
Journal of Machine Learning Research 22 (2021) 1-51 Submitted 4/21; Revised 9/21; Published 10/21

An Online Sequential Test for Qualitative Treatment Effects

Chengchun Shi c.shi7@lse.ac.uk
Department of Statistics, London School of Economics and Political Science

Shikai Luo sluo198912@163.com
Tecent PCG

Hongtu Zhu htzhu@email.unc.edu
Department of Biostatistics, University of North-Carolina

Rui Song rsong@ncsu.edu

Department of Statistics, North-Carolina State University

Editor: Xiaotong Shen

Abstract

Tech companies (e.g., Google or Facebook) often use randomized online experiments and/or
A/B testing primarily based on the average treatment effects to compare their new product
with an old one. However, it is also critically important to detect qualitative treatment
effects such that the new one may significantly outperform the existing one only under some
specific circumstances. The aim of this paper is to develop a powerful testing procedure to
efficiently detect such qualitative treatment effects. We propose a scalable online updat-
ing algorithm to implement our test procedure. It has three novelties including adaptive
randomization, sequential monitoring, and online updating with guaranteed type-I error
control. We also thoroughly examine the theoretical properties of our testing procedure
including the limiting distribution of test statistics and the justification of an efficient
bootstrap method. Extensive empirical studies are conducted to examine the finite sample
performance of our test procedure.

Keywords: A/B testing; Qualitative treatment effects; Sequential monitoring; Adaptive
randomization; Online updating.

1. Introduction

Tech companies use randomized online experiments, or A/B testing to compare their new
product with a well-established one. Most works in the literature focus on the average
treatment effects (ATE) between the new and existing products (see Kharitonov et al.,
2015; Johari et al., 2015, 2017; Yang et al., 2017; Ju et al., 2019, and the references therein).
In addition to ATE, sometimes we are interested in locating the subgroup (if exists) that
the new product performs significantly better than the existing one, as early as possible.
Consider a ride-hailing company (e.g., Uber). Suppose some passengers are in the recession
state (at a high risk of stopping using the company’s app) and the company comes up with
certain strategy to intervene the recession process. We would like to test if there are some
subgroups that are sensitive to the strategy and pin-point these subgroups if exists. It
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motivates us to consider the null hypothesis that the treatment effect is nonpositive for all
passenger.

Such a null hypothesis is closely related to the notion of qualitative treatment effects in
medical studies (QTE, Gail and Simon, 1985; Gunter et al., 2007, 2011; Roth and Simon,
2018; Shi et al., 2020b), and conditional moment inequalities in economics (see for example,
Andrews and Shi, 2013, 2014; Chernozhukov et al., 2013; Armstrong and Chan, 2016; Chang
et al., 2015; Hsu, 2017). However, these tests are computed offline and might not be suitable
to implement in online settings. Moreover, it is assumed in those papers that observations
are independent. In online experiment, one may wish to adaptively allocate the treatment
based on the observed data stream in order to maximize the cumulative reward or to detect
the alternative more efficiently. The independence assumption is thus violated. In addition,
an online experiment is desired to be terminated as early as possible in order to save time
and budget. Sequential testing for qualitative treatment effects has been less explored.

In the literature, there is a line of research on estimation and inference of the hetero-
geneous treatment effects (HTE, Athey and Imbens, 2016; Taddy et al., 2016; Wager and
Athey, 2018; Yu et al., 2020). In particular, Yu et al. (2020) proposed an online test for
HTE. We remark that HTE and QTE are related yet fundamentally different hypotheses.
There are cases where HTE exists whereas QTE does not. See Figure 1 for an illustration.
Consequently, applying their test will fail in our setting.

The contributions of this paper are summarized as follows. First, we propose a new
testing procedure for treatment comparison based on the notion of QTE. When the null
hypothesis is not rejected, the new product is no better than the control for any realization
of covariates, and thus it is not useful at all. Otherwise, the company could implement
different products according to the auxiliary covariates observed, to maximize the average
reward obtained. We remark that there are plenty cases where the treatment effects are
always nonpositive (see Section 5 of Chang et al., 2015; Shi et al., 2020b). A by-product
of our test is that it yields a decision rule to implement personalization when the null is
rejected (see Section 3.1 for details). Although we primarily focus on QTE in this paper,
our procedure can be easily extended to testing ATE as well (see Section 4.1.2 for details).

Second, we propose a scalable online updating algorithm to implement our test. To
allow for sequential monitoring, our procedure leverages idea from the α spending function
approach (Lan and DeMets, 1983) originally designed for sequential analysis in a clinical
trial (see Jennison and Turnbull, 1999, for an overview). Classical sequential tests focus
on ATE. The test statistic at each interim stage is asymptotically normal and the stopping
boundary can be recursively updated via numerical integration. However, the limiting
distribution of the proposed test statistic does not have a tractable analytical form, making
the numerical integration method difficult to apply. To resolve this issue, we propose a
scalable bootstrap-assisted procedure to determine the stopping boundary.

Third, we adopt a theoretical framework that allows the maximum number of interim
analyses K to diverge as the number of observations increases, since tech companies might
analyze the results every few minutes (or hours) to determine whether to stop the experiment
or continue collecting more data. It is ultimately different from classical sequential analysis
where K is fixed. Moreover, the derivation of the asymptotic property of the proposed test is
further complicated due to the adaptive randomization procedure, which makes observations
dependent of each other. Despite these technical challenges, we establish a nonasymptotic
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Figure 1: Plots demonstrating QTE. X denotes the observed covariates, A denotes the received
treatment and Y denotes the associated reward. In the ride-hailing example, X is a feature vector
describing the characteristics of a passenger, A is a binary strategy indicator and Y is the passenger’s
number of rides in the following two weeks. In the left panel, the treatment effect does not depend
on X. Neither HTE nor QTE exists in this case. In the middle panel, HTE exists. However, the
treatment effect is always negative. As such, QTE does not exist. In the right penal, both QTE and
HTE exist.

upper bound on the type-I error rate by explicitly characterizing the conditions needed on
randomization procedure, K and the number of samples observed at the initial decision
point to ensure the validity of our test.

2. Background and problem formulation

We propose a potential outcome framework to formulate our problem. Suppose that we
have two products including the control and the treatment. The observed data at time

point t consists of a sequence of triples {(Xi, Ai, Yi)}N(t)
i=1 , where N(·) is a counting process

that is independent of the data stream {(Xi, Ai, Yi)}+∞i=1 , Ai is a binary random variable
indicating the product executed for the i-th experiment, Xi ∈ Rp denotes the associated
covariates, and Yi stands for the associated reward (the larger the better by convention).
We allow Ai to depend on Xi and past observations {(Xj , Aj , Yj)}j<i so that the random-
ization procedure can be adaptively changed. In addition, define Y ∗i (0) and Y ∗i (1) to be
the potential outcome that would have been observed if the corresponding product is ex-
ecuted for the i-th experiment. Suppose that {(Xi, Y

∗
i (0), Y ∗i (1))}+∞i=1 are independently

and identically distributed copies of (X,Y ∗(0), Y ∗(1)). Let X be the support of X and
Q0(x, a) = E{Y ∗(a)|X = x} for a = 0, 1, we focus on testing the following hypotheses:

H0 : Q0(x, 1) ≤ Q0(x, 0), ∀x ∈ X versus H1 : Q0(x, 1) > Q0(x, 0), ∃x ∈ X.

Notice that when there are no covariates, i.e., X = ∅, the hypotheses are reduced to H0 :
τ0 ≤ 0 versus H1 : τ0 > 0, where τ0 corresponds to ATE, i.e, τ0 = E{Y ∗(1) − Y ∗(0)}. In
general, we require X to be a compact set. We consider a large linear approximation space
Q for the conditional mean function Q0. Specifically, let Q = {Q(x, a;β0, β1) = ϕ>(x)βa :
β0, β1 ∈ Rq} be the approximation space, where ϕ(x) is a q-dimensional vector composed of
basis functions on X. The dimension q is allowed to diverge with the number of observations
in order to alleviate the effects of model misspecification. The use of linear approximation
space simplifies the computation of our testing procedure. When Q0(x, 0) and Q0(x, 1) are

3



Shi, Luo, Zhu and Song

well approximated by ϕ>(x)β∗0 and ϕ>(x)β∗1 for some β∗0 and β∗1 , it suffices to test

H0 : ϕ>(x)(β∗1 − β∗0) ≤ 0,∀x ∈ X versus H1 : ϕ>(x)(β∗1 − β∗0) > 0, ∃x ∈ X. (1)

We require the approximation error err = infβ0,β1∈Rp supx∈X,a∈{0,1} |Q0(x, a)−Q(x, a;β0, β1)|
to decay to zero at a rate of o{N−1/2(T )} to ensure the validity of the proposed test. See
Appendix A for details.

Let Fj denote the sub-dataset {(Xi, Ai, Yi)}1≤i≤j for j ≥ 1 and F0 = ∅. Throughout
this paper, we assume that the following two assumptions hold.

(A1) Yi = AiY
∗
i (1) + (1−Ai)Y ∗i (0) for ∀i ≥ 1.

(A2) Ai is independent of Y ∗i (0), Y ∗i (1), {(Xk, Y
∗
k (0), Y ∗k (1))}k>i given Xi and Fi−1, for any

i.

Assumption (A1) is referred to be the stable unit treatment value assumption and As-
sumption (A2) is the sequential randomization assumption (Zhang et al., 2013) and is
automatically satisfied in a randomized study where the treatments are independently gen-
erated of the observed data. (A2) essentially assumes there is no unmeasured confounders.
These assumptions guarantee that both regression coefficients (defined through potential
outcomes) are estimable from the observed dataset as shown in the following lemma.

Lemma 1 Let I(·) denotes the indicator function. Under (A1)-(A2), we have

E[I(Ai = a){Yi −Q0(Xi, a)}] = 0, ∀a ∈ {0, 1}, i ≥ 1.

3. Online sequential testing for QTE

3.1 Test statistics and their limiting distribution

We first present our test statistic for testing H0. In view of Lemma 1, we estimate β∗a by
using the ordinary least squares estimator

β̂a(t) = Σ̂−1
a (t)

 1

N(t)

N(t)∑
i=1

I(Ai = a)ϕ(Xi)Yi


at each time point t for a ∈ {0, 1}, where Σ̂a(t) = N−1(t)

∑N(t)
i=1 I(Ai = a)ϕ(Xi)ϕ

>(Xi).

A generalized inverse might be used even if Σ̂a(t) is not invertible. Consider the following
normalized test statistic

S(t) = sup
x∈X

ϕ>(x){β̂1(t)− β̂0(t)}
ŝ.e.[ϕ>(x){β̂1(t)− β̂0(t)}]

,

for some standard error estimator ŝ.e.[·] whose explicit form will be presented below. The
benefits of working with normalized statistics are two folds. First, there is an efficiency gain
compared to the unnormalized statistics without standardization, i.e., supx∈X ϕ

>(x){β̂1(t)−
β̂0(t)}. In cases where ϕ>(x){β̂1(t)−β̂0(t)} is not consistently estimated for some value of x,
the supremum might be attained by these values. However, due to the large estimation er-
ror, they might differ significant from the oracle maximizer, arg maxx{Q0(x, 1)−Q0(x, 0)},
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thus lowering the power. We conduct some simulation studies (results are not included
in the paper) and find that the normalized test statistic has much better power proper-
ties compared to the unnormalized one. Second, it requires weaker assumptions than the
unnormalized test statistic. We will discuss this in detail in Appendix A.

Meanwhile, we remark that the studentized supremum type statistics have been used
in the economics literature. For instance, Chen and Christensen (2015) proposed to use
studentization for controlling the bias term in nonparametric series regression. Belloni et al.
(2015) proposed to construct uniform confidence bands in nonparametric regression based
on studentized supremum type statistics. Chen and Christensen (2018) developed a uniform
inference on nonlinear functionals of nonparametric instrumental variables regression using
studentized supremum type statistics. The benefits of using these statistics have been
discussed in these papers as well.

Under H0, we expect S(t) to be small. A large S(t) can be interpreted as the evidence
againstH0. As such, we rejectH0 for large S(t). We remark that whenH0 is rejected, we can
apply the decision rule d(x) = arg maxa∈{0,1} ϕ

>(x)β̂a(t) for personalized recommendation.
To determine the rejection region, we next discuss the limiting distribution of S(t).

Under H0,

S(t) ≤ sup
x∈X

ϕ>(x){β̂1(t)− β∗1 − β̂0(t) + β∗0}+ supx∈X ϕ
>(x)(β∗1 − β∗0)

ŝ.e.[ϕ>(x){β̂1(t)− β̂0(t)}]

≤ sup
x∈X

ϕ>(x){β̂1(t)− β∗1 − β̂0(t) + β∗0}
ŝ.e.[ϕ>(x){β̂1(t)− β̂0(t)}]

.

(2)

Both equalities hold when β∗0 = β∗1 . Suppose there exists some function π∗(·, ·) defined on

{0, 1} × X that satisfies EX |
∑n

i=1 n
−1πi−1(a,X) − π∗(a,X)| P→ 0,∀a ∈ {0, 1} as n → ∞,

where πn(·, ·) = Pr(An = a|Xn = x,Fn−1), and the expectation EX is taken with respect to
X. This condition implies that the treatment assignment mechanism cannot be arbitrary
(see the discussion below Theorem 1 for details). Then we will show

B(t) ≡
√
N(t){β̂1(t)− β∗1 − β̂0(t) + β∗0}

d→ N(0,
∑

a∈{0,1}

Σ−1
a ΦaΣ

−1
a ), as N(t)→∞, (3)

where Σa = Eπ∗(a,X)ϕ(X)ϕ>(X), Φa = Eπ∗(a,X)σ2(a,X)ϕ(X)ϕ>(X), and σ2(a, x) =
E[{Y ∗(a) − Q0(X, a)}2|X = x], for any x ∈ X. Consequently, we set the denominator of
S(t) to

ŝ.e.[ϕ>(x){β̂1(t)− β̂0(t)}] =

 1

N(t)

∑
a∈{0,1}

ϕ>(x)Σ̂−1
a (t)Φ̂a(t)Σ̂

−1
a (t)


1/2

,

where Φ̂a(t) denotes the sandwich estimator for Φa computed using time points up to time
t. Please refer to Algorithm 1 for a detailed definition.

In addition, according to (3), the right-hand-side (RHS) of (2) is to converge in distri-
bution to the maximum of some Gaussian random variables. This observation forms the
basis of our test.
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We next discuss the sequential implementation of our test. Assume that the interim
analyses are conducted at time points t1, t2, . . . , tK ∈ [0, . . . , T ] such that 0 < t1 < t2 <
· · · < tK = T . We allow K to grow with the number of observations. In the most extreme
case, one may set tk = inft{N(t) ≥ N(tk−1) + 1}, ∀k ≥ 2. That is, we make a decision
regarding the null hypothesis upon the arrival of each observation. In addition, we assume
that t1 is large so that there are enough number of samples N(t1) to guarantee the validity
of the normal approximation for B(t1). We remark that in typical tech companies such as
Amazon, Facebook, etc., massive data are collected even within a short time interval. Large
sample approximation is validated in these applications.

To guarantee our test controls the type-I error, we reject H0 and terminate the ex-
periment at tk if

√
N(tk)S(tk) ≥ zk for some k = 1, . . . ,K with some suitably chosen

z1, . . . , zK > 0 that satisfy

Pr

(
max

k∈{1,...,K}
{
√
N(tk)S(tk)− zk} > 0

)
≤ α+ o(1)

for a given significance level α > 0 under H0. In view of (2), it suffices to find {zk}k that
satisfy

Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B(tk)√
N(t)ŝ.e.[ϕ>(x){β̂1(t)− β̂0(t)}]

− zk

)
> 0

}
≤ α+ o(1), (4)

where the stochastic process B(·) is defined in (3).
To determine {zk}k, we need to derive the asymptotic distribution of the left-hand-

side (LHS) of (4). To this end, define a mean-zero Gaussian process G(t) with covariance
function

cov(G(t), G(t′)) = N1/2(t)N−1/2(t′)
∑

a∈{0,1}

Σ−1
a ΦaΣ

−1
a , ∀0 < t ≤ t′.

In the following, we show that the LHS of (4) can be uniformly approximated based on
G(·), for any {zk}k=1,...,K . To establish our theoretical results, we need some regularity
conditions on ϕ(·). To save space, we summarize these assumptions in (A3) and put them
in Appendix A. A random variable Z is said to have a sub-Gaussian tail if there exist some
constants C, ν > 0 such that

P (|Z| > z) ≤ C exp(−νz2),

for any z.

Theorem 1 Assume (A1)-(A3) hold. For a = 0, 1, assume infx∈X π
∗(a, x) > 0, E[{Y ∗(a)}2|X]

is a bounded random variable, and |Y ∗(a)| has a sub-Gaussian tail. Assume there exists
some 0 < α0 ≤ 1 such that for any sequence {jn}n that satisfies jα0

n / logα0 jn � q2, the
following event occurs with probability at least 1−O(j−α0

n ),

sup
a∈{0,1}

E

∣∣∣∣∣
k∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣ ≤ O(1)qk1−α0 logα0 k, ∀k ≥ jn, (5)
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where O(1) denotes some positive constant. Assume q = O(Nα∗(t1)) for some 0 ≤ α∗ <
min(1/3, α0/2) and N(t1) � logN(T ) almost surely. Then conditional on the counting
process N(·), there exists some constant c > 0 such that

sup
z1,...,zK

∣∣∣∣∣Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B(tk)√
N(t)ŝ.e.[ϕ>(x){β̂1(t)− β̂0(t)}]

− zk

)
> 0

}

− Pr

 max
k∈{1,...,K}

sup
x∈X

ϕ>(x)G(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− zk

 > 0


∣∣∣∣∣∣

≤ c
[
N−1/8(t1) log15/8{KN(t1)}+ {N−α0/3(t1) + q3/2N−α0(t1)} log(5+α0)/3{KN(t1)}

+ err log1/2{KN(t1)}
]
.

Theorem 1 implies that the approximation error depends on the number of observations
obtained up to the first decision point N(t1), the maximum number of interim analyses K,
the total number of basis functions q, err, and α0, which characterizes the convergence rate
of the treatment assignment mechanism

∑n
i=1 n

−1πi−1. Clearly, the error will decay to zero
when the followings hold with probability tending to 1,

log(K)� min{N1/15−2α∗/5(t1), N (α0−3α∗)/(5+α0)(t1)}. (6)

In Section 3.3, we show that α0 = 1/2, when an ε-greedy strategy is used for ran-
domization to balance the trade-off between exploration and exploitation. Condition (6) is
satisfied when K grows polynomially fast with respect to N(t1). In addition to ε-greedy,
other adaptive allocation procedures (e.g., upper confidence bound or Thompson sampling)
could be applied as well.

As discussed in the introduction, the derivation of Theorem 1 is nontrivial. One way
to obtain the magnitude of the approximation error is to apply the strong approximation
theorem for multidimensional martingales (see Morrow and Philipp, 1982; Zhang, 2004).
However, the rate of approximation typically depends on the dimension and decays fast as
the dimension increases. To derive Theorem 1, we view {ϕ>(x)B(tK)}x∈X,k∈{1,...,κ} as a
high-dimensional martingale and adopt the Gaussian approximation techniques that have
been recently developed by Belloni and Oliveira (2018). In view of (2), an application of
Theorem 1 yields the following result.

Theorem 2 Assume that the conditions of Theorem 1 hold, (6) holds with probability tend-
ing to 1. Then for any z1, . . . , zk that satisfy

Pr

 max
k∈{1,...,K}

sup
x∈X

ϕ>(x)G(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− zk

 > 0

 = α+ o(1), (7)

as N(t1) diverges to infinity, we have under H0,

Pr

(
max

k∈{1,...,K}
{S(tk)− zk} > 0

)
≤ α+ o(1).

The above equality holds when β∗0 = β∗1 .
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Theorem 2 suggests that the type-I error rate of the proposed test can be well controlled.
It remains to find critical values {zk}1≤k≤K that satisfy (7). In the next section, we propose
a bootstrap-assisted procedure to determine these critical values.

3.2 Bootstrap stopping boundary

We first outline a method based on the wild bootstrap (Wu, 1986) to approximate the
limiting distribution of {S(tk)}k. Then we discuss its limitation and present our proposal,
a scalable bootstrap algorithm to determine the stopping boundary.

The idea is to generate bootstrap samples {β̂MB
a (tk)}a,k that have asymptotically the

same joint distribution as {β̂a(tk) − β∗a}a,k. Then the joint distribution of {S(tk)}k can

be well-approximated by the conditional distribution of {ŜMB(tk)}k given the data, where
ŜMB(t) = supx∈X ϕ

>(x){β̂MB
1 (t) − β̂MB

0 (t)} for any t. Specifically, let {ξi}+∞i=1 be a sequence
of i.i.d. standard normal random variables independent of {(Xi, Ai, Yi)}+∞i=1 . For a ∈ {0, 1},
define

β̂MB
a (t) = Σ̂−1

a (t)

 1

N(t)

N(t)∑
i=1

I(Ai = a)ϕ(Xi){Yi − ϕ>(Xi)β̂(t)}ξi

 , ∀a ∈ {0, 1}.
Both the asymptotic means of

√
N(t)β̂MB

a (t) and
√
N(t)(β̂a(t)− β∗a) are zero. In addition,

their covariance functions are asymptotically the same. By design, {β̂MB
a (tk)}a,k is multi-

variate normal. Similar to (3), we can show {β̂a(tk)− β∗a}a,k is asymptotically multivariate

normal. Consequently, the limiting distributions of {β̂MB
a (tk)}a,k and {β̂a(tk) − β∗a}a,k are

asymptotically equivalent. As such, the bootstrap approximation is valid.

However, calculating β̂MB
a (tk) requires O(N(tk)q + q3) operations. The time complexity

of the resulting bootstrap algorithm is O(BN(tk)q + q3) up to the k-th interim stage,
where B is the total number of bootstrap samples. This can be time consuming when
{N(tk) − N(tk−1)}Kk=1 are large. To facilitate the computation, we observe that in the

calculation of β̂MB
a , the random noise is generated upon the arrival of each observation.

This is unnecessary as we aim to approximate the distribution of β̂a(·) only at finitely many
time points.

We next present our proposal. Let {ei,a}i=1,...,K,a=0,1 be a sequence of i.i.d N(0, Iq)
random vectors independent of the observed data, where Iq denotes the q × q identity
matrix. At the k-th interim stage, we compute

ŜMB∗(tk) = sup
x∈X

ϕ>(x){β̂MB∗
1 (tk)− β̂MB∗

0 (tk)}
ŝ.e.[ϕ>(x){β̂1(t)− β̂0(t)}]

,

where β̂MB∗
a (tk) equals

1

N(tk)

k∑
j=1

 N(tj)∑
i=N(tj−1)+1

Σ̂−1
a (tj)I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ(Xi)
>β̂a(tj)}2Σ̂−1

a (tj)

1/2

ej,a.
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For any k1 and k2, the conditional covariance of
√
N(tk1){β̂MB∗

1 (tk1) − β̂MB∗
0 (tk1)} and√

N(tk2){β̂MB∗
1 (tk2)− β̂MB∗

0 (tk2)} equals

1√
N(tk1)N(tk2)

1∑
a=0

k1∑
j=1

N(tj)∑
i=N(tj−1)+1

Σ̂−1
a (tj)I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2Σ̂−1
a (tj).

Under the given conditions in Theorem 1, it is to converge to√
N(tk1)√
N(tk2)

1∑
a=0

Σ−1
a ΦaΣ

−1
a = cov(G(tk1), G(tk2)).

This means {
√
N(tk)(β̂

MB*
1 (tk) − β̂MB*

0 (tk))}k and {G(tk)}k have the same asymptotic dis-

tribution. Consequently, {
√
N(tk)Ŝ

MB∗(tk)}Kk=1 can be used to approximate the joint dis-

tribution of {supx∈X ϕ
>(x)G(tk)/

√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)}Kk=1.

To choose {zk}k that satisfies (7), we adopt the α-spending approach that allocates the
total allowable type I error at each interim stage according to an error-spending function.
This guarantees our test controls the type-I error. We begin by specifying an α spending
function α(t) that is non-increasing and satisfies α(0) = 0, α(T ) = α. Popular choices of
α(·) include

α1(t) = α log

(
1 + (e− 1)

t

T

)
, α2(t) = 2− 2Φ

(
Φ−1(1− α/2)

√
T√

t

)
,

α3(t) = α

(
t

T

)θ
, for θ > 0, α4(t) = α

1− exp(−γt/T )

1− exp(−γ)
, for γ 6= 0,

(8)

where Φ(·) denotes the cumulative distribution function of a standard normal variable and
Φ−1(·) is its quantile function.

Based on α(·), we iteratively calculate ẑk, k = 1, . . . ,K as the solution of

Pr∗
{

max
j∈{1,...,k−1}

(√
N(tj)Ŝ

MB∗(tj)− ẑj
)
≤ 0,

√
N(tk)Ŝ

MB∗(tk) > ẑk

}
= α(tk)− α(tk−1), (9)

and reject H0 when
√
N(tk)S(tk) > ẑk holds for some k.

The validity of the bootstrap test is summarized in Theorems 3 and 4 below.

Theorem 3 Assume the conditions in Theorem 1 hold. Then conditional on the counting
process N(·), we have

sup
z1,...,zK

∣∣∣∣Pr∗
{

max
k∈{1,...,K}

(√
N(tk)Ŝ

MB∗(tk)− zk
)
> 0

}

− Pr

 max
k∈{1,...,K}

sup
x∈X

ϕ>(x)G(tk)√∑
a ϕ
>(x)Σ−1

a ΦaΣ
−1
a ϕ(x)

− zk

 > 0


∣∣∣∣∣∣

≤ c
[
q6/5N−1/6(t1) log11/6{KN(t1)}+ q5/3N−α0/3(t1) log(5+α0)/3{KN(t1)}

]
for some constant c > 0 with probability at least 1−O(N−α0(t1)), where Pr∗(·) denotes the
probability measure conditional on the data stream {Xi, Ai, Yi}+∞i=1 .

9
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Theorem 4 Assume the conditions in Theorem 3 hold. Then conditional on N(·), the
critical values {ẑk}k satisfy∣∣∣∣∣∣Pr

 max
k∈{1,...,K}

sup
x∈X

ϕ>(x)G(tk)√∑
a ϕ
>(x)Σ−1

a ΦaΣ
−1
a ϕ(x)

− ẑk

 > 0

− α
∣∣∣∣∣∣

≤c
[
q6/5N−1/6(t1) log11/6{KN(t1)}+ q5/3N−α0/3(t1) log(5+α0)/3{KN(t1)}

]
,

(10)

for some constant c > 0.

When the RHS of (10) is op(1), it follows from Theorems 2 and 4 that our test is valid.
The conditional distribution in (9) can be approximated by the empirical distribution of
Bootstrap samples.

Next, we study the power property and the stopping time of the proposed test. Let sig=
supx{Q(x, 1) − Q(x, 0)} denote the qualitative treatment effect signal. We will show that
the power of the proposed test approaches to one as long as

√
N(tK)sig�

√
q log{N(t1)}.

In addition, the stopping time depends crucially on sig. Specifically, we will show that
the proposed test will reject the null at the kth interim stage as long as

√
N(tk)sig�√

q log{N(t1)}.

Theorem 5 Assume the conditions in Theorem 2 hold, there exists some sufficiently large
constant C > 0 such that min{α(t1),mink α(tk)−α(tk−1)} � N−C(t1), and that

√
N(tK)sig�√

q log{N(t1)}. Then the power of the proposed test approaches one as N(t1) diverges to
infinity. In addition, for any k such that

√
N(tk)sig�

√
q log{N(t1)}, the stopping time

will be smaller than or equal to tk, with probability tending to 1.

Finally, we remark that our test can be online updated as batches of observations arrive
at the end of each interim stage. A pseudocode summarizing our procedure is given in
Algorithm 1. In Algorithm 1, we use Op+1 to denote a (p + 1) × (p + 1) zero matrix and
0p+1 to denote a (p + 1)-dimensional zero vector. The spatial complexity of the proposed
algorithm is O(Bq+q2), where B is the number of bootstrap samples. The time complexity
is O(Bkq2 + N(tk)q

2) up to the k-th interim stage. Suppose N(tj) − N(tj−1) = n for
any 1 ≤ j ≤ K, we have Bkq2 + N(tk)q

2 = (B + n)kq2 � Bnkq = BN(tk)q when
Bn � (B + n)q, or equivalently, min(B,n) � q. Hence, our procedure is much faster
compared to the standard wild bootstrap as long as the number of bootstrap samples and
the number of observations per batch are much large than the number of basis functions.

3.3 Adaptive randomization

In practice, the company might want to allocate more traffic to a better treatment based on
the observed data stream. The ε-greedy strategy is commonly used to balance the trade-
off between exploration and exploitation. For a given 0 < ε0 < 1, consider the following
randomization procedure: for some integer N0 > 0 and any j ≥ N0, a ∈ {0, 1}, x ∈ X, we
set

πj−1(a, x) = (1− ε0)aI{ϕ>(x)(β̂1,j−1 − β̂0,j−1) > 0}+ ε0(1− a)I{ϕ>(x)(β̂1,j−1 − β̂0,j−1) ≤ 0},

10
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Input: Number of bootstrap samples B, an α spending function α(·).
Initialize: n = 0, Σ̂0 = Σ̂1 = Op+1, γ̂0 = γ̂1 = 0p+1, β̂0,b = β̂1,b = 0p+1, and a set
I = {1, . . . , B}.
For k = 1 to K do
Initialize: m = 0 and Φ̂0 = Φ̂1 = Op+1.

Step 1: Online update of β̂a
For i = N(tk−1) + 1 to N(tk) do
n = n+ 1 and m = m+ 1;
Σ̂a = (1− n−1)Σ̂a + n−1ϕ(Xi)ϕ

>(Xi)I(Ai = a), a = 0, 1;
γ̂a = (1− n−1)γ̂a + n−1ϕ(Xi)YiI(Ai = a), a = 0, 1;

Compute β̂a = Σ̂−1
a γ̂a for a ∈ {0, 1};

Step 2: Bootstrap
For i = N(tk−1) + 1 to N(tk) do

Φ̂a = Φ̂a + Σ̂−1
a ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β̂a}2Σ̂−1
a I(Ai = a), a = 0, 1;

Compute S = supx∈X[ϕ>(x)(β̂1 − β̂0)/
√∑

a ϕ
>(x)Σ̂−1

a Φ̂aΣ̂
−1
a ];

For b = 1, . . . , B do
Generate two independent N(0, Ip+1) Gaussian vectors e0, e1;

β̂a,b = (1−mn−1)β̂a,b + n−1Φ̂
1/2
a ea, a = 0, 1;

Compute Ŝb = supx∈X[ϕ>(x)(β̂1,b − β̂0,b)/
√∑

a ϕ
>(x)Σ̂−1

a Φ̂aΣ̂
−1
a ];

Step 3: Reject or not
Set z to be the upper {α(t)− |I|c/B|}/(1− |Ic|/B)-th percentile of {Ŝb}b∈I ;
Update I as I ← {b ∈ I : Ŝb ≤ z}.
If S > z: Reject H0 and terminate the experiment.

Algorithm 1: the Pseudocode that summarizing the online bootstrap testing procedure.

where

β̂a,j = Σ̂−1
a,j

1

j

j∑
i=1

{I(Ai = a)ϕ(Xi)Yi} and Σ̂a,j =
1

j

j∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi).

It is immediate to see that Σ̂a(t) = Σ̂a,n(t) and β̂a(t) = β̂a,n(t). Define

π∗(a, x) = (1− ε0)aI{ϕ>(x)(β1 − β0) > 0}+ ε0(1− a)I{ϕ>(x)(β1 − β0) ≤ 0}

for any a ∈ {0, 1} and x ∈ X.

Lemma 2 Assume (A1)-(A3) hold. Assume infx∈X π
∗(a, x) > 0 and |Y ∗(a)| is bounded

almost surely, for a ∈ {0, 1}. Assume Pr(|Q0(X, 1) − Q0(X, 0)| ≤ ε) ≤ L0ε, for some
constant L0 > 0 and any ε > 0. Then for any {jn}n that satisfies

√
jn/
√

log jn � q2, the
following event occurs with probability at least 1−O(j−1

n ),

∑
a∈{0,1}

EFi−1

∣∣∣∣∣
k∑
i=1

{πi−1(a,X)− π∗(a,X)}

∣∣∣∣∣ � q√k log k, ∀k ≥ jn. (11)

11
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We make a few remarks. First, Lemma 2 implies that Condition (5) in Theorem 1
automatically holds with α0 = 1/2, when the epsilon-greedy strategy is used. Nonetheless,
Condition (5) is weaker than (11), as it only requires the average estimated policy aggregated
over different interim stages to converge at certain rate. Second, by setting ε = 0, the
assumption Pr(|Q0(X, 1) − Q0(X, 0)| ≤ ε) ≤ L0ε requires Pr(Q0(X, 1) = Q0(X, 0)) = 0,
almost surely. It essentially requires that the difference between the two Q-functions is
nonzero, almost surely. This implies that the optimal decision rule is uniquely defined and
is thus identifiable. This condition is necessary to guarantee that the estimated policy
converges to the oracle optimal policy. Without this identifiability condition, the estimated
optimal decision rule could fluctuate randomly and will not stabilize (Luedtke and van der
Laan, 2016). Third, our condition also requires Pr(0 < |Q0(X, 1) − Q0(X, 0))| ≤ ε) ≤ L0ε
for any ε > 0. The latter condition is well-known as the margin condition that is commonly
imposed in the literature to bound the difference between the expect return under the
estimated and the optimal decision rule (Qian and Murphy, 2011; Luedtke and van der
Laan, 2016; Shi et al., 2020a). The identifiability assumption is not needed to establish the
rate of convergence of the expected return under the estimated decision rule.

4. Numerical studies

4.1 Simulation studies

4.1.1 Testing QTE

In this section, we conduct Monte Carlo simulations to examine the finite sample properties
of the proposed test. We generated the potential outcomes as Y ∗i (a) = 1 + (Xi1−Xi2)/2 +
aτ(Xi) + εi, where εi’s are i.i.d N(0, 0.52). The covariates Xi = (Xi1, Xi2, Xi3)> were
generated as follows. We first generated X∗i = (X∗i1, X

∗
i2, X

∗
i3)> from a multivariate normal

distribution with zero mean and covariance matrix equal to {0.5|i−j|}i,j . Then we set
Xij = X∗ijI(X∗ij | ≤ 2)+2sgn(X∗ij)I(X∗ij | > 2). We consider two randomization designs. In the
first design, the treatment assignment is nondynamic and completely random. Specifically
we set πi(a, x) = 0.5, for any a, x and i. In the second design, we use an ε-greedy strategy
to generate the treatment with ε = 0.3. In addition, we set N(T1) = 2000 and N(Tj) −
N(Tj−1) = 2n for 2 ≤ j ≤ K and some n > 0. We consider two combinations of (n,K),
corresponding to (n,K) = (200, 5) and (20, 50).

We set the significance level α = 0.05 and choose B = 10000. We set τ(Xi) = φδ{(Xi1 +
Xi2)/

√
2}X2

i3 for some function φδ parameterized by some δ ≥ 0. We consider two scenarios
for φδ. Specifically, we set φδ(x) = δx2/3 in Scenario 1 and φδ = δ cos(πx) in Scenario 2.
For each setting, we further consider four cases by setting δ = 0, 0.05, 0.10, and 0.15. When
δ = 0, H0 holds. Otherwise, H1 holds. For all settings, we construct the basis function ϕ(·)
using additive cubic splines. For each univariate spline, we set the number of internal knots
to be 4. These knots are equally spaced between [−2, 2].

We denote our test by BAT, short for bootstrap-assisted test. We run our experiments
on a single computer instance with 40 Intel(R) Xeon(R) 2.20GHz CPUs. It takes 1-2 seconds
on average to compute each test. In Figure 2, we plot the rejection probabilities of our tests
and the average stopping times (defined as the average number of samples consumed when
the experiment is terminated), aggregated over 400 simulations when α1(·) is chosen as the

12
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Figure 2: Rejection probabilities and average stopping times of the proposed test when α1(·) is
chosen as the spending function. From left to right: Scenario 1 with random design, Scenario 1 with
ε-greedy design, Scenario 2 with random design and Scenario 2 with ε-greedy design.

spending function. The detailed values of these rejection probabilities and average stopping
times can be found in Table 1. It can be seen that the type-I error rates are close to the
nominal level in all cases. The power of our test increases as δ increases, demonstrating its
consistency. In addition, when δ > 0, our experiments are stopped early in all cases.

To further evaluate our method, we compare it with a test based on the law of iterated
logarithm (denoted by LIL). LIL determines the decision boundary based on an always valid
finite error bound (see Appendix C for details about the competing method). It can be seen
from Figure 2 that our method has good power properties, whereas LIL fails to detect the
alternative and does not have any power at all.

4.1.2 Testing ATE

We extend our proposal to testing ATE in this section. Specifically, we focus on testing the
following hypothesis,

H0 : EY ∗i (1) ≤ EY ∗i (0) versus H1 : EY ∗i (1) > EY ∗i (0).

Under (A1) and (A2), it suffices to test

H0 : EQ(Xi, 1) ≤ EQ(Xi, 0) versus H1 : EQ(Xi, 1) > EQ(Xi, 0).

We similarly use basis approximations to model the Q-function. The proposed method
is very similar to that in Section 3. The main difference lies in that instead of em-
ploying a supremum type statistics, we aggregate the estimated treatment effect and set
S(t) = N−1

∑N
i=1 ϕ

>(Xi){β̂1(t)− β̂0(t)}. Its asymptotic distribution can be approximated

by the corresponding bootstrap statistic N−1
∑N

i=1 ϕ
>(Xi){β̂MB∗

1 (t) − β̂MB∗
0 (t)}. The pro-

posed algorithm can then be applied to determine the rejection boundary. To save space,
we summarize our proposal in the following algorithm. We next conduct simulation studies
to evaluate this algorithm.

13
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Input: Number of bootstrap samples B, an α spending function α(·).
Initialize: n = 0, Σ̂0 = Σ̂1 = Op+1, γ̂0 = γ̂1 = 0p+1, β̂0,b = β̂1,b = 0p+1, ϕ̄ = 0 and a set
I = {1, . . . , B}.
For k = 1 to K do
Initialize: m = 0, φ̂ = 0 and Φ̂0 = Φ̂1 = Op+1.

For i = N(tk−1) + 1 to N(tk) do
n = n+ 1, m = m+ 1 and ϕ̄ = n−1(n− 1)ϕ̄+ n−1ϕ(Xi);
Σ̂a = (1− n−1)Σ̂a + n−1ϕ(Xi)ϕ

>(Xi)I(Ai = a), a = 0, 1;
γ̂a = (1− n−1)γ̂a + n−1ϕ(Xi)YiI(Ai = a), a = 0, 1;

Compute β̂a = Σ̂−1
a γ̂a for a ∈ {0, 1} and S = ϕ̄>(β̂1 − β̂0);

For i = N(tk−1) + 1 to N(tk) do
φ̂ = φ̂+ [{ϕ(Xi)− ϕ̄}>(β̂1 − β̂0)]2.
Φ̂a = Φ̂a + Σ̂−1

a ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)β̂a}2Σ̂−1

a I(Ai = a), a = 0, 1;
For b = 1, . . . , B do

Generate two independent N(0, Ip+1) Gaussian vectors e0, e1, N(0, 1) random
variable e2;

β̂a,b = (1−mn−1)β̂a,b + n−1Φ̂
1/2
a ea + n−1φ̂1/2e2, a = 0, 1;

Compute Ŝb = ϕ̄>(β̂1,b − β̂0,b);

Set z to be the upper {α(t)− |I|c/B|}/(1− |Ic|/B)-th percentile of {Ŝb}b∈I ;
Update I as I ← {b ∈ I : Ŝb ≤ z}.
If S > z:

Reject H0 and terminate the experiment;

We compare our procedure with the always valid test (AVT, Johari et al., 2017) that
extends the two-sample t-test for sequential monitoring. AVT requires to impose a paramet-
ric likelihood model assumption (in addition to the conditional mean model) to construct
a likelihood-ratio-based “always valid p-value”. To implement the test, we follow the pro-
posal detailed in Section 4.3 of Johari et al. (2017), assume the responses are normal with
constant means and known variances, and compute the mixture sequential probability ra-
tio test statistic accordingly. Please refer to Appendix C for details. We remark that the
validity of the resulting test requires no confounding variables exist, as the test statistic is
derived without adjusting for confounders.

We generate the potential outcomes with the same model, except that εi’s are i.i.d
N(0, 1). However, we set N(T1) = 1000 and N(Tj) − N(Tj−1) = 2n for 2 ≤ j ≤ K and
some n > 0. We consider two combinations of (n,K), corresponding to (n,K) = (100, 5)
and (10, 50). For all settings, we use a linear function to approximate Q.

In Table 2 and Figure 3, we show the rejection probabilities and average stopping times
of the proposed test aggregated over 400 simulations, when α1(·) is chosen as the spending
function. It can be seen that our method behaves better than the always valid test when
the effect size is small, and comparable when the effect size is large. The always valid
test fails in the adaptive randomization settings, as the type-I error rates are around 50%
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Figure 3: Rejection probabilities and average stopping times of the proposed test when α1(·) is
chosen as the spending function. From left to right: Scenario 1 with random design, Scenario 1 with
ε-greedy design, Scenario 2 with random design and Scenario 2 with ε-greedy design.

under the null hypothesis. This is because under such a design, the time-varying variables
will confound the treatment and the outcome. As commented before, the always valid test
is established under settings where no confounders exist. It is expected to fail under the
adaptive design.

method
BAT LIL

Random Adaptive Random Adaptive

(n,K) δ rej probs E[stop] rej probs E[stop] rej probs E[stop] rej probs E[stop]

S1

(200, 5)

0.00 5.5(1.1) 3522(16) 5.8(1.2) 3522(16) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)
0.05 20.2(2.0) 3355(27) 16.8(1.9) 3382(26) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)
0.10 0.49.8(2.5) 2985(36) 46.5(2.5) 3013(36) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)
0.15 79.2(2.0) 2554(35) 76.2(2.1) 2572(35) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)

(20, 50)

0.00 6.2(1.2) 3856(20) 6.2(1.2) 3864(19) 0.0(0.0) 3960(0) 0.0(0.0) 3960(0)
0.05 27.0(2.2) 3571(35) 28.7(2.3) 3545(36) 0.0(0.0) 3960(0) 0.0(0.0) 3960(0)
0.10 68.8(2.3) 2945(42) 69.0(2.3) 2929(42) 0.0(0.0) 3960(0) 0.0(0.0) 3960(0)
0.15 95.2(1.1) 2334(29) 94.0(1.2) 2320(28) 0.0(0.0) 3960(0) 0.0(0.0) 3960(0)

S2

(200, 5)

0.00 5.5(1.1) 3522(16) 5.8(1.2) 3522(16) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)
0.05 12.0(1.6) 3469(20) 11.8(1.6) 3468(20) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)
0.10 23.2(2.1) 3317(28) 23.2(2.1) 3321(28) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)
0.15 43.8(2.5) 3111(33) 40.5(2.5) 3134(33) 0.0(0.0) 3600(0) 0.0(0.0) 3600(0)

(20, 50)

0.00 6.2(1.2) 3856(20) 6.2(1.2) 3864(19) 0.0(0.0) 3960(0) 0.0(0.0) 3960(0)
0.05 30.5(2.3) 3584(32) 34.2(2.4) 3533(34) 0.0(0.0) 3960(0) 0.0(0.0) 3960(0)
0.10 84.2(1.8) 2789(35) 84.0(1.8) 2778(36) 0.0(0.0) 3960(0) 0.0(0.0) 3960(0)
0.15 99.8(0.2) 2268(18) 99.2(0.4) 2252(17) 0.0(0.0) 3960(0) 0.0(0.0) 3960(0)

Table 1: QTE: rejection probabilities (multiplied by 100) and average stopping times under Sce-
narios 1 and 2 when α1(·) is chosen as the spending function. Standard errors are reported in the
parentheses.

4.2 Real data analysis

In this section, we apply the proposed method to a Yahoo! Today Module user click
log dataset1, which contains 45,811,883 user visits to the Today Module, during the first

1. https://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=49
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method
BAT AVT

Random Adaptive Random Adaptive

(n,K) δ rej probs E[stop] rej probs E[stop] rej probs E[stop] rej probs E[stop]

S1

(200, 5)

0.00 5.2(1.1) 1763(8) 6.2(1.2) 1762(8) 0.2(0.2) 1800(0) 51.2(2.5) 1586(11)
0.10 27.5(2.2) 1644(15) 26.0(2.2) 1647(14) 6.8(1.3) 1771(6) 89.0(1.6) 1344(9)
0.15 45.5(2.5) 1511(17) 44.2(2.5) 1527(17) 19.0(2.0) 1718(10) 98.0(0.7) 1250(6)
0.20 62.5(2.4) 1391(18) 64.2(2.4) 1383(18) 42.8(2.5) 1581(15) 99.5(0.4) 1196(6)
0.25 80.2(2.0) 1263(17) 78.8(2.0) 1266(17) 72.8(2.2) 1394(17) 99.8(0.2) 1145(5)
0.30 88.2(1.6) 1176(14) 88.8(1.6) 1179(14) 89.2(1.5) 1216(14) 100.0(0.0) 1091(5)

(20, 50)

0.00 5.8(1.2) 1933(9) 5.0(1.1) 1936(9) 0.2(0.2) 1978(1) 51.5(2.5) 1621(17)
0.10 27.5(2.2) 1771(18) 27.5(2.2) 1771(18) 8.0(1.4) 1929(9) 89.2(1.5) 1276(13)
0.15 45.5(2.5) 1617(22) 45.8(2.5) 1630(21) 25.2(2.2) 1826(15) 97.8(0.7) 1166(7)
0.20 67.0(2.4) 1446(22) 65.5(2.4) 1459(22) 53.8(2.5) 1617(20) 99.0(0.5) 1105(6)
0.25 83.8(1.8) 1287(19) 82.5(1.9) 1288(19) 79.0(2.0) 1379(19) 99.8(0.2) 1061(4)
0.30 92.0(1.4) 1182(16) 91.5(1.4) 1193(16) 94.0(1.2) 1187(15) 100.0(0.0) 1030(2)

S2

(200, 5)

0.00 5.2(1.1) 1763(8) 6.2(1.2) 1762(8) 0.2(0.2) 1800(0) 51.2(2.5) 1586(11)
0.10 18.2(1.9) 1692(12) 16.8(1.9) 1699(12) 3.0(0.9) 1788(3) 82.2(1.9) 1406(10)
0.15 29.0(2.3) 1633(15) 25.2(2.2) 1642(15) 8.5(1.4) 1762(7) 91.8(1.4) 1323(9)
0.20 40.5(2.5) 1559(17) 42.0(2.5) 1548(17) 17.2(1.9) 1724(10) 97.8(0.7) 1257(7)
0.25 50.5(2.5) 1489(18) 49.8(2.5) 1492(18) 33.0(2.4) 1641(14) 99.0(0.5) 1218(6)
0.30 62.5(2.4) 1407(18) 62.5(2.4) 1413(18) 53.5(2.5) 1522(16) 99.5(0.4) 1181(6)

(20, 50)

0.00 5.8(1.2) 1933(9) 5.0(1.1) 1936(9) 0.2(0.2) 1978(1) 51.5(2.5) 1621(17)
0.10 19.0(2.0) 1839(16) 19.0(2.0) 1837(16) 3.5(0.9) 1961(5) 81.0(2.0) 1360(15)
0.15 28.5(2.3) 1763(19) 28.0(2.2) 1771(18) 11.5(1.6) 1911(10) 90.8(1.4) 1256(12)
0.20 39.0(2.4) 1680(21) 41.8(2.5) 1685(20) 24.0(2.1) 1830(15) 97.5(0.8) 1171(8)
0.25 50.7(2.5) 1592(22) 52.5(2.5) 1568(22) 44.2(2.5) 1688(19) 99.0(0.5) 1124(6)
0.30 65.2(2.4) 1479(22) 63.7(2.4) 1481(22) 63.5(2.4) 1539(20) 99.2(0.4) 1092(5)

Table 2: ATE: rejection probabilities (multiplied by 100) and average stopping times under Sce-
narios 1 and 2 when α1(·) is chosen as the spending function. Standard errors are reported in the
parentheses.

ten days in May 2009. For the ith visit, the dataset contains an ID of the new article
recommended to the user, a binary response variable Yi indicating whether the user clicked
the article or not, and a five dimensional feature vector summarizing information of the
user. Due to privacy concerns, feature definitions and article names were not included in
the data. Each feature vector sums up to 1. Therefore, we took the first three and the fifth
elements to form the covariates Xi. For illustration, we only consider a subset of data that
contains visits on May 1st where the recommended article ID is either 109510 or 109520.
These two articles were being recommended most on that day. This gives us a total of
405888 visits. On the reduced dataset, define Ai = 1 if the recommended article is 109510
and Ai = 0 otherwise.

We first conduct A/A experiments (which compare these two articles against themselves)
to examine the validity of our test. The A/A experiments are done when every 2000 more
users are available, we randomly assign 1000 users to arm A, and the other 1000 users in
arm B. We expect our test will not reject H0 in A/A experiments, since the articles being
recommended are the same. Then, we conduct A/B experiment to test the QTE of these
two articles. The test statistics and their corresponding critical values are plotted in Figure
4. On average it takes several seconds to implement our test. It can be seen that our test
is able to be reject H0 after obtaining the first one-third of the observations, in the A/B
experiment. In the A/A experiments, we fail to reject H0, as expected.
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5. Proof of Theorem 1

We present the proof of Theorem 1 in this section. Proofs of other theorems are given in the
appendix. We begin with some notations. For any matrix Mat, we use ‖Mat‖p to denote
the matrix norm induced by the corresponding `p norm of vectors, for 1 ≤ p ≤ +∞. For two
nonnegative sequences {s1,n}n and {s2,n}n, we will use the notation s1,n � s2,n to represent
that s1,n ≤ c̄s2,n for some universal constant c̄ > 0 whose value is allowed to change from
place to place. When a matrix Mat is degenerate, Mat−1 denotes the Moore-Penrose inverse
of Mat. For any vector ψ, we use ψ(i) to denote its i-th element.

Let n(·) be the realization of the counting process N(·). We will show the assertion in
Theorem 1 holds for any such realizations that satisfy n(t1) < n(t2) < · · · < n(tK). The
case where some of the n(tk)’s are the same can be similarly discussed.

For any j ≥ 1, define σ(Fj) to be the σ-algebra generated by Fj . For a ∈ {0, 1}, define

Σ̂a,j =
1

j

j∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi) and β̂a,j = Σ̂−1

a,j

(
1

j

j∑
i=1

I(Ai = a)ϕ(Xi)Yi

)
.

It is immediate to see that Σ̂a(t) = Σ̂a,n(t) and β̂a(t) = β̂a,n(t). Define δn = qn−α0 logα0 n.
We state the following lemmas before proving Theorem 1.

Lemma 3 There exists some constant 0 < ε0 < 1 such that λmin[Eϕ(X)ϕ>(X)] ≥ ε0,
λmax[Eϕ(X)ϕ>(X)] ≤ ε−1

0 , supx ‖ϕ(x)‖2 ≤ supx ‖ϕ(x)‖1 ≤ ε−1
0
√
q, mina∈{0,1} λmin[Σa] ≥

ε0, maxa∈{0,1} ‖βa‖2 ≤ ε−1
0 , and supx maxa∈{0,1} |Q0(x, a)| ≤ ε−1

0 .

Lemma 4 Assume the conditions in Theorem 1 hold. Then for any sequence {jn}n that
satisfies jα0

n / logα0(jn) � q2, we have with probability at least 1 − O(j−α0
n ) that for any

a ∈ {0, 1} and any k ≥ jn,

‖(Σ̂a,k − Σa)‖2 � qδk +
√
qk−1 log k, (12)

‖(Σ̂−1
a,k − Σ−1

a )‖2 � qδk +
√
qk−1 log k. (13)

Figure 4: Critical values and test statistics.
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Lemma 5 Assume the conditions in Theorem 1 hold. The for any sequence {jn}n that
satisfies jn/ log(jn)� q, we have with probability at least 1−O(j−1

n ) that for any a ∈ {0, 1}
and any k ≥ jn, ∥∥∥∥∥

k∑
i=1

ϕ(Xi)I(Ai = a){Yi −Q0(Xi, a)}

∥∥∥∥∥
2

�
√
qk log k.

Lemma 6 Assume the conditions in Theorem 1 hold. Then for any sequence {jn}n that
satisfies jα0

n / logα0 jn � q2, we have with probability at least 1−O(j−α0
n ) that

‖β̂a,k − βa‖2 � q1/2k−1/2
√

log k, ∀a ∈ {0, 1},∀k ≥ jn.

Lemma 7 Assume the conditions in Theorem 1 hold. Then for any sequence {jn}n that
satisfies jα0

n / logα0 jn � q2, we have with probability at least 1−O(j−α0
n ) that∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)βa}2 − Φa

∥∥∥∥∥
2

� qδk + q1/2k−1/2
√

log k,

∀a ∈ {0, 1}, k ≥ jn.

We now start our proof. We first approximate β̂a,k − βa by a sum of independent mean
zero random variables. For a ∈ {0, 1},

β̂a,k − βa = Σ̂−1
a,k

[
1

k

k∑
i=1

I(Ai = a)ϕ(Xi){Yi −Q0(Xi, a)}

]

+Σ̂−1
a,k

[
1

k

k∑
i=1

I(Ai = a)ϕ(Xi){Q0(Xi, a)− ϕ>(Xi)βa}

]
.

Under the given conditions, using similar arguments in proving (E.40) and (E.41) in Shi
et al. (2021), we can show that the second term is O(err). It follows that∥∥∥∥∥β̂a,k − βa − Σ−1

a

[
1

k

k∑
i=1

I(Ai = a)ϕ(Xi){Yi −Q0(Xi, a)}

]∥∥∥∥∥
2

(14)

≤ ‖Σ̂−1
a,k − Σ−1

a ‖2

∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi){Yi −Q0(Xi, a)}

∥∥∥∥∥
2

+O(err)

� (qδn(tk) +
√
qk−1 log k)q1/2k−1/2 log1/2 k + err, ∀k ≥ jn,

with probability at least 1−O(j−α0
n ), by Lemma 4 and Lemma 5. Define

B∗(t) =
1√
n(t)

n(t)∑
i=1

[Σ−1
1 ϕ(Xi)Ai{Yi −Q0(Xi, 1)} − Σ−1

0 ϕ(Xi)(1−Ai){Yi −Q0(Xi, 0)}].

It follows that

‖B∗(tk)−B(tk)‖2 � {q3/2δn(tk) + q
√
n−1(tk) log n(tk)} log1/2 n(tk)

+
√
n(tK)err, ∀k ≥ 1,

(15)
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with probability at least 1−O(n−α0(t1)). By Lemmas 3, 4 and 7, the denominator in S(t)
is of the same order of magnitude as O(‖ϕ(x)‖2). It follows that∥∥∥∥∥∥sup
x∈X

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ̂−1
a (tk)Φ̂a(tk)Σ̂

−1
a (tk)

− sup
x∈X

ϕ>(x)B(tk)√∑
a∈{0,1} ϕ

>(x)Σ̂−1
a (tk)Φ̂a(tk)Σ̂

−1
a (tk)

∥∥∥∥∥∥
2

≤ c̄{q3/2δn(tk) + q
√
n−1(tk) log n(tk)}

√
log n(tk) + c̄

√
n(tK)err, ∀k ≥ 1,

with probability at least 1−O(n−α0(t1)), for some constant c̄ > 0, by (43).
Define S∗(t) to be a version of our test with B(t) replaced by B∗(t). For any given

z1, z2, . . . , zK , we obtain

Pr

{
max

k∈{1,...,K}

(
S∗(tk)− z0

k,−
)
≤ 0

}
−O(n−α0(t1))

≤ Pr

{
max

k∈{1,...,K}
(S(tk)− zk) ≤ 0

}
(16)

≤ Pr

{
max

k∈{1,...,K}

(
S∗(tk)− z0

k,+

)
≤ 0

}
+O(n−α0(t1)),

where

z0
k,− = zk − c̄{q3/2δn(tk)

√
log n(tk) + q

√
n−1(tk) log n(tk) +

√
n(tK)err}/2,

z0
k,+ = zk + c̄{q3/2δn(tk)

√
log n(tk) + q

√
n−1(tk) log n(tk) +

√
n(tK)err}/2.

This completes the first step of the proof.
In the next step, we focus on bounding the difference between S∗(t) and S∗∗(t), the

latter being a version of S∗(t) with the denominator replaced with the oracle value√ ∑
a∈{0,1}

ϕ>(x)Σ−1
a ΦaΣ

−1
a ϕ(x).

Similarly, under Lemmas 4, 5 and 7, we can show that difference |S∗(tk) − S∗∗(tk)| can
be upper bounded by O(q3/2δn(tk)

√
log n(tk) + q

√
n−1(tk) log n(tk)), uniformly for any k.

Combine this together with (16) yields

Pr

{
max

k∈{1,...,K}
(S∗∗(tk)− zk,−) ≤ 0

}
−O(n−α0(t1))

≤ Pr

{
max

k∈{1,...,K}
(S(tk)− zk) ≤ 0

}
(17)

≤ Pr

{
max

k∈{1,...,K}
(S∗∗(tk)− zk,+) ≤ 0

}
+O(n−α0(t1)),

where

zk,− = zk − c̄{q3/2δn(tk)

√
log n(tk) + q

√
n−1(tk) log n(tk) +

√
n(tK)err},

zk,+ = zk + c̄{q3/2δn(tk)

√
log n(tk) + q

√
n−1(tk) log n(tk) +

√
n(tK)err}.
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This completes the second step.

In the last step, we aim to apply the high-dimensional Gaussian approximation technique
developed by Belloni and Oliveira (2018) to approximate S∗∗(t) by its Gaussian analogue.
For any i ≥ 1, 1 ≤ k ≤ K, define a q-dimensional vector

ξi,k =
1√
n(tk)

[Σ−1
1 ϕ(Xi)Ai{Yi −Q0(Xi, 1)} − Σ−1

0 ϕ(Xi)(1−Ai){Yi −Q0(Xi, 0)}]I(i ≤ n(tk)),

or equivalently,

ξi,k =
1√
n(tk)

[Σ−1
1 ϕ(Xi)Ai{Y ∗i (1)−Q0(Xi, 1)} − Σ−1

0 ϕ(Xi)(1−Ai){Y ∗i (0)−Q0(Xi, 0)}]I(i ≤ n(tk)),

by Condition (A1). Let ξi = (ξ>i,1, ξ
>
i,2, · · · , ξ>i,K)> and Mj =

∑j
i=1 ξi. The sequence

{Mi}i≥1 forms a multivariate martingale with respect to the filtration {σ(Fi) : i ≥ 1},
since

E(ξi,k|Fi) = [{E(ξi,k|Ai, Xi,Fi)}|Fi] = 0,

by (A2). Let n(t0) = 0. For any i such that n(tk−1) < i ≤ n(tk) for some 1 ≤ k ≤ K, we
have

‖ξi‖∞ ≤
1√
n(tk)

{‖Σ−1
1 ϕ(Xi){Y ∗i (1)−Q0(Xi, 1)β1}‖2 + ‖Σ−1

0 ϕ(Xi){Y ∗i (0)−Q0(Xi, 0)}‖2}

≤ √qn−1/2(tk)ε
−2
0 (2ε−1

0 + |Y ∗i (0)|+ |Y ∗i (1)|),

where the second inequality is due to Lemma 3. Under the sub-Gaussianity assumption,
Y ∗(0) and Y ∗(1) have moments of all orders. Therefore,

E‖ξi‖3∞ �
q3/2

n3/2(tk)
.

It follows that

n(tK)∑
i=1

E‖ξi‖3∞ =
K∑
k=1

n(tk)∑
i=n(tk−1)+1

E‖ξi‖3∞ � q3/2
K∑
k=1

n(tk)− n(tk−1)

n3/2(tk)
(18)

≤ q3/2√
n(t1)

+ q3/2
K∑
k=2

n(tk)− n(tk−1)

n3/2(tk)
≤ q3/2n−1/2(t1) + q3/2

∫ +∞

n(t1)
x−3/2dx = 3q3/2n−1/2(t1).

Define a sequence of independent Gaussian vectors {ηi}i≥1 that satisfy ηi ∼ N(0,E(ξiξ
>
i |Fi−1))

for any i ≥ 1. Then the distribution of ηi is the same as(
I(i ≤ n(t1))√

n(t1)
Z>,

I(i ≤ n(t2))√
n(t2)

Z>, · · · , I(i ≤ n(tK))√
n(tK)

Z>

)
,
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where Z is a p-dimensional mean-zero Gaussian vector with covariance matrix

cov[
∑

a∈{0,1}

Σ−1
a ϕ(Xi)I(Ai = a){Y ∗i (a)−Q0(Xi, a)}|Fi−1]

=
∑

a∈{0,1}

Σ−1
a E[ϕ(Xi)ϕ

>(Xi)I(Ai = a){Y ∗i (a)−Q0(Xi, a)}2|Fi−1]Σ−1
a

=
∑

a∈{0,1}

Σ−1
a E{ϕ(Xi)ϕ

>(Xi)I(Ai = a)σ2(a,Xi)|Fi−1}Σ−1
a

=
∑

a∈{0,1}

Σ−1
a E{ϕ(Xi)ϕ

>(Xi)πi−1(a,Xi)σ
2(a,Xi)|Fi−1}Σ−1

a

≡
∑

a∈{0,1}

Σ−1
a EFi−1πi−1(a,X)σ2(a,X)ϕ(X)ϕ>(X)Σ−1

a ,

(19)

where the second equality follows from (A2) and Lemma 8, the third equality is due to the
definition of πi−1 and the last equality follows from Lemma 8. See the proof of Lemma 1
for details.

Similar to (18), we can show that

n(tK)∑
i=1

E‖ηi‖3∞ � q3/2n−1/2(t1). (20)

Using similar arguments in (19), we can show that for any 1 ≤ k1 ≤ k2 ≤ K,

n(tK)∑
i=1

E{ξi,k1ξ>i,k2 |Fi−1} =
1√

n(tk1)n(tk2)

n(tk1 )∑
i=1

∑
a∈{0,1}

Σ−1
a EFi−1πi−1(a,X)σ2(a,X)ϕ(X)ϕ>(X)Σ−1

a .

Let

V (k1, k2) =
1√

n(tk1)n(tk2)

n(tk1 )∑
i=1

∑
a∈{0,1}

Σ−1
a EFi−1π∗(a,X)σ2(a,X)ϕ(X)ϕ>(X)Σ−1

a

=
1√

n(tk1)n(tk2)

n(tk1 )∑
i=1

∑
a∈{0,1}

Σ−1
a ΦaΣ

−1
a =

√
n(tk1)√
n(tk2)

∑
a∈{0,1}

Σ−1
a ΦaΣ

−1
a .

Consider an arbitrary sequence of Rp+1 vectors {bk}1≤k≤K . Under the given conditions, we
have ∣∣∣∣∣∣b>k1

n(tK)∑
i=1

E(ξi,k1ξ
>
i,k2 |Fi−1)− V (k1, k2)

 bk2

∣∣∣∣∣∣
� 1

n(tk1)

∑
a∈{0,1}

∥∥∥∥∥∥
n(tk1 )∑
i=1

EFi−1{πi−1(a,X)− π∗(a,X)}σ2(a,X)ϕ(X)ϕ>(X)

∥∥∥∥∥∥
2

‖bk1‖2‖bk2‖2.
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Define a matrix V as

V =


V (1, 1) V (1, 2) . . . V (1,K)
V (2, 1) V (2, 2) . . . V (2,K)

...
...

...
V (K, 1) V (K, 2) . . . V (K,K)

 . (21)

It follows that∥∥∥∥∥∥
n(tK)∑
i=1

E(ξiξ
>
i |Fi−1)− V

∥∥∥∥∥∥
2

� sup
a∈{0,1}
j≥n(t1)

∥∥∥∥∥1

j

j∑
i=1

EFi−1{πi−1(a,X)− π∗(a,X)}σ2(a,X)ϕ(X)ϕ>(X)

∥∥∥∥∥
2

.

Using similar arguments in proving (12), we can show the RHS of the above equation is
upper bounded by

ε−2
0 q sup

a∈{0,1}
x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣ ,
and hence by ε−2

0 qδn(t1), with probability at least 1−O(n−α0(t1)). Therefore, we have

λmin

V + δn(t1)IKp×Kp −
n(tK)∑
i=1

E(ξiξ
>
i |Fi−1)

 ≥ 0, (22)

with probability at least 1−O(n−α0(t1)), where IKp×Kp denotes a Kp×Kp identity matrix.

Moreover, notice that

sup
a∈{0,1}

x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣
is bounded between 0 and 1. For any a ∈ {0, 1} and any z > 0, we have

E sup
a∈{0,1}

x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣
≤ E sup

a∈{0,1}
x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣ I
 sup

a∈{0,1}
x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣ ≤ z


+ Pr

 sup
a∈{0,1}

x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣ > z

 .
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Under the given conditions, we have

E sup
a∈{0,1}

x∈X,j≥n(t1)

∣∣∣∣∣1j
j∑
i=1

{πi−1(a, x)− π∗(a, x)}

∣∣∣∣∣ � δn(t1) +O(n−α0(t1)).

Therefore, we obtain

E

∥∥∥∥∥∥
n(tK)∑
i=1

E(ξiξ
>
i |Fi−1)− V

∥∥∥∥∥∥
2

� qn−α0(t1) + qδn(t1),

or

E

∥∥∥∥∥∥
n(tK)∑
i=1

E(ξiξ
>
i |Fi−1)− V

∥∥∥∥∥∥
2

� qδn(t1), (23)

since n−α0(t1)� δn(t1). Combining (18) with (20), (22) and (23), an application of Theorem
2.1 in Belloni and Oliveira (2018) yields that

|Eψ(Mn(tK))− Eψ(N(0,V ))| (24)

� c0(ψ)n−α0(t1) + c2(ψ)qδn(t1) + c3(ψ)q3/2n−1/2(t1),

for any thrice differential function ψ(·), and

c0(ψ) = sup
z,z′∈RpK

|ψ(z)− ψ(z′)| and ci = sup
z∈RpK

∑
j1,··· ,ji

|∂j1∂j2 · · · ∂jiψ(z)|, i = 2, 3,

where ∂jg(z) denotes the partial derivative ∂g(z)/∂z(j) for any function g(·) and z(j) stands
for the j-th element of z.

Let Xk,0 be an ε-net of X that satisfies the following: for any x ∈ X, there exists some
x0 ∈ X0 such that ‖x− x0‖2 ≤ ε. Note that we require X to be a compact set. To simplify
the proof, we assume X = [0, 1]d. In cases where X 6= [0, 1]d, we could conduct the min-max
normalization to rescale the range of features to [0, 1]. Set ε =

√
d/n4(t1). There exists

some X0 with

|X0| ≤ n4d(t1), (25)

where |X0| denotes the number of elements in X0. Under Condition (A3), we have

sup
x∈X

inf
x0∈X0

‖ϕ(x)− ϕ(x0)‖2 �
√
q

n4(t1)
.

It follows that

sup
‖ν‖2=1

| sup
x∈X

ϕ>(x)ν − sup
x∈X0

ϕ>(x)ν| �
√
q

n4(t1)
. (26)
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Using similar arguments in showing (15), we can show the following event occurs with
probability at least 1−O(n−1(t1)),

‖B∗(tk)‖2 � q1/2 log1/2 n(tk), ∀k ≥ 1.

This together with (26) and the fact that the denominator
√∑

a∈{0,1} ϕ
>(x)Σ−1

a ΦaΣ
−1
a ϕ(x)/‖ϕ(x)‖2

is uniformly bounded away from zero yields∣∣∣∣∣∣ max
k∈{1,...,K}

sup
x∈X

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− max
k∈{1,...,K}

sup
x∈X0

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

∣∣∣∣∣∣
≤ max

k∈{1,...,K}

∣∣∣∣∣∣sup
x∈X

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− sup
x∈X0

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

∣∣∣∣∣∣
�
√
q log n(tK)

n4(t1)
,

with probability at least 1 − O(n−1(t1)). Under the given conditions, we have n(t1) �
max(q, log n(tK)). It follows that there exists some constant c̄∗ > 0 such that∣∣∣∣ max

k∈{1,...,K}
sup
x∈X

ϕ>(x)B∗(tk)− max
k∈{1,...,K}

sup
x∈X0

ϕ>(x)B∗(tk)

∣∣∣∣ ≤ c̄∗n−2(t1), (27)

with probability at least 1−O(n−1(t1)).

Define

z∗k,− = zk − c̄{q3/2δn(tk)

√
log n(tk) + q

√
n−1(tk) log n(tk) +

√
n(tK)err} − c̄∗n−2(t1),

z∗k,+ = zk + c̄{q3/2δn(tk)

√
log n(tk) + q

√
n−1(tk) log n(tk) +

√
n(tK)err}+ c̄∗n−2(t1).

Combining (27) with (17) yields

Pr

 max
k∈{1,...,K}

 sup
x∈X0

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− z∗k,−

 ≤ 0

−O(n−α0(t1))

≤ Pr

 max
k∈{1,...,K}

sup
x∈X

ϕ>(x)B(tk)√∑
a∈{0,1} ϕ

>(x)Σ̂−1
a (tk)Φ̂a(tk)Σ̂

−1
a (tk)ϕ(x)

− zk

 ≤ 0

 (28)

≤ Pr

 max
k∈{1,...,K}

 sup
x∈X0

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− z∗k,+

 ≤ 0

+O(n−α0(t1)).

Notice that Mn(tK) = {B∗(t1)>, B∗(t2)>, · · · , B∗(tK)>}>. By (25) and the fact that the

denominator
√∑

a∈{0,1} ϕ
>(x)Σ−1

a ΦaΣ
−1
a ϕ(x) ≥ c̄‖ϕ(x)‖2 for some constant c̄ > 0, there
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exist a set of vectors d1, d2, . . . , dL ∈ RqK with L ≤ n4d(t1)K, maxj ‖dj‖1 ≤ ε−1 for some
0 < ε < 1 and a function k(·) that maps {1, . . . , L} into {1, . . . ,K} such that

max
k∈{1,...,K}

 sup
x∈X0

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− νk

 = max
1≤j≤L

{d>jMn(tK) − νk(j)}, (29)

for any {νk}Kk=1. For any η > 0, m ∈ RqK , consider the function φη,{νk}k : RqK → R, defined
as

φη,{νk}k(m) =
1

η
log


L∑
j=1

exp[η{d>j m− ηνk(j)}]

 .

It has the following property:

max
1≤j≤L

{d>j m− νk(j)} ≤ φη,{νk}k(m) ≤ max
1≤j≤L

{d>j m− νk(j)}+ η−1 logL

≤ max
1≤j≤L

{d>j m− νk(j)}+ η−1{logK + 4d log n(t1)}

= max
1≤j≤L

[d>j m− {νk(j) − η−1 logK − η−14d log n(t1)}].

It follows that

Pr

 max
k∈{1,...,K}

 sup
x∈X0

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− z∗k,+

 ≤ 0

 (30)

≤ Pr
{
φη,{z∗∗k,+}k(Mn(tK)) ≤ 0

}
,

and that

Pr

 max
k∈{1,...,K}

 sup
x∈X0

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− z∗k,−

 ≤ 0

 (31)

= Pr

 max
k∈{1,...,K}

 sup
x∈X0

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− (z∗k,− − 3δ)

 ≤ 3δ


≥ Pr

{
φη,{z∗∗k,−}k(Mn(tK)) ≤ 3δ

}
,

where

z∗∗k,+ = z∗k,+ + η−1{logK + 4d log n(t1)} and z∗∗k,− = z∗k,− − 3δ.
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The value of δ will be specified later. In addition, with some calculations, we have

∂jφη,{νk}k(m) =

∑L
i=1 d

(j)
i exp

(
η[d>i m− νk(i)]

)∑L
i=1 exp

(
η[d>i m− νk(i)]

) ,

∂j1∂j2φη,{νk}k(m) = η

∑L
i=1 d

(j1)
i d

(j2)
i exp

(
η[d>i m− νk(i)]

)∑L
i=1 exp

(
η[d>i m− νk(i)]

)
− η

∏
l=1,2

{∑L
i=1 d

(jl)
i exp

(
η[d>i m− νk(i)]

)}
{∑L

i=1 exp
(
η[d>i m− νk(i)]

)}2 ,

∂j1∂j2∂j3φη,{νk}k(m) = η2

∑L
i=1 d

(j1)
i d

(j2)
i d

(j3)
i exp

(
η[d>i m− νk(i)]

)∑L
i=1 exp

(
η[d>i m− νk(i)]

)
− 3η2

{∑L
i=1 d

(j1)
i d

(j2)
i exp

(
η[d>i m− νk(i)]

)}{∑L
i=1 exp

(
η[d>i m− νk(i)]

)}
×

{∑L
i=1 d

(j3)
i exp

(
η[d>i m− νk(i)]

)}{∑L
i=1 exp

(
η[d>i m− νk(i)]

)}
+ 2η2

∏
l=1,2,3

(∑L
i=1 d

(jl)
i exp

(
η[d>i m− νk(i)]

))
{∑L

i=1 exp
(
η[d>i m− νk(i)]

)}3 .

Since maxi ‖di‖1 ≤ ε−1, we obtain that

∑
j

|∂jφη,{νk}k(m)| ≤ ε−1,
∑
j1,j2

|∂j1∂j2φη,{νk}k(m)| ≤ 2ηε−2, (32)

∑
j1,j2,j3

|∂j1∂j2∂j3φη,{νk}k(m)| ≤ 6η2ε−3.

By Lemma 5.1 of Chernozhukov et al. (2016), for any δ > 0, there exists some function
gδ(·) : R → R with ‖g′δ‖∞ ≤ δ−1, ‖g′′δ‖∞ ≤ K0δ

−2, ‖g′′′δ ‖∞ ≤ K0δ
−3 for some constant

K0 > 0 such that

I(z0 ≤ 0) ≤ gδ(z0) ≤ I(z0 ≤ 3δ), ∀δ ∈ R.

It follows that

I(φη,{νk}k(m) ≤ 0) ≤ g ◦ φη,{νk}k(m) ≤ I(φη,{νk}k(m) ≤ 3δ),
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for any m ∈ RqK . Combining this together with (29), (30) and (31), we obtain that

Pr

 max
k∈{1,...,K}

 sup
x∈X0

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− z∗k,+

 ≤ 0

 ≤ Egδ ◦ φη,{z∗∗k,+}k(Mn(tK)), (33)

Pr

 max
k∈{1,...,K}

 sup
x∈X0

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− z∗k,−

 ≤ 0

 ≥ Egδ ◦ φη,{z∗∗k,−}k(Mn(tK)).(34)

Consider the function gδ ◦ φη,{νk}k . Apparently, we have

sup
δ,η,{νk}k

c0(gδ ◦ φη,{νk}k) ≤ 1. (35)

By (32), we can show that

sup
δ,η,{νk}k

c2(gδ ◦ φη,{νk}k) � δ−2 + δ−1η,

sup
δ,η,{νk}k

c3(gδ ◦ φη,{νk}k) � δ−3 + δ−2η + δ−1η2.
(36)

Set δ = η−1{logK + 4d log n(t1)}, we obtain

sup
η,{νk}k

ci(gδ ◦ φη,{νk}k) � ηi{logiK + logi n(t1)}, i = 2, 3.

Combining (36) together with (24) and (35) yields

sup
δ,η,{νk}k

|Egδ ◦ φη,{νk}k(Mn(tK))− Egδ ◦ φη,{νk}k(N(0,V ))|

� n−1/2(t1)η3{log3K + log3 n(t1)}+ η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1).

This together with (33) and (34) yields

Pr

 max
k∈{1,...,K}

 sup
x∈X0

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− z∗k,+

 ≤ 0

− Egδ ◦ φη,{z∗∗k,+}k(N(0,V ))(37)

� n−1/2(t1)η3{log3K + log3 n(t1)}+ η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1),

Egδ ◦ φη,{z∗∗k,−}k(N(0,V ))− Pr

 max
k∈{1,...,K}

 sup
x∈X0

ϕ>(x)B∗(tk)√∑
a∈{0,1} ϕ

>(x)Σ−1
a ΦaΣ

−1
a ϕ(x)

− z∗k,−

 ≤ 0

 (38)

� n−1/2(t1)η3{log3K + log3 n(t1)}+ η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1).

Similar to (30)-(34), we can show

Egδ ◦ φη,{z∗∗k,+}k(N(0,V )) ≤ Pr
(
φη,{z∗∗k,+}k(N(0,V )) ≤ 3δ

)
≤ Pr

(
max

1≤j≤L
{d>j N(0,V )− z∗∗k(j),+} ≤ 3δ

)
= Pr

(
max

1≤j≤L
{d>j N(0,V )− z∗∗∗k(j),+} ≤ 0

)
,

Egδ ◦ φη,{z∗∗k,−}k(N(0,V )) ≥ Pr
(
φη,{z∗∗k,−}k(N(0,V )) ≤ 0

)
≥ Pr

(
max

1≤j≤L
{d>j N(0,V )− z∗∗∗k(j),−} ≤ 0

)
,
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where

z∗∗∗k,+ = z∗k,+ + η−1{logK + 4d log n(t1)}+ 3δ and z∗∗∗k,− = z∗k,− − η−1{logK + 4d log n(t1)} − 3δ,

for each k. Let σ(x) =
∑

a∈{0,1} ϕ
>(x)Σ−1

a ΦaΣ
−1
a ϕ(x) and σ̂(x, t) =

∑
a∈{0,1} ϕ

>(x)Σ̂−1
a (t)Φ̂a(t)Σ̂

−1
a (t)ϕ(x).

Notice that for any {νk}k, we have

Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

σ−1(x)ϕ>(x)G(tk)− νk
)
≤ 0

}
= Pr

(
max

1≤j≤L
{d>j N(0,V )− νk(j)} ≤ 0

)
.

This together with (37) and (38) yields

Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)

σ(x)
− z∗k,+

)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)

σ(x)
− z∗∗∗k,+

)
≤ 0

}
� n−1/2(t1)η3{log3K + log3 n(t1)}+ η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1),

Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)

σ(x)
− z∗∗∗k,−

)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)B∗(tk)

σ(x)
− z∗k,−

)
≤ 0

}
� n−1/2(t1)η3{log3K + log3 n(t1)}+ η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1).

In view of (28), we have shown that

Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B(tk)

σ(x)
− zk

)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)

σ(x)
− z∗∗∗k,+

)
≤ 0

}
� n−1/2(t1)η3{log3K + log3 n(t1)}+ η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1),

Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)

σ(x)
− z∗∗∗k,−

)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B(tk)

σ(x)
− zk

)
≤ 0

}
� n−1/2(t1)η3{log3K + log3 n(t1)}+ η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1).

By Theorem 1 of Chernozhukov et al. (2017), we obtain that

Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)

σ(x)
− z∗∗∗k,+

)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)

σ(x)
− z∗∗∗k,−

)
≤ 0

}
� η−1{logK + log n(t1)}3/2 + q3/2δn(t1){logK + log n(t1)}+ q

√
n−1(t1){logK + log n(t1)}3/2

+
√
n(tK)err{logK + log n(t1)}1/2.

Thus, we obtain∣∣∣∣Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)B(tk)− zk
)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)G(tk)− zk
)
≤ 0

}∣∣∣∣
� n−1/2(t1)η3{log3K + log3 n(t1)}+ η2{log2K + log2 n(t1)}δn(t1) + n−α0(t1)

+ η−1{logK + log n(t1)}3/2 + q3/2δn(t1){logK + log n(t1)}+ q
√
n−1(t1) log n(t1){logK + log n(t1)}3/2

+
√
n(tK)err{logK + log n(t1)}1/2.

Setting η = min(n1/8(t1) log−3/8{Kn(t1)}, n−α0/3(t1) log−α0/3−1/6{Kn(t1)}) yields the de-
sired results. The proof is hence completed.
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6. Discussion

6.1 Growing number of basis functions

In the current proposal, we use the same set of basis functions at each interim stage. It
would be more desirable to allow the number of basis functions q to increase with k to deal
with the model approximation error.

In this section, we extend our proposal to allow q to vary with k. We focus on the case
where the maximum number of interim stages K is known and the basis functions to be
used at each interim stage are predetermined. Let {ϕk}k denote the sets of basis functions

and qk the dimension of ϕk for any k. Let Σ̂
(k)
a (t) = N−1(t)

∑N(t)
i=1 I(Ai = a)ϕk(Xi)ϕ

>
k (Xi).

To implement the resulting test, we need to compute the regression coefficients

β̂(k)
a (tk) = {Σ̂(k)

a (tk)}−1

 1

N(tk)

N(tk)∑
i=1

I(Ai = a)ϕk(Xi)Yi

 ,

at the kth interim stage. To allow for online updating, at the kth interim stage, we not

only compute Σ̂
(k)
a (tk) and N−1(tk)

∑N(tk)
i=1 I(Ai = a)ϕk(Xi)Yi, but {Σ̂(κ)

a (tk)}k<κ≤K and

{γa,κ(tk)}k<κ≤K as well where γa,κ(tk) = N(tk)
−1∑N(tk)

i=1 I(Ai = a)ϕκ(Xi)Yi. These quan-

tities allow us to compute β̂
(κ)
a (tκ) for κ > k, without storing historical data. As such, the

proposed test statistic at the kth interim stage is given by

sup
x

ϕ>k (x){β̂(k)
1 (tk)− β̂

(k)
0 (tk)}

ŝ.e[ϕ>k (x){β̂(k)
1 (tk)− β̂

(k)
0 (tk)}]

,

where ŝ.e[·] denotes some consistent standard error estimator.

In addition, we extend the proposed bootstrap algorithm to determine the stopping

boundary. We aim to construct bootstrap statistics {β̂(k),MB∗
a (tk)}k to approximate the

distribution of {β̂(k)
a (tk)}k. To allow for online updating, at the kth interim stage, we

compute {β̂(k),MB∗
a (tk), β̂

(k+1),MB∗
a (tk), · · · , β̂

(K),MB∗
a (tk)}> as

1

N(tk)

k∑
j=1

 N(tj)∑
i=N(tj−1)+1

I(Ai = a)φ[k:K](Xi, Yi)φ
>
[k:K](Xi, Yi)

1/2

ej,a, (39)

where φ[k:K](Xi, Yi) denotes the vector{
[{Σ̂(k)

a (tj)}−1ϕk(Xi){Yi − ϕk(Xi)}]>, · · · , [{Σ̂(K)
a (tj)}−1ϕK(Xi){Yi − ϕK(Xi)}]>

}>
,

and ej,a denotes a multivariate normal random vector with zero mean and identity covari-
ance matrix. This yields the bootstrap test statistic

sup
x

ϕ>k (x){β̂(k),MB∗

1 (tk)− β̂
(k),MB∗

0 (tk)}
ŝ.e[ϕ>k (x){β̂(k)

1 (tk)− β̂
(k)
0 (tk)}]

,
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based on which the α-spending approach is applicable (see Equation (9) for details). The
resulting test is valid, under certain regularity conditions on {ϕk}k. See Appendix A for
details.

Finally, we discuss some drawbacks of the resulting test. Compared to our proposed test
in the main text, it would be much more computationally intensive to implement such a
test. For instance, in order to compute the test statistic, at the kth interim stage, we need

to compute not only γa,k(tk) and Σ̂
(k)
a (tk), but {γa,κ(tk)}κ>k and {Σ̂(κ)

a (tk)}κ>k as well.
More important, in order to compute the bootstrap statistic, we need to do a Cholesky
decomposition on a (

∑K
j=k qk) × (

∑K
j=k qk) matrix at the kth interim stage (see Equation

(39)). In cases where K − k is large, this is much more computationally intensive than the
proposed procedure that only requires to do a Cholesky decomposition on a q × q matrix.

6.2 Extensions to the two-sided test

In this paper, we focus on the null hypothesis Ha
0 that the heterogeneous treatment effect

(HTE) is nonpositive for any realization of the baseline covariates. It is also interesting to
consider the two-sided null hypothesis that HTE is either always nonpositive (Ha

0 ), or always
nonnegative (denoted by Hb

0). Notice that the latter corresponds to a union of Ha
0 and Hb

0.
To test such a null, one can separately test Ha

0 and Hb
0 using the proposed test, obtain

the corresponding p-values pa and pb, and derive the p-value using the union-intersection
principle, i.e., p = max(pa, pb).
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Appendix A. More on the basis function

(A3)(i) Assume λmin[Eϕ(X)ϕ>(X)] � 1, λmax[Eϕ(X)ϕ>(X)] � 1, supx ‖ϕ(x)‖1 = O(q1/2),
lim infq infx∈X ‖ϕ(x)‖2 > 0. In addition, assume

sup
x,y∈X
x 6=y

‖ϕ(x)− ϕ(y)‖2
‖x− y‖2

� q1/2. (40)

(ii) Suppose

err ≡ inf
β0,β1∈Rq

sup
x∈X,a∈{0,1}

|Q0(x, a)−Q(x, a;β0, β1)| = o({N(T )}−1/2). (41)

When a tensor-product B-spline is used (see Section 6 of Chen and Christensen, 2015, for
a brief overview of tenor-product B-splines), (A3)(i) is automatically satisfied. Specifically,
λmin[Eϕ(X)ϕ>(X)] � 1, λmax[Eϕ(X)ϕ>(X)] � 1 follow from Theorem 3.3 of (Burman and
Chen, 1989). supx ‖ϕ(x)‖1 = O(q1/2) follows by noting that the absolute value of each
element in ϕ(x) is bounded by O(q1/2) and that the number of nonzero elements in ϕ(x) is
finite. lim infq infx∈X ‖ϕ(x)‖2 > 0 follows from the arguments used in the proof of Lemma
E.4 of Shi et al. (2021). The last condition in (40) holds by noting that each function in
the vector ϕ(·) is Lipschitz continuous when a tensor-product B-spline is used.

Suppose the Q-function Q0(·, a) is p-smooth (see the definition of p-smoothness in Stone,
1982), for a ∈ [0, 1]. When a tensor-product B-spline or Wavelet basis is used for ϕ(·), then
there exist some β∗0 and β∗1 that satisfy

inf
β0,β1∈Rq

sup
x∈X,a∈{0,1}

|Q0(x, a)−Q(x, a;β0, β1)| = O(q−p/d).

See Section 2.2 of Huang (1998) for detailed discussions on the approximation power of
these basis functions. Condition (41) is thus automatically satisfied when

q � {N(T )}d/(2p).

As we have commented, the normalized test requires a weaker condition than the unnor-
malized test without standardization. Specifically, if we use the unnormalized test, we would
require the approximation error to decay at a rate at o{q−1/2N−1/2(t)}, strictly faster than
the RHS of (41) when q grows to infinity. To elaborate, the denominator in the normalized
test is of the same order of magnitude as N−1/2(t)‖φ(x)‖2, uniformly in x. This ensures the
bias of the ratio ϕ(x)T (β̂1 − β̂0)/ŝ.e.[ϕ(x)T (β̂1 − β̂0)] is of the same order of magnitude as
the bias of β̂1− β̂0, uniformly in x, eliminate the effect of the approximation error. Without
standardization, the bias of the test would be of the same order of magnitude as the bias
of q1/2(β̂1 − β̂0).

Finally, we present the regularity conditions on {ϕk}k to ensure the validity of the
proposed test in Section 6.1. They are very similar to those imposed in (A3).

(A3*)(i) For any k, assume λmin[Eϕk(X)ϕ>k (X)] � 1, λmax[Eϕk(X)ϕ>k (X)] � 1, supx ‖ϕk(x)‖1 =

O(q
1/2
k ), lim infk infx∈X ‖ϕk(x)‖2 > 0. In addition, assume

sup
x,y∈X
x 6=y

‖ϕk(x)− ϕk(y)‖2
‖x− y‖2

� q1/2
k .
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(ii) Suppose

inf
β∈Rqk

sup
x∈X,a∈{0,1}

|Q0(x, a)− ϕ>k (x)β| = o({N(tk)}−1/2).

Appendix B. Proofs

B.1 Proof of Lemma 1

Set F0 = ∅. We state the following lemma before proving Lemma 1.

Lemma 8 For any j ≥ 1, (Xj , Y
∗
j (0), Y ∗j (1)) ⊥⊥ Fj−1.

For any a ∈ {0, 1}, i ≥ 1, notice that

EI(Ai = a){Yi −Q0(Xi, a)} = EI(Ai = a){Y ∗i (a)−Q0(Xi, a)}
= EEXi,Fi−1 [I(Ai = a){Y ∗i (a)−Q0(Xi, a)}],

where the first equation is due to Assumption (A1) and EXi,Fi−1 denotes the conditional
expectation given Fi−1 and Xi. By Assumption (A2), we have

EXi,Fi−1 [I(Ai = a){Y ∗i (a)−Q0(Xi, a)}] = {EXi,Fi−1I(Ai = a)}[EXi,Fi−1{Y ∗i (a)−Q0(Xi, a)}].

The second term on the RHS equals zero due to Lemma 8 and our model assumption
E{Y ∗i (a)|Xi} = Q0(Xi, a). The proof is hence completed.

B.2 Proof of Lemma 8

The assertion trivially holds for j = 1. We prove it holds for any j ≥ 2, by induction. By
(A2), we have (Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ A1|X1. Since (Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ (X1, Y

∗
1 (0), Y ∗1 (1)),

this further implies (Xj , Y
∗
j (0), Y ∗j (1)) ⊥⊥ A1 and hence (Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ (X1, A1, Y

∗
1 (0), Y ∗1 (1)).

By (A1), Y1 is completely determined by A1, Y ∗1 (0) and Y ∗1 (1). Therefore, we obtain
(Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ F1.

Suppose we have shown that (Xj , Y
∗
j (0), Y ∗j (1)) ⊥⊥ Fk for some k < j − 1. To prove

(Xj , Y
∗
j (0), Y ∗j (1)) ⊥⊥ Fk+1, it suffices to show (Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ (Xk+1, Ak+1, Yk+1).

By (A1), Yk+1 is determined by Ak+1, Y ∗k+1(0) and Y ∗k+1(1). Since (Xj , Y
∗
j (0), Y ∗j (1)) ⊥⊥

(Xk+1, Y
∗
k+1(0), Y ∗k+1(1)), it suffices to show (Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ Ak+1. This is implied by

(Xj , Y
∗
j (0), Y ∗j (1)) ⊥⊥ Ak+1|Xk+1,Fk and that (Xj , Y

∗
j (0), Y ∗j (1)) ⊥⊥ Xk+1,Fk. The proof is

hence completed.

B.3 Proof of Lemma 3

The assertions

ε0 ≤ λmin[Eϕ(X)ϕ>(X)] ≤ λmax[Eϕ(X)ϕ>(X)] ≤ ε−1
0 , (42)

and

sup
x
‖ϕ(x)‖1 ≤ ε−1

0

√
q, (43)
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for some 0 < ε0 < 1 are directly implied by the conditions that λmin[Eϕ(X)ϕ>(X)] � 1,
λmax[Eϕ(X)ϕ>(X)] � 1, supx ‖ϕ(x)‖1 ≤ ε−1

0
√
q. Since ‖ϕ(x)‖2 ≤ ‖ϕ(x)‖1, we obtain

supx ‖ϕ(x)‖2 ≤ supx ‖ϕ(x)‖1 ≤ ε−1
0
√
q.

Under the condition infa,x π
∗(a, x) > 0, we can similarly show that λmin[Σa] ≥ ε0 for

some ε0 > 0.
Notice that Q0(x, a) = E{Y ∗(a)|X = x}. Under the condition that E[{Y ∗(a)}2|X] is

bounded, we obtain supx∈X maxa∈{0,1} |Q0(x, a)| ≤ ε−1
0 for some 0 < ε < 1.

Notice that βa = Σ−1
a Eϕ>(X)Y ∗(a). Since λmin[Σa] is bounded away from 0, it suffices

to show ‖Eϕ>(X)Y ∗(a)‖2 = O(1), or equivalently,

sup
ν∈Rp,‖ν‖2=1

|Eν>ϕ(X)Y ∗(a)| = O(1).

By Cauchy-Schwarz inequality, it suffices to show

sup
ν∈Rp,‖ν‖2=1

E|Y ∗(a)|2E|ν>ϕ(X)|2 = O(1).

We have by the condition λmax[Eϕ(X)ϕ>(X)] = O(1) that

sup
ν∈Rp,‖ν‖2=1

E|ν>ϕ(X)|2 = sup
ν∈Rp,‖ν‖2=1

ν>Eϕ(X)ϕ>(X)ν ≤ λmax[Eϕ(X)ϕ>(X)] = O(1).

The sub-Gaussianity of Y ∗(a) implies that it has bounded second moment. The proof is
hence completed.

B.4 Proof of Lemma 4

B.4.1 Proof of (12)

Notice that

‖j(Σ̂1,j − Σ1)‖2 =

∥∥∥∥∥
j∑
i=1

{Aiϕ(Xi)ϕ
>(Xi)− EFi−1πi−1(1, X)ϕ(X)ϕ>(X)}

∥∥∥∥∥
2

(44)

+j

∥∥∥∥∥EFi−1ϕ(X)ϕ>(X)

(
1

j

j∑
i=1

πi−1(1, X)− π∗(1, X)

)∥∥∥∥∥
2

.

By Lemma 3, we have∥∥∥∥∥EFi−1ϕ(X)ϕ>(X)

(
1

j

j∑
i=1

πi−1(1, X)− π∗(1, X)

)∥∥∥∥∥
2

≤ ε−2
0 qEFi−1

∣∣∣∣∣1j
j∑
i=1

πi−1(1, X)− π∗(1, X)

∣∣∣∣∣
≤ ε−2

0 q2j−α0 logα0 j, ∀j ≥ jn,

with probability at least 1−O(j−α0
n ).

Consider the first term on the RHS of (44). For any i ≥ 1, defineMi = ϕ(Xi)ϕ
>(Xi){Ai−

πi−1(1, Xi)}. Notice that {Mi}i≥1 forms a martingale difference sequence with respect to
the filtration {σ(Fi−1) : i ≥ 2}, since

E[ϕ(Xi)ϕ
>(Xi){Ai − πi−1(Xi)}|Fi−1] (45)

= EFi−1 [E(ϕ(Xi)ϕ(Xi)
>{Ai − πi−1(Xi)}|Fi−1, Xi)] = 0,
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where EFi,Xi denotes the conditional expectation given Xi and Fi. Here, the first equality
is due to that Xi ⊥⊥ Fi−1, implied by Lemma 8. Under the given conditions on the basis
function ϕ(·), using similar arguments in proving Equation (C.15) of Shi et al. (2021), we
can show that the following event occurs with probability at least 1−O(j−2),∥∥∥∥∥

j∑
i=1

Mi

∥∥∥∥∥
2

�
√
qj log(j).

Notice that
∑

k≥j k
−2 ≤ j−2 +

∑
k>j{k(k − 1)}−1 = j−2 + j−1. Thus, the following occurs

with probability at least 1−O(j−1
n ),∥∥∥∥∥

j∑
i=1

{Aiϕ(Xi)ϕ
>(Xi)− EFi−1πi−1(1, X)ϕ(X)ϕ>(X)}

∥∥∥∥∥
2

�
√
qj log j, ∀j ≥ jn. (46)

It follows that

‖(Σ̂1,k − Σ1)‖2 � qδk +
√
qk−1 log k, ∀k ≥ jn,

with probability at least 1−O(j−α0). Similarly, we can show

‖(Σ̂0,k − Σ0)‖2 � qδk +
√
qk−1 log k, ∀k ≥ jn,

with probability at least 1−O(j−α0
n ). The proof is hence completed.

B.4.2 Proof of (13)

When jn satisfies jα0
n / logα0(jn)� q2, it follows from (12) and (42) that

λmin[Σ̂a,k] ≥ λmin[Σa]− ‖Σ̂a,k − Σa‖2 ≥ 2−1ε0, ∀k ≥ jn, (47)

with probability at least 1−O(j−α0
n ). Combining (42) with (47) and (12), we obtain

‖Σ̂−1
a,k − Σ−1

a ‖2 = ‖Σ̂−1
a,k(Σ̂a,k − Σa)Σ

−1
a ‖2 ≤ λmin[Σa]λmin[Σ̂a,k)‖Σ̂a,k − Σa‖2

� qδk +
√
qk−1 log k, ∀k ≥ jn,

with probability at least 1−O(j−α0
n ). The proof is hence completed.

B.5 Proof of Lemma 5

For any l ∈ {1, . . . , q} and i ≥ 1, define Mi(l) = ϕ(l)(Xi)Ai{Yi −Q0(Xi, a)}. Here, ϕ(l)(Xi)
corresponds to the l-th element of ϕ(Xi). Similar to (45), we can show {Mi(l)}i≥1 forms a
martingale difference sequence with respect to the filtration {σ(Fi−1) : i ≥ 1}. By (45), we
have for any l,

E{ϕ(l)(Xi)}2 ≤ λmax[ϕ(Xi)ϕ
>(Xi)] ≤ ε−1

0 . (48)
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Similar to Lemma 3, we can show that σ2(a, x) is uniformly bounded by 4ε−1 for some ε > 0
as well. It follows that

E{M2
i (l)|Fi−1} = E[{ϕ(l)(Xi)}2Ai{Y ∗i (1)−Q0(Xi, 1)}2|Fi−1]

≤ E[{ϕ(l)(Xi)}2{Y ∗i (1)−Q0(Xi, 1)}2|Fi−1] = Eσ2(1, Xi){ϕ(l)(Xi)}2

≤ 4ε−2
0 E{ϕ(l)(Xi)}2 ≤ 4ε−3

0 ,

where the first equality is due to (A1), the first inequality is due to that A is bounded
between 0 and 1, the second equality follows from Lemma 8, the second inequality follows
from Lemma 3, and the last inequality is due to (48). It follows that

k∑
i=1

E{M2
i (l)|Fi−1} ≤ 4kε−3

0 . (49)

Similarly, by (A1) and Lemma 3, we have

k∑
i=1

M2
i (l) ≤ 2

k∑
i=1

{ψ(l)(Xi)}2(ε−2
0 + Y 2

i ). (50)

Under sub-Gaussianity, Y 2
i has bounded sub-exponential tail. Similar to (46), it follows from

Bernstein’s inequality (Lemma 2.2.11 van der Vaart and Wellner, 1996) and Bonferroni’s
inequality that, with probability at least 1−O(j−1) that

k∑
i=1

[M2
i (l)− E{M2

i (l)|Fi−1}] �
√
qk log k, ∀k ≥ j.

Thus, for any sequence jn that satisfies jn/ log(jn)� q, we have by (49) that

k∑
i=1

M2
i (l) +

k∑
i=1

E{M2
i (l)|Fi−1} ≤ c̄k, ∀k ≥ jn,
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for some constant c̄ > 0, with probability at least 1−O(j−1
n ). It follows that

Pr

 ⋂
k≥jn

{|
k∑
i=1

Mi(l)| ≤ 2
√
c̄k log k}


≥ Pr

 ⋂
k≥jn

{|
k∑
i=1

Mi(l)| ≤ 2
√
c̄k log k}

⋂
 ⋂
k≥jn

{
k∑
i=1

[M2
i (l) + {M2

i (l)|Fi−1}] ≤ c̄k}




− O(j−1
n ) ≥ Pr

 ⋂
k≥jn

{
k∑
i=1

[M2
i (l) + {M2

i (l)|Fi−1}] ≤ c̄k}


−O(j−1

n )

− Pr

 ⋃
k≥jn

{|
k∑
i=1

Mi(l)| > 2
√
c̄k log k}

⋂
 ⋂
k≥jn

{
k∑
i=1

[M2
i (l) + {M2

i (l)|Fi−1}] ≤ c̄k}




≥ 1− Pr

 ⋃
k≥jn

{|
k∑
i=1

Mi(l)| > 2
√
c̄k log k}

⋂
 ⋂
k≥jn

{
k∑
i=1

[M2
i (l) + {M2

i (l)|Fi−1}] ≤ c̄k}




− O(j−1
n ).

By Bonferroni’s inequality and Theorem 2.1 of Bercu and Touati (2008), we have

Pr

 ⋂
k≥jn

{|
k∑
i=1

Mi(l)| ≤ 2
√
c̄k log k}

 ≥ 1−O(j−1
n )

−
∑
k≥jn

Pr

{| k∑
i=1

Mi(l)| > 2
√
c̄k log k}

⋂ ⋂
k′≥jn

{
k′∑
i=1

[M2
i (l) + {M2

i (l)|Fi−1}] ≤ c̄k′}




≥ 1−O(j−1
n )−

∑
k≥jn

Pr

(
{|

k∑
i=1

Mi(l)| > 2
√
c̄k log k}

⋂{
k∑
i=1

[M2
i (l) + {M2

i (l)|Fi−1}] ≤ c̄k

})

≥ 1−O(j−1
n )− 2

∑
k≥jn

exp

(
−4c̄k log k

2c̄k

)
= 1−O(j−1

n )−
∑
k≥jn

2k−2. (51)

The last term on the RHS of (51) is 1 − O(j−1
n ). To summarize, we have shown that the

following event occurs with probability at least 1−O(j−1
n ),

⋂
k≥jn

{
|
k∑
i=1

Mi(l)| ≤ 2
√
c̄k log k

}
.

By Bonferroni’s inequality, we have

⋂
k≥jn

{∥∥∥∥∥
k∑
i=1

ϕ(Xi)Ai{Yi −Q0(Xi, 1)}

∥∥∥∥∥
2

≤ 2
√
c̄qk log k

}
,
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with probability at least 1−O(j
−1/2
n ). Similarly, we can show

⋂
k≥jn

{∥∥∥∥∥
k∑
i=1

ϕ(Xi)(1−Ai){Yi −Q0(Xi, 0)}

∥∥∥∥∥
2

≤ c
√
qk log k

}
,

for some constant c > 0, with probability at least 1−O(j−1
n ). The proof is hence completed.

B.6 Proof of Lemma 6

Combining Lemma 5 with Lemma 3 yields that∥∥∥∥∥Σ−1
a

(
1

k

k∑
i=1

I(Ai = a)ϕ(Xi){Yi −Q0(Xi, a)}

)∥∥∥∥∥
2

� q1/2k−1/2
√

log k, ∀k ≥ jn, a ∈ {0, 1},

with probability at least 1−O(j−1
n ). Combining this together with (14) yields that

‖β̂a,k − βa‖2 � q1/2k−1/2
√

log k, ∀k ≥ jn, a ∈ {0, 1},

with probability at least 1−O(j−1
n ). The proof is hence completed.

B.7 Proof of Lemma 7

Notice that ∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi −Q0(Xi, a)}2 − Φa

∥∥∥∥∥
2

≤

∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)[{Yi −Q0(Xi, a)}2 − σ2(a,Xi)]

∥∥∥∥∥
2

+

∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)σ

2(a,Xi)− Φa

∥∥∥∥∥
2

.

(52)

Similar to the proof of Lemma 4, we can show that the second term on the RHS of (52) is
of the order O(qδk +

√
qk−1 log k), for any a ∈ {0, 1} and any k ≥ jn, with probability at

least 1−O(j−α0
n ). As for the first term, notice that each element in the matrix

1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)[{Yi −Q0(Xi, a)}2 − σ2(a,Xi)] (53)

corresponds to a martingale with respect to the filtration {σ(Fi−1) : i ≥ 1}, under (A1)
and (A2). Using similar arguments in proving Lemma E.2 of Shi et al. (2021), we can show
that∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)[{Yi −Q0(Xi, a)}2 − σ2(a,Xi)]

∥∥∥∥∥
2

� q1/2k−1/2
√

log k,

∀a ∈ {0, 1}, k ≥ jn,
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with probability at least 1−O(j−1
n ).

Finally, we focus on providing an upper bound for the bias term∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)[{Yi −Q0(Xi, a)}2 − {Yi − ϕ>(Xi)βa}2]

∥∥∥∥∥
≤ 2

∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)[{Yi −Q0(Xi, a)}{Q0(Xi, a)− ϕ>(Xi)βa}]

∥∥∥∥∥
+

∥∥∥∥∥1

k

k∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)

∥∥∥∥∥ o{(NT )−1/2}.

Using similar arguments, the first term on the RHS can be upper bounded by Cq1/2k−1/2
√

log k
for some constant C > 0. The second term is o{(NT )−1/2}. The proof is hence completed.

B.8 Proof of Lemma 2

We begin by providing an upper bound for maxa∈{0,1} ‖β̂a,k−βa‖2. With some calculations,
we have

max
a∈{0,1}

‖β̂a,k − βa‖2 = max
a∈{0,1}

1

k

∥∥∥∥∥Σ̂−1
a,k

(
k∑
i=1

ϕ(Xi)I(Ai = a){Yi − ϕ>(Xi)βa}

)∥∥∥∥∥
2

≤ max
a∈{0,1}

∥∥∥Σ̂−1
a,k

∥∥∥
2

max
a∈{0,1}

1

k

∥∥∥∥∥
k∑
i=1

ϕ(Xi)I(Ai = a){Yi − ϕ>(Xi)βa}

∥∥∥∥∥
2

.

Using similar arguments in proving Theorem 1, we obtain with probability at least 1−O(j−1
n )

that

max
a∈{0,1}

1

k

∥∥∥∥∥
k∑
i=1

ϕ(Xi)I(Ai = a){Yi − ϕ>(Xi)βa}

∥∥∥∥∥
2

� q1/2k−1/2
√

log k, ∀k ≥ jn. (54)

Similarly, we can show with probability at least 1−O(j−1
n ) that

max
a∈{0,1}

1

k

∥∥∥∥∥
k∑
i=1

ϕ(Xi)I(Ai = a){Yi − ϕ>(Xi)βa}

∥∥∥∥∥
2

� q1/2k−1/2
√

log jn, (55)

∀1 ≤ k < jn.

Similar to (44), we have

max
a∈{0,1}

λmin[Σ̂a,k] ≥ min
a∈{0,1}

λmin

(
EFi−1ϕ(X)ϕ>(X)

1

k

k∑
i=1

πi−1(a,X)

)

− max
a∈{0,1}

1

k

∥∥∥∥∥
k∑
i=1

{I(Ai = a)ϕ(Xi)ϕ
>(Xi)− EFi−1πi−1(a,X)ϕ(X)ϕ>(X)}

∥∥∥∥∥
2

.
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Using similar arguments in proving (46), we can show that

max
a∈{0,1}

∥∥∥∥∥
k∑
i=1

{I(Ai = a)ϕ(Xi)ϕ
>(Xi)− EFi−1πi−1(a,X)ϕ(X)ϕ>(X)}

∥∥∥∥∥
2

�
√
qk log k, (56)

∀k ≥ jn,

with probability at least 1−O(j−1
n ). Similarly, we can show

max
a∈{0,1}

∥∥∥∥∥
k∑
i=1

{I(Ai = a)ϕ(Xi)ϕ
>(Xi)− EFi−1πi−1(a,X)ϕ(X)ϕ>(X)}

∥∥∥∥∥
2

�
√
qk log jn, (57)

∀1 ≤ k < jn,

with probability at least 1−O(j−1
n ).

Without loss of generality, assume ε0 ≤ 1/2. Notice that we have πi−1(a, x) ≥ ε0, for
any a ∈ {0, 1}, x ∈ X and i ≥ N0. This together with Lemma (3) implies that

inf
a∈{0,1},n≥jn

λmin

(
EFi−1ϕ(X)ϕ>(X)

1

n

n∑
i=1

πi−1(a,X)

)
≥ n−N0

n
ε0 ≥

j −N0

j
ε0.

Combining this together with (56) and (57) yields

max
a∈{0,1}

λmin[Σ̂a,k] ≥
ε0

2
, ∀k ≥ L∗

√
q log jn,

for some constant L∗ ≥ 1, with probability at least 1 − O(j−1
n ). This together with (54)

and (55) yields that

max
a∈{0,1}

‖β̂a,k − βa‖2 � q1/2k−1/2
√

log max(k, jn), ∀k ≥ L∗
√
q log jn,

with probability at least 1−O(j−1
n ).

By Condition (A3), we have

|ϕ>(X)(β̂1,k − β̂0,k − β1 + β0)| ≤ L̄qk−1/2 log1/2 max(k, jn), ∀k ≥ L∗
√
q log jn, (58)

for some constant L̄ > 0, with probability at least 1−O(j−1
n ).

For any z1, z2 ∈ R, we have I(z1 > 0) 6= I(z2 > 0) only when |z1−z2| ≥ |z2|. Hence, under
the event defined in (58), the event I{ϕ>(X)(β̂1,k − β̂0,k) > 0} 6= I{ϕ>(X)(β1 − β0) > 0}
occurs only when

|ϕ>(X)(β1 − β0)| ≤ |ϕ>(X)(β̂1,k − β̂0,k − β1 + β0)| ≤ L̄qk−1/2
√

log max(k, jn),

for any k ≥ jn. Since Q0(X, 1) − Q0(X, 0) can be well-approximated by ϕ>(X)(β1 − β0),
the above event occurs only when

|Q0(X, 1)−Q0(X, 0)| ≤ 2L̄qk−1/2
√

log max(k, jn).
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Under the given conditions, we have

Pr
(
|Q0(X, 1)−Q0(X, 0)| ≤ 2L̄qk−1/2 log1/2 max(k, jn)

)
≤ 2L̄L0qk

−1/2 log1/2 max(k, jn).(59)

Notice that when I{ϕ>(X)(β̂1,k− β̂0,k) > 0} = I{ϕ>(X)(β1−β0) > 0}, we have πk(a,X) =
π∗(a,X). Thus, we obtain πk(a,X) = π∗(a,X) if |ϕ>(X)(β1−β0)| > 2L̄qk−1/2

√
log max(k, jn),

for any k ≥ L∗
√
q log jn. Set k0 = L∗

√
q log jn. By (58) and (59), we have with probability

at least 1−O(j−1
n ) that

∑
a∈{0,1}

EFi−1

∣∣∣∣∣
k∑
i=1

{πi−1(a,X)− π∗(a,X)}

∣∣∣∣∣ ≤ ∑
a∈{0,1}

k0∑
i=1

EFi−1 |πi−1(a,X)− π∗(a,X)|

+
∑

a∈{0,1}

k∑
i=k0+1

EFi−1 |πi−1(a,X)− π∗(a,X)| ≤ 2L∗
√
q log jn

+
∑

a∈{0,1}

k∑
i=k0+1

EFi−1 |πi−1(a,X)− π∗(a,X)|I{|ϕ>(X)(β1 − β0)| > 2L̄qi−1/2 log1/2 i}

+
∑

a∈{0,1}

k∑
i=k0+1

EFi−1 |πi−1(a,X)− π∗(a,X)|I{|ϕ>(X)(β1 − β0)| ≤ 2L̄qi−1/2 log1/2 i}

≤ 2L∗
√
q log jn +

∑
a∈{0,1}

n∑
i=k0+1

Pr
(
|ϕ>(X)(β1 − β0)| ≤ L̄qi−1/2

√
log i

)
� qk1/2 log1/2 k, ∀k ≥ jn.

The proof is hence completed.

B.9 Proof of Theorem 3

Similar to the proof of Theorem 1, we will show that the assertion in Theorem 3 holds for
any n(·) that correspond to the realizations of N(·) that satisfy n(t1) < n(t2) < · · · < n(tK).
For any 1 ≤ k1 ≤ k2 ≤ K, define

V̂ (k1, k2) =
√
n(tk1)n(tk2)cov

(
β̂MB∗

1 (tk1)− β̂MB∗
0 (tk1), β̂MB∗

1 (tk2)− β̂MB∗
0 (tk2)|{(Xi, Ai, Yi)}+∞i=1

)
=

1√
n(tk1)n(tk2)

1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ̂−1
a (tj)I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2Σ̂−1
a (tj),

and

V̂ =


V̂ (1, 1) V̂ (1, 2) . . . V̂ (1,K)

V̂ (2, 1) V̂ (2, 2) . . . V̂ (2,K)
...

...
...

V̂ (K, 1) V̂ (K, 2) . . . V̂ (K,K)

 .

We aim to bound the entrywise `∞ norm of V̂ − V where V is defined in (21). It
suffices to bound max1≤k1≤k2≤K supb1,b2∈Rp+1,‖b1‖2=‖b2‖2=1 |bT1 {V̂ (k1, k2) − V (k1, k2)}b2| =
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max1≤k1≤k2≤K ‖V̂ (k1, k2)−V (k1, k2)‖2. For any k1, k2, we decompose V̂ (k1, k2)−V (k1, k2)
as

V̂ (k1, k2)− V (k1, k2) = V̂ (k1, k2)− V̂ ∗(k1, k2) + V̂ ∗(k1, k2)− V̂ ∗∗(k1, k2) + V̂ ∗∗(k1, k2)− V (k1, k2),

where

V̂ ∗(k1, k2) =
1√

n(tk1)n(tk2)

1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2Σ−1
a ,

V̂ ∗∗(k1, k2) =
1√

n(tk1)n(tk2)

1∑
a=0

n(tk1 )∑
j=1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β
∗
a}2Σ−1

a .

By Lemma 3 and Lemma 7, we obtain that

max
1≤k1≤k2≤K

‖V̂ ∗∗(k1, k2)− V (k1, k2)‖2

≤ max
1≤k1≤K

1∑
a=0

∥∥∥∥∥∥ 1

n(tk1)

n(tk1 )∑
j=1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β
∗
a}2Σ−1

a − Σ−1
a ΦaΣ

−1
a

∥∥∥∥∥∥
2

≤ max
1≤k1≤K

1

ε20

1∑
a=0

∥∥∥∥∥∥ 1

n(tk1)

n(tk1 )∑
j=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)β

∗
a}2 − Φa

∥∥∥∥∥∥
2

� qδn(t1) + q1/2n−1/2(t1)
√

log n(t1), (60)

with probability at least 1−O(n−α0(t1)).

Notice that

√
n(tk1)n(tk2)V̂ ∗(k1, k2) =

1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2Σ−1
a

=

1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β
∗
a + ϕ>(Xi)β

∗
a − ϕ>(Xi)β̂a(tj)}2Σ−1

a

=
1∑

a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){ϕ>(Xi)β
∗
a − ϕ>(Xi)β̂a(tj)}2Σ−1

a

+2

1∑
a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β
∗
a}ϕ>(Xi){β∗a − β̂a(tj)}Σ−1

a

+
√
n(tk1)n(tk2)V̂ ∗∗(k1, k2).
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It follows that

max
1≤k1≤k2≤K

∥∥∥V̂ ∗(k1, k2)− V̂ ∗∗(k1, k2)
∥∥∥

2

≤ max
1≤k1≤K

1

n(tk1)

∥∥∥∥∥∥
1∑

a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){ϕ>(Xi)β
∗
a − ϕ>(Xi)β̂a(tj)}2Σ−1

a

∥∥∥∥∥∥
2

+ max
1≤k1≤K

2

n(tk1)

∥∥∥∥∥∥
1∑

a=0

k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)βa}ϕ>(Xi){β∗a − β̂a(tj)}Σ−1
a

∥∥∥∥∥∥
2

.

By Lemma 3, we obtain that

max
1≤k1≤k2≤K

∥∥∥V̂ ∗(k1, k2)− V̂ ∗∗(k1, k2)
∥∥∥

2
(61)

� max
1≤k1≤K
a∈{0,1}

1

n(tk1)

∥∥∥ k1∑
j=1

n(tj)∑
i=n(tj−1)+1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){ϕ>(Xi)β

∗
a − ϕ>(Xi)β̂a(tj)}2︸ ︷︷ ︸

Ψ1,a,k1

∥∥∥
2

+ max
1≤k1≤K
a∈{0,1}

2

n(tk1)

∥∥∥ k1∑
j=1

n(tj)∑
i=n(tj−1)+1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)β

∗
a}ϕ>(Xi){β∗a − β̂a(tj)}︸ ︷︷ ︸

Ψ2,a,k1

∥∥∥
2
.

By Lemmas 3 and 6, we have with probability at least 1−O(n−1(t1)) that

1

n(tk1)
‖Ψ1,a,k1‖2 � q2n−1(t1) log{n(t1)}

∥∥∥∥∥∥ 1

n(tk1)

n(tk1 )∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi)

∥∥∥∥∥∥
2

, (62)

∀1 ≤ k1 ≤ K, a ∈ {0, 1}.

Similar to Lemma 4, we can show there exists some constant c∗ > 0 that

1

n(tk1)

∥∥∥∥∥∥
n(tk1 )∑
i=1

[I(Ai = a)ϕ(Xi)ϕ
>(Xi)− EFi−1{I(Ai = a)ϕ(Xi)ϕ

>(Xi)}]

∥∥∥∥∥∥
2

(63)

≤ c∗{qδn(tk1 ) + q1/2n−1/2(tk1)
√

log n(tk1)}, ∀1 ≤ k1 ≤ K, a ∈ {0, 1},

with probability at least 1 − O(n−1(t1)). By Lemma 3, we can show with probability at
least 1−O(n−1(t1)) that

max
1≤k1≤K

1

n(tk1)

∥∥∥∥∥∥
n(tk1 )∑
i=1

EFi−1{I(Ai = a)ϕ(Xi)ϕ
>(Xi)}

∥∥∥∥∥∥
2

= O(1).

This together with (62) and (63) yields

n−1(tk1)‖Ψ1,a,k1‖2 � q2n−1(t1) log{n(t1)}, ∀1 ≤ k1 ≤ K, a ∈ {0, 1}, (64)
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with probability at least 1−O(n−1(t1)).
Moreover, using similar arguments in proving Lemma 7, we can show that for any

1 ≤ k1 ≤ K, the following event occurs with probability at least 1−O(n−2(tk1)),

1

n(tk1)

∥∥∥∥∥∥
n(tk1 )∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)β

∗
a}ϕ(l)(Xi)

∥∥∥∥∥∥
2

� q1/2n−1/2(tk1)
√

log n(tk1),

∀1 ≤ l ≤ q.

Since
∑K

k1=1 n
−2(tk1) ≤ n−1(t1), we obtain with probability at least 1−O(n−1(t1)) that

1

n(tk1)

∥∥∥∥∥∥
n(tk1 )∑
i=1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)βa}ϕ(l)(Xi)

∥∥∥∥∥∥
2

� q1/2n−1/2(tk1)
√

log n(tk1),

∀1 ≤ l ≤ q, 1 ≤ k1 ≤ K.

In addition, it follows from Lemma 6 that

n−1(tk1)‖Ψ2,a,k1‖2 � q3/2n−1(t1) log{n(t1)}, ∀1 ≤ k1 ≤ K, a ∈ {0, 1}.

This together with (64) yields that

max
1≤k1≤k2≤K

∥∥∥V̂ ∗(k1, k2)− V̂ ∗∗(k1, k2)
∥∥∥

2
� q2n−1(t1) log n(t1),

with probability at least 1−O(n−1(t1)). Under the given conditions, we have

max
1≤k1≤k2≤K

∥∥∥V̂ ∗(k1, k2)− V̂ ∗∗(k1, k2)
∥∥∥

2
� q1/2n−1/2(t1) log1/2 n(t1), (65)

with probability at least 1−O(n−1(t1)).
Moreover, with some calculations, we can show that

max
1≤k1≤k2≤K

∥∥∥V̂ (k1, k2)− V̂ ∗(k1, k2)
∥∥∥

2
≤

1∑
a=0

max
j≥1
‖Σ−1

a − Σ̂−1
a (tj)‖2

× max
1≤k1≤K

2

n(tk1)

∥∥∥∥∥∥
k1∑
j=1

n(tj)∑
i=n(tj−1)+1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2Σ−1

a

∥∥∥∥∥∥
2

+
1∑

a=0

max
1≤k1≤K

1

n(tk1)

∥∥∥∥∥∥
k1∑
j=1

n(tj)∑
i=n(tj−1)+1

Σ−1
a I(Ai = a)ϕ(Xi)ϕ

>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2Σ−1
a

∥∥∥∥∥∥
2

× max
j≥1
‖Σ−1

a − Σ̂−1
a (tj)‖22.

In view of Lemma 3 and Lemma 4, we have with probability at least 1−O(n−α0(t1)) that

max
1≤k1≤k2≤K

∥∥∥V̂ (k1, k2)− V̂ ∗(k1, k2)
∥∥∥

2
≤ O(1)(qδn(t1) +

√
qn−1(t1) log n(t1))

× max
1≤k1≤K

1

n(tk1)

∥∥∥ k1∑
j=1

n(tj)∑
i=n(tj−1)+1

I(Ai = a)ϕ(Xi)ϕ
>(Xi){Yi − ϕ>(Xi)β̂a(tj)}2︸ ︷︷ ︸

Ψ3,a,k1

∥∥∥
2
,
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where O(1) denotes some positive constant. Similar to (60) and (65), we can show with
probability at least 1−O(n−α0(t1)) that

max
a∈{0,1}

max
1≤k1≤K

∥∥∥∥ 1

n(tk1)
Ψ3,a,k1 −Ψa

∥∥∥∥
2

= o(1).

Similar to Lemma 3, we can show maxa∈{0,1} ‖Ψa‖2 = O(1). It follows that

max
1≤k1≤k2≤K

∥∥∥V̂ (k1, k2)− V̂ ∗(k1, k2)
∥∥∥

2
� qδn(t1) +

√
qn−1(t1) log n(t1),

with probability at least 1−O(n−α0(t1)). Combining this together with (60) and (65), we
obtain with probability at least 1−O(n−α0(t1)) that

max
1≤k1≤k2≤K

∥∥∥V̂ (k1, k2)− V (k1, k2)
∥∥∥

2
� qδn(t1) +

√
qn−1(t1) log n(t1).

Consider the function gδ◦φη,{νk}k defined in the proof of Theorem 1. We fix δ = η−1{logK+
4d log n(t1)}. Based on Lemma A2 in Belloni and Oliveira (2018), we have with probability
at least 1−O(n−α0(t1)) that

sup
{νk}k

∣∣∣E∗gδ ◦ φη,{νk}k(N(0, V̂ ))− Egδ ◦ φη,{νk}k(N(0,V ))
∣∣∣

� η2{log2K + log2 n(t1)}
(
qδn(t1) +

√
qn−1(t1) log n(t1)

)
,

where E∗ denotes the expectation conditional on the observed data. For a given set of
thresholds {νk}k, using similar arguments in proving (30), (31), (33) and (34), we can show
with probability at least 1−O(n−α0(t1)) that

Pr∗
{

max
k∈{1,...,K}

(√
n(tk)Ŝ

MB∗ − νk
)
≤ 0

}
≤ E∗gδ ◦ φη,{νk,+}k(N(0, V̂ ))

≤ Egδ ◦ φη,{νk,+}k(N(0,V )) +O(1)η2{log2K + log2 n(t1)}
(
qδn(t1) +

√
qn−1(t1) log n(t1)

)
≤ Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− ν∗k,+
)
≤ 0

}
+ O(1)η2{log2K + log2 n(t1)}

(
qδn(t1) +

√
qn−1(t1) log n(t1)

)
,

and

Pr∗
{

max
k∈{1,...,K}

(√
n(tk)Ŝ

MB∗ − νk
)
≤ 0

}
≥ E∗gδ ◦ φη,{νk,−}k(N(0, V̂ ))

≥ Egδ ◦ φη,{νk,−}k(N(0,V ))−O(1)η2{log2K + log2 n(t1)}
(
qδn(t1) +

√
qn−1(t1) log n(t1)

)
≥ Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)− ν∗k,−
)
≤ 0

}
− O(1)η2{log2K + log2 n(t1)}

(
qδn(t1) +

√
qn−1(t1) log n(t1)

)
,
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where O(1) denotes some positive constant, and

νk,+ = νk + η−1{4d log n(t1) + logK}+ c̄∗n−2(t1), ν∗k,+ = νk,+ + 3η−1{4d log n(t1) + logK},
νk,− = νk − 3η−1{4d log n(t1) + logK} − c̄∗n−2(t1), ν∗k,− = νk,− − η−1{4d log n(t1) + logK}.

By Theorem 2 of Chernozhukov et al. (2017), we obtain that

Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)

σ(x, tk)
− ν∗k,+

)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X0

ϕ>(x)G(tk)

σ(x, tk)
− ν∗k,−

)
≤ 0

}
� η−1{log3/2 n(t1) + log3/2K}+ c̄∗n−2(t1){log1/2 n(t1) + log1/2K}.

It follows that

sup
{νk}k

∣∣∣∣Pr∗
{

max
k∈{1,...,K}

(√
n(tk)Ŝ

MB∗ − νk
)
≤ 0

}
− Pr

{
max

k∈{1,...,K}

(
sup
x∈X

ϕ>(x)G(tk)

σ(x, tk)
− νk

)
≤ 0

}∣∣∣∣
� η2{log2K + log2 n(t1)}

(
qδn(t1) +

√
qn−1(t1) log n(t1)

)
+η−1{log3/2 n(t1) + log3/2K}+ c̄∗n−2(t1){log1/2 n(t1) + log1/2K},

with probability at least 1−O(n−α0(t1)). Set

η = min[q−1/3nα0/3(t1) log−(1+2α0)/6{Kn(t1)}, q−1/6n1/6(t1) log−1/3{Kn(t1)}],

we obtain the desired result.

B.10 Proof of Theorem 5

We will show that under the current conditions, the stopping boundaries {ẑk}k are upper
bounded by c

√
logN(t1) for some constant c > 0, with probability tending to 1. Using

similar arguments in proving Lemma 5 and Equation (27), we can show that∣∣∣∣∣sup
x∈X

√
N(tK)ϕ>(x){β̂1(tK)− β∗1 − β̂0(tK) + β∗0}

ŝ.e.[ϕ>(x){β̂1(tK)− β̂0(tK)}]

∣∣∣∣∣
is upper bounded by O{

√
logN(t1)} as well, with probability tending to 1.

Under the alternative hypothesis and the assumption on the approximation error,√
N(tK) sup

x∈X
ϕ>(x)(β∗1 − β∗0)�

√
q log{N(t1)}.

Using similar arguments in the proof of Theorem 1, the standard error estimator is of the
order of magnitude O(

√
q), uniformly for any x. It follows that

√
N(tK) sup

x∈X

ϕ>(x)(β∗1 − β∗0)

ŝ.e.[ϕ>(x){β̂1(tK)− β̂0(tK)}]
> ẑK ,

with probability tending to 1. The proof is hence completed.
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It remains to show that the stopping boundaries are upper bounded by c
√
q logN(t1).

We will prove this assertion by induction. We first notice that ẑ1 satisfies

Pr

(
sup
x∈X

ϕ>(x)ŜMB∗(t1)

ŝ.e.[ϕ>(x){β̂1(tK)− β̂0(tK)}]
− ẑ1 > 0

∣∣∣∣∣Data

)
= α(t1).

The conditional variance of ϕ>(x)ŜMB∗(t1)/‖ϕ(x)‖2 is upper bounded by O(1). The de-
nominator is lower bounded by c‖ϕ(x)‖2 for some constant c > 0. As such, there exists
some constant c1 > 0 such that

Pr

(
sup
x∈X

ϕ>(x)ŜMB∗(t1)

ŝ.e.[ϕ>(x){β̂1(t1)− β̂0(t1)}]
> c1

√
logN(t1)

∣∣∣∣∣Data

)
≤ 1

NC(t1)
.

As such, ẑ1 ≤ c1

√
logN(t1).

Suppose we have shown that {ẑj}kj=1 are upper bounded by ck
√

logN(t1). We aim

to show ẑk+1 is upper bounded by ck+1

√
logN(t1) for some constant ck+1 > 0. A key

observation is that

Pr

(
sup
x∈X

ϕ>(x)ŜMB∗(tk+1)

ŝ.e.[ϕ>(x){β̂1(t1)− β̂0(t1)}]
− ẑk+1 > 0

∣∣∣∣∣Data

)

≥ Pr

(
max

1≤j≤k+1
sup
x∈X

ϕ>(x)ŜMB∗(tj)

ŝ.e.[ϕ>(x){β̂1(t1)− β̂0(t1)}]
− ẑj > 0

∣∣∣∣∣Data

)

−Pr

(
max

1≤j≤k
sup
x∈X

ϕ>(x)ŜMB∗(tj)

ŝ.e.[ϕ>(x){β̂1(t1)− β̂0(t1)}]
− ẑj > 0

∣∣∣∣∣Data

)
= α(tk+1)− α(tk).

Since α(tk+1) − α(tk) ≥ NC(t1), using similar arguments in proving ẑ1 ≤ c1

√
logN(t1),

we can show that ẑk+1 ≤ ck+1

√
logN(t1). This shows that the power of the proposed test

approaches to one. Similarly, one can show that the stopping time is upper bounded by tk,
as long as √

N(tk) sup
x∈X

ϕ>(x)(β∗1 − β∗0)�
√
q log{N(t1)}.

Appendix C. Comparison of the baseline method

We first introduce the test based on LIL. Consider our test statistic S(t). Under H0, it can
be bounded from above by

sup
x∈X

ϕ>(x){β̂1(t)− β∗1 − β̂0(t) + β∗0}. (66)

It suffices to provide an upper bound for the above expression. By Cauchy-Schwarz inequal-
ity, (66) can be upper bounded by

sup
x∈X
‖ϕ(x)‖2‖β̂1(t)− β∗1 − β̂0(t) + β∗0‖2.
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It suffices to provide anytime upper bound for ‖β̂1(t)− β∗1 − β̂0(t)− β∗0‖2.
Recall that

β̂1(t)− β∗1 − β̂0(t) + β∗0

=
1

N(t)

N(t)∑
i=1

[I(Ai = 1)Σ̂−1
1 (t)ϕ(Xi){Yi − ϕ>(Xi)β

∗
1} − I(Ai = 0)Σ̂−1

0 (t)ϕ(Xi){Yi − ϕ>(Xi)β
∗
0}].

The above expression is asymptotically equivalent to

1

N(t)

N(t)∑
i=1

[I(Ai = 1)Σ−1
1 ϕ(Xi){Yi − ϕ>(Xi)β

∗
1} − I(Ai = 0)Σ−1

0 ϕ(Xi){Yi − ϕ>(Xi)β
∗
0}].

By the law of iterated logarithm, the `-th dimension of the above expression can be upper
bounded by

N−1/2(t)
√

2σ2
` log log{N(t)},

where
∑

` σ̂
2
` can be consistently estimated by

1

N(t)

N(t)∑
i=1

‖I(Ai = 1)Σ̂−1
1 (t)ϕ(Xi){Yi − ϕ>(Xi)β̂1(t)} − I(Ai = 0)Σ̂−1

0 (t)ϕ(Xi){Yi − ϕ>(Xi)β̂0(t)}‖22.

As such, the finite error bound is given by

sup
x∈X
‖ϕ(x)‖2

√
2 log log{N(t)}√

N(t)
×√√√√ 1

N(t)

N(t)∑
i=1

‖I(Ai = 1)Σ̂−1
1 (t)ϕ(Xi){Yi − ϕ>(Xi)β̂1(t)} − I(Ai = 0)Σ̂−1

0 (t)ϕ(Xi){Yi − ϕ>(Xi)β̂0(t)}‖22.

We next discuss the test based on AVT. At time t, we compute the following test statistic√
σ̂2/(N−1

0 (t) +N−1
1 (t))

σ̂2/(N−1
0 (t) +N−1

1 (t)) + τ2
exp

[
τ2{N−1

0 (t)
∑N(t)

i=1 (1−Ai)Yi −N−1
1 (t)

∑N(t)
i=1 AiYi}2

2{σ̂2/(N−1
0 (t) +N−1

1 (t))}{σ̂2/(N−1
0 (t) +N−1

1 (t)) + τ2}

]
,

whereNa(t) =
∑N(t)

i=1 I(Ai = a) and σ̂2 is the pooled variance estimator {N(t)−2}−1[{N0(t)−
1}σ̂2

0+{N1(t)−1}σ̂2
1] where σ̂2

a denotes the sampling variance estimator based on {Yi}I(Ai=a).
The constant τ corresponds to a hyperparameter and we fix τ = 1 in our implementation.
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