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Abstract

The growing energy and performance costs of deep learning have driven the community to
reduce the size of neural networks by selectively pruning components. Similarly to their
biological counterparts, sparse networks generalize just as well, sometimes even better than,
the original dense networks. Sparsity promises to reduce the memory footprint of regular
networks to fit mobile devices, as well as shorten training time for ever growing networks.
In this paper, we survey prior work on sparsity in deep learning and provide an extensive
tutorial of sparsification for both inference and training. We describe approaches to remove
and add elements of neural networks, different training strategies to achieve model sparsity,
and mechanisms to exploit sparsity in practice. Our work distills ideas from more than
300 research papers and provides guidance to practitioners who wish to utilize sparsity
today, as well as to researchers whose goal is to push the frontier forward. We include
the necessary background on mathematical methods in sparsification, describe phenomena
such as early structure adaptation, the intricate relations between sparsity and the training
process, and show techniques for achieving acceleration on real hardware. We also define
a metric of pruned parameter efficiency that could serve as a baseline for comparison of
different sparse networks. We close by speculating on how sparsity can improve future
workloads and outline major open problems in the field.
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. The supreme goal of all theory is to make the irreducible basic elements as simple and as
few as possible without having to surrender the adequate representation of a single datum
of experience.

Albert Einstein, 1933
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1. Introduction

Deep learning shows unparalleled promise for solving very complex real-world problems
in areas such as computer vision, natural language processing, knowledge representation,
recommendation systems, drug discovery, and many more. With this development, the field
of machine learning is moving from traditional feature engineering to neural architecture
engineering. However, still little is known about how to pick the right architecture to solve
a specific task. Several methods such as translational equivariance in convolutional layers,
recurrence, structured weight sharing, pooling, or locality are used to introduce strong
inductive biases in the model design. Yet, the exact model size and capacity required for
a task remain unknown and a common strategy is to train overparameterized models and
compress them into smaller representations.

Biological brains, especially the human brain, are hierarchical, sparse, and recurrent
structures (Friston, 2008) and one can draw some similarities with the inductive biases in
today’s artificial neural networks. Sparsity plays an important role in scaling biological
brains—the more neurons a brain has, the sparser it gets (Herculano-Houzel et al., 2010).
Furthermore, research has shown that a human brain starts sparse, has an early phase of
densification followed by massive pruning, and then remains at a relatively stable sparsity
level. Yet, even fully-grown brains change up to 40% of their synapses each day (Hawkins,
2017). Many of today’s engineered pruning techniques have intuitive biological analogies,
which we will mention throughout the text and discuss in Section 8. Yet, the computational
substrates (biological tissue vs. CMOS) result in very different constraints.

Artificial deep learning models are traditionally dense and over-parameterized, some-
times to the extent that they can memorize random patterns in data (Zhang et al., 2017)
or that 95% of the parameters can be predicted from the remaining 5% (Denil et al.,
2013). This may be linked to empirical evidence suggesting that over-parameterized models
are easier to train with stochastic gradient descent (SGD) than more compact representa-
tions (Glorot et al., 2011; Mhaskar and Poggio, 2016; Li et al., 2020c; Kaplan et al., 2020).
Brutzkus et al. (2018) and Du et al. (2019) show that such gradient descent techniques
provably train (shallow) over-parameterized networks optimally with good generalization.
Specifically, they show that over-parameterization leads to a strong “convexity-like prop-
erty” that benefits the convergence of gradient descent. Recent theoretical results (Allen-
Zhu et al., 2019; Neyshabur et al., 2019) seem to support these findings and indicate that
training dynamics and generalization rely on overparameterization.

This over-parameterization comes at the cost of additional memory and computation ef-
fort during model training and inference. In particular, for inference on mobile and battery-
driven devices and in cost-conscious settings, sparse model representations promise huge
savings. Concretely, sparse models are easier to store, and often lead to computational
savings. Furthermore, overparameterized models tend to overfit to the data and degrade
generalization to unseen examples. Following Occam’s razor, sparsification can also be seen
as some form of regularization, and may improve model quality by effectively reducing
noise in the model. Specifically, the framework of Minimum Description Length provides
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an attractive formulation with a Bayesian interpretation and a clear interpretation as data
compression (Grünwald, 2007), as we discuss later.

Many, especially older, works centered on improved generalization through sparsifica-
tion. Early research (Mozer and Smolensky, 1988) focused on models with tens to hundreds
of parameters also describe better interpretability of their sparsified versions. However,
with today’s models using millions or billions of parameters, it is to be seen if sparsity
improves explainability and interpretability significantly. The recent work of Bartoldson
et al. (2020) models pruning as “noise” similar to dropout or data augmentation to explain
generalization. Other recent works found that sparsity can improve robustness against ad-
versarial attacks (Guo et al., 2018; Gopalakrishnan et al., 2018; Cosentino et al., 2019; Ye
et al., 2019; Gui et al., 2019; Rakin et al., 2020; Sehwag et al., 2020; Verdenius et al., 2020;
Madaan et al., 2020; Kundu et al., 2021).

A larger group of works recently focused on improving the computational efficiency while
maintaining the model accuracy. Modern networks are computationally expensive to use —
for example, Inception-V3 (Szegedy et al., 2016), a highly-accurate object recognition net-
work, requires 5.7 billion arithmetic operations and 27 million parameters to be evaluated;
and GPT-3 (Brown et al., 2020), an experimental state of the art natural language process-
ing network, requires 175 billion parameters (350 GiB assuming 16 bits per parameter) to be
evaluated. Furthermore, training such deep neural models becomes increasingly expensive
and the largest language models already require supercomputers for training, potentially
costing millions of dollars per training run (Brown et al., 2020). Thus, it is important to
investigate sparsity during the training process to manage the costs of training.

The results we survey show that today’s sparsification methods can lead to a 10–100x
reduction in model size, and to corresponding theoretical gains in computational, storage,
and energy efficiency, all without significant loss of accuracy. If those speedups are realized
in efficient hardware implementations, then the gained performance may lead to a phase
change in enabling more complex and possibly revolutionary tasks to be solved practically.
Furthermore, we observe that the pace of progress in sparsification methods is accelerating,
such that even during the last months while we worked on this report, several new methods
that improve upon the state of the art have been published.

We aim to provide an overview of the key techniques and ideas, while covering some of
the necessary mathematical background. Due to space constraints, we keep our descriptions
brief—we always refer the interested reader to the original papers which describe the ideas
in full detail. We structure the discussion along various axes: which elements of a neural
network are sparsified, when are they sparsified, and how can they be sparsified. Further-
more, we consider sparse training and the need to re-add connections during training to
maintain a constant model complexity after sparsification. We also outline the development
of results in various areas of sparsification.

In general, the flurry of different techniques, tasks, models, and evaluation settings
causes a wide spread in the community. This leads to many incomparable results and
makes it hard to determine the state of the art and whether method A is better than
method B. Furthermore, we found that nearly every basic approach has been invented at
least twice. Blalock et al. (2020) also point at these problems and they propose a common
benchmark and methodology to go forward. We aim at summarizing the existing techniques,
and first focus on purely qualitative aspects of designing models in Sections 2–5. Then, in
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Sections 6 and 7, we explain a selection of architectures implementing combinations of those
designs including performance results. Sections 8–10 provide a general discussion, list open
problems, and conclude the overview. Section 1.1.1 provides an overview of this paper and
recommendations for various types of readers.

1.1 Overview of Model Compression Techniques

We first present the landscape of approaches to compress models in order to improve com-
putational and memory efficiency in order to understand techniques that follow a similar
goal as sparsification and can be combined with it. We differentiate between six main
techniques:

• Down-sizing models creates smaller dense networks to solve the same task. Model
distillation (Hinton et al., 2015) or Neural Architecture Search (Elsken et al., 2019)
are typical examples of techniques to find small dense models.

• Operator factorization decomposes operators, for example the matrix multiplica-
tion of dense layers, into smaller operators. For matrices, operators can be decomposed
via singular value decomposition (Sainath et al., 2013), while more general tensors
can be decomposed via tensor train decomposition (Zhao et al., 2019b; Kanjilal et al.,
1993).

• Value quantization seeks to find a good low-precision encoding for values in the
networks, such as weights, activations, or gradients. Various floating point and integer
formats can be used to encode data efficiently leading to a smaller number of bits than
standard 32 or 64 bit datatypes.

• Value compression can be used to compress model structures and values (e.g.,
weights) either with generic entropy-based methods (Han et al., 2016b) or loss-bounded
type-specific methods using correlation across values (Jin et al., 2019).

• Parameter sharing can lead to model compression by exploiting redundancy in
the parameter space. Such redundancy can also be fostered during the training pro-
cess (Plummer et al., 2020).

• Sparsification can lead to more efficient models that continue to operate in high-
dimensional feature spaces but reduce the representational complexity using only a
subset of the dimensions at a time. Practically, such methods can reduce complexity
by zeroing out subsets of the model parameters.

All of these methods lead to reduced memory requirements and all schemes, except
for parameter sharing, can also reduce the computational cost. These schemes can be
combined into an efficient inference and training approach and various surveys cover subsets
of this space in detail (Deng et al., 2020; Choudhary et al., 2020; Cheng et al., 2020).
In this paper, we focus on the most complex and, in our view, most powerful of those
techniques: sparsification, also known as “pruning” in some contexts. Reed (1993) provides
an overview of early sparsification techniques until 1993—since then, the literature has
evolved significantly. A second “AI winter” in the late 1980s and early 1990s appears to
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have significantly reduced interest in and funding for artificial intelligence research and
development (Russell and Norvig, 2020, Sec. 1.3), (Nilsson, 2009, Sec. 24.4), and activity in
neural networks subsequently waned for nearly two decades. Deep learning (re-)started its
success story around 2012 with convolutional neural networks for image recognition. Since
then, more than 266 papers, comprising 4,089 pages focusing on ideas and techniques for
sparsity in deep networks appeared, which we categorize and summarize below. We aim
to provide an intuitive and comprehensive overview of the most important ideas. Yet, at a
compression rate of 97.9% and more than 420 citations, we almost surely miss specific ideas
or works.

Fig. 1 shows the volume of scientific publications on various aspects of sparsity over the
last three decades. The first papers in the late 80’s and 90’s focus on very small models and
their generalization and interpretability properties. The whole field of neural networks was
rather inactive during the early 2000’s until the breakthroughs in image recognition circa
2012, followed by a resurgence of interest in optimization of sparse networks. During the
late 2010’s, numerous accelerators and optimization techniques were designed to specifically
aim at optimizing sparse deep neural networks. The meaning of the labels will be clarified
later in this paper.
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Figure 1: Literature development over time (our paper was finalized at the end of 2020).

One of the main drivers behind the massive progress in deep learning between the 90’s
and today was the nearly 1 million times increase in computational capability delivered by
Moore’s law, Dennard scaling, and architectural specializations with GPUs and specialized
machine learning accelerators. With the ending of those scaling laws and specialization
opportunities, these developments will hit their natural limits and progress may stall. We
see sparsity as potentially achieving a second significant “jump” in computational capability
as, even with current methods, it promises to increase computational and storage efficiency
by up to two orders of magnitude.
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1.1.1 Document structure

We aim to provide a comprehensive overview to a diverse set of readers. Section 1.2 in-
troduces the mathematical background for the different sparsification approaches; it can
be skipped by experienced readers, as well as readers that are mostly looking for intuition.
Section 2 provides an executive summary of how different pruning schemes work. Sections 3
and 4 dive deeply into different schemes for removal and growth (weight addition) during
training and pruning while Section 5 describes details of various ephemeral (per example)
sparsification schemes. We consider examples of pruning for full convolutional and trans-
former architectures in Section 6. Section 7 overviews various approaches for improving the
performance of sparse models, ranging from software to specialized hardware implementa-
tions. In Section 8, we summarize and extrapolate the most significant observations in the
field and we provide ten research challenges in Section 9.

If your goal is to get a quick executive overview of the field, then we recommend studying
Sections 2 and 8 while skimming Sections 3, 4, 5, and 7, especially the overview figures and
tables therein. If your main interest lies in the hardware engineering aspects, then we
recommend to at least get the executive overview mentioned before and study Section 7
in detail. Similarly, if you are a neural network architect looking for sparsification best
practices, we recommend the executive overview in combination with details in Section 6 and
the references therein. Researchers in the field may want to examine the whole document
carefully to get a deep overview of all aspects and focus efforts especially on the challenging
problems in Section 9. Finally, readers can get a view of each section from the first 1–2
paragraphs to decide whether to dive deeper into its subject.

1.2 Background and Notation

We start by providing some background on deep learning inference and training to introduce
our notation. Experienced readers may wish to skip to the next section. Deep learning
models (or “networks”) consist of a graph of parameterizable layers (or “operators”) that
together implement a complex nonlinear function f . We consider a general supervised
learning setting, where we are given a training set, composed of pairs of input examples
x ∈ X and outputs y ∈ Y. The goal is to learn the function f : X 7→ Y, parameterized
by weights w ∈ Rd, such that given input x, the prediction f(x; w) is close to y. We
usually assume that X represents a vector of features describing an element drawn from
a true input distribution D that captures the characteristics of typical inputs but cannot
be measured or described concisely (e.g., cat pictures). Applying the function f(x; w) is
performed by transforming the input x layer by layer to generate the output - this process
is called inference, or in a training setting the forward pass.

The process of finding a network to solve a specific task can be decomposed into two
phases: (1) design or engineer the network structure, and (2) train the network’s weights.
The network structure is traditionally designed manually and not changed during the train-
ing process. Training iterations start with a forward pass, which is similar to inference but
stores the inputs of each layer. The quality of the result f(x; w) of the forward pass is
evaluated using a loss function ` : Y × Y 7→ R to estimate the accuracy of the prediction,
`
(
y, f (x; w)

)
, where (x,y) is the pair of samples. Potential loss functions include the L2

distance or the cross-entropy between the predicted output f (x; w) and the expected one
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y. The following backward pass propagates the loss (“error”) from the last layer in the
reverse direction. At each learnable (parametric) layer, the backward pass uses the adjoint
of the forward operation to compute a gradient g and update the parameters (“weights”)
using a learning rule to decrease ` (for the current example pair). This method is repeated
iteratively for many different examples drawn from D until the function f(x; w) provides
the desired accuracy. This accuracy is typically evaluated on a separate set of examples
unseen during training in order to measure the generalization capabilities of the model to
unseen examples drawn from D.
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Figure 2: Training, Inference, and Sparsification examples.

We now introduce some further notation and mathematical background, which will be
useful to understand some of the following pruning schemes. Parts of this section follow the
notation and general approach of Molchanov et al. (2017) and Singh and Alistarh (2020).

Let us consider the simple case of a multilayer perceptron shown in Fig. 2a with the
typical input layer x0, two hidden layers x1,x2, and output layer x3, with rectified lin-
ear units (ReLU) σR(x) := max (0, x) as activation functions. We denote the number of
neurons in layer i as |xi|. The forward pass can be written as a series of matrix-vector
products f(x0; w) = σR(w3 · σR(w2 · σR(w1x0 + b1) + b2) + b3), where x0 is the input
(“feature”) vector. Here, the network function f(x0; w) is parameterized by weight matri-
ces w1 with dimensions |x0|×|x1|, w2 with dimensions |x1|×|x2|, and w3 with dimensions
|x2| × |x3|; and bias vectors bi with dimensions |xi| for layer i (we usually omit biases for
brevity). Subscripts identify the layer—we omit them for equations that apply to all layers.
Sometimes, we treat the concatenation of all weight matrices as a vector—this will be clear
from the context. It is already apparent that the O(|xi| · |xi+1|) storage and compute may
overparameterize the model for a large number of neurons.

Fig. 2b shows a version of Fig. 2a where the network has been sparsified. It shows that
the third input feature and all its adjacent weights are removed (grayed out). Furthermore,
two hidden neurons and their weights as well as various other weights have been removed.
Removing neurons or input features corresponds to removing rows or columns in the layer
weight matrices while single weights remove elements of the matrices.

1.2.1 The Deterministic Formulation for Training

From the optimization perspective, training a deep neural network can be seen as being
equivalent to minimizing a given loss function over the training data. Specifically, in the
deterministic formulation, we can define the (empirical) training loss L as the average loss

7



T. Hoefler et al.

over training examples, i.e., L(w) = 1
N

∑N
n=1 `

(
y[n], f (x[n]; w)

)
. In the following, we fix

d ≥ 1 to be the total number of parameters in the model, and we will omit the indexing by
sample when clear from context. The loss function L will be a d-dimensional function over
the parameters L : Rd → R.

The most common training scheme is stochastic gradient descent (SGD), which is based
on a first-order approximation to the loss function L. This method utilizes automatic
differentiation (AD) to compute the derivative (“gradient”) of the loss with respect to the
weights in a layer g1 = ∂L

∂w1
and g2 = ∂L

∂w2
at the specific example x. Reverse mode

(a.k.a. adjoint) AD stores the intermediate results of the forward pass and applies the loss
function L that returns an error (“distance”) with respect to the desired model output. This
can be done by applying the chain rule to the compound function f(x; w) and propagating
the error backward through all operators. For example, the gradient of the second layer is
g2 = ∂L

∂w2
= ∂L

∂e2
∂e2
∂w2

. The gradients are then used with a learning rule functionR (e.g., SGD,

Adam, or RMSProp) to update the weights for the next iteration: w(i+1) = w(i)+R(g,w(i)).

The Jacobian matrix The Jacobian of an arbitrary function F : Rd → Rm is the matrix
of first-order partial derivatives of a vector-valued function with respect to its inputs. For
example, the Jacobian matrix for the loss function L : Rd → R with respect to the weights
is a 1 × d matrix of partial derivatives with respect to each individual weight. If we write
w1 for the first individual weight and w1 for the set of weights in the first layer (similarly

for gradients), then the Jacobian matrix is defined as J = ∇wL =
[
∂L
∂w1

∂L
∂w2
· · · ∂L∂wd

]
=

[g1g2 . . . gd]. More generally, the Jacobian also arises when we consider the matrix of partial
derivatives for a specific layer’s outputs with respect to its inputs. Intuitively, the Jacobian
matrix encodes the rate of change of a given vector-valued function’s outputs with respect
to its inputs.

The Hessian matrix For a twice-differentiable loss L, the Hessian matrix is the matrix
of second-order derivatives of the loss function with respect to the weights, mathematically
expressed as H = ∇2

wL. Intuitively, its role is to express the local geometry (“curvature”)
of the loss around a given point w. Together with the first-order (gradient) term, this
can lead to a faithful quadratic (“second-order”) approximation of the function in a small
neighborhood δw around the point w. More precisely, the second-order approximation of
the function, which includes the first-order (gradient) term and the second-order (Hessian)
term, is also referred to as the local quadratic model for the loss. Following the Taylor
expansion, where we assume that the higher-order terms are negligible, this leads to the
approximation

L(w + δw) ≈ L(w) +∇wLδw +
1

2
δw>H δw.

For clarity, note that here we take w to be a column vector, which implies that each term
in the above expression is a scalar.

1.2.2 The Probabilistic Formulation

The above deterministic formulation inherently assumed a deterministic “correct” output
label corresponding to each input example. However, it is just as reasonable to consider
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that each input example x has some probability of being assigned a given label y, rather
than the output being fixed.

We can formalize this intuition following Martens and Grosse (2015). Given input
examples x ∈ X and outputs y ∈ Y, we assume that input vectors x are drawn from
a distribution Qx, and that the corresponding outputs y are drawn from a conditional
distribution Qy|x, leading to an underlying joint probability distribution defined as Qx,y =
QxQy|x. We will assume that the marginal probability distribution over input samples Qx

is well-approximated by the empirical distribution Q̂x over the inputs in our training set.
Intuitively, this means that we trust the sampling distribution used to generate the input
dataset to be representative of the true distribution.

In this context, the goal of learning is to minimize the distance between the target joint
distribution Qx,y, and a learned joint distribution Px,y(w), where w is the model. It is
standard for this distance to be measured in terms of the Kullback-Leibler (KL) divergence
between distributions. Alternatively, we can cast this as the task of predicting the output
y given an input x, i.e., training a model w to learn the conditional distribution Py|x(w),
where Py|x(w) is the probability of a given output given a certain input, which should be
close to the true distribution Qy|x. In the following, we omit the explicit dependency of Py|x
on w when clear from context. In this formulation, we can obtain an equivalence between
the standard loss we considered above and the negative log-likelihood of the probability
density function corresponding to the output distribution of the model with parameters w,
which we denote by pw. Formally, for a sample (xnyn) in the probabilistic formulation, we
have:

`
(
y, f(x; w)

)
= − log

(
pw(y|x)

)
.

The Fisher Matrix Intuitively, the role of the Fisher matrix is very similar to that of
the Hessian matrix, but in the probabilistic setting, where our notion of distance is the KL
divergence between the model’s output distribution and the true output distribution. More
precisely, assuming the probabilistic view, the Fisher information matrix F of the model’s
conditional distribution Py|x is defined as

F = EPx,y

[
∇w log pw(x,y)∇w log pw(x,y)>

]
. (1)

It can be proved that the Fisher matrix in fact satisfies F = EPx,y

[
−∇2

w log pw(x,y)
]

.

Matching the original intuition, we can express Py,x = QxPy|x ≈ Q̂xPy|x, where recall

that Q̂x stands for the empirical distribution over the inputs in our training set. Then, it
is known (Ly et al., 2017) that, if the model’s output conditional distribution Py|x matches

the conditional distribution of the data Q̂y|x, then the Fisher and Hessian matrices are in
fact equivalent. Concretely, this means that, if w is an accurate set of parameters for the
model, we can approximate the Hessian matrix at w with the Fisher matrix. In turn, this
is useful since the Fisher matrix can be more efficiently approximated, as we will see below.

The Empirical Fisher In practical settings, it is common to consider an approximation
to the Fisher matrix introduced in Eq. (1), where we replace the model distribution Px,y with

the empirical training distribution Q̂x,y. Then we can simplify the expression of empirical
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Fisher F̂ as follows,

F̂ = EQ̂x

[
EQ̂y|x

[
∇ log pw(y|x)∇ log pw(y|x)>

]] (a)
=

1

N

N∑
n=1

∇` (yn, f (xn; w))︸ ︷︷ ︸
∇`n

∇` (yn, f (xn;w))
>
,

where (a) uses the equivalence of the loss between the probabilistic and deterministic set-
tings. In the following discussion, we will use a shorthand `i to denote the loss for a
particular training example (x[i],y[i]), and refer to the true Fisher when describing the
matrix defined in Eq. (1). Thus, the above formula describes a fairly popular approxima-
tion, which equates the Fisher matrix with the empirical Fisher. We do note however that
this approximation does not always hold: for a more detailed exposition on various aspects
of this topic, we refer the reader to Martens and Grosse (2015); Ly et al. (2017); Kunstner
et al. (2019); Singh and Alistarh (2020).

1.2.3 The Bayesian Formulation

We now provide a brief primer on Bayesian inference, which will be useful to understand
the variational pruning approaches presented in the later sections. Our presentation fol-
lows Molchanov et al. (2017).

We start from the probabilistic formulation above, in which, given a dataset S =
{(x[i], y[i])}Ni=1 our goal is to identify a set of parameters w which approximates the “cor-
rect” distribution of outputs p(y[i]|w,x[i]) for any given input x[i]. In Bayesian learning,
it is assumed that we have some prior knowledge on w, in the form of a prior distribution
over models, p(w). After observing some of the data, we can form the posterior distribution
by following Bayes’ rule

p(w|S) = p(S |w)p(w)/p(S).

This process is called Bayesian Inference. However, computing the posterior distribution
is often not possible in practice, as it requires computing the marginal likelihood p(S) =∫
p(S|w)p(w)dw, which is an intractable integral for most complex models. Therefore,

certain simplifying assumptions are usually made, to enable an efficient approximation of
the posterior distribution.

One specific technique for Bayesian Inference that relies on such simplifying assumptions
is Variational Inference. Here, the posterior distribution p(w|S) is approximated by a
parametric distribution qφ(w). The quality of this distributional approximation is measured
in terms of the KL divergence DKL(qφ(w)‖p(w|S)), and the task of finding p(w|S) is
translated into an optimization problem in the space of variational parameters φ. In this
context, the optimal value of φ can be found by maximizing the following variational lower
bound of the marginal log-likelihood of the data:

L(φ) =

N∑
i=1

Eqφ [log p(y[i]|x[i],w)]−DKL(qφ(w)‖p(w)). (2)

The first term is called the expected log-likelihood, which is often denoted by LS(φ),
representing the model’s loss, whereas the second term acts as a regularizer, enforcing that
the parametric distribution qφ(w) should stay close to the prior p(w).
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One important issue with the above framework is that, for complex models, optimizing
the above variational lower bound is intractable, due to the integration required for com-
puting LS(φ). Instead, it is common to estimate LS(φ) by sampling, and optimize the lower
bound stochastically. A series of technical advances generally known as “reparametrization
tricks” allow to obtain unbiased, differentiable, minibatch-based Monte-Carlo estimators
of the expected log-likelihood term above for large-scale models.1 We refer the interested
reader to (Kingma and Welling, 2014; Rezende et al., 2014; Kingma et al., 2015; Molchanov
et al., 2017) for details.

Variational Dropout To illustrate this technique, we will use the same notations as
Molchanov et al. (2017) and consider a single fully-connected layer with I input neurons
and O output neurons before the non-linear activation function. Taking M to be the
minibatch size, we denote the M ×O output matrix by B, the M × I input matrix as A,
and the I ×O layer weight matrix as W . Notice that B = AW .

Dropout (Hinton et al., 2012) is a popular regularization method for neural networks,
which injects multiplicative random noise Ξ to the layer input A, at each iteration of the
training procedure. Mathematically,

B = (A� Ξ)W,

where the entries of Ξ denoted by ξmi follow a given distribution p(ξ). The original variant
of dropout used a constant parameter p ∈ (0, 1) called dropout rate, and drew the random
variables as ξmi ∼ Bernoulli(1−p). Srivastava et al. (2014) reported that Gaussian dropout,
where the noise is drawn from a continuous distribution ξmi ∼ N (1, α = p

1−p), works as
well as the discrete counterpart. Interestingly, this procedure has a non-trivial Bayesian
interpretation, as was shown in Kingma et al. (2015).

Specifically, applying Gaussian noise ξmi ∼ N (1, α) to a weight wij is equivalent to
sampling the weight’s value from a parameterized normal distribution centered at wij , de-
noted as q(wij | θij , α) ∼ N (wij |θij , αθ2

ij). Thus, instead of viewing each wij as a parameter,
each weight becomes a random variable parameterized by θij , which controls the weight’s
variance. Following this interpretation, Gaussian Dropout training can be seen as equiva-
lent to standard stochastic optimization of the expected log-likelihood over the parameters
θij , in the special case where we draw a single sample of the weights W ∼ q(W |θ, α) per
minibatch to estimate the expectation, and where we use a log-uniform prior distribution
over the weights.

Practically, Variational Dropout provides a way to train the dropout rate α by optimiz-
ing the variational lower bound we introduced above. Interestingly, however, the dropout
rate becomes a variational parameter to be optimized, and not a simple hyper-parameter.
This allows one to train individual dropout rates for each layer, neuron, or even weight.
While the basic technique was introduced by Kingma et al. (2015), it was Molchanov et al.
(2017) who first investigated the effects of training individual dropout rates, and showed
that Variational Dropout can effectively sparsify DNNs. We discuss this latter paper and
its follow-up work in Section 3.7.

1. The main idea is to represent the parametric noise qφ(w) as a deterministic differentiable function
w = g(φ, ε) of some non-parametric noise ε ∼ p(ε). This trick allows one to obtain an unbiased estimator
of the gradient of the log-likelihood term, ∇LS(φ).
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1.2.4 Convolutional Layers as Designed Sparsity

Particularly common in deep learning are convolutional operators. Convolutions perform a
weighted average over local regions of neurons, incorporating local information and reducing
the number of weights at the same time. Convolutional Neural Networks (CNNs) have been
proven to be highly successful for image classification (He et al., 2016), segmentation (He
et al., 2017), and many other tasks. The convolution operator itself and its variants can be
seen as a sparse version of fully connected layers (Fig. 3). Instead of connecting every pair

Sparsity

Weight

Sharing

Apply

Fully Connected Locally Connected Convolutional 

Apply

Sparse Convolutional 

SparsificationDesigned

Figure 3: One-dimensional convolutional operators as sparse fully-connected operators for
a single input and output channel.

of neurons in the input and output layers, we prune the connections to contain only local
surroundings based on the operator’s convolution kernel size, strides, padding, and other
factors such as dilation. The new operator contains a unique filter for each output neuron,
also known as a Locally Connected Network (LCN) (Ngiam et al., 2010), which are used for
specializing filters for different spatial regions (Grönquist et al., 2020) as shown in the 2nd
part of Fig. 3. Olshausen and Field (1996) even argue that sparsity is essential property to
encode vision operations.

In order to provide translational equivariance, these operators are compressed yet again
by way of weight sharing, reusing the local filters in each output neuron as shown in the 3rd
part if Fig. 3. In a typical convolutional layer, the input is divided into Cin “channels” and
the output into Cout channels or “features”, multiplying and summing each input channel
with a unique set of Cout filters. This yields the formula for the convolutional operator:
oj,k,l =

∑Cin−1
m=0

∑Ky−1
ky=0

∑Kx−1
kx=0 xm,k+ky ,l+kx ·Wj,m,ky ,kx for a filter size Kx × Ky. Fig. 3

shows only one input channel and one output channel for simplicity. As we will discuss in
the following, further sparsity can be introduced in CNNs, as well as other DNN classes as
shown in the last part of Fig. 3.

2. Overview of Sparsity in Deep Learning

The utility of sparsification lies in two very different areas: (1) improved performance for
inference and/or training and (2) improved generalization and robustness of the model.
We now provide a general overview of sparsification in deep learning, starting with an
observation of typical sparsity-accuracy tradeoffs. We then discuss sparse storage formats,
a taxonomy of element removal, and sparsification schedules. All discussions apply to both
inference and training.
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2.1 Generalization

Generalization performance is one of the most important aspects of a deep learning model.
It measures how well the model performs for unseen data drawn from the same distribution
as the training data but was not used for training. Some sparsification schemes follow
Occam’s Hill (Rasmussen and Ghahramani, 2000), shown as a sketch (green line) in Fig. 4:
As we start to sparsify, initially the accuracy increases due to the reduction of learned
noise. This phenomenon has been observed both in NLP (Michel et al., 2019) and computer
vision (Frankle and Carbin, 2019) tasks, see for example Fig. 22b, CoLA task. Intuitively,
the smaller model forms a stronger regularizer forcing the learning algorithm to “focus”
on more important and general aspects of the model (Part A in the figure). This effect
may be less pronounced in large-scale deep learning models. Then, the model reaches
an often extended range of sparsities where the performance remains stable and maybe
slightly decreases (Part B). Eventually, with high sparsity, the quality quickly degrades (Part
C). Improved generalization has been a central topic on the early works on sparsification,
before somewhat overparameterized deep learning models became a standard tool. Yet,
sparsification continues to play a central role in training generalizable models using dropout
(see Section 5.2). Later works focused mainly on the computational performance aspects
that we will discuss next.

Accuracy

Performance

A B C

Baseline Accuracy

Figure 4: Sketch of test accuracy vs. sparsity demonstrating Occam’s Hill.

If we observe the computational performance of the model, we often see a curve similar
to the (cartoon) red line in Fig. 4: initially, for low sparsity, performance grows slowly due
to overheads in storing sparse structures and controlling sparse computations. Then, for
moderate and high sparsity, we see a sustained growth of performance before it usually
levels off at extremely high sparsities where storage and control overheads dominate. For
most practical purposes and sparsities, the performance increases with growing sparsity, the
area of diminishing returns only applies to extreme sparsities which deep learning models
have yet to reach. In general, achieving highest performance at a specific sparsity level is
complex—most techniques to store and exploit sparsity are only efficient within a limited
sparsity interval and/or distribution of non-zero elements.
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2.2 Performance and model storage

Sparsification removes nonessential elements to reduce the size of the model as well as
the operations to evaluate it. In some cases, for example, when entire neurons or filters
are removed, we can use associativity and distributivity of linear algebra to transform a
sparsified structure into a smaller dense structure. However, if elements of a weight matrix
are removed without structural constraints, we need to store the indices of the remaining
non-zero elements.

The storage overheads for indexing m non-zero elements in a space of size n vary from
bitmaps with n bits to absolute coordinate schemes using m log(n) bits. Many different
formats cover the whole space and the optimal scheme depends on the sparsity, the structure,
and the required access patterns (e.g., streaming, transposed, or random access). More
generally, finding space-optimal indexing schemes falls into the class of integer compression
problems and hundreds of sparse matrix indexing techniques exist (Pooch and Nieder, 1973).
Here, we focus on a small illustrative subset.

0% 10% 70% 90% 99.99999%99.9%
dense low sparsity medium sparsity moderate sparsity high sparsity extreme

bitmap 
[010011000001|2345] 

runlength / delta
[1|2,2|3,0|4,5|5]

dense
[0,2,0,0,3,4,0,0,0,0,0,5]

compressed sparse row / column
[1] [1|2,2|3,0|4,5|5]

coordinate offset 
[1|2, 5|3, 6|4, 12|5]

Figure 5: Simple sparse storage formats. The green text shows the same example vector.

Let us assume we have to store the positions of m elements, each of size k bits in a space
of n elements, i.e., m ≤ n. Fig. 5 overviews a sketch of the schemes described below and
shows a range of sparsity where they are most beneficial. The exact scheme depends on
many architectural factors and also the exact size of each weight. The simplest scheme stores
one bit per element in a bitmap (BM) that stores a map with n bits, each bit indicating
whether an element is present. It is efficient for relatively dense structures and requires o = n
additional bits. The next simpler scheme, coordinate offset (COO), stores each non-zero
element together with its absolute offset. This scheme lives at the other end of the sparsity
spectrum and is most efficient for hyper-sparse structures because it requires o = mdlog2 ne
additional bits. This offset scheme can be extended with runlength encoding (sometimes
also known as delta coding) where only the difference between two elements is stored.
If the maximum difference between the indices of two neighboring elements after sorting
by index is d̂, then those can be encoded with o = mdlog2 d̂e bits. If the offsets vary
highly, then we could use a zero-padded delta offset scheme where we reduce the bit-
width to dlog2 d̄e. Here, d̄ < d̂ represents the expected difference—for all elements that are
larger than d̄ apart, we add zero values in d̄ intervals. The overhead now depends on the
distribution of distances and this scheme works best when little padding is necessary.

In the high-sparsity regime, schemes known from scientific and high-performance com-
puting such as compressed sparse row (CSR), compressed sparse column (CSC), and
more general fiber-based schemes can store indices of matrices and tensors, respectively. We
exemplify these dimension-aware schemes using CSR: CSR represents the indices in an
n = nc × nr matrix using column and row index arrays. The column array is of length m
and stores the column indices of each value in dlog2 nce bits. The row array is of length
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nr and stores the offsets of each row in the value array in dlog2me bits. The overhead is
o = mdlog2 nce+ nrdlog2me and other dimension-aware schemes are similar.

Let us consider an example with nc = nr = 104 → n = 108, k = 8 and m ranging from
100–0%. The storage overhead for bitmaps is lowest for rather dense representations. No
sparse storage scheme offers benefits for less than 10% sparsity. The bitmap index fares
best between 10–70% sparsity and the delta encoded scheme (assuming d̂ < 1000) is best
for sparsity higher than 80%. The offset index and dimension-aware schemes could work
best in very high sparsity and hyper-sparse environments with very high d̄ but it is unclear
if such high sparsity is to be expected for deep models. The highest sparsity reported in
the literature to date is up to 99.9% (Lin et al., 2020).

2.3 What can be sparsified?

We now provide a summary of which elements of a deep learning model can be sparsi-
fied. Fig. 6 shows an overview. First, we differentiate between model (also structural)
and ephemeral sparsification. Model sparsification changes the model and can be consid-
ered as a form of neural architecture search (NAS). NAS summarizes a class of methods to
automatically find better deep learning models and Elsken et al. (2019) provide an overview.

Sparsification

Model Sparsity
(per model)

Ephemeral Sparsity
(per example)

Weights Neurons Neuron-like
(filters/channels/heads)

Dropout
(Activations/Weights)

Gradients Errors Optimizer 
State

unstructured
(e.g., fine-grained)

structured
(e.g., blocked/strided)

affects inference + forward pass

structured sparsity affects training
gradient-based optimization

𝒆𝟏𝒈𝟏

Conditional computation
(route each example through a 
Different sparse subnetwork)inference + forward pass

Activations
(e.g., ReLU)

Figure 6: Overview of DNN elements to sparsify.

Model sparsification changes the model but does not change the sparsity pattern across
multiple inference or forward passes. The two main elements, weights and neurons, can be
sparsified. Weight sparsification “is very fine-grained and makes pruning particularly pow-
erful.” (Prechelt, 1997). Yet, if we sparsify individual weights, the resulting model may be
unstructured and we may need to store indices as described before. This adds overheads for
index structures and the different computational structure leads to less efficient execution on
hardware that is optimized for dense computations. Thus, approaches for structured weight
sparsification have been developed to reduce indexing overheads and improve efficiency of
execution. These approaches typically store contiguous blocks of the weights instead of
single elements. We overview model sparsification techniques in Sections 3 and 4. Elements
in specialized layers, such as filters in convolutional layers or heads in attention layers are
similar to neurons in the context of pruning and can be removed as well. Neuron, filter,
and head sparsification reduces simple parameters of the model, can shrink it substantially,
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and results in a new model that is essentially dense (i.e., can efficiently be executed on the
same hardware as the original model) (Sharma et al., 2017).

Ephemeral sparsification is a second class of sparsification approaches—it is applied dur-
ing the calculation of each example individually and only relevant for this example. The
most obvious structural sparsification applies to activations—in fact, the well-known ReLU
and SoftMax operators lead to a natural sparsification. Both set values to zero using a fixed
threshold (rounding in case of SoftMax). One can also consider random activation spar-
sity as in dropout (Srivastava et al., 2014) (see Section 5.2) or top-k sparsification as used
in (Makhzani and Frey, 2015; Ahmad and Scheinkman, 2019). A second set of ephemeral
sparsity elements are related to the gradient-based training values. The back-propagation
phase of SGD uses activations and errors to update the weights. Both can be sparsified to
only update weights partially (see Section 5.3). This can have a similar effect to ephemeral
sparsification in the forward pass and lead to significant performance improvements, es-
pecially in distributed settings. An option here is to delay the communication/update of
small local gradient contributions until they are significant (Renggli et al., 2019). Another
important class of ephemeral techniques is conditional computation, where the model dy-
namically decides a sparse computation path for each example. We overview ephemeral
sparsification techniques in Section 5.

2.4 When to sparsify?

While ephemeral sparsity is dynamically updated for each example and configured with a
small number of parameters during inference and training, model sparsity follows a more
complex NAS-like procedure. Model sparsity is thus often trained with a pruning schedule.
We differentiate three different classes of training schedules illustrated in Fig. 7. Each of
those schedules could be used iteratively in an outer train-sparsify loop (Sun et al., 2015).
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T iterations

train then sparsify sparsify during training
(including iterative sparsification)

sparse training
(including regrowth)

Figure 7: Overview of structural sparsification schedules.

2.4.1 Sparsify after training

The train-then-sparsify is the most common schedule type and uses a standard dense
training procedure that is run to convergence in T iterations (green area in Fig. 7) followed
by a sparsification of the fully trained model. Beginning from the earliest works (Janowsky,
1989), the model is typically re-trained (“fine tuned”) after the sparsification to reach
significantly higher accuracy (yellow area in Fig. 7). This schedule type aims at improving
performance and/or generalization during inference. It provides the best baseline for model
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quality because we can always compare the sparsified model quality with the original dense
model. Furthermore, since we are starting from a dense model, training does not change
such that existing hyperparameter settings and learning schedules can be re-used. Some
early works even show that pruning before the model has converged can reduce the final
accuracy (Engelbrecht and Cloete, 1996).

2.4.2 Sparsify during training

The sparsify-during-training schedule starts sparsification of the model before it has
been trained to convergence and is usually cheaper than the train-then-sparsify schedule.
Schedules that gradually sparsify during training may follow a pruning schedule that also
corrects for approximation errors due to premature pruning in early iterations. Such schemes
often train the dense model for some iterations before sparsification starts and end with a
sparse trained model. Early work (Finnoff et al., 1993) advocates a fixed schedule to sparsify
during the training before the model converges to improve the quality of solutions using early
stopping. Zhu and Gupta (2017) report an extensive study of various pruning schedules
and their hyperparameters. In general, sparsifying during training already reaps potential
performance benefit of sparsity early on but could lead to less efficient convergence and is
often more brittle to configure via hyperparameters (Ghosh and Tumer, 1994). Furthermore,
this approach needs to hold the dense model in memory at the beginning of the operation
and thus does not enable the use of smaller-capacity devices.

Some methods take advantage of this limitation and do not reduce the memory con-
sumption during the training process. Instead of deleting pruned weights and gradients,
they use binary masks to determine the presence or absence of weights and update even
masked weights during backpropagation to enable better weight regrowth/selection (see
Section 5). For example, Wortsman et al. (2019) and Lin et al. (2020) keep the full weights
around to implement an efficient search through different sparse architectures by turning
weights on and off during training.

The sparsification schedule, i.e., how fast to prune how many elements, is of central
importance to this method. Prechelt (1997) observes that a fixed pruning schedule can
reduce the generalization ability of the network substantially. He also observes that the
distribution of weight values during training is roughly normal with the mean and variance
increasing during the process. Pruning reduces the variance and raises the mean, then dur-
ing early training the variance increases and the mean decreases before training proceeds
as before with increasing mean and variance. Prechelt uses the generalization loss to char-
acterize the amount of overfitting and adjust the pruning rate dynamically during training.
The pruning rate increases with growing generalization loss and saturates at a maximum
value. This method demonstrates a significant gain in generalization ability for well-tuned
static-dynamic schedules.

Another approach, Iterative hard thresholding (IHT), is a technique where training
schedules of dense and sparse iterations are combined (Jin et al., 2016). IHT iterates the
following two steps: (1) prune all but the top-k weights by magnitude (implements an L0

constraint, see Section 3.6) and fine-tune the sparsified network to the task for s iterations,
and (2) re-enable the pruned weights and train the dense network for d iterations. The outer
loop is running for i iterations with a total of si sparsified and di dense training steps. The
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first step regularizes the network while the second step relaxes the optimization to “learn
better representations” (Jin et al., 2016). Han et al. (2017) use a similar scheme where
they run three steps during training: (1) (traditional) dense training to convergence, (2)
magnitude-pruning followed by retraining, and (3) dense training. All steps are performed
for multiple iterations but the overall scheme is not repeated. They show that this dense-
sparse-dense scheme leads to significantly higher generalization performance. Carreira-
Perpinan and Idelbayev (2018) use a similar scheme of sparsification followed by training.
They only re-enable a subset of the weights while others are masked out by a learned mask
using a penalty term. They argue that magnitude-based pruning (see Section 3.2) arises
naturally in their scheme but the “soft pruning” approach selects better weights allowing
for higher sparsity. All those schemes aim to improve the “learnability” of the model by
supporting the standard stochastic gradient descent (SGD) algorithm.

SGD training dynamics and sparsity Similarly to reduced neuroplasticity as biolog-
ical brains age (Jones et al., 2006), studies of deep neural networks argue that the impor-
tance of elements is determined relatively early on in training. Specifically, Shwartz-Ziv
and Tishby (2017) claim that SGD-based training of deep neural networks happens in two
phases: (1) a drift phase that quickly minimizes the empirical risk (training error), and
(2) a diffusion phase that compresses the internal representation. Similarly, Achille et al.
(2019) describe two phases of training where the first phase discovers the important con-
nections and their topology between layers and the second phase fine-tunes this relatively
fixed pattern. While these theories remain debated in the community, much empirical evi-
dence supports the phased view. Michel et al. (2019) show that the most important heads
in transformers (see Section 6.2) are identified in the first 10 epochs. Ding et al. (2019b)
observe that identifying weights for later elimination happens early in the training process
and weights are rarely re-added late in the process. We call this phenomenon early structure
adaptation in the following.

You et al. (2020) and Golub et al. (2019) directly utilize early structure adaptation
during the training process where they freeze the sparsity pattern after some iterations.
You et al. (2020) propose to use low-cost approximate training to identify the best sparse
structure before starting the actual training of the network. Their work is inspired by Li
et al. (2020d), who show that a large learning rate in earlier iterations helps the model to
memorize easy to fit patterns that are later refined. Specifically, they show that for struc-
tured pruning of feature maps in convolutional networks, quick training at low precision
and large learning rates leads to a good approximation of the sparse network structure. In
general, early structure adaptation is reflected in learning rate schedules and most sparsi-
fication schemes use large learning rates for denser models and drastically reduce the rate
with growing sparsity.

Beyond early structure adaptation, it has been observed that sparsity may naturally
emerge from the optimization process. Yaguchi et al. (2018) and Mehta et al. (2019) find
that adaptive optimizers, such as Adam, when used in combination with methods like L2

regularization or weight decay, induce filter-level sparsity in CNNs with ReLU activations.
Interestingly, this behavior appears not to occur when using standard SGD or momentum.

18



Sparsity in Deep Learning

2.4.3 Sparse training

The fully-sparse training schedule starts with a sparse model and trains in the sparse
regime where it may remove and add elements during the training process. Narasimha
et al. (2008) showed early that this scheme can even outperform separate growing or pruning
approaches for neuron-sparse training of simple MLPs. Evci et al. (2020a) achieve ResNet-50
performance for a fully sparse training schedule that is comparable to a fully-dense training
but uses additional iterations. Weight-sparse training often uses complex hyperparameter
settings and schedules. However, it could enable training of very high-dimensional models
whose dense representations would simply not fit into the training devices.

When training sparse networks, one should consider the impact of different initialization
schemes. Standard schemes, defined for dense networks normalize the output of each neuron
to zero mean and unit variance (Glorot and Bengio, 2010; He et al., 2015). If such densely
initialized networks are now sparsified, then this assumption ceases to be true (Evci et al.,
2020b). This effect is mitigated by batch normalization (Ioffe and Szegedy, 2015) and skip
connections (He et al., 2016). Evci et al. (2020b) and Liu et al. (2019b) propose initialization
schemes designed for sparse networks.

We differentiate between static and dynamic sparsity during sparse training. Dy-
namic sparsity combines pruning and regrowth of elements during the training process,
while static sparsity prunes once before the training starts and does not update the model
structure during training.

Dynamic sparsity during training We start with schemes that iteratively prune and
add (regrow) elements during the training phase. A general overview of pruning techniques
is provided in Section 3 while growth techniques are described in Section 4. Dynamic
sparse training can use any combination of those schemes—we highlight some successful
approaches below.

The number of elements and the sparsity does not necessarily have to remain constant
throughout training. SET (Mocanu et al., 2018), for example, combines magnitude prun-
ing and random regrowth to maintain a balanced parameter budget throughout training.
NeST (Dai et al., 2018a), uses a training schedule that is inspired by the development of
the human brain (Hawkins, 2017). It uses three stages to arrive at the final network archi-
tecture: (1) a random seed architecture (“birth brain”), (2) a growth phase (“baby brain”)
where neurons and connections are added, and (3) a pruning phase (“adult brain”) where
weights and neurons are removed. RigL (Evci et al., 2020a) fixes a number of weights for
training but updates the topology using both parameter magnitudes and gradients. These
and many other schemes focus on different ways to regrow connections, those are outlined
in Section 4.

Fixed sparsity during training Networks can also be trained with a fixed sparsity
structure determined before training starts. The most important choice is the structure
of the non-zero elements and their initial values—this structure can either be hand-tuned
such as “structured sparsity” for transformers (Child et al., 2019), sparsity determined in
a pre-training phase (You et al., 2020), or data-independent (randomly initialized) spar-
sity (Changpinyo et al., 2017; Prabhu et al., 2018; Bourely et al., 2017; Su et al., 2020).

Shallow neural network connectivity can be constrained to sparse small-world graphs
even before training without significant loss of accuracy (on two-layer Restricted Boltzmann
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Machines, Mocanu et al., 2016). Liu et al. (2019b) question the hypothesis that one must
train an overparameterized deep model and then prune it in order to achieve acceptable
accuracy. They show that for neuron and filter removal (structured sparsity), training a
smaller model with standard random weights suffices. They show examples for CNNs on
CIFAR-10 and ImageNet. They achieve competitive results for neuron pruning but fail for
weight pruning (unstructured sparsity) on the large ImageNet dataset where fine-tuning
still improves performance. They conclude that one can train structured sparse models
from scratch without pruning if the architecture and hyperparameters are chosen well and
that such sparse training may improve performance.

SNIP’s (Lee et al., 2019) single shot network pruning approach identifies unstructured
sparsity in the network in a data-driven way before training. Specifically, the scheme aims to
classify (the initial random) weights as important based on an influence to the loss metric

proposed nearly 30 years earlier by Mozer and Smolensky (1988): I
(1)
w =

∣∣ ∂L
∂ww

∣∣, where
Iw represents the importance of weight w evaluated for a single batch. They suggest to
choose the batch size equal to the number of result classes. Then, the least important
weights are removed and the network is trained in a standard way. ESPN (Cho et al., 2020)
uses a similar technique but trains the network for a small number of iterations before
sparsification in order to quickly establish more structure using early structure adaption in
DNN training.

Wang et al. (2020b) observed that for sparsities above 99%, SNIP eliminates nearly
all weights in some layers, effectively creating a bottleneck. Following this observation,
they note the importance of “gradient flow”, the ability to propagate gradients through
the network. They observe that SNIP can hinder gradient flow and performs worse than
random pruning at high sparsity (de Jorge et al., 2021), because it considers the gradient
for each weight in isolation. Tanaka et al. (2020) even show cases where SNIP disconnected
networks, rendering them untrainable, by removing all weights of a layer, a phenomenon
they name “layer collapse”. Wang et al. (2020b) detect bottlenecks through a reduction in
the norm of the gradient. They propose Gradient Signal Preservation (GraSP), a scheme
that considers gradient flows and only prunes weights that decrease the gradient norm
(i.e., slow the training of the whole network) least after being pruned. GraSP redefines
SNIP’s gradient-magnitude product of importance to the Hessian-gradient-magnitude prod-

uct: I
(2)
w = δwHgw, with δw being a selection vector for w: δw = (0, . . . ,−w, . . . , 0). They

also show that GraSP improves upon SNIP in very sparse regimes. A similar observation
of a “minimal layer (junction) density” to maintain a given accuracy was made earlier by
Dey et al. (2019).

Verdenius et al. (2020) criticize the complexity of GraSP and introduce the small-step
iterative SNIP-it for unstructured and SNAP-it for structured pruning, all before training.
They follow the intuition that some elements that may be of medium importance initially,
gain importance with increased pruning, roughly following the gradient flow argument. By

iteratively removing elements according to I
(1)
w followed by a re-assessment of the importance

scores similar to SNIP, information bottlenecks are prevented at a much lower complexity
than GraSP. de Jorge et al. (2021) derive a similar iterative algorithm as well as a variant
that slightly improves performance by reanimating weights excluded in earlier iterations.
They suggest to use more data during the structure finding phase and show a 5x reduction in
training time over GraSP while achieving similar quality for various image recognition tasks.

20



Sparsity in Deep Learning

This scheme achieves competitive results today but leads to a lower accuracy than pruning
of fully-trained ResNets. Verdenius et al. (2020) also found that random initialization is
a very strong baseline, hinting at the idea of data-free initialization methods, which we
discuss next.

Data-free initialization methods The authors of SNIP complemented their initial pruning
scheme with a data-free pruning that only considers the structure of the network (Lee et al.,
2020). They consider the “signal propagation” across layers: better signal propagation
leads to better properties during training, which leads to better networks (loss minima).
Starting from a random pruning, they propose to increase the signal propagation through
each layer by adjusting the initial weights using a gradient descent method. This method
initializes weight matrices w such that the combination of sparse topology and the weight
is layer-wise orthogonal (ideally leading to full rank matrices). The authors argue and show
empirically that such randomly structured but orthogonally initialized networks can be
trained to achieve the same or higher accuracy than dense networks with the same number
of parameters. Hayou et al. (2021) provide additional theoretical evidence for the efficacy
of this initialization scheme and show how ResNets can be effectively initialized. Verdenius
et al. (2020) and de Jorge et al. (2021) also use this scheme for initializing networks pruned
in a data-dependent way. With such data-free schemes, the pruning ratio still needs to be
fine-tuned per layer. Su et al. (2020) propose a fixed sparsity schedule (“smart-ratio”) for
ResNet and VGG that decreases for larger layers. Other networks would need to be tuned
accordingly.

Tanaka et al. (2020) propose to overcome layer collapse by ensuring a minimal flow
through the sparse network. They also show that iterative magnitude pruning avoids layer
collapse, providing additional support for Verdenius’ and Hayou’s iterative schemes. They
use the L1 path norm in addition to SNIP’s gradient-magnitude product to avoid layer
collapse and reach extreme sparsity. It remains unclear whether the performance-accuracy
tradeoff at those sparsity levels (for which layer collapse would happen) justifies the cost
of avoiding it. Another fixed sparsity training method, Neural Tangent Transfer (Liu and
Zenke, 2020), uses a dense teacher to derive a sparse model without requiring labels that
follows a similar training trajectory as the dense one.

Limitations Several of those “one-shot” pruning methods have been analyzed in recent
works (Frankle et al., 2021; Su et al., 2020) that both found that the most significant feature
of those methods is the sparsity ratio per layer. Specifically, they demonstrate that a data-
independent random sparsity structure with the right density ratio at each layer achieves
competitive, sometimes even better performance than more complex methods such as SNIP
and GraSP. Frankle et al. (2021) also shows that those methods generally achieve accuracies
below the baseline of magnitude pruning after training.

2.4.4 Ephemeral sparsity during training

Most efficient training methods would take advantage of both ephemeral and model sparsity
during training (see Section 5 for an overview). In an empirical study, Raihan and Aamodt
(2020) observe that training is less robust with respect to sparsifying activations in the
forward pass and gradients in the backward pass. Based on those findings, they design
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the SWAT method that uses a simple top-k selection to remove small weights during the
forward pass and both small weights and activations during the backward pass.

2.4.5 Sparsity for transfer learning and fine tuning

In transfer learning, large pre-trained and somewhat generic networks are specialized to
an often narrower task than the original broad training goal. This specialization is an-
other opportunity for pruning and potentially parameters can be pruned during the pro-
cess (Molchanov et al., 2017; Mehta, 2019). The schedule for such pruning during fine-
tuning is similar to the train and prune schedule: a model is trained to convergence and
then pruned. However, the difference is in the training dataset and corresponding distri-
bution. The dataset used for fine-tuning is different from the original dataset—often it
corresponds to a specific subset, but sometimes it could represent a distributional shift. So
in some sense, the pre-trained network can be seen as a more fitting (non-random) weight
initialization as basis for a shorter learning process. Also, data sets for fine-tuning are often
much smaller.

Given these characteristics, different pruning mechanisms are used in practice. Specif-
ically, Molchanov et al. (2017) and Sanh et al. (2020) use first order (gradient-based, see
Section 3.4) pruning for transfer learning to capture the change from the pre-trained weights
to the new weights. Mehta (2019) use magnitude-based pruning to transfer sparse networks
during fine-tuning. These and related methods are summarized in Section 3.4. Chen et al.
(2020) showed that task-specific fine-tuning of the BERT transformer network can result in
40-90% sparsity in final weights using iterative magnitude pruning. They found that most
fine-tuned networks have a task-specific structure while the masked language modeling task
that was used for pre-training generates universal sparse networks that even transfer well to
other tasks. Morcos et al. (2019) show that pruned network structures can transfer across
different datasets and optimizers.

Diff pruning (Guo et al., 2020) supports many tasks by defining task-specific model
parameters as difference over the pretrained parameters: w = wpretrained + wtask. Then,
they sparsify the task-specific differences wtask by up to 99.5% without loss of accuracy
in natural language tasks (e.g., GLUE) while keeping the pretrained parameter set dense.
This scheme supports many different tasks at low overheads during inference and moderate
increase in training resources.

Manessi et al. (2018) investigate how well sparse models can be used to transfer their
knowledge to other tasks. They show that for various image recognition tasks, moderately
sparse models transfer well with either negligible accuracy loss or even a small gain in one
example.

2.4.6 General Sparse Deep Learning Schedules

Fig. 8 shows a prototypical training algorithm for a pruned network. The sparse training
process can be roughly described as a series of the following steps; however, we note that
each can be skipped and some steps can be iterated multiple times. Step (1) initializes the
network structure, this can either load a description of the network structure from disk or
be built using a framework as is usually done for dense networks. However, it could also
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Figure 8: Overview of sparsification schedules. Different weight values are indicated by
different colors, the darker the lower the magnitude (black=zero), red indicates positive
weights, green indicates negative weights.

generate a random network structure or use a sparse network construction strategy such as
SNIP (see Section 2.4.3).

Step (2) initializes the weights of the network, typically randomly or in transfer learning
settings with pre-trained weights. For sparse networks, one could use specialized initializa-
tion strategies such as synaptic flow (see Section 2.4.3). Different weight values are indicated
by different colors in Fig. 8, the darker the lower the magnitude (black=zero), red indicates
positive weights, green indicates negative weights.

Step (3) trains the network for a defined number of iterations or until convergence.
This training can be done with an unmodified dense training schedule or with a sparsity-
inducing schedule (e.g., regularization, see Section 3.6). This initial training may be run
until convergence or stop early for iterative methods.

Step (4) prunes and regrows various elements (see Section 2.3) using the different tech-
niques explained in Sections 3 and 4, respectively.

Step (5) may retrain the network either for a fixed number of iterations or to convergence
(this step is relatively often skipped but generally improves model accuracy).

Steps (6) and (7) indicate possible loops in the training process. Step (6) is often used
in iterative training/sparsification schedules to achieve highest quality. Step (7) could be
used to reset weight values, which is sometimes done (see Section 8.3).

Why retraining? Even though many pruning schemes pick the least important elements,
the degradation of model quality greatly varies (see Section 6). Janowsky (1989) point out
that “There is no a priori reason why their initial values should remain optimal after the
pruning process”. In fact, many works have shown that retraining immediately following
each pruning step and fine-tuning after the last pruning step are both crucial for well-
performing sparsification schedules.

In particular, we observe that many methods follow the pruning (or weight masking)
step with re-training the resulting sparse network, a process also known as “fine-tuning.”
When the sparsification is performed in multiple steps (usually called gradual or iterative
pruning), then several fine-tuning periods may be applied.

The approach of choosing which elements to remove based on the difference in loss
immediately observed after removal inherently assumes that the accuracy after fine-tuning
correlates perfectly with the accuracy before fine-tuning, i.e., immediately after pruning
was applied. This assumption was validated to some extent in the analysis of (He et al.,
2018), which exhibited a correlation between the two accuracies. Other works (Singh and
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Alistarh, 2020; Liu et al., 2019b) observe that the SGD fine-tuning process can serve to
“level” the performance of various schemes, to the extent that large gains in terms of
quality immediately following the pruning step for a specific method can be erased to a
large extent after fine-tuning. Fig. 9 provides an illustration of this phenomenon, as well as
of the structure of a gradual pruning schedule.
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Figure 9: An illustration of a standard gradual pruning schedule including fine-tuning pe-
riods, applied to ResNet-50 on the ImageNet dataset. The graph depicts the evolution
of the validation accuracy for two different methods (global magnitude pruning and Wood-
Fisher, Singh and Alistarh, 2020) across time.

Specifically, the sparsity targets shown on the graph are increased progressively, start-
ing at 5%, until they reach the final 95% target. Fine-tuning periods of fixed length are
applied between pruning steps, and a longer fine-tuning period follows the last pruning
step. Observe the loss of accuracy immediately following the pruning steps, for both meth-
ods. Further, notice the significantly better performance of the second-order WoodFisher
method immediately following a pruning step, but also the fact that the difference between
the methods largely levels off before the next pruning step, due to SGD fine-tuning. Ulti-
mately, the second-order method does achieve higher accuracy than the magnitude-based
one (by 0.4% Top-1 validation accuracy), but this difference is lower than what one may
expect based on the difference immediately following the pruning step.

Update frequency of sparse model structures All methods described above allow to
choose a sparsification frequency through the number of iterations in the (re)training steps.
While ephemeral sparsification schemes are applied to each example in each minibatch,
structural changes to the model often benefit from delays to reduce noise (cf. momentum)
and amortize the often expensive rearrangement of data structures over multiple exam-
ples. This is consistent with biological brains where neurotransmitters are activated at
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high frequency while plastic structural changes happen relatively infrequently (e.g., during
sleep, De Vivo et al., 2017; Diering et al., 2017).

Tuning the right update frequency for structural changes is crucial to the performance
of the final model (Jin et al., 2016). There have not been many structured studies on
how to tune this new hyperparameter but it seems related to the choice of minibatch size
and ideas such as gradient noise (McCandlish et al., 2018) may be a good starting point.
Raihan and Aamodt (2020) show that a higher update frequency is better for training
based on ephemeral weight and activation sparsity. Many works also consider tempering
hyperparameters on a specific schedule during training (e.g., sparsification probability, Guo
et al., 2016), similarly to other hyperparameters (e.g., learning rate schedules).

2.5 Input Feature Selection

Some works study the “feature selection problem” to prune input neurons (“features”).
Many datasets have input dimensions with very little information, for example, the four
corner pixels in the digit-recognition task for MNIST play a very small role in the actual
task output. We note that most neuron sparsification schemes can be used for feature
selection. Below, we highlight some works that particularly focus on sparsify for feature
selection tasks.

Engelbrecht et al. (1995) propose a sensitivity analysis (see Section 3.3) to identify
input neurons that are of little relevance and can be pruned. For this, they start from
a fully-trained network and compute each output’s sensitivity with respect to each input

s
(e)
ij = ∂oi

∂xj
for each example e. They then use either a mean square, sum of absolute values,

or maximum to summarize the sensitivity of an input value for the whole dataset. They
then prune based on the resulting metric, re-train, and optionally repeat the procedure.

Castellano and Fanelli (2000) build on the idea to model feature selection as a special
case of network pruning and define the contribution of an input neuron (feature) h as
sh =

∑
o∈Nh,x∈X (whoxh)2, where Nh are the neurons that consume input feature h, who

their respective weights, and xh the value of feature h in example x. They iteratively remove
the feature with the smallest sh and update all remaining weights.

QuickSelection (Atashgahi et al., 2020) uses a sparse denoising autoencoder with a single
hidden layer to quickly select salient input features in an unsupervised manner. The au-
toencoder is sparsely trained with the SET method (Mocanu et al., 2018) (cf. Section 2.4.3)
and the salience of a feature is computed by the sum of the absolute weights of its outgoing
(sparse) connections.

2.6 Ensembles

One interesting use-case for sparsification is to enable ensemble models with a limited
parameter and compute budget. Instead of having a single model within the budget, one
could train an ensemble of multiple smaller models and average or otherwise combine their
outputs to make a final selection. Collins and Kohli (2014) show that 2–3 ensemble models
can improve the performance of image recognition tasks over a single model with the same
parameter budget.
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3. Pruning Criteria - How to Select Elements to Remove

The core operation in any sparsification scheme is to select candidate elements to be re-
moved. The most intuitive and most precise data-driven way to select elements for removal
is to evaluate the network with and without the elements in question (Suzuki et al., 2001).
However, this simple leave-some-out approach to just train the network with and without
the neurons or weights removed poses obvious scalability challenges as it needs to train

(
n
k

)
networks with n elements total and k removal candidates. Another simple method is to
select elements to be removed at random, which is related to the theory of compressive
sensing and can be quite effective in some settings (Changpinyo et al., 2017; Mittal et al.,
2018). However, guiding the removal by some metric of importance has been shown to
perform best to achieve compressed models with high sparsity in practice. In the following,
we provide an overview of such selection methods.

The various schemes for element removal form the basis of different sparsification meth-
ods. Unfortunately, comparative studies such as Gale et al. (2019) have not identified a
clear winner, thus, we aim to provide a comprehensive overview of the known methods.
We will not quantify the efficacy of each scheme here, because this depends on the exact
setting of network architecture, hyperparameters, learning rate schedule, learning task etc.,
and different works can hardly be compared. Instead, we will focus on the intuition behind
each scheme, and describe specific results in their experimental context for some network
architectures in Section 6. We provide a set of references for each method for more details.
Fig. 10 provides a coarse classification of existing methods to select candidates for removal
and a roadmap for this section.
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Figure 10: Overview of schemes to select candidate elements to remove during sparsification

3.1 Structured vs. unstructured element removal

A first important question is which elements can be removed and at what granularity. Will
we allow removing any arbitrary element, or just blocks of elements, or even only regular
patterns? As discussed in Section 2.2, fine-grained unstructured weight sparsity requires
storing the offsets of non-zero elements and handling the structure explicitly during pro-
cessing. Both add significant cost to processing and storing sparse deep neural networks.
Structured sparsity constrains sparsity patterns in the weights such that they can be de-
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scribed with low-overhead representations such as strides or blocks. This reduces the index
storage overhead and simplifies processing (see Section 7). Structured sparsity promises
highest performance and lowest storage overheads but it may lead to worse models because
it may limit the degrees of freedom in the sparsification process (Kalchbrenner et al., 2018).

One simple example of structured sparsity is the removal of whole neurons in a fully-
connected layer: the resulting computations for the forward or backward pass after removing
a neuron are simple dense matrix multiplications from which a whole row/column was
removed (weights of all incoming and outgoing connections). A similar argument applies to
the removal of convolutional filters (Polyak and Wolf, 2015) and transformer heads (Michel
et al., 2019).

Strided sparsity (Anwar et al., 2017) considers structured weight sparsification at the
granularity of channels (removing whole feature maps in a layer), kernels (removing all
connection between two features in consecutive layers), or a strided kernel structure (remove
all connections between features with a particular stride). For example a stride-2 weight
vector could be w = [0.2, 1.9, 0, 1.3, 0, 0.3, 0, 1.2, 0, 0.4] where after an initial offset of one,
every other element is zero. The storage of this vector would simply require to memoize
the offset, stride, and non-zero elements, e.g., ŵ = [1, 2, 0.2, 1.9, 1.3, 0.3, 1.2, 0.4].

Convolutional layers cannot only benefit from structured sparsity by dropping whole
filters or kernels. If we write the convolution operator in matrix form (sometimes called
im2col, Chellapilla et al., 2006), we can sparsify groups in those matrices. Here, each input
map may have a different non-zero structure which is shared across all output maps. Lebe-
dev and Lempitsky (2016) showed that this scheme, together with a regularizing training
procedure and magnitude-based pruning, can sparsify filters effectively. They also find that
the resulting filters are shrunk towards the center and remain largely circular. Meng et al.
(2020) learn filter shapes using L1 regularization. A similar scheme sparsifies the connec-
tions between filters—not all output filters in layer i are connected to all input filters in
layer i+1. Specifically, Changpinyo et al. (2017) choose fixed random connectivity between
the filters at each layer.

Structured pruning often uses similar schemes to unstructured pruning, sometimes with
minor modifications to prune whole sets of weights. For each of the following pruning
methods, we will outline its extension to structured sparsity if it is not obvious.

3.2 Data-free selection based on magnitude

One of the simplest, but also most effective, selection schemes is removing weights with
the smallest absolute magnitude. This intuitive approach of removing small weights has
been discussed ever since in the early 90’s as a simple and effective technique (Hagiwara,
1993) and always fares surprisingly well (Thimm and Fiesler, 1995; Gale et al., 2019). It is
often used together with re-training the sparsified network (Han et al., 2016b) and training
schedules where the sparsity is gradually increased over time (Zhu and Gupta, 2017). It
can be applied to either individual weights or arbitrary groups of weights using

∑
|Wi| for

structured pruning (e.g., blocks or rows/columns for whole neuron pruning). As we will
see in the next section, this scheme even has a strong theoretical justification, under some
assumptions.
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(a) Dense network (76.0%)
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(c) 3-epoch retrained (71.4%)

Figure 11: Magnitude pruning of weights for ResNet-50 and Top-1 ImageNet validation
accuracy.

As the weight values usually follow a normal distribution with a zero mean, pruning by
magnitude can remove the bulk of the weights around zero as shown in Fig. 11. Part (a)
shows the weight distribution before pruning, part (b) right after pruning with the condition
|w| ≤ x for x = 0.17, and part (c) after retraining.

An obvious question is how to choose the magnitude x below which to prune. Besides
fixing a weight budget and keeping the top-k weights globally or per layer, one could learn
sparsification thresholds per layer. Kusupati et al. (2020) propose a method to learn those
thresholds during the normal SGD step. They replace the original weights w with thresh-
olded weights w′ = sgn(w) ·ReLU(|w| − αl), where αl is a learnable pruning threshold per
layer. The loss is computed with respect to w′ and layer-wise αl are learned via SGD. This
scheme can easily be extended to structured sparsity as noted above. Another approach
uses a reinforcement learner to derive the best values for each layer. He et al. (2018) pro-
posed a DDPG agent (Lillicrap et al., 2016) to optimize for different scenarios such as a
resource constraint or a target accuracy.

Magnitude pruning is often used during sparse training schedules to maintain an ap-
proximately constant connection density during training (Mocanu et al., 2018; Dettmers
and Zettlemoyer, 2019; Guo et al., 2016). Bellec et al. (2018) slightly modify the scheme to
fix a weight to zero if the SGD optimizer would flip its sign during training.

Han et al. (2016b) popularized magnitude pruning for modern deep neural networks
as part of neural network compression for inference. Li et al. (2017) prune whole filters
with the smallest sum of absolute weights in convolutional layers. Several works (Ström,
1997; See et al., 2016; Narang et al., 2017) use magnitude pruning to prune recurrent neural
networks as well as sparse training. Works related to the lottery ticket hypothesis also use
magnitude pruning (see Section 8.3).

3.2.1 Other Data-free methods

Magnitude pruning is not the only scheme that does not consider training examples. Various
other schemes solely base pruning decisions on the structure of the network. Since these
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methods do not depend on examples, they can be used as a pre- or post-processing step for
data-driven methods.

A simple scheme compares sets of weights between different neurons. Specifically, if a
fully connected layer has N output neurons, we create an N ×N matrix and compare the
input weights between all neurons. Now we can simply merge k similar neurons into a single
neuron, multiply all weights by k, and add all biases. Srinivas and Babu (2015) showed
that this method works well for small networks but prunes less for large networks. Coreset
pruning (Mussay et al., 2020) enables a precise tradeoff between sparsity and approxima-
tion error. The authors show improved accuracy at 90% sparsity for very small example
networks.

While data-free methods, especially magnitude pruning, are often very effective and can
provide highly-accurate results, several works have shown that more precise methods can
achieve significantly better results, especially at high sparsity (Sanh et al., 2020). Further-
more, data-free schemes often require expensive retraining to recover an accuracy as close
to the original performance as possible. An obvious way to improve precision is to consider
the influence of the training data (and implicitly its distribution) in the pruning selection.
This leads us to the class of data-driven pruning schemes.

3.3 Data-driven selection based on input or output sensitivity

This class of selection methods considers the statistical sensitivity of the output of neurons
or the whole network with respect to the training data. In those methods, a set of examples
(potentially all of the training data) is used to determine directly which elements should
be removed to maintain or improve prediction accuracy while sparsifying the network. El-
ements with very small or zero change with respect to deviation of the input examples
contribute less in the entire network since their outputs are approximately constant to the
variation in their inputs. Thus, such a sensitivity measure can be employed to define the
relevance of an element for the function of a network and low-relevance elements can be
removed.

The first scheme follows this intuition and removes neurons that show very little variation
in their output across various input examples (Sietsma and Dow, 1988). After removing,
we add their output to the next neurons’ biases. Similarly, if two neurons in a layer always
produce the same (or opposite) output for all inputs, we can remove one of those and
adjust the other one’s outgoing weights without changing the overall function. Castellano
et al. (1997) generalize this scheme and formulated it in terms of solving a linear system of
equations to change the weights after removing a neuron in order to minimize the change of
output values across the dataset. They compute new weights for all units that consumed the
output of the removed unit to minimize the change in their inputs. They pose the problem
using a least-squares metric and optimize it with a conjugate gradient method. Their scheme
considers networks where layers can be skipped and it does not require hyperparameter
tuning. They also mention the possibility to remove individual weights and later develop
a similar scheme to prune input nodes (“features”) (Castellano and Fanelli, 2000). In a
similar scheme, Chandrasekaran et al. (2000) model the outputs of hidden units as linear
combinations of outputs of other neurons. A neuron can be pruned if its output is well
approximated by a linear combination of other units’ outputs.
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Such schemes can also be applied to filters in convolutional networks. Luo et al. (2017)
phrase the filter pruning problem in terms of its output sensitivity to the following layer.
They prune filters that, across the whole minibatch, change the output of a layer least.
They define an optimization problem and solve it using a simple greedy strategy. Yu et al.
(2018) define an importance metric that aims to minimize the error in the input to the
fully connected classification layers (the “final response layer”) in CNNs. This captures
information flows that span multiple layers. Ding et al. (2019a) use “centripetal SGD” to
train the network towards similar filter weights that can later be pruned. One could also
use a geometric interpretation and find filters that are close to the geometric median of all
filters (He et al., 2019).

A simple generalization is to consider the sensitivity of neuron outputs (either model or
layer) with respect to elements in earlier layers (including inputs). Zeng and Yeung (2006)
define a direct measure of the output sensitivity of a neuron with respect to deviations in
its inputs. They multiply this sensitivity by the sum of the absolute outgoing weights of
the neuron to compute the relevance for pruning. The weights are included because they
amplify the sensitivity as input to the next layer. Engelbrecht and Cloete (1996) define
different measure using a sensitivity matrix S that captures the change of a neuron i in
a layer k with respect to small perturbations of a neuron j in an earlier layer l. They

first define the sensitivity with respect to a single example as Sij,lk =
∂fk,i
∂fl,j

, where fk,i is

the output of neuron i in layer k. To consider all training examples, they summarize the
matrix using a mean square method into an average sensitivity matrix, which is then used
to prune neurons that have low significance with respect to all output neurons. Tartaglione
et al. (2018) later apply a similar scheme to weights but instead of determining the output
sensitivity at the end of training, they use a weight update rule that penalizes a weight’s
absolute magnitude by output sensitivity during training. These simple sensitivity metrics
can be seen as early predecessors of the methods basing on a first order Taylor expansion
of the loss function (see Section 3.4).

A related scheme is contribution variance which is based on the observation that some
connections have very similar outputs across examples in the whole training set (Thimm and
Fiesler, 1995). Thus, if a connection (a source neuron multiplied by the weight) has little
variance across all training examples, then it can be removed and added to the bias of the
target neuron. Hagiwara (1993, 1994) proposes an even simpler scheme to prune neurons
based on their “energy consumption”, basically the value of activations throughout training.
They prune “low-energy” neurons during training and refine the network with a simple
magnitude-based weight pruning. A similar scheme prunes neurons whose activations are
mostly zero for many examples—Hu et al. (2016) define the intuitive “Average Percentage
of Zeros” (APoZ) pruning criterion. This scheme works well for ReLU activation functions
that set negative values to zero. This scheme only distinguishes zero and non-zero values.
DropNet (Tan and Motani, 2020) uses the average magnitude of activations for pruning to
achieve higher fidelity.

One could also consider the variation of model output depending on variation of each
weight in a spectral sense. Here, the relevance of a weight can be assessed by its contribution
to the variance of the model output. Lauret et al. (2006) propose to use the “Fourier
Amplitude Sensitivity Test” (FAST) for determining the relevance of weights. The main
idea is to simulate periodic oscillation with frequency ωi of each weight i in a fixed interval
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[l, u]. Large Fourier amplitudes at the weight’s frequency ωi and its harmonics indicate
that the output is sensitive to the weight. Then, perform simulation runs to compute the
contribution of each weight variation to the total output through this analysis and remove
neurons whose weights are contributing less than 5% of the total output variance. The
number of necessary simulation runs to disentangle the weights grows linearly with the
number of weights. Han and Qiao (2013) combine a similar scheme to prune neurons in
a single hidden layer. In order to find the best number of neurons for the model, they
prune neurons based on their output variance across samples from the input distribution.
They use FFTs to determine the change in output for inputs that vary within the input
distribution. They add neurons and improve model capacity if the mean-square training
error exceeds a bound.

One benefit of FAST is that it suffices to have upper and lower bounds on the features to
roughly approximate the input distribution—detangling the selection process from the data.
Afghan and Naumann (2020) also only rely on the the size of the interval that the input
values live in. Together with the maximum partial derivative of that input with respect to a
specific output, they define a measure of significance for neurons to make pruning decisions.

3.3.1 Selection based on activity and correlation

One simple observation is that, in many networks, some neurons are often activated together,
relating to the Hebbian observation “neurons that fire together wire together” (Hebb, 1949).
Several sparsification schemes are based on this observation. A simple sparsification scheme
could merge neurons that have very similar output activations and simply adapt their biases
and rewire the network accordingly. A similar idea has been used in “data free” schemes
described in Section 3.2.1.

In a method that could be seen as a generalization of APoZ (yet, it was developed
earlier), Sietsma and Dow (1988, 1991) observe that some neurons are producing very
similar outputs for all examples during inference. They identify such pairs of similar-
output neurons across the training examples and remove redundant ones. Kameyama and
Kosugi (1991) extend the idea by fusing those neurons and accumulate their weights and
biases to minimally affect the sparsified networks to reduce the re-training time. Suau et al.
(2019) perform principal component analysis of max-pooled filter and neuron outputs to
select the number of filters for a layer. They use either Principal Component Analysis or
KL divergence to compute the number for each layer and then remove the most correlated
neurons or filters.

A different method would strengthen connections between correlated neurons: we could
preferentially drop weights between weakly correlated neurons and maintain connections
between strongly correlated neurons. Sun et al. (2015) found that this method works par-
ticularly well to refine fully trained networks and leads to better generalization and good
sparsification for pruning a convolutional network for face recognition.

While data-driven sensitivity-based schemes consider the outputs across the examples
drawn from the input distribution, they purely aim at minimizing the impact on the input-
output behavior of the network. Thus, if the network has a low accuracy, it will not gain
from such pruning methods. We could now consider the training loss function itself in the
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pruning process and use it to preserve or even improve the model accuracy of the pruned
network as much as possible.

3.4 Selection based on 1st order Taylor expansion of the training loss function

Gradient-based first order methods are most successful for learning weights in deep neural
networks. It is thus not far-fetched to also apply similar methods to the selection of weights.
Since gradients of the weights are computed during the normal optimization process, one can
easily re-use those for determining weight importance. Furthermore, gradient computations
are generally cheap, so one could employ them together with additional so called gating
elements to select arbitrary elements (weights, neurons, filters, etc.) for removal.

If we consider the loss function L(w) at any time during the training process, we can
write a small perturbation at w as

δL = L(w + δw)− L(w) ≈ ∇wLδw +
1

2
δw>H δw,

where ∇wLδw and 1
2δw

>H δw are the first and second order Taylor expansion of L,
respectively. (It is usual to assume that the influence of higher order terms is negligible and
thus they are ignored.) In this and the next section, we describe how to use those terms to
view pruning as part of the model optimization process.

A first and probably simplest approach to prune weights is to consider the total weight
change during training. Here, we store the sum of all updates during the training and prune
the weights that have changed least (Karnin, 1990; Golub et al., 2019). Molchanov et al.
(2019) use a squared gradient-weight product as first-order approximation to a neuron’s
or filter’s importance. The intuition is that if weights are changed little from their initial
random values during the network’s learning process, then they may not be too important.
This method would be identical to sparsification techniques based on absolute magnitude
(see Section 3.2) if we consider the change with respect to a (contrived) starting state of
all-zero weights.

One generic way to decide whether elements can be removed is to use a gradient based
scheme with respect to a binary gating function that regulates whether to include that
element or not. Then, during training, differentiate that function at the positions 1→ 1− δ
to determine its importance. Mozer and Smolensky (1988) uses this technique to “trim fat”
neurons from networks in order to improve generalization. They define the gradient of a
function αi that disables (“gates”) a neuron i in a fully-trained network as measure of its
relevance. The transfer function of a fully-connected layer l changes to fl = σR(Wl ·α�fl−1)
where α is a vector with the same size as fl−1 and � stands for the element-wise Hadamard
product. This method requires two backprop stages—one for the weights and another one
for the gate perturbation ∂L

∂αi
. The method can now prune the least important neurons

iteratively and stops when it observes a large jump in ∂L
∂αi

. Lee et al. (2019) and Xiao et al.
(2019) apply a very similar method based on the absolute value of the gradients to gate
weights in the model.
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The Tri-state ReLU (Srinivas and Babu, 2016) unit is a generalization of element gating
and can be used to learn neuron pruning. It is defined as:

tsReLU(x) =

{
wx, x ≥ 0

wdx, otherwise.

Both w and d are learnable binary parameters; w is similar to the gating function above
and d = 1 turns the nonlinearity into the identity function. If we use a single d for each
layer, then we can remove the whole layer for d = 1. We note that for d = 0 and w = 1
the Tri-state ReLU is identical to the traditional ReLU. Learning binary parameters is as
tricky as described above and Srinivas and Babu choose the simple function w(1 − w) as
regularizer with final rounding and constrain the values of d and w to the interval [0, 1].
This can be interpreted as learning the parameters of a binomial distribution, where each
Bernoulli trial indicates whether the weight is chosen or not. More general schemes for
learning discrete parameters are described in Section 3.6.1. Srinivas et al. (2016) use the
maximum likelihood (simple rounding as before, see Section 3.3) of this formulation to
gate weights during training. You et al. (2019) use a 1st order approximation of the loss
function (the gradient-weight product, see Molchanov et al., 2017) to select filters to prune
structurally.

One could also investigate the Jacobian matrix after training has progressed for some
iterations. Zhou and Si (1999) and Xu and Ho (2006) found that the Jacobian is usually not
full rank, which means that the gradients for some weights are correlated. Zhou and Si use
QR factorization of the Jacobian matrix to determine which weights are redundant, while
Xu and Ho use QR factorization on the output of hidden nodes to determine redundant
neurons. Both approaches benefit from the nonlinearity (e.g., sigmoid or ReLU) creating
the rank deficiency due to saturation or cut-off.

Specifically pruning during transfer learning can benefit from first order gradient infor-
mation. Molchanov et al. (2017) use the magnitude of the gradients to prune full feature
maps to improve the inference efficiency of fine-tuned CNNs. They use the absolute value of
the gradient to determine whether a parameter should be removed or not. It seems intuitive
to consider the change of parameters during fine-tuning. Movement pruning (Sanh et al.,
2020) recognizes that the direction of the gradient plays a crucial role: if the pre-trained
weights move towards zero for fine-tuning examples, then they are more likely to be less
important (prunable) than if they move away from zero. Their technique accumulates the
parameter movement and uses this as task-specific information for pruning.

Ding et al. (2019b) propose global sparse momentum to change the gradient flow during
backpropagation. They classify the weights into two sets based on their importance during
training. The important set is updated with the gradients during backprop while the other
set does not receive gradient updates but follows weight decay to be gradually zeroed out.
The importance of parameters is determined by the magnitude of the gradients and the
weights as Sw =

∣∣ ∂L
∂ww

∣∣ = |gww| (similar to sensitivity-based approaches). The selection of
the two sets is performed at each iteration such that weights may move from the unimportant
into the important set during training. While the authors point out that this “re-selection” is
important for the overall accuracy of the model, they also observe that it happens rarely and
decreases during the training process following the early structure adaptation observation
(see Section 2.4.2).
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3.5 Selection based on 2nd order Taylor expansion of the training loss function

The question of selecting the “least significant” set of weights to remove from a fully-trained
model relative to the difference in loss with respect to the current model was considered
in the work of Le Cun et al. (1990), with significant improvements by Hassibi and Stork
(1992). Relative to the work in the previous section, these frameworks also focus on the
question of which parameter to remove in order to minimize the corresponding loss increase,
but consider a second-order Taylor approximation of the loss around the dense model, and
sometimes view the the first-order terms as negligible. The frameworks of Le Cun et al.
(1990) and Hassibi and Stork (1992) differ in terms of assumptions, with the latter work
being more general. We will present them jointly, outlining the differences at the end. We
discuss inherent assumptions and practical limitations in Section 3.5.3.

3.5.1 Pruning as an optimization task

Let us again consider the Taylor expansion of the loss function at w

δL = L(w + δw)− L(w) ≈ ∇wLδw +
1

2
δw>H δw,

where the model perturbation δw is chosen so that it zeroes out a single weight wi in
position i and leaves the other ones unchanged, i.e., δw = (0, . . . ,−wi, . . . , 0). Since we are
assuming that the model w is trained to a local minimum, the (zero) gradient term can be
ignored, and the problem reduces to finding the weight wi whose pruning perturbation δwi

minimizes the expression
1

2
δw>i H δwi.

This minimization problem can be solved exactly via the method of Lagrange multipliers,
to yield the following “saliency measure”, which is associated to each weight wi

ρi =
w2
i

2 [H−1]ii
, (3)

where [H−1]ii denotes the ith diagonal element of the inverse Hessian matrix of the loss
L of the given model w. To choose which weights to prune, one can sort the weights in
decreasing order of this pruning statistic, the lowest-value weight being the best candidate
for removal.

Interestingly, this procedure suggests that the value of the remaining weights should
also change, and provides the corresponding optimal perturbation δw∗. This is as follows:

δw∗ = −wiH
−1ei

[H−1]ii
. (4)

The work of Le Cun et al. (1990); Hassibi and Stork (1992) provided the first derivations
for this metric, and numerical methods for computing this metric on tiny networks, with
tens or hundreds of parameters.

Optimal Cell Damage (OCD) (Cibas et al., 1996) applies a very similar technique to
prune the input features to the network. The scheme uses the sum of the saliencies ρi of all
outgoing weights of an input value to compute the saliency of that input. The authors find
it to perform worse than approaches based on regularization (see Section 3.6).
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3.5.2 Magnitude pruning as a special case

To gain some intuition, let us consider the above pruning criteria when the Hessian is the
identity, possibly rescaled by a constant. Intuitively, this would mean that the Hessian ma-
trix is diagonally-dominant, and that its diagonal entries are roughly uniformly distributed.
In this case, a quick examination of the above equations will yield that following the statistic
is equivalent to pruning the weight of lowest magnitude, as the saliency measure becomes
proportional to the square of each weight. As noted, the weight magnitude is a popular
pruning criterion in practice, e.g., (Gale et al., 2019; Singh and Alistarh, 2020; Blalock
et al., 2020). We do note that this structural assumption on the Hessian is very strong, and
unlikely to hold in practice.

3.5.3 Discussion of assumptions and guarantees

The OBD/OBS method offers an interesting mathematical framework for pruning, but
comes with a few important assumptions and limitations that should be noted:

1. The original framework assumes that pruning is performed upon a well-trained model,
whose loss gradient ∇wL is negligible. This is unlikely to be the case in practice.
Follow-up work (Singh and Alistarh, 2020) has shown that the pruning metrics and
the pruning update can be extended to the case where the gradient is non-zero.

2. The framework inherently assumes that (a) the Hessian matrix is invertible at the
point where pruning is performed, and that (b) the pruning perturbation is small,
and in particular that the Hessian matrix is constant along the direction of the prun-
ing perturbation (this is necessary in order to ignore the higher-order terms). This
constraint is addressed by practical schemes by either performing gradual pruning of
the weights, or by re-computing the Hessian along the pruning direction, as we will
detail in the next section.

3. Importantly, the above derivation holds if we are willing to remove a single weight at
a time, and to re-compute the Hessian upon each new removal. Clearly, this would be
infeasible for modern networks, so, to apply this method at scale and remove several
weights in a step, one assumes that the correlations between removed weights are
negligible.2 Wang et al. (2019) point out that this approximation can lead to “wrong”
pruning decisions in worst-case instances, and propose to prune in an eigenbasis which
removes these correlations. Singh and Alistarh (2020) show that these correlations
can be taken into account for pruning decisions, at the cost of solving a potentially
large system of linear equations.

4. One significant limitation of these frameworks is that they do not take into account
the post-pruning fine-tuning process. This process usually accounts for most of the
accuracy recovery, so considering it would be an interesting topic for further research.

5. Finally, we note that the early work of Le Cun et al. (1990) introduced the above
formulation under the assumption that the Hessian matrix is diagonal, and applied this

2. Technically, it could be that the removal of the lowest weight in the order of the pruning statistic would
cause the second-lowest weight to become significantly more important towards the loss.
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method on small-scale networks. Hassibi and Stork (1992) generalized this diagonal
approximation, and presented efficient numerical methods for estimating the inverse
Hessian under additional assumptions, which we will detail in the next section.

3.5.4 A Simple Illustration

We now provide an intuitive example for the workings of the different methods based on the
Taylor expansion of the loss function. Fig. 12 shows the function L(x1, x2) = 2x2

1 + 0.5x2
2.

Let us assume that SGD found an approximation of the minimum at the point (x∗1, x
∗
2) =

(0.1,−0.3). (Clearly, in this example, the optimum is (0, 0) but we use (0.1,−0.3) for
illustration.) The gradient of L at this point is 0.1 but it is common for second-order
methods to assume that it is negligible since the model is well-optimized.

, 

𝑥2

1.4

1.2

1

0.8

0.6

0.4

0.2

0

1

0.5

0
10.80.6-0.5 0.40.20-0.2-0.4-0.6-1 -0.8-1

no pruning 
𝐿(0.1,-0.3)=0.065 

magnitude pruning
𝐿(0,-0.3)=0.045 OBD pruning

𝐿(0.1,0)=0.02 

OBS pruning
𝐿(0,0)=0 (optimal)

𝑥1

Figure 12: Example function L(x1, x2) = 2x2
1 + 0.5x2

2 with estimated minimum at point
(0.1,−0.3).

The function value is L(0.1,−0.3) = 0.065. Magnitude pruning would evaluate the
absolute values for x∗1 and x∗2 and decide to prune x1, getting us to a pruned function
value LMAG(0,−0.3) = 0.045. OBD assumes that the Hessian is diagonal (which holds
here but may not in general) and would dampen the absolute values of the weights by
their inverse Hessian diagonals (i.e., x1 is doubled and x2 is halved), and would decide to
remove x2, achieving a better function value LOBD(0.1, 0) = 0.02. Relative to OBD, OBS
has two main differences. First, OBS does not assume that the Hessian is diagonal, which
is more general. In our case, this would lead to the same saliency values, so x2 would be
removed. Second, OBS would also update x1’s value to adjust for the fact that x2 is now
set to zero. Concretely, we can follow Equation (4) to obtain that x1 should be updated by
δx1 = −0.1 · 0.5

0.5 = −0.1. Thus, the updated sparse point given by OBS is (0, 0), leading to
LOBS(0, 0) = 0, which in this simple case is optimal.
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3.5.5 Large-scale pruning based on second-order information

The key question addressed by subsequent work on applying second-order methods to prun-
ing has been how to apply such methods at the scale of deep neural networks, where the
number of parameters is in the millions or even in the billions. Calculating the pruning
criteria above requires estimating the diagonal of the Hessian inverse, which faces several
hurdles, as the Hessian is hard to store, let alone invert, and may technically not even be
invertible.

Layerwise Optimal Brain Surgeon (L-OBS) One extension of this classical approach
to deeper networks, called L-OBS, was proposed by Dong et al. (2017), by defining separate
layer-wise objectives, and by approximating the Hessian matrix at the level of carefully-
crafted blocks, which follow the neuron structure of the network. They report superior
results relative to the layer-wise magnitude pruning baseline.

The Empirical Fisher Approximation to the Hessian A common approach, first
proposed by Hassibi and Stork (1992) has been to leverage the empirical Fisher approx-
imation to the Hessian matrix. This approximation should hold under the following as-
sumptions: (1) the task being considered is a classification task, e.g., whose output is
given via a SoftMax function; (2) the model whose Hessian we wish to estimate is already
well-optimized, and in particular its output distribution approximates well the true output
distribution. Then, following our discussion of the empirical Fisher, one can approximate
the Hessian matrix via

H' 1

N

N∑
j=1

∇`j · ∇`>j ,

where N is the number of samples used for the approximation, ∇`j is the gradient of the
loss at sample j, and · denotes the outer product. (Recall that, for this approximation to
hold, the model’s output distribution should match well with the true output distribution.)

Fisher pruning Theis et al. (2018) provide an example application of this approximation.
Specifically, they assume a diagonal approximation of the empirical Fisher matrix, i.e., only
compute the diagonal elements, and invert the resulting diagonal matrix. They apply this
technique to perform structured pruning of gaze prediction models.

Approaches based on low-rank inversion One can also leverage the observation that
this approximation is effectively a sum of rank one matrices to estimate its inverse, via the
classic Sherman-Morrison formula. We obtain the following recurrence, which integrates
the series of gradients (∇`j)Nj=1 taken over individual samples into an approximation to the
Fisher matrix:

Ĥ−1
j+1 = Ĥ−1

j −
Ĥ−1
j ∇`j+1∇`>j+1Ĥ

−1
j

N +∇`>j+1Ĥ
−1
j ∇`j+1

, (5)

where initially Ĥ−1
0 = λId, and λ is a small dampening parameter, usually assumed to

be small. This approach was initially proposed by Hassibi and Stork (1992), and then re-
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discovered by Amari (1998) in the different context of optimization via natural gradient.
Both these references apply the method at small-scale, specifically on single-layer networks.

Recently, Singh and Alistarh (2020) revisited this method at the large scale of modern
deep neural networks. Specifically, they proposed a block-diagonal approximation of the
above approach, and showed that it leads to an accurate local prediction of the loss along
the direction of pruning, relative to the magnitude, diagonal Fisher, and to the K-FAC
approximations. They show that the accuracy drop at a single pruning step, when computed
using their method, can be significantly lower than using other methods, which leads to
higher accuracy following fine-tuning steps. They also show that results can be further
improved by taking the first-order (gradient) term into account, and by re-estimating the
Hessian along the direction of pruning.

Extensions of OBD/OBS Several non-trivial extensions of the OBD/OBS framework
were presented in the early 90s. Pedersen et al. (1995), for example, propose the following
host of improvements. First, they extend the method so that pruning is performed with
respect to an estimate of the generalization error, rather than the loss. For this, they
use a framework for the estimation of the generalization error given by Moody (1991)3.
Second, they incorporate the weight decay term into the OBS metric, following earlier work
by Hansen and Pedersen (1994). Third, they recognize and address the problem of “nuisance
parameters,” described in brief as the issue that, if eliminating an output weight wo, all
the weights in the corresponding hidden unit are practically pruned as well. Thus, their
method eliminates these parameters from the model as well, to avoid spurious contributions
from them.

Other uses of the Fisher matrix The relatively simple structure of the empirical Fisher
matrix inspired additional approaches. For example, Tamura et al. (1993) and Fletcher et al.
(1998) use singular value decomposition of the Fisher matrix to determine the ideal number
of neurons in each hidden layer. Assuming that outputs are linearly activated, they use the
rank of the resulting covariance matrix of maximum likelihood to compute the number of
neurons in the compressed network.

Kronecker-Factored Approximate Curvature (K-FAC) An alternative approxima-
tion for the Fisher matrix (and thus, for the Hessian) is a family of methods based on the
Kronecker-Factored Approximate Curvature (K-FAC) (Martens and Grosse, 2015). The
method has been originally developed for the purposes of optimization, i.e., to determine
an efficient pre-conditioner for the gradient update.

Following Singh and Alistarh (2020), we illustrate the method through a simple example.
Consider a fully-connected network with ` layers. Let us denote the pre-activations of layer
i by si. Then, they can be written as si = Wiai−1, where Wi is the weight matrix at the ith

layer and ai−1 denotes the activations from the previous layer, which represent the input of
the ith layer.

Following the chain rule, the gradient of the objective function L with respect to the
weights in layer i is

∇WiL = vec( gia
>
i−1 ).

3. A similar approach, but using a different estimator, is given by Burrascano (1993).
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Above, we denote by gi the gradient of the objective with respect to the pre-activations
si of this layer, which implies that gi = ∇siL. Using the fact that vec(uv>) = v ⊗ u,
where ⊗ denotes the Kronecker product, we can simplify our expression of the gradient
with respect to Wi as

∇WiL = a>i−1 ⊗ gi.

Given the above, observe that we can now write the block of the Fisher matrix which
corresponds to layers i and j as follows:

Fi,j = E
[
∇WiL∇WjL

>
]

= E
[
(ai−1 ⊗ gi) (aj−1 ⊗ gj)

>
]

(a)
= E

[
(ai−1 ⊗ gi)

(
a>j−1 ⊗ g>j

)]
(b)
= E

[
ai−1a

>
j−1 ⊗ gig

>
j

]
,

(6)
where, in steps (a) and (b) we have used the transpose and mixed-product properties of
Kronecker product. The expectation is taken over the model’s distribution, as in the for-
mulation of Fisher.

Finally, the Kronecker-Factored Approximate Curvature (K-FAC) approximation for F̃
can be written as

F̃i,j = E
[
ai−1a

>
j−1

]
⊗ E

[
gig
>
j

]
= Ãi−1,j−1 ⊗ G̃i,j . (7)

Essentially, we have moved the expectation inside the expression, and applied it prior
to performing the Kronecker product. This is a significant analytical assumption, since
in general the expectation of the Kronecker product would not be equal to the Kronecker
product of the expectations of its terms.

The advantage of this approximation is that it allows one to compute the inverse of
K-FAC approximated Fisher efficiently. This is because the inverse of a Kronecker product
is equal to the Kronecker product of the inverses. This implies that instead of inverting one
matrix of size ni−1ni× nj−1nj , one only needs to invert two smaller matrices Ãi,j and G̃i,j ,
of sizes ni−1 × nj−1 and ni × nj , respectively, where we denote the number of neurons in
layer ` by n`.

One potential issue with this approach is that it is especially-crafted for fully-connected
layers. If we wish to apply it to the case of convolutional or recurrent neural networks, the
Kronecker structure needs to be further manipulated to yield an efficient approximation, as
shown in (Martens and Grosse, 2015; Ba et al., 2016a).

The K-FAC approximation has found several applications in optimization (Ba et al.,
2016a; Osawa et al., 2019) and reinforcement learning (Wu et al., 2017). Specifically in
the case of pruning, Wang et al. (2019); Zeng and Urtasun (2019) present applications to
unstructured and structured pruning, respectively.

More precisely, Wang et al. (2019) introduces a technique called EigenDamage, which
consists of (1) a novel reparameterization of the neural network in the Kronecker-factored
eigenbasis (KFE), and then (2) the application of the Hessian-based structured pruning
framework described above, in this basis. As an intermediate technical step, the paper
provides an extension of the OBD/OBS framework to the case of structured pruning, with
the key difference that the correlations between weights inside the same structure must be
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taken into account. The method is validated experimentally on the CIFAR-10 and Tiny-
ImageNet datasets, for pruning residual networks.

Concurrent work by Zeng and Urtasun (2019) used a similar K-FAC-based approxima-
tion of the Hessian, but applied it to unstructured pruning. Relative to layer-wise pruning
schemes, their approach, called MLPrune, has the advantage that it provides an approxi-
mate global saliency metric. Specifically, this allows the user to set a global average sparsity
percentage, and the technique will automatically distribute sparsity among layers, propor-
tionally to their sensitivity to pruning.

3.6 Selection based on regularization of the loss during training

A large class of sparsification approaches uses the well-known technique of regularization,
in which we add penalty terms to the cost function, for example, L′(x,w) = L(x) + P (w).
Here, L(x) is the original loss function and P (w) is a penalty term defined on the weights.
Penalty functions can be defined with respect to arbitrary elements in the network (e.g.,
gating terms for neurons, Zhuang et al., 2020) or metrics (e.g., required floating point oper-
ations, Molchanov et al., 2017) and are generally easy to implement. The penalty will guide
the search function to the desired output (e.g., sparse weights) and reduce the complexity of
the model. The former leads to a sparse, smaller, and potentially faster model and the latter
may lead to improved generalization. Mukherjee et al. (2006) show a strong link between
stability and generalization. The choice of penalty term is most crucial for the success of the
method. The resulting problem is often non-convex and can hardly be characterized theo-
retically. In fact, penalty terms can introduce additional local minima (Hanson and Pratt,
1989), which makes the optimization landscape harder to navigate. Furthermore, tuning
the regularization parameters often requires a delicate balancing between the normal error
term and the regularization term to guide the optimization process. Even more, regulariza-
tion may require fine-tuning per layer (Lauret et al., 2006). Yet, well-tuned regularization
terms are essential to deep learning training and sparsification.

One of the first penalty terms that was shown to significantly improve generalization
was weight decay (Krogh and Hertz, 1991), where the weight update rule adds a reduction
in absolute magnitude: w′ = (1− λ)w − αg, with the decay factor λ and the learning rate
α. Weight decay is similar to an L2 normalization for an α-specific parameterization of the
decay factor. Weight decay is a standard techniques for improving generalization today and
it can be combined with magnitude pruning for sparsification.

3.6.1 L0 norm

The most obvious penalty term to generate sparse weights is the L0 norm of the weights:

P (w) = α‖w‖0 = α
∑
i

{
0 wi = 0

1 wi 6= 0
,

which simply counts the number of non-zero elements, weighted by a penalty term α.
Unfortunately, optimizing this metric directly is hard due to the discrete nature (binary,
either zero or non-zero) of the problem, which cannot be differentiated. In fact, the problem
is NP-complete (Ge et al., 2011). Louizos et al. (2018) approximate the L0 norm using
differentiable non-negative stochastic gating variables to determine which weights to set to
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zero. Their method can be used with gradient-based optimization maintaining the original
learning schedules. However, as with a similar method by Srinivas et al. (2016), it may
suffer from the stochastic nature of parameter selection (see Savarese et al., 2020): during
training, new masks (weight structures) are sampled at each iteration for the forward pass.
This may introduce noise into the training process if the sampling has a high variance.
Furthermore, it leads to a discrepancy in the training and inference performance if a fixed
deterministic sample is used at inference time. Verdenius et al. (2020) even find that tuning
hyperparameters for L0-based schemes is particularly hard to an extent that they could not
apply the method to a different network. Gale et al. (2019) present large-scale results for
various schemes in comparison.

Estimating discrete functions The main complexity lies in selecting the nondiffer-
entiable binary gating variables whose gradient is zero almost everywhere. The possibly
simplest approach is Straight-through Estimators (Bengio et al., 2013) that simply ignore
the derivative of the non-contiguous binary function during backpropagation (treat it as if it
was an identity function). Several works use this simple trick to optimize arbitrary element
gating functions (Srinivas et al., 2016; Wortsman et al., 2019; Li et al., 2020b; Sanh et al.,
2020). Others find it to be unstable at minima and suggest variants of ReLU (Yin et al.,
2019). Xiao et al. (2019) point out that hard thresholding does not support weight reani-
mation and they suggest “softer” selection functions such as the Leaky ReLU or Softplus
shown in Fig. 13a.

A second direction to estimate discrete functions is to design parameterizable continuous
approximations. Luo and Wu (2019) and Savarese et al. (2020) choose the sigmoid function
as such a continuous approximation to the Heaviside step function (H(x) = 1 if x > 0, and
0 otherwise). They introduce a varying “temperature term” β to control the smoothness:
σ(βx) = 1

1+e−βx
. For high β, σ(βx) approximates the Heaviside step function better but is

“harder” to train. Fig. 13b shows the function for various values of β. Furthermore, they
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Figure 13: Various approximations for non-differentiable step functions. The β parameter
regulates the temperature choosing between approximation quality and smoothness.

continuously sparsify during deterministic training by rounding the mask to H(x) in the
forward pass. A key aspect of this method is the adoption of an exponential schedule for the
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development of β from 1 to an upper bound selected as a hyperparameter. For regularization
during training, they use the differentiable L1 norm ||σ(βx)||1. Azarian et al. (2020) use
another sigmoid-based “soft pruning” estimator and combine it with layer-wise threshold
learning. They also observe that pruning needs to be performed slowly and they use an
iterative scheme with a fixed temperature but increasingly aggressive penalty parameter.

One could also directly learn the threshold for magnitude pruning during training.
Manessi et al. (2018) propose to use a soft version of the threshold linear function: νβ(x, t) =
ReLU(x− t) + tσ(β(x− t))−ReLU(−x− t)− tσ(β(−x− t)). Here, t is the threshold pa-
rameter and β is an approximation factor, as before. We show the varying “sharpness” of
the curve in Fig. 13c. This function reduces x to near-zero in the range [−t : t] while t can
be learned through SGD. Manessi et al. (2018) then tune β as hyperparameter and apply
another fixed parameter to round the values in the learned pruning interval to zero.

Top-k Yu et al. (2012) and Collins and Kohli (2014) specify a hard limit to the number of
parameters k and simply prune all but the top-k weights by magnitude. Both report that
this scheme outperforms other “soft” regularization schemes. Collins and Kohli (2014) define
a simple greedy scheme to select layers to sparsify and thus distribute the weights. Xiao
et al. (2019) regularize gating variables, which is essentially an L0 regularizer and train it
via a hard sigmoid straight-through estimator (Hubara et al., 2016).

Polarization A related approach for pruning is polarization (Zhuang et al., 2020) where
the regularizer is defined to pull some gating elements to zero and others away from zero:

R(α) = t‖α‖1 − ‖α− ᾱ1n‖1 =
n∑
i=1

t|αi| − |αi − α̂|,

where ᾱ = 1
n

∑n
i=1 αi. The effect of the term −‖α − ᾱ1n‖1 added to the L1 norm is to

separate small and large weights—it reaches its maximum when all αi are equal and its
minimum when half are equal to zero and the other half is equal (Zhuang et al., 2020).

3.6.2 L1 norm

The L1 norm is the tightest convex relaxation of the L0 norm that is almost everywhere
differentiable. It has been popularized through the well-known lasso technique (Tibshirani,
1996). The left side of Fig. 15 visualizes lasso in three dimensions. As opposed to L1, the
penalty is not discrete but linear, i.e., the sum of absolute magnitude of the weights:

P (w) = α‖w‖1 = α
∑
i

|wi|.

While L1 norms lead to very small weight values, they usually do not reduce weights to
exactly zero and magnitude-based thresholding is often used to sparsify models (Collins
and Kohli, 2014). Williams (1995) uses a penalty term proportional to the logarithm in
the L1 norm to achieve better generalization through sparsification. Liu et al. (2015) use
L1 sparsification for convolutional networks. Chao et al. (2020) use a carefully tuned L1

proximal gradient algorithm which can provably achieve directional pruning with a small
learning rate after sufficient training, and show that their solution reaches similar minima
“valleys” as SGD.
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Related regularization approaches L1 norm regularization has multiple shortcomings:
First, it shrinks all parameters in the weight matrices with the same speed and second, it
is also invariant to a scaling of the parameters, i.e., ||xw||1 = |x| · ||w||1. Yang et al.
(2020b) address both shortcomings by use the square of the Hoyer regularizer (Fig. 14),
which represents the almost anywhere differentiable scale-invariant ratio between L1 and

L2 norms: HS(w) =
(
∑
i |wi|)

2∑
i w

2
i

. This operator can also be applied in a group setting for

structured pruning operations (see below).
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Figure 14: Squared Hoyer regularizer for inputs with varying dimensions.

Another related method, the shrinkage operator (Tibshirani, 1996) has significantly
better empirical and theoretical properties than simple thresholding after L1 regularization:
w′ = (|w| − δ)+sgn(w) with (x)+ representing the positive component of x and δ acts as
a weight threshold. This operator will zero out weights that would change sign and δ
implements thresholding.

Layer-wise regularization While regularization as a part of the overall loss function is
most common, one could also imagine a layer-wise regularization to restrict the focus of the
optimization problem to a smaller scope. Aghasi et al. (2017) use an L1 norm regularizer
for the weights at each layer while keeping the layer output ε-close to the original output:
w′ = arg min‖w‖1 s.t., ‖σR(w′xl−1)−σR(wxl−1)‖ ≤ ε, where w′ are the sparsified weights.
For the special but very common case of ReLU (σR(·)), they use the “cut off” to provide a
convex relaxation to this optimization problem.

3.6.3 Grouped regularization

The group lasso generalizes the lasso operator to a setting where variables are segmented
into predefined groups, for which either all group members should be non-zero or zero
together (Yuan and Lin, 2006). We define a vector y of E examples and a feature matrix X
of size E×N , all with mean zero. Suppose that the N elements are divided into G groups,
and the matrix Xg contains only examples of group g with the corresponding coefficient
vector βg and ng is the size of group g. The group lasso is defined as solving the convex
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optimization problem:

min
β∈Rp

∣∣∣∣∣∣
∣∣∣∣∣∣y −

G∑
g=1

Xgβg

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+ λ
G∑
g=1

√
ng||βg||2

 .

It is easy to see that, if all groups are of size one, the original lasso is (up to factors)
recovered:

min
β∈Rp

(
1

E
||y −Xβ||22 + λ||β||1

)
.

Friedman et al. (2010) point out that the group lasso does not promote sparsity within
groups, which can be achieved with a small tweak to the regularization term, arriving at
the sparse group lasso:

min
β∈Rp

∣∣∣∣∣∣
∣∣∣∣∣∣y −

G∑
g=1

Xgβg

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

+ λ1

G∑
g=1

||βg||2 + λ2||β||1

 .

The middle two parts of Fig. 15 visualize group lasso and sparse group lasso with three
dimensions and two groups. Group lasso uses a simple L2 norm within each group while its
sparse variant even attempts to sparsify within groups, adjustable by parameters.
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Figure 15: Lasso vs. ((Sparse) Group) Lasso with G1 = {x1, x2} and G2 = {x3} vs. Ridge
Regression.

A simple definition of such a group is to assign all outgoing weights of either input or
hidden neurons to a group (Scardapane et al., 2017). Thus, if a group is zeroed during
optimization, then the corresponding neuron/input can be removed from the network. For
convolutional layers, groups could be used to sparsify filters or channels (Wen et al., 2016).
At a much coarser granularity, groups could also tie whole layers together and optimize the
overall model structure (Wen et al., 2016). Group lasso can also be used to keep important
structures of the network, such as residual connections intact (Gordon et al., 2018).

Pan et al. (2016) use regularization on both the input and output of each neuron to
facilitate neuron pruning. Their method, DropNeuron, is similar to group lasso and they
define the regularizer as the sum over all L2 norms of all neuron’s inputs or outputs: Li =
λli
∑L

l=1

∑nl−1

n=1 ||W l
:,n||2 and Lo = λlo

∑L
l=1

∑nl−1

n=1 ||W l
n,:||2, where W l

n,: and W l
:,n are the

input and output weights of neuron n in layer l, respectively. The authors propose to
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use the sum of both regularization terms with carefully tuned parameters λli and λlo as
penalties to further sparsify after a magnitude pruning step on the weights.

A somewhat similar scheme adds scaling factors, which are related to gating variables, to
each filter (Liu et al., 2017). Those scaling factors can be merged into a batch normalization
layer and thus do not lead to additional values. Liu et al. then penalize the factors with an
L1 norm before pruning them by magnitude globally. Gordon et al. (2018) use this scheme
in a grow/prune algorithm for neurons and Kang and Han (2020) extend the scheme to
consider the effects of ReLU operations and the bias of batch normalization to also prune
neurons that are mostly zero. Huang and Wang (2018) generalize this scheme and add
scaling factors to neurons, groups, or whole layer blocks in various convolutional networks.
They train the factors with an Accelerated Proximal Gradient method. Ye et al. (2018)
use a similar scheme by adding factors to the batch normalization of filter outputs. They
use ISTA (Beck and Teboulle, 2009) as a sparsifier for those factors, eventually pulling the
output of each filter to a constant. They then remove the corresponding filter and merge
the removed constant into the biases of the next-layer elements.

3.6.4 Other regularization techniques

Similar regularization approaches can also be used to promote low-rank matrices for the
weights such that a later compression by factorization is more effective (Alvarez and Salz-
mann, 2017) or promote similarity of weights and filters (Ding et al., 2019a). Yet, such
schemes are outside the scope of our work.

Chauvin (1989) adds an neuron energy penalty term P (o) = µen
∑

i=1..|o| e(o
2
i ) over

the output neurons. The positive monotonic energy function e(·) and the scaler µen are
parameters to the method. This penalty will decrease the magnitude of the neurons and
implicitly the weights, which can then be used to sparsify the network.

Tartaglione et al. (2018) use a penalty term that is based on the output sensitivity of
each neuron to the parameters. This sensitivity measures the relevance of the parameters to
a specific output. If the sensitivity of an output neuron with respect to a specific parameter
is small, then setting it to zero will change the output little. They use a regularization
term to gradually decrease the absolute value of low sensitivity parameters and eventually
set them to zero once they pass a certain threshold. This method can be applied during
training but the authors suggest to start from a pretrained network.

Pruning can be modeled as a special case of weight quantization by breaking the error
down to the contributions of the quantization error at each bit width (van Baalen et al.,
2020). They use powers-of-two bit-widths with a gating term αi for each width i, including
a general gating term for zero bits (pruned weights): w = α2(w2 + α4(ε4 + α8ε8))), where
wi and εi are the weights quantized to i bits and the quantization error with respect to the
ith bit-width, respectively; α2 prunes the whole weight.

3.6.5 Potential issues

Azarian et al. (2020) observe that grouped L1 (and L2) regularization fails to prune networks
with batch normalization layers. This is because batch normalization layers can rescale the
output of previous layers arbitrarily and thus eliminate any regularization penalty. In prac-
tice, such weights would become simply very small while keeping their original relative values
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(i.e., not benefiting pruning decisions), followed by an upscaling in the batch normalization
layer such that model performance is not influenced.

3.7 Variational selection schemes

Other methods for selecting candidate elements to be removed from the network rely on
a Bayesian approach or draw inspiration from the minimum description length (MDL)
principle (Grünwald, 2007). Namely, one can assume a distribution across the elements
of a neural network (e.g., over individual weights or neurons), and prune elements based
on their variance. The intuition behind this approach is that elements with high variance
would have little contribution to the final network performance, and therefore it might be
beneficial to remove them. We now discuss methods based on variants of this approach,
and refer the reader to Section 1.2.3 for the relevant mathematical background.

Sparse Variational Dropout Sparse Bayesian learning (Tipping, 2001) is a framework
originally used for obtaining sparse models, such as the “relevance vector machine” (RVM),
through carefully designed prior distributions, without additional manual tuning of hyper-
parameters. More recent advances in variational inference (Kingma and Welling, 2014;
Rezende et al., 2014; Kingma et al., 2015) have enabled the use of Bayesian learning tech-
niques for large-scale models, such as neural networks. The connection between variational
inference and dropout (Kingma et al., 2015), together with the idea of defining the rele-
vance of a weight in terms of its variance during training have motivated Sparse Variational
Dropout (Sparse VD) (Molchanov et al., 2017) as a method for pruning neural networks.

As described in Section 1.2.3, Variational Dropout approximates a posterior probability
distribution for each weight wij ∼ N (wij |θij , αθ2

ij). Sparse VD (Molchanov et al., 2017)
extends this idea, and explicitly learns individual dropout rates αij for each weight wij . The
parameters θij and αij of each distribution q(wij |θij , αij) can be optimized via stochastic
variational inference and φ = (θ, α) are the so-called variational parameters. To avoid the
problem of high variance of stochastic gradients for large values of αij as reported in Kingma
et al. (2015), Molchanov et al. (2017) introduce an additive noise reparameterization, in
which the optimization is done directly over (θ, σ2), with σ2 = αθ2, instead of (θ, α).

Srivastava et al. (2014) observed empirically that Gaussian dropout has a similar per-
formance to regular binary dropout for α = p

1−p ; following this observation, in Sparse VD
weights w with large values of α, for example logα ≥ 3, have corresponding Binary Dropout
rates p > 0.95, which suggests that these weights w can be set to zero during testing. This
approach is also intuitive: large values of α correspond to high amounts of multiplicative
noise in w, which would hurt the performance of the network, unless these weights are set to
0. The benefits of this approach are that no additional hyperparameters need to be tuned,
and at the end of training the weights corresponding to large values of α can be dropped in
one-shot, without additional fine-tuning of the sparse network. However, one disadvantage
is that this new model has twice as many parameters as the original network; additionally,
the authors of Sparse VD reported difficulties in training the model from scratch and have
proposed either starting from a pretrained model, or having a “warm-up” period in which
the KL-regularizing term of the variational bound is gradually introduced. Although the
original paper reports results only on smaller datasets such as MNIST and CIFAR-10, Gale
et al. (2019) has shown that Sparse VD can also sparsify large models at ImageNet scale.
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We do note that in this case Sparse VD achieves high sparsity, but has high variance in the
results with respect to final accuracy and average model sparsity.

One intriguing question that is not entirely resolved in the literature is whether methods
such as Sparse VD applied at scale are truly “variational”. Namely, how different are
variances of the weights considered redundant, from those of the un-pruned parameters.
Following the intuition presented in Molchanov et al. (2017), for the weights w ∼ N (θ, σ2)
corresponding to large α it is desirable to have θ = 0, which in turn favors values close
to zero for σ2 = αθ2; this would prevent large amounts of multiplicative noise that would
corrupt the model quality.

To examine this question, we reproduced the results on the CIFAR-10 dataset presented
in Molchanov et al. (2017), focusing on the converged values of the variational parameters.
Specifically, we separated the weights corresponding to large values of α, which are eventu-
ally pruned, from the remaining weights, and studied the differences for log-variances log σ2.
Surprisingly, all values of log σ2 were very close to −15, which was also the value used at
initialization. Such a small initial value of all log σ2 was chosen by the authors to prevent
the training process from diverging. Reproducing the same experiment at a larger scale for
ResNet-50 trained on ImageNet using the implementation from Gale et al. (2019) revealed
the same behavior: variances of the model’s weights are all very small (close to e−15) and

do not move during training. In this case, the threshold logα = log σ2

θ2
will make decisions

very similar to global magnitude pruning. A distinctive behavior could be observed on
Transformer networks, as implemented in Gale et al. (2019), where the weights correspond-
ing to large α generally had smaller log σ2 than the pruned weights, while the values of
log σ2 moved significantly from their initial value. In spite of the intriguing observation
that for CNNs, Sparse VD has a very similar behavior to global magnitude pruning, it is
worth noting that for models trained using Sparse VD, a large proportion of the weights
can be pruned immediately after training, with a small drop in test accuracy. This is in
contrast with magnitude pruning methods, which require fine-tuning to recover from the
drop in performance, and suggests a powerful regularization effect in Sparse VD, which is
not always reflected in the final variances of the weights.

Structured Bayesian pruning Although Sparse VD can lead to sparse neural networks,
the unstructured sparsity achieved can rarely accelerate inference today. If the goal is
acceleration, then structured sparsity is a more desirable outcome, and Neklyudov et al.
(2017) showed how this can be achieved using the Bayesian dropout framework. The authors
propose using a truncated log-normal distribution as the approximate posterior, where
θ ∼ LogN(µ, σ2) ⇐⇒ log(θ) ∼ N (µ, σ2); here the variational parameters (µ, σ2) are shared
across different groups, such as neurons or convolutional filters. This has the advantage that
log-normal noise does not change the sign of its input, as the noise is non-negative both
during train and test. Furthermore, using truncated versions of both the log-uniform prior
and log-normal posterior gives a closed form solution of the KL divergence term used in
the variational lower-bound. To obtain a sparse solution, the authors propose thresholding
neurons by their corresponding signal-to-noise ratio (SNR); intuitively, neurons with low
SNR are mostly propagating noise and therefore should be set to zero. The authors show
acceleration for their method on smaller datasets, such as MNIST and CIFAR-10.
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Soft weight sharing Ullrich et al. (2017) propose combining soft weight sharing with
pruning to compress neural networks. The idea of soft weight sharing (Nowlan and Hinton,
1992) is to compress a neural network by assigning its weights to different clusters. This
is done using empirical Bayes methods, in which the prior over the parameters is learned
during the training process. Following Nowlan and Hinton (1992), Ullrich et al. (2017)
define the prior over the weights of a neural network as a mixture of Gaussians. One of the
mixture components has a zero mean and a chosen mixture probability close to one, which
will enforce a certain sparsity level for the resulting neural network. Thus, the proposed
soft weight-sharing algorithm for compression starts from a pre-trained network and after
optimizing the corresponding variational lower-bound, the resulting weights are assigned to
the most probable cluster from the Gaussian mixture prior.

Bayesian pruning with hierarchical priors Louizos et al. (2017) use the variational
inference framework and the minimum description length (MDL) principle to compress
neural networks, by defining hierarchical sparsity inducing priors to prune neurons. The
MDL principle (Grünwald, 2007) states that the best hypothesis is the one that uses the
smallest number of bits to communicate the sum between the model’s complexity cost and
the data misfit error; thus, MDL is directly related to compression. Additionally, it has been
well understood that variational inference can be reinterpreted through MDL (Hinton and
Van Camp, 1993). With this theoretical support, Louizos et al. (2017) define a zero-mean
Gaussian prior over the weights of a neural network, where the variance is sampled from a
separate distribution, for example a log-uniform or half-Cauchy. This formulation enables
weights within the same neuron or feature map to share the corresponding scale variable in
the joint prior, which encourages structured sparsity. Furthermore, the optimal fixed point
precision for encoding the weights can be determined from the posterior uncertainties, which
in turn leads to quantized networks.

Bayesian pruning for recurrent neural networks Earlier works have focused on
inducing sparsity in standard feed-forward neural networks. Yet, Bayesian pruning methods
have also been successfully applied to recurrent neural networks (RNNs) (Lobacheva et al.,
2018; Kodryan et al., 2019). Lobacheva et al. (2018) use Sparse VD (Molchanov et al., 2017)
to prune individual weights of an LSTM or follow the approach from Louizos et al. (2017)
to sparsify neurons or gates and show results on text classification or language modeling
problems. Kodryan et al. (2019) use instead the Automatic Relevance Determination (ARD)
framework, in which a zero-mean element-wise factorized Gaussian prior distribution over
the parameters is used, together with a corresponding Gaussian factorized posterior, such
that a closed-form expression of the KL divergence term of the variational lower bound
is obtained. Subsequently, the Doubly Stochastic Variational Inference (DSVI) method is
used to maximize the variational lower bound and the weights for which the prior variances
are lower than a certain threshold are set to zero.

Related methods Dai et al. (2018b) prune neurons based on a simple layer-wise infor-
mation bottleneck, an information-theoretic measure of redundancy. For this, they penalize
the “inter-layer mutual information using a variational approximation” to sparsify. Their
Variational Information Bottleneck Networks modify the loss function to contain a term that
compares the mutual information from layer i to layer i + 1 with the mutual information
between layer i and the final result. With the optimization goal to minimize the former and
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maximize the latter, they prune based on their KL-divergence. Engelbrecht (2001) prunes
based on the variance of sensitivity of inputs and neurons, and could therefore be seen as
variational. Specifically, their method dictates that if the sensitivity of a parameter varies
very little across the training set, then it can be pruned.

3.8 Other selection schemes

3.8.1 Sampling-based pruning with guarantees

Another method for selecting candidate elements for pruning relies on an approach different
from the Bayesian framework. Namely, Baykal et al. (2019), propose using a subset of the
data to estimate the relative importance, or “empirical sensitivity” of incoming edges to a
neuron; this allows the definition of an importance sampling distribution over the incoming
edges, which in turn leads to sparse weight matrices. The proposed algorithm has theoretical
guarantees in terms of the sparsity level obtained, as well as generalization guarantees for
the sparse network. Furthermore, the framework can be improved to allow for structured
pruning of neurons. Following work (Liebenwein et al., 2020) has extended the idea of
sampling-based pruning to removing filters from CNNs, while also providing guarantees on
the size and final output of the pruned network.

3.8.2 Genetic algorithms

Like any optimization problem, pruning can also be modeled using genetic algorithms (Whit-
ley and Bogart, 1990; White and Ligomenides, 1993). The population is created from
multiple pruned versions of the neural network and each is trained separately. New net-
works are created using mutation, reproduction, and cross-over parameter selection. These
populations are then rewarded for smaller numbers of parameters and for improved gen-
eralization. However, this approach is not practical for modern large compute-intensive
training due to the high complexity of training ensembles of models. Weight Agnostic Neu-
ral Networks (Gaier and Ha, 2019) use genetic algorithms to search a good architecture
while keeping the weight values constant.

3.8.3 Diversity and quantized networks

Diversity networks (Mariet and Sra, 2016) employ Determinantal Point Processes to select
a subset of “diverse neurons” in each layer while fusing other similar neurons. It starts from
fully-trained networks and does not require fine-tuning.

Quantized neural networks already employ an approximation function that could also
be used to guide pruning decisions. Guerra et al. (2020) use a metric related to the distance
between quantized and full-precision weights (i.e., the rounding error) in binary or quantized
networks for selecting filters to prune.

Some neurons or filters may learn properties of the training set distribution that are not
relevant to distinguish between classes within that distribution. Tang et al. (2020b) propose
to generate “knockoff” features that draw from the same distribution but are independent
of the example’s label. They feed the example and the knock-off into the same network and
compare scaling factors for filters (cf. filter sensitivity). Then they prune the features that
have a large sensitivity for knockoff inputs and a relatively small sensitivity for real inputs.
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3.9 Parameter budgets between different layers

All of these schemes define several hyperparameters to adjust sparsity — be it based on
the value of the elements themselves, or be it based on a target sparsity level (top-k).
One remaining question is about whether or not these parameters should be chosen per
layer/operator or globally for the whole model.

Earlier works implicitly choose the sparsity level globally, such as “drop the bottom 90%
of all parameters w = w1 ∪ w2 ∪ · · · ∪ w`”. See et al. (2016) found that global selection
without differentiating layers performs best for pruning of RNNs. It was recognized soon
that, especially for networks with very different layer types, e.g., convolutional and densely
connected, different layers should be treated differently. Furthermore, empirical evidence
suggests that even the same layer types should be sparsified differently depending on their
position in the network (earlier vs. later layers). One can now consider introducing different
sparsities for each layer separately (Mocanu et al., 2018), requiring to tune potentially
complex hyperparameters.

Later schemes automatically determine a good parameter budget per layer to reduce
the hyperparameter complexity. A simple option would be to link the sparsity to properties
of the layer, such as the ratio of weights to neurons or kernel dimensionality (Evci et al.,
2020a). Parameter budgets can also be redistributed during training depending on various
saliency metrics. For example, Mostafa and Wang (2019) drop small magnitude parameters
during training and preferentially re-add parameters in layers with larger loss gradients (i.e.,
layers that have been pruned less).

We want to use this opportunity to also mention that different layer types can have
very different computational intensities. This means that two models with the same overall
sparsity can have dramatically different operational (flop count) requirements, depending
on how parameters are distributed across layers. Thus, when sparsifying for performance,
the detailed allocation of parameters to layers (types) is of crucial importance (Frankle
et al., 2021; Kusupati et al., 2020).

Figure 16 shows the distribution of sparsity across the various layers of a ResNet-50
network for different methods (see Sections 3 and 6.1 for details). An interesting and
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Figure 16: Distribution of sparsity across layers for ResNet-50 and various sparsification
methods.

seemingly general observation is that many global schemes that can balance the parameters
across layers automatically tend to assign more parameters to earlier layers than later
ones (Sanh et al., 2020). Many practitioners even disable pruning of the first layers because
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they empirically found this to yield higher accuracy. Tuning sparsity across layers is an
important consideration for practical sparsification.

3.10 Literature overview

After describing the flurry of different approaches, we attempt to overview the landscape of
the literature to provide some information about the popularity of the various techniques.
Figures 17 and 18 show various different views of the same data summarizing all surveyed
papers from 1988 to 2020. We classified each paper in three different categories: (1) the
candidate element to be removed, (2) the method to choose elements for removal, and (3)
whether the authors discuss optimizing inference or improving training (type). The different
candidate elements are, as described in Section 2.3, neurons, weights, convolutional filters,
transformer heads, transformer hidden dimensions, and inputs. The different methods
follow the structure of this section.
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Figure 17: Statistics of how many papers combine a specific selection method, to prune a
specific candidate element for training or inference (type).

Fig. 17a shows that nearly 50% of all papers focus on weight sparsification, closely
followed by neuron sparsification. Other structured schemes and inputs form a minority.
Of the weight sparsification schemes, the vast majority uses simple magnitude pruning
followed by first and second order schemes. Fig. 17b shows that more than 60% of the
papers focus on inference while training is recently gaining popularity. Most inference
works focus on pruning either neurons, weights, or filters while pruning to improve training
largely focuses on weights. Fig. 17c allows us to compare popular pruning methods for
inference and training. Inference is interestingly dominated by regularization approaches,
closely followed by magnitude pruning while training focuses on magnitude.

Fig. 18a shows that 50% of the works focus on either magnitude pruning or regular-
ization. In fact, many works combine the two approaches as they seem mutually bene-
ficial. Magnitude pruning is most often used for weights while regularization is equally
applied to all element types. Here, we summarize filters, blocks, and heads into a single
“structured” category. Fig. 18b shows an overview including all three classification dimen-
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Figure 18: Statistics of how many papers combine a specific selection method, to prune a
specific candidate element for training or inference (type).

sions. It illustrates once more the dominance of pruning weights by magnitude, followed by
sensitivity-based neuron pruning.

4. Dynamic Pruning: Network regrowth during training

Many fully-sparse training schedules remove elements during training but also need to re-add
other elements in order to ensure that the model remains of approximately the same size.
The process is very similar to architecture search in that it traverses the space of possible
model architectures. If we prune and re-add neurons, then relatively simple schemes to add
new neurons perform well (Narasimha et al., 2008; Han and Qiao, 2013) because the order of
neurons in a layer is insignificant. However, weights are more complex because re-adding the
best weights is as crucial as removing the right weights. Yet, it is often much harder because
the information for all non-existent weights is the same: they are zero. Additional hints,
such as the gradient or Hessian magnitude could be used but cause additional overheads in
terms of memory and compute and invalidate some of the benefits of sparsity. We will now
describe the various schemes put forward to select weights to add to a sparse model during
training.

4.1 Random or uniform regrowth

The simplest weight addition scheme is to activate a random weight during training. Mo-
canu et al. (2018) show that this scheme leads eventually to power-law graphs following
a preferential attachment rule. They also draw parallels to biological brains and argue
that weight removal can be seen as natural selection, similar to synaptic shrinking during
sleep (De Vivo et al., 2017; Diering et al., 2017), and weight addition can be seen as natural
mutation. Bellec et al. (2018) recognize that such random growth schemes essentially lead
to a random walk in the model space.
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Similar to layer-wise pruning, layer-wise addition can also lead to improved accuracy.
The main idea is to add parameters preferentially in layers that would be sparsified less.
Mostafa and Wang (2019) initially distribute all parameters according to a fixed fraction to
all layers. After magnitude pruning, they add new parameters proportionally to the number
of parameters retained in each layer to strengthen the significant layers.

Uniformly adding filters or neurons via a “width multiplier” to layers as part of an
iterative grow/prune methodology has also been shown to be effective (Gordon et al., 2018).

Based on the observation that the optimization process benefits from large dense models
(see Section 8.5), one could argue that learning in a dense space should be beneficial. Golub
et al. (2019) realize that the initial (random) weight values that were pruned influence the
non-pruned weights during the optimization process (not at inference, where they are re-
moved). Since those weights have been generated with a pseudo-random number generator,
the authors propose to simply recompute them on demand for training.

4.2 Gradient information based

One simple way to determine which weights should be added is to observe the gradients
during the backwards pass, including those gradients for zero weights. While this immensely
increases memory and computation overheads and removes some of the benefits of sparse
computations, it provides good information about the importance of specific weights: if the
gradients are large, then those weights would be important. Dai et al. (2018a) show that
adding weights by largest gradient is biologically plausible and related to Hebbian learning.
They show that this scheme is mathematically identical to adding a new synapse between
two highly stimulated neurons in adjacent layers.

The simplest version of this scheme to compute gradients for all parameters. Lin et al.
(2020) keep a full copy of all weights up to date during training and only deactivate them
with a mask in the forward pass. This enables an efficient search through different archi-
tectures with various pruning methods for the dense model. They show good results using
simple magnitude pruning every k iterations. Wortsman et al. (2019) uses a similar scheme
and but restricts the flow of gradient information through pruned weights. In this scheme,
gradients flow to pruned weights but their contribution is not forwarded to other weights.
Dettmers and Zettlemoyer (2019) compute a momentum term that captures gradients over
multiple iterations as a criterion for growing weights. While the memory and compute
overheads are significant, these methods still reduce the number of arithmetic operations
substantially compared to dense training. They can be combined with layer-wise redistribu-
tion strategies to focus the addition of new neurons to more efficient layers. Dettmers and
Zettlemoyer (2019) find in an ablation study that updating pruned weights during training
is critical for final model accuracy.

One way to reduce gradient storage is to compute it only layer-by-layer and discard it
after layer-wise regrowth decisions (Evci et al., 2020a). This reduces the memory overheads
but potentially decreases the accuracy due to noise in the instantaneous gradients. They
use three different schemes to determine the number of parameters per layer: (1) the same
uniform fraction for each layer, (2) scaling the number of weights with the number of neu-
ron’s (“Erdős Rènyi”, cf. Mocanu et al., 2018), and (3) incorporating the kernel dimension
into the scaling factor. Another way to reduce gradient storage is to only compute the
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top-(k + d) gradients (Jayakumar et al., 2020) for k non-zero weights. In this way, the
additional d gradients can be seen as a “halo zone” of the most relevant gradients to be
added.

4.3 Locality-based and greedy regrowth

Biological brains are sparse structures with hierarchical sparsity distributions that are lo-
cally dense and globally sparse (Betzel et al., 2017). It is now perceivable that local con-
nectivity could also benefit deep neural networks. Ström (1997) decays the probability
for adding a new weight exponentially with the distance between neurons, leading to a
hierarchically sparse structure.

Simple greedy schemes that start from a trained network, remove all neurons and add
the most beneficial neurons provide theoretical guarantees albeit with limited sparsification.
Ye et al. (2020) show a scheme that adds neurons based on maximum loss reduction and
Zhuang et al. (2018) add filters based on minimizing a gradient-based sensitivity.

5. Ephemeral Sparsification Approaches

In biological brains, model sparsity is one important component. However, activity sparsity
is at least as important: the connections among neurons are fixed on a longer time-scale
ranging from hours to days while the electrical signals appear and disappear on a millisecond
time-scale. Not all 86 billion neurons of the human brain are active at any moment and are
controlled by complex activation and inhibition signals. While it is hard to estimate the
exact activity factor of this asynchronous system, several works suggest that only around
10% of the neurons are active at any moment (Kerr et al., 2005). This is necessary to
keep the human brain’s energy budget around 20W (≈20% of a typical human’s operating
budget, as the most expensive organ).

Deep neural networks use ephemeral sparsification to mimic that behavior: activation
functions such as ReLU inhibit certain signals by shutting down whole paths through the
network, implicitly selecting the information-rich paths specific to each input problem. We
can also extend ephemeral sparsity to the backpropagation learning process where we can
sparsify gradients and errors during training. Ephemeral sparsity has initially been used as
a regularizer but it is increasingly seen as another opportunity to save memory and energy
during processing of neural networks.

We start by describing inference sparsification where neural activations are set to zero
during inference and the forward pass of training (Section 5.1). Then we consider sparsi-
fication during training. We start with the various forms of dropout, a set of techniques
to sparsify networks during the forward pass of training to improve generalization (Sec-
tion 5.2). Gradient sparsification (Section. 5.3) has received special attention to reduce the
communication overheads in distributed data parallelism (Ben-Nun and Hoefler, 2018). We
then discuss less common options to sparsify back-propagated errors between layers and the
optimizer state (Section 5.4).
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5.1 Sparsifying neuron activations

The output activations of any ReLU-based neural network layer are naturally sparse (Glorot
et al., 2011) since, intuitively, on random inputs, half of the output values of such a layer
would be zero. In practice, it appears that the fraction of sparse activations is significantly
higher than 50%. This phenomenon does not currently have an analytical explanation,
but it has been leveraged by several hardware architecture proposals (see Section 7.2).
Specifically, Rhu et al. (2018) were among the first to perform an in-depth analysis of
activation sparsity on a range of large-scale convolutional models with ReLU activations,
showing high sparsities of up to 90% in some layers, well in excess of the 50% predicted by
the structure of the ReLU activation.

This phenomenon has inspired a line of work on compressing the activation maps in
a neural network for memory and computational gains, and potentially augmenting this
natural sparsity. The standard technique for reducing the memory footprint of activation
maps is quantization, see e.g., Mishra et al. (2018). Since quantization is not the main
focus of this work, we do not detail this approach here. For sparsifying activations, Alwani
et al. (2016) suggested to stochastically prune activations, although the objective is not to
gain performance, but to design a defense to adversarial attacks. To further reduce the
size of activations, Gudovskiy et al. (2018) suggested converting fixed-point activations into
vectors over the smallest finite field GF (2) followed by nonlinear dimensionality reduction
(NDR) layers embedded into the structure of the neural network. The technique results in
a factor of two decrease in memory requirements with only minor degradation in accuracy,
while adding only bitwise computations. At the same time, we note that the technique
requires modifying the network structure, and additional retraining. Both these techniques
incur low, but persistent, accuracy loss. Activation sparsity can also be used to significantly
reduce memory consumption during the training process (Liu et al., 2019).

More recently, Georgiadis (2019) proposed and investigated the use of L1-regularization
applied to the activation maps, and showed that it can result in a significant increase
in sparsity—up to 60% relative to naturally-occurring activation sparsity on a range of
CNNs for image classification on ImageNet. Further, he investigated a range of encoding
techniques for the activations, and evaluated them in terms of their resulting compression
factors. Kurtz et al. (2020) followed up on this idea, and showed that Hoyer regulariza-
tion (Hoyer, 2004), a popular regularizer in the context of sparse recovery, is superior to L1

regularization, in the sense that it provides higher activation sparsity with lower accuracy
loss. The paper goes on to introduce a series of thresholding methods that are complemen-
tary to regularization, in the sense that they zero out activation values that are close to, but
not exactly, zero. In addition, this paper describes a complete set of algorithms for lever-
aging activation sparsity for fast inference on CPUs, showing end-to-end inference speedup
for activation-sparsified models. Concurrent work by Dong et al. (2019) also introduced an
algorithmic framework for obtaining computational speedups on models where layers have
extremely high input sparsity. Their method is different from Kurtz et al. (2020), but ap-
pears to require higher input sparsity to ensure speedup. In particular, it is applied to tasks
such as LiDAR-based detection, or character recognition, in which inputs (and therefore
further activations) are naturally extremely sparse.
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Other operators such as GELU or SoftMax may also sparsify to some degree, be it
through rounding towards zero with limited precision. Since those two operators are often
used in transformers, see Section 6.2.

5.2 Dropout techniques for training

Dropout (Srivastava et al., 2014; Hinton et al., 2012) is a regularizing operator in DNNs
that forces the network to “prevent co-adaptation” of neurons during training. Specifically,
dropout is a data-free sparsifier that uses Bernoulli random sampling (with p typically
ranging from 0.01 to 0.5) to zero out neurons and nullify their contributions. During
training, the neuron-masking vector, which is randomly sampled at every step, is kept
stored in memory in order to mark the neurons to be ignored during backpropagation. At
inference-time, no dropout masks are applied, i.e., the entire set of neurons is considered.
The operator is applied mostly on the activations of fully connected layers, and is widely
used to increase generalization in MLPs, CNNs, and Transformers. An interesting property
of dropout is that it induces sparsity in activations (Srivastava et al., 2014), likely due to
the repeated ephemeral sparsification. The sparsity factor was observed to increase with
the dropout probability p.

There are several interpretations to dropout’s generalization effect. The initial line of
research claims that neuron “co-adaptation” (a concept borrowed from genetics) harms
generalization, and dropout prevents it by “making the presence of other hidden units
unreliable” (Srivastava et al., 2014). Baldi and Sadowski (2013) characterize dropout in
neural networks as simultaneously training an ensemble of an exponentially large set of
networks, each one generated by the different masked versions, and that at inference-time
their sum is taken (similarly to ensembles). Another interpretation originates from Bayesian
statistics (Gal and Ghahramani, 2016; Molchanov et al., 2017). The claim is that dropout
is an approximating distribution to the posterior in a Bayesian neural network with a set of
random weights. It is shown that dropout’s minimization objective reduces the epistemic
uncertainty of a DNN, or more specifically the KL-divergence with a Gaussian process (Gal
and Ghahramani, 2016).

Over the years, several successful extensions and generalizations of dropout were pro-
posed. DropConnect (Wan et al., 2013) drops out weights instead of activations. Srivastava
et al. (2014) proposed to replace the Bernoulli distribution with a normal N (1, 1) distri-
bution in order to add multiplicative noise. Other variants of dropout specialize to certain
operators: For convolutions, instead of random activation subsets, SpatialDropout (Tomp-
son et al., 2015) drops entire feature maps, and DropBlock (Ghiasi et al., 2018) drops
contiguous spatial regions. For recurrent neural network units, ZoneOut (Krueger et al.,
2017) modifies information propagation through sequences by randomly selecting between
the old hidden state and the new hidden state of the RNN unit, dropping the hidden state
update. Stochastic Depth (Huang et al., 2016), Drop-Path (Larsson et al., 2017), and Layer-
Drop (Fan et al., 2020) are more coarse-grained versions of dropout, dropping layer weights
and outputs of entire subgraphs of DNNs to prevent co-adaptation of paths and increase
regularization.

The variational interpretation has been used to generalize the dropout operator in var-
ious ways. Concrete Dropout (Gal et al., 2017) uses the Concrete distribution (Maddison
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et al., 2017) instead of Bernoulli sampling, which results in increased generalization as well
as the ability to evaluate epistemic uncertainty of the results. Variational dropout (Kingma
et al., 2015) uses Bayesian principles to define a variational dropout probability specific to
each neuron based on measured noise during training, foregoing the data-free property of
dropout to reduce the gradient variance. Molchanov et al. (2017) makes use of variational
dropout to select weights to prune (see Section 3.7).

Gomez et al. (2019) also propose a modification to the original dropout procedure to
“prepare” the learned network structure for pruning. Their targeted dropout stochastically
selects a set of weights or neurons to drop that may be pruned later. Specifically, they rank
weights and neurons (activation outputs) by their magnitude and apply dropout only to a
fraction of those deemed less important. For this, they select the γ|W | elements with lowest
magnitude and drop each of those with probability α. This scheme allows lower-valued
elements to emerge from the set of unimportant values during training.

5.3 Gradients

Gradient sparsification aims to introduce sparsity in the gradients of parameters during
training. While there are exceptions, this is primarily done in order to compress the gradi-
ents communicated as part of distributed data-parallel training (see Ben-Nun and Hoefler,
2018, for an overview). In this context, gradient sparsification is a subset of the more
general area of communication compression, which also includes quantization and low-rank
approximations (see Tang et al., 2020a, for a broad overview of this area). The key intuition
is that the gradients produced by SGD are noisy, and therefore identifying and removing
unimportant sub-components should not have a significant impact on convergence or may
even have a regularizing effect, while enabling compression.

Selection

Additional
techniques

Threshold
Strom [2015]

Adaptive
Dryden et al. [2016]

Gradient dropping
Aji & Heafield [2017]

AdaComp
Chen et al. [2017]

Deep Gradient Compression
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Figure 19: Overview of methods for magnitude-based gradient sparsification.

5.3.1 Magnitude-based gradient sparsification

Most methods for gradient sparsification select gradients to remove based on magnitude,
on the assumption that smaller gradients are relatively less important. The first work on
gradient sparsification, Strom (2015), is prototypical. A fixed threshold τ is introduced as a
hyperparameter and only gradient components of absolute magnitude larger τ are applied
directly to the model. The remaining values are quantized to a single bit per component
based on their sign, and each is packed into a single 32-bit integer representing the index
and quantized value. The other key feature is error feedback (Seide et al., 2014), where
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each worker locally accumulates the error introduced by its compression and incorporates
the residual into the next iteration, by simply adding it to the gradient. Using this method,
Strom (2015) showed that communication bandwidth was reduced by three orders of mag-
nitude for training a DNN for acoustic modeling, with no reduction in accuracy.

Absolute cut-off magnitudes are hard to pick because different networks or layers within
a network may have gradients of different magnitudes, and the magnitude may change dur-
ing training. Dryden et al. (2016) use a form of top-k selection, whereby a fixed proportion
of the positive and negative gradients are retained. They use sampling to find an absolute
threshold for top-k selection in linear time. They also quantize those top-k gradients to
a single bit (Seide et al., 2014), compress them based on entropy, and utilize all rounding
errors through error feedback.

Subsequent works improved upon these by refining the methods for selecting gradi-
ents or incorporating other tricks. Aji and Heafield (2017) use a single proportion for all
gradients, and select it globally for all layers, finding that layer normalization (Ba et al.,
2016b) is sufficient to keep gradients on a similar scale. Sun et al. (2017) performs top-k
sparsification of gradients as part of sparsifying all computation in backpropagation (see
Section 5.4). Chen et al. (2017) study sparsification for CNNs in addition to fully-connected
networks. They formalize binning, where compression is applied separately to subsets of
a layer’s gradients. This ensures that sampling windows are small enough to effectively
capture different gradient dynamics within a single layer. They also use a self-adjusting
threshold based on a scale factor, rather than a fixed top-k threshold. Lin et al. (2018)
introduces a number of tricks to improve the convergence of top-k sparsification, including
incorporating momentum into error feedback, gradient clipping, stopping momentum on
excluded gradients, and a warmup phase with less sparsity. This can result in orders-of-
magnitude communication-compression; however, their results appear to be quite sensitive
to hyper-parameterization. Sun et al. (2019) further approximate the gradient momentum
and incorporate local update steps.

Fig. 19 provides an overview of these methods, their key components, and the sparsity
they are able to achieve (we omit the sparsity for Strom, 2015, as they focus on very
different applications and the sparsity results are not comparable). Gradient sparsification
has steadily improved in the amount of sparsity it can introduce, with Lin et al. (2018)
achieving up to 99.9% sparsity. Compared to pruning for weights or activations, gradients
seem to be significantly more amenable to sparsity. For example, Lin et al. (2018) achieves
99.6% sparsity in gradients for training ResNet-50, with no loss of accuracy. In contrast,
pruning weights in ResNet-50 (see Section 6.1) achieves up to 90% sparsity with no loss of
accuracy, or 99% sparsity with significant accuracy loss.

5.3.2 Variance-based gradient sparsification

The convergence of SGD is significantly impacted by the variance of the stochastic gradients
used. However, sparsification can increase the variance in the resulting sparse gradients, and
hence slow convergence. Alistarh et al. (2017) noticed that, when stochastically quantizing
gradient vectors normalized by their L2-norm to only three quantization levels: 0, 1, and
-1, in expectation all but a Θ(

√
n) fraction of the n gradient values will be set to zero. This

results in non-trivial compression, but also induces high additional variance, which hurts
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convergence. To alleviate this issue, Wangni et al. (2018) first propose rand-k sparsification,
where k gradients are retained at random, biased by their absolute value, and the rest zeroed;
the remaining gradients are then rescaled to ensure the gradient is unbiased. They then
develop algorithms to select the optimal sparsification strategy given a variance budget. In
practice this turns out to be similar to choosing an appropriate k for top-k sparsification.
Similarly, Wang et al. (2018) considers the problem of minimizing variance subject to a
sparsity budget. They also consider the more general problem of sparsifying arbitrary
atomic decompositions, rather than just element-wise sparsification. Concurrently, Tsuzuku
et al. (2018) also identify variance as a key metric, and use the variance of gradients within
a mini-batch, rather than their magnitude, as a criterion for sparsification. The variance
can be computed for relatively little extra cost during standard backpropagation. Using
variance as a sparsification criteria thus has attractive theoretical properties, and Tsuzuku
et al. (2018) show that it matches or outperforms Strom (2015)’s threshold sparsification
on CIFAR-10 and ImageNet.

5.3.3 Other methods for gradient sparsification

A variety of other approaches to sparsification have also been studied. Ivkin et al. (2019)
use count sketches on each worker to approximate large gradients, and the sketches are
communicated. Lim et al. (2019) combine sparsification with ternary quantization, and use
a tunable sparsity factor to control how many values are rounded to zero. Basu et al. (2020)
studies the convergence of the combination of sparsity, quantization, and local updates,
showing this converges at the same rate as SGD in certain settings. Wang et al. (2020b)
apply top-k sparsification in the frequency domain after applying an FFT to gradients.

5.3.4 Convergence of sparsified gradient methods

There have been several theoretical analyses of the convergence of sparsified gradient meth-
ods. Concurrently, Stich et al. (2018); Alistarh et al. (2018); Jiang and Agrawal (2018)
show that sparsified gradient methods converge at roughly the same rate as standard SGD,
provided error feedback is used. These works differ in terms of the assumptions made and
guarantees provided: for instance, Stich et al. (2018) consider the case where a single node
compresses its gradient via sparsification with error correction (“memory”), assuming a con-
vex objective function, and provides very strong convergence guarantees, similar to those of
regular SGD. As a comparison, Alistarh et al. (2018) consider non-convex objectives, and
the multi-node case, but require an additional analytic assumption for their convergence
bounds. Overall, these works provide a strong theoretical justification to the previous em-
pirical results, in particular highlighting the importance of error feedback for convergence.
Karimireddy et al. (2019) extend these results to more general settings. However, these
results are for sparsifying an entire model’s gradients, as opposed to layer-wise operation.
Dutta et al. (2020) further extend these convergence results and show that layer-wise com-
pression is theoretically better. They also experiments and show that, while this usually
holds in practice, there do exist cases in practice where sparsifying an entire model out-
performs layer-wise sparsification. Tang et al. (2019) provide a convergence analysis for the
case where, in addition to workers sparsifiying their individual gradients before communi-
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cation, the aggregated gradient is also sparsified before being communicated back to the
workers. This situation is common in practice, but was neglected in previous analyses.

5.3.5 Runtime support for sparse gradient summation

Sparse communication was first implemented in the parameter server setting, where all
workers communicate with a single central parameter server. However, many scalable high-
performance distributed training systems perform communication without a central store
using allreduces. Extending sparse communication to this case is challenging. Dryden et al.
(2016) implements a ring-based allreduce that includes custom reduction operators that
uncompress vectors, sum them, and recompress them with the same hyperparameters. Shi
et al. (2019a) proposes a similar mechanism, global top-k, where instead of using the top
k gradients from each worker, only the top k gradients among all workers are used. Shi
et al. (2019b) provides convergence results for this approach. Renggli et al. (2019) propose
SparCML, a framework for efficiently performing distributed aggregations of sparse vectors.
They combine sparse vectors and retain all non-sparse coordinates; as this may eventually
result in dense vectors, SparCML includes a mechanism to switch from sparse to dense or
even dense-quantized representations.

5.3.6 Gradient sparsification for better accuracy

The prior approaches have primarily focused on sparsification in order to reduce communi-
cation bandwidth. Shokri and Shmatikov (2015) investigate such methods in the context of
privacy, while Sinha et al. (2020) study top-k sparsification to improve the training quality
for GANs (Goodfellow et al., 2014). When training a GAN, a critic network is used to
identify whether samples produced by the generator are “bad”. This work uses the critic
to select the best k samples in each mini-batch to perform updates with.

Note that the core idea behind parallelizing mini-batch SGD consists essentially of com-
puting an average of the gradients of the samples within a mini-batch, which functions as a
lower-variance estimate of the full gradient. Computing this average is a special case of the
more general distributed mean estimation problem. Several works have tried to achieve op-
timal communication bounds for this and related problems (Konečnỳ and Richtárik, 2018;
Suresh et al., 2017; Huang et al., 2019; Davies et al., 2021). We note however that the
above gradient sparsification approaches do not solve exact distributed mean estimation,
since the approximation to the true mean is inherently lower-dimensional; instead, they use
error feedback to correct for the inherent error.

5.4 Errors and optimizer state

In addition to the gradients of parameters, the gradients of a layer’s input, or the “errors”,
can also be sparsified. Sun et al. (2017) introduces meProp (“minimal effort backpropaga-
tion”) which applies top-k sparsification to the errors to reduce flops. This also necessarily
leads to sparse gradient updates, as only k rows (or columns) of the resulting gradient ma-
trix are non-zero. The top-k sparsification is first applied to the gradient of the loss initially
computed in backpropagation, and then reapplied after every fully-connected layer to keep
the errors sparse. Wei et al. (2017) demonstrate that this scheme can lead to 95% gradient
sparsity.
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Whether the optimizer state can be sparsified and the benefits of sparse optimizer states
have yet to be explored. We expect it to lead to more memory efficient training algorithms.

5.5 Dynamic networks with conditional computation

Dynamic networks where outputs of previous layers determine a path through the network
increase model capacity without increasing the computational cost. Conditional computa-
tion achieves this by routing the computation through the network without touching all
weights. It can also be interpreted as some special form of (often structured) activation
sparsity. PackNet (Mallya and Lazebnik, 2018) and Supermasks (Wortsman et al., 2020)
encode many tasks into the same dense network while circumventing catastrophic forgetting
by using task-specific sparse subnetworks. While these networks are fixed as masks for each
task during training, they can be combined for inference. Other practical approaches use
various trained (data dependent) gating techniques (binary or continuous, deterministic or
stochastic) (Bengio et al., 2013, 2016; Almahairi et al., 2016) or use switching methods that
explicitly select the next “expert” (Shazeer et al., 2017; Jacobs et al., 1991; Jordan and
Jacobs, 1994). Both approaches lead to ephemeral sparsity during the execution.

Recently, mixture of experts models have achieved impressive success in natural language
processing. Shazeer et al. (2017) define a Mixture of Experts (MoE) layer to contain n expert
subnetworks E1, . . . , En and a gating network G that outputs a sparse n dimensional vector.
The function of this layer can be written as y =

∑n
i=1G(x)iEi(x), where G(x) selects (gates)

the relevant experts. One way to implement a k-sparse gating function is to use a top-k
method. Shazeer et al. (2017) use a noisy top-k gating where they add tunable Gaussian
noise to the selection function to improve load balancing the experts. A typical basic gating
function is G(x) = softmax(Wgx) with learned weights Wg. Lepikhin et al. (2021) apply
this idea to transformer networks to train a model with 600 billion parameters by using a
similar gating function for k = 2 and stochastic load balancing across the experts to enable
large-scale parallel training. Switch transformers (Fedus et al., 2021) evolve the model
further and show that MoE sparsity can improve pretraining speed by up to 7x compared
to a dense model and supports models with extreme capacity of up to a trillion parameters.
They show that k = 1 (a single expert) performs best and they design a load balancing loss
term for the gating function.

Conditional computation during inference requires quick decision making at low over-
head. Runtime Neural Pruning (Lin et al., 2017), uses a Markov decision process to de-
termine the path through the network. Its parameters learned by a reinforcement learner,
the path through the network is determined at inference time. Here specifically, the agent
determines which channels are important to be considered for a specific input. During train-
ing, two networks are trained in tandem: the original (“backbone”) convolutional network
and the decision network that guides filter selection at runtime. Chen et al. (2020) show
a reinforcement learner used at runtime to select convolutional channels during runtime
with low storage. Several similar approaches use gating modules (Liu and Deng, 2018) or
routing (Rosenbaum et al., 2017).

Other similar approaches, such as product key networks (Lample et al., 2019) increase
model capacity without increasing the computation using key-value store-like memory lay-
ers. This vast topic of dynamic (memory) networks is outside the scope of this overview.
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6. Sparsifying Particular Neural Network Architectures

After describing the building blocks of sparsification methods, we continue to highlight
specific applications and results that were achieved applying these methods. Many works
prune for a specific goal such as performance/inference latency (Gordon et al., 2018), mem-
ory consumption (Li et al., 2020c), or energy efficiency (Yang et al., 2017). There, several
sparsifying techniques are often combined, for example, regularization and magnitude prun-
ing (Yang et al., 2017; He et al., 2017). Layer-wise sensitivity schemes or data-free methods
can then be used to improve the performance further. Many schemes iterate over a mix
of such techniques and their carefully engineered combinations with pruning schedules can
result in impressive gains for specific purposes (Han et al., 2016b; Yang et al., 2017).

Each methodology represents a combination of specific elements to sparsify, a sparsi-
fication schedule, a removal method, and (optionally), a re-addition method. Each result
is measured by the authors of the original work and can be reproduced through the de-
scription in the original paper. As pointed out by Blalock et al. (2020), these works do not
always follow a consistent experimental discipline and thus many results are unclear, and
may not be fully interpretable from both an accuracy and performance perspective (Hoefler
and Belli, 2015). Thus, when comparing works, we rely on the author’s results and only
do so to provide a rough overview of the relative accuracy of these methods. Moreover,
we would emphasize the fact that, although we present these methods in conjunction to
enable a global overview, they can differ significantly in terms of their computational and
implementation cost. Different setups are likely to shift the balance between accuracy and
sparsity—however, we believe that one can still derive interesting observations from these
quantitative results. Yet, we believe the presented results provide a good cursory view of
the state of the field.

In the following, we focus on more recent results after 2015 when broader interest in deep
neural networks emerged and works solved large-scale data-driven problems from computer
vision, natural language processing, and related domains, that are still relevant today.

6.1 Sparsifying convolutional neural networks

CNNs with diverse structures have recently become the primary target for sparsification,
and diverse architectures were successfully pruned. As opposed to MLPs, CNNs contain
combinations of convolutional operators (Section 1.2.4), fully connected layers, skip con-
nections, and other statistical normalization operators such as batch normalization. The
composition of these operators determine which sparsification strategies would be effective.
Convolutions are used from the inputs onwards to compute feature maps, whereas the fully
connected layers are used as classifiers. The convolutional operators can be pruned in a
structured or unstructured manner, but typically less than fully connected layers, due to
the fewer and structured connections between the inputs and the output.

In Fig. 20 we see the development of accuracy in CNNs over time (Fig. 20a) and sparsity
(Fig. 20b), where in the former we highlight the two extremes on the Pareto front of sparsity
— best validation accuracy and highest compression ratio — for every year and every
strategy. We note that the results shown in the figure are reported numbers from works
cited in this section. Thus, results may vary in accuracy due to different experimental setup
(e.g., data augmentation strategy, hyperparameter schedule).
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(a) Best accuracy and sparsity over time (b) Sparsity vs. accuracy

Figure 20: Reported accuracy of pruned CNNs. Marker shape indicates pruning strategy
and labels indicate sparsity.

We see that over the years, research was able to increase compression and accuracy at the
same time, and the composition of pruning strategies (see Section 3 for details) changed, but
magnitude constitutes the majority of the reviewed works. From Fig. 20b, we see that two
regions emerge: dense to moderate sparsity (0–90%), and moderate to high sparsity (marked
in darker background). In the lower compression ratios, magnitude-based pruning works
relatively well (especially when iterative pruning is applied), achieving high accuracy for all
studied networks. However, when >90% sparsity is desired, regularization, first-order, and
second-order sparsification yield the best networks in the sparsity-accuracy tradeoff. Below
we review the history and methodology behind the papers shown in the figures. First, we
focus on the convolutional operator and modifications to the CNN architecture. Then we
discuss approaches for pruning CNNs and the derived training schemes.

6.1.1 CNN architecture evolution

Over-parameterization in convolutional operators was already noted by Szegedy et al.
(2015). In order to reduce the computational requirements and memory footprint of CNNs,
the authors proposed the GoogLeNet architecture, using “Inception” modules that trade
large convolution kernels with 1×1 convolutions and smaller convolutions following dimen-
sionality reduction. This was later improved to chaining separable 1D convolutions instead
of 2D in the “Inception V3” CNN (Szegedy et al., 2016), and with depth-wise separa-
ble convolution (Sifre and Mallat, 2014) in the parameter-efficient MobileNets (Howard
et al., 2017), both of which can be seen as handmade sparse formulations of convolutions.
Kuzmin et al. (2019) provides a survey about structured compression of convolutions, in-
cluding tensor decompositions, channel pruning, and probabilistic compression. A recent
popular technique to reduce the size of CNNs and increase their parameter efficiency is
Neural Architecture Search (NAS) (Tan et al., 2019), formulating the process as a meta-
optimization problem. EfficientNet (Tan and Le, 2020), a modern, highly-accurate CNN for
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image classification, uses NAS to construct their base EfficientNet-B0 network, and defines
a compound method to scale it up while retaining parameter efficiency.

6.1.2 CNN sparsification techniques

On existing networks, applying the techniques presented in Fig. 20 can lead to a widely
varied set of results, in terms of sparsity versus accuracy. Below, we perform an anecdotal
review of influential early works, categorized by their training scheme (see Section 2.4),
followed by a discussion of challenges and solutions for sparsifying modern DNNs, which
exhibit higher baseline parameter efficiency, and can therefore be harder to prune.

Sparsify after training The popular paper on model compression by Han et al. (2016b)
combines magnitude-based sparsification, quantization, weight sharing, and Huffman cod-
ing into a compression scheme able to reduce the number of weights of the classic AlexNet
and VGG-16 models trained on the ImageNet dataset by 35× and 49×, respectively, with-
out loss of accuracy. They were able to sparsify those models by more than 90% when
manually tuning each layer, showing that convolutional layers should be sparsified less (15–
65%) than fully connected layers (91–96%). Sun et al. (2015) also discuss sparsification
and re-training, using neuron output correlation to demonstrate 33% improved accuracy
for the DeepID2+ face recognition CNN when sparsified by 74%, and retaining the same
accuracy with sparsification of up to 88%. The authors show that a fully-sparse training
approach could not match the performance of the dense-trained, then sparsified network.
They conjecture that, with a sparser model, the randomized initial values of the weights
play a more significant role than in a dense model. Thus, training a sparse model appears
to be more prone to converge to suboptimal local minima than a dense network, which is
in agreement with a theory later proposed by Frankle and Carbin (2019).

Sparsify during training Several works advocate for training the sparse network in tan-
dem with the dense network, or by modifying the training process to promote sparsity. One
example is the effect of dropout on sparse networks (see Section 5.2). Zhou et al. (2016)
propose a forward-backward splitting method to enforce sparsity as regularization, pruning
61.3% of VGG-13 and 65.4% of AlexNet parameters with 1.7% and 0.53% accuracy degrada-
tion respectively. Tartaglione et al. (2018) use sensitivity-driven pruning until the network
drops below the required accuracy. They achieve higher sparsity than earlier magnitude-
based mechanisms. Molchanov et al. (2017) use variational dropout (see Section 3.7) to
prune weights starting from relatively small pre-trained networks. For those networks, they
show record sparsity levels for small networks: 98.5% for LeNet-300-100 and 99.996% for
LeNet-5 with 98.1% and 99.3% accuracy on MNIST, respectively. Training takes twice the
number of operations for forward and backward but converges equally fast on LeNet and
MNIST. VGG-style networks on CIFAR-10 and CIFAR-100 could be sparsified by more
than 97% at similar accuracy.

Guo et al. (2016) observe that the process of sparsification can benefit from re-adding
weights during training that were “erroneously” pruned. For this, they maintain the set of
all weights during the whole training process, including the pruned ones, and mask them
during the forward pass. This allows them to later re-add pruned weights if they reach a
certain magnitude. Furthermore, they specify a pruning schedule to decrease the sparsifica-
tion probability over time. They demonstrate that this method significantly improves upon
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earlier methods (Han et al., 2016b) that use iterative retraining — specifically, they show
that the number of iterations to prune AlexNet can be reduced from 4.8M to 0.7M (6.9×)
while improving the sparsity from 89% to 94% (2×). Using the same method, they compress
LeNet-5 and LeNet-300-100 by 99% and 98%, respectively. They again show that convolu-
tional layers that already share weights compress less (46-97%) relative to fully-connected
layers (93-99%).

Kundu and Sundaresan (2021) propose to combine pruning and knowledge distillation
in every training step in order to train sparse CNNs for vision tasks. For distillation, the
paper uses dense ResNets as teachers and self-attention ResNets as sparse students. The
student model is initialized with a random pruning mask, which is updated during training
according to the contribution of the parameters to the momentum. The authors report
30.3× parameter reduction and 0.6% accuracy drop on CIFAR-10, and 11× parameter
reduction for 1.2% accuracy drop on Tiny ImageNet.

Sparse training As noted, early attempts at fully-sparse training schemes tended to
yield lower accuracy for the same sparsity. Due to growing CNN memory footprints, sev-
eral recent works attempt to improve such schemes to produce usable networks. Bellec et al.
(2018) use a fully-sparse training schedule to enable training higher-dimensional models that
would not fit in a dense configuration. They use a variant of magnitude-based pruning and
random weight addition and show that this method outperforms densely-trained methods
if the target sparsity is very high (>95%). They showed that longer training leads to im-
proving generalization. The paper also studies aspects of transfer learning and pre-training,
in that the sparsified architecture quickly adapts to similar learning tasks. Mocanu et al.
(2018) use a similar training schedule and show that it can improve accuracy while prun-
ing by more than 96%. They also observe that the degree distribution of sparsely learned
connections follows a power law. Mostafa and Wang (2019) refine fully-sparse training for
CNNs by automatically adjusting the parameter budget across layers. Their method may
require more operations to converge than hand-tuned schedules, as sparsity may only slowly
be redistributed to the later fully-connected layers. Their sparsely-trained models achieved
significantly better performance than dense models of the same size. Dettmers and Zettle-
moyer (2019) perform fully-sparse training and point out that parameter redistribution is
especially important for larger layers. They use a cosine decay schedule for the pruning
rate across iterations and achieve similar performance with a 95% sparse VGG on CIFAR-
10, and slightly outperform prior approaches with a 90% sparse ResNet-50 on ImageNet,
achieving 72.3% accuracy, while reducing the required theoretical computation by between
2.7× and 5.6×.

Sparsifying parameter-efficient networks In more recent, parameter-efficient net-
works, highly-accurate pruning techniques become more adaptive to the training process.
Azarian et al. (2020) propose soft pruning, where sparsifying a weight is a continuously
differentiable function, and L0 regularization. The authors prune ResNet and EfficientNet-
B0, where the latter attains 76.1% accuracy, compared with a 77.1% accuracy for the dense
counterpart. He et al. (2018) use a reinforcement learning approach combined with a CNN
embedding scheme to prune the network. Their first-order approach to sparsification is
able to sparsify ResNet-50 to 80%, keeping the same baseline top-1 validation accuracy of
76.1%. Evci et al. (2020a) train networks fully-sparse with pruning based on magnitude and
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Figure 21: Flop count and resulting accuracy of highly-accurate pruning methods for
ResNet-50 over ImageNet. Dotted lines represent dense baselines.

re-addition based on instantaneous gradients. Throughout the training run, they maintain
the same sparsity distribution, but decay the fraction of updated connections using a co-
sine schedule. The method attains good generalization for ResNet-50, with 76.6% at 80%
sparsity and 75.7% accuracy at 90% sparsity, while reducing the computations compared
with dense training. Singh and Alistarh (2020) use second-order information (specifically,
inverse Hessian-vector products using an approximation based on the empirical Fisher Infor-
mation Matrix) to estimate which weights to prune. The authors report that with gradual
sparsification, ResNet-50 can be pruned with no extra epochs to high accuracies (76.8% at
80% sparsity, within 0.2% of their dense baseline). Gale et al. (2019) provide a systematic
study of various pruning strategies: random (baseline), magnitude pruning, L0 (Louizos
et al., 2018), and variational Bayes (Molchanov et al., 2017) applied to ResNet-50 and
transformer networks, ranging from 50–98% sparsity. Their main result is that simple mag-
nitude pruning can be very competitive, if the pruning schedule and per-layer distribution
is tuned (76.52% accuracy for 80% sparse ResNet-50 and 75.2% for 90% sparsity after 100
epochs). They report that variational dropout performs best only for very high sparsity
(>95%), although this method has high variance, and tuned magnitude pruning remains
close. They also highlight that both variational dropout and L0-based pruning can be up to
3× slower and use 2× more memory than magnitude pruning. Their general conclusion is
that well-tuned magnitude pruning is probably the most practical pruning method, among
the methods they experimented with.

Fig. 21 shows an overview of the computational intensity (flop count) for inference of
sparsified ResNet-50 models. It shows that one can save between 50-80% of the operations
without significant loss in accuracy, leading to a potential speedup of up to 5x.
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Figure 22: Overview of transformers.

6.2 Sparsifying transformer networks

Transformers (Vaswani et al., 2017) are a class of sequence transduction models that have
led to breakthroughs in natural language processing and are recently expanding into other
fields such as computer vision (Dosovitskiy et al., 2021). Widely used transformer models
include the original Transformer (Vaswani et al., 2017) for language translation as well as
language models such as BERT (Devlin et al., 2019) and GPT-3 (Brown et al., 2020). The
key idea behind transformers is to generalize prior work on shallow language embeddings
to deep, multi-layer embeddings, while being more parallelizable in training than RNNs.
Like CNNs, transformer architectures are a combination of a variety of operators, which
we illustrate in Fig. 22a. The key primitive is multi-head attention, introduced by Vaswani
et al. (2017). Each attention “head” performs scaled dot-product attention to identify how
elements of one sequence should relate to elements of another sequence. A transformer
layer is then composed of a multi-head attention layer followed by a feedforward network
(sometimes called “expert layers”), with layer normalization (Ba et al., 2016b) and residual
connections. The full transformer network consists of one or more stacks of transformer
layers, with embedding layers at the beginning.

Transformers are often very large, ranging from about 110 M parameters in BERT-
base to hundreds of billions (Brown et al., 2020) or trillions (Lepikhin et al., 2021; Fedus
et al., 2021) in the largest, best-performing models. As it is infeasible to deploy such
large models in production situations, compression is critical. Indeed, Li et al. (2020c)
show that training a large, over-parameterized transformer and then compressing it results
in better accuracy than training a smaller model (e.g., a 75% sparse 24-layer RoBERTa
model, Liu et al., 2019a, outperforms a 3-layer model on MNLI, while being the same size).
Complementary to pruning, many other approaches to compressing transformers have been
developed; Ganesh et al. (2020) provides an overview for BERT specifically, and Gupta and
Agrawal (2020) for deep learning models for text in general.
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Fig. 22b presents an overview of sparsity results for pruning BERT-base (Devlin et al.,
2019) for four downstream natural language understanding tasks from the General Lan-
guage Understanding Evaluation (GLUE) (Wang et al., 2019) benchmark: the Stanford
Sentiment Treebank (SST-2) (Socher et al., 2013), the Microsoft Research Paraphrase
Corpus (MRPC) (Dolan and Brockett, 2005), the Multi-Genre Natural Language Infer-
ence corpus (MNLI) (Williams et al., 2018), and the Corpus of Linguistic Acceptability
(CoLA) (Warstadt et al., 2019). BERT-base consists of 110M parameters (including em-
bedding layers), with twelve transformer layers, each with twelve attention heads.

Compared to results on pruning CNNs (Fig. 20), there are two qualitative differences:
There are relatively few results with large accuracy degradation, and there are relatively few
results with very high sparsity levels. This stems from much of the work on pruning BERT
being focused either on understanding what the model has learned or on the Lottery Ticket
Hypothesis (see Section 8.3). In many of these works, iterative pruning only continues while
the pruned model remains close to the original accuracy.

We can observe several qualitative trends among methods, which generally agree with
the results on CNNs. For very low sparsity levels, structured head pruning performs very
well, but it rapidly degrades as important heads are pruned. At moderate sparsity levels
(40–80%), unstructured magnitude pruning performs very well, and outperforms structured
pruning. When >90% sparsity is desired, however, only the first-order movement pruning
method (Sanh et al., 2020) reports results, and achieves high accuracy on MNLI.

6.2.1 Structured sparsification

There has been much study of the importance of different components of transformers;
for BERT, this is referred to as “BERTology” (Rogers et al., 2021). For example, while
attention heads are important for training, several works showed that most of the heads
can be pruned after training with only minor accuracy loss. Michel et al. (2019) and Voita
et al. (2019) study the importance of heads in two concurrent and complementary works.

Voita et al. (2019) analyze the linguistic properties and importance of each head and
conclude that specific heads take on specific roles, such as representing “positional”, “syn-
tactic”, and “rare words” functions. Using a simple stochastic gating scheme (Louizos et al.,
2018) to prune heads, they can remove 80% of heads and lose only 0.15 BLEU on a English-
Russian translation task (Jan et al., 2019) and 92% of heads at a loss of 0.25 BLEU on
OpenSubtitles (Lison et al., 2019).

Michel et al. (2019) show similar results with a first-order head importance score for
pruning. Using an iterative greedy process to test model quality with each head removed,
they are able to prune 20–40% of attention heads with an insignificant decrease in quality.
They also find that the importance of heads is transferable across tasks and that the im-
portance of heads is determined early in the training process, hinting that early structure
adaptation may also apply to heads.

However, multi-head attention layers account for only about a third of the parameters in
BERT, which limits the overall compression level, and for some tasks, Michel et al. (2019)
show that pruning too many heads is detrimental to accuracy. Prasanna et al. (2020)
extended the importance metric of Michel et al. (2019) to also prune entire feedforward
networks in a layer, using a similar iterative pruning process that continues for as long as
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the model retains over 90% of the original’s accuracy. With this, they show that BERT
can be pruned to 40–65% sparsity on a variety of GLUE benchmark tasks. They also show
that, for low sparsity, even random structured removal achieves good performance.

McCarley et al. (2020) evaluate a larger set of pruning approaches that can remove
attention heads and slices of feedforward and embedding layers and use a gating mech-
anism αj ∈ {0, 1} to select components for removal. They compare four techniques for
pruning: (1) random pruning as a baseline; (2) a first-order “gain” metric that computes
gi = |∂L/∂αi|αi=0 for each example; (3) a leave-one-out score, where the loss for each el-
ement removed is computed separately, and elements that cause a small loss on removal
are retained; and (4) a sampled L0 regularization. Finally, they apply distillation using the
unpruned model as a teacher for the pruned model. The main finding is that L0 regulariza-
tion performs best and can prune 40–75% of the elements in BERT and RoBERTa models
while losing about 5 points F1 score on the Natural Question benchmark task (Kwiatkowski
et al., 2019).

Wang et al. (2020a) use a modified L0 regularization to prune all weight matrices in a
transformer. For each weight matrix W , they first reparameterize it as a low-rank factoriza-
tion W = PQ, and then introduce a diagonal pruning matrix G, so that W = PGQ. The
pruning matrix allows the model to learn to keep the best rank-1 components of the weight
matrix. They use L0 regularization to promote sparsity, with an additional term added to
allow for control of the desired sparsity level.

Building on the idea that layers in transformers learn disparate tasks (Rogers et al., 2021)
and that some layers may be less important than others (Tenney et al., 2019), two works
have pruned larger-scale structures. Lin et al. (2020) prune entire residual blocks (i.e., either
the entire multi-head attention layer or feedforward network) by identifying blocks whose
nonlinear part has small activations. These blocks are then pruned and replaced by a simple
identity map. To do this, they adapt ε-ResNets (Yu et al., 2018) and augment each residual
block with a gating function if the non-linear component is less than ε. Once a layer’s
activations fall below ε, it will cease to contribute to the output, and its gradients will no
longer be updated, leading to weight collapse. In a similar vein, Fan et al. (2020) introduce
LayerDrop, a form of structured dropout that stochastically drops entire transformer layers
during training. To reduce model size for inference, they also explore different ways to
completely remove layers, and find that the simple approach of dropping the layers at

depth d such that d ≡ 0
(

mod
⌊

1
p

⌋)
, where p is the dropout probability, performs best.

6.2.2 Unstructured sparsification

Simple iterative magnitude pruning has also been applied for unstructured sparsification,
with several conclusions. Prasanna et al. (2020) compared it with structured pruning using
Michel et al. (2019)’s first-order importance metric and found that unstructured magnitude
pruning typically results in networks that are both smaller and retain better accuracy. Gor-
don et al. (2020) showed that a pretrained BERT model can be pruned to up to 40% sparsity
without affecting the performance of downstream tasks, but beyond that performance be-
gins to degrade. Surprisingly, they also show that fine-tuning a pretrained model and then
pruning it does not result in better performance, and conclude that one need only prune
BERT once after pretraining instead of for each downstream task. Chen et al. (2020) show
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a similar result in the context of the Lottery Ticket Hypothesis (see Section 8.3). They find
that magnitude pruning can prune a pretrained BERT model to up to 70% sparsity without
compromising performance on the pretraining objective, and that such networks transfer
universally to downstream tasks. In contrast, they find that while pruning for a particular
downstream task may result in higher sparsity levels without compromising performance
on that task, such networks do not transfer as well.

Guo et al. (2019a) conduct experiments showing that using L1 or L2 regularization can
cause divergence during training, and that the regularization should be decoupled from the
gradient update, in line with prior work on optimization (Loshchilov and Hutter, 2019).
To prune, they instead develop Reweighted Proximal Pruning, which uses reweighted L1

minimization instead of regularization, and use a proximal algorithm to find the sparsity
pattern, rather than backpropagation.

Sanh et al. (2020) argue that for transfer learning, what matters is not the magnitude of a
parameter, but whether it is important for the downstream task. They introduce movement
pruning (see Section 3.4), a first-order method which prunes parameters that shrink during
fine-tuning, regardless of their magnitude. Movement pruning is able to achieve significantly
higher performance than magnitude- or L0-based pruning for very high levels of sparsity
(e.g., 97% sparse), and can be combined with distillation to further improve performance.

6.2.3 Sparse attention

Scaled dot-product attention requires a dot-product between two sequences of length s
(QK>), which produces an alignment matrix for the two sequences. Producing this matrix
requires both O(s2) time and memory; as sequence lengths in transformers range from 128
to 2,048, this can be a large bottleneck. This, combined with the intuition that one does not
need to compute full attention to get good model performance, has resulted in a large body
of work on so-called efficient transformers. Tay et al. (2020) provide a survey of this field;
we focus here on sparsity. Recent work has also started to develop benchmarks focused
specifically on efficient transformers (Tay et al., 2021).

Yun et al. (2020) provide broad theoretical results showing that O(s) connections in an
attention layer is sufficient to universally approximate any sequence-to-sequence function if
the following properties are met: (1) every token attends to itself; (2) a chain of connections
covers all tokens; and (3) each token connects to all other tokens after a fixed number of
transformer layers. This provides a rigorous basis for the intuition that each input token
need only be able to route to each other token through successive layers.

Many approaches to sparse attention satisfy these requirements by sparsifying the QK>

computation, including restricting attention to local neighborhoods (Parmar et al., 2018),
star topologies (Guo et al., 2019b), combinations of strided and fixed sparsity patterns (Child
et al., 2019), sliding windows (Beltagy et al., 2020), and local attention plus a fixed num-
ber of tokens that attend globally (Zaheer et al., 2020). SAC (Li et al., 2020a) learns a
task-specific sparsity structure using an LSTM edge predictor.

The SoftMax computation in each attention head can also be modified to maintain
its ranking while inducing sparsity and satisfying the above requirements. Zhao et al.
(2019a) take a direct route and apply top-k sparsification to the attention weights. The
sparsity patterns can also be learned directly using generalizations of SoftMax, such as

70



Sparsity in Deep Learning

α-entmax (Correia et al., 2019) or sparsegen-lin (Cui et al., 2019). These build on earlier
work, predating transformers, that aimed to induce sparsity in attention mechanisms to
either improve performance or interpretability, including sparsemax (Martins and Astudillo,
2016), constrained sparsemax (Malaviya et al., 2018), and fusedmax (Niculae and Blondel,
2017).

7. Speeding up Sparse Models

Sparse networks do not always execute faster than dense networks using current machine
learning frameworks on today’s hardware. Sanh et al. (2020) demonstrate that small dense
models often perform faster on current hardware than sparse models of the same and even
smaller size despite the generally higher accuracy and parameter efficiency of sparse models.
Han et al. (2017) show that even 90% sparse workloads execute slower on a GPU than
computing 90% zeros densely and Yu et al. (2017) show that an 89% sparse AlexNet executes
25% slower on CPU than its dense version. In general, unstructured sparsity is not well
supported on today’s architectures. Some cases of structured sparsity can be mapped to
dense matrix operations (e.g., neuron, filter, or head sparsity) and can thus trivially use
existing optimized frameworks or libraries such as cuDNN (Chetlur et al., 2014). Other
structured sparsity approaches such as blocks of weights would require support from the
frameworks to be executed efficiently. We will discuss algorithmic and hardware solutions
to support sparsity on practical systems in this section.

Training for sparsity can be especially expensive on some architectures. For example,
regularization methods (e.g., Louizos et al., 2018), schemes using gating variables (e.g.,
Mozer and Smolensky, 1988), and various other techniques (Molchanov et al., 2017; Sanh
et al., 2020) double the number of trainable parameters. Furthermore, variational methods
are often expensive in both memory and compute during training (Gale et al., 2019). Those
techniques may be even slower than fully dense training in a sparsified training schedule.
Thus, we recommend a careful analysis of memory, data movement, and computational
overheads when considering the performance of a method (see Ivanov et al., 2021).

7.1 Algorithmic and software support for sparse models

Sparse computations have a long history in the context of linear algebra and scientific com-
puting. However, sparsities in those fields are often two orders of magnitude higher than in
today’s deep learning (> 99.9% vs. 50− 99%, Gale et al., 2020) and it was long considered
not beneficial to attempt sparse computations on less than 99% sparse matrices. Further-
more, many scientific computing workloads have close-to banded non-zero patterns that
can often be compressed as hierarchical matrices. Those structures lead to high temporal
locality and many libraries such as Intel’s MKL are tuned for those patterns (Park et al.,
2017). As we will see below, sparsified neural networks have different characteristics in
their non-zero distributions. Thus, scientific computing kernels such as the sparse BLAS or
cuSPARSE are only optimized for scientific computing workloads and supported formats
aimed at high sparsities such as compressed sparse row. We do not cover the many elegant
approaches developed for very high sparsity here—albeit they may become very relevant
to sparse deep learning if the trend to higher sparsity continues. Instead, we focus on
approaches developed for sparsity levels observed in today’s deep learning workloads.
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We describe basics of storing unstructured sparse matrices in Section 2.2. Many prac-
tical schemes use run-length or delta-encoding with padding for offsets (Han et al., 2016a).
Furthermore, it is common to combine quantization with index storage to achieve aligned
number formats. For example, Han et al. (2017) pack a 12-bit integer value with a 4-bit index
value into a 16-bit element that is naturally aligned to DRAM page and PCIe transaction
boundaries. This format would store the sparse vector v = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 3, 2, 0, 0, 0] as v′ = [2|1, 15|0, 0|3, 0|2], where, for example, the padding entry “15|0”
decodes to 15 (first 4 bits) zeros followed by the value 0 (last 12 bits). Sparse weights are
often stored column-wise for inference using a compressed sparse column (CSC) format to
facilitate the sparse matrix-vector multiplication. Gale et al. (2020) show various techniques
to tune such sparse computations to GPU architectures.

Park et al. (2017) tune unstructured sparsity for convolutional layers by implementing
an optimized sparse-with-dense matrix multiplication. They only consider sparsity in the
convolutional kernels and not in the activations, which, despite of up to 85% sparsity was
slower than sparse-dense in their experiments. Using a simple but effective performance
model, they guide the sparsification such that the resulting model achieves highest per-
formance. While they demonstrate their approach in conjunction with dynamic network
surgery (Guo et al., 2016), it is applicable as a regularization or direct performance metric
to many, if not most of the sparsification approaches discussed in Section 3. A general
observation is that there is a range of sparsity where workloads can efficiently utilize CPUs:
too low sparsity leads to high overheads managing it but also too high sparsity leads to
a performance reduction on CPUs. This is due to the fact that higher sparsity increases
the relative storage overhead of the index structure and decreases the relative compute
load. Since CPUs have a fixed ratio of memory bandwidth per compute operation, too
high sparsity will underutilize the compute units and be bound by the well-known data
locality and movement bottlenecks (Unat et al., 2017; Ivanov et al., 2021). This implies
that an accelerator needs to be carefully tuned to the expected workload, making a detailed
co-design between the data science aspects of sparsification and the engineering aspects of
representation and dataflow mandatory.

7.1.1 Structured sparsity

Various sparsity structures have been used in the deep learning context to manage the
storage overhead. They vary from completely unstructured storage where the offset for each
single element needs to be encoded to structured storage formats that only store offsets of
blocks or other elements arranged with a fixed structure. In Section 2.2, we analyze the
storage complexity in terms of the number of parameters needed to describe the structure of
an irregular matrix. A blocked format with block size B would reduce the storage overhead
by a factor of B. Fig. 23 shows an overview. Blocked formats can be defined for any set
of dimensions, the figure shows a one-dimensional format with blocks of size three and a
two dimensional format with blocks of size 4 (2 × 2) as used in Cambricon-S (Zhou et al.,
2018). Here, the offsets are only stored once for each block of non-zeros. Another promising
format is block-balanced. This format specifies a fixed block size and a fixed number of
non-zeros per block. Here, one would only need to encode the offsets of the non-zeros for
each fixed-size block. Nvidia’s Ampere microarchitecture (Nvidia, 2020) uses a bitmap to
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unstructured 1d blocked block-balanced strided2d blocked

Figure 23: Overview of sparse structures in deep learning—non-zero elements are colored.

store the non-zeros in blocks of size four with 50% sparsity. The figure above shows blocks
of size seven with exactly three non-zero elements each. The strided format (Anwar et al.,
2017) in Fig. 23 shows the most compact but also most constrained format. It fixes each 5th
element of the matrix to have a non-zero value and all others zero, leading to a constant-
size representation. In general, sparse matrix storage formats can use arbitrary encodings
to minimize the representational overhead. MPI datatypes (Gropp et al., 2014) form an
elegant hierarchy with clear performance properties (Gropp et al., 2011) and can provide
further inspiration for specific designs.

7.1.2 Tuned block sparsity in practice

Elsen et al. (2020) demonstrate speedups with sparse representation for inference on mobile
devices. They focus on unstructured and block sparsity and optimized implementations of
CNNs on ARM CPUs and WebAssembly and release the XNNPACK library. They primarily
focus on a medium sparsity range between 70–95% and they optimize for caches and data
movement, which has been shown to be a major bottleneck in deep learning systems (Ivanov
et al., 2021). They investigate the influence of various block-sizes on model accuracy and
show that the shape of blocks (e.g., 1 × 4, 2 × 2, or 4 × 1) is irrelevant and just the size
matters. They also show that larger models suffer less from large block sizes.

Scalpel (Yu et al., 2017) combines weight-blocking and neuron pruning into a scheme
to support SIMD platforms. They sparsify weights in blocks the same size as the width
of SIMD units and use a modified CSR format for storing the sparse weights. They prune
by root mean square magnitude of weight blocks. For ARM microprocessors, their pruning
scheme reduces the necessary sparsity required to achieve a speedup from 70% to 50%
and on Intel CPUs, their scheme reduces the necessary sparsity from 50% to less than
10%. DeftNN (Hill et al., 2017) optimizes a whole row or column pruning scheme based on
similarity for inference on GPUs achieving a 1.5x speedup.

Han et al. (2017) introduce block-balanced pruning that restricts blocks (“sub-matrices”)
to the same sparsity ratio. Thus, when loading blocks in parallel, the accelerator can process
them in approximately the same time avoiding load imbalance. They find such pruning
does not reduce the model quality significantly for large enough blocks. In an even simpler
approach, Dey et al. (2019) fix the degree of each neuron in an MLP, leading to balanced
row and column sparsity of the weight matrix. Similarly, Kundu et al. (2020) pre-define
sparsity patterns with periodicity in convolutional filters.

PruneTrain (Lym et al., 2019) focuses on accelerating training using a group-lasso regu-
larization method and pruning during training. The authors mention that the freed memory
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from pruning can be reinvested during the training to increase the minibatch size. This fits
well into existing training schedules (Smith et al., 2018).

Mao et al. (2017) specifically analyze the impact of structured sparsity on the accu-
racy of CNNs. They consider four levels of increasing structure in convolutional layers:
(0) unstructured weight sparsity, (1) dimension-wise (blocked) weight sparsity, (2) kernel-
level sparsity, and (3) filter-level sparsity. When considering storing the weights array as
W [C,K,H,W ] (Channel, Kernel, Height, Width), then each of the four levels would require
the following addressing per element: (0) W [C,K,H,W ], (1) W [C,K,H, :] or W [C,K, :,W ],
(2) W [C,K, :, :], and W [C, :, :, :]. They show that, for a simple magnitude-based (sum per
block) pruning scheme, the top-5 accuracy degrades with increasing block size at sparsity
levels of 60–77%.

7.2 Hardware acceleration for sparse models

Numerous hardware accelerators have been designed to speed up deep neural networks,
see (Sze et al., 2017; Reuther et al., 2020) for an overview. Here, we focus on a summary
of important techniques implemented in hardware accelerators that have explicit support
for sparse computations in deep learning. Dave et al. (2020) provide a comprehensive
and generic survey including more architectures, techniques, and technical details on this
topic. Accelerator designs are based on the observation that typical workloads have 50–
90% ephemeral activation sparsity and up to 99% weight sparsity. Activation sparsity
is either induced by ReLU operations or autoencoders (Noh et al., 2015) and generative
adversarial networks (Goodfellow et al., 2014) that insert zeros in the upsampling phase
of the decoder. Furthermore, as we outline in the previous sections, weights can often be
structurally sparsified to 95% (or more) without significant loss in accuracy.

7.2.1 Inference accelerators

We start with an overview of sparse inference accelerators that typically aim at latency-
sensitive batch sizes of one where the central operation is sparse matrix-vector (SpMV,
or weight-activation) multiplication. Similarly to dense DNN accelerators, sparse accel-
erators can achieve record performance up to nearly 22 TOp/W (Zhang et al., 2019a).
Different layer types can be expressed in terms of a small number of primitives. For ex-
ample, fully-connected layers can be expressed as (sparse) matrix-vector multiplication.
Convolutional layers can similarly be expressed as sparse matrix-vector or matrix-matrix
multiplication (Lavin and Gray, 2016). Conversely, a 1×1 convolution can be expressed as a
fully-connected operator. Similarly, recurrent layers can be unrolled into a series of matrix-
vector multiplications. So any device that can process a convolution or fully-connected
layer can process all layers. Yet, accelerators are tuned for the specifics of layer types and
network architectures. Thus, we structure our overview by different architectures.

Sparse CNN inference accelerators We start with an overview of sparse CNN accel-
erators (including fully-connected layers). Minerva (Reagen et al., 2016) uses a hand-tuned
threshold to prune small activation values in MLPs that save weight-fetch bandwidth and
arithmetic operations. This saves 50% of the power consumption on top of other optimiza-
tions such as quantization. Eyeriss (Chen et al., 2017) clock-gates PEs that would process
zero activation values of convolutional layers to save energy.
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Han et al. (2016a) show Efficient Inference Engine (EIE), an inference architecture
optimized for sparse models with parameter sharing. Their architecture supports both
sparse matrices as well as sparse activation vectors and aims at fully-connected layers in
CNNs. To enable fine-grained parallelism, they distribute the columns of the weight matrix
to the processing elements (PEs). At the input, they scan the activations for non-zero
entries and broadcast them to all PEs, where they are accumulated into a local partial sum.
They balance the load through queues at the PEs that buffer non-zero activation values to
avoid synchronization. The authors showed empirically that a queue depth of four values
is sufficient to achieve good load balance. Finally, the output activations are summed and
compressed through a hierarchical non-zero detection tree. Their silicon implementation is
13x faster and 3,400x more energy efficient than an Nvidia Pascal Titan X GPU.

Zena (Kim et al., 2018) introduces a scheme that uses both weight and activation sparsity
for convolutional layers. Other sparse DNN accelerators such as Cambricon-X (Zhang et al.,
2016), SCNN (Parashar et al., 2017), Eyeriss v2 (Chen et al., 2019), and Cnvlutin (Albericio
et al., 2016) use a combination of similar ideas to achieve between 2–15x speedups and 2–
10x lower energy consumption. Niu et al. (2020) design an FPGA-based accelerator for
the spectral processing (based on FFT and Hadamard products in the frequency domain)
of sparse convolutional layers. They keep the input activations in SRAM and stream the
sparse kernels. A similar design (Niu et al., 2019) streams activations with stationary
weights. Both have limited reuse due to the limited BRAM (on-chip SRAM) on FPGAs.
Both store weights (kernels) in COO format arranged in device DRAM and Niu et al. (2020)
uses a covering algorithm to optimize locality.

Sparse RNN inference accelerators A second class of accelerators aims at sparse
recurrent (RNN, LSTM) inference accelerators. Han et al. (2017) later show Efficient Speech
Recognition Engine (ESE), an FPGA accelerator design for LSTM models using block-
balanced sparsity for load balancing. ESE stores (sparse) activations in fast memory with
the (sparse) weights being streamed, while the (dense) output is accumulated into a fast
output memory. Their overall design achieves 3x performance and 11.5x energy efficiency
improvements on a Xilinx Ultrascale (XCKU60) FPGA compared to an Nvidia Pascal Titan
X GPU. Those systems are designed for the typical cases of 50–70% activation sparsity as
well as 90% weight sparsity. MASR (Gupta et al., 2019) proposes an ASIC design for sparse
RNNs as used in speech recognition. They exploit sparsity in weights and activations and
different from EIE, they use a bitmask scheme to store indices using a relatively moderate
sparsity of 66%.

Predicting sparsity in the results Most accelerators utilize either sparsity in the input
activations, in the weights, or both. However, one could also aim to predict sparsity in the
output activations (i.e., the result of the computation). SparseNN (Zhu et al., 2018) show
that such a prediction scheme can improve performance by up to 70% while halving power
consumption. The key technique is a light-weight prediction of the non-zero pattern in the
output. LRADNN (Zhu et al., 2016) use Singular Value Decomposition (SVD) of the weight
matrix: W = UV , where W ∈ Rm×n, U ∈ Rm×r, and V ∈ Rr×n, where U and V are the
first left- and right-singular vectors, respectively. The prediction is then simply performed
by computing a mask m = sgn(UV x) for the input activations x. For small enough r,
the computation can be 20x faster than evaluating the full layer and the generated sparse
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output mask can be used to avoid computing zero elements. SparseNN (Zhu et al., 2018)
improves upon this scheme by learning U and V through back propagation. They esti-
mate the derivation of the sign function with a well-known straight-through estimator (see
Section 3.6.1).

Fixed block sparsity and systolic arrays Block sparsity (either blocks of weights or
full neurons) reduces the overhead for indices and control logic and thus can efficiently be
used to optimize software for any hardware type (see Yu et al., 2017). Cambricon-S (Zhou
et al., 2018) adds explicit support for block sparsity to the Cambricon series of accelerators.
They skip both zero neurons and blocks of weights for arbitrary layer types. They observe
that large weights tend to cluster in 2D and 4D in fully-connected and convolutional layers,
respectively. Based on this observation, they define 2D and 4D block-sparse weight formats.
The block sizes are tuned as hyperparameters and the authors observed that permissible
block sizes for ResNets are particularly small where other (“fatter”) networks allow bigger
blocks. They show 1.7x better performance and 1.37x better energy efficiency than the
fine-grained Cambricon-X accelerator.

Most of the sparse accelerator architectures define logic that feeds each unit separately.
However, most dense accelerators use systolic arrays to perform the matrix operations.
Yet, sparsity would not use those fixed structures of systolic arrays efficiently. Kung et al.
(2019) pack sparse filters into a dense structure to use efficient systolic arrays for sparse
computations. They first select columns of sparse filters/weights that have minimal overlap
between the non-zero elements. Then, they combine those into a single column retaining
the largest values. For example, consider the following four columns: c1 = [0, 2, 0, 3, 0],
c2 = [1, 0, 2, 1, 0], c3 = [1, 2, 0, 1, 0], and c4 = [0, 0, 0, 0, 4]. If we were to pack three columns,
we would select c1, c2, and c4 with the minimal overlap and pack them into the single
dense column cp = [1, 2, 2, 3, 4]—note that only the 4th index conflicts in c1 and c2 and the
larger value is chosen. The group size and number of allowed conflicts are hyperparameters.
The authors show that this scheme, combined with a moderate amount of retraining is effi-
cient for small networks. Squeezeflow (Li et al., 2019) use a conceptually similar scheme to
compress sparse filters. Instead of combining different filters, they decompose sparse convo-
lutions into effective and ineffective and map the effective ones to a dense representation for
efficient processing. Compact (Zhang et al., 2019b) regularizes sparse runlength-encoded
activations to be processed in a systolic array.

7.2.2 Training accelerators

Since the (inference) forward-pass is a part of training, one could assume that accelerators
designed for inference can also be used in the forward pass of training. While this is partially
true, it comes with additional complications. For example, during training, one needs to
store the activations. Furthermore, specialized formats such as EIE’s CSC format cannot
easily be accessed (in transposition) during the backward pass. Thus, specific accelerators
are designed for sparse training. Yang et al. (2020a) show a co-design approach of a sparse
training algorithm and hardware to design Procrustes, an accelerator specific to the Drop-
back pruning algorithm (Golub et al., 2019). They observe that batch normalization layers
“shift” values away from zero and essentially eliminate sparsity in the gradients. Procrustes
thus exploits only structural weight sparsity by storing weights in a compressed block for-
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mat. Their design is up to 4x faster and 3.36x more energy efficient than traditional dense
training accelerators. Zhang et al. (2019) use the observation of early structure adaptation
together with an iterative pruning schedule with magnitude pruning to accelerate training
by up to 40%.

More generic accelerators such as SparTen (Gondimalla et al., 2019) and SIGMA (Qin
et al., 2020) are not specialized to particular layer types and focuses on general sparse
matrix-vector products. Both architectures can support arbitrary reuse of matrices or their
elements and both are using (blocked) bitmap storage to implement sparse vector products.
Thus, their architecture is not specific to any layer type. Yet, the sparse matrix storage
format determines ranges of sparsity where it performs most efficiently (see Section 2.2).
The used bitmap format performs best for relatively dense operations. Similarly, Nvidia’s
Ampere micro-architecture supports “structured sparsity” to accelerate the processing of
blocks of four values with up to 50% sparsity (Nvidia, 2020).

All those architectures are designed for the relatively modest sparsity in today’s deep
neural networks. One could expect new breakthroughs to enable higher sparsity closer
to those in scientific computing (>99.9%). Then, another class of accelerators, such as
SpArch (Zhang et al., 2020), Indirection Stream Semantic Registers (Scheffler et al., 2020),
or Extensor (Hegde et al., 2019) would play a bigger role.

7.2.3 Overview of accelerators for sparse deep learning

Table 1 shows an overview of existing accelerator architectures with sparsity support. Most
accelerators are designed for inference and most can also be used for the feed-forward pass
during training—albeit not always efficiently. We underline accelerators that are specifically
designed for training.

Some accelerators aim at either sparse matrix vector (SpMV) or sparse matrix matrix
(SpMM) multiplications that can be used for several layer types (e.g., fully connected,
convolutional using the Winograd scheme, or RNNs). Others are optimized specifically for
convolutional or recurrent layers. The second column of the table (Ops) shows the operation
(layer) types that the accelerators were optimized for explicitly (FC = fully connected,
LSTM = Long Short Term Memory, RNN = Recurrent Layers - all SpMV and Conv =
Convolutional Layer - all SpMM via im2col). If an accelerator aims at both FC and Conv,
we mark it with SpMM as a superset. As mentioned above, most accelerators can process
all layer types at varying efficiency.

The column “w mem” lists the storage scheme for weights. A “-” means that weights
are stored densely and zeros are computed explicitly. The columns “y mem” and “y
comp” list whether activations are stored compressed and whether they are computed.
Some accelerators store zeros but filter them before the computation engine. When we
write CSC (Compressed Sparse Column), we include runlength encoding even though, in
some special cases, the column offsets are managed outside the format. Cnvlutin uses a
blocked COO format and Procrustes uses a compressed block (CB) format. The last two
columns show specific techniques for load balancing and reuse. They are described in
the section above and listed as a summary.
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Accelerator Ops w
mem

y
mem

y
comp

Load Balancing Reuse

Cnvlutin [2016] conv - COO∗ x group neurons output
EIE [2016a] FC CSC - x activation queuing output
Minerva [2016] FC - - x N/A -
Cambricon-X [2016] SpMM CSC - x N/A output
Eyeriss [2017] conv - - x - row
ESE [2017] LSTM CSC - x block-balanced output
SCNN [2017] Conv CSC CSC x N/A input act.
SparseNN [2018] FC - - x N/A N/A
Cambricon-S [2018] SpMM COO - x group output neurons output
Zena [2018] Conv BM BM x dynamic group alloc. N/A
Eyeriss v2 [2019] SpMM CSC CSC x activation queuing row
SparTen [2019] SpMM BM BM x precomputed greedy output
MASR [2019] RNN BM BM x dyn. act. assignment N/A
SPEC2 [2019] Conv COO - - - weight/kernel
Eager Pruning [2019] SpMM BM - x dynamic output weight

Spectral CNN [2020] Conv COO - - - input act.
Sigma [2020] SpMM BM BM x - input/weight

Procrustes [2020a] SpMM CB - - split minibatch for LB minibatch

Table 1: Overview of accelerators for sparse deep learning; those with explicit training
support are underlined.

8. Discussion

We do not understand all details of the inner workings of deep neural networks and how
pruning influences them. Specifically, why can networks be pruned and what is the best
pruning methodology remain as open questions. In this section, we provide a set of hy-
potheses, intuitive explanations, and possible assumptions to foster our understanding of
the landscape and the characteristics of this gap in understanding. All those are speculation
and intended to help readers to develop a better feeling for the area as well as inspire new
research directions that could shed more light onto aspects of sparse neural network science
and methodology.

A general observation in most works is that sparse models outperform dense models
given the same parameter budget. Some works even show that sparse models outperform
dense models with larger number of parameters (Lee et al., 2020; Elsen et al., 2020). A
similar set of observations seems obvious but is worth stating: pruning is most efficient for
architectures that are overparameterized. Some authors state that switching to a better
architecture may be more efficient than pruning (Blalock et al., 2020). This implies that,
when showing relative pruning rates (e.g., 99%), one should always consider the degree of
over-parameterization or what we call the “parameter efficiency” (see Section 8.7 and “Rule
1” in Hoefler and Belli, 2015).

8.1 Relation to Biological Brains

Throughout the document, we have used many metaphors linking approaches to biologi-
cal brains, whose structure inspired the general idea of all neural networks. While such
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metaphors can be very useful to build an intuition and provide a possible direction, they
have to be considered carefully. Biological brains and computers work with fundamen-
tally different compute substrates. For example, the three-dimensional arrangement of the
brain encodes structural information nearly for free and learns through neuroplasticity.
Silicon devices cannot adapt their wiring structure easily, and thus the simulation of struc-
tural properties leads to overheads in terms of memory (encoding the structure) as well
as compute (controlling the execution). It is thus possible to design mechanisms that are
not common in biological systems but outperform biologically more plausible mechanisms
in silicon-based compute substrates and architectures. After all, not many animals have
wheels and airplanes do not flap their wings. Nevertheless, Leonardo da Vinci discovered
the principle of dynamic soaring by studying birds.

A successful method to guide innovation is to be inspired by biological phenomena and
engineer systems in a refinement and optimization step given our technical understanding
of the problem. For example, the visual cortex does not utilize weight sharing like convo-
lutional networks do, however, in silicon, it seems to be the most efficient technique given
that weight sharing reduces redundancy during feature detection and enables reuse for per-
formance (Unat et al., 2017). A second example could be the optimization process. While
we currently use SGD to train networks, it remains unclear whether biological brains use
similar methods. Recent discoveries have shown a possible relationship to Hebbian learn-
ing (Millidge et al., 2020) and argue that SGD may be biologically plausible, albeit some
gaps remain (Lillicrap et al., 2020).

Various pruning approaches have been directly inspired by biological brains (Ahmad
and Scheinkman, 2019) but have not demonstrated highly-accurate results for large-scale
networks and complex tasks. They advocate sparse high-dimensional representation spaces.
Biological brains have very large sparse layers in a relatively shallow architecture with less
than ten layers. We believe that this is a very interesting direction for further exploration
and inspiration if it is augmented with theoretical reasoning and solid engineering.

8.2 Permutation Groups and Information Loss

One interesting observation is that every parameterized dense network is an element in an
exponentially large equivalence class, which will generate the same output for each input.
Specifically, Changpinyo et al. (2017) prove the following lemma: “any dense convolutional
neural network with no cross-channel nonlinearities, distinct weights and biases, and with
l hidden layers of sizes n1, n2, . . ., nl, has at least i = Πl

i=1ni! distinct equivalent networks
which produce the same output.” This suggests that the information content of sparsified
networks may be exponentially larger. Ahmad and Scheinkman (2019) show a similar result
with respect to noise robustness in high-dimensional vector spaces.

8.3 Sparse subnetworks for training and lottery tickets

Some works hinted at specific subnetworks that may exist during training which could lead
to a good sparse structure (Sun et al., 2015; Cohen et al., 2017). See et al. (2016) demon-
strated that re-training a sparse RNN with the same structure results in networks that
perform well but not as well as the pruned-from-dense variants. Frankle and Carbin (2019)
analyze the relation between initialization and statically sparse training. They state the
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“Lottery Ticket Hypothesis”: “dense, randomly-initialized, feed-forward networks contain
subnetworks (winning tickets) that—when trained in isolation—reach test accuracy compa-
rable to the original network in a similar number of iterations.” For shallow vision networks,
they find winning tickets by magnitude pruning and show that re-training them with static
sparsity starting from the initial weights, they reach similar or higher accuracy in the same
number of iterations. They also demonstrate that random initialization, with the same
structure, does not suffice. Zhou et al. (2019) empirically show that one may not need the
exact weights at initialization to train lottery tickets but the signs may be sufficient.

8.3.1 Pruning is all you need - networks without weight training

Several researchers argue that initial subnetworks with their random weights can perform
well (Ramanujan et al., 2020; Zhou et al., 2019). Furthermore, winning tickets already
identify sub-networks with non-random accuracies even without training. In fact, training
to find such a “supermask” can produce a network that achieves 93.5% accuracy in MNIST
and 65.4% accuracy on CIFAR-10 at around 50% sparsity without changing the random
initial weights. In “pruning is all you need”, Malach et al. (2020) prove that, with high
probability, any network can be approximated with ε accuracy by pruning a polynomially
larger network. This means that pruning could be used to train a network without changing
the weights at all. Earlier work on Weight Agnostic Networks (Gaier and Ha, 2019) also
searches for network architectures without changing the weights. Orseau et al. (2020) and
Pensia et al. (2020) later prove that a logarithmically larger network (except depth) suffices.
Specifically, any ReLU network of width n and depth d can be ε-approximated by sparsifying
a O(log(nd)) wider and two times deeper random network, with high probability (Pensia
et al., 2020).

8.3.2 Lottery tickets in large networks

Analysis of the original lottery ticket hypothesis already indicated problems with validating
the hypothesis on larger CNNs, which could be fixed with a decreased learning rate. Liu
et al. (2019b) showed that with the best learning rate for larger networks, keeping the
original initialization does not improve the final accuracy over random initialization. Gale
et al. (2019) also could not reproduce the hypothesis for larger networks. Frankle et al.
(2020b) later argue that a variant of the hypothesis “with rewinding” applies also to larger
networks if one uses the values after some initial optimization steps at iteration r. They
demonstrated that 0.1–7% of the total iterations are sufficient for 50–99% sparse networks.
In line with early structure adaptation (see Section 2.4.2), they conclude that early pruning
could be a promising approach. However, the procedure for finding the right value of r
remains unclear, and the authors investigate the influence of “noise” through the ordering
of batches on the training process and result (Frankle et al., 2020a). Specifically, they
investigate the difference in test accuracy for a model that is a smooth interpolation between
two models trained with different orders. They consider networks with small such error and
allow the orders to only diverge after iteration r. The empirical results show that r relates
to the iteration for which a working lottery ticket can be derived by rewinding. Frankle
et al. (2020) empirically analyze the early iterations of training large networks.
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Renda et al. (2020) compare the standard single-shot fine-tuning after pruning to “weight
rewinding”. Rewinding resets the weights after pruning to the values of a previous SGD
iteration i. Then, they retrain (fine-tune) with the same learning rate schedule (from the
original iteration i) in a process called “Iterative Magnitude Pruning”. A modification to
the scheme simply uses the same learning rate schedule but without resetting the weights.
However, both Savarese et al. (2020) and Chen et al. (2020) find rewinding to be less
efficient than fine-tuning from the most recent weights for image recognition and natural
language processing tasks. They show for a variety of medium-sized ResNets and GNMT
as well as BERT that weight rewinding outperforms fine-tuning but is itself outperformed
by just rewinding the learning rate to the first iteration. Evci et al. (2020b) shows empirical
evidence that this is because lottery ticket networks relearn the pruning solution. Ding
et al. (2019b) found that a simple selection based on 1st order information outperforms the
simple magnitude-based scheme. Morcos et al. (2019) show that lottery tickets can transfer
across different datasets and optimizers. A general conclusion could be that fully sparse
training is possible (see Section 2.4.3), especially if applied iteratively (see Section 2.4.6),
but rewinding has not been proven effective.

8.4 Structured vs. unstructured sparsification

Several works found that unstructured/fine-grained (e.g., weight) pruning maintains a better
accuracy per element than structured/coarse-grained (e.g., filter, neuron) pruning (Gomez
et al., 2019; Han et al., 2016b; Ullrich et al., 2017; Lee et al., 2020). However, struc-
tured pruning approaches achieve much higher computational performance on modern de-
vices (Lym et al., 2019; Wen et al., 2016). Thus, structured sparse models could afford a
higher number of iterations to train and more floating point operations during inference to
achieve the same overall efficiency/cost. Furthermore, unstructured sparsity has a higher
relative representational overhead of indices for each fine-grained element as discussed in
Section 2.2. It remains to be seen what level of granularity will be most efficient for the
coming computer architectures.

We also observe that random pruning at network initialization works significantly bet-
ter for neurons and filters than for weights (Gomez et al., 2019). For neurons and filters,
most works that which produce highly-accurate models employ post-training sparsification,
indicating that this form of architecture search is efficient. This is also intuitive because the
specific location of neurons or filters no standard fully-connected and convolutional layers
is irrelevant. For weights, this very structure matters and thus random pruning at initial-
ization performs generally worse. Thus, we recommend different schemes for structured vs.
unstructured pruning in order to utilize training resources best.

Sparsification versus manual design An interesting observation is that sparsification
of older architectures often does not achieve the same gains as architectures developed later.
Yet, many breakthrough results in the area of efficient convolutional neural networks can
be seen as manually defined sparsifiers, such as bottleneck layers or depthwise separable
convolutions (Howard et al., 2017; Iandola et al., 2016). The resulting optimized networks
are often harder to sparsify. In some sense, this manual addition of inductive biases into
the network is similar to feature engineering that deep neural networks replaced to begin
with. d’Ascoli et al. (2020) and Neyshabur (2020) study this question in the context of
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convolutional layers. Recent work on transformers suggest the more automated way of
“train big and then prune” (Li et al., 2020c). Here, we rely on the learning process to
automatically discover good network designs. It is to be shown whether such automated
methods can compete with hand-crafted biases for modern networks such as transformers.

8.5 Optimization algorithms during model training

Stochastic gradient descent (SGD) is the de-facto standard algorithm in training deep neural
networks. Most of the works investigating sparse training suggest that SGD is sensitive to
the parameters as well as the network structure. Several show empirically that training
larger models is more compute-efficient than training smaller models (Glorot et al., 2011;
Mhaskar and Poggio, 2016; Li et al., 2020c; Kaplan et al., 2020). Similarly to Evci et al.
(2020a), we conjecture that this may be explained by the iterative optimization process and
the ability to use additional dimensions to “route around” hills in the loss landscape. Thus,
high-dimensional dense spaces help to elude local minima in the loss landscape as illustrated
in Fig. 24: the left side shows a two dimensional function f(x1, x2) and the loss function
L as contour lines. Yellow areas are valleys and blue areas are hilltops. The red dashed
line shows the value x2 = 0, emulating a sparsified model, which is shown in the right plot.
Here, we plot the (same) loss function on the x axis. We show two possible starting points
s1 and s2 and SGD trajectories in green on both sides. We see that the x2 dimension can
be used to circumvent the leftmost hill when starting from s1 in the two-dimensional model
and proceed to the lowest minimum in the middle. However, when we sparsify x2 in the
right model, SGD will work in the projected subspace with fewer degrees of freedom and
converge to the suboptimal minimum.
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Figure 24: SGD in a 1D/2D loss landscape.

We may attribute this “weakness” of SGD to its fundamental property of linear first-
order descent. Domingos (2020) further supports this claim by showing that models trained
with SGD are approximately kernel machines.

As we have seen, iteratively applying pruning improves the quality of pruned models
significantly. If we now see this overall optimization process as a series of (linear) SGD
iterations mixed with (nonlinear) pruning steps, this new optimization process implements
a guided nonlinear search. At each pruning step, the function is perturbed in a guided
way (depending on the pruning methodology, see Section 3) and then again minimized with
SGD. At each pruning step, the model may evade a local minimum that SGD alone may
not be able to overcome. For well tuned schedules, this scheme seems to approximate an
efficient learning algorithm.
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Li et al. (2018) show that much of the optimization happens in a relatively small sub-
space of the parameter space. They call this space the “intrinsic dimension”. This relates
intricately with the complexity of the model and thus sparsification. This idea gives rise to
a simple “dense plus sparse” scheme that only stores the differences from the randomly ini-
tialized starting parameters. This difference can efficiently be pruned to very high sparsity.

Bartoldson et al. (2020) model pruning as “noise injection” to explain improved gen-
eralization capabilities, which would fit this mental framework. They specifically consider
the drop of test accuracy right after pruning in iterative pruning schemes. They show
empirically that a higher drop relates to better generalization of the final model. They
suggest that smaller models may not be the only reason for improved generalization and
carefully tuned magnitude pruning schedules can improve generalization by “flattening” the
loss landscape.

8.6 Emerging Benchmarks

Interpreting pruning results and comparing different methods is difficult due to the wide
range of experimental setups, tasks, techniques, and hyperparameters used. This issue
has already been identified by Blalock et al. (2020) who propose a standard methodology
together with a set of benchmarks to solve this issue. One could imagine standard setups
such as MLPerf (Mattson et al., 2020) or the Deep500 infrastructure (Ben-Nun et al., 2019)
for performance measurements. We note that even before such a benchmark is widely
accepted by the community, some datasets, tasks, and network architectures are emerging
as de-facto benchmarks for pruning. We recommend researchers to use those as comparison
points. As we point out above, ResNet-50 on ImageNet and BERT on the GLUE tasks
seem excellent candidates for such standard benchmark sets for both model sparsity and
performance.

We observe that the achieved sparsity at high accuracies strongly correlates with the
attention that certain models received in the literature. For example, ResNet-50 is well
tuned and thus shows higher achieved parameter efficiencies relative to other models. Thus,
they effectively define the state of the art—however, this observation also means that one
cannot easily reason about the “prunability” of a certain architecture without extensive
experiments on a level playing field.

For toy examples, the MNIST dataset with the LeNet-300-100 and LeNet-5 networks
can act as a good calibration. The state of the art is above 98% accuracy with less than 1%
of the original parameters. However, we insist that this task alone is not indicative of good
performance of a method. More meaningful tasks are larger convolutional networks on more
complex tasks such as CIFAR-100 and ImageNet. In order to track progress, we recommend
that those should always be reported when analyzing new pruning methodologies even
though better architectures for these tasks (or better tasks) may exist. Additionally, in our
experience and as shown in many comparative studies, global magnitude pruning is a good
baseline method for a wide range of scenarios.

8.7 Parameter Efficiency

When using or constructing models for sparse training, it is important to estimate how
amenable a model is to sparsification, for example, in order to determine target sparsity
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values. One could define the general concept of parameter efficiency as “How much does
the average parameter contribute to the overall quality of the model?”. As the definition
implies, the metric should not rely on the DNN alone, but also on the complexity of the
learning task, i.e., the dataset. We observe that, when pruned, the parameter efficiency
of models often increases while the overall model quality decreases. Below, we review and
propose several definitions of parameter efficiency in the context of sparsity.

Accuracy Density Bianco et al. (2018) propose accuracy density as a measure of pa-
rameter efficiency for dense and compressed (e.g., SqueezeNet) CNNs. It is defined as the
validation accuracy (in percentage) divided by the number of parameters (in millions). With
the metric, the authors show clear benefits for networks such as MobileNet over ResNet-50,
but at the same time, the metric prefers AlexNet and SqueezeNet, both under 60% top-1
accuracy, over VGG-16 (with 71.6% accuracy). When extended to pruned DNNs the effect
is exacerbated, as accuracy density increases disproportionately. When ranked, sparse but
inaccurate models appear highest, with orders of magnitude of difference vs. denser mod-
els. It is thus apparent that accuracy should be given more importance, and that it is not
linearly correlated with the count of correct predictions in the validation set.

SotA-Normalized Parameter Efficiency To deal with parameter efficiency in the face
of nonlinear classification difficulty, we propose a slightly modified measure: Instead of
computing the ratio of accuracy to parameters directly, we adapt the accuracy (i.e., number
of correct predictions in the validation set) to reflect the dataset complexity. We try to find
a function that accurately depicts how hard it would be to increase the validation accuracy
by a single sample, and observe that the historical state-of-the-art (SotA) accuracy in the
research community can be leveraged for this purpose. We collect the SotA accuracy on a
yearly basis4, and perform curve fitting on the data in the years 2012–2020 to estimate the
difficulty of increasing the accuracy (i.e., how much research time would it take to produce
another correct validation sample). The results are shown in Fig. 25a, where a logarithmic
function is fit. Now, the inverse of this function — exp(y−30575

6142.09 ) — can be invoked on a
given number of correctly-predicted samples to obtain the years of research (from 2012)
that it would take to achieve such an accuracy. These SotA-normalized correct predictions
are then divided by the number of parameters (in millions, same as Accuracy Density) to
obtain the final metric.

The SotA-normalized parameter efficiencies of popular dense and corresponding sparse
CNNs are presented in Fig. 25b and 25c, respectively. For dense networks, we can see that
parameter efficiency similarly increases for ResNets and MobileNets over AlexNet and VGG,
but that VGG variants are actually more parameter efficient than AlexNet, despite being
twice as large. EfficientNet-B0 is roughly on the same parameter efficiency as MobileNet
(v2), which is reasonable given that the former network is a mobile-sized baseline, albeit
produced via Neural Architecture Search. Despite being state-of-the-art, Vision Transform-
ers (Dosovitskiy et al., 2021) surprisingly yield low SotA-normalized parameter efficiency,
due to the large increase in the number of parameters (632 million for ViT-Huge) and the
relatively small increase in validation accuracy.

For the sparsified networks, most of the pruned networks are more parameter efficient
than the best dense networks. We see that the top ranked CNN is a pruned ResNet-

4. https://paperswithcode.com/sota/image-classification-on-imagenet
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Figure 25: Parameter efficiency of state-of-the-art DNNs on the ImageNet dataset, with
color indicating DNN type.

50 (Savarese et al., 2020), which can achieve 66% validation accuracy with only ≈281,000
parameters. The second best network is a pruned MobileNet (v1) with 68% accuracy for
≈423,000 parameters. It may be interesting to investigate this metric in more depth (e.g.,
with different normalization scales) to understand whether the efficiency per parameter
increases monotonically with smaller networks or whether the decrease in model quality
leads to a decrease in parameter efficiency as well.

Parameter Slack Figure 26 shows a relative view of the same data. It shows what
sparsity level is achievable if we allow a fixed decrease in accuracy, relative to the dense
baseline. Since the sparsity is relative to the original network (and its parameter efficiency),
it is hard to compare different networks in this figure; instead, we recommend to consider the
curve of each network in isolation with the vertical dotted lines at markers of 0%, 1%, and
5% accuracy loss budget5. The results suggest that architectures such as AlexNet or VGG-
16 have significantly higher parameter slack than, e.g., MobileNet or Inception. Fig. 26a
shows the data grouped by network type. It allows to reason about “parameter slack”, i.e.,
the steeper the curve, the higher the percentage of parameters which can be removed while
preserving some percentage of the baseline accuracy. Fig. 26b shows the same data but
grouped by element removal scheme and thus allows a comparison of different schemes.

Apart from parameters, model information content (and thus parameter efficiency) is
also encoded in the data type of the weights themselves. This is explicitly clear in binarized
networks that have only values ∈ {−1, 1}. In these cases, the additional zero value adds
another piece of information, similar to ternary networks (Li et al., 2020b). Networks
with larger weight data types also benefit from the sparsity, however, it remains unclear
whether the overhead of storing the non-zero structure (see Section 2.2) is worth the gain
in parameter efficiency.

We close the discussion on parameter efficiency with an observation: Interestingly, the
fact that most of the (very different) methods presented in the literature reach similar results
in terms of accuracy at a given sparsity (within relative 1%) suggests that there are inherent
compression thresholds which may be hard to overcome.

5. This metric is inspired in part by the MLPerf ImageNet rules (Mattson et al., 2020).
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Figure 26: Relative validation ImageNet accuracy loss for different pruning densities, strate-
gies, and neural networks. Solid lines represent best-performing networks, whereas dotted
lines represent accuracy thresholds (e.g., 1% relative accuracy reduction is the maximum
allowed by MLPerf ImageNet rules, Mattson et al., 2020). Negative accuracy drop means
improvement in generalization.

8.8 Generalization and biases

It is a surprising fact that neural networks can be heavily pruned without impacting their
overall accuracy. Yet this raises a question: Is top-level accuracy sufficient to capture the
effects of pruning when the neural network representation has changed so dramatically? In
recent work, Hooker et al. (2019) show that using the unstructured iterative magnitude
pruning of Zhu and Gupta (2017) on CNNs for image classification results in a large degra-
dation in accuracy for a small number of classes in tasks such as ImageNet, compared to the
model’s overall decrease. These classes were typically less represented in the training data.
Interestingly, they also find that, compared with pruning, quantization results in a much
smaller impact to different classes. Further, they find that pruned models are significantly
more brittle under distribution shifts, such as corrupted images in ImageNet-C (Hendrycks
and Dietterich, 2019) or naturally adversarial images in ImageNet-A (Hendrycks et al.,
2019).

Hooker et al. (2020) build on these results and show that the increased errors on certain
classes caused by pruning can amplify existing algorithmic biases. On CelebA (Liu et al.,
2015), a dataset of celebrity faces with significant correlations between demographic groups,
pruning increases errors on underrepresented subgroups. For example, pruning a model
trained to identify people with blond hair to 95% sparsity increased the average false-
positive rate for men by 49.54%, but by only 6.32% for others.

The biases and brittleness introduced by pruning may limit the utility of pruned models,
especially in situations that often deal with protected attributes and are sensitive to fairness,
such as facial recognition or healthcare. This is unfortunate, since these domains typically
deploy models in resource-constrained environments where pruning is particularly valuable.
Therefore, it is important to study the finer-grained impacts of pruning, rather than just
the overall accuracy. Identifying the impact of pruning methods beyond iterative magnitude
pruning, and developing more robust pruning methods, are critical open problems.
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8.9 Best practices

We now focus more on the practical aspects of pruning and conclude the discussion with a set
of recommendations we identified based on the body of literature in the field. We first note
that a flurry of simple approaches enables reaching moderate sparsity levels (e.g., 50–90%)
at the same or even increased accuracy. It seems that any non-silly scheme achieves some
sparsification and that there is an inherent robustness in the networks themselves. However,
reaching higher sparsity levels (e.g., >95%) requires more elaborate pruning techniques
where we may be reaching the limit of gradient-based optimization techniques for learning.
We now provide best practices in five categories that we recommend everyone to follow
when performing pruning in practice.

1. Pruning strategy In general, highest sparsity is achieved using regularization meth-
ods in combination with iterative pruning and growth schedules. These methods have
high computational costs, sometimes causing a five-fold increase in training overheads,
e.g., Savarese et al. (2020). Regularization methods are relatively hard to control and
require numerous hyperparameters. The simplest training method, magnitude pruning, is
easiest to control for target sparsity and accuracy in many practical settings. In most train-
ing methods, it is important for the structure search to enable weights to regrow, especially
in phase of early structure adaptation at the beginning of training.

2. Retraining/fine-tuning If the focus of sparsity is to improve inference, then re-
training and fine-tuning is an essential part of a sparsification schedule. Gradually pruned
sparsification schedules perform best and it is most efficient to start each iteration from the
most trained or the last set of weights.

3. Structure Structured pruning seems to provide a great tradeoff between accuracy
and performance on today’s architectures. This is partly due to the fact that hardware and
frameworks are tuned for dense blocked computations. Furthermore, structural pruning can
form a strong bias towards powerful mechanisms like locally connected layers that, together
with weight sharing, yield convolutional layers.

4. Distribution The sparsity distribution across layers/operators needs to be considered
carefully both in terms of memory size (numbers of parameters) and computational intensity
(required flops). For this, one could hand-tune the sparsity levels for each operator type
and position in the network. For example, dense layers can often be pruned more than
convolutional layers and the first layer in a convolutional network can hardly be pruned. A
simpler scheme may use a global sparsity and a learned allocation strategy.

5. Combined ephemeral and model sparsity Any sparse deep neural network should
combine both ephemeral and model sparsity. For example, dropout often functions as a “pre-
regularizer” and can benefit generalization greatly if enough data is available. Furthermore,
ephemeral and model sparsity lead to a multiplicative benefit in terms of needed arithmetic
operations.
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9. Challenges and Open Questions

We now outline ten central challenges and open questions in the field to inspire future
research.

1. Sparse training. Can we use sparsity to train gigantic models whose dense version
would not fit into the hardware budget? How do we sparsely train models without
accuracy loss?

2. Structured vs. unstructured. How does a structural bias influence the accuracy
performance and model size tradeoff?

3. Hardware co-design. How do we co-design hardware architectures and pruned
models? What is the tradeoff between cost, accuracy, and structured sparsity?

4. Multi-objective pruning. What is the best way to prune for multiple objectives
simultaneously, e.g., lowest energy consumption for a certain memory size?

5. Architecture design. Should one use neural architecture search (NAS) for finding
efficient networks or can pruning replace or complement NAS?

6. Theory of sparse learning. What is the relationship between sparsity, learning
dynamics, and generalization?

7. Sparse representations. What is the representational power of sparse neural net-
works? Could parameter efficiency be defined rigorously?

8. Method generalization. Which of the pruning methods for MLPs or CNNs gener-
alize to transformers or other neural architectures?

9. Data-free sparsity. Can we design one-shot or data-free methods that rival the
accuracy of data-dependent methods?

10. Fairness, bias and robustness. How do we design more robust sparse models
and sparsification approaches? How do we prevent adversarial attacks on sparsified
models?

We do not explicitly list brain-related research challenges because our work focuses
primarily on the engineering aspects of sparsity for which biological analogies are certainly
a major inspiration but act mainly as a means to an end.

10. Conclusions and Outlook

We surveyed results showing that sparsity can already lead to a theoretical 10–100x im-
provement in efficiency. Furthermore, larger networks appear to provide more opportunity
for pruning (Sanh et al., 2020; Gale et al., 2019) so the compression trend is likely to con-
tinue as architectures get larger. Specifically, training extremely large models with sparse
methods will provide many opportunities. Our detailed analysis of data science and en-
gineering aspects enables a targeted hardware-software co-design for next-generation deep
learning architectures that exploit the potentially huge speedups.
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We also expect that there remains potential in the data science aspects of sparsity,
especially in the areas of very high sparsity (>99%) as well as sparse training of large
models in very high-dimensional spaces. Both could lead to significant breakthroughs in
future deep learning systems.
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transformers. In Conference on Empirical Methods in Natural Language Processing and
the International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
arXiv:cs.CL/1909.00015

93

https://proceedings.neurips.cc/paper/2020/hash/a914ecef9c12ffdb9bede64bb703d877-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a914ecef9c12ffdb9bede64bb703d877-Abstract.html
https://arxiv.org/abs/2007.12223
https://arxiv.org/abs/1807.07928
https://arxiv.org/abs/1710.09282
https://arxiv.org/abs/1410.0759
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2006.15741
https://arxiv.org/abs/1602.05931
https://arxiv.org/abs/1412.1442
https://arxiv.org/abs/1909.00015


T. Hoefler et al.

Justin Cosentino, Federico Zaiter, Dan Pei, and Jun Zhu. 2019. The Search for Sparse, Ro-
bust Neural Networks. In NeurIPS Safety and Robustness in Decision Making Workshop.
arXiv:cs.LG/1912.02386

Baiyun Cui, Yingming Li, Ming Chen, and Zhongfei Zhang. 2019. Fine-tune BERT with
Sparse Self-Attention Mechanism. In Conference on Empirical Methods in Natural Lan-
guage Processing and the International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP).

Bin Dai, Chen Zhu, and David Wipf. 2018b. Compressing Neural Networks using the
Variational Information Bottleneck. In International Conference on Machine Learning
(ICML). arXiv:cs.CV/1802.10399

Xiaoliang Dai, Hongxu Yin, and Niraj K. Jha. 2018a. NeST: A Neural Network Synthesis
Tool Based on a Grow-and-Prune Paradigm. IEEE Trans. Comput. 68, 10 (2018), 1487–
1497. arXiv:cs.NE/1711.02017
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