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Abstract

In this article, we study the problem of high-dimensional conditional independence testing,
a key building block in statistics and machine learning. We propose an inferential procedure
based on double generative adversarial networks (GANs). Specifically, we first introduce
a double GANs framework to learn two generators of the conditional distributions. We
then integrate the two generators to construct a test statistic, which takes the form of the
maximum of generalized covariance measures of multiple transformation functions. We
also employ data-splitting and cross-fitting to minimize the conditions on the generators to
achieve the desired asymptotic properties, and employ multiplier bootstrap to obtain the
corresponding p-value. We show that the constructed test statistic is doubly robust, and the
resulting test both controls type-I error and has the power approaching one asymptotically.
Also notably, we establish those theoretical guarantees under much weaker and practically
more feasible conditions compared to the existing tests, and our proposal gives a concrete
example of how to utilize some state-of-the-art deep learning tools, such as GANs, to help
address a classical but challenging statistical problem. We demonstrate the efficacy of
our test through both simulations and an application to an anti-cancer drug dataset. A
Python implementation of the proposed procedure is available at https://github.com/

tianlinxu312/dgcit.

Keywords: Conditional independence; Double-robustness; Generalized covariance mea-
sure; Generative adversarial networks; Multiplier bootstrap.

1. Introduction

Conditional independence (CI) is a fundamental concept in statistics and machine learning.
Testing conditional independence is a key building block and plays a central role in a large
variety of statistical learning problems, for instance, causal inference (Pearl, 2009), graphical
models (Koller and Friedman, 2009), dimension reduction (Li, 2018), among many others. It
is frequently used in a wide range of scientific and business applications, and we demonstrate
its application with a cancer genetics example later.
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In this article, we aim at testing whether two random variablesX and Y are conditionally
independent given a set of confounding variables Z. That is, we test the hypotheses:

H0 : X ⊥⊥ Y | Z versus H1 : X 6⊥⊥ Y | Z, (1)

given the observed data of n i.i.d. copies {(Xi, Yi, Zi)}1≤i≤n of (X,Y, Z). For our problem,
X,Y and Z can all be multivariate. However, the main challenge arises when the confound-
ing set of variables Z is multivariate and high-dimensional. As such, we primarily focus on
the scenario where X and Y are univariate, and Z is multivariate and its dimension can
potentially diverge to infinity. Meanwhile, our proposed method can be readily extended
to the scenario of multivariate X and Y as well. Another challenge is the limited sample
size compared to the dimensionality of Z. As a result, many existing tests may become
ineffective, suffering from either an inflated type-I error, or not having enough power to
detect the alternatives. See Section 2 for a detailed literature review.

To deal with those challenges, we propose a testing procedure based on double generative
adversarial networks (GANs, Goodfellow et al., 2014) for the CI testing problem in (1).
GANs have recently stood out as a powerful approach for learning and generating random
samples from a complex, high-dimensional data distribution. They have been successfully
applied in numerous applications, ranging from image processing and computer vision, to
sequential data modeling such as natural language, music, speech, and to medical fields
such as DNA design and drug discovery; see Gui et al. (2020) for a review of the GANs
applications. Moreover, there have recently emerged works studying the consistency and
rate of convergence of the GANs estimators; see, e.g., Liang (2018); Chen et al. (2020).

Our proposal involves two key components: a double GANs framework to learn two
generators that approximate the conditional distribution of X given Z, and Y given Z,
respectively, and a test statistic that is taken as the maximum of generalized covariance
measures of multiple transformation functions of X and Y . We first show that our test
statistic is doubly-robust, which offers an additional layer of protection against potential
misspecification of the conditional distributions; see Theorems 2 and 3. We then show that
the resulting test achieves a valid control of the type-I error asymptotically, and more im-
portantly, under the set of conditions that are much weaker and practically more feasible
compare to the existing tests; see Theorem 4. Besides, we prove that the power of our
test approaches one asymptotically; see Theorem 5, and we demonstrate through simula-
tions that it is more powerful than numerous competing tests empirically. In addition, we
employ data splitting and cross-fitting that allow us to derive the asymptotic properties
under minimal conditions on the generators, and employ multiplier bootstrap to obtain the
corresponding p-value of the test. Our contributions are multi-fold. We develop a useful
testing procedure for a fundamentally important statistical inference problem. We establish
the statistical guarantees under much weaker conditions. We also give an example of how
to utilize some state-of-the-art deep learning tools, such as GANs, to address a classical but
challenging statistical problem.

The rest of the article is organized as follows. Section 2 reviews some key existing CI
testing methods. Section 3 develops the double GANs-based testing procedure. Section 4
derives the theoretical properties. Section 5 presents the simulations and a cancer genetics
data example. Section 6 concludes the paper. The Appendix collects all technical proofs.
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2. Literature review on conditional independence testing

There has been a large and growing literature on conditional independence testing; see Li
and Fan (2019) for a review. Broadly speaking, the existing tests can be cast into four main
categories, the metric-based tests (e.g., Su and White, 2007, 2014; Wang et al., 2015; Pan
et al., 2017; Wang et al., 2018), the conditional randomization-based tests (e.g., Candes
et al., 2018; Bellot and van der Schaar, 2019), the kernel-based tests (e.g., Fukumizu et al.,
2008; Zhang et al., 2011), and the regression-based tests (e.g., Hoyer et al., 2009; Shah and
Peters, 2018). There are also some other types of tests (e.g., Bergsma, 2004; Berrett et al.,
2019, to name a few).

The metric-based tests typically employ some kernel smoothers to estimate the con-
ditional characteristic function or the distribution function of Y given X and Z. Kernel
smoothers, however, are known to suffer from the curse of dimensionality, and as such,
these tests are usually not suitable when the dimension of Z is high. The conditional
randomization-based tests require the knowledge of the conditional distribution of X|Z
(Candes et al., 2018). If unknown, the type-I error rates of these tests rely critically on the
quality of the approximation of this conditional distribution. Kernel-based tests are built
upon the notion of maximum mean discrepancy (MMD, Gretton et al., 2012), and could
have inflated type-I errors. Regression-based tests have valid type-I error control, but may
suffer from inadequate power.

Next, we discuss in detail the conditional randomization-based tests, in particular, the
work of Bellot and van der Schaar (2019), the regression-based tests, and the MMD-based
tests, as our proposal is related to and built on those methods. For each family of tests, we
first lay out the main ideas, then discuss their potential limitations.

2.1 Conditional randomization-based tests

The family of conditional randomization-based tests is built upon the following basis. If
the conditional distribution PX|Z of X given Z is known, then one can independently

draw X
(1)
i ∼ PX|Z=Zi

, for i = 1, . . . , n, where the superscript denotes the first round of
draws. Besides, these samples are independent of the observed samples Xi’s and Yi’s. Write

X = (X1, . . . , Xn)>, X(1) = (X
(1)
1 , . . . , X

(1)
n )>, Y = (Y1, . . . , Yn)>, and Z = (Z1, . . . , Zn)>.

Hereinafter we use boldface letters to denote data matrices that consist of n samples.
Since the joint distributions of (X,Y ,Z) and (X(1),Y ,Z) are the same under H0, any
large difference between the two distributions can be interpreted as evidence against H0.

Therefore, one can repeat the sample drawing process M times, i.e., X
(m)
i ∼ PX|Z=Zi

,

i = 1, . . . , n, m = 1, . . . ,M . Write X(m) = (X
(m)
1 , . . . , X

(m)
n )>. Then, for a given test

statistic ρ = ρ(X,Y ,Z), the associated p-value is

p =
1

M

[
M∑
m=1

I
{
ρ(X(m),Y ,Z) ≥ ρ(X,Y ,Z)

}]
,

where I(·) denotes the indicator function. Since the triplets (X,Y ,Z), (X(1),Y ,Z), . . . ,
(X(M),Y ,Z) are exchangeable under H0, the above p-value is valid, in the sense that it
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equals the significance level under the null, i.e.,

Pr (p ≤ α|H0) = α, for any 0 < α < 1.

In practice, however, PX|Z is rarely known. Bellot and van der Schaar (2019) proposed
to approximate PX|Z using GANs. Specifically, they learned a generator GX(·, ·) from the
observed data, then took Zi along with an independent noise variable as the input to obtain

a sample X̃
(m)
i , which minimizes the divergence between the distributions of (Xi, Zi) and

(X̃
(m)
i , Zi). They computed the p-value by replacing X(m) with X̃(m) = (X̃

(m)
1 , . . . , X̃

(m)
n )>.

They called this test the generative conditional independence test (GCIT). By Theorem 1
of Bellot and van der Schaar (2019), the excess type-I error of this test is upper bounded
as,

Pr (p ≤ α|H0)− α ≤ E
{
dTV

(
P̃X|Z , PX|Z

)}
= E

{
sup
A

∣∣∣Pr(X ∈ A|Z)− Pr(X̃(m) ∈ A|Z)
∣∣∣} ≡ D, (2)

where dTV is the total variation norm between two probability distributions P and Q such
that dTV(P,Q) = supA |P (A) −Q(A)|, the supremum is taken over all measurable sets A,
and the expectations in (2) are taken with respect to Z.

By definition, the error term D in (2) measures the quality of the conditional distribution
approximation. Bellot and van der Schaar (2019) argued that this error term is negligible
due to the capacity of deep neural networks in terms of estimating the conditional distri-
bution. To the contrary, we find this approximation error is usually not negligible, and
consequently, it may inflate the type-I error and invalidate the test. We consider a simple
example to further elaborate this.

Example 1 Suppose X is one-dimensional, and follows a simple linear regression model,
X = Z>β0 + ε, where the error ε is independent of Z, and ε ∼ N(0, σ2

0) for some σ2
0 > 0.

Suppose we know a priori that the linear regression model holds. We thus estimate β0 by
ordinary least squares, and denote the resulting estimator by β̂. For simplicity, suppose
σ2

0 is known too. For this simple example, we have the following result regarding the
approximation error D.

Proposition 1 Suppose the linear regression model holds, the dimension of Z is much
smaller than the sample size n, and the derived distribution P̃X|Z is Normal(Zβ̂, σ2

0In),
where In is the n× n identity matrix. Then D does not decay to zero.

To facilitate the understanding of the convergence behavior of D, we sketch a few lines
of the proof of Proposition 1. The complete proof is given in the Appendix. Let P̃X|Z=Zi

denote the conditional distribution of X̃
(m)
i given Zi, which is Normal(Z>i β̂, σ

2
0) in this

example. If D = o(1), then,

D̃ ≡ n1/2

√
E
{
d2

TV

(
P̃X|Z=Zi

, PX|Z=Zi

)}
= o(1). (3)
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In other words, in order to control the type-I error, GCIT requires the total variation
distance measure in (3) to converge at a faster rate than n−1/2. However, this rate cannot
be achieved in general. In our Example 1, we have D̃ ≥ c for some constant c > 0.
Consequently, D in (2) is not o(1). Proposition 1 shows that, even if we know a priori that
the linear model holds, D does not decay to zero as n tends to infinity. In practice, we do
not have such prior model information. Then it would be even more difficult to estimate
the conditional distribution PX|Z . Therefore, using GANs to approximate PX|Z does not
guarantee a negligible approximation error.

2.2 Regression-based tests

The family of regression-based tests is built upon the generalized covariance measure,

GCM(X,Y ) =
1

n

n∑
i=1

{
Xi − Ê(Xi|Zi)

}{
Yi − Ê(Yi|Zi)

}
,

where Ê(X|Z) and Ê(Y |Z) are the estimated condition means E(X|Z) and E(Y |Z), re-
spectively, obtained by some supervised learner. When the prediction errors of Ê(X|Z)
and Ê(Y |Z) satisfy certain convergence rates, Shah and Peters (2018) proved that GCM
is asymptotically normal under H0, in which the asymptotic mean is zero, and the stan-
dard deviation can be consistently estimated by some standard error estimator, denoted by
ŝ(GCM). Therefore, at level α, we reject H0, if |GCM|/ŝ(GCM) exceeds the upper α/2th
quantile of a standard normal distribution.

Such a test can control the type-I error. Nevertheless, it may not have sufficient power
to detect H1. Consider the asymptotic mean of GCM, which is GCM∗(X,Y ) = E{X −
E(X|Z)}{Y − E(Y |Z)}. The regression-based tests require |GCM∗| to be nonzero under
H1 to have power. However, it may be difficult to satisfy such a requirement. We again
consider a simple example.

Example 2 Suppose X∗, Y and Z are independent random variables. Besides, X∗ has
mean zero, and X = X∗g(Y ) for some function g.

For this example, we have E(X|Z) = E(X), since both X∗ and Y are independent of Z, and
so is X. Besides, E(X) = E(X∗)E{g(Y )} = 0, since X∗ is independent of Y and E(X∗) = 0.
Thus GCM∗(X,Y ) = E{X − E(X)}{Y − E(Y |Z)} = 0 for any function g. On the other
hand, X and Y are conditionally dependent given Z, as long as g is not a constant function.
Therefore, for this example, the regression-based tests would fail to discriminate between
H0 and H1.

2.3 MMD-based tests

The family of MMD-based tests involves the maximum mean discrepancy as a measure of
independence. For any two probability measures P , Q and a function space F, define

MMD(P,Q|F) = supf∈F {Ef(W1)− Ef(W2)} , where W1 ∼ P, W2 ∼ Q.

Let H1, H2 denote some function spaces of X and Y . Define

φXY = MMD(PXY , QXY | H1 ⊗H2),
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where ⊗ is the tensor product, PXY is the joint distribution of (X,Y ) whose definition
does not rely on Z, and QXY is the conditionally independent distribution with the same
X and Y margins as PXY . Let X ′ and Y ′ be independent copies of X and Y , such
that they are conditionally independent given Z. Then QXY corresponds to the joint
distribution of (X ′, Y ′). Note that, to generate (X ′, Y ′), we need to first sample Z ac-
cording to PZ , then generate X ′ and Y ′ that follow PX|Z and PY |Z , respectively. As
such, QXY depends on Z, and φXY depends on Z through QXY . Furthermore, since
E{h1(X ′)h2(Y ′)} = E[E{h1(X ′)|Z}E{h2(Y ′)|Z}], we have,

φXY = sup
h1∈H1,h2∈H2

[
E{h1(X)h2(Y )} − E{h1(X ′)h2(Y ′)}

]
= sup
h1∈H1,h2∈H2

(
E{h1(X)h2(Y )} − E[E{h1(X)|Z}E{h2(Y )|Z}]

)
= sup
h1∈H1,h2∈H2

(
E{h1(X)h2(Y )} − E[h1(X)E{h2(Y )|Z}]− E[{h1(X)|Z}h2(Y )]

+ E[E{h1(X)|Z}E{h2(Y )|Z}]
)

= sup
h1∈H1,h2∈H2

E
[
h1(X)− E{h1(X)|Z}

][
h2(Y )− E{h2(Y )|Z}

]
.

As such, φXY measures the average conditional association between X and Y given Z.
Under H0, it equals zero, and hence an estimator of this measure can be used as a test
statistic for H0. Moreover, if H1 and H2 are reproducing kernel Hilbert spaces (RKHSs),
then φXY has a closed form expression in terms of the reproducing kernels of the RKHS
(Doran et al., 2014; Gretton et al., 2012), which makes the tests based on an estimator of
φXY easier to evaluate.

A notable example of this family is the kernel MMD-based test (KCIT) of Zhang et al.
(2011). We next further discuss this test. To control the type-I error asymptotically, KCIT
requires the dimension dZ of Z to be fixed (Zhang et al., 2011, Proposition 5), since it
uses the continuous mapping theorem to derive the limiting distribution of its test statistic.
However, the continuous mapping theorem may not hold when dZ diverges with n. In
addition, KCIT requires the `1 distance between the covariance operator and its empirical
estimator to decay to zero. It remains unknown whether such an assertion holds as dZ
diverges. By contrast, the test we develop allows dZ to diverge while maintaining the
asymptotic control of the type-I error. This implies that our test is expected to have
a better size control than KCIT when dZ is large. We later further verify this through
numerical simulations. Moreover, the maximization of KCIT is done over unit balls in an
RKHS, while our proposed test can deal with much more general function spaces such as
those generated by neural networks. Consequently, the power of our test can be tailored to
more general alternatives than KCIT. For instance, it is known that deep neural networks
learn certain non-smooth functions at a faster rate than kernel methods (Imaizumi and
Fukumizu, 2019). This implies that our test is expected to have a better power than KCIT
under certain types of alternatives.
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3. A new double GANs-based testing procedure

We propose a double GANs-based testing procedure for the conditional independence testing
problem (1). Conceptually, our test integrates three families of tests that are based on
conditional randomization, regression, and MMD. Meanwhile, our new test overcomes the
limitations of the existing ones. Unlike the GCIT of Bellot and van der Schaar (2019)
that only learned the conditional distribution of X given Z, we learn two generators GX

and GY to approximate the conditional distributions of both X given Z and Y given Z.
We then integrate the two generators in an appropriate way to construct a doubly-robust
test statistic. To ensure the theoretical properties of this test, we only require the root
mean squared total variation norm to converge at a rate of n−κ for some κ > 1/4. Such a
requirement is much weaker and practically more feasible than the condition in (3).

Moreover, to improve the power of the test, we consider a collection of the generalized
covariance measures, {GCM(h1(X), h2(Y )) : h1, h2}, for multiple combinations of trans-
formation functions h1(X) and h2(Y ). We then take the maximum of all these GCMs
as our test statistic. This essentially yields a type of maximum mean discrepancy mea-
sure φXY . To see why this statistic can enhance the power, we quickly revisit Exam-
ple 2. When g is not a constant function, there exists some nonlinear function h1 such
that h∗1(Y ) = E{h1(X)|Y } is not a constant function of Y . Set h2 = h∗1. We then have
GCM∗ = E[h1{X∗g(Y )}{Y − E(Y )}] = Var{h∗1(Y )} > 0, which enables us to discriminate
H1 from H0.

We note that the maximum of GCMs yields MMD. Instead of using kernels, we have
chosen GANs, because they have been shown to give good approximations of complex
distributions (Imaizumi and Fukumizu, 2019). This allows the transformation functions
h1 and h2 to be arbitrary function spaces. We set these function spaces to the class of
neural networks in our implementation. In contrast, kernel based measures such as KCIT
are limited to vector spaces of functions, which can be problematic for a high-dimensional
conditioning variable (Doran et al., 2014).

We also remark that, even though our proposal is built upon the existing CI tests, our
test is far from a simple extension. The major challenge lies in how to properly utilize
the GAN estimators for the purpose of high-dimensional conditional independence testing.
Despite the fact that GANs are capable of approximating complex high-dimensional prob-
ability distributions, the GAN estimators have non-negligible bias that decays slower than
the parametric root-n rate. Naively plugging the GAN estimators in the test statistic can
invalidate the subsequent inference.

We give a graphical overview of our proposed testing procedure in Figure 1. We first
employ double GANs to compute the test statistic that is the maximum of the GCMs
over multiple transform functions. We then employ multiplier bootstrap to compute the
corresponding p-value. We next detail the main components of our testing procedure.

3.1 Test statistic

We begin with two function spaces, H1 =
{
h1,θ1 : θ1 ∈ Rd1

}
and H2 =

{
h2,θ2 : θ2 ∈ Rd2

}
, in-

dexed by some parameters θ1 and θ2, respectively. In our implementation, we set H1 and H2

to the classes of neural networks with a single-hidden layer, finitely many hidden nodes, and
the sigmoid activation function. However, a broad range of other function spaces may be
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Figure 1: Illustration of the conditional independence test with double GANs.

considered, as appropriate for the application at hand. We next randomly generate B func-
tions, h1,1, . . . , h1,B ∈ H1, h2,1, . . . , h2,B ∈ H2, where we independently generate i.i.d. mul-
tivariate normal variables θ1,1, . . . , θ1,B ∼ N(0, 2Id1/d1), and θ2,1, . . . , θ2,B ∼ N(0, 2Id2/d2).
We then set h1,b = h1,θ1,b , and h2,b = h2,θ2,b , b ∈ [B] = {1, . . . , B}. Consider the following
maximum-type test statistic,

T = max
b1,b2∈[B]

σ̂−1
b1,b2

∣∣∣∣∣ 1n
n∑
i=1

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

] [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]∣∣∣∣∣ ,
where σ̂2

b1,b2
is the sampling variance estimator,

σ̂2
b1,b2 =

1

n− 1

n∑
i=1

([
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

] [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]
− 1

n

n∑
i=1

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

] [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

])2

.

To compute T , we need to estimate the conditional means, E{h1,b1(X)|Z} and E{h2,b2(Y )|Z},
which can be done by applying some supervised learning methods. However, this needs to
be performed for all b1, b2 ∈ [B]. In theory, B should diverge to infinity to guarantee the
power property of the test. As such, this approach is computationally very expensive. In-
stead, we propose to implement this step based on the generators GX and GY estimated
using GANs, which is much more efficient computationally.

Specifically, we first randomly generate i.i.d. samples {v(m)
i,X }Mm=1, {v(m)

i,Y }Mm=1 from mul-

tivariate normal distribution, for i = 1, . . . , n. We then feed Zi and v
(m)
i,X into GANs

to obtain the pseudo samples X̃
(m)
i = GX(Zi, v

(m)
i,X ), and feed Zi and v

(m)
i,Y to obtain

Ỹ
(m)
i = GY (Zi, v

(m)
i,Y ), for i = 1, . . . , n,m = 1, . . . ,M . These pseudo samples approximate

the conditional distribution of Xi and Yi given Zi, respectively. We then compute

Ê{h1,b1(X̃i)|Zi} =
1

M

M∑
m=1

h1,b1(X̃
(m)
i ), Ê{h2,b2(Yi)|Zi} =

1

M

M∑
m=1

h2,b2(Ỹ
(m)
i ),
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Algorithm 1 Algorithm for computing the test statistic.

Input: The number of transformation functions B, the number of pseudo samples M , and
the number of data splits L.

Step 1: Divide {1, . . . , n} into L folds I(1), . . . , I(L). Denote I(−`) = {1, . . . , n}\I(`).

Step 2: For ` = 1, . . . , L, train two generators G(`)
X and G(`)

Y based on {(Xi, Zi)}i∈I(−`) and
{(Yi, Zi)}i∈I(−`) , to approximate the conditional distributions of X|Z and Y |Z.

Step 3: For ` = 1, . . . , L and i ∈ I`, generate i.i.d. random noises
{
v

(m)
i,X

}M
m=1

,
{
v

(m)
i,Y

}M
m=1

.

Set X̃
(m)
i = G(`)

X

(
Zi, v

(m)
i,X

)
, and Ỹ

(m)
i = G(`)

Y

(
Zi, v

(m)
i,Y

)
, m = 1, . . . ,M .

Step 4: Randomly generate h1,1, . . . , h1,B ∈ H1 and h2,1, . . . , h2,B ∈ H2.

Step 5: Compute the test statistic T̂ .

for b1, b2 = 1, . . . , B. Plugging the estimated means into T produces the sample test statistic,

T̂ = max
b1,b2

∣∣∣∣∣n−1/2
n∑
i=1

ψb1,b2,i

∣∣∣∣∣ , where (4)

ψb1,b2,i = σ̂−1
b1,b2

{
h1,b1(Xi)−

1

M

M∑
m=1

h1,b1

(
X̃

(m)
i

)}{
h2,b2(Yi)−

1

M

M∑
m=1

h2,b2

(
Ỹ

(m)
i

)}
.

To help reduce the type-I error, we further employ a data splitting and cross-fitting
strategy, which has been commonly used in statistical inferences in recent years (Romano
and DiCiccio, 2019). That is, we use different subsets of data samples to learn GANs and
to construct the test statistic. We begin by dividing the data into L folds of equal size. We
use I(`) to denote the set of indices of subsamples in the `th fold, and I(−`) its complement.

We next learn two generators G(`)
X and G(`)

Y , based on {(Xi, Zi)}i∈I(−`) and {(Yi, Zi)}i∈I(−`) ,
to approximate the conditional distributions of X|Z and Y |Z, for ` = 1, · · · , L. Finally,

for each ` and i ∈ I(`), we generate the pseudo samples X̃
(m)
i and Ỹ

(m)
i using G(`)

X and

G(`)
Y , and construct T̂ as in (4). In this way, X̃

(m)
i and Ỹ

(m)
i are conditionally independent

of the observations in I(`) given Zi. Such a cross-fitting strategy allows us to derive the
asymptotic properties of the test under minimal conditions on the generators.

We summarize our procedure of computing the test statistic in Algorithm 1.

3.2 Approximation of conditional distribution via GANs

There are numerous GANs methods available for learning high-dimensional distributions.
We adopt the proposal of Genevay et al. (2017) to learn the conditional distributions PX|Z
and PY |Z in our setting thanks to its competitive performance. Recall that P̃X|Z is the
distribution of pseudo outcome generated by the generator GX given Z. We consider
estimating PX|Z by optimizing

min
GX

max
c
D̃c,ε(PX|Z , P̃X|Z).

9



Shi, Xu, Bergsma and Li

Here D̃c,ε denotes the Sinkhorn loss function between two probability measures with respect
to some cost function c and some regularization parameter ε > 0,

D̃c,ε(µ, ν) = 2Dc,ε(µ, ν)−Dc,ε(µ, µ)−Dc,ε(ν, ν),

Dc,ε(µ, ν) = inf
π∈Π(µ,ν)

∫
x,y

{
c(x, y)− εH(π|µ⊗ ν)

}
π(dx, dy),

where Π(µ, ν) is a set containing all probability measures π whose marginal distributions
correspond to µ and ν, H is the Kullback-Leibler divergence, and µ ⊗ ν is the product
measure of µ and ν. When ε = 0, Dc,0(µ, ν) measures the optimal transport of µ into ν with
respect to the cost function c(·, ·) (Cuturi, 2013). When ε 6= 0, an entropic regularization
is added to this optimal transport. As such, the objective function Dc,ε is a regularized
optimal transport metric, and the regularization is to facilitate the computation, so that
Dc,ε can be efficiently evaluated.

Intuitively, the closer the two probability measures, the smaller the Sinkhorn loss. As
such, maximizing the loss with respect to the cost function learns a discriminator that can
better discriminate the samples generated between PX|Z and P̃X|Z . On the other hand,
minimizing the maximum cost with respect to the generator GX makes it closer to the
true distribution PX|Z . This yields the minimax formulation minGX

maxc D̃c,ε(PX|Z , P̃X|Z)
that we target. In practice, we approximate the cost and the generator based on neural
networks. Integrations in the objective function D̃c,ε(PX|Z , P̃X|Z) are approximated by
sample averages. The conditional distribution of PY |Z is estimated similarly.

3.3 Bootstrap for the p-value

Next, we propose a multiplier bootstrap method to approximate the distribution of T̂ under
H0 and compute the corresponding p-value. Let ψb1,b2 = n−1

∑n
i=1 ψb1,b2,i. The key obser-

vation is that {ψb1,b2}Bb1,b2=1 are asymptotically multivariate normal with zero mean under

H0; see the proof of Theorem 4 for details. Consequently, T̂ = maxb1,b2 |n−1/2
∑n

i=1 ψb1,b2,i|
is to converge to a maximum of normal variables in absolute values.

To approximate this limiting distribution, we first estimate the covariance matrix of a
B2-dimensional vector formed by {n−1/2ψb1,b2}Bb1,b2=1 using the sample covariance matrix

Σ̂, whose {b1 +B(b2 − 1), b3 +B(b4 − 1)}th entry is given by

1

n

n∑
i=1

(ψb1,b2,i − ψb1,b2)(ψb3,b4,i − ψb3,b4), b1, b2, b3, b4 = 1, . . . , B.

We then generate i.i.d. random vectors with the covariance matrix equal to Σ̂. This can be
achieved by generating i.i.d. standard normal variables {Wi,j}i,j for 1 ≤ i · · · ≤ n and j =
1, · · · , J , then compute B2-dimensional normal random vectors Wj whose {b1+B(b2−1)}th
entry is given by n−1/2

∑n
i=1(ψb1,b2,i − ψb1,b2)Wi,j for j = 1, · · · , J . We next compute

T̃j = ‖Wj‖∞, for j = 1, . . . , J , where ‖ · ‖∞ is the maximum element of a vector in absolute
value, and J is the number of bootstrap samples. Finally, we use these maximum absolute
values to approximate the distribution of T̂ under the null hypothesis. This yields the
p-value, p = J−1

∑J
j=1 I(T̂ ≥ T̃j). We summarize this bootstrap procedure in Algorithm 2.

10
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4. Asymptotic theory

To derive the theoretical properties of the test statistic T̂ , we first introduce the concept
of the “oracle” test statistic T ∗. If PX|Z and PY |Z were known a priori, then one can draw

{X(m)
i }m and {Y (m)

i }m from PX|Z=Zi
and PY |Z=Zi

directly, and can compute the test statis-

tic by replacing {X̃(m)
i }m and {Ỹ (m)

i }m with {X(m)
i }m and {Y (m)

i }m. We call the resulting

T ∗ an “oracle” test statistic. We next establish the double-robustness property of T̂ , which
helps explain why our test can relax the requirement in (3). Roughly speaking, the double-
robustness means that T̂ is asymptotically equivalent to T ∗ when either the conditional
distribution of X|Z, or that of Y |Z, is well approximated by GANs. It guarantees that T̂
converges to T ∗ at a faster rate than the estimated conditional distribution. In contrast,
the convergence rate of the GCIT test statistic is the same as the rate of the estimated
conditional distribution. For this reason, our procedure only requires a weaker condition.

Theorem 2 (Double-robustness) Suppose M is proportional to n, and B = O(nc)
for some constant c > 0. Suppose minh1∈H1,h2∈H2 Var[{h1(X) − E{h1(X)|Z}}{h2(Y ) −
E{h2(Y )|Z}}] ≥ c∗ for some constant c∗ > 0. Then, T̂ − T ∗ = op(1), when

E
[
d2
TV

{
Q̃

(`)
X (·|Z), QX(·|Z)

}]
= o(log−1 n), or E

[
d2
TV

{
Q̃

(`)
Y (·|Z), QY (·|Z)

}]
= o(log−1 n).

We note that the conditions on M and B are mild, as these are user-specified parameters. As
we have mentioned, when both total variation distances converge to zero, the test statistic
T converges at a faster rate than those total variation distances. Therefore, we can greatly
relax the condition in (3), and replace it with,[

E
{
d2

TV

(
P̃

(`)
X|Z , PX|Z

)}]1/2
= O(n−κx), and

[
E
{
d2

TV

(
P̃

(`)
Y |Z , PY |Z

)}]1/2
= O(n−κy), (5)

for some constants 0 < κx, κy < 1/2 and any ` ∈ [L], where P̃
(`)
X|Z and P̃

(`)
Y |Z denote the

conditional distributions approximated via GANs trained on the `-th subset of data samples.
The next theorem summarizes this discussion.

Theorem 3 Suppose the conditions in Theorem 2. Furthermore, suppose (5) holds. Then,
T̂ − T ∗ = Op

(
n−(κx+κy) log n

)
.

Since κx, κy > 0, the convergence rate of (T̂ − T ∗) is faster than that in (5). To ensure√
n(T − T ∗) = op(1), it suffices to require κx + κy > 1/2. In contrast to (3), this rate is

achievable. We consider two examples in Berrett et al. (2019) to illustrate this, while the
condition holds in a much wider range of settings.

Algorithm 2 Algorithm for computing the p-value.

Input: The number of bootstrap samples J , and {ψb1,b2,i}
B,n
b1,b2=1,i=1.

Step 1: Generate i.i.d. standard normal variables Wi,j for i = 1, · · · , n, j = 1, . . . , J .
Step 2: Compute B2-dimensional normal random vectors Wj whose {b1 + B(b2 − 1)}th

entry is given by n−1/2
∑n

i=1(ψb1,b2,i − ψb1,b2)Wi,j and set T̃j = ‖Wj‖∞ for j = 1, · · · , J .

Step 3: Compute the p-value, p = J−1
∑J

j=1 I(T̂ ≥ T̃j).

11
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Example 3 (Parametric setting) Suppose the parametric forms of QX and QY are cor-
rectly specified. Then under certain regularity conditions, the requirement κx + κy > 1/2
holds if kx = O(ntx) and ky = O(nty) for some tx + ty < 1/2, where kx and ky are the
dimensions of the parameters defining the parametric models for QX and Qy, respectively.

Example 4 (Nonparametric setting with binary data) Suppose X,Y are binary vari-
ables. Then the requirement κx + κy > 1/2 holds if the mean squared prediction errors of
the nonparametric estimators of the conditional means of X and Y given Z are O(n−tx)
and O(n−ty) for some tx, ty, such that tx + ty > 1/2.

We briefly remark that, there is no explicit specification on dZ in the statement of
Theorem 3. It is implicitly imposed due to the requirement that κx + κy > 1/2, and dZ is
allowed to diverge with the sample size. In addition, the condition κx + κy > 1/2 can be
further relaxed to κ1, κ2 > 0 using the theory of higher order influence functions (Robins
et al., 2008, 2017; Mukherjee et al., 2017). However, the resulting estimators would be
considerably much more complicated, and thus we do not pursue those estimators.

Next, we show that our proposed test can control the type-I error asymptotically.

Theorem 4 Suppose the conditions in Theorem 2 hold. Suppose (5) holds for some κx, κy
such that κx +κy > 1/2. Then, the p-value from Algorithm 2 satisfies that Pr(p ≤ α|H0) =
α+ o(1).

Next, to derive the asymptotic power of the test, we introduce the pair of hypotheses
based on the notion of weak conditional independence (Daudin, 1980),

H∗0 : E[cov{f(X), g(Y )|Z}] = 0, for any f ∈ L2
X , g ∈ L2

Y versus

H∗1 : E[cov{f(X), g(Y )|Z}] 6= 0, for some f ∈ L2
X , g ∈ L2

Y ,

where L2
X and L2

Y denote the class of all squared integrable functions of X and Y , respec-
tively. We note that conditional independence implies weak conditional independence, i.e.,
H0 implies H∗0, and H∗1 implies H1. We consider an example to further elaborate on the
difference between weak CI and CI.

Example 5 Let X,Y, Z be binary random variables with the distribution functions,(
Pr(X = 0, Y = 0|Z = 0) Pr(X = 0, Y = 1|Z = 0)
Pr(X = 1, Y = 0|Z = 0) Pr(X = 1, Y = 1|Z = 0)

)
=

(
1/6 1/3
1/3 1/6

)
,(

Pr(X = 0, Y = 0|Z = 1) Pr(X = 0, Y = 1|Z = 1)
Pr(X = 1, Y = 0|Z = 1) Pr(X = 1, Y = 1|Z = 1)

)
=

(
1/3 1/6
1/6 1/3

)
,

and Z takes the value {0, 1} with equal probability. We can show that, for any x, y ∈ {0, 1},

E{Pr(X = x|Z)Pr(Y = y|Z)} =
1

2
× 1

2
=

1

4
,

Pr(X = x, Y = y) =
1

2

{
Pr(X = x, Y = y|Z = 0) + Pr(X = x, Y = y|Z = 1)

}
=

1

2
×
(

1

6
+

1

3

)
=

1

4
.
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By definition, this implies that X and Y are weakly conditionally independent given Z, since

E[cov{f(X), g(Y )|Z}] =
∑
x,y

f(x)g(y)
{

Pr(X = x, Y = y)

− E
{

Pr(X = x|Z)Pr(Y = y|Z)
}}

= 0.

However, Pr(X = 0, Y = 0|Z = 0) 6= Pr(X = 0|Z = 0)Pr(Y = 0|Z = 0), since the former
equals 1/6, and the latter equals 1/4. As such, X and Y are not conditionally independent
given Z.

The next theorem shows that our proposed test is consistent against the alternatives in
H∗1, but not against all alternatives in H1.

Theorem 5 Suppose the conditions in Theorem 4 hold, B = c0n
c for some c0, c > 0,

and X, Y are bounded random variables. Then the p-value from Algorithm 2 satisfies that
Pr(p ≤ α|H∗1)→ 1, as n→∞.

Finally, we remark that our test is constructed based on φXY . Meanwhile, we may
consider another test based on φXY Z = MMD(PXY Z , QXY Z |H1⊗H2⊗H3), where PXY Z is
the joint distribution of (X,Y, Z), QXY Z = PX|ZPY |ZPZ , and H3 is a neural network class
of functions of Z. This type of test is consistent against all alternatives in H1. However,
in our numerical experiments, we find it less powerful compared to our test. This agrees
with the observation by Li and Fan (2019) in that, even though the tests based on weak CI
cannot fully characterize CI, they potentially enjoy an improved power.

5. Numerical studies

We begin with a discussion of some implementation details. We then carry out simulations
to study the empirical size and power of the proposed test, and compare with several
alternative methods. We further illustrate with an application to a cancer genetics example.

5.1 Implementation details

For the number of functions B in Algorithm 2, it represents a trade-off. By Theorem 5,
B should be as large as possible to guarantee a good power. In practice, the computation
complexity increases as B increases. Our numerical studies suggest that the value of B
between 30 and 50 achieves a good balance between the power and the computational cost,
and we fix B = 30. For the number of pseudo samples M , and the number of sample
splittings L, we find the results are not overly sensitive to their choices, and thus we fix
M = 100 and L = 3. Besides, we set the number of bootstrap samples J = 1000.

For the GANs, we use a single-hidden layer neural network to approximate both the
discriminator and the generator. The number of nodes in the hidden layer is set at 128.

The dimension of the input noise v
(m)
i,X and v

(m)
i,Y is set at 10. These tuning parameters are

chosen following the common practice in the GANs literature, and also by investigating the
goodness-of-fit of the resulting generator, which can be done by comparing the conditional
histogram of the generated samples to that of the true samples. In our experiments, we
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(a) One random value of ag (b) Another random value of ag

Figure 2: Conditional histograms. GANs are trained using data generated from the simulation
study in Section 5.2.

find such an approach yields GANs with satisfactory performances. More specifically, let
dZ denote the dimension of Z, and µ̂Z the sample average n−1

∑
i Zi. Let Ỹi = GY (Zi, vi,Y )

denote a simulated sample to approximate the distribution of Y |Z = Zi obtained by the
generator GY . When GY is accurate, we expect the conditional distribution of Ỹi and
Yi given Zi are similar. As such, for any dZ-dimensional vector a, the histograms {Ỹi :
a>(Z̃i − µ̂Z) > 0} and {Yi : a>(Zi − µ̂Z) > 0} should be similar. We sample i.i.d. vectors
{ag}g from Normal(0, IdZ ). For each g, we plot the histogram {Yi : a>g (Zi − µ̂Z) > 0} and

{Ỹ (m)
i : a>g (Zi − µ̂Z) > 0}. See Figures 2 (a) and (b) for the conditional histograms with

two choices of ag. It is seen that the GANs fit the conditional density reasonably well. The
fitted conditional distribution for PX|Z can be checked in a similar fashion.

5.2 Simulations

We generate the data following the post nonlinear noise model similarly as in Zhang et al.
(2011); Doran et al. (2014); Bellot and van der Schaar (2019), i.e.,

X = sin(a>f Z + εf ), and Y = cos(a>g Z + bX + εg).

The entries of af , ag are randomly and uniformly sampled from [0, 1], then normalized to
the unit `1 norm. The noise variables εf , εg are independently sampled from a normal
distribution with mean zero and variance 0.25. In this model, the parameter b determines
the degree of conditional dependence. When b = 0, H0 holds, and otherwise H1 holds. The
sample size is set at n = 1000.

We call our test DGCIT, short for double GANs-based conditional independence test.
We compare it with the GCIT test of Bellot and van der Schaar (2019), the regression-based
test (RCIT) of Shah and Peters (2018), the kernel MMD-based test (KCIT) of Zhang et al.
(2011), and the classifier CI test (CCIT) of Sen et al. (2017).

We first study the empirical size when b = 0. We vary the dimension of Z as dZ =
50, 100, 150, 200, 250, and consider two generation distributions. We first generate Z from
a standard normal distribution, then from a Laplace distribution. We set the significance
level at α = 0.05 and 0.1. Figure 3 reports the empirical size of the tests aggregated over
500 data replications. We make the following observations. First, the type-I error rates of
our test and RCIT are close to or below the nominal level in nearly all cases. Second, KCIT
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Figure 3: The empirical type-I error rate of various tests under H0. Left panels: α = 0.05, right
panels: α = 0.1. Top panels: Z is normal, bottom panels: Z is Laplacian.

fails in that its type-I error is considerably larger than the nominal level in all cases. We
suspect it is due to the high-dimensional setting where dZ ≥ 50. We have experimented
with dZ = 5, and found that KCIT is able to control the type-I error in that case. This
is consistent with Proposition 5 of Zhang et al. (2011), which suggests that KCIT should
work in a low-dimensional setting. Third, GCIT and CCIT both have inflated type-I errors
in some cases. Take GCIT as an example. When Z is normal, dZ = 250 and α = 0.1, its
empirical size is close to 0.15. This is consistent with our discussion in Section 2.1, since
GCIT requires a rather strong condition to control the type-I error.

We then study the empirical power when b > 0. We generate Z from a standard
normal distribution, with dZ = 100, 200, and vary the value of b = 0.3, 0.45, 0.6, 0.75, 0.9
that controls the magnitude of the alternative. Figure 4 reports the empirical power of the
tests over 500 data replications. We observe that our test is the most powerful, and the
empirical power approaches 1 as b increases to 0.9, demonstrating the consistency of the
test. Meanwhile, both GCIT and RCIT have no power in all cases. We do not report the
power of KCIT, because as we have shown earlier, it cannot control the size, and thus its
empirical power is not meaningful.

Finally, we discuss the computation time. All experiments were run on a 16 N1 CPUs
Google Cloud Computing platform. The wall clock time for running the entire GCIT test
for one data replication was about 2.5 minutes. In contrast, the running time for CCIT was
about 2 minutes, for KCIT about 30 seconds, and for GCIT and RCIT about 20 seconds.
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Figure 4: The empirical power of various tests under H1. Left panels: α = 0.05, right panels:
α = 0.1. Top panels: dZ = 100, bottom panels: dZ = 200.

5.3 Anti-cancer drug data example

We illustrate our proposed test with an anti-cancer drug dataset from the Cancer Cell Line
Encyclopedia (Barretina et al., 2012). We concentrate on a subset, the CCLE data, that
measures the treatment response of drug PLX4720. It is well known that the patient’s
cancer treatment response to drug can be strongly influenced by alterations in the genome
(Garnett et al., 2012). This data measures 1638 genetic mutations of n = 472 cell lines, and
the goal of our analysis is to determine which genetic mutation is significantly correlated
with the drug response after conditioning on all other mutations. The same data was also
analyzed in Tansey et al. (2018) and Bellot and van der Schaar (2019). We adopt the same
screening procedure as theirs to screen out irrelevant mutations, which leaves a total of 466
potential mutations for our conditional independence testing.

Table 1: The variable importance measures of the elastic net and random forest models, versus the
p-values of the GCIT and DGCIT tests for the anti-cancer drug example.

BRAF.V600E BRAF.MC HIP1 FTL3 CDC42BPA THBS3 DNMT1 PRKD1 PIP5K1A MAP3K5

EN 1 3 4 5 7 8 9 10 19 78
RF 1 2 3 14 8 34 28 18 7 9

GCIT <0.001 <0.001 0.008 0.521 0.050 0.013 0.020 0.002 0.001 <0.001
DGCIT 0 0 0 0 0 0 0 0 0 0.794
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The ground truth is unknown for this data. Instead, we compare with the variable
importance measures obtained from fitting an elastic net (EN) model and a random forest
(RF) model as reported in Barretina et al. (2012). In addition, we compare with the
GCIT test of Bellot and van der Schaar (2019). Table 1 reports the corresponding variable
importance measures and the p-values, for 10 mutations that were also reported by Bellot
and van der Schaar (2019). We see that, the p-values of the tests generally agree well with the
variable important measures from the EN and RF models. Meanwhile, the two conditional
independence tests agree relatively well, except for two genetic mutations, MAP3K5 and
FTL3. GCIT concluded that MAP3K5 is significant (p < 0.001) but FTL3 is not (p =
0.521), whereas our test leads to the opposite conclusion that MAP3K5 is insignificant
(p = 0.794) but FTL3 is (p = 0). Besides, both EN and RF place FTL3 as an important
mutation. We then compare our findings with the cancer drug response literature. Actually,
MAP3K5 has not been previously reported in the literature as being directly linked to the
PLX4720 drug response. Meanwhile, there is strong evidence showing the connections of
the FLT3 mutation with cancer response (Tsai et al., 2008; Larrosa-Garcia and Baer, 2017).
Combining the existing literature with our theoretical and synthetic results, we have more
confidence about the findings of our proposed test.

6. Discussion

In this article, we have developed a new inferential procedure for high-dimensional condi-
tional independence testing, where the dimension of the conditional variables can diverge
with the sample size. Our proposal utilizes a set of state-of-the-art deep learning tools to
help address a classical statistics and machine learning problem. It integrates GANs, neu-
ral networks, cross-fitting and multiplier bootstrap. It achieves the asymptotic guarantees
under much weaker conditions, and enjoys better empirical performances, when compared
to the existing tests. As a tradeoff, our test is computationally more complicated. Nev-
ertheless, the wall clock time for running the entire test for one data replication is in the
order of a few minutes and is deemed reasonable. Finally, the computer code is publicly
available on the GitHub repository: https://github.com/tianlinxu312/dgcit.
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Appendix A. Proofs

We provide the proofs of Proposition 1, Theorems 3, 4, and 5. We omit the proof of Theorem
2, since it is similar to that of Theorem 3. We note that Theorems 2-5 are established under
our choice of the function classes H1 and H2, which are set to the classes of neural networks
with a single-hidden layer, finitely many hidden nodes, and the sigmoid activation function,
as used in our implementation. Meanwhile, our results can be extended to more general
choices of the function classes.
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A.1 Proof of Proposition 1

Note that the total variation distance is bounded by 1. Suppose EdTV(P̃X|Z , PX|Z) = o(1).

Then we have dTV(P̃X|Z , PX|Z) = op(1). By the dominated convergence theorem, we have

Ed2
TV(P̃X|Z , PX|Z) = o(1).

By Theorem 1.2 of Devroye et al. (2018), we have dTV(P̃X|Z , PX|Z) is proportional to

min

1, σ−1
0

√√√√ n∑
i=1

{
Z>i (β̂ − β0)

}2

 .
It follows that

1

σ0
E

n∑
i=1

{Z>i (β̂ − β0)}2 = o(1).

Applying Theorem 1.2 of Devroye et al. (2018) again, we obtain that dTV(P̃X|Z=Zi
, PX|Z=Zi

)
is proportional to

min
{

1, σ−1
0 |Z

>
i (β̂ − β0)|

}
.

Therefore, we obtain that,

n∑
i=1

Ed2
TV

(
P̃X|Z=Zi

, PX|Z=Zi

)
= o(1).

Since the data is exchangeable, we have that,

Ed2
TV

(
P̃X|Z=Zi

, PX|Z=Zi

)
= o(n−1). (6)

This shows that when RHS of (2), i.e., E{dTV(P̃X|Z , PX|Z)} is o(1), (6) holds.
Next, we show (6) is violated in the linear regression example. By the data exchangeabil-

ity, it suffices to show
∑n

i=1 Ed2
TV{P̃X|Z=Zi

, PX|Z=Zi
} is not o(1). With some calculations,

we obtain that,

n∑
i=1

E min
{

1, σ−2
0 |Z

>
i (β̂ − β0)|2

}
=

n∑
i=1

Eσ−2
0 |Z

>
i (β̂ − β0)|2I

{
σ−2

0 |Z
>
i (β̂ − β0)|2 ≤ 1

}
+

n∑
i=1

EI
{
σ−2

0 |Z
>
i (β̂ − β0)|2 > 1

}
=

n∑
i=1

Eσ−2
0 |Z

>
i (β̂ − β0)|2 −

n∑
i=1

E
{
σ−2

0 |Z
>
i (β̂ − β0)|2 − 1

}
I
{
σ−2

0 |Z
>
i (β̂ − β0)|2 > 1

}
.

(7)

By the definition of β̂, we have

n∑
i=1

Eσ−2
0 |Z

>
i (β̂ − β0)|2 =

1

σ2
0

E(β̂ − β)>Z>Z(β̂ − β) =
1

σ2
0

Eε>Z(Z>Z)−1Z>ε,
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where ε = (ε1, · · · , εn)> consist of i.i.d. copies of ε defined in Example 1. It follows that,

n∑
i=1

Eσ−2
0 |Z

>
i (β̂ − β0)|2 =

1

σ2
0

Eε>Z(Z>Z)>Z>ε =
1

σ2
0

trace
{

Eεε>Z(Z>Z)−1Z>
}

= trace
{

EZ(Z>Z)−1Z>
}

= dZ ,

(8)

where dZ is the dimension of Z.
Next, we show that,

n∑
i=1

Eσ−2
0 |Z

>
i (β̂ − β0)|2I

{
σ−2

0 |Z
>
i (β̂ − β0)|2 ≥ 1

}
= o(1), (9)

or equivalently,

Enσ−2
0 |Z

>
i (β̂ − β0)|2I

{
σ−2

0 |Z
>
i (β̂ − β0)|2 ≥ 1

}
= o(1).

We have already shown that Enσ−2
0 |Z>i (β̂ − β0)|2 = dZ . By the dominated convergence

theorem, it suffices to show that,

nσ−2
0 |Z

>
i (β̂ − β0)|2I

{
σ−2

0 |Z
>
i (β̂ − β0)|2 ≥ 1

}
= op(1).

By definition, it in turn suffices to show that,

Pr
{
σ−2

0 |Z
>
i (β̂ − β0)|2 ≥ 1

}
→ 0.

This holds by Markov’s inequality, as

Eσ−2
0 |Z

>
i (β̂ − β0)|2 =

dZ
n
→ 0.

Combining (9) together with (7) and (8) yields that,

n∑
i=1

E min
{

1, σ−2
0 |Z

>
i (β̂ − β0)|2

}
≥ dZ − o(1) ≥ 1− o(1),

and hence
∑n

i=1 Ed2
TV{P̃X|Z=Zi

, Q
(n)
X (·|Zi)} ≥ 1− o(1).

This completes the proof of Proposition 1. �

A.2 Proof of Theorem 3

We begin by providing an upper bound for the function classes H1 and H2. Recall that both
H1 and H2 are classes of neural networks with a single-hidden layer, finitely many hidden
nodes, and the sigmoid activation function. Because of that, each function h1,θ1 ∈ H1 and
h2,θ2 ∈ H2 can be represented as

h1,θ1(x) =

M∑
j=1

θ
(1)
1,j sigmoid(x>θ

(2)
1,j ), h2,θ2(x) =

M∑
j=1

θ
(1)
2,j sigmoid(y>θ

(2)
2,j ),
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where θ1 and θ2 correspond to the sets of parameters
{

(θ
(1)
1,j , θ

(2)
1,j ) : 1 ≤ j ≤ M

}
and{

(θ
(1)
2,j , θ

(2)
2,j ) : 1 ≤ j ≤ M

}
, respectively, and M is a finite integer. Note that the sigmoid

function is bounded. As such, the functions h1,θ1 and h2,θ2 are uniformly bounded by∑M
j=1 |θ

(1)
1,j | and

∑M
j=1 |θ

(2)
2,j |, respectively. Since we sample B many functions {h1,θb}Bb=1 and

{h2,θb}Bb=1, these functions are uniformly bounded by

M max
b,j

(
|θ(1)
b,j |+ |θ

(2)
b,j |
)
.

Since these parameters θ1, θ2 are sampled from standard normal distributions, and that

Pr(W > t) =
1√
2π

∫ ∞
t

exp

(
−w

2

2

)
dw ≤ 1√

2π

∫ ∞
t

w exp

(
−w

2

2

)
dw =

exp(−t2/2)√
2π

,

for any t ≥ 1, we can show that maxb,j

(
|θ(1)
b,j |+ |θ

(2)
b,j |
)

is upper bounded by
√

logB, with

probability approaching one. Note that B grows polynomially with respect to the sample
size n. Therefore, we have that the functions in H1 and H2 are upper bounded by log n in
absolute values.

Define a test statistic

T ∗∗ = max
b1,b2

σ̂−1
b1,b2

∣∣∣∣∣ 1n
n∑
i=1

{
h1,b1(Xi)−

1

M

M∑
m=1

h1,b1(X
(m)
i )

}{
h2,b2(Yi)−

1

M

M∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ ,
where the σ̂b1,b2 is constructed based on {X̃(m)

i }m and {Ỹ (m)
i }m, instead of {X(m)

i }m
and {Y (m)

i }m. It suffices to show that |T̂ − T ∗∗| = Op(n
−2κ log n), and |T ∗ − T ∗∗| =

Op(n
−2κ log n).

Step 1. We first consider the difference |T̂ − T ∗∗|. For any sequences {an}n, {bn}n, we
have that,

|max
n
|an| −max

n
|bn|| ≤ max

n
|an − bn|. (10)

Consequently, we have |T̂ − T ∗∗| ≤ I1 + I2 + I3, where

I1 = max
b1,b2

σ̂−1
b1,b2

∣∣∣∣∣ 1n
n∑
i=1

[
1

M

M∑
m=1

{
h1,b1(X

(m)
i )− h1,b1(X̃

(m)
i )

}]{
h2,b2(Yi)−

1

M

M∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ ,
I2 = max

b1,b2
σ̂−1
b1,b2

∣∣∣∣∣ 1n
n∑
i=1

{
h1,b1(Xi)−

1

M

M∑
m=1

h1,b1(X
(m)
i )

}[
1

M

M∑
m=1

{
h2,b2(Y

(m)
i )− h2,b2(Ỹ

(m)
i )

}]∣∣∣∣∣ ,
I3 = max

b1,b2
σ̂−1
b1,b2

∣∣∣∣∣ 1n
n∑
i=1

[
1

M

M∑
m=1

{
h1,b1(X

(m)
i )− h1,b1(X̃

(m)
i )

}][ 1

M

M∑
m=1

{
h2,b2(Y

(m)
i )− h2,b2(Ỹ

(m)
i )

}]∣∣∣∣∣ .
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If min σ̂b1,b2 ≥ c0 for some constant c0 > 0, then it suffices to show that I∗j = Op(n
−(κx+κy) log n),

for j = 1, 2, 3, where

I∗1 = max
b1,b2

∣∣∣∣∣ 1n
n∑
i=1

[
1

M

M∑
m=1

{
h1,b1(X

(m)
i )− h1,b1(X̃

(m)
i )

}]{
h2,b2(Yi)−

1

M

M∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ ,
I∗2 = max

b1,b2

∣∣∣∣∣ 1n
n∑
i=1

{
h1,b1(Xi)−

1

M

M∑
m=1

h1,b1(X
(m)
i )

}[
1

M

M∑
m=1

{
h2,b2(Y

(m)
i )− h2,b2(Ỹ

(m)
i )

}]∣∣∣∣∣ ,
I∗3 = max

b1,b2

∣∣∣∣∣ 1n
n∑
i=1

[
1

M

M∑
m=1

{
h1,b1(X

(m)
i )− h1,b1(X̃

(m)
i )

}][ 1

M

M∑
m=1

{
h2,b2(Y

(m)
i )− h2,b2(Ỹ

(m)
i )

}]∣∣∣∣∣ .
The number of folds L is finite, as such, it suffices to show that I

(`)
j = Op(n

−(κx+κy) log n),
for j = 1, 2, 3 and ` = 1, . . . , L, where

I
(`)
1 = max

b1,b2

∣∣∣∣∣∣ 1n
∑
i∈I(`)

[
1

M

M∑
m=1

{
h1,b1(X

(m)
i )− h1,b1(X̃

(m)
i )

}]{
h2,b2(Yi)−

1

M

M∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣∣ ,
I

(`)
2 = max

b1,b2

∣∣∣∣∣∣ 1n
∑
i∈I(`)

{
h1,b1(Xi)−

1

M

M∑
m=1

h1,b1(X
(m)
i )

}[
1

M

M∑
m=1

{
h2,b2(Y

(m)
i )− h2,b2(Ỹ

(m)
i )

}]∣∣∣∣∣∣ ,
I

(`)
3 = max

b1,b2

∣∣∣∣∣∣ 1n
∑
i∈I(`)

[
1

M

M∑
m=1

{
h1,b1(X

(m)
i )− h1,b1(X̃

(m)
i )

}][ 1

M

M∑
m=1

{
h2,b2(Y

(m)
i )− h2,b2(Ỹ

(m)
i )

}]∣∣∣∣∣∣ .
We divide the rest of the proof into four sub-steps. We first show that I

(`)
j = Op(n

−(κx+κy) log n),
for j = 1, 2, 3. Finally, we show Pr(min σ̂b1,b2 ≥ c0)→ 1 for some constant c0 > 0.

Step 1.1. Recall we have shown that the functions in H1 and H2 are bounded by log n in
absolute values at the beginning of the proof of Theorem 3. By Bernstein’s inequality, we
have that,

Pr

[∣∣∣∣∣
M∑
m=1

h1,b(X
(m)
i )−ME{h1,b(Xi)|Zi}

∣∣∣∣∣ ≥ t
]
≤ 2 exp

{
− t2

2(M log n+ t
√

log n/3)

}
,

for any b and i. Set t =
√

3(c+ 2)M log n, where the constant c is as defined in the
statement of Theorem 2. For a sufficiently large n, we have t

√
log n/3 ≤ M log n/2. It

follows that

Pr

[∣∣∣∣∣
M∑
m=1

h1,b(X
(m)
i )−ME{h1,b(Xi)|Zi}

∣∣∣∣∣ ≥√3(c+ 2)M log n

]
≤ 2

nc+2
.

By Bonferroni’s inequality, we obtain that,

Pr

[
max

b∈{1,··· ,B}
max

i∈{1,··· ,n}

∣∣∣∣∣
M∑
m=1

h1,b(X
(m)
i )−ME{h1,b(Xi)|Zi}

∣∣∣∣∣ ≥√3(c+ 2)M log n

]

≤ Bn max
b∈{1,··· ,B}

max
i∈{1,··· ,n}

Pr

[∣∣∣∣∣
M∑
m=1

h1,b(X
(m)
i )−ME{h1,b(Xi)|Zi}

∣∣∣∣∣ ≥√3(c+ 2)M log n

]
≤ 2Bn

nc+2
.
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Under the condition B = O(nc), we obtain with probability 1−O(n−1) that,

max
b∈{1,··· ,B}

max
i∈{1,··· ,n}

∣∣∣∣∣
M∑
m=1

h1,b(X
(m)
i )−ME{h1,b(Xi)|Zi}

∣∣∣∣∣ ≤ O(1)n−1/2 log n, (11)

as M is proportional to n, and O(1) denotes some positive constant.

Similarly, we can show that,

max
b∈{1,··· ,B}

max
i∈I(`)

∣∣∣∣∣
M∑
m=1

h1,b(X̃
(m)
i )−M

∫
x
h1,b(x)P̃

(`)
X|Z=Zi

(dx)

∣∣∣∣∣ ≤ O(1)
√
n log n,

with probability 1 − O(n−1). Combining this with (11), we obtain with probability 1 −
O(n−1) that,

max
b∈{1,...,B}
i∈I(`)

∣∣∣∣∣
M∑
m=1

{
h1,b(X

(m)
i )− h1,b(X̃

(m)
i )

}

−M
∫
x
h1,b(x)

{
PX|Z=Zi

(dx)− P̃ (`)
X|Z=Zi

(dx)
}∣∣∣∣ ≤ O(1)

√
n log n.

(12)

Conditional on Zi, the expectation of h2,b2(Yi)−M−1
∑M

m=1 h2,b2(Y
(m)
i ) equals zero. Un-

der the null hypothesis, the expectation ofM−1
∑M

m=1{h1,b1(X
(m)
i )−h1,b1(X̃

(m)
i )}{h2,b2(Yi)−

M−1
∑M

m=1 h2,b2(Y
(m)
i )} equals zero as well. Applying Bernstein’s inequality again, we can

show with probability tending to 1 that,

I
(`)
1 ≤ O(1)

(
σn−1/2 log3/2 n+ n−1 log2 n

)
, (13)

where

σ2 = max
b1,b2

E

∣∣∣∣∣ 1

M

M∑
m=1

{
h1,b1(X

(m)
i )− h1,b1(X̃

(m)
i )

}{
h2,b2(Yi)−

1

M

M∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣
2

≤ max
b1

E

∣∣∣∣∣ 1

M

M∑
m=1

{
h1,b1(X

(m)
i )− h1,b1(X̃

(m)
i )

}∣∣∣∣∣
2

log n.

Let A denote the event in (12). The last term on the second line can be bounded from
above by

max
b1,i

E

∣∣∣∣∣ 1

M

M∑
m=1

{h1,b1(X
(m)
i )− h1,b1(X̃

(m)
i )}

∣∣∣∣∣
2

I(A) log n (14)

+ max
b1,i

E

∣∣∣∣∣ 1

M

M∑
m=1

{h1,b1(X
(m)
i )− h1,b1(X̃

(m)
i )}

∣∣∣∣∣
2

I(Ac) log n. (15)
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Since M is proportional to n, by (10), (14) is upper bounded by

O(1)

n−1 log2 n+ max
b∈{1,··· ,B}
i∈I(`)

E

∣∣∣∣∫
x
h1,b(x)

{
P̃

(`)
X|Z=Zi

(dx)− PX|Z=Zi
(dx)

}∣∣∣∣2
 log n.

By the boundedness of the function class H1, it can be further bounded from above by

O(1)
{
n−1 log3 n+ Ed2

TV(P̃
(`)
X|Z , PX|Z) log2 n

}
. (16)

The above quantity is of orderO(n−2κx log2 n). Consequently, (14) is of the orderO(n−2κx log2 n).
Note that the event A occurs with probability at least 1−O(n−1). By the boundedness

of the function class H1, (15) is of the order O(n−1 log2 n).

Therefore, σ2 is of the order O(n−2κx log2 n). This implies that I(`)
1 can be bounded

from above by O(n−1/2−κx log5/2 n), which in turn yields that I(`)
1 = Op(n

−κx−κy log n),
since κx, κy < 1/2.

Step 1.2. This step can be proven in a similar way as Step 1.1, and is omitted.

Step 1.3. Under H0, the expectation of

1

|I(`)|
∑
i∈I(`)

[
1

M

M∑
m=1

{
h1,b1(X

(m)
i )− h1,b1(X̃

(m)
i )

}][ 1

M

M∑
m=1

{
h2,b2(Y

(m)
i )− h2,b2(Ỹ

(m)
i )

}]

equals

E

∫
x
h1,b1(x)

{
P̃

(`)
X|Z(dx)− PX|Z(dx)

}∫
y
h2,b2(y)

{
P̃

(`)
Y |Z(dy)− PY |Z(dy)

}
.

Similar to (16), its absolute value can be upper bounded by

EdTV

{
P̃

(`)
X|Z=Zi

, PX|Z

}
dTV

{
P̃

(`)
Y |Z=Zi

, PY |Z

}
log n.

Following Cauchy-Schwarz inequality, we have that,

EdTV

{
P̃

(`)
X|Z=Zi

, PX|Z

}
dTV

{
P̃

(`)
Y |Z=Zi

, PY |Z

}
≤

√
Ed2

TV

{
P̃

(`)
X|Z=Zi

, PX|Z

}
Ed2

TV

{
P̃

(`)
Y |Z=Zi

, PY |Z

}
= O(n−(κx+κy)).

This yields that,

max
b1,b2

∣∣∣∣E∫
x
h1,b1(x)

{
P̃

(`)
X|Z(dx)− PX|Z(dx)

}∫
y
h2,b2(y)

{
P̃

(`)
Y |Z(dy)− PY |Z(dy)

}∣∣∣∣ = O(n−(κx+κy) log n).

Following similar arguments as in Step 1.1, we obtain that,

I
(`)
3 −max

b1,b2

∣∣∣∣E∫
x
h1,b1(x)

{
P̃

(`)
X|Z(dx)− PX|Z(dx)

}∫
y
h2,b2(y)

{
P̃

(`)
Y |Z(dy)− PY |Z(dy)

}∣∣∣∣
= Op(n

−(κx+κy) log n).
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Therefore, we obtain that I
(`)
3 = Op(n

−(κx+κy) log n).

Step 1.4. Recall that σ̂2
b1,b2

is defined by

1

n− 1

n∑
i=1

([
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

] [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]
−GCM{h1,b1(X), h2,b2(Y )}

)2

.

With some calculations, it is equal to

1

n− 1

n∑
i=1

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

]2 [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]2

− n

n− 1
GCM2{h1,b1(X), h2,b2(Y )},

(17)

where the estimated conditional expectation Ê is computed using GANs.
Consider the second term GCM{h1,b1(X), h2,b2(Y )} in (17). Following similar arguments

as in Steps 1.1 and 1.3, we have that,

max
b1,b2

∣∣GCM{h1,b1(X), h2,b2(Y )} −GCM′{h1,b1(X), h2,b2(Y )}
∣∣ = Op(n

−(κx+κy) log n),

where GCM′{h1,b1(X), h2,b2(Y )} equals

1

n

n∑
i=1

{
h1,b1(Xi)−

1

M

M∑
m=1

h1,b1(X
(m)
i )

}{
h2,b2(Yi)−

1

M

M∑
m=1

h2,b2(Y
(m)
i )

}
.

Similar to (12), we can show that,

max
b1,b2

∣∣GCM′{h1,b1(X), h2,b2(Y )} −GCM∗{h1,b1(X), h2,b2(Y )}
∣∣ = Op

(
n−1/2

√
log n

)
.

Consequently, we have that,

max
b1,b2
|GCM{h1,b1(X), h2,b2(Y )} −GCM∗{h1,b1(X), h2,b2(Y )}| = Op

(
n−1/2

√
log n

)
.

Since the function classes H1 and H2 are bounded, both GCM and GCM∗ are bounded by
log n in absolute values. Consequently,

max
b1,b2

∣∣GCM2{h1,b1(X), h2,b2(Y )} −GCM∗2{h1,b1(X), h2,b2(Y )}
∣∣ = Op

(
n−1/2 log3/2 n

)
. (18)

Next, consider the first term in (17). Note that it can be represented by

n

n− 1

1

L

L∑
`=1

 1

|I`|
∑
i∈I(`)

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

]2 [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]2

 .

Similar to (12), we can show that,

max
b1,b2

∣∣∣∣∣∣ 1

|I`|
∑
i∈I(`)

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

]2 [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]2

− E
[
h1,b1(X1)− Ê{h1,b1(X1)|Z1}

]2 [
h2,b2(Y1)− Ê{h2,b2(Y1)|Z1}

]2
∣∣∣∣ = Op(n

−1/2 log3/2 n).
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Following similar arguments as in Steps 1.1 and 1.3, we can show that,

max
b1,b2

∣∣∣∣E [h1,b1(X1)− Ê{h1,b1(X1)|Z1}
]2 [

h2,b2(Y1)− Ê{h2,b2(Y1)|Z1}
]2

− E [h1,b1(X1)− E{h1,b1(X1)|Z1}]2 [h2,b2(Y1)− E{h2,b2(Y1)|Z1}]2
∣∣∣ = Op(n

−c̄),

for some constant 0 < c̄ < 1/2. It follows that,

max
b1,b2

∣∣∣∣∣∣ 1

|I`|
∑
i∈I(`)

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

]2 [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]2

− E [h1,b1(X)− E{h1,b1(X)|Z}]2 [h2,b2(Y )− E{h2,b2(Y )|Z}]2
∣∣∣ = Op(n

−c̄),

and henceforth,

max
b1,b2

∣∣∣∣∣ 1n
n∑
i=1

[
h1,b1(Xi)− Ê{h1,b1(Xi)|Zi}

]2 [
h2,b2(Yi)− Ê{h2,b2(Yi)|Zi}

]2

− E [h1,b1(X)− E{h1,b1(X)|Z}]2 [h2,b2(Y )− E{h2,b2(Y )|Z}]2
∣∣∣ = Op(n

−c̄).

Combining this together with (18) yields that,

max
b1,b2

∣∣∣∣σ̂2
b1,b2 −

n

n− 1
Var
(

[h1,b1(X)− E{h1,b1(X)|Z}] [h2,b2(Y )− E{h2,b2(Y )|Z}]
)∣∣∣∣ = Op(n

−c̄).

Then, we have that,

min
b1,b2

Var
(

[h1,b1(X)− E{h1,b1(X)|Z}] [h2,b2(Y )− E{h2,b2(Y )|Z}]
)
≥ c∗,

for some constant c∗ > 0. Therefore, we have that

min
b1,b2

σ̂2
b1,b2 ≥ 2−1c∗,

with probability tending to 1.

Step 2. We next consider the difference |T ∗ − T ∗∗|, and show that it is of the order

Op(n
−2κ log n). Denote by σ̂∗2b1,b2 the variance estimator with {X̃(m)

i }m and {Ỹ (m)
i }m re-

placed by {X(m)
i }m and {Y (m)

i }m. Using (10), the difference between T ∗ and T ∗∗ is upper
bounded by

max
b1,b2
|σ̂−1
b1,b2
− σ̂∗−1

b1,b2
|

∣∣∣∣∣ 1n
n∑
i=1

{
h1,b1(Xi)−

1

M

M∑
m=1

h1,b1(X
(m)
i )

}{
h2,b2(Yi)−

1

M

M∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ .
Under H0, similar to (12), we can show that,

max
b1,b2
|

∣∣∣∣∣ 1n
n∑
i=1

{
h1,b1(Xi)−

1

M

M∑
m=1

h1,b1(X
(m)
i )

}{
h2,b2(Yi)−

1

M

M∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣
= Op(n

−1/2 log3/2 n).
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To show |T ∗ − T ∗∗| = Op(n
−2κ log n), it suffices to show that maxb1,b2 |σ̂

−1
b1,b2
− σ̂∗−1

b1,b2
| =

Op(n
−c̄) for some constant c̄ > 0. Since both σ̂−1

b1,b2
and σ̂b1,b2 are bounded away from zero,

it suffices to show that maxb1,b2 |σ̂2
b1,b2
− σ̂∗2b1,b2 | = Op(n

−c̄).
Following similar arguments as in Steps 1.1 and 1.3, we can show that,

max
b1,b2

∣∣∣∣σ̂2
b1,b2 −

n

n− 1
Var
(

[h1,b1(X)− E{h1,b1(X)|Z}] [h2,b2(Y )− E{h2,b2(Y )|Z}]
)∣∣∣∣ = Op(n

−c̄),

max
b1,b2

∣∣∣∣σ̂∗2b1,b2 − n

n− 1
Var
(

[h1,b1(X)− E{h1,b1(X)|Z}] [h2,b2(Y )− E{h2,b2(Y )|Z}]
)∣∣∣∣ = Op(n

−c̄).

This completes the proof of Theorem 3. �

A.3 Proof of Theorem 4

In the proof of Theorem 3, we have already shown that T̂ − T ∗ = Op(n
−(κx+κy) log n). Fol-

lowing similar arguments as in Step 1.4, we can show that T ∗−T ∗∗∗ = Op(n
−(κx+κy) log n),

where

T ∗∗∗ = max
b1,b2

σ−1
b1,b2
|

∣∣∣∣∣n−1
n∑
i=1

{
h1,b1(Xi)−

1

M

M∑
m=1

h1,b1(X
(m)
i )

}{
h2,b2(Yi)−

1

M

M∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ ,
where

σ2
b1,b2 =

n

n− 1
Var
(

[h1,b1(X)− E{h1,b1(X)|Z}] [h2,b2(Y )− E{h2,b2(Y )|Z}]
)
.

By (11), following similar arguments as in the proof regarding the term I1 in Theorem 3,
we can show that T ∗∗∗ − T ∗∗∗∗ = Op(n

−(κx+κy) log n), where

T ∗∗∗∗ = max
b1,b2

σ−1
b1,b2
|

∣∣∣∣∣n−1
n∑
i=1

[h1,b1(Xi)− E{h1,b1(Xi)|Zi}]

{
h2,b2(Yi)−

1

M

M∑
m=1

h2,b2(Y
(m)
i )

}∣∣∣∣∣ .
Similarly, we can show that T ∗∗∗∗ − T0 = Op(n

−(κx+κy) log n), where

T0 = max
b1,b2

σ−1
b1,b2
|

∣∣∣∣∣n−1
n∑
i=1

[h1,b1(Xi)− E{h1,b1(Xi)|Zi}] [h2,b2(Yi)− E{h2,b2(Yi)|Zi}]

∣∣∣∣∣ .
Therefore, we have shown that T̂ −T0 = Op(n

−(κx+κy) log n). Since κx +κy > 1/2, we have
that,

√
n(T̂ − T0) = op(log−1/2 n). (19)

Define a B2 ×B2 matrix Σ0 whose {b1 +B(b2 − 1), b3 +B(b4 − 1)}th entry is given by

cov
(
σ−1
b1,b2

[h1,b1(Xi)− E{h1,b1(Xi)|Zi}] [h2,b2(Yi)− E{h2,b2(Yi)|Zi}] ,

σ−1
b3,b4

[h1,b3(Xi)− E{h1,b3(Xi)|Zi}] [h2,b4(Yi)− E{h2,b4(Yi)|Zi}]
)
.
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In the following, we show that,

sup
t

∣∣∣Pr
(√

nT̂0 ≤ t|H0

)
− Pr (‖N(0,Σ0)‖∞ ≤ t)

∣∣∣ = o(1). (20)

When B is finite, this is implied by the classical weak convergence results. When B diverges
with n, we require B = O(nc) for some constant c > 0. By the definition of σb1,b2 , the
variance of

σ−1
b1,b2

[h1,b1(Xi)− E{h1,b1(Xi)|Zi}] [h2,b2(Yi)− E{h2,b2(Yi)|Zi}]

is bounded from above by (n− 1)/n. Moreover, combining the boundedness of the function
spaces H1 and H2 together with the definition of σb1,b2 yields that,{
σ−1
b1,b2

[h1,b1(Xi)− E{h1,b1(Xi)|Zi}] [h2,b2(Yi)− E{h2,b2(Yi)|Zi}] : b1, b2 ∈ {1, · · · , B}
}

are uniformly bounded from infinity by O(log n), with probability tending to 1. We can
show that (20) holds. This implies that,

σ−1
b1,b2

n−1/2
n∑
i=1

[h1,b1(Xi)− E{h1,b1(Xi)|Zi}] [h2,b2(Yi)− E{h2,b2(Yi)|Zi}]

is asymptotically normal with zero mean.

Combining (20) together with (19) yields that,

Pr
(√

nT̂ ≤ t|H0

)
≥ Pr

(
‖N(0,Σ0)‖∞ ≤ t− ε0 log−1/2 n

)
− o(1),

Pr
(√

nT̂ ≤ t|H0

)
≤ Pr

(
‖N(0,Σ0)‖∞ ≤ t+ ε0 log−1/2 n

)
+ o(1),

(21)

for any sufficiently small ε0 > 0, where the little-o terms are uniform in t.

Following similar arguments as in Step 1.4 and Step 2 of the proof of Theorem 3, we can
show that ‖Σ̂ − Σ0‖∞,∞ = Op(n

−c̄) for some constant c̄ > 0. Following similar arguments
for (21), we have that,

Pr
(√

nT̂ ≤ t|H0

)
≥ Pr

(
‖N(0, Σ̂)‖∞ ≤ t− 2ε0 log−1/2 n|Σ̂

)
− o(1),

Pr
(√

nT̂ ≤ t|H0

)
≤ Pr

(
‖N(0, Σ̂)‖∞ ≤ t+ 2ε0 log−1/2 n|Σ̂

)
+ o(1),

for any sufficiently small ε0 > 0. Since the little-o terms are uniform in t ∈ R, we obtain
that,

sup
t
|Pr(
√
nT̂ ≤ t|H0)− Pr(‖N(0, Σ̂)‖∞ ≤ t|Σ̂)| ≤ o(1)

+ sup
t
|Pr(‖N(0, Σ̂)‖∞ ≤ t+ 2ε log−1/2 n|Σ̂)− Pr(‖N(0, Σ̂)‖∞ ≤ t− 2ε0 log−1/2 n|Σ̂)|.

By Theorem 1 of Chernozhukov et al. (2017), the term on the second line can be bounded
by O(1)ε0 log1/2B log−1/2 n, where O(1) denotes some positive constant. Since B = O(nc),
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log1/2B log−1/2 n = O(1). As ε0 grows to zero, this term becomes negligible. Consequently,
we obtain that,

sup
t

∣∣∣Pr
(√

nT̂ ≤ t|H0

)
− Pr

(
‖N(0, Σ̂)‖∞ ≤ t|Σ̂

)∣∣∣ ≤ o(1).

As such, the distribution of our test statistic can be well-approximated by that of the
bootstrap samples. This completes the proof of Theorem 4. �

A.4 Proof of Theorem 5

We break the proof into two steps. In Step 1, we show that, under H∗1, there exist two
neural networks functions f(X) ∈ H1 and g(Y ) ∈ H2, such that

I(f, g) = E[f(X)− E{f(X)|Z}][g(Y )− E{g(Y )|Z}] 6= 0,

In Step 2, we prove the power of our test approaches one, as the sample size diverges to
infinity.

Step 1. We first observe that the measure I(f, g) = E[f(X) − E{f(X)|Z}][g(Y ) −
E{g(Y )|Z}] is continuous in f and g. That is, for any f1, f2 ∈ L2

X and g1, g2 ∈ L2
Y , the dif-

ference I(f1, g1)−I(f2, g2) decays to zero as both E|f1(X)−f2(X)|2 and E|g1(X)−g2(X)|2
decay to zero.

Under H∗1, there exist functions f∗ ∈ L2
X and g∗ ∈ L2

Y , such that I(f∗, g∗) 6= 0. Without
loss of generality, assume f∗ and g∗ are bounded. Otherwise, we can find sequences of
bounded functions {f∗n}n and {g∗n}n that converge to f∗ and g∗ under L2-norm, respectively.
As a result, we would have I(f∗n, g

∗
n) 6= 0 for some n.

By Lusin’s theorem, we can find a sequence of bounded and continuous functions {f∗∗n }n,
such that limn Pr(f∗∗n (X) 6= f∗(X)) = 0. By dominated convergence theorem, it follows
that f∗∗n converges to f∗ under L2-norm. Similarly, we can find a sequence of continuous
functions {g∗∗n }n, such that g∗∗n converges to g∗ under L2-norm. This together with the fact
that I(f, g) is continuous in (f, g) implies that there exist some continuous functions f∗∗

and g∗∗, such that I(f∗∗, g∗∗) 6= 0.

A key observation here is that, the class of neural networks have universal approximation
property. Since the support of X and Y are bounded, it follows from Theorem 1 of Cybenko
(1989) that the class of single-layered neural networks with sigmoid activation function is
dense in the class of bounded, continuous functions with a compact support. As such, we
can find some neural network functions f∗∗∗ and g∗∗∗ such that I(f∗∗∗, g∗∗∗) 6= 0. We then
argue that there must exist f ∈ H1 and g ∈ H2, such that I(f, g) = 0. Otherwise, f∗∗∗ and
g∗∗∗ can be represented as linear combinations of neural network functions in H1, H2 with
finitely many number of parameters, and we would have I(f∗∗∗, g∗∗∗) = 0 as a result. This
completes Step 1.

Step 2. We first show that I(h1,θ1 , h2,θ2) is a Lipschitz continuous function of (θ1, θ2). Note
that h1,θ1(X) and h2,θ2(Y ) are Lipschitz continuous functions of θ1 and θ2, respectively. For
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any θ1,1, θ1,2 ∈ Rd1 , θ2,1, θ2,2 ∈ Rd2 , we have that,

|I(h1,θ1 , h2,θ2)− I(h1,θ1 , h2,θ2)|
≤ |E[h1,1(X)− E{h1,1(X)|Z} − h1,2(X) + E{h2,1(X)|Z}][h2,1(Y )− E{h2,1(Y )|Z}]| (22)

+ |E[h1,2(X)− E{h1,2(X)|Z}][h2,1(Y )− E{h2,1(Y )|Z} − h2,2(Y ) + E{h2,2(Y )|Z}]| .
(23)

Since the class of functions in H2 are upper bounded by O(
√

log n) with probability tending
to 1, the right-hand-side of (22) is bounded from above by

O(1)E |h1,1(X)− E{h1,1(X)|Z} − h1,2(X) + E{h2,1(X)|Z}|
√

log n,

with probability tending to 1. By Jensen’s inequality, the above quantity can be further
bounded from above by

O(1)E |h1,1(X)− h1,2(X)| 2
√

log n ≤ K‖θ1,1 − θ1,2‖2
√

log n,

for some constant K > 0. Following similar arguments, we can show that the right-hand-
side of (23) is bounded from above by K‖θ2,1 − θ2,2‖2

√
log n, for any θ2,1 and θ2,2, with

probability tending to 1. To summarize, conditional on the event that H1 and H2 are
bounded function classes, we have shown that

|I(h1,θ1 , h2,θ2)− I(h1,θ1 , h2,θ2)| ≤ K (‖θ1,1 − θ1,2‖2 + ‖θ2,1 − θ2,2‖2)
√

log n.

Consequently, for any sufficiently small ε > 0, there exists a neighborhood N = {(θ1, θ2) :
‖θj−θ∗j‖2 ≤ δ log−1/2 n} for some constant δ > 0 around (θ∗1, θ

∗
2), such that I(h1,θ1 , h2,θ2) ≥ ε

for any (θ1, θ2) that belongs to this neighborhood.
Since (θ1,b, θ2,b) are generated from the multivariate normal distribution, and the dimen-

sions d1 and d2 are finite, the probability that (θ1,b, θ2,b) belongs to this neighborhood is
strictly greater than O(log−c1 n) for some constant c1 > 0. Since B = c0n

c, the probability
that at least one pair of parameters (θ1,b1 , θ2,b2) belongs to this neighborhood approaches
one. Consequently, we have that,

max
b1,b2

GCM∗ {h1,b1(X), h2,b2(Y )} ≥ ε,

with probability tending to 1.
Following similar arguments as in the proof of Theorems 3 and 4, we can show that

|T − maxb1,b2 GCM∗{h1,b1(X), h2,b2(Y )}| = op(1), and T̃j = op(1). Consequently, both

probabilities Pr(T < ε/2) and Pr(T̃j ≥ ε/2) converge to zero. Therefore, the probability
that the p-value is greater than α is bounded by the probability that Pr(T < ε/2), which
converges to zero. This completes the proof of Theorem 5.
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