∼ N (µi, 0.01 ·I4),
where I4 is the identity matrix and µi is one of the sixteen vertices in {0, 1}4. The four
dimensional data set was reduced down to two dimensions using the six different algorithms.
For the four autoencoder based algorithms, the number of nodes in the five layers of the
autoencoder were 4, 50, 2, 50 and 4, respectively. The three sparse algorithms (in the sense
original to latent dimensions) were penalized so that four of the original eight connections
remained. The experiment was performed twice, with and without added noise, distributed
according to N (0, 0.32).

Ten different splits of the data into training and validation sets were done. For each
split, three different optimization seeds were used and the seed resulting in the best R2

value on the validation data was chosen. The resulting mean and standard deviations
are presented in Table 1. The p-values come from the one-sided paired rank test, testing
whether path lasso performs better than the competing algorithm. P-values smaller than
1 % are marked in bold. With noise added, path lasso performs significantly better than
the other algorithms both in terms of R2 and reconstruction match. Without noise path
lasso still performs better than the dense algorithms in terms of observation reconstruction
match, while all the four non-linear methods perform very well in terms of R2 and label
reconstruction.

The results with the best R2 values are plotted in Figure 2, where clusters that are
diagonal to each other in R4 (e.g. (0, 1, 0, 0) and (1, 0, 1, 1)) are plotted using the same color,
but with different markers - circles or crosses. For the three sparse algorithms, path lasso,
standard lasso and sparse PCA, each of the two latent dimensions becomes a combination of
two of the original four dimensions, which can be seen in the axis aligned data in the plots.
Even with no added noise the linear algorithms, PCA and sparse PCA, are not able to fully
separate the sixteen clusters, while all four non-linear algorithms, based an autoencoders,
are.

3.2 Text - 20 Newsgroup Data Set

To test the algorithm on text data, the 20 newsgroups data set1 was used. Out of the
original 20 categories, the following 4 were selected: soc.religion.christian, sci.space,
comp.windows.x and rec.sport.hockey, which resulted in 31225 documents. Then, for

1. Available at http://qwone.com/~jason/20Newsgroups/.

10

http://qwone.com/~jason/20Newsgroups/

Path Lasso Penalized Autoencoders

A
lg

or
it

h
m

N
oi

se
C

o
n

n
ec

ti
on

s
R

2
R

ec
on

st
ru

ct
io

n
M

at
ch

O
b

se
rv

at
io

n
L

ab
el

M
ea

n
(s

td
)

p
-v

al
u

e
M

ea
n

(s
td

)
p

-v
al

u
e

M
ea

n
(s

td
)

p
-v

al
u

e

P
a
th

L
a
ss

o
N

o
4

0.
98

(0
.0

01
3)

-
0
.3

7
(0
.0

15
)

-
1
.0

(0
.0

01
4)

-
S

ta
n

d
a
rd

L
as

so
N

o
4

0.
98

(0
.0

02
0)

0
.2

8
0
.3

6
(0
.0

22
)

0.
07

0
1
.0

(0
.0

01
4)

0
.6

8
S

p
a
rs

e
P

C
A

N
o

4
0.

48
(0
.0

01
8)

0
.0

0
0
9
8

0
.0

67
(0
.0

19
)

0
.0

0
0
9
8

0
.3

0
(0
.0

14
)

0
.0

0
2
9

A
u

to
en

co
d
er

N
o

8
0.

98
(0
.0

02
6)

0
.0

19
0
.3

5
(0
.0

13
)

0
.0

0
4
6

1
.0

(0
.0

02
1)

0
.1

6
S

p
a
rs

e
A

E
N

o
8

0.
98

(0
.0

00
27

)
0
.5

0
0
.3

4
(0
.0

07
6)

0
.0

0
3
9

1
.0

(0
.0

01
3)

0
.0

18
P

C
A

N
o

8
0.

48
(0
.0

01
4)

0
.0

0
0
9
8

0
.0

67
(0
.0

15
)

0
.0

0
0
9
8

0
.4

3
(0
.0

44
)

0
.0

0
2
9

P
a
th

L
a
ss

o
Y

es
4

0.
89

(0
.0

17
)

-
0
.3

8
(0
.0

38
)

-
0
.8

8
(0
.0

19
)

-
S

ta
n

d
a
rd

L
as

so
Y

es
4

0.
58

(0
.0

97
)

0
.0

0
0
9
8

0
.1

1
(0
.0

30
)

0
.0

0
0
9
8

0
.3

9
(0
.1

1)
0
.0

0
2
9

S
p

a
rs

e
P

C
A

Y
es

4
0.

50
(0
.0

01
6)

0
.0

0
0
9
8

0
.1

1
(0
.0

06
1)

0
.0

0
2
9

0
.3

7
(0
.0

10
)

0
.0

0
2
9

A
u

to
en

co
d
er

Y
es

8
0.

86
(0
.0

11
)

0
.0

0
2
9

0
.3

3
(0
.0

14
)

0
.0

0
9
5

0
.8

6
(0
.0

16
)

0
.0

0
8
8

S
p

a
rs

e
A

E
Y

es
8

0.
85

(0
.0

03
8)

0
.0

0
2
0

0
.3

0
(0
.0

15
)

0
.0

0
0
9
8

0
.8

5
(0
.0

03
5)

0
.0

0
2
0

P
C

A
Y

es
8

0.
50

(0
.0

04
3)

0
.0

0
0
9
8

0
.1

2
(0
.0

08
8)

0
.0

0
0
9
8

0
.4

0
(0
.0

30
)

0
.0

0
0
9
8

T
a
b

le
1:

N
u

m
b

er
o
f

re
m

a
in

in
g

co
n

n
ec

ti
on

s,
ex

p
la

in
ed

va
ri

an
ce

,
re

co
n

st
ru

ct
io

n
m

at
ch

an
d

p
-v

al
u

e
fo

r
si

x
th

e
al

go
ri

th
m

s
w

h
en

re
d

u
ci

n
g

16
cl

u
st

er
s

fr
om

fo
u

r
to

tw
o

d
im

en
si

on
s

w
it

h
an

d
w

it
h

ou
t

ad
d

ed
n

oi
se

.
P

-v
al

u
es

ar
e

fo
r

th
e

on
e-

si
d

ed
p

ai
re

d
ra

n
k

te
st

,
th

a
t

te
st

s
w

h
et

h
er

p
a
th

la
ss

o
p

er
fo

rm
s

b
et

te
r

th
an

th
e

co
m

p
et

in
g

al
go

ri
th

m
,

w
it

h
p

-v
al

u
es

sm
al

le
r

th
an

1
%

m
ar

ke
d

in
b

o
ld

.
F

or
th

e
th

re
e

sp
ar

se
al

go
ri

th
m

s,
th

e
n
u

m
b

er
of

co
n

n
ec

ti
on

s
is

al
w

ay
s

fo
u

r,
b
y

co
n

st
ru

ct
io

n
;

fo
r

th
re

e
th

e
d

en
se

a
lg

or
it

h
m

s
it

is
a
lw

ay
s

ei
gh

t.
E

sp
ec

ia
ll

y
fo

r
n

oi
sy

d
at

a,
p

at
h

la
ss

o
ou

tp
er

fo
rm

s
th

e
co

m
p

et
in

g
al

go
ri

th
m

s.

11

Allerbo and Jörnsten

Path Lasso Standard Lasso Path Lasso Standard Lasso

Autoencoder Sparse Autoencoder Autoencoder Sparse Autoencoder

PCA Sparse PCA PCA Sparse PCA

Without Added Noise With Added Noise

Figure 2: Reduction of 16 clusters from four to two dimension with and without added
noise, using six different algorithms. Clusters that are diagonal to each other in
R4 have the same color, but different markers.

12

Path Lasso Penalized Autoencoders

each word the tf-idf score was calculated, and the 100 words with the highest score were
kept, resulting in a 31225 × 100 data matrix. Using a standard autoencoder, path lasso,
standard lasso and sparse PCA, the 100 dimensional data set was mapped down to two,
four and 25 dimensions, where the 25D case was added for comparing the test measures
at moderate dimensionality reductions. For the autoencoder based algorithms, the layer
widths were 100, 50, 2 (4, 25), 50 and 100 nodes.

Two different sparsity levels were used; One sparse, to be able to compare interpretabil-
ity, and one almost dense, to be able to compare to a standard autoencoder. In each case
the penalties were set to obtain (approximately) the same sparsity, measured as number of
connections, for all algorithms.

The latent spaces in the sparse case are shown in Figure 3. In the 4D case, standard lasso
only uses one latent dimension and is incapable of distinguishing between the categories,
sparse PCA maps one category to each latent dimension, while path lasso has a tendency
to map two categories to each latent dimension, one to the positive and one to the negative
axis. This is further accentuated when compressing to only two dimensions. While path
lasso is able to identify all four categories, sparse PCA only identifies two of them. Standard
lasso still only uses one dimension and is not able to identify any categories at all. The use
of only one latent dimension by standard lasso is likely attributed to the flexibility of the
autoencoder, and without the structure in the penalty imposed by the path lasso algorithm,
there is less incentive to use all parts of the latent space. The same tendency is visible in
Figure 4c.

To see which original dimensions (words) contribute to which latent dimensions, the non-
zero elements of WPL can be used, but since all elements in this matrix are non-negative, it
gives no information about the sign. Instead the corresponding signed matrix was created
according toW2 ·W1+(W4 ·W3)>, where (W1,W2) and (W3,W4) are the weight matrices
of the encoder and the decoder, respectively. The signed words in the latent dimensions are
presented in Tables 2 and 3. The assignment of words to the 4 (8) latent half-axes done by
path lasso and sparse PCA is consistent with the results in Figure 3. Path lasso also seems
to identify a subcategory of comp.windows.x related to e-mails.

In Tables 4 and 5, remaining connections, explained variance and reconstruction match
are presented for both sparsity levels. We conclude that path lasso performs best among the
sparse algorithms both in terms of explained variance and reconstruction match. Compared
to the standard autoencoder, path lasso performs slightly better in terms of reconstruction
error and observation reconstruction match, which is in line with the results in Section 3.1.
It is also noticeable that with increasing latent dimensionality the advantage of non-linear
over linear models decreases.

3.3 Images - AT&T Face Database

We also tested the algorithm on the AT&T face database (Samaria and Harter, 1994), which
contains 400 grayscale images of faces. The images were compressed to a size of 60 × 50
pixels, after which the 3000 dimensional images where reduced to 5 dimensions. Both the
encoder and the decoder had 1000 units wide hidden layers, and to assure that a pixel that
was disconnected from all the latent dimensions got a value of zero, no bias parameters were
used.

13

Allerbo and Jörnsten

Path Lasso
comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Standard Lasso
comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Sparse PCA
comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

(a) Latent 2D space for the newsgroup data

Path Lasso, Dim 1
comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Path Lasso, Dim 2

comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Path Lasso, Dim 3

comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Path Lasso, Dim 4
comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Standard Lasso, Dim 1
comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Standard Lasso, Dim 2
comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Standard Lasso, Dim 3
comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Standard Lasso, Dim 4
comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Sparse PCA, Dim 1
comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Sparse PCA, Dim 2
comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Sparse PCA, Dim 3
comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

Sparse PCA, Dim 4

comp.windows.x
rec.sport.hockey
sci.space
soc.religion.christian

(b) Latent 4D space for the newsgroup data

Figure 3: Latent spaces of the news data, when compressed down to two and to four latent
dimensions. In 3b the y-axis value is just a random number, added to increase
readability. Path lasso uses the latent space more efficiently than the other algo-
rithms, being capable of mapping one category to each half-axis.

14

Path Lasso Penalized Autoencoders

Algorithm Dimension Axis Words

Path Lasso
1 of 2

Negative team, hockey, better, probably
Positive space

2 of 2
Negative window, hi
Positive god, church

Standard Lasso
1 of 2

Negative -
Positive -

2 of 2
Negative -

Positive
people, good, team, new, did, hockey,

make, going, better, probably, lot

Sparse PCA
1 of 2

Negative
god, people, jesus, believe,

bible, christ, faith, life
Positive -

2 of 2
Negative -
Positive window, application

Table 2: Positive and negative words in the two latent dimension, with sign calculated as
sign(W2 ·W1 + (W4 ·W3)

>).

Again, each algorithm was penalized to obtain (approximately) the same number of
connections, at two different sparsity levels. One low, with almost all of the 5 ·3000 = 15000
connections kept to be able to compare to a dense, l2-regularized autoencoder; and one high,
with only a fourth of the connections kept, to compare the algorithms at more extreme
sparsity levels.

The results are summarized in Table 6. Since the images are unlabeled the label re-
construction match was replaced by a 10 nearest neighbor reconstruction match, where an
observation is considered correctly reconstructed if its own original observation is among
the ten closest original observations.

Path lasso and standard lasso do much better than sparse PCA in terms of reconstruc-
tion, and at low sparsity they are on par with the dense autoencoder. For observation
reconstruction match, path lasso outperforms the other two algorithms, and at low sparsity
also the standard autoencoder. For the 10 nearest neighbors reconstruction match, all non-
linear algorithms do very well at low sparsity, while at high sparsity path lasso does better
than the other algorithms.

The five eigenfaces, calculated as Dec(ei) where Dec is the decoder and ei is the i-th
standard basis vector in R5, are shown in the left column of Figure 4. For PCA, the decoder
function corresponds to multiplication with the loadings matrix, whose i-th column is the
i-th eigenface. A pixel with value zero is colored red. Sparse PCA distributes its non-zero
pixels more evenly among the latent dimensions, while again standard lasso does not use
all 5 latent dimensions. The right column shows the reconstruction of some of the images
in the test set, using the four different algorithms. The reconstructed images using path
lasso look more diversified than for the other sparse algorithms, something that is in line
with the superior reconstruction match of path lasso.

15

Allerbo and Jörnsten

Algorithm Dimension Axis Words

Path
Lasso

1 of 4
Negative

game, year, hockey, play,
games, players, season, nhl

Positive
window, use, need, server, program, motif,

using, windows, application, widget

2 of 4
Negative -
Positive space

3 of 4
Negative know, thanks, edu, mail, hi, list

Positive
god, don, think, people, jesus,
say, believe, church, christians,

christian, bible, christ, faith, life

4 of 4
Negative -

Positive
team, new, hockey, going,

better, probably, lot

Standard
Lasso

1 of 4
Negative -
Positive -

2 of 4
Negative -
Positive -

3 of 4
Negative -
Positive -

4 of 4
Negative

god, like, know, don, think, space, does, christ,
time, window, thanks, use, jesus, way, say, sun,
believe, need, want, problem, edu, server, hi,

right, church, program, using, work, nasa, life,
christians, true, bible, help, mail, used, actually

Positive
just, people, good, team, new, did, hockey,

make, going, better, probably, lot

Sparse
PCA

1 of 4
Negative

god, don, think, people, does, jesus, say,
believe, church, things, question, said,
christians, true, christian, bible, come,

world, point, christ, faith, life
Positive -

2 of 4
Negative

game, good, team, year, hockey, play,
games, players, season, better, best, nhl

Positive use

3 of 4
Negative -

Positive
window, server, program, motif,

using, windows, application, widget

4 of 4
Negative -
Positive space, nasa, earth

Table 3: Positive and negative words in the four latent dimension, with sign calculated as
sign(W2 ·W1 + (W4 ·W3)

>).

16

Path Lasso Penalized Autoencoders

Dimensions Algorithm Connections R2 Reconstruction Match
Observation Label

2 Path lasso 9 0.13 0.021 0.47
2 Standard Lasso 11 0.015 0.0021 0.25
2 Sparse PCA 10 0.028 0.0084 0.29

4 Path lasso 46 0.20 0.027 0.55
4 Standard Lasso 47 0.015 0.0021 0.25
4 Sparse PCA 46 0.11 0.017 0.43

25 Path Lasso 102 0.55 0.34 0.66
25 Standard Lasso 104 0.069 0.0063 0.33
25 Sparse PCA 104 0.40 0.14 0.56

Table 4: Number of remaining connections, explained variance and reconstruction match for
the three algorithms on the newsgroup data at high sparsity. Path lasso performs
best both in terms of explained variance and reconstruction match.

Dimensions Algorithm Connections R2 Reconstruction Match
Observation Label

2 Autoencoder 200 0.24 0.048 0.56
2 Path Lasso 194 0.27 0.055 0.54
2 Standard Lasso 196 0.073 0.0042 0.35
2 Sparse PCA 195 0.051 0.0063 0.32

4 Autoencoder 400 0.33 0.080 0.58
4 Path Lasso 396 0.34 0.10 0.56
4 Standard Lasso 398 0.19 0.019 0.45
4 Sparse PCA 397 0.14 0.015 0.43

25 Autoencoder 2500 0.60 0.47 0.71
25 Path Lasso 2475 0.61 0.49 0.72
25 Standard Lasso 2476 0.44 0.16 0.61
25 Sparse PCA 2486 0.44 0.15 0.57

Table 5: Number of remaining connections, explained variance and reconstruction match
for the four algorithms on the newsgroup data at low sparsity. Path lasso performs
better than standard lasso and sparse PCA both in terms of explained variance
and reconstruction match. Compared to the standard autoencoder path lasso per-
forms slightly better in terms of explained variance and observation reconstruction
match.

17

Allerbo and Jörnsten

Autoencoder Path Lasso Standard Lasso Sparse PCA

(a) Eigenfaces at low sparsity

Original Autoencoder Path Lasso Standard Lasso Sparse PCA

(b) Reconstructions at low sparsity

Path Lasso Standard Lasso Sparse PCA

(c) Eigenfaces at high sparsity

Original Path Lasso Standard Lasso Sparse PCA

(d) Reconstructions at high sparsity

Figure 4: Eigenfaces and examples of reconstructions of test faces at small and large penal-
ization. Zeros are indicated with red. The results of the dense autoencoder are
presented together with the low sparsity results. The reconstructed images using
path lasso look more diverse than those of the other sparse algorithms. At high
sparsity standard lasso does not use all 5 latent dimensions.

18

Path Lasso Penalized Autoencoders

Algorithm Connections R2 Reconstruction Match
Observation 10 Nearest Neighbors

Autoencoder 15000 0.73 0.66 0.97

Path Lasso 14923 0.72 0.70 0.96
Standard Lasso 14936 0.70 0.55 0.96
Sparse PCA 14923 -0.24 0.16 0.60

Path Lasso 3770 0.57 0.21 0.75
Standard Lasso 3771 0.44 0.025 0.26
Sparse PCA 3770 -1.2 0.10 0.46

Table 6: Number of remaining connections, explained variance and reconstruction match
for the four algorithms on the image data. Path lasso outperforms the competing
algorithms in terms of observation reconstruction match, and at low sparsity even
beats the fully connected autoencoder.

4. Conclusions

We proposed path lasso, a penalty that creates structured sparsity in feedforward neural
networks, by using a group lasso penalty to remove all connections between two nodes in two
non-adjacent layers. We applied path lasso to an autoencoder to obtain sparse, non-linear
dimensionality reduction, and showed that this non-linearity makes path lasso much more
flexible than sparse PCA, leading to a lower reconstruction error and a higher reconstruction
match. Thanks to its higher flexibility path lasso is also able to use the latent space more
efficiently, something that proved essential when the latent dimensions were few. Compared
to an autoencoder with individually lasso penalized links, path lasso performed better in
terms of reconstruction, reconstruction match and interpretation of the latent space. In
addition, at low sparsity levels path lasso resulted in a better reconstruction match than
the standard autoencoder.

Using path lasso for non-linear, sparse dimensionality reduction, flexibility and inter-
pretability can be combined in a new way, enabling compression to fewer dimensions, with
preserved interpretability. In this paper, we used the path lasso penalty in an autoencoder.
However, path lasso can be used in many other types of feedforward neural networks with
applications including non-linear, sparse multivariate regression, and non-linear, sparse net-
work models. Such investigations are left for future work.

Code is available at https://github.com/allerbo/path_lasso.

Acknowledgments

We would like to thank the anonymous reviewers, whose suggestions helped improve and
clarify the manuscript.

This research was supported by funding from the Swedish Research Council (VR), the
Swedish Foundation for Strategic Research, the Wallenberg AI, Autonomous Systems and
Software Program (WASP), and the Chalmers AI Research Center (CHAIR).

19

https://github.com/allerbo/path_lasso

Allerbo and Jörnsten

Appendix A. Accelerating the Non-Negative Matrix Factorization

To increase the speed of the matrix factorization step in Equation (7) the following three
approaches were used: Substitution, parallelization and Boolean matrix factorization.

A.1 Substitution

By first applying an off-the-shelf optimization method to f(θ) = g(θ) + λWPL, where g(θ)
is the reconstruction error, we obtain a solution where some of the paths have very small
values, although non-zero. We then, as in adaptive lasso, use this solution to initialize a
second optimization stage, using proximal gradient descent, with individual penalties for
each connection, where the penalties depend on the magnitude of the connection after the
first stage:

λiL,i0 :=
λ

((ŴPL)iLi0)γ

where ŴPL is the value of WPL after the optimization with the off-the-shelf optimizer
and γ > 0. Just as in Section 2.5, γ = 2 was used. Choosing a relatively small value
of λ, connections that are not close to zero after the first stage will be left more or less
unpenalized, while connections close to zero will be penalized hard. Another advantage of
this two stage procedure is that we are able to further increase the speed in the first stage by
leveraging on momentum based optimization methods, which are not available for proximal
gradient descent.

A.2 Parallelization

In general, the larger the weight matrices, the more time consuming is the factorization of
the penalized path matrix into penalized weight matrices. By splitting the weight matrices
into blocks, the factorization can instead be done in parallel for smaller sub-matrices. In
the simplest example, three layers are split into two parts each. This corresponds to two
weight matrices, whose rows and columns are both split into two blocks each, and is shown
in Equation (8) below. Let A ∈ (R≥0)d3×d2 and B ∈ (R≥0)d2×d1 denote the absolute valued
weight matrices and let C +D ∈ (R≥0)d3×d1 denote the penalized path matrix, where the
sum of the paths in (C +D)ij is split into Cij , containing the sum of some of the paths,
and Dij , containing the sum of the remaining paths. Which paths belong to C and which
belong to D depends on how A and B are split. Then, the factorization of C + D into
A ·B can be divided into 23 = 8 smaller factorizations which can be solved in parallel, i.e.[

C11 +D11 C12 +D12

C21 +D21 C22 +D22

]
=

[
A11 A12

A21 A22

]
·
[
B11 B12

B21 B22

]
(8)

can be split into[
C11 C12

C21 C22

]
=

[
A11 0

A21 0

]
·
[
B11 B12

0 0

]
=

[
A11 ·B11 A11 ·B12

A21 ·B11 A21 ·B12

]
[
D11 D12

D21 D22

]
=

[
0 A12

0 A22

]
·
[

0 0

B21 B22

]
=

[
A12 ·B21 A12 ·B22

A22 ·B21 A22 ·B22

]
20

Path Lasso Penalized Autoencoders

or equivalently

C11 = A11 ·B11, C12 = A11 ·B12, C21 = A21 ·B11, C22 = A21 ·B12

D11 = A12 ·B21, D12 = A12 ·B22, D21 = A22 ·B21, D22 = A22 ·B22.

Here, Aij ∈ (R≥0)d3i×d2j , Bij ∈ (R≥0)d2i×d1j and Cij ,Dij ∈ (R≥0)d3i×d1j , where i, j ∈
{1, 2} and dki+dkj = dk for k = 1, 2, 3, are all block matrices. This results in two, potentially
different, solutions for each Aij and Bij , that need to be aggregated. To be conservative,
and set a link to zero only when it is zero in both solutions, we use the maximum value
element-wise for aggregation:

(Aij)kl = max
n∈{1,2}

(An
ij)kl

where An
ij is the n-th solution of Aij . Remember that all elements in all matrices are

non-negative.
This generalizes trivially to more layers and splits and the number of equations is always

the product of the splits over all the layers.

A.3 Boolean Matrix Factorization

Another way to speed up the computations is early stopping of the matrix factorization.
This may however lead to some of the elements on the right hand side in Equation (7)
being very close, but not equal, to zero, introducing the need to threshold. We determine
the optimal threshold value using Boolean matrix multiplication, which differs from ordinary
matrix multiplication in the following way:

• All elements are in {0, 1}.

• Instead of ordinary sum, Boolean sum (or Boolean or), ∨, is used: 0∨0 = 0, 0∨1 = 1,
1 ∨ 0 = 1, 1 ∨ 1 = 1.

We define a Boolean matrix for each matrix in Equation (7) as:

(B)ij := I

 ∏
l=L,...,1

|Wl| �
(

1− αλ

WPL

)+

ij

> 0

(Bl)ij(τ) := I

[
(W̃l)ij > τ

]
, τ ≥ 0

where I[·] is the (element-wise) indicator function which equals 1 when its argument is true
and 0 otherwise. Thus, in the matrix on the left hand side in Equation (7), zero elements
become zeros and all other elements become ones, while for the matrices on the right hand
side, we use a threshold to decide which elements should be set to zero. In the first case,
an element of one means that there is an non-zero connection, while in the second case it
means that there is an non-zero link. If B =

∨
l=L,...,1Bl, where

∨
denotes Boolean matrix

multiplication, then the matrix factorization was successful in the sense that all connections
in WPL are represented by appropriate links in the weight matrices. Each differing element
means that either two nodes are disconnected in WPL but not in {W̃l}Ll=1 or vice versa. To

21

Allerbo and Jörnsten

minimize this quantity, we minimize
∑
|B−

∨
l=L,...,1Bl(τ)|, with the absolute value taken

element-wise, with respect to τ , and then threshold {W̃l}Ll=1 using the resulting τ :

τ = argmin
τ≥0

∑
all elements

∣∣∣∣∣∣I
 ∏
l=L,...,1

|Wl| �
(

1− αλ

WPL

)+

> 0

− ∨
l=L,...,1

I[W̃l > τ]

∣∣∣∣∣∣
W̃l ← W̃l � I[W̃l > τ]

Since the objective function is piecewise constant and thus hard to optimize, we simply
evaluate it for 20 logarithmically spaced values of τ ∈ [10−10, 1] and pick the best one.

Appendix B. Proofs

Proof of Proposition 3 Using the definition of matrix multiplication, with k running over
all paths connecting xi0 and yiL , we obtain

√ ∑
k∈giLi0

(pkiLi0)2 =

√√√√√ dL−1∑
iL−1=1

dL−2∑
iL−2=1

· · ·
d1∑
i1=1

(|wLiLiL−1
| · |wL−1iL−1iL−2

| · . . . |w1
i1i0
|)2

=

√√√√√ dL−1∑
iL−1=1

dL−2∑
iL−2=1

· · ·
d1∑
i1=1

(wLiLiL−1
)2 · (wL−1iL−1iL−2

)2 · . . . (w1
i1i0

)2

=

(√
(WL)2 · (WL−1)2 · . . . (W1)2

)
iLi0

= (WPL)iLi0 .

To prove Proposition 4 we begin with the following lemma:

Lemma 6 Let {Ak}nk=1 be a set of arbitrary matrices and {Dk}nk=1 a set of diagonal ma-
trices, where all elements in Ak and Dk are bounded. Let f ≥ 0 an element-wise function
where f(x) = 0 if and only if x = 0. Let the dimensions of the matrices be such that the
matrix multiplications below make sense. Then

(f(A1) · f(A2) · . . . f(An))ij = 0 =⇒ (D1 ·A1 ·D2 ·A2 ·D2 · . . . Dn ·An)ij .

Proof Denote akij := (Ak)ij and dkij := (Dk)ij . Then for the left hand side

(f(A1) · f(A2) · . . . f(An))ij =
∑
k1

∑
k2

· · ·
∑
kn−1

f(a1ik1) · f(a2k1k2) · . . . f(ankn−1j)

and for the right hand side

(D1 ·A1 ·D2 ·A2 ·. . . Dn ·An)ij =
∑
k1

∑
k2

· · ·
∑
kn−1

a1ik1 ·a
2
k1k2 ·. . . a

n
kn−1j ·d

1
ii ·d2k1k1 ·. . . d

n
kn−1kn−1

.

22

Path Lasso Penalized Autoencoders

By the definition of f , f(a1ik1) · f(a2k1k2) · . . . f(ankn−1j
) ≥ 0 with equality only if at least one

of a1ik1 , a
2
k1k2

, . . . ankn−1j
is zero, which implies that a1ik1 · a

2
k1k2
· . . . ankn−1j

= 0.

The sum ∑
k1

∑
k2

· · ·
∑
kn−1

f(a1ik1) · f(a2k1k2) · . . . f(ankn−1j)

is zero if and only if all its terms are zero, which means that

a1ik1 · a
2
k1k2 · . . . a

n
kn−1j = 0

for all combinations of indices summed over. Multiplying with some bounded constant does
not change that fact, so

f(a1ik1) · f(a2k1k2) · . . . f(ankn−1j) = 0 =⇒ a1ik1 · a
2
k1k2 · . . . a

n
kn−1j · d

1
ii · d2k1k1 · . . . d

n
kn−1kn−1

= 0.

Finally summing only zeros we get

0 =
∑
k1

∑
k2

· · ·
∑
kn−1

a1ik1 · a
2
k1k2 · . . . a

n
kn−1j · d

1
ii · d2k1k1 · . . . d

n
kn−1kn−1

= (D1 ·A1 ·D2 ·A2 · . . . Dn ·An)ij

Proof of Proposition 4 With {ol}Ll=0 (where o0 = x and oL = y) denoting the outputs
and {il}Ll=1 the inputs of the activation functions {Φl}Ll=1, we can express Equation (4)
recursively for 1 ≤ l ≤ L as

il = Wlol−1 + bl

ol = Φk(il)

Applying the chain rule we obtain

∂y

∂x
=
∂oL
∂o0

=
∂oL
∂iL

· ∂iL
∂oL−1

· ∂oL−1

∂iL−1
· ∂iL−1

∂oL−2
· . . . ∂o1

∂i1
· ∂i1
∂o0

, (9)

where ∂ol
∂il

is a diagonal matrix, since Φl is an element-wise operator, and ∂il
∂ol−1

= Wl. We

can now apply Lemma 6 with f(x) = x2 to Equation (9) to obtain

(WPL)iLi0 = 0 ⇐⇒ ((WL)2 · (WL−1)2 · . . . (W1)2)iLi0 = 0

=⇒ 0 =

(
∂oL
∂iL

·WL ·
∂oL−1

∂iL−1
·WL−1 · . . .

∂o1
∂i1
·W1

)
iLi0

=

(
∂y

∂x

)
iLi0

where the equivalence comes from the definition of WPL and the implication from Lemma
6.

23

Allerbo and Jörnsten

Proof of Proposition 5 Assuming the penalized path can be written as a product of
penalized links, we get the following equation for the k-th path between nodes i0 and iL, in
total

∏L
l=0 dk equations:

pkiLi0 ·
(

1− αλ

(WPL)iLi0

)+

= |wL
iLi

k
L−1
| · |wL−1

ikL−1i
k
L−2

| · . . . |w1
ik1 i0
| ·
(

1− αλ

(WPL)iLi0

)+

= sign(wL
iLi

k
L−1

) · (|wL
iLi

k
L−1
| − αλL

iLi
k
L−1

)+ · . . . sign(w1
ik1 i0

) · (|w1
ik1 i0
| − αλ1

ik1 i0
)+

=: sign(wL
iLi

k
L−1

) · w̃L
iLi

k
L−1
· . . . sign(w1

ik1 i0
) · w̃1

ik1 i0
.

The second equality is our assumption, requiring that the proximal operator from Equa-
tion (3) can be written as a product of proximal operators from Equation (2). λl

ikl i
k
l−1

∈

[0, |wl
ikl i

k
l−1

|/α] is a, possibly unique, penalty for the weight wl
ikl i

k
l−1

and w̃l
ikl i

k
l−1

:= (|wl
ikl i

k
l−1

|−

αλl
ikl i

k
l−1

)+. The superscript k on the indices marks that different paths go through different

nodes in the inner layers.

Taking absolute values of all equations and summing over the equations where the paths
belong to the same connection, i.e. they share values for i0 and iL and thus have the same
path penalty, we obtain, for a given combination of i0 and iL dL−1∑
iL−1=1

· · ·
d1∑
i1=1

|wLiLiL−1
| · . . . |w1

i1i0 |

 ·(1− αλ

(WPL)iLi0

)+

=

dL−1∑
iL−1=1

· · ·
d1∑
i1=1

w̃LiLiL−1
· . . . w̃1

i1i0

which, using the definition of matrix multiplication can be written as ∏
l=L,...,1

|Wl| �
(

1− αλ

(WPL)iLi0

)+

iLi0

=

 ∏
l=L,...,1

W̃l

iLi0

.

Thus, solving Equation (7) results in (absolute) links values being shifted towards zero in
such a way that when multiplied into paths, the paths have the correct penalization. The
only thing left to do is to restore the signs of the links.

Appendix C. Modified Non-Negative Matrix Factorization

We solve the non-negative matrix factorization problem in Equation (7) with coordinate
descent, using a modified version of the solver in python’s scikit-learn module (Pedregosa
et al., 2011), which in turn is based on work by Cichocki and Phan (2009) and Hsieh and
Dhillon (2011). The aim is to minimize ||V −W ·

∏I
i=1Mi ·H||2F for I ∈ N0, keeping each

entry in W , Mi and H between zero and its seed.

Coordinate descent updates each matrix separately, keeping the others fixed. Since we
can write W ·

∏I
i=1Mi ·H = W̃ · M̃ · H̃, where the three matrices on the right hand side

are products of the matrices of the left hand side, when updating a given matrix, we can
always treat the problem as a product of only three matrices. Thus we need update rules

24

Path Lasso Penalized Autoencoders

for W̃ and M̃ , since we can use the same algorithm for W̃ and H̃ by taking transpose.
Hsieh and Dhillon (2011) describe the case for two matrices, i.e. I = 0. Our contribution is
the update rule for M̃ (and trivially adding the upper constraint on the solution).

C.1 Update Rule for W̃

For W̃ ∈ (R+)di×dr we want to solve, adding the possibility to add element-wise l1- and
l2-penalties:

min
W̃ : 0≤(W̃)ir≤(W̃0)ir

1

2
||V − W̃ H̃||2F +

∑
i,r

(
λ1(W̃)ir +

λ2
2

(W̃)2ir

)
where W̃0 is the seed. We update each element (W̃)ir by adding sEir, for an optimal s,
where Eir is a matrix with all zeros, except element (i, r), which is 1. Defining

gW̃ir (s) :=
1

2

∑
j

((V)ij − ((W̃ + sEir)H̃)ij)
2 + λ1((W̃)ir + s) +

λ2
2

((W̃)ir + s)2

we get

gW̃ir (s) =
1

2

∑
j

((V)ij − ((W̃ + sEir)H̃)ij)
2 + λ1((W̃)ir + s) +

λ2
2

((W̃)ir + s)2

=
1

2

∑
j

((V)ij − (W̃ H̃)ij − s(H̃)rj)
2 + λ1((W̃)ir + s) +

λ2
2

((W̃)ir + s)2

(gW̃ir)′(s) =
∑
j

(−(V)ij(H̃)rj + (W̃ H̃)ij(H̃)rj + 2s(H̃)2rj) + λ1 + λ2((W̃)ir + s)

(gW̃ir)′′(s) =
∑
j

(2(H̃)2rj) + λ2

(gW̃ir)′(0) =
∑
i,j

(−(V)ij(H̃
>)jr + (W̃ H̃)ij(H̃

>)jr) + λ1 + λ2(W̃)ir

= (−V H̃> + W̃ H̃H̃>)ir + λ1 + λ2(W̃)ir

(gW̃ir)′′(0) =
∑
j

(H̃)rj(H̃
>)jr + λ2 = (H̃H̃>)rr + λ2.

Since gW̃ir (s) is quadratic in s, its Taylor expansion only contains terms up to and
including s2:

gW̃ir (s) = gW̃ir (0) + (gW̃ir)′(0) · s+
1

2
(gW̃ir)′′(0) · s2

which is minimized at

s∗ = − (gW̃ir)′(0)

(gW̃ir)′′(0)
=

(V H̃> − W̃ H̃H̃>)ir − λ1 − λ2(W̃)ir

(H̃H̃>)rr + λ2

and, to make sure (W̃)ir ∈ [0, (W̃0)ir]:

(W̃)t+1
ir = max((W̃0)ir,min(0, (W̃)tir + s∗)).

25

Allerbo and Jörnsten

C.2 Update Rule for M̃

For M ∈ (R+)dp×dr the corresponding equations become

min
M̃ : 0≤(M̃)pr≤(M̃0)pr

1

2
||V − W̃M̃H̃||2F +

∑
p,r

(
λ1(M̃)pr +

λ2
2

(M̃)2pr

)

gM̃pr (s) :=
1

2

∑
i,j

((V)ij − (W̃ (M̃ + sEpr)H̃)ij)
2 + λ1((M̃)pr + s) +

λ2
2

((M̃)pr + s)2

=
1

2

∑
i,j

((V)ij − (W̃M̃H̃)ij − s(W̃)ip(H̃)rj)
2 + λ1((M̃)pr + s)

+
λ2
2

((M̃)pr + s)2

(gM̃pr)′(s) =
∑
i,j

(−(V)ij(W̃)ip(H̃)rj + (W̃M̃H̃)ij(W̃)ip(H̃)rj + 2s(W̃)2ip(H̃)2rj)

+ λ1 + λ2((M̃)pr + s)

(gM̃pr)′′(s) =
∑
i,j

(2(W̃)ip(H̃)2rj) + λ2

(gM̃pr)′(0) =
∑
i,j

(−(V)ij(W̃)ip(H̃)rj + (W̃M̃H̃)ij(W̃)ip(H̃)rj) + λ1 + λ2(M̃)pr

=(−W̃>V H̃> + W̃>W̃M̃H̃H̃>)pr + λ1 + λ2(M̃)pr

(gM̃pr)′′(0) =
∑
i

(W̃>)pi(W̃)ip
∑
j

(H̃)rj(H̃
>)jr + λ2 = (W̃>W̃)pp(H̃H̃

>)rr + λ2

s∗ =
(W̃>V H̃> − W̃>W̃M̃H̃H̃>)pr − λ1 − λ2(M̃)pr

(W̃>W̃)pp(H̃H̃>)rr + λ2

(M̃)t+1
pr = max((M̃0)pr,min(0, ((M̃)ir)

t + s∗)).

26

Path Lasso Penalized Autoencoders

References

Samuel K Ainsworth, Nicholas J Foti, Adrian KC Lee, and Emily B Fox. oi-vae: Output
interpretable vaes for nonlinear group factor analysis. In International Conference on
Machine Learning, pages 119–128, 2018.

Oskar Allerbo and Rebecka Jörnsten. Flexible, non-parametric modeling using regularized
neural networks. arXiv preprint arXiv:2012.11369, 2020.

Andrzej Cichocki and Anh-Huy Phan. Fast local algorithms for large scale nonnegative
matrix and tensor factorizations. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 92(3):708–721, 2009.

Christophe Croux, Peter Filzmoser, and Heinrich Fritz. Robust sparse principal component
analysis. Technometrics, 55(2):202–214, 2013.

Jason A Dabin, Alexander M Haimovich, Justin Mauger, and Annan Dong. Blind source
separation with l1 regularized sparse autoencoder. In 2020 29th Wireless and Optical
Communications Conference (WOCC), pages 1–5. IEEE, 2020.

Lingling Guo, Ping Wu, Jinfeng Gao, and Siwei Lou. Sparse kernel principal component
analysis via sequential approach for nonlinear process monitoring. IEEE Access, 7:47550–
47563, 2019.

Cho-Jui Hsieh and Inderjit S Dhillon. Fast coordinate descent methods with variable se-
lection for non-negative matrix factorization. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1064–1072,
2011.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Mark A Kramer. Nonlinear principal component analysis using autoassociative neural net-
works. AIChE Journal, 37(2):233–243, 1991.

Zhihui Lai, Yong Xu, Qingcai Chen, Jian Yang, and David Zhang. Multilinear sparse
principal component analysis. IEEE Transactions on Neural Networks and Learning
Systems, 25(10):1942–1950, 2014.

Deyu Meng, Qian Zhao, and Zongben Xu. Improve robustness of sparse pca by l1-norm
maximization. Pattern Recognition, 45(1):487–497, 2012.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in
neural networks. In Conference on Learning Theory, pages 1376–1401, 2015.

Andrew Ng et al. Sparse autoencoder. CS294A Lecture Notes, 72(2011):1–19, 2011.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

27

Allerbo and Jörnsten

R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal
on Control and Optimization, 14(5):877–898, 1976.

Ferdinando S Samaria and Andy C Harter. Parameterisation of a stochastic model for
human face identification. In Proceedings of 1994 IEEE Workshop on Applications of
Computer Vision, pages 138–142. IEEE, 1994.

Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini. Group sparse
regularization for deep neural networks. Neurocomputing, 241:81–89, 2017.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component
analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

Alex J Smola, Olvi L Mangasarian, and Bernhard Schölkopf. Sparse kernel feature analysis.
In Classification, Automation, and New Media, pages 167–178. Springer, 2002.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

Michael E Tipping. Sparse kernel principal component analysis. In Advances in Neural
Information Processing Systems, pages 633–639, 2001.

Duo Wang and Toshihisa Tanaka. Sparse kernel principal component analysis based on
elastic net regularization. In 2016 International Joint Conference on Neural Networks
(IJCNN), pages 3703–3708. IEEE, 2016.

Shanshan Wu, Alex Dimakis, Sujay Sanghavi, Felix Yu, Daniel Holtmann-Rice, Dmitry
Storcheus, Afshin Rostamizadeh, and Sanjiv Kumar. Learning a compressed sensing
measurement matrix via gradient unrolling. In International Conference on Machine
Learning, pages 6828–6839. PMLR, 2019.

Jaehong Yoon and Sung Ju Hwang. Combined group and exclusive sparsity for deep neural
networks. In International Conference on Machine Learning, pages 3958–3966, 2017.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67,
2006.

Ron Zass and Amnon Shashua. Nonnegative sparse pca. In Advances in Neural Information
Processing Systems, pages 1561–1568, 2007.

Yang Zhou, Rong Jin, and Steven Chu-Hong Hoi. Exclusive lasso for multi-task feature
selection. In Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics, pages 988–995, 2010.

Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Jour-
nal of Computational and Graphical Statistics, 15(2):265–286, 2006.

28

	Introduction
	Method
	Review of Lasso Penalties
	Review of Proximal Gradient Descent
	Path Penalties
	From Paths to Links
	Applying the Path Lasso Penalty
	Path Lasso for Dimensionality Reduction

	Experiments
	Synthetic Data Set
	Text - 20 Newsgroup Data Set
	Images - AT&T Face Database

	Conclusions
	Accelerating the Non-Negative Matrix Factorization
	Substitution
	Parallelization
	Boolean Matrix Factorization

	Proofs
	Modified Non-Negative Matrix Factorization
	Update Rule for W
	Update Rule for M

