
Journal of Machine Learning Research 22 (2021) 1-23 Submitted 5/21; Revised 8/21; Published 8/21

Quasi-Monte Carlo Quasi-Newton in Variational Bayes

Sifan Liu sfliu@stanford.edu

Art B. Owen owen@stanford.edu

Department of Statistics

Stanford University

Stanford, CA 94305, USA

Editor: Michael Mahoney

Abstract

Many machine learning problems optimize an objective that must be measured with noise.
The primary method is a first order stochastic gradient descent using one or more Monte
Carlo (MC) samples at each step. There are settings where ill-conditioning makes second
order methods such as limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) more
effective. We study the use of randomized quasi-Monte Carlo (RQMC) sampling for such
problems. When MC sampling has a root mean squared error (RMSE) of O(n−1/2) then
RQMC has an RMSE of o(n−1/2) that can be close to O(n−3/2) in favorable settings. We
prove that improved sampling accuracy translates directly to improved optimization. In our
empirical investigations for variational Bayes, using RQMC with stochastic quasi-Newton
method greatly speeds up the optimization, and sometimes finds a better parameter value
than MC does.

Keywords: Quasi-Monte Carlo, quasi-Newton, L-BFGS, numerical optimization, varia-
tional Bayes

1. Introduction

Many practical problems take the form

min
θ∈Θ⊆Rd

F (θ) where F (θ) = E(f(z; θ)) (1)

and z is random vector with a known distribution p. Classic problems of simulation-
optimization (Andradóttir, 1998) take this form and recently it has become very important
in machine learning with variational Bayes (VB) (Blei et al., 2017) and Bayesian optimiza-
tion (Frazier, 2018) being prominent examples.

First order optimizers (Beck, 2017) use a sequence of steps θk+1 ← θk − αk∇F (θk) for
step sizes αk > 0 and an operator ∇ that we always take to be the gradient with respect to
θ. Very commonly, neither F nor its gradient is available at reasonable computational cost
and a Monte Carlo (MC) approximation is used instead. The update

θk+1 ← θk − αk∇F̂ (θk) for ∇F̂ (θk) =
1

n

n∑
i=1

g(zi; θ) and g(z; θ) = ∇f(z; θ) (2)

for zi
iid∼ p is a simple form of stochastic gradient descent (SGD) (Duchi, 2018). There are

many versions of SGD, notably AdaGrad (Duchi et al., 2011) and Adam (Kingma and Ba,

c©2021 Sifan Liu and Art B. Owen.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/21-0498.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/21-0498.html

Liu and Owen

2014) which are prominent in optimization of neural networks among other learning algo-
rithms. Very often SGD involves sampling a mini-batch of observations. In this paper we
consider SGD that samples instead some random quantities from a continuous distribution.

While a simple SGD is often very useful, there are settings where it can be improved.
SGD is known to have slow convergence when the Hessian of F is ill-conditioned (Bottou
et al., 2018). When θ is not very high dimensional, the second order methods such as
Newton iteration using exact or approximate Hessians can perform better. Quasi-Newton
methods such as BFGS and L-BFGS (Nocedal and Wright, 2006) that we describe in more
details below can handle much higher dimensional parameters than Newton methods can
while still improving upon first order methods. We note that quasi second-order methods
cannot be proved to have better convergence rate than SGD. See Agarwal et al. (2012).
They can however have a better implied constant.

A second difficulty with SGD is that MC sampling to estimate the gradient can be error
prone or inefficient. For a survey of MC methods to estimate a gradient see Mohamed et al.
(2020). Improvements based on variance reduction methods have been adopted to improve
SGD. For instance Paisley et al. (2012) and Miller et al. (2017) both employ control variates
in VB. Recently, randomized quasi-Monte Carlo (RQMC) methods, that we describe below,
have been used in place of MC to improve upon SGD. Notable examples are Balandat et al.
(2020) for Bayesian optimization and Buchholz et al. (2018) for VB. RQMC can greatly
improve the accuracy with which integrals are estimated. The theory in Buchholz et al.
(2018) shows how the improved integration accuracy from RQMC translates into faster
optimization for SGD. The primary benefit is that RQMC can use a much smaller value of
n. This is also seen empirically in Balandat et al. (2020) for Bayesian optimization.

Our contribution is to combine RQMC with a second order limited memory method
known as L-BFGS. We show theoretically that improved integration leads to improved
optimization. We show empirically for some VB examples that the optimization is improved.
We find that RQMC regularly allows one to use fewer samples per iteration and in a crossed
random effects example it found a better solution than we got with MC.

At step k of our stochastic optimization we will use some number n of sample val-
ues, zk,1, . . . ,zk,n. It is notationally convenient to group these all together into Zk =
(zk,1, . . . ,zk,n). We also write

ḡ(Zk; θ) =
1

n

n∑
i=1

g(zk,i; θ) (3)

for gradient estimation at step k.
The closest works to ours are Balandat et al. (2020) and Buchholz et al. (2018). Like

Balandat et al. (2020) we incorporate RQMC into L-BFGS. Our algorithm differs in that
we take fresh RQMC samples at each iteration where they had a fixed sample of size n that
they used in a ‘common random numbers’ approach. They prove consistency as n → ∞
for both MC and RQMC sampling. Their proof for RQMC required the recent strong law
of large numbers for RQMC from Owen and Rudolf (2021). Our analysis incorporates the
geometric decay of estimation error as the number K of iterations increases, similar to
that used by Buchholz et al. (2018) for SGD. Our error bounds include sampling variances
through which RQMC brings an advantage.

2

Quasi-Monte Carlo Quasi-Newton

An outline of this paper is as follows. Section 2 reviews the optimization methods we
need. Section 3 gives basic properties of scrambled net sampling, a form of RQMC. Section 4
presents our main theoretical findings. The optimality gap after K steps of stochastic quasi-
Newton is F (θK) − F (θ∗) where θ∗ is the optimal value. Theorem 1 bounds the expected
optimality gap by a term that decays exponentially in K plus a second term that is linear
in a measure of sampling variance. RQMC greatly reduces that second non-exponentially
decaying term which will often dominate. A similar bound holds for tail probabilities of the
optimality gap. Theorem 4 obtains a comparable bound for E(‖θK − θ∗‖2). Section 5 gives
numerical examples on some VB problems. In a linear regression problem where the optimal
parameters are known, we verify that RQMC converges to them at an improved rate in n.
In logistic regression, crossed random effects and variational autoencoder examples, we see
the second order methods greatly outperform SGD in terms of wall clock time to improve
F . Since the true parameters are unknown we cannot compare accuracy of MC and RQMC
sampling algorithms for those examples. In some examples RQMC finds a better evidence
lower bound (ELBO, to be defined in Section 5) than MC does when both use SGD, but
the BFGS algorithms find yet better ELBOs. Section 6 gives some conclusions. The proofs
of our main results are in an appendix.

2. Quasi-Newton Optimization

We write ∇2F (θ) for the Hessian matrix of F (θ). The classic Newton update is

θk+1 ← θk − (∇2F (θk))
−1∇F (θk). (4)

Under ideal circumstances it converges quadratically to the optimal parameter value θ∗.
That is ‖θk+1 − θ∗‖ = O(‖θk − θ∗‖2). Newton’s method is unsuitable for the problems
we consider here because forming ∇2F ∈ Rd×d may take too much space and solving the
equation in (4) can cost O(d3) which is prohibitively expensive. The quasi-Newton methods
we consider do not form explicit Hessians. We also need to consider stochastic versions of
them.

2.1 BFGS and L-BFGS

The BFGS method is named after four independent discoverers: Broyden, Fletcher, Gold-
farb and Shanno. See Nocedal and Wright (2006, Chapter 6). BFGS avoids explicitly
computing and inverting the Hessian of F . Instead it maintains at step k an approximation
Hk to the inverse of ∇2F (θk). After an initialization such as setting H1 to the identity
matrix, the algorithm updates θ and H via

θk+1 ← θk − αkHk∇F (θk), and

Hk+1 ←
(
I −

sky
ᵀ
k

sᵀkyk

)
Hk

(
I −

yks
ᵀ
k

sᵀkyk

)
+
sks

ᵀ
k

sᵀkyk

respectively, where

sk = θk+1 − θk and yk = ∇F (θk+1)−∇F (θk).

3

Liu and Owen

The stepsize αk is found by a line search.
Storing Hk is a burden and the limited-memory BFGS (L-BFGS) algorithm of Nocedal

(1980) avoids forming Hk explicitly. Instead it computes Hk∇F (θk) using a recursion based
on the m most recent (sk, yk) pairs. See Nocedal and Wright (2006, Algorithm 7.4).

2.2 Stochastic Quasi-Newton

Ordinarily in quasi-Newton algorithms the objective function remains constant through all
the iterations. In stochastic quasi-Newton algorithms the sample points change at each
iteration which is like having the objective function F change in a random way at iteration
k. Despite this Bottou et al. (2018) find that quasi-Newton can work well in simulation-
optimization with these random changes.

We will need to use sample methods to evaluate gradients. Given Z = (z1, . . . ,zn) the
sample gradient is ḡ(Z; θ) as given at (3). Stochastic quasi-Newton algorithms like the one
we study also require randomized Hessian information.

Byrd et al. (2016) develop a stochastic L-BFGS algorithm in the mini-batch setting.
Instead of adding every correction pair (sk, yk) to the buffer after each iteration, their
algorithm updates the buffer every B steps using the averaged correction pairs. Specifically,
after every B iterations, for k = t × B, it computes the average parameter value θ̄t =
B−1

∑k
j=k−B+1 θj over the most recent B steps. It then computes the correction pairs by

st = θ̄t − θ̄t−1 and

yt = ḡ(Z̃t; θ̄t)− ḡ(Z̃t; θ̄t−1) =
1

n

n∑
i=1

(
g(θ̄t, z̃t,i)− g(θ̄t−1, z̃t,i)

)
,

and adds the pair (st, yt) to the buffer. Here Z̃t = (z̃t,1, . . . , z̃t,n) is a random sample of size

n = nh Hessian update samples. The samples Z̃t for t > 1 are completely different from
and independent of Zk for k > 1 used to update gradient estimates at step k. This method
is called SQN (stochastic quasi-Newton). As suggested by the authors, B is often taken
to be 10 or 20. So one can afford to use relatively large nh because the amortized average
number of gradient evaluations per iteration is ng + 2nh/B.

The objective function from Byrd et al. (2016) has the form F (θ) = (1/N)
∑N

i=1 f(xi; θ),
and {x1, . . . ,xN} is a fixed training set. At each iteration, their random sample is a subset
of n� N points in the data set, not a sample generated from some continuous distribution.
However, it is straightforward to adapt their algorithm to our setting. The details are in
Algorithm 1 in Section 3.

2.3 Literature Review

Many authors have studied how to use L-BFGS in stochastic settings. Bollapragada et al.
(2018) propose several techniques for stochastic L-BFGS, including increasing the sample
size with iterations (progressive batching), choosing the initial step length for backtracking
line search so that the expected value of the objective function decreases, and computing
the correction pairs using overlapping samples in consecutive steps (Berahas et al., 2016).

Another way to prevent noisy updates is by a lengthening strategy from Xie et al. (2020)
and Shi et al. (2020). Classical BFGS would use the correction pair (αkpk, g(θk+αkpk, z)−

4

Quasi-Monte Carlo Quasi-Newton

g(θk, z)), where pk = −Hkg(θk, z) is the update direction, and z encodes the randomness
in estimating the gradients. Because the correction pairs may be dominated by noise, Xie
et al. (2020) suggested the lengthening correction pairs

(sk, yk) = (βkpk, g(θk + βkpk)− g(θk)), where βk > αk.

Shi et al. (2020) propose to choose αk by the Armijo-Wolfe condition, while choosing βk
large enough so that [g(θk + βkpk)− g(θk)]

ᵀpk/‖pk‖ is sufficiently large.
Gower et al. (2016) use sketching strategies to update the inverse Hessian approxima-

tions by compressed Hessians. Moritz et al. (2016) combines the stochastic quasi-Newton
algorithm in Byrd et al. (2016) and stochastic variance reduced gradients (SVRG) (Johnson
and Zhang, 2013) by occasionally computing the gradient using a full batch.

Balandat et al. (2020) also applied RQMC with L-BFGS in Bayesian optimization. At
each step of Bayesian optimization, one needs to maximize the acquisition function of the
form α(θ) := E [`(g(θ))], where g is a Gaussian process and ` is a loss function. They use
the sample average approximation α̂(θ) := (1/n)

∑n
i=1 `(ξi(θ)), where ξi(θ) ∼ g(θ). They

prove that the maximizer of α̂ converges to that of α when n→∞ for both MC and RQMC
sampling under certain conditions. The RQMC result relies on the recent discovery of the
strong law of large numbers for RQMC (Owen and Rudolf, 2021).

Using QMC or RQMC in stochastic optimization is not new. Drew and Homem-de Mello
(2006) design a sampling mechanism which uses QMC in important dimensions and MC in
the remaining dimensions. Chapter 7.3 of Homem-de Mello and Bayraksan (2014) reviews
some applications of QMC in stochastic optimization. Homem-de Mello and Bayraksan
(2014) study the convergence rate of the estimator of the optimal solution as the sample
sizes increases. Roughly speaking, they show that the convergence rate of | argmin F̂ (θ) −
argminF (θ)| is about the same as the pointwise estimator |F̂ (θ)− F (θ)|.

3. Scrambled Net Sampling

Scrambled nets are a form of RQMC sampling. We begin by briefly describing plain quasi-
Monte Carlo (QMC) sampling. QMC is most easily described for computing expectations
of f(u) for u ∼ U[0, 1]s. In our present context f(·) will be a component of g(·; θ) and not
the same as the f in equation (1). In practice we must ordinarily transform the random
variables u to some other distribution such as a Gaussian via x = ψ(u). We suppose that
ψ(u) ∼ p for some transformation ψ(·). The text by Devroye (1986) has many examples
of such transformations. Here we subsume any such transformation ψ(·) into the definition
of f . We note that acceptance-rejection strategies do not fit well into this approach and
alternatives such as inversion are better suited.

In QMC sampling, we estimate µ =
∫

[0,1]s f(u) du by µ̂ = (1/n)
∑n

i=1 f(ui), just like in
MC sampling except that distinct points ui are chosen so that the discrete uniform distribu-
tion U{u1, . . . ,un} is made very close to the continuous U[0, 1]s distribution. The difference
between these two distributions can be quantified in many ways, called discrepancies (Chen
et al., 2014). For a comprehensive treatment of QMC see Dick and Pillichshammer (2010)
or Niederreiter (1992) or Dick et al. (2013).

When f is of bounded variation in the sense of Hardy and Krause (BVHK) (see Owen
(2005)) then QMC attains the asymptotic error rate |µ̂−µ| = O(n−1 log(n)s−1) = O(n−1+ε)

5

Liu and Owen

for any ε > 0. QMC is deterministic and to get practical error estimates RQMC methods
were introduced. In RQMC, each individual ui ∼ U[0, 1]d while collectively u1, . . . ,un still
retain the low discrepancy property. Uniformity of ui makes RQMC unbiased: E(µ̂) = µ.
Then if f ∈ BVHK we get an RMSE of O(n−1+ε). The whole RQMC process can then be
replicated independently to quantify uncertainty. See Cranley and Patterson (1976) and
Owen (1995) for methods and a survey in L’Ecuyer and Lemieux (2002).

Scrambled net sampling (Owen, 1995) is a form of RQMC that operates by randomly
permuting the bits (more generally digits) of QMC methods called digital nets. The best
known are those of Sobol’ (1969) and Faure (1982). In addition to error estimation, scram-
bled nets give the user some control over the powers of log(n) in the QMC rate and also
extend the domain of QMC from Riemann integrable functions of which BVHK is a subset
to much more general functions including some with integrable singularities. For any inte-
grand f ∈ L2[0, 1]s, MC has RMSE O(n−1/2) while scrambled nets have RMSE o(n−1/2)
without requiring f ∈ BVHK or even that f is Riemann integrable (Owen, 1997b). For
fixed n, each construction of scrambled nets has a ‘gain constant’ Γ <∞ so that the RMSE
is below

√
Γn−1/2 for any f ∈ L2[0, 1]s. This effectively counters the powers of log(n). For

smooth enough f , an error cancellation phenomenon for scrambled nets yields an RMSE of
O(n−3/2 log(n)(s−1)/2) = O(n−3/2+ε) (Owen, 1997a; Yue and Mao, 1999; Owen, 2008). The
logarithmic powers here cannot ‘set in’ until they are small enough to obey the Γ1/2n−1/2

upper bound. Some forms of scrambled net sampling satisfy a central limit theorem (Loh,
2003; Basu and Mukherjee, 2017).

Very recently, a strong law of large numbers

Pr
(

lim
n→∞

µ̂n = µ
)

= 1

has been proved for scrambled net sampling assuming only that f ∈ L1+δ[0, 1]s for some
δ > 0 (Owen and Rudolf, 2021). The motivation for this result was that Balandat et al.
(2020) needed a strong law of large numbers to prove consistency for their use for scrambled
nets in Bayesian optimization.

Figure 1 graphically compares MC, QMC and RQMC points for s = 2. The underlying
QMC method is a Sobol’ sequence using ‘direction numbers’ from Joe and Kuo (2008). We
can see that MC points leave voids and create clumps. The QMC points are spread out
more equally and show a strong diagonal structure. The RQMC points satisfy the same
discrepancy bounds as the QMC points do but have broken up some of the structure.

In favorable settings the empirical behaviour of QMC and RQMC for realistic n can be
as good as their asymptotic rates. In less favorable settings RQMC can be like MC with
some reduced variance. The favorable integrands are those where f is nearly additive or at
least dominated by sums of only a few of their inputs at a time. See Caflisch et al. (1997)
for a definition of functions of ‘low effective dimension’ and Dick et al. (2013) for a survey
of work on reproducing kernel Hilbert spaces of favorable integrands.

We propose to combine the stochastic quasi-Newton method with RQMC samples to
create a randomized quasi-stochastic quasi-Newton (RQSQN) algorithm. At the k’th iter-
ation, we draw an independently scrambled refreshing sample Zk = (zk,1, . . . ,zk,ng) of size
n = ng via RQMC to compute the gradient estimator ḡ(Zk; θk). Then we find the descent
direction Hkḡ(Zk; θk) using an L-BFGS two-loop recursion. Then we update the solution

6

Quasi-Monte Carlo Quasi-Newton

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Unit square

512 MC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Unit square

512 QMC

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Unit square

512 RQMC

Figure 1: Each panel shows 512 points in [0, 1]2. From left to right they are plain MC, Sobol’
points and scrambled Sobol’ points. From Owen and Rudolf (2021): Copyright c©
2021 Society for Industrial and Applied Mathematics. Reprinted with permission.
All rights reserved.

by
θk+1 ← θk − αkHkḡ(Zk; θk).

Here αk may be found by line search with the Wolfe condition when using L-BFGS. See
Chapter 3.1 in Nocedal and Wright (2006).

Algorithm 1 shows pseudo-code for an RQMC version of SQN based on L-BFGS. It
resembles the SQN algorithm in Byrd et al. (2016), except that the random samples are
drawn by using RQMC instead of being sampled without replacement from a finite data set.
Note that we don’t compute the Hessian directly. We either compute the Hessian-vector
product ∇2f(Zt; θ̄t)st or use gradient differences ∇f(θ̄t)−∇f(θ̄t−1).

4. Theoretical Guarantees

In this section, we study the convergence rate of a general quasi-Newton iteration based on
n sample points zk1, . . . ,zkn ∼ p at stage k. The algorithm iterates as follows

θk+1 ← θk − αkHk∇f̄(Zk; θk), where (5)

∇f̄(Zk; θk) =
1

n

n∑
i=1

∇f(zki; θk) = ḡ(Zk; θk).

Here Hk is an approximate inverse Hessian. We let F (θ) = E(f(zki; θ)). We assume that the
gradient estimator g(Zk; θk) is unbiased conditionally on θk, i.e., E(g(Zk; θk) | θk) = ∇F (θk).
The θk are random because they depend on Zk′ for k′ < k.

The Hessian estimates Hk for k > 1 are also random because they depend directly on
some additional inputs Z̃t for those Hessian update epochs t which occur prior to step k.

7

Liu and Owen

Algorithm 1: RQMC-SQN

Input : Initialization θ1, buffer size m, Hessian update interval B, sample sizes ng
and nh for estimating gradient and updating buffer

Output: Solution θ
t← −1;
for k = 1, 2, . . . do

Take an RQMC sample zk,1, . . . ,zk,ng ∼ p;
Calculate the gradient estimator gk ← ḡ(Zk; θk) = 1

ng

∑ng

i=1 g(zk,i; θk);

if t < 1 then
θk+1 ← θk − αkgk;

else
Find Htgk by the two-loop recursion with memory size m;
Find αk by line search;
Update θk+1 ← θk − αkHtgk;

if mod (k,B) = 0 then
t← t+ 1;

θ̄t ← B−1
∑k

j=k−B+1 θj ;

if t > 0 then
Take an RQMC sample z̃t,1, . . . , z̃t,nh

∼ p;
Add st = (θ̄t − θ̄t−1), yt = ḡ(Z̃t; θ̄t) = 1

nh

∑nh
i=1∇2f(z̃t,i; θ̄t)st to the

buffer;

They also depend on Zk′ for k′ < k because those random variables affect θk′ . In our
algorithms Hk is independent of θk. For RQMC this involves fresh rerandomizations of the
underlying QMC points at step k. The alternative is “going deeper” into a given RQMC
sequence, that is, using the n points with indices in {(k − 1)n+ 1, . . . , kn} to estimate the
gradient in the k-th iteration. This would not satisfy independence. While it might possibly
perform better it is harder to analyze and we saw little difference empirically in doing that.
Our theory requires regularity of the problem as follows.

Assumption 1 We impose these three conditions:

(a) Strong convexity. For some c > 0,

F (θ′) > F (θ) +∇F (θ)ᵀ(θ′ − θ) +
c

2
‖θ′ − θ‖22 for all θ, θ′ ∈ Θ.

(b) Lipschitz continuous objective gradients. For some L <∞,

‖∇F (θ)−∇F (θ′)‖ 6 L‖θ − θ′‖ for all θ, θ′ ∈ Θ.

(c) Bounded variance of the gradient estimator. For some M <∞,

tr
(
Var(ḡ(Zk; θk) |θk)

)
6M for all k > 1.

Here tr(A) means the trace of the matrix A.

8

Quasi-Monte Carlo Quasi-Newton

These are standard assumptions in the study of SGD. For example, see Assumptions
4.1 and 4.5 of Bottou et al. (2018). Strong convexity implies that there exists a unique
minimizer θ∗ to estimate. We write F ∗ = F (θ∗), for the best possible value of F . We must
have some smoothness and Lipshitz continuity is a mild assumption. The quantity M will
prove to be important below. We can get a much better M from RQMC than from MC,
because asymptotically RQMC has variance o(1/n) compared to O(1/n) for MC. For finite
n, RQMC could have a worse variance but never more than Γ times the MC variance. The
other way to reduce M is to increase n. When RQMC has an advantage it is because it
gets a smaller M for the same n, or to put it another way, it can get comparable M with
smaller n.

For two symmetric matrices A and B, A 4 B means that B−A is positive semi-definite.
We denote the spectral norm of A by ‖A‖.

Theorem 1 (Convergence of optimality gap) Suppose that our simulation-optimization
problem satisfies the regularity conditions in Assumption 1. Assume that we run updates as
in equation (5) where the approximate inverse Hessian matrices Hk satisfy h1I 4 Hk 4 h2I
for some 0 < h1 6 h2 and all k > 1. Next, assume constant step sizes αk = α with
0 < α 6 h1/(Lh

2
2). Then for every K > 1

E(F (θK)− F ∗) 6 (1− αch1)K(F (θ0)− F ∗) +
αLh2

2

2ch1
M. (6)

Furthermore, if ‖g(θ,z)‖ 6 C for some constant C for all θ and z, then for any ε > 0

F (θK)− F ∗ 6 (1− αch1)K(F (θ0)− F ∗) +
αLh2

2

2ch1
M + C2

√
2α

ch1

(
h2 − Lαh2

1 + h1

)
ε (7)

holds with probability at least 1− e−ε2.

Proof See Section A.1 in the Appendix.

Remark 2 As K →∞ the expected optimality gap is no larger than [(αLh2
2)/(2ch1)]×M .

The variance bound M = M(n) (for n points zk,i) depends on the sampling method we
choose. From the results in Section 3, scrambled nets sampling reduces M from O(1/n) to
o(1/n).

if the gradient function is smooth enough (an assumption not included in Assumption 1),
scrambled nets can reduce M from O(1/n) for MC to o(1/n) attaining O(n−2+ε) or even
O(n−3+ε) in favorable cases. When MMC < ∞ for MC, then for scrambled net RQMC
MRQMC 6 ΓMMC, which limits the harm if any that could come from RQMC.

Remark 3 By Lemma 3.1 of Byrd et al. (2016), the L-BFGS iteration satisfies h1I 4
Hk 4 h2I under weaker conditions than we have in Theorem 1. We can replace the bound
‖g(z; θ)‖ 6 C by E(‖g(z; θ)‖2) 6 C2 <∞.

The following theorem states the convergence rate of ‖θk − θ∗‖.

9

Liu and Owen

Theorem 4 (Convergence of variables) Under the conditions of Theorem 1, suppose
that

c

L
>
h2 − h1

h2 + h1
and 0 < α <

(h1 + h2)c− (h2 − h1)L

2L2h2
2

.

Then for every K > 1,

E(‖θK − θ∗‖2) 6
(
1− α2h2

2L
2
)K‖θ0 − θ∗‖2 +M/L2.

Proof See Section A.2 in the Appendix.

Remark 5 When K →∞, the limiting expected squared error is bounded by α2h2
2M . Once

again the potential gain from RQMC is that it will often reduce M compared to MC or get
a good M with smaller n than MC uses.

5. Variational Bayes

In this section we investigate quasi-Newton quasi-Monte Carlo optimization for some VB
problems. Variational Bayes begins with a posterior distribution p(z |x) that is too incon-
venient to work with. This usually means that we cannot readily sample z. We turn instead
to a distribution qθ for θ ∈ Θ from which we can easily sample z ∼ qθ. We now want to
make a good choice of θ and in VB the optimal value θ∗ is taken to be the minimizer of the
KL divergence between distributions:

θ∗ = argmin
θ∈Θ

DKL(qθ(z) ‖ p(z |x)).

We emphasize that in this section, we denote p(z |x) as the posterior distribution of z given
x, instead of the distribution corresponding to the expectation in the objective function as
before. We use Eθ(·) to denote expectation with respect to z ∼ qθ.

We suppose that z has a prior distribution p(z). Then Bayes rule gives

DKL(qθ(z) ‖ p(z |x)) = Eθ
(

log qθ(z)− log
p(x |z)p(z)

p(x)

)
= DKL(qθ(z) ‖ p(z))− Eθ(p(x |z)) + log p(x).

The last term does not depend on θ and so we may minimize DKL(· ‖ ·) by maximizing

L(θ) = Eθ(log p(x |z))−DKL(qθ(z) ‖ p(z)).

This L(·) is known as the evidence lower bound (ELBO). The first term Eθ(log p(x |z))
expresses a preference for θ having a large value of the likelihood of the observed data x given
the latent data z. The second term −DKL(qθ(z ‖ p(z)) can be regarded as a regularization,
penalizing parameter values for which qθ(z) is too far from the prior distribution p(z).

To optimize L(θ) we need ∇L(θ). It is usual to choose a family qθ for which DKL(· ‖ ·)
and its gradient are analytically tractable. We still need to estimate the gradient of the
first term, i.e.,

∇Eθ(log p(x |z)).

10

Quasi-Monte Carlo Quasi-Newton

One method is to use the score function ∇ log pθ(z) and Fisher’s identity

∇Eθ(f(z)) = Eθ(f(z)∇ log pθ(z))

with f(·) = log(p(x | ·)). Unfortunately an MC strategy based on this approach can suffer
from large variance.

The most commonly used method is to write the parameter θ as a function of some un-
derlying common random variables. This is known as the reparameterization trick (Kingma
and Welling, 2014). Suppose that there is a base distribution p0 and a transformation T (·; θ),
such that if z ∼ p0, then T (z; θ) ∼ qθ. Then

∇Eθ(f(θ)) = Ep0(∇f(T (z; θ))).

It is often easy to sample from the base distribution p0, and thus to approximate the
expectation by MC or RQMC samples. This is the method we use in our examples.

5.1 Bayesian Linear Regression

We start with a toy example where we can find θ∗ analytically. This will let us study
‖θk − θ∗‖ empirically. We consider the hierarchical linear model

y |β ∼ N (Xβ, γ2IN) for β ∼ N (0, Id)

where X ∈ RN×d is a given matrix of full rank d 6 N and γ2 ∈ (0,∞) is a known error
variance. Here N is the number of data points in our simulation and not the number n of
MC or RQMC gradient evaluations. The entries in X are IID N (0, 1) random variables and
we used γ = 0.5.

Translating this problem into the VB setup, we make our latent variable z the unknown
parameter vector (β1, . . . , βd), and we choose a very convenient variational distribution qθ

with βj
ind∼ N (µj , σ

2
j) for j = 1, . . . , d. All simulations in this paper take this diagonal

Gaussian distribution as the variational distribution for simplicity. This is known as a
mean-field variational family and is one of the most commonly used models in variational
Bayes Kingma and Ba (2014); Blei et al. (2017). Now θ = (µ1, . . . , µd, σ1, . . . , σd), and y
plays the role of the observations x. We also write µ = (µ1, . . . , µd) and σ = (σ1, . . . , σd)
for the parts of θ.

The ELBO has the expression

L(θ) = Eθ(log p(y |β))−DKL(qθ(β) ‖ p(β |y))

= Eθ(log p(y |β))−
d∑
j=1

(σ2
j + µ2

j − 1

2
− log σj

)
,

where log p(y |β) = −(p/2) log(2πγ2)− ‖y −Xβ‖22/(2γ2). In this example, the ELBO has
a closed form and the optimal variational parameters are given by

µ∗ =
(XᵀX

γ2
+ Id

)−1Xᵀy

γ2
and σ∗j =

(
1 +
‖X•j‖2

γ2

)−1/2
,

11

Liu and Owen

Figure 2: The left panel has the average of log2 |L(θk)−L(θ∗)| over the last 50 values of k ver-
sus n. The middle panel has that average of log2 ‖θk−θ∗‖. The right panel has the
average of log2 ‖g(zk; θk)−∇F (θk)‖ versus n where ĝ(θ̂k) = (1/n)

∑n
i=1 g(zk,i; θk).

The straight lines are least squares fits with their slopes written above them.

where X•j ∈ RN is the j’th column of X.
In this setting the Hessian is simply −XᵀX/γ2 and so stochastic quasi-Newton gradient

estimates are not needed. We can however compare the effectiveness of MC and RQMC
in SGD. We estimate the gradient by MC or RQMC samples and use SGD via AdaGrad
(Duchi et al., 2011) to maximize the ELBO.

Our computations used one example data set with N = 300 data points, d = 100
variables and K = 1000 iterations. At each iteration, we draw a new sample of sample size
n of the d-dimensional Gaussian used to sample β. The sample size n is fixed in each run,
but we vary it between over the range 8 6 n 6 8192 through powers of 2 in order to explore
how quickly MC and RQMC converge.

For RQMC, we use the scrambled Sobol’ points implemented in PyTorch (Balandat
et al., 2020) using the inverse Gaussian CDF ψ(·) = Φ−1(·) to translate uniform random
variables into standard Gaussians that are then multiplied by σj and shifted by µj to get
the random βj that we need. We compute the log errors log2 ‖Lk −L∗‖ and log2 ‖θk − θ∗‖
and average these over the last 50 iterations. The learning rate in AdaGrad was taken to
be 1.

The results are shown in Figure 2. We see there that RQMC achieves a higher accuracy
than plain MC. This happens because RQMC estimates the gradient with lower variance.
In this simple setting the rate of convergence is improved. Balandat et al. (2020) report
similar rate improvements in Bayesian optimization.

5.2 Bayesian Logistic Regression

Next we consider another simple example, though it is one with no closed form expression for
θ∗. We use it to compare first and second order methods. The Bayesian logistic regression
model is defined by

Pr(yi = ±1 |xi, β) =
1

1 + exp(∓xᵀ
i β)

, i = 1, . . . , N where β ∼ N (0, Id).

12

Quasi-Monte Carlo Quasi-Newton

As before, β is the unknown z, and pθ has βj
ind∼ N (µj , σ

2
j), for θ = (µ1, . . . , µd, σ1, . . . , σd).

The ELBO has the form

Lθ = Eθ
(N∑
i=1

logS(yix
ᵀ
i β)

)
−

d∑
j=1

(σ2
j + µ2

j − 1

2
− log σj

)
,

where S denotes the sigmoid function S(x) = (1 + e−x)−1.
In our experiments, we take N = 30 and d = 100. With d > N it is very likely that

the data can be perfectly linearly separated and then a Bayesian approach provides a form
of regularization. The integral to be computed is in 100 dimensions, and the parameter
to be optimized is in 200 dimensions. We generate the data from β ∼ N (0, Id/N), then

xi
iid∼N (0, Id) and finally yi = 1 with probability 1/(1 + e−x

ᵀ
i β) are sampled independently

for i = 1, . . . , N .
In Figure 3, we show the convergence of ELBO versus wall clock times for different

combinations of sampling methods (MC, RQMC) and optimization methods (AdaGrad,
L-BFGS). The left panel draws ng = 8 samples in each optimization iterations, while the
right panel takes ng = 128. The initial learning rate for AdaGrad is 0.01. The L-BFGS
is described in Algorithm 1, with nh = 1024 Hessian evaluations every B = 20 steps with
memory size M = 50 and α = 0.01. Because L-BFGS uses some additional gradient function
evaluations to update the Hessian information at every B’th iteration that the first order
methods do not use, we compare wall clock times. The maximum iteration count in the line
search was 20. We used the Wolfe condition (Condition 3.6 in Nocedal and Wright (2006))
with c1 = 0.001 and c2 = 0.01.

For this problem, L-BFGS always converges faster than AdaGrad. We can also see that
plain MC is noisier than RQMC. The ELBOs for AdaGrad still seem to be increasing slowly
even at the end of the time interval shown. For AdaGrad, RQMC consistently has a slightly
higher ELBO than MC does.

5.3 Crossed Random Effects

In this section, we consider a crossed random effects model. Both Bayesian and frequentist
approaches to crossed random effects can be a challenge with costs scaling like N3/2 or worse.
See Papaspiliopoulos et al. (2020) and Ghosh et al. (2020) for Bayesian and frequentist
approaches and also the dissertation of Gao (2017).

An intercept only version of this model has

Yij
ind∼ N (µ+ ai + bj , 1), 1 6 i 6 I, 1 6 j 6 J

given µ ∼ N (0, 1), ai
iid∼N (0, σ2

a), and bj
iid∼N (0, σ2

b) where log σa and log σb are bothN (0, 1).
All of µ, ai, bj and the log standard deviations are independent.

We use VB to approximate the posterior distribution of the d = I + J + 3 dimensional
parameter z = (µ, log σa, log σb,a,b). In our example, we take I = 10 and J = 5. As before
q(z | θ) is chosen to be Gaussian with independent coordinates and θ has their means and
standard deviations. In Figure 4, we plot the convergence of ELBO for different combina-
tions of sampling methods and optimization methods. The BFGS method takes B = 20,

13

Liu and Owen

Figure 3: ELBO versus wall clock time in VB for Bayesian logistic regression. The methods
and setup are described in the text. There are ng ∈ {128, 256} gradient samples
at each iteration and the second order methods use nh = 1024 Hessian samples
every B = 20’th iteration.

Figure 4: ELBO versus wall clock time in VB for crossed random effects. The methods and
setup are described in the text. There are ng ∈ {8, 128} gradient samples at each
iteration.

M = 30, nh = 512. We used a learning rate of 0.01 in AdaGrad. We observe that when
the sample size is 8 (left), plain Monte Carlo has large fluctuations even when converged,
especially for BFGS. When the sample size is 128 (right), the fluctuations disappear. But
RQMC still achieves a higher ELBO than plain Monte Carlo for BFGS. In both cases,
BFGS finds the optimum faster than AdaGrad.

5.4 Variational Autoencoder

A variational autoencoder (VAE, Kingma and Welling (2014)) learns a generative model
for a data set. A VAE has a probabilistic encoder and a probabilistic decoder. The encoder

14

Quasi-Monte Carlo Quasi-Newton

first produces a distribution qφ(z |x) over the latent variable z given a data point x, then
the decoder reconstructs a distribution pθ(x | z) over the corresponding x from the latent
variable z. The goal is to maximize the marginal probability pθ(x). Observe that the ELBO
provides a lower bound of log(pθ(x)):

log pθ(x)−DKL(qφ(z |x) ‖ pθ(z |x)) = Eφ(log pθ(x |z) |x)−DKL(qφ(z |x) ‖ pθ(z)) =: L(θ, φ |x),

where Eφ(· |x) denotes expection for random z given x with parameter φ. In this section z
is the latent variable, and not a part of the Z that we use in our MC or RQMC algorithms.
We do not refer to those variables in our VAE description below.

The usual objective is to maximize the ELBO
∑N

i=1 L(θ, φ |xi) for a sample of N IID
xi and now we have to optimize over φ as well as θ. The first term Eφ(log pθ(x |z)) in the
ELBO is the reconstruction error, while the second term DKL(qφ(z | x) ‖ pθ(z)) penalizes
parameters φ that give a posterior qφ(z | x) too different from the prior pθ(z). Most
commonly, qθ(z |x) = N (µ(x; θ),Σ(x; θ)), and pθ(z) = N (0, I), so that the KL-divergence
term DKL(qφ(z | x) ‖ pθ(z)) has a closed form. The decoding term pθ(x | z) is usually
chosen to be a Gaussian or Bernoulli distribution, depending on the data type of x. The
expectation Eφ(log pθ(x |z) |x) is ordinarily estimated by MC. We implement both plain
MC and RQMC in our experiments. To maximize the ELBO, the easiest way is to use SGD
or its variants. We also compare SGD with L-BFGS in the experiments.

The experiment uses the MNIST data set in PyTorch. It has 60,000 28× 28 gray scale
images, and so the dimension is 784. All experiments were conducted on a cluster node
with 2 CPUs and 4GB memory. The training was conducted in a mini-batch manner with
batch size 128. The encoder has a hidden layer with 800 nodes, and an output layer with
40 nodes, 20 for µ and 20 for σ. Our Σ(x; θ) takes the form diag(σ(x; θ)). The decoder has
one hidden layer with 400 nodes.

In Figure 5a, we plot the ELBO versus wall clock time for different combinations of
sampling methods (MC, RQMC) and optimization methods (Adam, BFGS). The learning
rate for Adam is 0.0001. For BFGS, the memory size is M = 20. The other tuning
parameters are set to the defaults from PyTorch. We observe that BFGS converged faster
than Adam. For BFGS, we can also see that RQMC achieves a slightly higher ELBO than
MC. Figure 5b through 5e shows some reconstructed images using the four algorithms.

6. Discussion

RQMC methods are finding uses in simulation optimization problems in machine learn-
ing, especially in first order SGD algorithms. We have looked at their use in a second
order, L-BFGS algorithm. RQMC is known theoretically and empirically to improve the
accuracy in integration problems compared to both MC and QMC. We have shown that
improved estimation of expected gradients translates directly into improved optimization
for quasi-Newton methods. There is a small burden in reprogramming algorithms to use
RQMC instead of MC, but that is greatly mitigated by the appearance of RQMC algo-
rithms in tools such as BoTorch (Balandat et al., 2020) and the forthcoming scipy 1.7
(scipy.stats.qmc.Sobol) and QMCPy at https://pypi.org/project/qmcpy/.

15

https://pypi.org/project/qmcpy/

Liu and Owen

(a) ELBO

(b) BFGS RQMC

(c) BFGS MC

(d) Adam RQMC

(e) Adam MC

Figure 5: Plot (a) shows the ELBO versus wall clock time for MC and RQMC used in both
L-BFGS and Adam. Plots (b) through (e) show example images.

Our empirical examples have used VB. The approach has potential value in Bayesian
optimization (Frazier, 2018) and optimal transport (El Moselhy and Marzouk, 2012; Bigoni
et al., 2016) as well.

The examples we chose were of modest scale where both first and second order methods
could be used. In these settings, we saw that second order methods improve upon first
order ones. For the autoencoder problem the second order methods converged faster than
the first order ones did. This also happenend for the crossed random effects problem where
the second order methods found better ELBOs than the first order ones did and RQMC-
based quasi-Newton algorithm found a better ELBO than the MC-based quasi-Newton did
without increasing the wall clock time.

It is possible that RQMC will bring an advantage to conjugate gradient approaches as
they have some similarities to L-BFGS. We have not investigated them.

Acknowledgments

This work was supported by the National Science Foundation under grant IIS-1837931. The
authors thank the editor and the anonymous reviews for helpful feedback.

16

Quasi-Monte Carlo Quasi-Newton

Appendix A. Proof of main theorems

Our approach is similar to that used by Buchholz et al. (2018). They studied RQMC with
SGD whereas we consider L-BFGS, a second order method.

A.1 Proof of Theorem 1

Proof Let ek = ḡ(Zk; θk)−∇F (θk) be the error in estimating the gradient at step k. By
the unbiasedness assumption, E(ek |θk) = 0. Starting from the Lipschitz condition, we have

F (θk+1)− F (θk) 6 ∇F (θk)
ᵀ(θk+1 − θk) +

L

2
‖θk+1 − θk‖2

= −αk∇F (θk)
ᵀHkḡ(Zk; θk) +

Lα2
k

2
‖Hkḡ(Zk; θk)‖2

= −αk∇F (θk)
ᵀHkek − αk∇F (θk)

ᵀHk∇F (θk)

+
Lα2

k

2

(
‖Hkek‖2 + ‖Hk∇F (θk)‖2 + 2∇F (θk)

ᵀH2
kek
)

6 −αk∇F (θk)
ᵀHkek − αkh1‖∇F (θk)‖2

+
Lα2

k

2
(h2

2‖ek‖2 + h2
2‖∇F (θk)‖2 + 2∇F (θk)

ᵀH2
kek)

= −αk∇F (θk)
ᵀHkek + Lα2

k∇F (θk)
ᵀH2

kek

− αkh1

(
1− Lαkh

2
2

2h1

)
‖∇F (θk)‖2 +

Lα2
kh

2
2

2
‖ek‖2.

Because αk = α 6 h1/(Lh
2
2), we have 1 − Lαkh2

2/(2h1) > 1/2. Because strong convexity
implies

‖∇F (θ)‖2 > 2c(F (θ)− F ∗), ∀θ,

we have

F (θk+1)− F (θk) 6 −αk∇F (θk)
ᵀ(Hk − LαkH2

k)ek − αkh1c(F (θk)− F ∗) +
Lα2

kh
2
2

2
‖ek‖2.

Adding F (θk)− F ∗ to both sides gives

F (θk+1)− F ∗ 6 (1− αkh1c)(F (θk)− F ∗) +Rk, (8)

where

Rk = −αk∇F (θk)
ᵀ(Hk − LαkH2

k)ek +
Lα2

kh
2
2

2
‖ek‖2.

Let Fk = σ(Zi, 1 6 i 6 k) be the filtration generated by the random inputs {Zk} to our
sampling process. Because Zk are mutually independent and Hk is independent of Zk, we
have θk, Hk ∈ Fk−1 and E(ek |Fk−1) = 0. Then

E
(
∇F (θk)

ᵀ(Hk − LαkH2
k)ek |Fk−1

)
= ∇F (θk)

ᵀ(Hk − LαkH2
k)E(ek |Fk−1) = 0.

Therefore, ∇F (θk)
ᵀ(Hk − LαkH2

k)ek is a martingale difference sequence w.r.t. Fk. Let

Vk = E(‖ek‖2 |θk) = tr
(
Var [ḡ(Zk; θk) |θk]

)
.

17

Liu and Owen

Then ‖ek‖2 − Vk is also a martingale difference sequence w.r.t. Fk. So we can write

Rk = νk +
Lα2

kh
2
2

2
Vk,

where

νk = −αk∇F (θk)
ᵀ(Hk − LαkH2

k)ek +
Lα2

kh
2
2

2
(‖ek‖2 − Vk)

is a martingale difference sequence, and Lα2
kh

2
2/(2Vk) is a deterministic sequence. Recur-

sively applying equation (8) gives

F (θK)− F ∗ 6 (1− αch1)K(F (θ0)− F ∗) +
K−1∑
k=0

(1− αch1)K−k−1Rk

= (1− αch1)K(F (θ0)− F ∗) +
K−1∑
k=0

(1− αch1)K−k−1
(
νk +

Lα2h2
2

2
Vk

)
.

By the bounded variance assumption, Vk 6M for all k > 0. Hence,

F (θK)− F ∗ 6 (1− αc)K(F (θ0)− F ∗) +
αLh2

2

2ch1
M +

K−1∑
k=0

(1− αch1)K−k−1νk.

Taking expectations on both sides proves (6).
To prove the finite sample guarantee (7), it remains to bound the martingale

∑K−1
k=0 (1−

αch1)K−k−1νk with high probability. We assumed a bound on ‖g(z; θ)‖ which implies
one for ‖ḡ(Z; θ)‖ as well for any fixed n. When the norms of the gradient ∇F (θ) and
gradient estimator ḡ(Z; θ) are bounded by such a constant C for all θ and Z, then ‖ek‖ =
‖ḡ(Z; θ)−∇F (θ)‖ 6 2C, and we have the bound

|νk| 6 α|∇F (θk)
ᵀ(Hk − LαH2

k)ek|+
Lα2h2

2

2
C2 6 2α(h2 − Lαh2

1 + Lαh2
2)C2 =: C ′,

where the second inequality uses that the largest eigenvalue of Hk−LαH2
k is upper bounded

by h2 − Lαh2
1. By the Azuma-Hoeffding inequality (Azuma, 1967), for all t > 0,

P
(K∑
k=1

(1− αch1)K−k−1νk > t

)
6 exp

(
− 2t2∑K

k=1(1− αch1)K−k−1C ′2

)
6 exp

(
− 2t2

C′2

αch1

)
.

Setting ε2 = 2t2αch1/C
′2 gives

t =
C ′√

2αch1
ε =

2αC2(h2 − Lαh2
1 + Lαh2

2)√
2αch1

ε 6 C2

√
2α

ch1
(h2 − Lαh2

1 + h1)ε.

So we have proved that with probability at least 1− e−ε2 ,

F (θK)− F ∗ 6 (1− αch1)K(F (θ0)− F ∗) +
αLh2

2

2ch1
M + C2

√
2α

ch1
(h2 − Lαh2

1 + h1)ε.

18

Quasi-Monte Carlo Quasi-Newton

A.2 Proof of Theorem 4

Our proof uses the following lemma.

Lemma 6 Let u, v ∈ Rn satisfy uᵀv > A and let D ∈ Rn×n be symmetric with h1I 4 D 4
h2I where 0 < h1 6 h2. Then

uᵀDv >
h1 + h2

2
A− h2 − h1

2
‖u‖‖v‖.

Proof Without loss of generality, we can assume that D is a diagonal matrix. Otherwise, let
D = UΛUᵀ be the eigen-decomposition of D. Then uᵀDv = (Uᵀu)ᵀΛ(Uᵀv), ‖Uᵀu‖ = ‖u‖,
‖Uᵀv‖ = ‖v‖, and (Uᵀu)ᵀ(Uᵀv) = uᵀv, and we can replace D by Λ.

Let d1, . . . , dn be the diagonal entries of D. Then uᵀDv =
∑n

i=1 uividi. Let s+ =∑
i:uivi>0 uivi and s− =

∑
i:uivi<0 uivi. Note that s+ + s− = uᵀv > A, s+ − s− =∑n

i=1 |uivi| 6 ‖u‖‖v‖. Then for any D,

uᵀDv > h1s+ +h2s− =
h1 + h2

2
(s+ +s−)+

h2 − h1

2
(s−−s+) >

h1 + h2

2
A− h2 − h1

2
‖u‖‖v‖.

Now we are ready to prove Theorem 4.
Proof We start by decomposing

‖θk+1 − θ∗‖2 = ‖θk+1 − θk + θk − θ∗‖2

= ‖θk − θ∗‖2 + α2‖Hkḡ(Zk; θk)‖2 − 2α(θk − θ∗)ᵀHkḡ(Zk; θk).

Note that only ḡ(Zk; θk) and θk+1 depend on Zk. Taking expectation w.r.t. Zk on both
sides gives

E
(
‖θk+1 − θ∗‖2

)
6 ‖θk − θ∗‖2 + α2h2

2(M + ‖∇F (θk)‖2)− 2α(θk − θ∗)ᵀHk∇F (θk)

6 ‖θk − θ∗‖2 + α2h2
2(M + L2‖θk − θ∗‖2)− 2α(θk − θ∗)ᵀHk∇F (θk). (9)

By strong convexity of F (·),

(θk − θ∗)ᵀ∇F (θk) > F (θk)− F ∗ +
c

2
‖θk − θ∗‖2 > c‖θk − θ∗‖2. (10)

Using Lemma 6 and equation (10), we have

(θk − θ∗)ᵀHk∇F (θk) >
h1 + h2

2
c‖θk − θ∗‖2 −

h2 − h1

2
‖θk − θ∗‖‖∇F (θk)‖

>
(h1 + h2

2
c− h2 − h1

2
L
)
‖θk − θ∗‖2,

where the last inequality is due to ‖∇F (θk)‖ 6 L‖θk − θ∗‖. Combining this with (9) gives

E
(
‖θk+1 − θ∗‖2

)
6
(
1 + α2L2h2

2 − α[(h1 + h2)c− (h2 − h1)L]
)
‖θk − θ∗‖2 + α2h2

2M.

19

Liu and Owen

We have assumed that

0 < α <
(h1 + h2)c− (h2 − h1)L

2L2h2
2

and it then follows that(
1 + α2L2h2

2 − α[(h1 + h2)c− (h2 − h1)L]
)
6 1− α2h2

2L
2

from which

E
(
‖θk+1 − θ∗‖2

)
6
(
1− α2h2

2L
2
)
‖θk − θ∗‖2 + α2h2

2M. (11)

Applying the recursive error formula (11) we get

E
(
‖θk − θ∗‖2

)
6 (1− α2h2

2L
2)k‖θ0 − θ∗‖2 +

M

L2
.

where the expectation is over Z1, . . . ,Zk.

References

A. Agarwal, P. L. Bartlett, P. Ravikumar, and M. J. Wainwright. Information-theoretic
lower bounds on the oracle complexity of stochastic convex optimization. IEEE Trans-
actions on Information Theory, 58(5):3235–3249, 2012.

S. Andradóttir. A review of simulation optimization techniques. In 1998 winter simulation
conference, volume 1, pages 151–158. IEEE, 1998.

K. Azuma. Weighted sums of certain dependent random variables. Tohoku Mathematical
Journal, Second Series, 19(3):357–367, 1967.

M. Balandat, B. Karrer, D. R. Jiang, S. Daulton, B. Letham, A. G. Wilson, and E. Bakshy.
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization. In Advances in
Neural Information Processing Systems 33, 2020. URL http://arxiv.org/abs/1910.

06403.

K. Basu and R. Mukherjee. Asymptotic normality of scrambled geometric net quadrature.
Annals of Statistics, 45(4):1759–1788, 2017.

A. Beck. First-order methods in optimization. SIAM, Philadelphia, 2017.

A. S. Berahas, J. Nocedal, and M. Takáč. A multi-batch L-BFGS method for machine
learning. Advances in Neural Information Processing Systems, pages 1063–1071, 2016.

D. Bigoni, A. Spantini, and Y. Marzouk. Adaptive construction of measure transports for
Bayesian inference. In NIPS workshop on Approximate Inference, 2016.

D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statis-
ticians. Journal of the American Statistical Association, 112(518):859–877, 2017.

20

http://arxiv.org/abs/1910.06403
http://arxiv.org/abs/1910.06403

Quasi-Monte Carlo Quasi-Newton

R. Bollapragada, J. Nocedal, D. Mudigere, H. J. Shi, and P. T. P. Tang. A progressive
batching L-BFGS method for machine learning. In International Conference on Machine
Learning, pages 620–629. PMLR, 2018.

L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. Siam Review, 60(2):223–311, 2018.

A. Buchholz, F. Wenzel, and S. Mandt. Quasi-Monte Carlo variational inference. In Inter-
national Conference on Machine Learning, pages 668–677. PMLR, 2018.

R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-Newton method
for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031, 2016.

R. E. Caflisch, W. Morokoff, and A. B. Owen. Valuation of mortgage backed securities using
Brownian bridges to reduce effective dimension. Journal of Computational Finance, 1(1):
27–46, 1997.

W. Chen, A. Srivastav, and G. Travaglini, editors. A panorama of discrepancy theory.
Springer, Cham, Switzerland, 2014.

R. Cranley and T. N. L. Patterson. Randomization of number theoretic methods for multiple
integration. SIAM Journal of Numerical Analysis, 13(6):904–914, 1976.

L. Devroye. Non-uniform Random Variate Generation. Springer, New York, 1986.

J. Dick and F. Pillichshammer. Digital sequences, discrepancy and quasi-Monte Carlo in-
tegration. Cambridge University Press, Cambridge, 2010.

J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: the quasi-Monte Carlo
way. Acta Numerica, 22:133–288, 2013.

S. S. Drew and T. Homem-de Mello. Quas-monte carlo strategies for stochastic optimization.
In Proceedings of the 2006 Winter Simulation Conference, pages 774–782. IEEE, 2006.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

J. C. Duchi. Introductory lectures on stochastic optimization. In M. W. Mahoney, J. C.
Duchi, and A. C. Gilbert, editors, The mathematics of data, volume 25, pages 99–186.
American Mathematical Society, Providence, RI, 2018.

T. A. El Moselhy and Y. M. Marzouk. Bayesian inference with optimal maps. Journal of
Computational Physics, 231(23):7815–7850, 2012.

H. Faure. Discrépance de suites associées à un système de numération (en dimension s).
Acta Arithmetica, 41:337–351, 1982.

P. I. Frazier. A tutorial on Bayesian optimization. Technical report, arXiv:1807.02811,
2018.

21

Liu and Owen

K. Gao. Scalable Estimation and Inference for Massive Linear Mixed Models with Crossed
Random Effects. PhD thesis, Stanford University, 2017.

S. Ghosh, T. Hastie, and A. B. Owen. Backfitting for large scale crossed random effects
regressions. Technical report, arXiv:2007.10612, 2020.

R. Gower, D. Goldfarb, and P. Richtárik. Stochastic block BFGS: Squeezing more curvature
out of data. In International Conference on Machine Learning, pages 1869–1878, 2016.

T. Homem-de Mello and G. Bayraksan. Monte carlo sampling-based methods for stochastic
optimization. Surveys in Operations Research and Management Science, 19(1):56–85,
2014.

S. Joe and F. Y. Kuo. Constructing Sobol’ sequences with better two-dimensional projec-
tions. SIAM Journal on Scientific Computing, 30(5):2635–2654, 2008.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, volume 26, pages 315–
323, 2013.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. Technical report,
arXiv:1412.6980, 2014.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. stat, 1050:1, 2014.

P. L’Ecuyer and C. Lemieux. A survey of randomized quasi-Monte Carlo methods. In
M. Dror, P. L’Ecuyer, and F. Szidarovszki, editors, Modeling Uncertainty: An Examina-
tion of Stochastic Theory, Methods, and Applications, pages 419–474. Kluwer Academic
Publishers, 2002.

W.-L. Loh. On the asymptotic distribution of scrambled net quadrature. Annals of Statis-
tics, 31(4):1282–1324, 2003.

A. C. Miller, N. J. Foti, A. D Amour, and R. P. Adams. Reducing reparameterization
gradient variance. In Advances in Neural Information Processing Systems, 2017.

S. Mohamed, M. Rosca, M. Figurnov, and A. Mnih. Monte Carlo gradient estimation in
machine learning. Journal of Machine Learning Research, 21(132):1–62, 2020.

P. Moritz, R. Nishihara, and M. Jordan. A linearly-convergent stochastic L-BFGS algo-
rithm. In Artificial Intelligence and Statistics, pages 249–258, 2016.

H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods. SIAM,
Philadelphia, PA, 1992.

J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of compu-
tation, 35(151):773–782, 1980.

J. Nocedal and S. Wright. Numerical Optimization. Springer Science & Business Media,
New York, second edition, 2006.

22

Quasi-Monte Carlo Quasi-Newton

A. B. Owen. Randomly permuted (t,m, s)-nets and (t, s)-sequences. In H. Niederreiter
and P. J.-S. Shiue, editors, Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing, pages 299–317, New York, 1995. Springer-Verlag.

A. B. Owen. Scrambled net variance for integrals of smooth functions. Annals of Statistics,
25(4):1541–1562, 1997a.

A. B. Owen. Monte Carlo variance of scrambled net quadrature. SIAM Journal of Numerical
Analysis, 34(5):1884–1910, 1997b.

A. B. Owen. Multidimensional variation for quasi-Monte Carlo. In J. Fan and G. Li,
editors, International Conference on Statistics in honour of Professor Kai-Tai Fang’s
65th birthday, 2005.

A. B. Owen. Local antithetic sampling with scrambled nets. Annals of Statistics, 36(5):
2319–2343, 2008.

A. B. Owen and D. Rudolf. A strong law of large numbers for scrambled net integration.
SIAM Review, 63(2):360–372, 2021.

J. Paisley, D. M. Blei, and M. I. Jordan. Variational Bayesian inference with stochastic
search. In Proceedings of the 29th International Coference on International Conference
on Machine Learning, pages 1363–1370, 2012.

O. Papaspiliopoulos, G. O. Roberts, and G. Zanella. Scalable inference for crossed random
effects models. Biometrika, 107(1):25–40, 2020.

H. J. Shi, Y. Xie, R. Byrd, and J. Nocedal. A noise-tolerant quasi-Newton algorithm for
unconstrained optimization. Technical report, arXiv:2010.04352, 2020.

I. M. Sobol’. Multidimensional Quadrature Formulas and Haar Functions. Nauka, Moscow,
1969. (In Russian).

Y. Xie, R. H. Byrd, and J. Nocedal. Analysis of the BFGS method with errors. SIAM
Journal on Optimization, 30(1):182–209, 2020.

R.-X. Yue and S.-S. Mao. On the variance of quadrature over scrambled nets and sequences.
Statistics & probability letters, 44(3):267–280, 1999.

23

	Introduction
	Quasi-Newton Optimization
	BFGS and L-BFGS
	Stochastic Quasi-Newton
	Literature Review

	Scrambled Net Sampling
	Theoretical Guarantees
	Variational Bayes
	Bayesian Linear Regression
	Bayesian Logistic Regression
	Crossed Random Effects
	Variational Autoencoder

	Discussion
	Proof of main theorems
	Proof of Theorem 1
	Proof of Theorem 4

