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Abstract

Stochastic gradient Langevin dynamics (SGLD) and stochastic gradient Hamiltonian Monte
Carlo (SGHMC) are two popular Markov Chain Monte Carlo (MCMC) algorithms for
Bayesian inference that can scale to large datasets, allowing to sample from the posterior
distribution of the parameters of a statistical model given the input data and the prior
distribution over the model parameters. However, these algorithms do not apply to the
decentralized learning setting, when a network of agents are working collaboratively to learn
the parameters of a statistical model without sharing their individual data due to privacy
reasons or communication constraints. We study two algorithms: Decentralized SGLD
(DE-SGLD) and Decentralized SGHMC (DE-SGHMC) which are adaptations of SGLD
and SGHMC methods that allow scaleable Bayesian inference in the decentralized setting
for large datasets. We show that when the posterior distribution is strongly log-concave and
smooth, the iterates of these algorithms converge linearly to a neighborhood of the target
distribution in the 2-Wasserstein distance if their parameters are selected appropriately.
We illustrate the efficiency of our algorithms on decentralized Bayesian linear regression
and Bayesian logistic regression problems.
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1. Introduction

Recent decades have witnessed the era of big data, and there has been an exponential
growth in the amount of data collected and stored with ever-increasing rates. Since the
rate at which data is generated is often outpacing our ability to analyze it in terms of
computational resources at hand, there has been a lot of recent interests for developing
scaleable machine learning algorithms which are efficient on large datasets.

In the modern world, digital devices such as smart phones, tablets, wearables, sensors or
video cameras are major sources of data generation. Often these devices are connected over
a communication network (such as a wireless network or a sensor network) that has a high
latency or a limited bandwidth. Because of communication constraints and privacy con-
straints, gathering all these data for centralized processing is often impractical or infeasible.
Decentralized machine learning algorithms have received a lot of attention for such applica-
tions where agents can collaboratively learn a predictive model without sharing their own
data but sharing only their local models with their immediate neighbors at some frequency
to generate a global model; see e.g. Arjevani et al. (2020); He et al. (2018); Hendrikx et al.
(2019); Kungurtsev (2020).

A number of approaches for scaleable decentralized learning have been proposed in the
literature such as decentralized stochastic approximation and optimization algorithms (Gor-
bunov et al., 2019; Nedic, 2020; Scaman et al., 2019; Uribe et al., 2017) or decentralized
maximum-likelihood estimation approaches (Blatt and Hero, 2004; Rabbat and Nowak,
2004). However, these approaches are optimization-based or in the maximum-likelihood
settings, and therefore lead to point estimates for the model parameters to be learned. On
the other hand, Bayesian methods allow a characterization of the full posterior distribution
over the parameters, and therefore can provide a more detailed grasp of uncertainties that
are part of the learning process and offer robustness to overfitting. There are a number of
scaleable Bayesian methods in the literature based on variational inference methods (Sato,
2001; Hoffman et al., 2010; Lin, 2013), Bayesian coreset methods (Huggins et al., 2016;
Campbell and Broderick, 2019) and Markov Chain Monte Carlo (MCMC) based meth-
ods including Stochastic Gradient Langevin Dynamics (SGLD) (Welling and Teh, 2011),
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC) (Chen et al., 2014; Zou et al.,
2018a) and their variants that can handle streaming data (Broderick et al., 2013). There
are also versions of these methods such as consensus Monte Carlo methods which distribute
and parallelize the computations needed for Monte Carlo sampling across many computa-
tional nodes on a cluster (Ahn et al., 2014; Xu et al., 2014; Rabinovich et al., 2015; Broderick
et al., 2013), however none of these methods are applicable to the decentralized setting ei-
ther because they need to move the data to a centralized location or because they require
a global computational unit with which each learning agent is in communication or is the
main thread on a multi-threaded computer which is not applicable to decentralized learn-
ing applications. In this paper, we consider two algorithms DE-SGLD and DE-SGHMC
which are adaptations of the SGLD and SGHMC algorithms to the decentralized setting
and show that they can be both theoretically and practically efficient for sampling from the
posterior distribution when the density of the target distribution π(x) ∝ e−f(x) is strongly
log-concave (i.e. f is strongly convex) and f is smooth.
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Before introducing the DE-SGLD algorithm, we consider the problem of decentralized
Bayesian inference: We have N agents connected over a network G = (V, E) where V =
{1, 2, . . . , N} represents the agents and E ⊆ V × V is the set of edges; i.e. i and j are
connected if (i, j) ∈ E where the network is undirected, i.e. (i, j) ∈ E then (j, i) ∈ E .
Let A = [a1, . . . , an] be a dataset consisting of n independent and identically distributed
(i.i.d.) data vectors sampled from a parametrized distribution p(A|x) where the parameter
x ∈ Rd has a common prior distribution p(x). Due to the decentralization in the data
collection, each agent i possesses a subset Ai of the data where Ai = {ai1, ai2, . . . , aini} and
ni is the number of samples of the agent i. The data is held disjointly over agents; i.e.
A = ∪iAi with Ai ∩Aj = ∅ for j 6= i. The goal is to sample from the posterior distribution
p(x|A) ∝ p(A|x)p(x). Since the data points are independent, the log-likelihood function
will be additive; log p(A|x) =

∑N
i=1

∑ni
j=1 log p(aij |x). Thus, if we set

f(x) :=

N∑
i=1

fi(x), fi(x) := −
ni∑
j=1

log p
(
aij |x

)
− 1

N
log p(x), (1)

the aim is to sample from the posterior distribution with density π(x) := p(x|A) ∝ e−f(x).
The functions fi(x) are called “component functions” where fi(x) is associated to the local
data of agent i and is only accessible by the agent i. Clearly, different choices of the
log-likelihood function and therefore the component functions result in different problems.
In particular, this framework covers many Bayesian inference problems such as Bayesian
linear regression (Hoff, 2009), Bayesian logistic regression (Hoff, 2009), Bayesian principal
component analysis (Dubey et al., 2016) or Bayesian deep learning (Wang and Yeung, 2016;
Polson and Sokolov, 2017).

Let x
(k)
i denote the local variable of node i at iteration k. The decentralized SGLD

(DE-SGLD) algorithm (previously considered in Swenson et al. (2020) in the non-convex

global optimization setting) consists of a weighted averaging with the local variables x
(k)
j of

node i’s immediate neighbors j ∈ Ωi := {j : (i, j) ∈ G} as well as a stochastic gradient step
over the node’s component function fi(x), i.e.

x
(k+1)
i =

∑
j∈Ωi

Wijx
(k)
j − η∇̃fi

(
x

(k)
i

)
+
√

2ηw
(k+1)
i , (2)

where η > 0 is the stepsize, Wij are the entries of a doubly stochastic weight matrix W

with Wij > 0 only if i is connected to j, w
(k)
i are independent and identically distributed

(i.i.d.) Gaussian random variables with zero mean and identity covariance matrix for every

i and k, and ∇̃fi
(
x

(k)
i

)
is an unbiased stochastic estimate of the deterministic gradient

∇fi
(
x

(k)
i

)
with a bounded variance (see (12) for more details). When the number of

data points ni is large, stochastic estimates ∇̃fi(x) are cheaper to compute compared to
actual gradients ∇fi(x) and can for instance be estimated from a minibatch of data, i.e.
from randomly selected smaller subsets of data. This allows the DE-SGLD method to be
scaleable to big data settings when ni can be large. When gradients are deterministic, DE-
SGLD algorithm reduces to the decentralized Langevin algorithm previously considered
and studied in Kungurtsev (2020). Without the Gaussian noise, the iterations are also
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equivalent to the decentralized stochastic gradient algorithm (Swenson et al., 2020a; Fallah
et al., 2019) which has its origins in the decentralized gradient descent (DGD) methods
introduced in Nedic and Ozdaglar (2009).

Contributions. In this paper, our contributions can be summarized as follows:

First, we give non-asymptotic performance guarantees for DE-SGLD when each of the
components fi(x) is smooth and strongly convex in which case the target distribution has
density π(x) ∝ e−f(x) that is strongly log-concave (i.e. f is strongly convex) and f is
smooth. More specifically, we provide an explicit upper bound on the Wasserstein distance

between the target distribution π(x) and the distribution of the iterate x
(k)
i of node i. Our

results show that the distribution of the iterates x
(k)
i converges to a neighborhood of the

posterior distribution π(x) linearly (geometrically fast in k) in the Wasserstein metric with a
properly chosen stepsize. We also provide explicit bounds on the size of this neighborhood
as a function of the noise level σ2 in the stochastic gradients, the number of agents N
and the dimension d. We can also show similar results for the averaged iterates x̄(k) =
1
N

∑N
i=1 x

(k)
i . Our proof technique relies on analyzing DE-SGLD as a perturbed version of

the Euler-Maruyama discretization of the overdamped Langevin diffusion (properly defined
in Section 2) and use the fact that this diffusion admits the posterior distribution with
density π(x) ∝ e−f(x) as the stationary distribution where the perturbation effect is due
to the stochasticity of the gradients and due to the “network effect” where agents are only
able to communicate with their immediate neighbours. For achieving the results, we first
derive a uniform L2 bound on the gradients (Lemma 6) as well as a uniform L2 bound on

the deviation of the iterates x̄
(k)
i from their mean x̄(k) over the agents (Lemma 7). Then,

we derive an L2 bound on the error between the average of gradients 1
N

∑N
i=1∇fi

(
x

(k)
i

)
and the scaled gradient of the average 1

N∇f
(
x̄(k)

)
(Lemma 8). Finally, we control the error

between the mean iterates and the discretization of the overdamped diffusion (Lemma 9)
and build on the existing results which characterizes the Wasserstein distance between the
overdamped diffusion and its discretization. Putting everything together, we obtain our
main result for DE-SGLD (Theorem 2).

Second, we propose a new algorithm decentralized SGHMC (DE-SGHMC) which can
be viewed as the decentralized version of the SGHMC algorithm. In centralized settings, it
is known that SGHMC algorithm can be faster than the SGLD algorithm both in practice
and in theory (Gao et al., 2018; Chen et al., 2014). The underlying reason is that SGHMC
is based on a discretization of the (underdamped) inertial Langevin diffusion which can
converge to its equilibrium faster than the overdamped diffusion due to a momentum-based
acceleration effect (Gao et al., 2018; Eberle et al., 2019). This effect is analogous to the
fact that momentum-based optimization methods can accelerate gradient descent (Polyak,
1987; Nesterov, 1983; Su et al., 2016). We show that with proper choice of the stepsize and

momentum parameters, the distribution of the DE-SGHMC iterates x
(k)
i will converge to

a neighborhood of the posterior distribution π(x) linearly (in k) in the Wasserstein metric
(Theorem 12). To our knowledge, these are first non-asymptotic performance guarantees
for SGHMC methods in the decentralized setting. The approach we take is analogous
to our analysis of the DE-SGLD however obtaining stability (uniform L2) bounds on the
iterates requires significantly more work. For this purpose, we develop a novel analysis
where we show that the DE-SGHMC iterates can be viewed as a noisy version of Polyak’s
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(deterministic) heavy-ball method (Polyak, 1987); the noise comes from stochasticity of the
gradients (which is proportional to the stepsize η), the injected Gaussian noise (which is
proportional to

√
η) and the network effect where iterates can only access information from

their neighbors. When the stepsize η is sufficiently small, the Gaussian noise dominates the
stochastic gradient noise and therefore existing analysis for stochastic heavy-ball methods
(Can et al., 2019b; Kuru et al., 2020) are not directly applicable to obtain stability estimates
(i.e. uniform L2 bounds) when η is sufficiently small. Our analysis relies on a careful
choice of the Lyapunov function and obtaining sufficient conditions on the stepsize and the
momentum parameters of the DE-SGHMC algorithm to guarantee stability (Lemma 14).
As a by-product, our results contribute to the growing literature about the stability of the
heavy-ball methods where it has been observed repeatedly that optimization methods such
as heavy-ball and Nesterov’s accelerated gradient methods are more sensitive to noise in the
iterations compared to gradient descent methods (Aybat et al., 2020; Fallah et al., 2019;
Flammarion and Bach, 2015; Devolder et al., 2014; Can et al., 2019b). Recent literature
focused on the amount of noise heavy-ball methods can tolerate before they diverge and on
their convergence rate subject to noise and perturbations (Can et al., 2019b; Flammarion
and Bach, 2015; Liu et al., 2020; Kuru et al., 2020). Our analysis in the proof of Lemma 14
provides sufficient conditions for noisy heavy-ball iterations to be stable when subject to
noise that is on the order of the square root of the stepsize.

Finally, we provide numerical experiments that illustrate our theory and showcase the
practical performance of the DE-SGLD and DE-SGHMC algorithms: We show on Bayesian
linear regression and Bayesian logistic regression tasks that our method allows each agent
to sample from the posterior distribution efficiently without communicating local data.

Related literature. Decentralized optimization has been studied in the literature in
the last few decades, at least going back to the seminal works of Bertsekas and Tsitsiklis
(1989); Tsitsiklis (1984) which studied minimization of objective functions when the pa-
rameter vector can be decentralized. There has also been a growing literature and a lot of
recent interest on decentralized optimization with first-order methods for both deterministic
and stochastic optimization; See e.g. Swenson et al. (2020b); Fallah et al. (2019); Arjevani
et al. (2020); Can et al. (2019a); Pu et al. (2020) and also the surveys Nedic (2020); Yang
et al. (2019). Among the papers published in this area, Swenson et al. (2020); Swenson
et al. (2020a) are most relevant to our paper, where the authors study a class of algorithms
including DE-SGLD and show that DE-SGLD iterates with a particular decaying stepsize
schedule converge in probability to the set of global minima for non-convex objectives under
some assumptions. Momentum-based acceleration techniques based on heavy-ball method
(Xin and Khan, 2020) and Nesterov’s accelerated gradient method have also been studied
for solving optimization problems in the decentralized setting (Fallah et al., 2019; Arjevani
et al., 2020; Qu and Li, 2016; Xu et al., 2020), we refer the readers to Nedic (2020) for a
survey in decentralized optimization. However, these papers are focused on solving opti-
mization problems and the results do not apply to our setting where we are interested in
sampling from the posterior distribution.

There are also a number of papers for distributed Bayesian inference based on data-
parallel MCMC algorithms (Ge et al., 2015; Neiswanger et al., 2014; Xu et al., 2014; Scott
et al., 2016; Rabinovich et al., 2015; Scott, 2017; Rendell et al., 2020; Ahn et al., 2015)
where the computations are parallelized in a distributed computing environment, however
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these papers are not applicable to the decentralized setting either. The variational inference
methods which approximate the posterior distribution with a tractable distribution in the
exponential family can be applied in the decentralized setting (Campbell and How, 2014;
Lalitha et al., 2019) where agents average the parameters of their local parametrized dis-
tribution that estimates the posterior distribution, however to our knowledge, convergence
rate guarantees to a posterior distribution for such approaches in the decentralized setting
are not provided except the special case when the posterior distribution is in the exponential
family (Lalitha et al., 2019). There are also other parallel MCMC techniques (Wang and
Dunson, 2013; Neiswanger et al., 2014; Wang et al., 2015; Chowdhury and Jermaine, 2018;
Nishihara et al., 2014) which require a central node to aggregate the samples generated at
each computational node to estimate the posterior distribution; these methods are also not
directly applicable to the decentralized setting.

Finally, very recently Kungurtsev (2020) showed that in the special case when the gra-
dients are deterministic (i.e. when σ = 0), DE-SGLD algorithm converges to the target
distribution π(x) with rate O( 1√

k
) for decaying stepsize αk = 1

k in the Wasserstein metric

for strongly convex and smooth f with bounded gradients. Since strongly convex functions
on Rd cannot have bounded gradients, these results are not applicable to problems we con-
sider in this paper. In a concurrent work, Parayil et al. (2020) studied a Bayesian learning
algorithm based on the decentralized Langevin dynamics in a non-convex setting. They
obtained theoretical convergence guarantees in KL-divergence and evaluated the proposed
algorithm on a wide variety of machine learning tasks. In another recent work, Cadena
et al. (2021) proposed a modified Langevin dynamics algorithm for sensor networks. This
algorithm can be implemented in a decentralized manner, where each sensor communicates
with a randomly selected subset of sensors either via direct links or via multi-hop mecha-
nism. The authors also show that when the gradient of the logarithm of the target density is
bounded and Lipschitz, the proposed algorithm converges to the true centralized posterior
distribution for networks where the communication delays are bounded.

2. Preliminaries and Background

Langevin algorithms. Langevin algorithms are core MCMC methods in statistics that
allow one to sample from a given density π(x) of interest. The classical Langevin Monte
Carlo algorithm is based on the overdamped (or first-order) Langevin diffusion; see e.g.
Dalalyan (2017); Durmus and Moulines (2019, 2017); Dalalyan and Karagulyan (2019):

dX(t) = −∇f(X(t))dt+
√

2dWt, (3)

where f : Rd → R and Wt is a standard d-dimensional Brownian motion that starts at
zero at time zero. Under some mild assumptions on f , the diffusion (3) admits a unique
stationary distribution with the density π(x) ∝ e−f(x), also known as the Gibbs distribution
(Pavliotis, 2014). For computational purposes, this diffusion is simulated by considering
its discretization. Although various discretization schemes are proposed, Euler-Maruyama
discretization is the simplest one:

xk+1 = xk − η∇f(xk) +
√

2ηwk , (4)
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where η > 0 is the stepsize parameter, and wk ∈ Rd is a sequence of i.i.d. standard Gaussian
random vectors N (0, Id). But then the discretized chain (4) does not converge to the target
π and has a bias that needs to be properly characterized to provide performance guarantees
(Dalalyan and Karagulyan, 2019).1 There has been growing recent interest in the non-
asymptotic analysis of discretized Langevin diffusions (4), motivated by applications to
large-scale data analysis and Bayesian inference. The discretized Langevin diffusions admit
convergence guarantees to a stationary distribution in a variety of metrics and under various
assumptions on f ; see e.g. Dalalyan (2017); Durmus and Moulines (2017, 2019); Bubeck
et al. (2015); Cheng and Bartlett (2018); Erdogdu and Hosseinzadeh (2020); Dalalyan and
Karagulyan (2019); Barkhagen et al. (2021); Raginsky et al. (2017); Xu et al. (2018); Chau
et al. (2019); Zhang et al. (2019).

On the other hand, one can also design sampling algorithms based on the underdamped
(a.k.a. inertial or kinetic) Langevin diffusion given by the SDE; see e.g. Cheng et al. (2018);
Cheng et al. (2018); Dalalyan and Riou-Durand (2020); Gao et al. (2018, 2020); Ma et al.
(2021); Akyildiz and Sabanis (2020); Cao et al. (2019); Zou et al. (2019):

dV (t) = −γV (t)dt−∇f(X(t))dt+
√

2γdWt, (5)

dX(t) = V (t)dt, (6)

where γ > 0 is the friction coefficient, X(t), V (t) ∈ Rd models the position and the momen-
tum of a particle moving in a field of force (described by the gradient of f) plus a random
(thermal) force described by the Brownian noise, and Wt is a standard d-dimensional Brow-
nian motion that starts at zero at time zero. It is known that under some mild assumptions
on f , the Markov process (X(t), V (t))t≥0 is ergodic and admits a unique stationary dis-
tribution π with density π(x, v) ∝ exp

(
−
(

1
2‖v‖

2 + f(x)
))

(Pavliotis, 2014). Hence, the
x-marginal distribution of the stationary distribution with the density π(x, v) is exactly the
invariant distribution of the overdamped Langevin diffusion. For approximate sampling,
various discretization schemes of (5)-(6) have been used in the literature; see e.g. Cheng
et al. (2018); Teh et al. (2016); Chen et al. (2016a, 2015).

Decentralized setting. Agents are connected over a network G = (V,E) where fi :
Rd → R is the local objective of the agent i and we assume G is connected. Agents can only
communicate with immediate neighbors using links defined by the edge set E . We associate
this network with an N × N symmetric, doubly stochastic2 weight matrix W . We have
Wij = Wji > 0 if {i, j} ∈ E and i 6= j, and Wij = Wji = 0 if {i, j} 6∈ E and i 6= j, and
finally Wii = 1 −

∑
j 6=iWij > 0 for every 1 ≤ i ≤ N . The eigenvalues of W ordered in a

descending manner satisfy:

1 = λW1 > λW2 ≥ · · · ≥ λWN > −1 , (7)

1. In principle, Metropolis-Hasting correction step can be employed to correct for the discretization errors,
however for large-scale datasets, this correction step is computationally expensive and thus it is often
not employed (Dalalyan and Riou-Durand, 2020; Dalalyan and Karagulyan, 2019; Teh et al., 2016). For
this reason, we will not consider Metropolis-Hasting steps in our algorithms and analyses.

2. A square matrix A ∈ RN×N is called doubly stochastic if its entries Aij are non-negative and if its rows
and columns all sum up to 1, i.e. if

∑N
j=1Aij = 1 for all i = 1, 2, . . . , N and

∑N
i=1Aij = 1 for all

j = 1, 2, . . . , N .
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with W1 = 1 where 1 is a vector of length N with each entry equal to one. For any
connected G, there is always a choice of W that satisfies the eigenvalue conditions (Can
et al., 2019b; Boyd et al., 2006). A possible choice is the Metropolis weights (Xiao et al.,
2006; Olshevsky, 2017) where Wij = 1

max(di,dj)
if (i, j) ∈ E where di is the degree (number

of neighbors) of the node i. The mixing matrix W can also be chosen in many other ways
(Can et al., 2019a; Boyd et al., 2006). In this paper, we will assume that W is given and
fixed.

Our objective is to sample from a target distribution with density π(x) ∝ e−f(x) on Rd
where

f(x) :=
N∑
i=1

fi(x). (8)

The agents can only pass vectors between their neighbors (not matrices) as the com-
munication is typically more expensive than local computations in modern applications
(Woodruff and Zhang, 2017). Throughout this paper, we assume fi ∈ Sµ,L(Rd) for ev-
ery i = 1, 2, . . . , N,3 where Sµ,L(Rd) denotes the set of functions from Rd to R that are
µ-strongly convex and L-smooth, that is, for any g ∈ Sµ,L(Rd), for every x, y ∈ Rd,

L

2
‖x− y‖2 ≥ g(x)− g(y)−∇g(y)T (x− y) ≥ µ

2
‖x− y‖2. (9)

Wasserstein distance. Define P2(Rd) as the space consisting of all the Borel probability
measures ν on Rd with the finite 2nd moment (based on the Euclidean norm). For any two
Borel probability measures ν1, ν2 ∈ P2(Rd), the 2-Wasserstein distance W2 (see e.g. Villani

(2009)) is defined as: W2(ν1, ν2) :=
(
inf E

[
‖Z1 − Z2‖2

])1/2
, where the infimum is taken

over all joint distributions of the random variables Z1, Z2 with marginal distributions ν1, ν2

respectively.

Notations. For two matrices A ∈ Rm×n and B ∈ Rp×q, we denote their Kronecker
product by A ⊗ B. We use Id to denote the d × d identity matrix; if the dimension d is
clear from the context we will also use I to denote the identity matrix. We denote x∗ ∈ Rd
as the (unique) minimizer of f ∈ Sµ,L defined in (8). Moreover, we also denote

x∗ =
[
xT∗ , x

T
∗ , . . . , x

T
∗
]T ∈ RNd. (10)

For any random variable X, we use L(X) to denote the probability distribution of X. We
say that the distribution π(x) ∝ e−f(x) is strongly log-concave if f(x) is µ-strongly convex
for some µ > 0. Given two functions g(x) and h(x) defined on a subset D of real numbers,
we say h(x) = O(g(x)) as x → a if there exist positive numbers δ and M such that for all
x ∈ D with 0 < |x − a| < δ, we have |f(x)| ≤ Mg(x) whereas we say h(x) = Θ(g(x)) if
there exist positive numbers δ and M1,M2 such that for all x ∈ D with 0 < |x − a| < δ,
we have M1g(x) ≤ |f(x)| ≤M2g(x). The dependency to the point a will be omitted if it is

clear from the context. Given real scalars x, y, we consider the ratio h(x, y) := xk−yk
x−y with

the convention that h(y, y) := limx→y h(x, y) = kyk−1.

3. Our results in this paper would also hold if fi ∈ Sµi,Li(R
d) and one considers µ = mini µi and L =

maxi Li in our main theorems.
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3. Decentralized Stochastic Gradient Langevin Dynamics

We recall from (2) that decentralized stochastic gradient Langevin dynamics (DE-SGLD)
are based on stochastic estimates ∇̃fi(x) of the actual gradients ∇fi(x). We make the
following assumption throughout this paper regarding the stochastic estimates ∇̃fi(x) which
basically says that the gradient error is unbiased with a finite variance. This is a common
assumption in the literature for analyzing stochastic optimization and stochastic-gradient
MCMC algorithms; see e.g. Dalalyan and Riou-Durand (2020); Chen et al. (2016b); Liu
et al. (2020).

Assumption 1 Let x
(k)
i denote the local variable of node i at iteration k. At iteration

k, node i has access to ∇̃fi
(
x

(k)
i , z

(k)
i

)
where z

(k)
i is a random variable independent of

{z(t)
j }j=1,...,N,t=1,...,k−1 and {z(k)

j }j 6=i. To simplify the notation, we suppress the z
(k)
i depen-

dency and let ∇̃fi
(
x

(k)
i

)
denote ∇̃fi

(
x

(k)
i , z

(k)
i

)
. We assume the gradient noise defined as

ξ
(k+1)
i := ∇̃fi

(
x

(k)
i

)
−∇fi

(
x

(k)
i

)
, (11)

is unbiased with a finite second moment, i.e.,

E
[
ξ

(k+1)
i

∣∣∣Fk] = 0, E
∥∥∥ξ(k+1)
i

∥∥∥2
≤ σ2, (12)

where Fk is the natural filtration of the iterates x
(k)
i up to (and including) time k.

Based on (11), we rewrite the DE-SGLD iterations (2) in terms of the gradient noise

ξ
(k+1)
i as

x
(k+1)
i =

∑
j∈Ωi

Wijx
(k)
j − η∇fi

(
x

(k)
i

)
− ηξ(k+1)

i +
√

2ηw
(k+1)
i ,

where η > 0 is the stepsize, w
(k)
i are i.i.d. Gaussian noise with mean 0 and covariance being

identity matrices and Ωi = {j : (i, j) ∈ G} are the neighbors of the node i.4 By defining the
column vector

x(k) :=

[(
x

(k)
1

)T
,
(
x

(k)
2

)T
, . . . ,

(
x

(k)
N

)T]T
∈ RNd,

which concetenates the local decision variables into a single vector, we can express the
DE-SGLD iterations further as

x(k+1) =Wx(k) − η∇F
(
x(k)

)
− ηξ(k+1) +

√
2ηw(k+1), with W = W ⊗ Id, (13)

where we recall that ⊗ denotes the Kronecker product, F : RNd → R is defined as

F (x) := F (x1, . . . , xN ) =

N∑
i=1

fi(xi), (14)

4. We adopt the convention that the node is a neighbor of itself, i.e. (i, i) ∈ G.

9
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and

w(k+1) :=

[(
w

(k+1)
1

)T
,
(
w

(k+1)
2

)T
, . . . ,

(
w

(k+1)
N

)T]T
are i.i.d. Gaussian noise with mean 0 and with a covariance matrix given by the identity
matrix. The vectors

ξ(k+1) :=

[(
ξ

(k+1)
1

)T
,
(
ξ

(k+1)
2

)T
, . . . ,

(
ξ

(k+1)
N

)T]T
are the gradient noise so that

E
[
ξ(k+1)

∣∣∣Fk] = 0, E
∥∥∥ξ(k+1)

∥∥∥2
≤ σ2N. (15)

Let us define the average at k-th iteration x̄(k) := 1
N

∑N
i=1 x

(k)
i . SinceW is doubly stochastic,

we get

x̄(k+1) = x̄(k) − η 1

N

N∑
i=1

∇fi
(
x

(k)
i

)
− ηξ̄(k+1) +

√
2ηw̄(k+1), (16)

where

w̄(k+1) :=
1

N

N∑
i=1

w
(k+1)
i ∼ 1√

N
N (0, Id), ξ̄(k+1) :=

1

N

N∑
i=1

ξ
(k+1)
i , (17)

that satisfies

E
[
ξ̄(k+1)

∣∣∣Fk] = 0, E
∥∥∥ξ̄(k+1)

∥∥∥2
≤ σ2

N
. (18)

We now state the main result of this section, which bounds the average of W2 distance

between the distribution of x
(k)
i and the target distribution π (that has a density propor-

tional to exp(−f(x))) over 1 ≤ i ≤ N . This result provides also a bound on theW2 distance
of the node averages x̄(k) and the target distribution π. To facilitate the presentation, we
define the second largest magnitude of the eigenvalues of W as

γ̄ := max
{∣∣λW2 ∣∣ , ∣∣λWN ∣∣} ∈ [0, 1) , (19)

which is related to the connectivity of the graph G. For instance, consider Metropolis
weights where Wij = 1

max(di,dj)
if (i, j) ∈ E where di is the degree (number of neighbors)

of the node i with the convention that each node is a neighbor of itself. In this case, for
complete graphs with N nodes where each node is connected to all the other nodes, we
have γ̄ = 0 whereas for a circular graph with N nodes we have di = 3 for every i and
γ̄ = 1

3 + 2
3 cos(2π

N ) = 1 − O( 1
N ) (see Chung and Graham (1997, Example 1.1 and Example

1.5)).

10
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Theorem 2 Assume E‖x(0)‖2 <∞ and η ∈
(
0, η̄) where η̄ := min(

1+λWN
L , 1

L+µ). Then, for

every k, DE-SGLD iterates x
(k)
i given by (2) and their average x̄(k) satisfy

W2

(
L
(
x̄(k)

)
, π
)
≤ (1− µη)k

((
E‖x̄(0) − x∗‖2

)1/2
+
√

2µ−1dN−1

)

+

γ̄2

(
1− ηµ

(
1− ηL

2

))k
− γ̄2k(

1− ηµ
(

1− ηL
2

))
− γ̄2


1/2

2L√
N

(
E
∥∥∥x(0)

∥∥∥2
)1/2

+
√
ηE1,

and

E1 :=
1.65L

µ

√
dN−1 +

σ√
µ(1− ηL

2 )N

+

(
η

µ(1− ηL
2 )

+
(1 + ηL)2

µ2(1− ηL
2 )2

)1/2

·
(

4L2D2η

N(1− γ̄)2
+

4L2σ2η

(1− γ̄2)
+

8L2d

(1− γ̄2)

)1/2

.

Furthermore,

1

N

N∑
i=1

W2

(
L
(
x

(k)
i

)
, π
)

≤ (1− µη)k
((

E‖x̄(0) − x∗‖2
)1/2

+
√

2µ−1dN−1

)
+

2γ̄k√
N

(
E
∥∥∥x(0)

∥∥∥2
)1/2

+

γ̄2

(
1− ηµ

(
1− ηL

2

))k
− γ̄2k(

1− ηµ
(

1− ηL
2

))
− γ̄2


1/2

2L√
N

(
E
∥∥∥x(0)

∥∥∥2
)1/2

+
√
ηE2 + ηE3, (20)

with E2 := E1 + 2
√

2d√
1−γ̄2

and E3 := 2D√
N(1−γ̄)

+ 2σ√
1−γ̄2

, where x∗ is the minimizer of f ,

x̄(0) = 1
N

∑N
i=1 x

(0)
i , D is defined in (26), L

(
x

(k)
i

)
denotes the law of x

(k)
i and π is the

Gibbs distribution with probability density function proportional to exp(−f(x)).

Remark 3 We observe that in the setting of Theorem 2, the asymptotic error with respect
to the target distribution in 2-Wasserstein satisfies lim supk→∞W2

(
L
(
x̄(k)

)
, π
)

= O
(√
η
)
,

where O(·) hides other constants (d, µ, L, σ,N and γ̄). This shows that the asymptotic
error can be made arbitrarily smaller by choosing η > 0 small enough. In particular, for

sufficiently small η, it is easy to check that
(

1− ηµ
(

1− ηL
2

))
≥ γ̄2 and consequently from

Theorem 2,

W2

(
L
(
x̄(2K)

)
, π
)
≤
(

1− ηµ
(

1− ηL

2

))K
ψ0 +O (

√
η) (21)

≤ e−ηµ(1− ηL
2 )Ka0 +O (

√
η) (22)

11
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for some a0 (that depends on the initialization x(0), d, µ, L, σ, γ̄ and N) where K is the
iteration budget. Given K, if we choose η = c

µK for some constant c, then the right-hand

side of (21) becomes Θ(1) as K →∞; this is because (1− c
K )K → e−c = Θ(1) as K →∞

for any constant c > 0. This is not desirable, as ideally, we want the Wasserstein error
bound (right-hand side of (21)) go to zero if the iteration budget K → ∞. This can be

achieved by choosing a stepsize such as η = c log
√
K

µK for a constant c > 1. Then, given c > 1

fixed, if K is large enough satisfying K ≥ K̄ with K̄ = max(e, a
2

e ) where a := c(L+µ)
2µ(1+λ) , then

the stepsize η = c log
√
K

µK satisfies the assumptions of Theorem 2 (this follows simply from

the inequality log(K) ≤ 1 + K−e√
eK

for K ≥ e). Consequently, from (22), we obtain

W2

(
L
(
x̄(2K)

)
, π
)

= O

(
1

(
√
K)

c +

√
c log(K)√
K

)
= O

(√
log(K)√
K

)
, (23)

where the last O(·) term hides constants that depends on x(0), d, µ, L, σ, γ̄, N and c. This
shows that to sample from a distribution that is ε close to the target in the 2-Wasserstein
distance, it suffices to have O( 1

ε2
) iterations of DE-SGLD, ignoring logarithmic factors. The

appearance of logarithmic factors in the iteration complexity as well as in (23) is related
to the fact that constant stepsize is used, and similar logarithmic factors also appear even
in centralized SGLD methods with constant stepsize (see Dalalyan and Karagulyan (2019,
Theorem 1 and Section 2)). It is possible to avoid the logarithmic terms by employing a
time-varying stepsize similar to Dalalyan and Karagulyan (2019, Theorem 2).

Remark 4 The upper bound given for the 2-Wasserstein distances to the target π in The-
orem 2 is monotonically increasing in the parameter γ̄. To see this, consider the func-

tion H(x, y) := xk−yk
x−y y =

∑k−1
i=0 x

iyk−i for x ∈ (0, 1), y ∈ (0, 1) with the convention that

H(y, y) := kyk. For given x fixed, the partial derivative ∂yH(x, y) =
∑k−1

i=0 (k−i)xiyk−1−i >
0. Therefore H is monotonically decreasing in y, so is the function

√
H. If we set y = γ̄2

and x = 1− ηµ(1− ηL
2 ), the third term that appears in the bound (20) is an affine function

of
√
H and hence monotonically increasing in γ̄2 and in γ̄. Finally, after a straightforward

computation it can be seen that the remaining terms E1, E2 and E3 that appear in the bound
(20) are also monotonically increasing in γ̄. It follows from this argument that closer γ̄ to
zero, better connectivity properties the network has (with γ̄ = 0 for complete graphs that
are fully-connected) and the Wasserstein distance to the target becomes (smaller) better.
Hence, roughly speaking, the parameter γ̄ determines the additional cost of the distributed
algorithm (i.e. increased bias and variance) when there is not full connectivity among the
nodes.

Remark 5 In Assumption 1, we assumed that the variance of the gradient noise is bounded.
It is a reasonable assumption in many applications including linear regressions with stochas-
tic gradients estimated using minibatches, since one can show that if the stepsize η > 0 is
small enough the variance of the gradients for DE-SGLD will stay bounded and satisfy our
assumptions on the gradient noise (Assumption 1) with an analysis similar to Aybat et al.
(2019, Section K). We will illustrate this point in detail in Appendix D.
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3.1 Proof of Theorem 2

To facilitate the analysis, let us define xk from the iterates:

xk+1 = xk − η
1

N
∇f(xk) +

√
2ηw̄(k+1), (24)

where x0 = x̄0 = 1
N

∑N
i=1 x

(0)
i and w̄(k+1) is defined in (17). This is an Euler-Maruyama

discretization (with stepsize η) of the continuous-time overdamped Langevin diffusion:

dXt = − 1

N
∇f(Xt)dt+

√
2N−1dWt, (25)

where Wt is a standard d-dimensional Brownian motion.

To bound the average of W2 distance between L
(
x

(k)
i

)
and π over 1 ≤ i ≤ N , the

main idea of our proof technique is to bound the following three terms: (1) the L2 dis-

tance between x
(k)
i and their average (mean) x̄(k) =

∑N
i=1 x

(k)
i

N for 1 ≤ i ≤ N ; (2) the L2

distance between the average iterate x̄(k) and iterates xk obtained from Euler-Maruyama
discretization of overdamped SDE; and (3) the W2 distance between between L (xk) and π,
i.e. the convergence of Euler-Maruyama discretization of the overdamped SDE. The next
subsections are devoted to controlling each of these three terms.

3.1.1 Uniform L2 bounds between x
(k)
i and their average

We first state a key lemma which provides L2 bounds on the gradients ∇F
(
x(k)

)
that are

uniform in k, where F is defined in (14). Recall from (10) that x∗ ∈ Rd denotes the unique

minimizer of f(x), and x∗ =
[
xT∗ , x

T
∗ , . . . , x

T
∗
]T

is an Nd-dimensional vector. We view DE-
SGLD as a decentralized gradient descent (DGD) method subject to stochastic gradient and
Gaussian noise, and our analysis is inspired by the proof techniques of Yuan et al. (2016)
for analyzing DGD methods. The proof of this lemma is provided in the Appendix.

Lemma 6 Under the assumptions of Theorem 2, we have,

E
∥∥∥∇F (x(k)

)∥∥∥2
≤ D2, for any k,

where

D2 := 4L2E
∥∥∥x(0) − x∗

∥∥∥2
+ 8L2 C

2
1η

2N

(1− γ̄)2
+

2L2(ησ2N + 2dN)

µ(1 + λWN − ηL)
+ 4 ‖∇F (x∗)‖2 . (26)

Here, x∗ ∈ RNd is given in (10), γ̄ is defined by (19) and

C1 := C̄1 ·
(

1 +
2(L+ µ)

µ

)
, where C̄1 :=

√√√√2L
N∑
i=1

(fi (0)− f∗i ), f∗i := min
x∈Rd

fi(x).

(27)
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Gürbüzbalaban, Gao, Hu and Zhu

It is clear from the DE-SGLD iterations that the deviations between the iterates x
(k)
i

and their means x̄(k) depend on the magnitude of the gradients ∇F (x(k)), the stepsize as
well as the magnitude of the injected Gaussian noise. Building on Lemma 6 which gives us
a control over the second moment of the gradients, in the next result we provide uniform L2

bounds between the iterates x
(k)
i and their means. The proof can be found in the Appendix.

Lemma 7 Under the assumptions of Theorem 2, for any k, we have

N∑
i=1

E
∥∥∥x(k)

i − x̄
(k)
∥∥∥2
≤ 4γ̄2kE

∥∥∥x(0)
∥∥∥2

+
4D2η2

(1− γ̄)2
+

4σ2Nη2

(1− γ̄2)
+

8dNη

(1− γ̄2)
,

where D is defined in (26) and γ̄ is given in (19).

Note that we can deduce from (16) that

x̄(k+1) = x̄(k) − η 1

N
∇f

(
x̄(k)

)
+ ηEk+1 − ηξ̄(k+1) +

√
2ηw̄(k+1), (28)

where

Ek+1 :=
1

N

N∑
i=1

[
∇fi

(
x̄(k)

)
−∇fi

(
x

(k)
i

)]
. (29)

We observe that the average iterate x̄(k) in (28) follows a gradient descent dynamics subject
to gradient errors and Gaussian noise, if we view Ek as a gradient error term. Since ∇fi is
Lipschitz by our assumptions, the gradient error (29) can be controlled based on Lemma 7.
In particular, as a corollary of Lemma 7, we obtain the following result; the proof is given
in the Appendix for the sake of completeness.

Lemma 8 Under the assumptions of Theorem 2, for any k, we have

E ‖Ek+1‖2 ≤
4L2γ̄2k

N
E
∥∥∥x(0)

∥∥∥2
+

4L2D2η2

N(1− γ̄)2
+

4L2σ2η2

(1− γ̄2)
+

8L2dη

(1− γ̄2)
,

where Ek+1 is defined in (29).

3.1.2 L2 distance between the mean and the discretized overdamped SDE

Recall the iterates xk defined in (24) which is an Euler-Maruyama discretization of the
continuous-time overdamped Langevin SDE in (25) with stepsize η, and the mean x̄(k) in
(28). Since the L2 bound of the error term Ek+1 can be controlled as in Lemma 8, we will
show that the mean x̄(k) and xk are close to each other in L2 distance. Indeed, we have the
following estimate:

Lemma 9 Under the assumptions of Theorem 2, for every k,

E
∥∥∥x̄(k) − xk

∥∥∥2
≤ η

(
η

µ(1− ηL
2 )

+
(1 + ηL)2

µ2(1− ηL
2 )2

)(
4L2D2η

N(1− γ̄)2
+

4L2σ2η

(1− γ̄2)
+

8L2d

(1− γ̄2)

)

+
ησ2

µ(1− ηL
2 )N

+
γ̄2k −

(
1− ηµ

(
1− ηL

2

))k
γ̄2 − 1 + ηµ

(
1− ηL

2

) 4L2γ̄2

N
E
∥∥∥x(0)

∥∥∥2
.
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3.1.3 W2 distance between the iterates and the Gibbs distribution

Bounds on the W2 distance between the Euler-Maruyama discretization xk of the over-
damped Langevin diffusion and Gibbs distribution π has been established in the literature.
We note that the function 1

N f is µ
N -strongly convex and L

N -smooth, and we state Theorem 4
in Dalalyan and Karagulyan (2019) as follows.

Lemma 10 (Theorem 4 in Dalalyan and Karagulyan (2019)) For any η ∈ (0, 2N
L+µ ],

we have

W2 (L(xk), π) ≤ (1− µη)kW2 (L(x0), π) +
1.65L

µ

√
ηdN−1.

The proof of this lemma is based on the so-called “synchronous coupling” technique to
control the W2 distances, see Dalalyan and Karagulyan (2019) for details. Next, we bound
the L2 distance between the minimizer of f and Gibbs distribution π; the proof is provided
in Appendix C.

Lemma 11 Let x∗ be the unique minimizer of f(x). Then, we have EX∼π‖X − x∗‖2 ≤
2dN−1

µ .

Putting all the pieces together, the stage is set for the proof of Theorem 2.

3.1.4 Proof of Theorem 2

Since x0 = 1
N

∑N
i=1 x

(0)
i , we have E‖x0‖2 <∞. By Lemma 11,

W2 (L(x0), π) ≤
(
E‖x0 − x∗‖2

)1/2
+
(
EX∼π‖X − x∗‖2

)1/2
≤
(
E‖x0 − x∗‖2

)1/2
+
√

2µ−1dN−1.

Under our assumptions on the stepsize η, we have clearly η ∈ (0, 2N
L+µ ] as N ≥ 1. Therefore

Lemma 10 is applicable. More specifically, it follows from Lemma 10 that,

W2 (L(xk), π) ≤ (1− µη)k
((

E‖x0 − x∗‖2
)1/2

+
√

2µ−1dN−1
)

+
1.65L

µ

√
ηdN−1.

Moreover, it follows from Lemma 9 that

W2

(
L
(
x̄(k)

)
,L(xk)

)
≤
(
E
∥∥∥x̄(k) − xk

∥∥∥2
)1/2

≤ η1/2

(
η

µ(1− ηL
2 )

+
(1 + ηL)2

µ2(1− ηL
2 )2

)1/2

·
(

4L2D2η

N(1− γ̄)2
+

4L2σ2η

(1− γ̄2)
+

8L2d

(1− γ̄2)

)1/2

+

√
ησ√

µ(1− ηL
2 )N

+

 γ̄2k −
(

1− ηµ
(

1− ηL
2

))k
γ̄2 − 1 + ηµ

(
1− ηL

2

)


1/2

2Lγ̄√
N

(
E
∥∥∥x(0)

∥∥∥2
)1/2

.

15
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Hence, we conclude that

W2

(
L
(
x̄(k)

)
, π
)
≤ (1− µη)k

((
E‖x̄(0) − x∗‖2

)1/2
+
√

2µ−1dN−1

)

+


(

1− ηµ
(

1− ηL
2

))k
− γ̄2k(

1− ηµ
(

1− ηL
2

))
− γ̄2


1/2

2Lγ̄√
N

(
E
∥∥∥x(0)

∥∥∥2
)1/2

+
√
ηE1,

(30)

with

E1 :=
1.65L

µ

√
dN−1 +

σ√
µ(1− ηL

2 )N

+

(
η

µ(1− ηL
2 )

+
(1 + ηL)2

µ2(1− ηL
2 )2

)1/2

·
(

4L2D2η

N(1− γ̄)2
+

4L2σ2η

(1− γ̄2)
+

8L2d

(1− γ̄2)

)1/2

.

Finally, by the Cauchy-Schwarz inequality,

1

N

N∑
i=1

W2

(
L
(
x

(k)
i

)
,L
(
x̄(k)

))
≤

√√√√ 1

N

N∑
i=1

W2
2

(
L
(
x

(k)
i

)
,L
(
x̄(k)

))

≤

√√√√ 1

N

N∑
i=1

E
∥∥∥x(k)

i − x̄(k)
∥∥∥2
. (31)

Also, by Lemma 7, we have√√√√ 1

N

N∑
i=1

E
∥∥∥x(k)

i − x̄(k)
∥∥∥2
≤
(

4γ̄2k

N
E
∥∥∥x(0)

∥∥∥2
+

4D2η2

N(1− γ̄)2
+

4σ2η2

(1− γ̄2)
+

8dη

(1− γ̄2)

)1/2

≤ 2γ̄k√
N

(
E
∥∥∥x(0)

∥∥∥2
)1/2

+
2Dη√
N(1− γ̄)

+
2ση√
1− γ̄2

+
2
√

2dη√
1− γ̄2

.

The inequality (20) then follows from the triangular inequality for the 2-Wasserstein dis-
tance. This completes the proof. �

4. Decentralized Stochastic Gradient Hamiltonian Monte Carlo

We introduce the following algorithm which we call decentralized stochastic gradient Hamil-
tonian Monte Carlo (DE-SGHMC): For each agent i = 1, . . . , N,

v
(k+1)
i = v

(k)
i − η

[
γv

(k)
i + ∇̃fi

(
x

(k)
i

)]
+
√

2γηw
(k+1)
i , (32)

x
(k+1)
i =

∑
j∈Ωi

Wijx
(k)
j + ηv

(k+1)
i , (33)
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starting from the initializations x
(0)
i , v

(0)
i ∈ Rd, where η > 0 is the stepsize, w

(k+1)
i are i.i.d.

Gaussian noise with mean 0 and covariance being d−dimensional identity matrices. We
note that in this section, we are abusing the notation for simplicity of the presentation and

using x
(k)
i to denote the DE-SGHMC iterates instead of DE-SGLD iterates. This algorithm

is a natural adaptation of the SGHMC algorithm to the decentralized setting: If the term∑
j∈Ωi

Wijx
(k)
j is replaced by x

(k)
i , then the resulting dynamics at each node reduces to

SGHMC which is a discretization of the underdamped Langevin diffusion given in (5)-(6)
(see e.g. Gao et al. (2018)).

Note that the gradient noise ξ
(k+1)
i := ∇̃fi(x(k)

i ) − ∇fi(x(k)
i ) satisfies Assumption 1 so

that ξ(k+1) :=
[
(ξ

(k+1)
1 )T , . . . , (ξ

(k+1)
N )T

]T
satisfies (15) and ξ̄(k+1) := 1

N

∑N
i=1 ξ

(k+1)
i satisfies

(18). By defining the column vectors

x(k) :=

[(
x

(k)
1

)T
,
(
x

(k)
2

)T
, . . . ,

(
x

(k)
N

)T]T
∈ RNd,

v(k) :=

[(
v

(k)
1

)T
,
(
v

(k)
2

)T
, . . . ,

(
v

(k)
N

)T]T
∈ RNd,

where v
(k)
i and x

(k)
i satisfy (32)–(33), we can rewrite the DE-SGHMC as follows:

v(k+1) = v(k) − η
[
γv(k) +∇F

(
x(k)

)
+ ξ(k+1)

]
+
√

2γηw(k+1), (34)

x(k+1) =Wx(k) + ηv(k+1), (35)

where W = W ⊗ Id and F : RNd → R is defined as F (x) := F (x1, . . . , xN ) =
∑N

i=1 fi(xi),
w(k+1) are i.i.d. Gaussian noise with mean 0 and covariance being Nd−dimensional identity
matrix. Let us define the average at k-th iteration as:

x̄(k) :=
1

N

N∑
i=1

x
(k)
i , v̄(k) :=

1

N

N∑
i=1

v
(k)
i . (36)

Since W is doubly stochastic, we get

v̄(k+1) = v̄(k) − ηγv̄(k) − η 1

N

N∑
i=1

∇fi
(
x

(k)
i

)
− ηξ̄(k+1) +

√
2γηw̄(k+1),

x̄(k+1) = x̄(k) + ηv̄(k+1),

where ξ̄(k+1) := 1
N

∑N
i=1 ξ

(k+1)
i and w̄(k+1) := 1

N

∑N
i=1w

(k+1)
i ∼ 1√

N
N (0, Id).

We now state the main result of this section which bounds the average of W2 distance

between the distribution of the node iterates x
(k)
i and the target distribution π. The re-

sult shows that if the parameters η and γ are suitably chosen, then this distance decays
geometrically fast (in k) to a level of O(η). This result also bounds the W2 distance of
the node averages x̄(k) and the target distribution π. The main idea of the proof is to
analyze DE-SGHMC as a perturbed heavy-ball method (see Section 4.1 and the proof of
Lemma 14) which appears to be a new technique to analyze SGHMC methods. Recall
γ̄ = max

{∣∣λW2 ∣∣ , ∣∣λWN ∣∣} ∈ [0, 1) from (19), and x∗ is the minimizer of f(x).

17
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Theorem 12 Assume E‖x(0)‖2 and E‖v(0)‖2 are finite. Let η be given satisfying

η2 ∈
(

0,
1 + λWN

2(L+ µ)

]
. (37)

Then, we can can choose γ ∈ (0, 1
η ] such that β := 1−γη ∈ [0, 1) and satisfies the inequality

β ≤ β̄ := min

1 + λWN − 4η2µ

4
, η3

√
c1µ3

(1 + λWN )

64

 , (38)

where

c1 :=
1

2

η2µ

(1 + β) + (1− β)
(

η2µ
1−λWN +η2L

) ,
and for every k, DE-SGHMC iterates x

(k)
i given by (33) and their average x̄(k) satisfy

W2

(
L
(
x̄(k)

)
, π
)
≤
(
1− µη2

)k((E∥∥∥x̄(0) − x∗
∥∥∥2
)1/2

+
√

2µ−1dN−1

)

+

γ̄2

(
1− η2µ

(
1− η2L

2

))k
− γ̄2k(

1− η2µ
(

1− η2L
2

))
− γ̄2


1/2

2L√
N

(
E
∥∥∥x(0)

∥∥∥2
)1/2

+ ηE4,

(39)

with

E4 :=
√

2

(
η2

µ(1− η2L
2 )

+
(1 + η2L)2

µ2(1− η2L
2 )2

)1/2

·

[(
β2c5

η4N
+

2L2c5

N(1− γ̄)2

)1/2

+

(
(
√

1− β − 1)2

η4

d

N

)1/2
]

+
1.65L

µ

√
dN−1 +

σ√
µ(1− η2L

2 )N
= O(1) ,

and

1

N

N∑
i=1

W2

(
L
(
x

(k)
i

)
, π
)

≤
(
1− µη2

)k((E∥∥∥x̄(0) − x∗
∥∥∥2
)1/2

+
√

2µ−1dN−1

)
+

√
2γ̄k√
N

(
E
∥∥∥x(0)

∥∥∥2
)1/2

+


(

1− η2µ
(

1− η2L
2

))k
− γ̄2k(

1− η2µ
(

1− η2L
2

))
− γ̄2


1/2

2Lγ̄√
N

(
E
∥∥∥x(0)

∥∥∥2
)1/2

+ ηE5, (40)
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with E5 := E4 +
√

2c5√
N(1−γ̄)

= O(1), and β = O(η4) where O(·) hides the constants that

depend on d, µ, L, σ and γ̄ and N , L
(
x̄(k)

)
denotes the law of x̄(k) and π denotes the

Gibbs distribution with probability density function proportional to e−f(x), and c5 is defined
in Lemma 14.

Remark 13 We observe that in the setting of Theorem 12, the asymptotic error with respect

to the target distribution satisfies lim supk→∞
1
N

∑N
i=1W2

(
L
(
x

(k)
i

)
, π
)

= O (η) , where

O(·) hides other constants (d, µ, L, σ,N and γ̄). In particular, for η small enough, it is

easy to check that
(

1− η2µ
(

1− η2L
2

))
≥ γ̄2 and consequently from Theorem 12, defining

α := η2, we obtain

W2

(
L
(
x̄(2K)

)
, π
)
≤
(

1− αµ
(

1− αL

2

))K
b0 +O

(√
α
)

(41)

≤ e−αµ(1−αL
2 )Kb0 +O

(√
α
)

(42)

for some b0 (that depends on the initialization x(0), d, µ, L, σ, γ̄ and N) where K is the
iteration budget. We observe that this bound in α is similar to that of DE-SGLD case
analyzed in (21)–(22) if we were to replace η in (21)–(22) by α. By following the same

argument as in Remark 3, if we choose α = η2 = c log
√
K

µK , where the constant c > 1, then
we obtain

W2

(
L
(
x̄(2K)

)
, π
)

= O

(√
log(K)√
K

)
.

We conclude that in order to sample fwerom a distribution that is ε close to the target in
the 2-Wasserstein distance, it suffices to have O( 1

ε2
) iterations of DE-SGHMC, ignoring

logarithmic factors. This iteration complexity bound is of the same order with that we
obtained for DE-SGLD (see Remark 3). However, in practice we have seen that DE-SGHMC
outperformed DE-SGLD in some cases (see Section 5.3). We also note that, with a similar
analysis to that in Remark 4, it can be shown that all the terms appearing in the performance
bounds is monotonically increasing as a function of γ̄ in the setting of Theorem 12 except
the constant c5 whose dependency to γ̄ is more complicated to determine within our analysis.

4.1 Proof of Theorem 12

To facilitate the analysis, we introduce the iterates (xk) (with slight abuse of notations):

xk+1 = xk − η2 1

N
∇f(xk) +

√
2ηw̄(k+1), (43)

where w̄(k+1) is the Gaussian noise given in (17) and x0 = x̄(0). This is an Euler-Maruyama
discretization (with stepsize η2) of the continuous-time overdamped Langevin diffusion:

dXt = − 1

N
∇f(xk)dt+

√
2N−1dWt,

where Wt is a standard d-dimensional Brownian motion. We also define iterates (x̃k):

x̃k+1 = x̃k − η2 1

N
∇f(x̃k) +

√
2γηηw̄(k+1), (44)
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where x̃0 = x0 = x̄(0).
We recall that SGHMC can be viewed as a discretization of the kinetic (inertial)

Langevin SDE (5)–(6). It is also known that as the friction coefficient γ →∞, the paths of
this SDE becomes more and more similar to the paths of the overdamped Langevin SDE
(see e.g. Leimkuhler et al. (2016)). However, this is not the case when γ > 0 is small
enough. Therefore, the stepsize η is small enough and the friction coefficient γ is large
enough, it is reasonable to expect that the node averages x̄(k) of DE-SGHMC given by (36)
track the overdamped SDE dynamics. In the setting of Theorem 12, we consider such a case
when the stepsize η is small enough and γ ≈ 1

η (see (37)-(38)). We will next show that node

averages x̄(k) and the discretized overdamped SDE iterates will be close to each other in the

2-Wasserstein metric and that the iterates x
(k)
i will remain close to their average x̄(k) in L2

distance. We note that in general, the optimal choice of γ is not known in the decentralized
setting; and it is only known in the centralized setting for special cases: For centralized
Langevin dynamics with deterministic gradients and µ-strongly convex quadratic objec-
tives, it is recently shown that the choice of γ = 2

√
µ optimizes the convergence rate to

the stationary distribution in the 2-Wasserstein distance (Gao et al., 2020). Studying the
convergence of DE-SGHMC iterates for other choices of the friction coefficient γ will be left
as a future work, as our current proof techniques do not allow arbitrary choice of γ.

In the proof of Theorem 12, to bound the W2 distance between the average of L
(
x

(k)
i

)
and π over 1 ≤ i ≤ N , we follow a similar approach to the analysis of DE-SGLD where the

idea is to bound the following four terms: (1) the L2 distance between x
(k)
i and the average

iterate x̄(k); (2) the L2 distance between the average iterate x̄(k) and iterates x̃k in (44); (3)
the L2 distance between the iterates x̃k and the iterates xk in (43); (4) the W2 distance be-
tween L (xk) and π, i.e. the convergence of overdamped Langevin dynamics. For analyzing
the first term, we first present a technical lemma (Lemma 14) on uniform L2 bounds on the
iterates v(k), x(k) in (34)–(35). The result will be used in the proof of Lemma 15. The proof
idea is to analyze DE-SGHMC as a perturbed heavy-ball method. Momentum-based first
order methods such as heavy-ball methods are less robust to noise compared to gradient
descent methods (see e.g. Can et al. (2019b); Kuru et al. (2020); Flammarion and Bach
(2015); Mohammadi et al. (2021); Devolder et al. (2014)), and achieving this result requires
significantly more work compared to the analogous result we obtained for DE-SGLD. The
proof of this result (and all the other lemmas) are given in the Appendix.

We first provide uniform L2 bounds on the iterates v(k), x(k) in (34)–(35) in the following
lemma.

Lemma 14 Under the assumptions of Theorem 12, there exist constants c4 and c5 (that
do not depend on η or γ) that can be made explicit such that

sup
k≥1

E

[∥∥∥∥x(k) +
β

1− β

(
x(k) − x(k−1)

)∥∥∥∥2
]
≤ c4 , (45)

sup
k≥1

max

(
E
∥∥∥v(k)

∥∥∥2
,E
∥∥∥x(k)

∥∥∥2
)
≤ c5 . (46)

With this lemma, we can bound the deviation of x
(k)
i in (33) from the mean x̄(k) in (36).

We state the result in the next subsection.
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4.1.1 Uniform L2 bounds on the deviation from the mean

Lemma 15 Under the assumptions of Theorem 12, for any k, we have

N∑
i=1

E
∥∥∥x(k)

i − x̄
(k)
∥∥∥2
≤ 2γ̄2kE

∥∥∥x(0)
∥∥∥2

+
2c5η

2

(1− γ̄)2
,

where c5 is defined in Lemma 14 and γ̄ = max
{∣∣λW2 ∣∣ , ∣∣λWN ∣∣} ∈ [0, 1).

Note that we have

v̄(k+1) = v̄(k) − γηv̄(k) − η 1

N
∇f

(
x̄(k)

)
+ ηEk+1 − ηξ̄(k+1) +

√
2γηw̄(k+1), (47)

x̄(k+1) = x̄(k) + ηv̄(k+1), (48)

where Ek+1 := 1
N∇f

(
x̄(k)

)
− 1

N

∑N
i=1∇fi

(
x

(k)
i

)
. As a corollary of Lemma 15, we have the

following estimate.

Lemma 16 Under the assumptions of Theorem 12, for any k, we have

E ‖Ek+1‖2 ≤
2L2γ̄2k

N
E
∥∥∥x(0)

∥∥∥2
+

2L2c5η
2

N(1− γ̄)2
. (49)

4.1.2 L2 distance between the mean and discretized overdamped SDE

Given the dynamics of the average iterate (v̄(k), x̄(k)) in (47)–(48), we next show x̄(k) is
close to the iterates x̃k in (44), which is close to the iterates xk in (43) obtained from an
Euler-Maruyama discretization of an overdamped Langevin SDE. By plugging (47) into
(48), we get

x̄(k+1) = x̄(k) + ηv̄(k)− γη2v̄(k)− η2 1

N
∇f

(
x̄(k)

)
+ η2Ek+1− η2ξ̄(k+1) +

√
2γηηw̄(k+1). (50)

By (47), we get v̄(k) = x̄(k)−x̄(k−1)

η , so that (50) becomes:

x̄(k+1) = x̄(k)−η2 1

N
∇f

(
x̄(k)

)
+β

(
x̄(k) − x̄(k−1)

)
+η2Ek+1−η2ξ̄(k+1) +

√
2(1− β)ηw̄(k+1),

where we recall that β = 1− γη. Also recall that we define x̃k from the iterates:

x̃k+1 = x̃k − η2 1

N
∇f(x̃k) +

√
2(1− β)ηw̄(k+1), (51)

where x̃0 = 1
N

∑N
i=1 x

(0)
i . We have the following estimate.

Lemma 17 Under the assumptions of Theorem 12, we have for every k,

E
∥∥∥x̄(k) − x̃k

∥∥∥2
≤ 2

(
η2

µ(1− η2L
2 )

+
(1 + η2L)2

µ2(1− η2L
2 )2

)(
β2c5

η2N
+

2L2c5η
2

N(1− γ̄)2

)
+

η2σ2

µ(1− η2L
2 )N

+
γ̄2k −

(
1− η2µ

(
1− η2L

2

))k
γ̄2 − 1 + η2µ

(
1− η2L

2

) 4L2γ̄2

N
E
∥∥∥x(0)

∥∥∥2
,

where the constant c5 is as in Lemma 14.
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Next, recall the iterates xk defined in (43):

xk+1 = xk − η2 1

N
∇f(xk) +

√
2ηw̄(k+1),

where x0 = x̃0 = x̄(0). This is an Euler-Maruyama discretized version of the continuous-
time overdamped Langevin diffusion with stepsize η2. Since β = 1− γη is small (see (38)),
we will then show that x̃k and xk are close to each other in L2 distance. Indeed, we have
the following estimate.

Lemma 18 Under the assumptions of Theorem 12, we have for every k,

E ‖x̃k − xk‖2 ≤ 2

(
η2

µ(1− η2L
2 )

+
(1 + η2L)2

µ2(1− η2L
2 )2

)(
(
√

1− β − 1)2

η2

d

N

)
.

4.1.3 Proof of Theorem 12

Since x0 = 1
N

∑N
i=1 x

(0)
i , we have E‖x0‖2 < ∞. By assumption we have also η2 ≤ 2N

µ+L .
Then, it follows from Lemma 10 and Lemma 11 that for xk defined in (43) we have

W2 (L(xk), π) ≤
(
1− µη2

)k ((E‖x0 − x∗‖2
)1/2

+
√

2µ−1dN−1
)

+
1.65L

µ

√
η2dN−1.

Moreover, it follows from Lemma 17 that

W2

(
L
(
x̄(k)

)
,L(x̃k)

)
≤
(
E
∥∥∥x̄(k) − x̃k

∥∥∥2
)1/2

≤
√

2

(
η2

µ(1− η2L
2 )

+
(1 + η2L)2

µ2(1− η2L
2 )2

)1/2(
β2c5

η2N
+

2L2c5η
2

N(1− γ̄)2

)1/2

+
ησ√

µ(1− η2L
2 )N

+

 γ̄2k −
(

1− η2µ
(

1− η2L
2

))k
γ̄2 − 1 + η2µ

(
1− η2L

2

)


1/2

2Lγ̄√
N

(
E
∥∥∥x(0)

∥∥∥2
)1/2

,

whereas it follows from Lemma 18 that

W2 (L(x̃k),L(xk)) ≤
(
E ‖x̃k − xk‖2

)1/2

≤
√

2

(
η2

µ(1− η2L
2 )

+
(1 + η2L)2

µ2(1− η2L
2 )2

)1/2(
(
√

1− β − 1)2

η2

d

N

)1/2

.
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Hence, we conclude that

W2

(
L
(
x̄(k)

)
, π
)
≤
(
1− µη2

)k((E∥∥∥x̄(0) − x∗
∥∥∥2
)1/2

+
√

2µ−1dN−1

)

+


(

1− η2µ
(

1− η2L
2

))k
− γ̄2k(

1− η2µ
(

1− η2L
2

))
− γ̄2


1/2

2Lγ̄√
N

(
E
∥∥∥x(0)

∥∥∥2
)1/2

+ ηE4,

(52)

with

E4 :=
√

2

(
η2

µ(1− η2L
2 )

+
(1 + η2L)2

µ2(1− η2L
2 )2

)1/2

·

[(
β2c5

η4N
+

2L2c5

N(1− γ̄)2

)1/2

+

(
(
√

1− β − 1)2

η4

d

N

)1/2
]

+
1.65L

µ

√
dN−1 +

σ√
µ(1− η2L

2 )N
.

Finally, by (31), we have

1

N

N∑
i=1

W2

(
L
(
x

(k)
i

)
,L
(
x̄(k)

))
≤

√√√√ 1

N

N∑
i=1

E
∥∥∥x(k)

i − x̄(k)
∥∥∥2
.

On the other hand, by Lemma 15,√√√√ 1

N

N∑
i=1

E
∥∥∥x(k)

i − x̄(k)
∥∥∥2
≤
(

2γ̄2k

N
E
∥∥∥x(0)

∥∥∥2
+

2c5η
2

N(1− γ̄)2

)1/2

≤
√

2γ̄k√
N

(
E
∥∥∥x(0)

∥∥∥2
)1/2

+

√
2c5η√

N(1− γ̄)
.

We then obtain (40) by applying the triangular inequality for the 2-Wasserstein distance.
Finally, since β satisfies the inequality (38), we have β = O(η4) as η → 0 and this implies
that E4 = O(1) and E5 = O(1) as claimed. This completes the proof. �

5. Numerical Experiments

We present our numerical results in this section. We conduct several experiments to validate
our theory and investigate the performance of DE-SGLD and DE-SGHMC. We focus on
applying our methods to Bayesian linear regression and Bayesian logistic regression prob-
lems. In our experiments, each agent has its own data in the form of i.i.d. samples. We will
consider three different network architectures: (a) Fully-connected network (b) Circular net-
work (c) A disconnected network with no edges as illustrated in Figure 1. Fully-connected
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(a) Fully-connected (b) Circular (c) Disconnected

Figure 1: Illustration of the network architectures.

network structure corresponds to the complete graph where all the nodes are connected to
each other whereas for the circular graph, each node can communicate with only “left” and
“right” neighbors. Disconnected graph corresponds to the case when nodes do not commu-
nicate at all with each other. The disconnected network is considered as a baseline case for
comparison purposes to see how the individual agents would perform without sharing any
information among themselves.

Before we proceed to the numerical experiments, we remark that the following examples
all satisfy the assumptions in our paper. We will have a discussion on this in the Appendix in
detail. In particular, Appendix D shows that the variance of the gradient noise is bounded,
and Appendix E shows that the gradient of the component functions are Lipschitz.

5.1 Bayesian linear regression

In this section, we present our experiments on the Bayesian linear regression problem, where
our main goal is to validate Theorems 2 and 12 in a basic setting and show that each agent
can sample from the posterior distribution up to an error tolerance with constant stepsize.
In this set of experiments, we first generate data for each agent by simulating the model:

δj ∼ N
(
0, ξ2

)
, Xj ∼ N (0, I), yj = xTXj + δj , (53)

where the noise term δj are i.i.d. scalars with ξ = 1, x ∈ R2, and the prior distribution
of x follows N (0, λI) where we take λ = 10 in the experiments. For the Bayesian linear
regression, we can derive the posterior distribution as:

π(x) ∼ N (m,V ), m =
(
Σ−1 +XTX/ξ2

)−1 (
XT y/ξ2

)
, V =

(
XTX/ξ2 + Σ−1

)−1
,

where Σ = λI is the covariance matrix of the prior distribution of x, X = [XT
1 , X

T
2 , . . . ]

T

and Y = [y1, y2, . . . ]
T are the matrices containing all data points. We simulate 5,000 data

points and partition them randomly among the N = 100 agents so that each agent will have
the same number of data points. Each agent has access to its own data but not to other
agents’ data. The posterior distribution π(x) ∝ e−f(x) is of the form f(x) =

∑N
i=1 fi(x)

with

fi(x) := −
ni∑
j=1

log p
(
yij |x,Xi

j

)
− 1

N
log p(x) =

ni∑
j=1

(
yij − xTXi

j

)2
+

1

2λN
‖x‖2,
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where

p
(
yij |x,Xi

j

)
=

1√
2πξ2

e
− 1

2ξ2
(yij−xTXi

j)
2

, p(x) ∝ e−
1
2λ
‖x‖2 ,

and agent i has ni = 50 data points {(Xi
j , y

i
j)}

ni
j=1.

In the first experiment, we report the performance of the DE-SGLD method on the fully-
connected, circular and disconnected networks in Figure 2. We tune the stepsize η to the
dataset where we take η = 0.009. We consider the case when gradients are deterministic

(i.e. σ = 0). In this case, it can be seen that x
(k)
i follows a Gaussian distribution, i.e.

x
(k)
i ∼ N

(
m

(k)
i ,Σ

(k)
i

)
for some mean vector m

(k)
i and covariance matrix Σ

(k)
i . Based on

100 independent runs, we estimate the parameters m
(k)
i and Σ

(k)
i and then compute the

2-Wasserstein distance with respect to the posterior distribution π(x) ∼ N (m,V ) based
on the explicit formula (Givens and Shortt, 1984) which characterizes the 2-Wasserstein
distance between any two Gaussian distributions. This allows us to plot the 2-Wasserstein
distance to the stationary distribution for each agent and for the distribution of the average

x̄(k) =
∑N

i=1 x
(k)
i /N over the iterations in Figure 2. We observe that for both complete

and circular graphs all the agents will converge to the posterior distribution up to an error
tolerance. In the case of the disconnected network, we observe that individual agents do
relatively worse compared to the fully-connected and circular network cases; as they do not
leverage any information about their neighbors’ data points. For the disconnected case, the
nodes averages x̄(k) (which is neither computed nor accessible by agents) is closer to the

target distribution than the individual iterates x
(k)
i as it contains information from each

agent; however the performance of the node averages x̄(k) is still worse compared to the
performance of node averages for the fully-connected case as expected. We observe that the
experiments in the fully-connected network converges faster than the circular network. This
behavior is predicted by Theorem 2. Since the fully-connected network has a larger spectral
gap 1− γ̄ compared to the circular network (see the paragraph after (19)), our performance
bounds for the fully-connected network is better compared to the circular network case.5

In the next experiment, we investigate the performance of the DE-SGHMC method on
the same data set with (the same) three network structures. The stepsize η and the friction
coefficient γ are tuned to the dataset where we take η = 0.1 and γ = 7. The results are
displayed in Figure 3. The results are qualitatively similar to the DE-SGLD case. The
convergence of DE-SGHMC is fastest for the fully-connected case and is the slowest for the
disconnected case.

In the next set of experiments, we investigate the effect of changing stepsize, batch
size and the network structure on the speed of convergence where we stick to the DE-
SGLD method for this set of experiments. We measure the 2-Wasserstein distance to the

target π with a similar approach as before by fitting a Gaussian distribution N (m
(k)
i ,Σ

(k)
i )

to the empirical distribution of x
(k)
i over 100 independent runs. The results are shown

in Figure 4. Both Figure 4(a) and Figure 4(b) are based on the fully-connected network
architecture. In Figure 4(a), we fix the stepsize to η = 0.009 and vary the batch sizes (the

5. This is a consequence of the fact that our upper bounds given for the 2-Wasserstein distances to the
target π in Theorem 2 and Theorem 12 are both monotonically increasing in γ̄ (see Remark 4 and
Remark 13).
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(a) Fully-connected (b) Circular (c) Disconnected

Figure 2: Performance of DE-SGLD for Bayesian regression on different network structures
with N = 100 agents. The results of the first 4 agents xki and the node averages

x̄k =
∑N

i=1 x
(k)
i /N are reported.

(a) Fully-connected (b) Circular (c) Disconnected

Figure 3: Performance of DE-SGHMC method for Bayesian regression on different network
structures. The stepsize η and the friction coefficient γ are tuned to the dataset
where we take η = 0.1 and γ = 7.

number of data points sampled with replacement to estimate the gradient). We conclude
that different batch sizes affect the asymptotic error the iterates have with respect to the
2-Wasserstein distance. Larger batch sizes reduce the amount of noise (i.e. the upper bound
σ2 on the gradient noise) and therefore lead to smaller asymptotic error as predicted by
Theorem 2. In Figure 4(b), we used stochastic gradients with batch size b = 25 while we
varied the stepsize. The result clearly demonstrates the trade-off between the convergence
rate and the asymptotic accuracy; for larger stepsize the algorithm converges faster to an
asymptotic error region but the accuracy becomes worse as predicted by Theorem 2 (see
also Remark 3). In Figure 4(c) we report the effect of network structure with a constant
stepsize η = 0.008 and batch size b = 25 where we report the performance of a randomly
picked agent. The fastest convergence is observed for the fully-connected network. For the
disconnected network, each agent will converge to a stationary distribution based on its
own data rather than the posterior distribution based on the whole data set; therefore the
asymptotic error in 2-Wasserstein distance will be bounded away from zero.
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(a) Batch size (b) Stepsize (c) Network structure

Figure 4: Performance of DE-SGLD method for Bayesian regression under different settings.
Figures are based on one randomly picked agent. The y-axis is presented in a
logarithmic scale in (a) and (b) .

5.2 Bayesian logistic regression

In Bayesian logistic regression, we are given a dataset of input-output pairs A = {aj}nj=1

where aj = (Xj , yj), Xj ∈ Rd are the features and yj ∈ {0, 1} are the binary labels. We
assume that Xj are independent, and that the probability distribution of the output yj
given features Xj and the regression coefficients x ∈ Rd is given by

P(yj = 1|Xj , x) =
1

1 + e−x
TXj

. (54)

The prior distribution p(x) is often taken as a Gaussian distribution N (0, λI) for some λ > 0
(see e.g. Chatterji et al. (2018); Dubey et al. (2016); Zou et al. (2018b)). If each agent
i possesses a subset Ai of the data where Ai = {(Xi

j , y
i
j)}

ni
i=1, then the goal in Bayesian

logistic regression is to sample from π(x) ∝ e−f(x) with f(x) =
∑

i fi(x) where

fi(x) := −
ni∑
j=1

log p
(
yij = 1|Xi

j , x
)
− 1

N
log p(x) =

ni∑
j=1

log
(

1 + e−x
TXi

j

)
+

1

2Nλ
‖x‖2 (55)

is strongly convex and smooth. We first test our algorithms on synthetic data where we
simulate (54) by

Xj ∼ N (0, 20I), pj ∼ U(0, 1), yj =

{
1 if pj ≤ 1

1+e−x
TXj

0 otherwise
,

where U(0, 1) is the uniform distribution on [0, 1], x = [x1, x2, x3]T ∈ R3 and the prior
distribution of x follows N (0, λI) where we take λ = 10 in the experiments. Similar to
the case of Bayesian linear regression, we separate the data points approximately equally
among all the agents, where we take N = 6. Each agent can access to one part of the
data set. Unlike Bayesian linear regression, where the posterior distribution admits an
explicit formula, the posterior distribution π(x) of Bayesian logistic regression does not
admit an explicit formula. In principle, one can approximate the stationary distribution
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Gürbüzbalaban, Gao, Hu and Zhu

(a) Fully-connected (b) Circular (c) Disconnected

Figure 5: The plots show the the accuracy over the data set versus number of iterations
for the DE-SGLD method on different network structures. Figures are based on
one randomly picked agent. Here, the stepsizes are tuned to the dataset where
we take η = 0.0003. We use the stochastic gradient with batch size b = 32 in the
experiments.

by running the algorithm over many runs and compute the Wasserstein distance between
this approximate distribution and the empirical distribution of the iterates and report this
distance as a performance measure. However, this is not practical. Instead, we resort
to another performance measure for each agent, which is the distribution of the accuracy
over the whole data set where accuracy is defined as the ratio of the correctly predicted
labels. This ratio is relatively simpler to compute and serves as a measure correlated with
the goodness of fit to the training data. For this purpose, we run the DE-SGLD method

multiple times and for each realization of the k-th iterate x
(k)
i at node i, we classify the

whole data set based on x
(k)
i and calculate the accuracy over n = 1, 000 data points. Over

100 independent runs of the DE-SGLD algorithm with batch size b = 32, we estimate the
distribution of the accuracy for each agent at step k. We report the mean and the standard
deviation of the accuracy in Figure 5. We can clearly observe that the DE-SGLD method
works well for both fully-connected and circular networks for Bayesian logistic regression,
which supports our theory. In the right panel of Figure 5, we show the results of the DE-
SGLD method for the disconnected network. The performance on the disconnected network
is worse compared to the fully-connected and circular network settings as expected.

In our next set of experiments, we investigate the DE-SGHMC method in Figure 6 where
we take η = 0.02 and γ = 30 after tuning these parameters to the dataset. We use the
batch size b = 32 in this set of experiments. We see that the performance of DE-SGHMC for
fully-connected and circular networks is also better compared to the disconnected setting
as expected.
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(a) Fully-connected (b) Circular (c) Disconnected

Figure 6: The plots show the accuracy over the data set versus number of iterations for
the DE-SGHMC method on different network structures. Figures are based on
one randomly picked agent. Here, the stepsize η and the friction coefficient γ are
tuned to the dataset where we take η = 0.02 and γ = 30. We use the stochastic
gradient with batch size b = 32 in the experiments.

(a) Fully-connected (b) Circular (c) Disconnected

Figure 7: The plots show the accuracy over the data set versus number of iterations for the
DE-SGLD method on different network structures over Breast Cancer data set.
Figures are based on one randomly picked agent. Here, the stepsizes are chosen
as η = 0.0008. We use batch size b = 32 in the experiments.

5.3 Bayesian logistic regression with real data

In this section, we consider the Bayesian logistic regression problem on the UCI ML Breast
Cancer Wisconsin (Diagnostic) data set6 and MAGIC Gamma Telescope data set7. The
Breast Cancer data set contains 569 samples with dimension 31 and each sample describes
characteristics of the cell nuclei present in a digitized image of a fine needle aspirate (FNA)
of a breast mass. The Telescope data set contains 19,020 samples with dimension 11 and
each sample describes the registration of high energy gamma particles in a ground-based
atmospheric Cherenkov gamma telescope using the imaging technique.

6. The corresponding data set is available online at https://archive.ics.uci.edu/ml/datasets/Breast+
Cancer+Wisconsin+(Diagnostic).

7. The data set is available at https://archive.ics.uci.edu/ml/datasets/magic+gamma+telescope.
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(a) Fully-connected (b) Circular (c) Disconnected

Figure 8: The plots show the accuracy over the data set versus number of iterations for
the DE-SGHMC method on different network structures over Breast Cancer data
set. Figures are based on one randomly picked agent. Here, the stepsize η and
the friction coefficient γ are well tuned to the data set so that we take η = 0.05,
γ = 10. We use batch size b = 32 in the experiments.

(a) Fully-connected over train (b) Circular over train (c) Disconnected over train

(d) Fully-connected over test (e) Circular over test (f) Disconnected over test

Figure 9: The plots show the “distribution of the accuracy over the data set” versus number
of iterations for the DE-SGLD method on different network structures over the
training data and the test data of Telescope data set. Figures are based on one
randomly picked agent. Here, the stepsizes are chosen as η = 0.008. We use batch
size b = 100 in the experiments.

Figure 7 and Figure 8 illustrate the results of using DE-SGLD and DE-SGHMC methods
applied to the classification problem over the Breast Cancer data set. For Breast Cancer

30



Decentralized Stochastic Gradient Langevin Algorithms

(a) Fully-connected over train (b) Circular over train (c) Disconnected over train

(d) Fully-connected over test (e) Circular over test (f) Disconnected over test

Figure 10: The plots show the accuracy over the data set versus number of iterations for
the DE-SGHMC method on different network structures over training data and
test data from the Telescope data set. Figures are based on one randomly picked
agent. Here, the stepsize η and the friction coefficient γ are tuned to the data set
where we take η = 0.07, γ = 5. We use batch size b = 100 in the experiments.

data set, we separate the data set into N = 6 parts with approximately equal sizes and
each agent can access to only one part of the whole data set. Similar to the previous
section, we use the distribution of accuracy over the whole data set as the performance
measure and report the performance of a randomly picked agent. The performance in the
disconnected network setting is worse compared to the connected setting. We observe that
the convergence of DE-SGHMC method displayed in Figure 8 compared to DE-SGLD is
slightly faster with a smaller standard deviation of accuracy in general.

Figure 9 and Figure 10 illustrate the results of using DE-SGLD and DE-SGHMC meth-
ods for classification over the Telescope data set. For Telescope data set, we separate the
data set into training data and test data, where test data has 10% data points. Then
we separate the training data into 6 parts same as before. We report the accuracy over
both training data and test data in the figures. We get similar results that illustrate that
both methods perform better for fully-connected and circular networks compared to the
disconnected network setting. These results illustrate our theoretical results and show the
performance of our methods for decentralized Bayesian logistic regression problems.
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6. Conclusion

In this paper, we studied DE-SGLD and DE-SGHMC methods which allow scalable Bayesian
inference for decentralized learning settings. For both methods, we show that the distribu-

tion of the iterate x
(k)
i of node i converges linearly (in k) to a neighborhood of the target

distribution in the 2-Wasserstein metric when the target density π(x) ∝ e−f(x) is strongly
log-concave (i.e. f is strongly convex) and f is smooth. Our results are non-asymptotic
and provide performance bounds for any finite k. We also illustrated the efficiency of our
methods on the Bayesian linear regression and Bayesian logistic regression problems.
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Appendix A. Proofs of Technical Results in Section 3.1

A.1 Proof of Lemma 6

In this proof, we aim to provide an L2 bound on the gradients ∇F
(
x(k)

)
that is uniform in

k, where F is defined in (14). Let us define

FW,η(x) :=
1

2η
xT (I −W)x+ F (x). (56)

Then FW,η is µ-strongly convex and Lη-smooth with Lη =
1−λWN
η + L, and we can re-write

the DE-SGLD iterates as

x(k+1) = x(k) − η∇FW,η

(
x(k)

)
− ηξ(k+1) +

√
2ηw(k+1), with W = W ⊗ Id. (57)

Define x∗η as the minimizer of FW,η. Since ∇F (x) is L-Lipschitz, we have

E
∥∥∥∇F (x(k)

)∥∥∥2
≤ 2E

∥∥∥∇F (x(k)
)
−∇F

(
x∗η
)∥∥∥2

+ 2
∥∥∇F (x∗η)∥∥2

≤ 2L2E
[∥∥∥x(k) − x∗η

∥∥∥2
]

+ 2
∥∥∇F (x∗η)∥∥2

≤ 2L2E
[∥∥∥x(k) − x∗η

∥∥∥2
]

+ 4
∥∥∇F (x∗η)−∇F (x∗)

∥∥2
+ 4 ‖∇F (x∗)‖2

≤ 2L2E
[∥∥∥x(k) − x∗η

∥∥∥2
]

+ 4L2
∥∥x∗η − x∗∥∥2

+ 4 ‖∇F (x∗)‖2 , (58)

where we recall from (10) that x∗ =
[
xT∗ , x

T
∗ , . . . , x

T
∗
]T

, where x∗ is the minimizer of f(x).
Therefore, in order to derive Lemma 6, we need to have a control on ‖x∗η − x∗‖. This is
provided in the following lemma, which follows from Corollary 9 in Yuan et al. (2016).

Lemma 19 If η ≤ min(
1+λWN
L , 1

L+µ), then

‖x∗η − x∗‖ ≤ C1
η
√
N

1− γ̄
, with γ̄ := max

{∣∣λW2 ∣∣ , ∣∣λWN ∣∣} ,
where C1 is defined in (27).

Proof of Lemma 19 The proof of Lemma 19 will be provided in Appendix C. �

Next, to continue with the proof of Lemma 6, we control the term E
[∥∥x(k) − x∗η

∥∥2
]

in

(58) by deriving a recursion. From (57), we get

x(k+1) − x∗η = x(k) − x∗η − η∇FW,η

(
x(k)

)
− ηξ(k+1) +

√
2ηw(k+1), with W = W ⊗ Id.

Since FW,η is Lη-smooth and µ-strongly convex, we have

Lη〈∇FW,η (z)−∇FW,η (y) , z − y〉 ≥ ‖∇FW,η (z)−∇FW,η (y) ‖2 ∀z, y ∈ Rd, (59)

〈z − y,∇FW,η (z)−∇FW,η (y)〉 ≥ µ‖z − y‖2 ∀z, y ∈ Rd. (60)
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If we choose z = x(k) and y = x∗η and use the fact that ∇FW,η

(
x∗η
)

= 0, we obtain

E
[∥∥∥x(k+1) − x∗η

∥∥∥2
]

= E
[∥∥∥x(k) − x∗η

∥∥∥2
]
− 2ηE

〈
x(k) − x∗η,∇FW,η

(
x(k)

)〉
+ η2E

[∥∥∥∇FW,η

(
x(k)

)∥∥∥2
]

+ η2E
∥∥∥ξ(k+1)

∥∥∥2
+ 2ηdN

≤ E
[∥∥∥x(k) − x∗η

∥∥∥2
]
− 2η

(
1− ηLη

2

)
E
〈
x(k) − x∗η,∇FW,η

(
x(k)

)〉
+ η2σ2N + 2ηdN

≤
(

1− 2µη

(
1− ηLη

2

))
E
[∥∥∥x(k) − x∗η

∥∥∥2
]

+ η2σ2N + 2ηdN

=
(
1− µη(1 + λWN − ηL)

)
E
[∥∥∥x(k) − x∗η

∥∥∥2
]

+ η2σ2N + 2ηdN,

where we used
ηLη

2 < 1 and µη(1 + λWN − ηL) ∈ (0, 1) which follows directly from our
assumptions on the stepsize. Therefore,

E
[∥∥∥x(k) − x∗η

∥∥∥2
]
≤
(
1− µη(1 + λWN − ηL)

)k ∥∥∥x(0) − x∗η
∥∥∥2

+
ησ2N + 2dN

µ(1 + λWN − ηL)
.

Now we are ready to bound E
∥∥∇F (x(k)

)∥∥2
. We can compute from (58) that

E
∥∥∥∇F (x(k)

)∥∥∥2
≤ 2L2E

[∥∥∥x(k) − x∗η
∥∥∥2
]

+ 4L2
∥∥x∗η − x∗∥∥2

+ 4 ‖∇F (x∗)‖2

≤ 2L2
(
1− µη(1 + λWN − ηL)

)k ∥∥∥x(0) − x∗η
∥∥∥2

+
2L2(ησ2N + 2dN)

µ(1 + λWN − ηL)

+ 4L2
∥∥x∗η − x∗∥∥2

+ 4 ‖∇F (x∗)‖2

≤ 4L2
(
1− µη(1 + λWN − ηL)

)k ∥∥∥x(0) − x∗
∥∥∥2

+ 4L2
(
1− µη(1 + λWN − ηL)

)k ∥∥x∗ − x∗η∥∥2

+
2L2(ησ2N + 2dN)

µ(1 + λWN − ηL)
+ 4L2

∥∥x∗η − x∗∥∥2
+ 4 ‖∇F (x∗)‖2

≤ 4L2
(
1− µη(1 + λWN − ηL)

)k ∥∥∥x(0) − x∗
∥∥∥2

+ 8L2
∥∥x∗ − x∗η∥∥2

+
2L2(ησ2N + 2dN)

µ(1 + λWN − ηL)
+ 4 ‖∇F (x∗)‖2 ,

where we recall from (10) that x∗ =
[
xT∗ , x

T
∗ , . . . , x

T
∗
]T

where x∗ is the minimizer of f(x).
Finally, we apply Lemma 19 to complete the proof of Lemma 6. �

A.2 Proof of Lemma 7

In this proof, we aim to provide uniform L2 bounds between the iterates x
(k)
i and their

means x̄(k). First, by the definition of x(k), we get

x(k+1) = (W ⊗ Id)x(k) − η∇F
(
x(k)

)
− ηξ(k+1) +

√
2ηw(k+1).
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It follows that

x(k) = (W k ⊗ Id)x(0) − η
k−1∑
s=0

(
W k−1−s ⊗ Id

)
∇F

(
x(s)
)

− η
k−1∑
s=0

(
W k−1−s ⊗ Id

)
ξ(s+1) +

√
2η

k−1∑
s=0

(
W k−1−s ⊗ Id

)
w(s+1). (61)

Let us define x̄(k) := [x̄(k)T , · · · , x̄(k)T ]
T ∈ RNd. Notice that

x̄(k) =
1

N

((
1N1TN

)
⊗ Id

)
x(k) ,

where 1N ∈ RN is a vector of ones; i.e. it is a column vector with all entries equal to one
and the superscript T denotes the vector transpose. Therefore, we get

N∑
i=1

∥∥∥x(k)
i − x̄

(k)
∥∥∥2

=
∥∥∥x(k) − x̄(k)

∥∥∥2
=

∥∥∥∥x(k) − 1

N

((
1N1TN

)
⊗ Id

)
x(k)

∥∥∥∥2

.

Note that it follows from (61) that

x(k) − 1

N

((
1N1TN

)
⊗ Id

)
x(k)

= (W k ⊗ Id)x(0) − 1

N

((
1N1TNW

k
)
⊗ Id

)
x(0)

− η
k−1∑
s=0

(
W k−1−s ⊗ Id

)
∇F

(
x(s)
)

+ η
k−1∑
s=0

1

N

((
1N1TNW

k−1−s
)
⊗ Id

)
∇F

(
x(s)
)

− η
k−1∑
s=0

(
W k−1−s ⊗ Id

)
ξ(s+1) + η

k−1∑
s=0

1

N

((
1N1TNW

k−1−s
)
⊗ Id

)
ξ(s+1)

+
√

2η
k−1∑
s=0

(
W k−1−s ⊗ Id

)
w(s+1) −

√
2η

k−1∑
s=0

1

N

((
1N1TNW

k−1−s
)
⊗ Id

)
w(s+1).
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By the Cauchy-Schwarz inequality, we have

∥∥∥∥x(k) − 1

N

((
1N1TN

)
⊗ Id

)
x(k)

∥∥∥∥2

≤ 4

∥∥∥∥(W k ⊗ Id)x(0) − 1

N

((
1N1TNW

k
)
⊗ Id

)
x(0)

∥∥∥∥2

+ 4

∥∥∥∥∥−η
k−1∑
s=0

(
W k−1−s ⊗ Id

)
∇F

(
x(s)
)

+ η

k−1∑
s=0

1

N

((
1N1TNW

k−1−s
)
⊗ Id

)
∇F

(
x(s)
)∥∥∥∥∥

2

+ 4

∥∥∥∥∥η
k−1∑
s=0

(
W k−1−s ⊗ Id

)
ξ(s+1) − η

k−1∑
s=0

1

N

((
1N1TNW

k−1−s
)
⊗ Id

)
ξ(s+1)

∥∥∥∥∥
2

+ 4

∥∥∥∥∥√2η

k−1∑
s=0

(
W k−1−s ⊗ Id

)
w(s+1) −

√
2η

k−1∑
s=0

1

N

((
1N1TNW

k−1−s
)
⊗ Id

)
w(s+1)

∥∥∥∥∥
2

= 4

∥∥∥∥(W k ⊗ Id)x(0) − 1

N

((
1N1TN

)
⊗ Id

)
x(0)

∥∥∥∥2

+ 4

∥∥∥∥∥−η
k−1∑
s=0

(
W k−1−s ⊗ Id

)
∇F

(
x(s)
)

+ η

k−1∑
s=0

1

N

((
1N1TN

)
⊗ Id

)
∇F

(
x(s)
)∥∥∥∥∥

2

+ 4

∥∥∥∥∥η
k−1∑
s=0

(
W k−1−s ⊗ Id

)
ξ(s+1) − η

k−1∑
s=0

1

N

((
1N1TN

)
⊗ Id

)
ξ(s+1)

∥∥∥∥∥
2

+ 4

∥∥∥∥∥√2η

k−1∑
s=0

(
W k−1−s ⊗ Id

)
w(s+1) −

√
2η

k−1∑
s=0

1

N

((
1N1TN

)
⊗ Id

)
w(s+1)

∥∥∥∥∥
2

,

where we used the property that W is doubly stochastic. Therefore, we get

∥∥∥∥x(k) − 1

N

((
1N1TN

)
⊗ Id

)
x(k)

∥∥∥∥2

≤ 4

∥∥∥∥((W k − 1

N
1N1TN

)
⊗ Id

)
x(0)

∥∥∥∥2

+ 4η2

∥∥∥∥∥
k−1∑
s=0

((
W k−1−s − 1

N
1N1TN

)
⊗ Id

)
∇F

(
x(s)
)∥∥∥∥∥

2

+ 4η2

∥∥∥∥∥
k−1∑
s=0

((
W k−1−s − 1

N
1N1TN

)
⊗ Id

)
ξ(s+1)

∥∥∥∥∥
2

+ 8η

∥∥∥∥∥
k−1∑
s=0

((
W k−1−s − 1

N
1N1TN

)
⊗ Id

)
w(s+1)

∥∥∥∥∥
2

. (62)
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Note that

4η2

∥∥∥∥∥
k−1∑
s=0

((
W k−1−s − 1

N
1N1TN

)
⊗ Id

)
∇F

(
x(s)
)∥∥∥∥∥

2

≤ 4η2

(
k−1∑
s=0

∥∥∥∥(W k−1−s − 1

N
1N1TN

)
⊗ Id

∥∥∥∥ · ∥∥∥∇F (x(s)
)∥∥∥)2

≤ 4η2

(
k−1∑
s=0

∥∥∥∥W k−1−s − 1

N
1N1TN

∥∥∥∥ · ∥∥∥∇F (x(s)
)∥∥∥)2

= 4η2

(
k−1∑
s=0

γ̄k−1−s ·
∥∥∥∇F (x(s)

)∥∥∥)2

= 4η2

(
k−1∑
s=0

γ̄k−1−s

)2(∑k−1
s=0 γ̄

k−1−s ·
∥∥∇F (x(s)

)∥∥∑k−1
s=0 γ̄

k−1−s

)2

≤ 4η2

(
k−1∑
s=0

γ̄k−1−s

)2 k−1∑
s=0

γ̄k−1−s∑k−1
s=0 γ̄

k−1−s

∥∥∥∇F (x(s)
)∥∥∥2

, (63)

where we used Jensen’s inequality in the last step above, and the fact thatW k−1−s has eigen-
values (λWi )k−1−s with 1 = λW1 > λW2 ≥ · · · ≥ λWN > −1, and hence

∥∥W k−1−s − 1
N 1N1TN

∥∥ =
max{|λW2 |k−1−s, |λWN |k−1−s} = γ̄k−1−s. Recall from Lemma 6 that for every k = 0, 1, 2, . . .,

E
[∥∥∇F (x(k)

)∥∥2
]
≤ D2, where D is defined in (26). Therefore, by (63), we have

4η2E

∥∥∥∥∥
k−1∑
s=0

((
W k−1−s − 1

N
1N1TN

)
⊗ Id

)
∇F

(
x(s)
)∥∥∥∥∥

2


≤ 4D2η2

(
k−1∑
s=0

γ̄k−1−s

)2 k−1∑
s=0

γ̄k−1−s∑k−1
s=0 γ̄

k−1−s
≤ 4D2η2 1

(1− γ̄)2
.

Similarly, we can show that

4

∥∥∥∥((W k − 1

N
1N1TN

)
⊗ Id

)
x(0)

∥∥∥∥2

≤ 4

∥∥∥∥(W k − 1

N
1N1TN

)
⊗ Id

∥∥∥∥2 ∥∥∥x(0)
∥∥∥2

≤ 4γ̄2k
∥∥∥x(0)

∥∥∥2
.
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It follows from (62) that

N∑
i=1

E
∥∥∥x(k)

i − x̄
(k)
∥∥∥2

=

∥∥∥∥x(k) − 1

N

((
1N1TN

)
⊗ Id

)
x(k)

∥∥∥∥2

≤ 4γ̄2kE
∥∥∥x(0)

∥∥∥2
+ 4D2η2 1

(1− γ̄)2
+ 4η2

k−1∑
s=0

E
∥∥∥∥((W k−1−s − 1

N
1N1TN

)
⊗ Id

)
ξ(s+1)

∥∥∥∥2

+ 8η
k−1∑
s=0

E
∥∥∥∥((W k−1−s − 1

N
1N1TN

)
⊗ Id

)
w(s+1)

∥∥∥∥2

≤ 4γ̄2kE
∥∥∥x(0)

∥∥∥2
+ 4D2η2 1

(1− γ̄)2
+ 4η2

k−1∑
s=0

∥∥∥∥W k−1−s − 1

N
1N1TN

∥∥∥∥2

E
∥∥∥ξ(s+1)

∥∥∥2

+ 8η
k−1∑
s=0

∥∥∥∥W k−1−s − 1

N
1N1TN

∥∥∥∥2

E
∥∥∥w(s+1)

∥∥∥2

≤ 4γ̄2kE
∥∥∥x(0)

∥∥∥2
+ 4D2η2 1

(1− γ̄)2
+ 4σ2Nη2

k−1∑
s=0

γ̄2(k−1−s) + 8dNη
k−1∑
s=0

γ̄2(k−1−s)

≤ 4γ̄2kE
∥∥∥x(0)

∥∥∥2
+

4D2η2

(1− γ̄)2
+

4σ2Nη2

(1− γ̄2)
+

8dNη

(1− γ̄2)
.

The proof is complete. �

A.3 Proof of Lemma 8

By Lemma 7, we can compute that

E ‖Ek+1‖2 = E

∥∥∥∥∥ 1

N

N∑
i=1

(
∇fi

(
x

(k)
i

)
−∇fi

(
x̄(k)

))∥∥∥∥∥
2

≤ 1

N2

N∑
i=1

NE
∥∥∥∇fi (x(k)

i

)
−∇fi

(
x̄(k)

)∥∥∥2

≤ 1

N
L2

N∑
i=1

E
∥∥∥x(k)

i − x̄
(k)
∥∥∥2

≤ 4L2γ̄2k

N
E
∥∥∥x(0)

∥∥∥2
+

4L2D2η2

N(1− γ̄)2
+

4L2σ2η2

(1− γ̄2)
+

8L2dη

(1− γ̄2)
.

The proof is complete. �

A.4 Proof of Lemma 9

In this proof, we aim to show that the mean of the iterates x̄(k) which is defined in (28)
is close to xk in L2 distance, where xk is defined in (24) which is an Euler-Maruyama
discretization of the continuous-time overdamped Langevin SDE in (25).
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First, we can compute that

x̄(k+1) − xk+1 = x̄(k) − xk −
η

N

[
∇f

(
x̄(k)

)
−∇f(xk)

]
+ ηEk+1 − ηξ̄(k+1),

where Ek+1 = 1
N∇f

(
x̄(k)

)
− 1

N

∑N
i=1∇fi

(
x

(k)
i

)
, and this implies that

∥∥∥x̄(k+1) − xk+1

∥∥∥2

=
∥∥∥x̄(k) − xk −

η

N

[
∇f

(
x̄(k)

)
−∇f(xk)

]∥∥∥2
+ η2

∥∥∥Ek+1 − ξ̄(k+1)
∥∥∥2

+ 2
〈
x̄(k) − xk −

η

N

[
∇f

(
x̄(k)

)
−∇f(xk)

]
, ηEk+1 − ηξ̄(k+1)

〉
=
∥∥∥x̄(k) − xk

∥∥∥2
+ η2

∥∥∥∥ 1

N

[
∇f

(
x̄(k)

)
−∇f(xk)

]∥∥∥∥2

− 2

〈
x̄(k) − xk, η

1

N

[
∇f

(
x̄(k)

)
−∇f(xk)

]〉
+ η2

∥∥∥Ek+1 − ξ̄(k+1)
∥∥∥2

+ 2

〈
x̄(k) − xk − η

1

N

[
∇f

(
x̄(k)

)
−∇f(xk)

]
, ηEk+1 − ηξ̄(k+1)

〉
≤
∥∥∥x̄(k) − xk

∥∥∥2
+ η2L

〈
x̄(k) − xk,

1

N

[
∇f

(
x̄(k)

)
−∇f(xk)

]〉
− 2

〈
x̄(k) − xk, η

1

N

[
∇f

(
x̄(k)

)
−∇f(xk)

]〉
+ η2

∥∥∥Ek+1 − ξ̄(k+1)
∥∥∥2

+ 2

〈
x̄(k) − xk − η

1

N

[
∇f

(
x̄(k)

)
−∇f(xk)

]
, ηEk+1 − ηξ̄(k+1)

〉
≤
(

1− 2ηµ

(
1− ηL

2

))∥∥∥x̄(k) − xk
∥∥∥2

+ η2
∥∥∥Ek+1 − ξ̄(k+1)

∥∥∥2

+ 2

〈
x̄(k) − xk − η

1

N

[
∇f

(
x̄(k)

)
−∇f(xk)

]
, ηEk+1 − ηξ̄(k+1)

〉
, (64)

where we used L-smoothness of 1
N f to obtain the second term after the first inequality

above and µ-strongly convexity of 1
N f (inequalities (59)-(60) apply to the function 1

N f as
well if we replace the smoothness constant Lη by L) and the assumption that η < 2/L
to obtain the first term after the second inequality above. Note that according to (12),
ξ̄(k+1) has mean zero conditional on the natural filtration of the iterates till time k and by
Lemma 8,

E ‖Ek+1‖2 ≤
4L2γ̄2k

N
E
∥∥∥x(0)

∥∥∥2
+

4L2D2η2

N(1− γ̄)2
+

4L2σ2η2

(1− γ̄2)
+

8L2dη

(1− γ̄2)
. (65)
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Also, we recall from (18) that E
∥∥ξ̄(k+1)

∥∥2 ≤ σ2

N . By taking expectations in (64) and applying
(12), we get

E
∥∥∥x̄(k+1) − xk+1

∥∥∥2

≤
(

1− 2ηµ

(
1− ηL

2

))
E
∥∥∥x̄(k) − xk

∥∥∥2
+ η2E

∥∥∥Ek+1 − ξ̄(k+1)
∥∥∥2

+ E
[
2

〈
x̄(k) − xk − η

1

N

[
∇f

(
x̄(k)

)
−∇f(xk)

]
, ηEk+1 − ηξ̄(k+1)

〉]
(66)

=

(
1− 2ηµ

(
1− ηL

2

))
E
∥∥∥x̄(k) − xk

∥∥∥2
+ η2E ‖Ek+1‖2 + η2E

∥∥∥ξ̄(k+1)
∥∥∥2

+ E
[
2

〈
x̄(k) − xk − η

1

N

[
∇f

(
x̄(k)

)
−∇f(xk)

]
, ηEk+1

〉]
(67)

≤
(

1− 2ηµ

(
1− ηL

2

))
E
∥∥∥x̄(k) − xk

∥∥∥2
+ η2E ‖Ek+1‖2 + η2σ

2

N

+ 2(1 + ηL)ηE
[∥∥∥x̄(k) − xk

∥∥∥ · ‖Ek+1‖
]
, (68)

where we used L-smoothness of 1
N f . For any x, y ≥ 0 and c > 0, we have the inequality

2xy ≤ cx2 + y2

c . Applying this inequality with c =
µ(1− ηL

2
)

1+ηL to (68), we obtain

E
∥∥∥x̄(k+1) − xk+1

∥∥∥2

≤
(

1− 2ηµ

(
1− ηL

2

))
E
∥∥∥x̄(k) − xk

∥∥∥2
+ η2E ‖Ek+1‖2 + η2σ

2

N

+ (1 + ηL)η

(
µ(1− ηL

2 )

1 + ηL
E
∥∥∥x̄(k) − xk

∥∥∥2
+

1 + ηL

µ(1− ηL
2 )

E ‖Ek+1‖2
)

=

(
1− ηµ

(
1− ηL

2

))
E
∥∥∥x̄(k) − xk

∥∥∥2
+ η

(
η +

(1 + ηL)2

µ(1− ηL
2 )

)
E ‖Ek+1‖2 + η2σ

2

N
,

where we note that the leading term 1−ηµ
(

1− ηL
2

)
∈ [0, 1) by our assumption on stepsize

η. By applying (65), we get

E
∥∥∥x̄(k+1) − xk+1

∥∥∥2

≤
(

1− ηµ
(

1− ηL

2

))
E
∥∥∥x̄(k) − xk

∥∥∥2

+ η

(
η +

(1 + ηL)2

µ(1− ηL
2 )

)(
4L2γ̄2k

N
E
∥∥∥x(0)

∥∥∥2
+

4L2D2η2

N(1− γ̄)2
+

4L2σ2η2

(1− γ̄2)
+

8L2dη

(1− γ̄2)

)
+ η2σ

2

N
,
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for every k. Note that E
∥∥x̄(0) − x0

∥∥2
= 0. By iterating the above equation, we get

E
∥∥∥x̄(k) − xk

∥∥∥2

≤
k−1∑
i=0

(
1− ηµ

(
1− ηL

2

))i
·

(
η

(
η +

(1 + ηL)2

µ(1− ηL
2 )

)(
4L2D2η2

N(1− γ̄)2
+

4L2σ2η2

(1− γ̄2)
+

8L2dη

(1− γ̄2)

)
+ η2σ

2

N

)

+

k−1∑
i=0

(
1− ηµ

(
1− ηL

2

))i
η

(
η +

(1 + ηL)2

µ(1− ηL
2 )

)
4L2γ̄2(k−i)

N
E
∥∥∥x(0)

∥∥∥2

=
1−

(
1− ηµ

(
1− ηL

2

))k
1−

(
1− ηµ

(
1− ηL

2

))
·

(
η

(
η +

(1 + ηL)2

µ(1− ηL
2 )

)(
4L2D2η2

N(1− γ̄)2
+

4L2σ2η2

(1− γ̄2)
+

8L2dη

(1− γ̄2)

)
+ η2σ

2

N

)

+
γ̄2k −

(
1− ηµ

(
1− ηL

2

))k
1−

(
1− ηµ

(
1− ηL

2

))
(γ̄)−2

4L2

N
E
∥∥∥x(0)

∥∥∥2
.

Hence8, for every k.

E
∥∥∥x̄(k) − xk

∥∥∥2
≤
η

(
η + (1+ηL)2

µ(1− ηL
2

)

)(
4L2D2η2

N(1−γ̄)2
+ 4L2σ2η2

(1−γ̄2)
+ 8L2dη

(1−γ̄2)

)
+ η2 σ2

N

1−
(

1− ηµ
(

1− ηL
2

))
+

γ̄2k −
(

1− ηµ
(

1− ηL
2

))k
1−

(
1− ηµ

(
1− ηL

2

))
(γ̄)−2

4L2

N
E
∥∥∥x(0)

∥∥∥2

=

η

(
η + (1+ηL)2

µ(1− ηL
2

)

)(
4L2D2η
N(1−γ̄)2

+ 4L2σ2η
(1−γ̄2)

+ 8L2d
(1−γ̄2)

)
+ η σ

2

N

µ
(

1− ηL
2

)
+
γ̄2k −

(
1− ηµ

(
1− ηL

2

))k
γ̄2 − 1 + ηµ

(
1− ηL

2

) 4L2γ̄2

N
E
∥∥∥x(0)

∥∥∥2
.

The proof is complete. �

8. We recall that the last term is proportional to the ratio h(x, y) = xk−yk
x−y with x = γ̄2 and y =(

1− ηµ
(
1− ηL

2

))
and according to our notation (see Section 2), we interpret this ratio as kyk−1 in

the special case when x = y.
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A.5 Proof of Lemma 11

The proof of Lemma 11 will be provided in Appendix C. �

Appendix B. Proofs of Technical Results in Section 4.1

B.1 Proof of Lemma 14

In this proof, we aim to provide uniform L2 bounds on the iterates v(k), x(k) in (34)–(35).
Based on the expression (34) for v(k+1), first we rewrite the DE-SGHMC iterates (35)

for k ≥ 1 as

x(k+1) = Wx(k) + ηv(k+1),

= Wx(k) + η
(
v(k) − η

[
γv(k) +∇F

(
x(k)

)
+ ξ(k+1)

]
+
√

2γηw(k+1)
)

= Wx(k) − η2∇F
(
x(k)

)
+ η(1− γη)v(k) + ∆(k+1)

= Wx(k) − η2∇F
(
x(k)

)
+ (1− γη)

(
x(k) −Wx(k−1)

)
+ ∆(k+1) , (69)

where
∆(k+1) := −η2ξ(k+1) + η

√
2γηw(k+1).

If we consider

α = η2, (70)

then (69) is equivalent to

x(k+1) = Wx(k) − α∇F
(
x(k)

)
+ β

(
x(k) −Wx(k−1)

)
+ ∆(k+1)

= x(k) − α∇F̄
(
x(k)

)
+ β

(
x(k) − x(k−1)

)
+ ∆̄(k+1) , (71)

where β = 1− γη and

F̄ (x) := F (x) +
1

2α
xT (I −W)x, ∆̄(k+1) := ∆(k+1) + β(I −W)x(k−1).

Let x∗α be the unique minimizer of F̄ (x). Since α > 0, the function F̄ (x) is strongly convex
with parameter µ and smooth with parameter

Lα = L+
1− λWN
α

. (72)

In the special case, ∆̄(k+1) = 0, the iterations (71) would exactly coincide with the iterations
of the heavy-ball method of Polyak applied to the function F̄ (x) with momentum parameter
β. Therefore, we can view the iterations (71) as a perturbed heavy-ball method with
perturbation ∆̄(k+1) at iteration k. For the heavy-ball method, linear convergence to the
optimum of F̄ (x) is obtained if the parameters α and β are properly chosen. In the rest of
the proof, we will extend the proof technique of Ghadimi et al. (2015) for the convergence
of the heavy-ball method to allow perturbations ∆̄(k+1) and show that the second moments
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of the iterates remain bounded. First of all, we notice that the assumptions (37)–(38) on
the choice of η and β can be restated in terms of conditions on α = η2 as follows:

α ∈
(

0,
1 + λWN

2(L+ µ)

]
, (73)

0 ≤ β ≤
1 + λWN − 4αµ

4
, (74)

β2 ≤ c1µ
3α3 (1 + λWN )

64
, (75)

where we see after a straightforward computation that the constants c1 defined by (38) can
be rewritten in terms of the smoothness constant Lα as

c1 =
1

2

αµLα
(1− β)(Lα + µ) + 2Lαβ

. (76)

In particular, the condition (74) implies β ∈ [0, 1
2) due to the fact that λWN < 1 and α, µ > 0.

Next, we introduce

p(k) =
β

1− β

(
x(k) − x(k−1)

)
, (77)

for k ≥ 1. From the update rule (71), it follows that

x(k+1) + p(k+1) =
1

1− β
x(k+1) − β

1− β
x(k)

= x(k) + p(k) − α

1− β
∇F̄

(
x(k)

)
+

1

1− β
∆̄(k+1).

This implies that∥∥∥x(k+1) + p(k+1) − x∗α
∥∥∥2

=
∥∥∥x(k) + p(k) − x∗α

∥∥∥2
− 2α

1− β

〈
x(k) − x∗α,∇F̄

(
x(k)

)〉
+

α2

(1− β)2

∥∥∥∇F̄ (x(k)
)∥∥∥2
− 2αβ

(1− β)2

〈
x(k) − x(k−1),∇F̄

(
x(k)

)〉
+

1

(1− β)2

∥∥∥∆̄(k+1)
∥∥∥2

+ 2

〈
x(k) + p(k) − α

1− β
∇F̄

(
x(k)

)
− x∗α,

1

(1− β)
∆̄(k+1)

〉
,

where we used the definition (77) of p(k). Next, we bound the last two terms by applying
the Cauchy-Schwarz inequality:

Ek
[

1

(1− β)2

∥∥∥∆̄(k+1)
∥∥∥2
]
≤ Ek

[
1

(1− β)2

(
2
∥∥∥∆(k+1)

∥∥∥2
+ 2

∥∥∥β(I −W)x(k−1)
∥∥∥2
)]

≤ 2

(1− β)2
Ek
∥∥∥∆(k+1)

∥∥∥2
+

2β2

(1− β)2

(
1− λWN

)2 ∥∥∥x(k−1)
∥∥∥2

≤ 2

(1− β)2

(
η4σ2N + η32γNd

)
+

2β2

(1− β)2

(
1− λWN

)2 ∥∥∥x(k−1)
∥∥∥2

,
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where Ek denotes the conditional expectation with respect to the natural filtration up to
time k (which includes the history of the iterations up to (and including) x(k)). Similarly,

Ek
[
2

〈
x(k) + p(k) − α

1− β
∇F̄

(
x(k)

)
− x∗α,

1

(1− β)
∆̄(k+1)

〉]
= 2

〈
x(k) + p(k) − α

1− β
∇F̄

(
x(k)

)
− x∗α,

1

(1− β)
β(I −W)x(k−1)

〉
≤ c1

∥∥∥∥x(k) + p(k) − α

1− β
∇F̄

(
x(k)

)
− x∗α

∥∥∥∥2

+
1

c1

β2

(1− β)2

(
1− λWN

)2 ∥∥∥x(k−1)
∥∥∥2

,

where we use Cauchy-Schwarz and c1 is the constant given by (76). Combining everything,

Ek
∥∥∥x(k+1) + p(k+1) − x∗α

∥∥∥2

≤
∥∥∥x(k) + p(k) − x∗α

∥∥∥2
− 2α

1− β

〈
x(k) − x∗α,∇F̄

(
x(k)

)〉
+

α2

(1− β)2

∥∥∥∇F̄ (x(k)
)∥∥∥2
− 2αβ

(1− β)2

〈
x(k) − x(k−1),∇F̄

(
x(k)

)〉
+ E(k+1) , (78)

where

E(k+1) :=
2

(1− β)2
(η4σ2N + η32γNd) + c1

∥∥∥∥x(k) + p(k) − α

1− β
∇F̄

(
x(k)

)
− x∗α

∥∥∥∥2

+

(
2 +

1

c1

)
β2

(1− β)2

(
1− λWN

)2 ∥∥∥x(k−1)
∥∥∥2

≤ 2

(1− β)2

(
η4σ2N + η32γNd

)
+ 2c1

∥∥∥x(k) + p(k) − x∗α
∥∥∥2

+ 2c1
α2

(1− β)2

∥∥∥∇F̄ (x(k)
)∥∥∥2

+

(
2 +

1

c1

)
β2

(1− β)2
(1− λWN )2

(
2
∥∥∥x(k−1) − x∗α

∥∥∥2
+ 2 ‖x∗α‖

2

)
,

and in the last step we used the Cauchy-Schwarz inequality, i.e.

∥∥∥x(k−1)
∥∥∥2
≤ 2

∥∥∥x(k−1) − x∗α
∥∥∥2

+ 2 ‖x∗α‖
2 .

Since F̄ is µ-strongly convex and Lα smooth, we have also

µLα
Lα + µ

∥∥∥x(k) − x∗α
∥∥∥2

+
1

Lα + µ

∥∥∥∇F̄ (x(k)
)∥∥∥2
≤
〈
x(k) − x∗α,∇F̄

(
x(k)

)〉
,

F̄
(
x(k)

)
− F̄

(
x(k−1)

)
+
µ

2

∥∥∥x(k) − x(k−1)
∥∥∥2
≤
〈
x(k) − x(k−1),∇F̄

(
x(k)

)〉
,
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(see e.g. Nesterov (2013)). These inequalities combined with (78) implies

2αβ

(1− β)2

(
F̄
(
x(k)

)
− F̄ ∗

)
+ Ek

∥∥∥x(k+1) + p(k+1) − x∗α
∥∥∥2

≤ 2αβ

(1− β)2

(
F̄
(
x(k−1)

)
− F̄ ∗

)
+
∥∥∥x(k) + p(k) − x∗α

∥∥∥2
− 2αµLα

(1− β)(Lα + µ)

∥∥∥x(k) − x∗α
∥∥∥2

− αβµ

(1− β)2

∥∥∥x(k) − x(k−1)
∥∥∥2

+
α

(1− β)

(
α

1− β
− 2

Lα + µ

)∥∥∥∇F̄ (x(k)
)∥∥∥2

+ E(k+1) .

Plugging the upper bound for E(k+1), we obtain

2αβ

(1− β)2

(
F̄
(
x(k)

)
− F̄ ∗

)
+
∥∥∥x(k+1) + p(k+1) − x∗α

∥∥∥2

≤ 2αβ

(1− β)2

(
F̄
(
x(k−1)

)
− F̄ ∗

)
+
∥∥∥x(k) + p(k) − x∗α

∥∥∥2
(1 + 2c1)− 2αµLα

(1− β)(Lα + µ)

∥∥∥x(k) − x∗α
∥∥∥2

− αβµ

(1− β)2

∥∥∥x(k) − x(k−1)
∥∥∥2

+
α

(1− β)

(
α

1− β
− 2

Lα + µ
+

2c1α

1− β

)∥∥∥∇F̄ (x(k)
)∥∥∥2

+
2

(1− β)2

(
η4σ2N + η32γNd

)
+

2β2

(1− β)2

(
1− λWN

)2(
1 +

1

2c1

)(
2
∥∥∥x(k−1) − x∗α

∥∥∥2
+ 2 ‖x∗α‖

2

)
. (79)

By Lemma 20, the coefficient in front of
∥∥∇F̄ (x(k)

)∥∥2
is negative, i.e.

kα,β :=
α

(1− β)

(
α

1− β
− 2

Lα + µ
+

2c1α

1− β

)
< 0. (80)

We then move the term with
∥∥∇F̄ (x(k)

)∥∥2
to the left-hand side of (79) to obtain

2αβ

(1− β)2

(
F̄
(
x(k)

)
− F̄ ∗

)
+
∥∥∥x(k+1) + p(k+1) − x∗α

∥∥∥2
− kα,β

∥∥∥∇F̄ (x(k))
∥∥∥2

≤ 2αβ

(1− β)2

(
F̄
(
x(k−1)

)
− F̄ ∗

)
+
∥∥∥x(k) + p(k) − x∗α

∥∥∥2
(1 + 2c1)

− 2αµLα
(1− β)(Lα + µ)

∥∥∥x(k) − x∗α
∥∥∥2
− αβµ

(1− β)2

∥∥∥x(k) − x(k−1)
∥∥∥2

+
2

(1− β)2

(
η4σ2N + η32γNd

)
+

2β2

(1− β)2

(
1− λWN

)2(
1 +

1

2c1

)(
2
∥∥∥x(k−1) − x∗α

∥∥∥2
+ 2 ‖x∗α‖

2

)
. (81)

By standard inequalities for µ-strongly convex functions from Nesterov (2013, Section 2.1),
also

2µ
(
F̄
(
x(k)

)
− F̄ ∗

)
≤

∥∥∥∇F̄ (x(k)
)∥∥∥2

, (82)∥∥∥x(k−1) − x∗α
∥∥∥2
≤ 2

µ

[
F̄
(
x(k−1)

)
− F̄ (x∗α)

]
, (83)
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where F̄ ∗ := F̄ (x∗α) is the global minimum of F̄ . In particular, by multiplying both sides of
the first inequality (82) with −kα,β > 0 we obtain

−2kα,βµ
(
F̄
(
x(k)

)
− F̄ ∗

)
≤ −kα,β

∥∥∥∇F̄ (x(k)
)∥∥∥2

. (84)

Inserting the estimates (83) and (84) into (81), we obtain

b
(
F̄
(
x(k)

)
− F̄ ∗

)
+
∥∥∥x(k+1) + p(k+1) − x∗α

∥∥∥2

≤ a
(
F̄
(
x(k−1)

)
− F̄ ∗

)
+
∥∥∥x(k) + p(k) − x∗α

∥∥∥2
(1 + 2c1)− 2αµLα

(1− β)(Lα + µ)

∥∥∥x(k) − x∗α
∥∥∥2

− αβµ

(1− β)2

∥∥∥x(k) − x(k−1)
∥∥∥2

+
2

(1− β)2

(
η4σ2N + η32γNd

)
+ c2‖x∗α‖2 ,

where

a :=
2αβ

(1− β)2
+

2c2

µ
, (85)

b :=
2αβ

(1− β)2
− 2kα,βµ =

2α

(1− β)

(
β − µα
1− β

+
2µ

Lα + µ
− 2c1αµ

1− β

)
, (86)

where kα,β is defined by (80), and

c2 :=
4β2

(1− β)2

(
1− λWN

)2(
1 +

1

c1

)
.

We can also write ∥∥∥x(k) + p(k) − x∗α
∥∥∥2

=
[
z(k)
]T
Mz(k) ,

where

z(k) =
[
x(k) − x∗α, x(k) − x(k−1)

]T
, and M =

[
Id

β
1−β Id

β
1−β Id

β2

(1−β)2
Id

]
.

Therefore, we can write

b
(
F̄
(
x(k)

)
− F̄ ∗

)
+ Ek

[(
z(k+1)

)T
M
(
z(k+1)

)]
≤ a

(
F̄
(
x(k−1)

)
− F̄ ∗

)
+
(
z(k)
)T

Q
(
z(k)
)

+
2

(1− β)2

(
η4σ2N + η32γNd

)
+ c2‖x∗α‖2 ,

where

Q :=

(1 + 2c1 − 2αµLα
(1−β)(L+µ)

)
Id

β
(1−β)(1 + 2c1)Id

β
(1−β)(1 + 2c1)Id

(
(1+2c1)β2−αβµ

(1−β)2

)
Id

 . (87)

By Lemma 21 and Lemma 22, for a given positive scalar s, we have sM � Q as long as
s ≥ q2 and a ≤ sb as long as s ≥ q1 where q1, q2 ∈ [0, 1) and are defined by (106) and (107)
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respectively. If we introduce q := max(q1, q2) and choose s = q, then we obtain

b
(
F̄
(
x(k)

)
− F̄ ∗

)
+ Ek

[(
z(k+1)

)T
M
(
z(k+1)

)]
≤ q

(
b
(
F̄
(
x(k−1)

)
− F̄ ∗

)
+
(
z(k)
)T

M
(
z(k)
))

+
2

(1− β)2

(
η4σ2N + η32γNd

)
+ c2 ‖x∗α‖

2 .

Let us introduce the Lyapunov function

Vk+1 := E
[
b
(
F̄
(
x(k)

)
− F̄ ∗

)
+
(
z(k+1)

)T
M
(
z(k+1)

)]
= E

[
b
(
F̄
(
x(k)

)
− F̄ ∗

)
+
(
z(k+1)

)T
M
(
z(k+1)

)]
,

for k ≥ 0. Then, taking expectations, we get

Vk+1 ≤ qVk +
2

(1− β)2

(
η4σ2N + η32γNd

)
+ c2 ‖x∗α‖

2 .

This recursion implies that

bE
[
F̄
(
x(k)

)
− F̄ ∗

]
+ E

∥∥∥x(k+1) + p(k+1) − x∗α
∥∥∥2

= Vk+1

≤ V1q
k +

1

1− q

(
2

(1− β)2

(
η4σ2N + η32γNd

)
+ c2 ‖x∗α‖

2

)
, (88)

where we recall that q = max(q1, q2). From the representation, (38), and the fact that
α = η2 we observe that

1

2

αµ

(1 + β) + (1− β)
(

η2µ
1−λWN +η2L

) = c1 ≤
1

2

αµ

(1 + β)
. (89)

Using the fact that the function h(α) := αµ
1−λWN +αL

is monotonically increasing on the

positive real line and by the assumption (37), we obtain

h(α) ≤ h
(

1 + λWN
2(L+ µ)

)
=

(1 + λWN )µ

(1 + λWN )L+ 2(1− λWN )(L+ µ)
= Θ(1).

Therefore, we also have the following lower bound for c1:

1

2

αµ

(1 + β) + (1− β)Θ(1)
≤ c1 . (90)

It follows then from (90) and (89) that

c1 = Θ(α) = Θ
(
η2
)
. (91)
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Consequently, by our assumption (38), we have

β = 1− ηγ = O
(
η3√c1

)
= O

(
η4
)

= O
(
α2
)
, γη = 1− β = Θ(1). (92)

Then, it follows from the definition of c2 that

c2 = Θ

(
β2

(
1 +

1

α

))
= O

(
β2 +

β2

α

)
.

Since β = O(α2) by (92), we obtain

c2 = O
(
α3
)
. (93)

This also implies that

V1 = bE
[
F̄
(
x(0)

)
− F̄ ∗

]
+ E

∥∥∥∥x(0) +
β

1− β

(
x(1) − x(0)

)
− x∗α

∥∥∥∥2

(94)

≤ bLα
∥∥∥x(0) − x∗α

∥∥∥2
+ 2E

∥∥∥x(0) − x∗α
∥∥∥2

+
2β2

(1− β)2
E
∥∥∥x(1) − x(0)

∥∥∥2
, (95)

where

b =
2α

1− β

(
β − µα
1− β

+
2µ

Lα + µ
− 2c1αµ

1− β

)
= Θ

(
α2
)
, (96)

where we used the fact that β = O(α2), 1− λWN = Θ(1) and (91). Then,

bLα = b

(
1− λWN
α

+ L

)
= O(α) . (97)

From the definition of a given in (85), we have also a = O (αβ + c2) = O
(
α3
)

, where we
used β = Θ(α2) and c2 = O(α3) obtained in (93). Then, it follows from (96) that

q1 =
a

b
= O(α). (98)

We also see that

q2 = max(0, 1− 2c1) = 1−Θ(α), (99)

due to (91). This estimate and (98) implies

q = max(q1, q2) = 1−Θ(α),
1

1− q
=

1

Θ(α)
= Θ

(
1

η2

)
. (100)

On the other hand, a consequence of Lemma 19 is that

‖x∗α‖ = O(1). (101)
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Then, we get from (97) and (95) that V1 = O(1). Combining this fact with the estimates
(91), (93), (92), (98), (99), (100) we conclude that the terms on the right-hand side of (88)

satisfy V1q
k = Θ

((
1−Θ

(
η2
))k)

, and

1

1− q

(
2

(1− β)2

(
η4σ2N + η32γNd

)
+ c2‖x∗α‖2

)
=
O(η3)

Θ(η2)
= O(η) ,

Vk+1 = bE
[
F̄
(
x(k)

)
− F̄ ∗

]
+ E

∥∥∥x(k+1) + p(k+1) − x∗α
∥∥∥2
≤ c3 ,

for some constant c3 = O(1) and every k ≥ 0. Resorting to the estimate (101), we conclude
that this proves (45). The last inequality also implies that

E
∥∥∥x(k) − x∗α

∥∥∥2
w ≤ 1

µ
E
[
F̄
(
x(k)

)
− F̄ ∗

]
≤ c3

µb
, (102)

as well as the inequality

E

∥∥∥∥∥
(

1 +
β

1− β

)
x(k) − βx

(k−1)

1− β

∥∥∥∥∥
2

= E
∥∥∥x(k) + p(k)

∥∥∥2

≤ 2E
∥∥∥x(k) + p(k) − x∗α

∥∥∥2
+ 2‖x∗α‖2 ≤ 2c3 + 2‖x∗α‖2 ,

where we applied the Cauchy-Schwarz inequality. If we apply the Cauchy-Schwarz inequality
again, we obtain

E
∥∥∥x(k)

∥∥∥2
≤ E

∥∥∥∥(1 +
β

1− β

)
x(k)

∥∥∥∥2

≤ 2E

∥∥∥∥∥
(

1 +
β

1− β

)
x(k) − βx

(k−1)

1− β

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥βx(k−1)

1− β

∥∥∥∥∥
2

≤ 2E

∥∥∥∥∥
(

1 +
β

1− β

)
x(k) − βx

(k−1)

1− β

∥∥∥∥∥
2

+
2β2

(1− β)2

(
2E
∥∥∥x(k−1) − x∗α

∥∥∥2
+ 2‖x∗α‖2

)
≤ 4c3 + 4‖x∗α‖2 +

2β2

(1− β)2

(
2c3

µb
+ 2‖x∗α‖2

)
,

where we used (102).
Within our assumptions on the stepsize and momentum β, b = O(α2) and ‖x∗α‖ = Θ(1).

Furthermore, we have β = O(α2) as well as b = Θ(α2) = Θ(η4). Therefore, we conclude

that E
∥∥x(k)

∥∥2
= O(1), which is equivalent to (46). This implies that

E
∥∥∥∇F (x(k)

)∥∥∥2
≤ c̃4 := L

(
‖∇F (x∗)‖2 + sup

k≥0
E
∥∥∥x(k) − x∗

∥∥∥2
)
,

where we used L-smoothness of F . Consequently, we find from the update equation (34)
that

E
∥∥∥v(k+1)

∥∥∥2
= E

∥∥∥βv(k) − η∇F
(
x(k)

)∥∥∥2
+ η2σ2N + 2γηNd (103)

≤ 2β2E
∥∥∥v(k)

∥∥∥2
+ 2η2E

∥∥∥∇F (x(k)
)∥∥∥2

+ η2σ2N + 2γηNd, (104)
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which implies that for any k,

E
∥∥∥v(k+1)

∥∥∥2
≤ c5 := E

∥∥∥v(0)
∥∥∥2

+
2η2c̃4 + η2σ2N + 2γηNd

1− 2β2
= O(1), (105)

where we used the fact that 2β2 < 1 by our assumptions. This completes the proof of
Lemma 14.

�
The next three technical lemmas are used in the proof of Lemma 14.

Lemma 20 In the setting of the proof of Lemma 14; if the parameters α and β satisfy the
inequalities (73) and (74), then kα,β < 0 where kα,β is defined by (80).

Proof of Lemma 20 The proof of Lemma 20 will be provided in Appendix C. �

Lemma 21 In the setting of Lemma 14, let α and β satisfy the conditions (73), (74) and
(75) where α is defined by (70). Then, we have

q1 :=
a

b
∈ (0, 1) , (106)

where a and b are defined in (85) and (86).

Proof of Lemma 21 The proof of Lemma 21 will be provided in Appendix C. �

Lemma 22 In the setting of the proof of Lemma 14, we have sM −Q � 0 if

s ≥ q2 := max

(
0, 1− αµLα

(1− β)(Lα + µ) + 2Lαβ

)
. (107)

Proof of Lemma 22 The proof of Lemma 22 will be provided in Appendix C. �

B.2 Proofs of Lemma 15– 18

The proofs of Lemmas 15 and 16 are inspired by the proofs of Lemmas 7 and 8 respectively,
and the proofs of Lemmas 17 and 18 are inspired by the proof of Lemma 9. We will present
the proofs of Lemmas 15–18 in Appendix C. �

Appendix C. Additional Technical Proofs

C.1 Proof of Lemma 11

Note that EX∼π‖X−x∗‖2 = E‖X∞−x∗‖2, where X∞ is the unique stationary distribution
of the overdamped Langevin diffusion:

dXt = − 1

N
∇f(Xt)dt+

√
2N−1dWt,
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where Wt is a standard d−dimensional Brownian motion. By Itô’s formula, we have

eµt‖Xt − x∗‖2 = ‖X0 − x∗‖2 + 2
√

2N−1

∫ t

0
eµs〈Xs − x∗, dWs〉

− 2

∫ t

0
eµs
〈
Xs − x∗,

1

N
∇f(Xs)

〉
ds

+ 2N−1d

∫ t

0
eµsds+ µ

∫ t

0
eµs‖Xs − x∗‖2ds

≤ ‖X0 − x∗‖2 + 2
√

2N−1

∫ t

0
eµs〈Xs − x∗, dWs〉+ 2dN−1

∫ t

0
eµsds,

where we used µ-strongly convex property of x 7→ 1
N f(x). This implies that

E‖Xt − x∗‖2 ≤ e−µt‖X0 − x∗‖2 +
2dN−1

µ
,

and therefore E‖X∞ − x∗‖2 ≤ 2dN−1

µ . The proof is complete. �

C.2 Proof of Lemma 15

In this proof, we aim to provide uniform L2 bounds between the iterates x
(k)
i and their

means x̄(k). First, by the definitions of x(k), we get

x(k+1) = (W ⊗ Id)x(k) + ηv(k+1).

It follows that

x(k) =
(
W k ⊗ Id

)
x(0) + η

k−1∑
s=0

(
W k−1−s ⊗ Id

)
v(s+1).

Let us define x̄(k) := [x̄(k), · · · , x̄(k)] ∈ RNd. Notice that

x̄(k) =
1

N

((
1N1TN

)
⊗ Id

)
x(k).

Therefore, we get

N∑
i=1

∥∥∥x(k)
i − x̄

(k)
∥∥∥2

=
∥∥∥x(k) − x̄(k)

∥∥∥2
=

∥∥∥∥x(k) − 1

N

((
1N1TN

)
⊗ Id

)
x(k)

∥∥∥∥2

,
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and by the Cauchy-Schwarz inequality∥∥∥∥x(k) − 1

N

((
1N1TN

)
⊗ Id

)
x(k)

∥∥∥∥2

≤ 2

∥∥∥∥(W k ⊗ Id
)
x(0) − 1

N

((
1N1TNW

k
)
⊗ Id

)
x(0)

∥∥∥∥2

+ 2

∥∥∥∥∥−η
k−1∑
s=0

(
W k−1−s ⊗ Id

)
v(s+1) + η

k−1∑
s=0

1

N

((
1N1TNW

k−1−s
)
⊗ Id

)
v(s+1)

∥∥∥∥∥
2

= 2

∥∥∥∥(W k ⊗ Id
)
x(0) − 1

N

((
1N1TN

)
⊗ Id

)
x(0)

∥∥∥∥2

+ 2

∥∥∥∥∥−η
k−1∑
s=0

(
W k−1−s ⊗ Id

)
v(s+1) + η

k−1∑
s=0

1

N

((
1N1TN

)
⊗ Id

)
v(s+1)

∥∥∥∥∥
2

= 2

∥∥∥∥((W k − 1

N
1N1TN

)
⊗ Id

)
x(0)

∥∥∥∥2

+ 2η2

∥∥∥∥∥
k−1∑
s=0

((
W k−1−s − 1

N
1N1TN

)
⊗ Id

)
v(s+1)

∥∥∥∥∥
2

.

Note that

η2

∥∥∥∥∥
k−1∑
s=0

((
W k−1−s − 1

N
1N1TN

)
⊗ Id

)
v(s+1)

∥∥∥∥∥
2

≤ η2

(
k−1∑
s=0

∥∥∥∥(W k−1−s − 1

N
1N1TN

)
⊗ Id

∥∥∥∥ · ∥∥∥v(s+1)
∥∥∥)2

≤ η2

(
k−1∑
s=0

∥∥∥∥W k−1−s − 1

N
1N1TN

∥∥∥∥ · ∥∥∥v(s+1)
∥∥∥)2

= η2

(
k−1∑
s=0

γ̄k−1−s ·
∥∥∥v(s+1)

∥∥∥)2

= η2

(
k−1∑
s=0

γ̄k−1−s

)2(∑k−1
s=0 γ̄

k−1−s ·
∥∥v(s+1)

∥∥∑k−1
s=0 γ̄

k−1−s

)2

≤ η2

(
k−1∑
s=0

γ̄k−1−s

)2 k−1∑
s=0

γ̄k−1−s∑k−1
s=0 γ̄

k−1−s

∥∥∥v(s+1)
∥∥∥2
,

where we used Jensen’s inequality in the last step above.

Recall from Lemma 14 that for every s, E
[∥∥v(s+1)

∥∥2
]
≤ c5. Therefore, we have

η2E

∥∥∥∥∥
k−1∑
s=0

((
W k−1−s − 1

N
1N1TN

)
⊗ Id

)
v(s+1)

∥∥∥∥∥
2


≤ c5η
2

(
k−1∑
s=0

γ̄k−1−s

)2 k−1∑
s=0

γ̄k−1−s∑k−1
s=0 γ̄

k−1−s
≤ c5η

2 1

(1− γ̄)2
.
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Similarly, we have ∥∥∥∥((W k − 1

N
1N1TN

)
⊗ Id

)
x(0)

∥∥∥∥2

≤ γ̄2k
∥∥∥x(0)

∥∥∥2
.

The proof is complete. �

C.3 Proof of Lemma 16

By Lemma 15, we can compute that

E ‖Ek+1‖2 = E

∥∥∥∥∥ 1

N

N∑
i=1

(
∇fi

(
x

(k)
i

)
−∇fi

(
x̄(k)

))∥∥∥∥∥
2

≤ 1

N2

N∑
i=1

NE
∥∥∥∇fi (x(k)

i

)
−∇fi

(
x̄(k)

)∥∥∥2

≤ 1

N
L2

N∑
i=1

E
∥∥∥x(k)

i − x̄
(k)
∥∥∥2

≤ 2L2γ̄2k

N
E
∥∥∥x(0)

∥∥∥2
+

2L2c5η
2

N(1− γ̄)2
.

The proof is complete. �

C.4 Proof of Lemma 17

In this proof, we aim to show that the average iterates x̄(k) are close to the iterates x̃k which
is defined in (44). First, we can compute that

x̄(k+1)−x̃k+1 = x̄(k)−x̃k−
η2

N

[
∇f

(
x̄(k)

)
−∇f(x̃k)

]
+β

(
x̄(k) − x̄(k−1)

)
+η2Ek+1−η2ξ̄(k+1),

where

Ek+1 =
1

N
∇f

(
x̄(k)

)
− 1

N

N∑
i=1

∇fi
(
x

(k)
i

)
.

We also observe that under our assumptions η ∈ (0,
√

2/L), η2µ(1 − η2L
2 ) ≤ 1. Then, it

follows from the proof of Lemma 9 that we have

E
∥∥∥x̄(k+1) − x̃k+1

∥∥∥2
≤
(

1− η2µ

(
1− η2L

2

))
E
∥∥∥x̄(k) − x̃k

∥∥∥2
+ η4σ

2

N

+ η2

(
η2 +

(1 + η2L)2

µ(1− η2L
2 )

)
E
∥∥∥∥ βη2

(
x̄(k) − x̄(k−1)

)
+ Ek+1

∥∥∥∥2

≤
(

1− η2µ

(
1− η2L

2

))
E
∥∥∥x̄(k) − xk

∥∥∥2
+ η4σ

2

N

+ 2η2

(
η2 +

(1 + η2L)2

µ(1− η2L
2 )

)(
E
∥∥∥∥βη v̄(k)

∥∥∥∥2

+ E ‖Ek+1‖2
)
,

(108)
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where we used x̄(k) − x̄(k−1) = ηv̄(k) and (18). We recall from Lemma 16 that

E ‖Ek+1‖2 ≤
2L2γ̄2k

N
E
∥∥∥x(0)

∥∥∥2
+

2L2c5η
2

N(1− γ̄)2
, (109)

and by Lemma 14, we get

E
∥∥∥v̄(k)

∥∥∥2
≤ 1

N

N∑
i=1

E
∥∥∥v(k)

i

∥∥∥2
=

1

N
E
∥∥∥v(k)

∥∥∥2
≤ c5

N
. (110)

By applying (109)-(110) to (108), we get

E
∥∥∥x̄(k+1) − x̃k+1

∥∥∥2

≤
(

1− η2µ

(
1− η2L

2

))
E
∥∥∥x̄(k) − x̃k

∥∥∥2
+ η4σ

2

N

+ 2η2

(
η2 +

(1 + η2L)2

µ(1− η2L
2 )

)(
β2c5

η2N
+

2L2γ̄2k

N
E
∥∥∥x(0)

∥∥∥2
+

2L2c5η
2

N(1− γ̄)2

)
,

for every k. Note that E
∥∥x̄(0) − x̃0

∥∥2
= 0. By our assumption on stepsize η, we have

1− η2µ
(

1− η2L
2

)
∈ [0, 1). By following the same argument as in the proof of Lemma 9, we

conclude that for every k,

E
∥∥∥x̄(k) − x̃k

∥∥∥2
≤

2η2

(
η2 + (1+η2L)2

µ(1− η2L
2

)

)(
β2c5
η2N

+ 2L2c5η2

N(1−γ̄)2

)
+ η4 σ2

N

1−
(

1− η2µ
(

1− η2L
2

))
+
γ̄2k −

(
1− η2µ

(
1− η2L

2

))k
γ̄2 − 1 + η2µ

(
1− η2L

2

) 4L2γ̄2

N
E
∥∥∥x(0)

∥∥∥2
,

which completes the proof. �

C.5 Proof of Lemma 18

In this proof, we aim to show that the iterates x̃k, which is defined in (44), is close to
the iterates xk in (43) obtained from an Euler-Maruyama discretization of an overdamped
Langevin SDE. First, we can compute that

x̃k+1 − xk+1 = x̃k − xk −
η2

N
[∇f(x̃k)−∇f(xk)] +

(√
2(1− β)−

√
2
)
ηw̄(k+1).

It follows from the arguments in the proof of Lemma 9 that we have∥∥∥x̄(k+1) − x̃k+1

∥∥∥2
≤
(

1− η2µ

(
1− η2L

2

))∥∥∥x̄(k) − x̃k
∥∥∥2

+ η2

(
η2 +

(1 + η2L)2

µ(1− η2L
2 )

)∥∥∥∥ 1

η2

(√
2(1− β)−

√
2
)
ηw̄(k+1)

∥∥∥∥2

.
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By taking the expectations, we get

E
∥∥∥x̄(k+1) − x̃k+1

∥∥∥2

≤
(

1− η2µ

(
1− η2L

2

))
E
∥∥∥x̄(k) − x̃k

∥∥∥2
+ 2

(
η2 +

(1 + η2L)2

µ(1− η2L
2 )

)(√
(1− β)− 1

)2 d

N
,

for every k. The rest of the proof follows similarly as in the proof of Lemma 17. �

C.6 Proof of Lemma 19

Note that x∗η by its definition coincides with the fixed point x̂∞ of the decentralized gradient
descent without noise:

x̂(k+1) =Wx̂(k) − η∇F
(
x̂(k)

)
,

i.e.

x̂∞ =Wx̂∞ − η∇F (x̂∞) ,

and x∗η = x̂∞. Since x∗η and x∗ do not depend on x̂(0), to get a bound on ‖x∗η − x∗‖, we

can assume that x̂(0) = 0, and apply Corollary 9 in Yuan et al. (2016) which is re-stated in
Fallah et al. (2019):

‖x̂∞i − x∗‖ ≤ C1
η

1− γ̄
, where γ̄ := max

{∣∣λW2 ∣∣ , ∣∣λWN ∣∣} ,
where x∗ = (xT∗ , x

T
∗ , . . . , x

T
∗ )T , where x∗ is the minimizer of f(x), which yields that

∥∥x∗η − x∗∥∥ ≤ C1
η
√
N

1− γ̄
, where γ̄ := max

{∣∣λW2 ∣∣ , ∣∣λWN ∣∣} .
The proof is complete. �

C.7 Proof of Lemma 20

By the definition of Lα given by (72), we have

kα,β :=
α

(1− β)

(
α

1− β
− 2α

1− λWN + (L+ µ)α
+

2c1α

1− β

)
. (111)

Due to (73), we have (L+ µ)α ≤ 1+λWN
2 , therefore

kα,β ≤
α

(1− β)

(
α

1− β
− 2α

1− λWN + (1 + λWN )/2
+

2c1α

1− β

)
. (112)

Furthermore,

c1 =
1

2

αµ

(1− β)(1 + µ/Lα) + 2β
<

1

2

αµ

1 + β
<

1

2
αµ , (113)
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where we used the fact that µ/Lα > 0. Therefore, by replacing c1 in (112) with its upper
bound (113), we obtain

kα,β ≤
α2

(1− β)

(
1

1− β
− 2

1− λWN + (1 + λWN )/2
+

αµ

1− β

)
=

α2

(1− β)

(
1

1− β
− 4

3− λWN
+

αµ

1− β

)
.

Since α > 0 and β < 1/2 by our assumptions, α2

1−β > 0 and kα,β < 0 if and only if

1

1− β
− 4

3− λWN
+

αµ

1− β
< 0 ,

which is equivalent to

β <
1 + λWN + αµλWN − 3αµ

4
. (114)

By our assumption (74) on β, we have

β ≤
1 + λWN − 4αµ

4
,

and noticing that λWN > −1 and αµλWN > −αµ, we conclude that the inequality (114) holds.
Hence, we obtain kα,β < 0 and the proof is complete. �

C.8 Proof of Lemma 21

Using the definitions of a and b from (85) and (86), we have

q1 =
a

b
=

2αβ + 4β2(1− λWN )2(1 + 1/c1)/µ

2α
(
β − µα+ 2µ (1−β)

Lα+µ − 2c1αµ
) ,

where c1 is given by (76). Therefore, the condition q1 ∈ (0, 1) is equivalent to

b(1− β)2 = 2α

(
β − µα+ 2µ

(1− β)

Lα + µ
− 2c1αµ

)
> 0 , (115)

where b is defined by (86) and

2αβ + 4β2
(
1− λWN

)2
(1 + 1/c1)/µ < 2α

(
β − µα+ 2µ

(1− β)

Lα + µ
− 2c1αµ

)
. (116)

It suffices to show that under our assumptions on α and β, these two conditions are satisfied.
The first condition (115) is satisfied because b = 2αβ

(1−β)2
−2kα,βµ >

2αβ
(1−β)2

> 0 by Lemma 20.

We next prove that the second condition (116) holds. We re-organize (116) as

4β2
(
1− λWN

)2
(c1 + 1) < 2c1µα

(
−µα+ 2µ

(1− β)

Lα + µ
− 2c1αµ

)
. (117)
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We note that

c1 =
1

2

αµ

(1− β)(1 + µ/Lα) + 2β
≤ αµ

2(1 + β)
< 1 ,

where in the first inequality we used the fact that µ/Lα > 0 whereas in the second inequality
we used the assumptions (73) and (74). Therefore, c1+1 < 2 and 2c1αµ ≤ 2αµ αµ

2(1+β) . Hence
it suffices to have

8β2
(
1− λWN

)2 ≤ 2c1µα

(
−µα+ 2µ

(1− β)

Lα + µ
− 2αµ

αµ

2(1 + β)

)
= 2c1µα

(
−µα+ 2µ

(1− β)α

1− λWN + (L+ µ)α
− 2αµ

αµ

2(1 + β)

)
,

where we used the definition of Lα given in (72). By assumption (73), we have α ≤
(1 + λWN )/(2(L+ µ)); therefore it suffices to have

8β2
(
1− λWN

)2 ≤ 2c1µα

−µα+ 2µ
(1− β)α

1− λWN +
1+λWN

2

− 2αµ
αµ

2(1 + β)

 (118)

= 2c1µα

(
−µα+ 4µ

(1− β)α

3− λWN
− 2αµ

αµ

2(1 + β)

)
(119)

= 2c1µ
2α2

(
−1 + 4

(1− β)

3− λWN
− αµ

(1 + β)

)
. (120)

By differentiating the right-hand side of (120) with respect to β, it is easy to see that the
right-hand side is a decreasing function of β under our assumptions. Therefore, by plugging
in the largest allowed value 1+λN−4αµ

4 for β on the right-hand side of this inequality, we can
relax condition (120) to

8β2
(
1− λWN

)2 ≤ 2c1µ
2α2

−1 + 4
1− 1+λWN −4αµ

4

3− λWN
− αµ

 = 2c1µ
2α2

(
αµ(1 + λWN )

3− λWN

)
.

Since λWN ∈ (−1, 1), it suffices to have

8β2
(
1− λWN

)2 ≤ 2c1µ
2α2

(
αµ(1 + λWN )

4

)
,

which holds if and only if

β2 ≤ c1µ
3α3

(
(1 + λWN )

16(1− λWN )2

)
.

Since λWN ∈ (−1, 1), it suffices to have

β2 ≤ c1µ
3α3

(
1 + λWN

64

)
,

which is exactly the condition (75) we assumed in the statement of the lemma. We conclude
that the inequality (116) is also satisfied. Finally, we infer from (115) and (116) that
q1 ∈ (0, 1) completing the proof.

�
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C.9 Proof of Lemma 22

Consider the matrix pencil Ss = sM −Q with s ≥ 0. We have

Ss =

(s− 1− 2c1 + 2αµLα
(1−β)(Lα+µ)

)
Id

β
(1−β)(s− 1− 2c1)Id

β
(1−β)(s− 1− 2c1)Id

(
(s−1−2c1)β2+αβµ

(1−β)2

)
Id

 = As ⊗ Id ,

where ⊗ denotes the Kronecker product of matrices and As is the 2× 2 matrix

As =

[
s− 1− 2c1 + 2αµLα

(1−β)(Lα+µ)
β

(1−β)(s− 1− 2c1)
β

(1−β)(s− 1− 2c1) (s−1−2c1)β2+αβµ
(1−β)2

]
.

By the properties of the Kronecker product, the symmetric matrix Ss has the same eigen-
values with the 2×2 matrix As and Ss is positive semi-definite if and only if as As is positive
semi-definite. Therefore, Ss is positive definite if and only if the principal minors of As are
non-negative, i.e.

s− 1− 2c1 +
2αµLα

(1− β)(Lα + µ)
≥ 0 ,

and(
s− 1− 2c1 +

2αµLα
(1− β)(Lα + µ)

)(
(s− 1− 2c1)β2 + αµβ

(1− β)2

)
≥
(

β

(1− β)
(s− 1− 2c1)

)2

.

After some computations we observe that the last inequality is equivalent to

s− 1− 2c1 +
2αµLα

(1− β)(Lα + µ) + 2Lαβ
≥ 0 .

We conclude that Ss is positive semi-definite if and only if

s ≥ 1 + 2c1 −
2αµLα

(1− β)(Lα + µ) + 2Lαβ
= 1− αµLα

(1− β)(Lα + µ) + 2Lαβ
,

where we used the definition (76) of c1 in the last equality. This completes the proof. �

Appendix D. Discussions on Gradient Noise Assumptions

In our analysis, we assumed that the variance of the gradient noise is bounded (Assump-
tion 1). This is a reasonable assumption since it can be shown that if the stepsize η > 0 is
small enough the variance of the gradients will stay bounded and satisfy our assumptions
on the gradient noise (Assumption 1) with an analysis similar to Aybat et al. (2019, Section
K). We can illustrate this point in detail as follows.

Consider a more general gradient noise setting than Assumption 1:

E
[
∇̃fi(x)−∇fi(x)

∣∣∣x] = 0, E
[∥∥∥∇̃fi(x)−∇fi(x)

∥∥∥2 ∣∣∣x] ≤ C (1 + ‖x‖2
)
, (121)

(see e.g. Jain et al. (2018)) where C is a positive constant. The assumption (121) is satisfied
for a wide class of fi functions when gradients are estimated over mini-batches. Consider the
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linear regression example in the empirical risk minimization setting, where the stochastic
gradients ∇̃fi(x) are estimated from mini-batches of size b at a point x, i.e.

∇̃fi(x) =
2ni
b

b∑
k=1

(yijk − x
TXi

jk
) +

1

λN
x,

where j1, j2, . . . , jb are selected uniformly random with replacement over the index set
{1, 2. . . . , ni} of the data points where ni are finite and fixed. In this setting, it is well-
known that the gradient error satisfies (121). The L2-regularized logistic regression case
will be similar.

In the following, we will show that for DE-SGLD, when the stepsize η is sufficiently
small, the assumption (121) implies that:

E
[
∇̃fi(x)−∇fi(x)

∣∣∣x] = 0, E
∥∥∥∇̃fi(x)−∇fi(x)

∥∥∥2
≤ σ2, (122)

for some σ > 0, which is the precisely the assumption we had for gradient noise (Assump-
tion 1) and hence our main result (Theorem 2) holds under the assumption (121). This is
primarily because the second moments of the iterates are uniformly bounded and taking ex-
pectation with respect to x in (121) would result in a condition like (122). To see this in more

detail, we recall that in the proof of Lemma 6, by assuming E
∥∥∥∇̃fi(x)−∇fi(x)

∥∥∥2
≤ σ2, as

in Assumption 1, we had

E
[∥∥∥x(k+1) − x∗η

∥∥∥2
]
≤
(
1− µη

(
1 + λWN − ηL

))
E
[∥∥∥x(k) − x∗η

∥∥∥2
]

+ η2σ2N + 2ηdN, (123)

provided that the stepsize η is sufficiently small, where x(k) =
[
(x

(k)
1 )T , . . . , (x

(K)
N )T

]T
, and

x∗η is the minimizer of FW,η(x) = 1
2ηx

T (I −W)x+ F (x), where F (x) =
∑N

i=1 fi(xi). Now,
if we assume (121), instead of (122), we will obtain

E
[∥∥∥x(k+1) − x∗η

∥∥∥2
]
≤
(
1− µη

(
1 + λWN − ηL

))
E
[∥∥∥x(k) − x∗η

∥∥∥2
]

+ η2CN + η2CE
[∥∥∥x(k)

∥∥∥2
]

+ 2ηdN

≤
(
1− µη

(
1 + λWN − ηL

))
E
[∥∥∥x(k) − x∗η

∥∥∥2
]

+ η2CN + 2η2CE
[∥∥∥x(k) − x∗η

∥∥∥2
]

+ 2η2C
∥∥x∗η∥∥2

+ 2ηdN.

By Lemma 19, for sufficiently small stepsize η > 0, ‖x∗η − x∗‖ ≤ C1
η
√
N

1−γ̄ , where C1, γ̄ are

constants defined in (27) and (19), and we recall from (10) that x∗ =
[
xT∗ , . . . , x

T
∗
]T

where

x∗ is the minimizer of f(x) =
∑N

i=1 fi(x) which is unique by strong convexity. Therefore,
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we obtain

E
[∥∥∥x(k+1) − x∗η

∥∥∥2
]

≤
(
1− µη

(
1 + λWN − ηL

))
E
[∥∥∥x(k) − x∗η

∥∥∥2
]

+ η2CN + 2η2CE
[∥∥∥x(k) − x∗η

∥∥∥2
]

+ 4η2C ‖x∗‖2 + 4η4CC2
1

N

(1− γ̄)2
+ 2ηdN

≤
(

1− 1

2
µη
(
1 + λWN − ηL

))
E
[∥∥∥x(k) − x∗η

∥∥∥2
]

+ η2CN + 4η2C ‖x∗‖2 + 4η4CC2
1

N

(1− γ̄)2
+ 2ηdN, (124)

for sufficiently small η. This implies that for sufficiently small η, such that 1
2µη(1 + λWN −

ηL) ∈ (0, 1), we have the following uniform L2 bound:

E
[∥∥∥x(k) − x∗η

∥∥∥2
]
≤ C̃1, for any k ∈ N, (125)

for some constant C̃1 > 0. Finally, by taking the expectation w.r.t. x in (121) and applying
the tower property, we conclude that (122) holds for some σ > 0. Hence, the assumption
(121) implies the assumption (122) which is used in Assumption 1. This argument shows
that our assumption on the finiteness of gradient noise variance is satisfied when data is
sampled with mini-batches such that (121) holds.

Appendix E. Discussions on the Lipschitz Gradient Assumption

In our analysis, we consider sampling from the target distribution with density π(x) ∝
e−f(x) = e−

∑N
i=1 fi(x), where fi is the loss function of the agent i for i = 1, 2, . . . , N . We

assume that the gradients ∇fi(x) are (uniformly) Lipschitz with some Lipschitz constant L.
In the linear regression example in Section 5, we consider the empirical risk minimization
setting, where the number of data points ni that agent i possesses is finite and the dataset
is given and fixed. The Lipschitz constant L will in general depend on the dataset, but will
be finite as long as the number of data points n is finite. For example, in the case of linear
regression, we have

fi(x) =
∑ni

j=1

(
yij − xTXi

j

)2
+

1

2λN
‖x‖2 , (126)

where agent i possesses a dataset Di := {(Xi
j , y

i
j)}

ni
j=1 of ni data points. The Hessian of fi

satisfies

∇2fi(x) = 2
∑ni

j=1
Xi
j

(
Xi
j

)T
+

1

λN
I ,

where I is the identity matrix. Therefore, Hessian of fi is uniformly bounded satisfying
‖∇2fi(x)‖ ≤ 2

∑ni
j=1 ‖Xi

j‖2 + 1
λN . Therefore, we can take the Lipschitz constant to be

L = 2 max
i=1,2,...,N

(∑ni

j=1

∥∥Xi
j

∥∥2
)

+
1

λN
,
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and this constant is finite because the number of samples n =
∑N

i=1 ni is finite and the data
points Xi

j are given and fixed. This is the setting considered in our paper, and therefore
our uniformly Lipschitz assumptions are satisfied.

More generally, one can try to bound L almost surely, i.e. for almost every realization
of the dataset. If we take Xi

j to be random without a compact support (i.e. when data is
Gaussian), then L will not be bounded almost surely. However, if the input data is bounded
(which can often hold in machine learning practice naturally after normalizing/preprocessing
data if necessary), then we will have L finite almost surely and our Lipschitz assumption will
hold for almost every realization of the dataset. By similar computations, we can have the
same conclusions for logistic regression. In other words, in the empirical risk minimization
setting that we consider when each agent has finitely many data points and the dataset is
fixed, our uniform Lipschitz gradient assumption will hold although the Lipschitz constant
L will depend on the dataset. If we assume further that data has compact support, our
Lipschitz assumption will hold almost surely.

It is worth noting that the recent elegant approach in Barkhagen et al. (2021) applies
even if the data does not have compact support and when n goes to infinity and can
handle non-i.i.d. L-mixing data streams. However, Barkhagen et al. (2021) considers the
centralized setting and distributed setting is not discussed. It is not clear how to apply
their techniques to the distributed setting but this would definitely be an interesting future
research direction. Also, Barkhagen et al. (2021) does not discuss the stochastic gradient
Hamiltonian Monte Carlo case, whereas our analysis framework provides a uniform approach
where we study the stochastic gradient Hamiltonian Monte Carlo as well in the distributed
setting.
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Ying Zhang, Ömer Deniz Akyildiz, Theodoros Damoulas, and Sotirios Sabanis. Nonasymp-
totic estimates for Stochastic Gradient Langevin Dynamics under local conditions in
nonconvex optimization. arXiv:1910.02008, 2019.

Difan Zou, Pan Xu, and Quanquan Gu. Stochastic variance-reduced Hamilton Monte Carlo
methods. In International Conference on Machine Learning, pages 6028–6037, 2018a.

Difan Zou, Pan Xu, and Quanquan Gu. Subsampled stochastic variance-reduced gradient
Langevin dynamics. In International Conference on Uncertainty in Artificial Intelligence,
2018b.

Difan Zou, Pan Xu, and Quanquan Gu. Stochastic gradient Hamiltonian Monte Carlo
methods with recursive variance reduction. In Advances in Neural Information Processing
Systems (NeurIPS), volume 32, 2019.

69


	Introduction
	Preliminaries and Background
	Decentralized Stochastic Gradient Langevin Dynamics
	Proof of Theorem 2
	Uniform L2 bounds between xi(k) and their average
	L2 distance between the mean and the discretized overdamped SDE
	W2 distance between the iterates and the Gibbs distribution
	Proof of Theorem 2


	Decentralized Stochastic Gradient Hamiltonian Monte Carlo
	Proof of Theorem 12
	Uniform L2 bounds on the deviation from the mean
	L2 distance between the mean and discretized overdamped SDE
	Proof of Theorem 12


	Numerical Experiments
	Bayesian linear regression
	Bayesian logistic regression
	Bayesian logistic regression with real data

	Conclusion
	Proofs of Technical Results in Section 3.1
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 11

	Proofs of Technical Results in Section 4.1
	Proof of Lemma 14
	Proofs of Lemma 15– 18

	Additional Technical Proofs
	Proof of Lemma 11
	Proof of Lemma 15
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Lemma 18
	Proof of Lemma 19
	Proof of Lemma 20
	Proof of Lemma 21
	Proof of Lemma 22

	Discussions on Gradient Noise Assumptions
	Discussions on the Lipschitz Gradient Assumption

