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Abstract

Fourier neural operators (FNOs) have recently been proposed as an effective framework
for learning operators that map between infinite-dimensional spaces. We prove that FNOs
are universal, in the sense that they can approximate any continuous operator to desired
accuracy. Moreover, we suggest a mechanism by which FNOs can approximate operators
associated with PDEs efficiently. Explicit error bounds are derived to show that the size of
the FNO, approximating operators associated with a Darcy type elliptic PDE and with the
incompressible Navier-Stokes equations of fluid dynamics, only increases sub (log)-linearly
in terms of the reciprocal of the error. Thus, FNOs are shown to efficiently approximate
operators arising in a large class of PDEs.

Keywords: operator learning, universal approximation, error bounds, complexity bounds,
Darcy flow, incompressible Navier-Stokes

1. Introduction

Deep neural networks have been extremely successful in diverse fields of science and engi-
neering including image classification, speech recognition, natural language understanding,
autonomous systems, game intelligence and protein folding, see LeCun et al. (2015) and ref-
erences therein. Moreover, deep neural networks are being increasingly used successfully in
scientific computing, particular in simulating physical and engineering systems modeled by
partial differential equations (PDEs). Examples include the use of physics informed neural
networks for solving forward and inverse problems for PDEs (Raissi and Karniadakis, 2018;
Raissi et al., 2019; Mishra and Molinaro, 2020a,b) and supervised learning algorithms for
high-dimensional parabolic PDEs (E et al., 2017) and parametric elliptic (Kutyniok et al.,
2021; Schwab and Zech, 2019) and hyperbolic (Lye et al., 2020, 2021) PDEs, among others.
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The success of deep neural networks at a wide variety of learning tasks can be attributed
to a confluence of several factors such as the availability of massive labeled data sets, the
design of novel architectures and training algorithms as well as the abundance of high-end
computing platforms such as GPUs (Goodfellow et al., 2016). Still, it is fair to surmise that
this edifice of success partly rests on the foundation of universal approximation (Barron,
1993; Cybenko, 1989; Hornik et al., 1989), i.e., the ability of neural networks to approximate
any continuous (even measurable) function, mapping a finite-dimensional input space into
another finite-dimensional output space, to arbitrary accuracy.

However, many interesting learning tasks entail learning operators, i.e., mappings be-
tween an infinite-dimensional input Banach space and (possibly) an infinite-dimensional
output space. A prototypical example in scientific computing is provided by nonlinear
operators that map the initial datum into the (time series of) solution of a nonlinear time-
dependent PDE such as the Navier-Stokes equations of fluid dynamics. A priori, it is unclear
if neural networks can be successfully employed for learning such operators from data, given
that their universality only pertains to finite-dimensional functions.

The first successful use of neural networks in the context of such operator learning was
provided in Chen and Chen (1995), where the authors proposed a novel neural network based
learning architecture, which they termed as operator networks and proved that these opera-
tor networks possess a surprising universal approximation property for infinite-dimensional
nonlinear operators. Operator networks are based on two different neural networks, a branch
net and a trunk net, which are trained concurrently to learn from data. More recently, Lu
et al. (2021) have proposed using deep, instead of shallow, neural networks in both the
trunk and branch net and have christened the resulting architecture as a DeepOnet. In a
recent article (Lanthaler et al., 2021), the universal approximation property of DeepOnets
was extended, making it completely analogous to universal approximation results for finite-
dimensional functions by neural networks. Lanthaler et al. (2021) were also able to show
that DeepOnets can break the curse of dimensionality for a large variety of PDE learning
tasks. Hence, in spite of the underlying infinite-dimensional setting, DeepOnets are capable
of approximating a large variety of nonlinear operators efficiently. This is further validated
by the success of DeepOnets in many interesting examples in scientific computing, see Mao
et al. (2021); Cai et al. (2021); Lin et al. (2021) and references therein.

An alternative operator learning framework is provided by the concept of neural oper-
ators, first proposed in Li et al. (2020a). Just as canonical artificial neural networks are a
concatenated composition of multiple hidden layers, with each hidden layer composing an
affine function with a scalar nonlinear activation function, neural operators also compose
multiple hidden layers, with each hidden layer composing an affine operator with a local,
scalar nonlinear activation operator. The infinite-dimensional setup is reflected in the fact
that the affine operator can be significantly more general than in the finite-dimensional case,
where it is represented by a weight matrix and bias vector. On the other hand, for neural
operators, one can even use non-local linear operators, such as those defined in terms of an
integral kernel. The evaluation of such integral kernels can be performed either with graph
kernel networks (Li et al., 2020a) or with multipole expansions (Li et al., 2020b).

More recently, Li et al. (2021) have proposed using convolution-based integral kernels
within neural operators. Such kernels can be efficiently evaluated in the Fourier space,
leading to the resulting neural operators being termed as Fourier Neural Operators (FNOs).
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Li et al. (2021) discuss the advantages, in terms of computational efficiency, of FNOs over
the other neural operators mentioned above. Moreover, they present several convincing
numerical experiments to demonstrate that FNOs can very efficiently approximate a variety
of operators that arise in simulating PDEs.

However, the theoretical basis for neural operators has not yet been properly investi-
gated. In particular, it is unclear if neural operators such as FNOs are universal, i.e., if they
can approximate a large class of nonlinear infinite-dimensional operators. Moreover in this
infinite-dimensional setting, universality does not suffice to indicate computational viability
or efficiency as the size of the underlying neural networks might grow exponentially with
respect to increasing accuracy, see discussion in Lanthaler et al. (2021) on this issue. Hence
in addition to universality, it is natural to ask if neural operators can efficiently approximate
a large class of operators, such as those arising in the simulation of parametric PDEs.

The investigation of these questions is the main rationale for the current paper. We
focus our attention here on FNOs as they appear to be the most promising of the neural
operator based operator learning frameworks. Our main result in this paper is to show that
FNOs are universal in possessing the ability to approximate a very large class of continuous
nonlinear operators. This result highlights the potential of FNOs for operator learning.

As argued before, a universality result is only a first step and by itself, does not consti-
tute evidence for efficient approximation by FNOs. In fact, we show that in the worst case,
the network size might grow exponentially with respect to accuracy, when approximating
general operators. Hence, there is a need to derive explicit bounds on the network size
in terms of the desired error tolerance. In this context, we consider a concrete computa-
tional realization of FNOs, that we term as pseudospectral FNO or Ψ-FNO (for short). In
addition to proving universality for Ψ-FNOs, we will suggest a mechanism through which
Ψ-FNOs can approximate operators arising from PDEs, efficiently. We also derive explicit
error bounds for this architecture in approximating PDEs, for two widely used prototypical
examples of PDEs i.e, a Darcy type elliptic equation and the incompressible Navier-Stokes
equations of fluid dynamics. In particular, we prove that the size of Ψ-FNOs in approximat-
ing the underlying operators for both these PDEs, under suitable hypotheses, only scales
polynomially (log-linearly) in the error. Thus, FNOs can approximate these operators ef-
ficiently and these results validate some of the computational findings of Li et al. (2021).
Together, these results constitute the first theoretical justification for the use of FNOs.

The rest of the paper is organized as follows: in Section 2, we introduce FNOs and
state the universality result. We also introduce Ψ-FNOs in this section. In Section 3, we
show that Ψ-FNOs can efficiently approximate operators, stemming from the Darcy-type
elliptic equation as well as the incompressible Navier-Stokes equations. In Section 4, we
compare FNOs with DeepOnets and the results of the article are discussed in Section 5. The
mathematical notation, used in this paper, is summarized in Appendix A and we present
all the technical details and proofs in other appendices.

2. Approximation by Fourier Neural Operators

In this section, we present Fourier Neural Operators (FNOs) and discuss their approximation
of a class of nonlinear operators specified below:
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2.1 Setting for Operator Learning

Setting 1 We fix a spatial dimension d ∈ N, and denote by D ⊂ Rd a domain in Rd. We
consider the approximation of operators G : A(D;Rda)→ U(D;Rdu), a 7→ u := G(a), where
the input a ∈ A(D;Rda), da ∈ N, is a function a : D → Rda with da components, and
the output u ∈ U(D;Rdu), du ∈ N, is a function u : D → Rdu with du components. Here
A(D;Rda) and U(D;Rdu) are Banach spaces (or suitable subsets of Banach spaces). Typical
examples of A and U include the space of continuous functions C(D;Rdu), or Sobolev spaces
Hs(D;Rdu) of order s ≥ 0 (see Appendix B for definitions.).

Concrete examples for operators G, involving solution operators of PDEs, are given in
Section 3.

2.2 Neural Operators

With the above Setting 1 and as defined in Li et al. (2020a), a neural operator N :
A(D;Rda)→ U(D;Rdu), a 7→ N (a) is a mapping of the form

N (a) = Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ R(a),

for a given depth L ∈ N, where R : A(D;Rda) → U(D;Rdv), dv ≥ du, is a lifting operator
(acting locally), of the form

R(a)(x) = Ra(x), R ∈ Rdv×da , (1)

and Q : U(D;Rdv)→ U(D;Rdu) is a local projection operator, of the form

Q(v)(x) = Qv(x), Q ∈ Rdu×dv . (2)

Remark 2 In practice, it has been found that improved results can be obtained if the simple
linear lifting and projection operators R (1) and Q (2) are replaced instead by non-linear
mappings of the form

R̃(a)(x) = R̃(a(x), x), Q̃(v)(x) = Q̃(v(x), x),

where R̃ : Rda×D → Rdv and Q̃ : Rdv ×D → Rdu are neural networks with activation func-
tion σ. Our error estimates will rely on the (more restrictive) linear choice of lifting and
projection operators, given by (1), (2). The linear choice has the theoretical benefit of ensur-
ing compositionality, i.e. that a composition of neural operators can again be represented
by a neural operator (cf. Lemma 46). Despite this technical distinction, we emphasize
that all of our error and complexity estimates continue to hold also for neural operators
with non-linear lifting and projections, since linear operators can always be approximated
by non-linear ones (cp. Lemma 42). In fact, in the non-linear case, our results imply that
Q̃, R̃ can be chosen to be shallow networks.

In analogy with canonical finite-dimensional neural networks, Li et al. (2020a) define the
layers L1, . . . ,LL to be non-linear operator layers, L` : U(D;Rdv)→ U(D;Rdv), v 7→ L`(v),
of the form

L`(v)(x) = σ

(
W`v(x) + b`(x) +

(
K(a; θ`)v

)
(x)

)
, ∀x ∈ D.
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Here, the weight matrix W` ∈ Rdv×dv and bias b`(x) ∈ U(D;Rdv) define an affine pointwise
mapping W`v(x)+b`(x). The richness of linear operators in the infinite-dimensional setting
can partly be realized by defining the following non-local linear operator,

K : A×Θ→ L
(
U(D;Rdv),U(D;Rdv)

)
,

that maps the input field a and a parameter θ ∈ Θ in the parameter-set Θ to a bounded
linear operator K(a, θ) : U(D;Rdv) → U(D;Rdv), and the non-linear activation function
σ : R→ R is applied component-wise. As proposed in Li et al. (2020a), the linear operators
K(a, θ) are integral operators of the form

(
K(a; θ)v

)
(x) =

ˆ
D
κθ(x, y; a(x), a(y))v(y) dy, ∀x ∈ D. (3)

Here, the integral kernel κθ : R2(d+da) → Rdv×dv is a neural network parametrized by θ ∈ Θ.
Specific examples of the integral kernel (3) include those evaluated with a graph kernel
network as in Li et al. (2020a) or with a multipole expansion in Li et al. (2020b). The
explicit dependence on the input a of each kernel turns this construction into a RNN-like
architecture where the single input is turned into a sequence simply by repetition across
the layers. While we do not theoretically study the effect of this architectural choice, it
was empirically shown in Li et al. (2020a) that it leads to more efficient approximation on
certain problems.

2.3 Fourier Neural Operators

As defined in (Li et al., 2021), Fourier Neural operators (FNOs) are a special case of general
neural operators (3), in which the kernel κθ(x, y; a(x), a(y)) is of the form κθ = κθ(x − y).
In this case, (3) can be written as a convolution

(
K(θ)v

)
(x) =

ˆ
D
κθ(x− y)v(y) dy, ∀x ∈ D. (4)

For concreteness, we consider the periodic domain D = Td (which we identify with the
standard torus Td = [0, 2π]d), although non-periodic, rectangular domains D can also be
handled in a straightforward manner.

Given this periodic framework, the convolution operator in (4) can be computed using
the Fourier transform F and the inverse Fourier transform F−1 (see Appendix B, equations
40 and 41 for notation and definitions), resulting in the following equivalent representation
of the kernel (3),

(K(θ)v)(x) = F−1
(
Pθ(k) · F(v)(k)

)
(x), ∀x ∈ Td. (5)

Here, Pθ(k) ∈ Cdv×dv is a full matrix indexed by k ∈ Zd, and is related to the integral kernel
κθ(x) in (4) via the Fourier transform, Pθ(k) = F(κθ)(k). Note that we must impose that
Pθ(−k) = Pθ(k)† coincides with the Hermitian transpose for all k ∈ Zd, to ensure that the
image function (K(θ)v)(x) is a real-valued function for real-valued v(x). Consequently, the
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form of Fourier neural operators (FNOs) for the periodic domain Td is that of a mapping
N : A(D;Rda)→ U(D;Rdu), of the form

N (a) := Q ◦ LL ◦ LL−1 ◦ · · · ◦ L1 ◦ R(a), (6)

where the lifting and projection operators R and Q are given by (1) and (2), respectively,
and where the non-linear layers L` are of the form

L`(v)(x) = σ

(
W`v(x) + b`(x) + F−1

(
P`(k) · F(v)(k)

)
(x)

)
. (7)

Here, W` ∈ Rdv×dv and b`(x) define a pointwise affine mapping (corresponding to weights
and biases), and P` : Zd → Cdv×dv defines the coefficients of a non-local, linear mapping
via the Fourier transform.

Remark 3 The simplest example for a FNO, as defined by (6),(4) is as follows; let Φ :
Rda → Rdu be a conventional finite-dimensional neural network with activation function
σ. We can associate to Φ the mapping N : L2(Td;Rda) → L2(Td;Rdu), given by a(x) 7→
Φ(a(x)). We easily observe that N is a FNO as we can write it in the form

N (a)(x) = Φ(a(x)) = Q ◦ LL ◦ · · · ◦ L1 ◦ R(a(x)),

where R(y) = Ry with R ∈ Rdv×da, and each layer L` is of the form L`(y) = σ(W`y+b`) for
some W` ∈ Rdv×dv , b` ∈ Rdv , with Q being an affine output layer of the form Q(y) = Qy+q
with Q ∈ Rdu×dv , q ∈ Rdu. Replacing the input y by a function v(x), these layers clearly
are a special case of the FNO lifting layer (1), the non-linear layers (7) (with P` ≡ 0 and
constant bias b`(x) ≡ b`), and the projection layer (2). Thus, any finite-dimensional neural
network can be identified with a FNO as defined above.

For the remainder of this work, we make the following assumption,

Assumption 4 (Activation function) Unless explicitly stated otherwise, the activation
function σ : R→ R in (7) is assumed to be non-polynomial, (globally) Lipschitz continuous
and σ ∈ C∞.

2.4 Universal Approximation by FNOs

Next, we will show that FNOs (6) are universal, i.e., given a large class of operators, as
defined in Setting 1, one can find an FNO that approximates it to desired accuracy. To be
more precise, we have the following theorem.

Theorem 5 (Universal approximation) Let s, s′ ≥ 0. Let G : Hs(Td;Rda)→ Hs′(Td;Rdu)
be a continuous operator. Let K ⊂ Hs(Td;Rda) be a compact subset. Then for any ε > 0,
there exists a FNO N : Hs(Td;Rda) → Hs′(Td;Rdu), of the form (6), continuous as an
operator Hs → Hs′, such that

sup
a∈K
‖G(a)−N (a)‖Hs′ ≤ ε.
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Proof [Sketch of proof] The detailed proof of this universal approximation theorem is
provided in Appendix D.4 and we outline it here. For notational simplicity, we set da =
du = 1, and first observe the following lemma, proved in Appendix D.1:

Lemma 6 Assume that the universal approximation Theorem 5 holds for s′ = 0. Then it
holds for arbitrary s′ ≥ 0.

The main objective is thus to prove Theorem 5 for the special case s′ = 0; i.e. given a
continuous operator G : Hs(Td) → L2(Td), K ⊂ Hs(Td) compact, and ε > 0, we wish to
construct a FNO N : Hs(Td)→ L2(Td), such that supa∈K ‖G(a)−N (a)‖L2 ≤ ε.

To this end, we start by defining the following operator,

GN : Hs(Td)→ L2(Td), GN (a) := PNG(PNa), (8)

with PN being the orthogonal Fourier projection operator, defined in Appendix B (45).
Thus, GN can be thought of loosely as the Fourier projection of the continuous operator G.

Next, we can show that for any given ε > 0, there exists N ∈ N, such that

‖G(a)− GN (a)‖L2 ≤ ε, ∀ a ∈ K. (9)

Thus, the proof boils down to finding a FNO (6) that can approximate the operator GN to
any desired accuracy.

To this end, we introduce a set of Fourier wavenumbers k ∈ KN , by

KN :=
{
k ∈ Zd

∣∣∣ |k|∞ ≤ N}, (10)

and define a Fourier conjugate or Fourier dual operator of the form ĜN : CKN → CKN ,

ĜN (âk) := FN
(
GN
(
Re
(
F−1
N (âk)

)))
, (11)

such that the identity

GN (a) = F−1
N ◦ ĜN ◦ FN (PNa), (12)

holds for all real-valued a ∈ L2(Td). Here, FN is the discrete Fourier transform and F−1
N

is the discrete inverse Fourier transform, with both being defined in Appendix B (52) and
(53), respectively.

The next steps in the proof are to leverage the natural decomposition of the projec-
tion GN in (12) in terms of the discrete Fourier transform FN ◦ PN , the discrete inverse
Fourier transform F−1

N and the Fourier conjugate operator ĜN and approximate each of
these operators by Fourier neural operators.

We start by denoting,

R2KN =
(
R2
)KN (' CKN ), (13)

as the set consisting of coefficients {(v1,k, v2,k)}k∈KN , where v1,k, v2,k ∈ R are indexed by the
wavenumber k ∈ KN , i.e. such that |k|∞ ≤ N , and we interpret the operator FN ◦ PN as
a mapping FN ◦ PN : a 7→ {(Re(âk), Im(âk))}|k|≤N , with input a ∈ L2(Td) and the output

{Re(âk), Im(âk)}|k|≤N ∈ R2KN is viewed as a constant function in L2(Td;R2KN ). The
approximation of this operator is a straightforward consequence of the following Lemma,
proved in Appendix D.2,
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Lemma 7 Let B > 0 and N ∈ N be given. For all ε > 0, there exists a FNO N : L2(Td)→
L2(T d;R2KN ), v 7→ {N (v)`,k}, with constant output functions (constant as a function of
x ∈ Td), and such that

‖Re(v̂k)−N (v)1,k‖L∞ ≤ ε
‖Im(v̂k)−N (v)2,k‖L∞ ≤ ε

}
∀ k ∈ Zd, |k|∞ ≤ N,

for all ‖v‖L2 ≤ B, and where v̂k ∈ C denotes the k-th Fourier coefficient of v.

In the next step, we approximate the (discrete) inverse Fourier transform F−1
N by an

FNO. We recall that FNOs act on functions rather than on constants. Therefore, to connect
F−1
N and FNOs, we are going to interpret the mapping

F−1
N : [−R,R]2KN ⊂ R2KN → L2(Td),

as a mapping

F−1
N :

{
L2(Td; [−R,R]2KN )→ L2(Td),
{Re(v̂k), Im(v̂k)}|k|≤N 7→ v(x),

where the input {Re(v̂k), Im(v̂k)}|k|≤N ∈ [−R,R]2KN is identified with a constant function

in L2(Td; [−R,R]2KN ). The existence of a FNO of the form (6) that can approximate (73)
to desired accuracy is a consequence of the following lemma, proved in Appendix D.3,

Lemma 8 Let B > 0 and N ∈ N be given. For all ε > 0, there exists a FNO N :
L2(Td;R2KN )→ L2(Td), such that for any v ∈ L2

N (Td) with ‖v‖L2 ≤ B, we have

‖v −N (w)‖L2 ≤ ε,

where w(x) := {(Re(v̂k), Im(v̂k))}k∈KN , i.e. w ∈ L2(Td;R2KN ) is a constant function col-
lecting the real and imaginary parts of the Fourier coefficients v̂k of v.

Finally, by setting K̂ := FN (PNK) ⊂ CKN as the (compact) image of K under the continu-
ous mapping FN ◦ PN : L2(Td)→ CKN and identifying CKN ' R2KN , where v̂1,k := Re(v̂k)

and v̂2,k := Im(v̂k) for k ∈ KN , we can view ĜN as a continuous mapping

ĜN : K̂ ⊂ R2KN → R2KN ,

on a compact subset. Hence, by the universal approximation theorem for finite-dimensional
neural networks (Barron, 1993; Hornik et al., 1989), one can readily show that there exists
an FNO, with only local weights (see Remark 3), which will approximate this continuous
mapping ĜN on compact subsets to desired accuracy.

Hence, each of the component operators of the decomposition (12) can be approximated
to desired accuracy by FNOs and the universal approximation theorem follows by compos-
ing these FNOs and estimating the resulting error, with details provided in Appendix D.4.

In the following theorem, we will show that the universal approximation theorem 5 can
be extended to include operators mapping function spaces, which are defined with respect
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to arbitrary Lipschitz regular domains D ⊂ Rd. In fact, even the Lipschitz condition on the
domain can be relaxed further to include all locally uniform domains using ideas from Rogers
(2006); we will, however, not pursue this for simplicity of the exposition. We show that one
can construct a periodic extension of the input function and a FNO so that the restriction
of the FNO’s periodic output to the domain of interest provides a suitable approximation
to any continuous operator.

Theorem 9 Let s, s′ ≥ 0 and let Ω ⊂ Rd be a domain with Lipschitz boundary, and such
that the closure Ω ⊂ (0, 2π)d. Let G : Hs(Ω;Rda) → Hs′(Ω;Rdu) be a continuous operator.
Let K ⊂ Hs(Ω;Rda) be a compact subset. Then there exists a continuous, linear operator
E : Hs(Ω;Rda) → Hs(Td;Rda) such that E(a)|Ω = a for all a ∈ Hs(Ω;Rda). Furthermore,
for any ε > 0, there exists a FNO N : Hs(Td;Rda) → Hs′(Td;Rdu) of the form (6), such
that

sup
a∈K
‖G(a)−N ◦ E(a)|Ω‖Hs′ ≤ ε.

Proof Since, by assumption, the closure Ω is contained in the open set (0, 2π)d, we have
that dist(Ω, ∂[0, 2π]d) > 0. Hence the conclusion of Lemma 41 in Appendix B follows with
the hypercube B = [0, 2π]d; in particular, there exists a continuous, linear operator E :
Hs(Ω;Rda)→ Hs([0, 2π]d;Rda) such that E(a)|Ω = a and E(a) is periodic on [0, 2π]d for all
a ∈ Hs(Ω;Rda). Therefore E : Hs(Ω;Rda) → Hs(Td;Rda). Similarly, we can construct an
extension operator E ′ : Hs′(Ω;Rdu)→ Hs′(Td;Rdu) on Hs′ .

We can then associate to G : Hs(Ω;Rda) → Hs′(Ω;Rdu) another continuous operator
G : Hs(Td;Rda)→ Hs′(Td;Rdu), by defining G(a) := E ′◦G◦R(a). Here R(a) := a|Ω denotes
the restriction to Ω which is clearly linear and continuous. By the continuity of E , we have
that K ′ := E(K) is compact in Hs(Td;Rda). By the universal approximation theorem 5,
for any ε > 0, there exists a FNO N : Hs(Td;Rda)→ Hs′(Td;Rdu), such that

sup
a′∈K′

‖G(a′)−N (a′)‖Hs′ ≤ ε.

But then, using the fact that R◦E = Id, R◦E ′ = Id, the mapping R◦N ◦E : Hs(Ω;Rda)→
Hs′(Ω;Rdu), given by a 7→ N ◦ E(a)|Ω, satisfies

sup
a∈K
‖G(a)−N ◦ E(a)|Ω‖Hs′ = sup

a∈K
‖R ◦ E ′ ◦ G ◦ R ◦ E(a)−R ◦ N ◦ E(a)‖Hs′

= sup
a∈K
‖R ◦ G ◦ E(a)−R ◦ N ◦ E(a)‖Hs′

≤ sup
a∈K
‖G ◦ E(a)−N ◦ E(a)‖Hs′

= sup
a′∈K′

‖G(a′)−N (a′)‖Hs′

≤ ε.

9



Kovachki, Lanthaler and Mishra

Remark 10 Similar ideas as in Theorem 9 have been pursued in the design of numerical
algorithms for solving PDEs and usually go by the name of Fourier continuations (Bruno
and Lyon, 2010; Lyon and Bruno, 2010). A major challenge for these methods is designing
a suitable periodic function whose restriction gives the solution of interest. Theorem 9 shows
that FNOs are expressive enough to automatically learn such a representation. It should be
noted that Theorem 9 does not suggest a way of computing the extension operator E and
designing suitable methods remains an interesting direction for computational research.

2.5 Ψ-Fourier Neural Operators

In practice, one needs to compute the FNO, of form (6), both during training as well as
for the evaluation of the neural operator. Thus, given any input function a, one should be
able to readily calculate the FNO N (a), requiring the efficient computation of the Fourier
transform F (40) and the inverse Fourier transform F−1 (41). In general, this is not possible
as evaluating the Fourier transform (40) entails computing an integral exactly. Therefore,
approximations are necessary to realize the action of FNOs on functions. Following Li et al.
(2021), one can efficiently approximate the Fourier transform and its inverse by the discrete
Fourier transform (52) and the discrete inverse Fourier transform (53), respectively. This
amounts to performing a pseudo(Ψ)-spectral Fourier projection between successive layers
of the FNO and leading to the following precise definition,

Definition 11 (Ψ-FNO) A Ψ-FNO (or Ψ-spectral FNO) is a mapping

N ∗ : A(Td;Rda)→ U(Td;Rdu), a 7→ N ∗(a),

of the form

N ∗(a) = Q ◦ IN ◦ LL ◦ IN ◦ · · · ◦ L1 ◦ IN ◦ R(a), (14)

where IN denotes the pseudo-spectral Fourier projection onto trigonometric polynomials
of degree N ∈ N (49), the lifting operator R : A(Td;Rda) → U(Td;Rdv), the projection
Q : U(Td;Rdv) → U(Td;Rdu) are defined as in (1), (2), and the non-linear layers L`, for
` = 1, . . . , N , are of the form

L`(v)(x) = σ

(
W`v(x) + b`(x) + F−1

(
P`(k) · F(v)(k)

)
(x)

)
.

Here, W` ∈ Rdv×dv and b`(x) ∈ U(Td;Rdv) define a pointwise affine mapping v 7→W`v(x)+
b`(x), and the coefficients P`(k) ∈ Rdv×dv (k ∈ KN ) define a (non-local) convolution operator
via the Fourier transform.

Note that a Ψ-FNO N ∗ is uniquely defined, as an operator, by its restriction to the
finite-dimensional subspace L2

N (Td;Rda) ⊂ A(Td;Rda) (see Appendix B for the definition
of L2

N ). Furthermore, we have that the image Im(N ) ⊂ L2
N (Td;Rdu). To indicate that a

Ψ-FNO is of the form (14), for some N ∈ N, we shall thus more simply say that “N ∗ :
L2
N (Td;Rda)→ L2

N (Td;Rdu) is a Ψ-FNO”.

At the level of numerical implementation, a Ψ-FNO can be naturally identified with a
finite-dimensional mapping

Ñ ∗ : Rda×JN → Rdu×JN , a 7→ Ñ ∗(a),

10



Fourier Neural Operators

with input a = {aj}j∈JN ∈ Rda×JN corresponding to the point-values aj = a(xj) on the

grid {xj}j∈JN , and JN := {0, . . . , 2N}d. Here, Ñ ∗ is of the form

Ñ ∗(a) = Q̃ ◦ L̃L ◦ L̃L−1 ◦ · · · ◦ L̃1 ◦ R̃(a), (15)

where the lifting operator R̃ : Rda×JN → Rdv×JN , a 7→ R̃(a), the projection Q̃ : Rdv×JN →
Rdu×JN , v 7→ Q̃(v), are given by

R̃(a) = {Raj}j∈JN , (R ∈ Rdv×da),

Q̃(v) = {Qvj}j∈JN , (Q ∈ Rdu×dv),

and the non-linear layers L̃`, for ` = 1, . . . , N , are of the form

L̃`(v)j = σ

(
W`vj + b`,j + F−1

N

(
P`(k) · FN (v)(k)

)
j

)
(16)

for j ∈ JN . Here, W` ∈ Rdv×dv , b`,j = b`(xj) ∈ Rdv×JN defines a pointwise affine mapping
W`vj+b`,j , the coefficients P`(k) ∈ Cdv×dv (k ∈ KN ) satisfy the Hermitian conjugacy condi-
tion P`(−k) = P`(k)† and define a (non-local) convolution operator via the discrete Fourier
transform, and the non-linear activation function σ : R→ R is extended componentwise to
a function Rdv×JN → Rdv×JN . Comparing N ∗ with the corresponding discretization Ñ ∗, it
is easy to see that, for a ∈ A(Td;Rda) and denoting a := (a(xj))j∈JN ∈ Rda×JN , we have

Ñ ∗(a)j = N ∗(a)(xj), ∀ j ∈ JN .

In particular, this implies that N ∗(a)(x) can in practice be computed for any x ∈ Td via
the Fourier interpolation of the grid values Ñ ∗(a). In contrast to general FNOs, Ψ-FNOs
therefore allow for efficient numerical implementation. Furthermore, the discrete (inverse)
Fourier transforms in each hidden layer in (16) can be very efficiently computed using the
fast Fourier transform (FFT).

The above discussion also leads to a very natural definition of the size of a Ψ-FNO
below:

Definition 12 (Depth, lift and size) The depth of a Ψ-FNO N ∗ : L2
N (Td;Rda) →

L2
N (Td;Rdu) (cp. Definition 11), is defined by depth(N ∗) := L. We refer to the dimension

dv, as the lifting dimension of N ∗, denoted lift(N ∗) := dv. We define the size of a
Ψ-FNO N ∗ as the total number of degrees of freedom in its numerical implementation Ñ ∗
(cp. equation 15). A simple calculation shows that

size(N ∗) = dudv︸︷︷︸
size(Q)

+L
(
d2
v + dv|JN |+ d2

v|JN |
)︸ ︷︷ ︸

size(L`)

+ dadv︸︷︷︸
size(R)

.

The precise size of a Ψ-FNO will not be of any particular relevance for our asymptotic
complexity estimates. Instead, we will usually content ourselves with the simple estimate

size(N ∗) . Ld2
vN

d,

where we assume that max(da, du) ≤ dv.

11
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Given our discussion, it is natural to ask whether any FNON = Q◦LL◦LL−1◦· · ·◦L1◦R
can be approximated to arbitrary accuracy by an associated Ψ-FNO N ∗ : L2

N → L2
N ,

N ∗ = Q ◦ IN ◦ LL ◦ IN ◦ · · · ◦ L1 ◦ IN ◦ R,

for sufficiently large N ∈ N? An affirmative answer can be given for a natural class of FNOs
of finite width, defined as follows.

Definition 13 A FNO N : A(Td;Rda) → U(Td;Rdu) is said to be of finite width, if N
is a composition N = Q ◦ LL ◦ · · · ◦ L1 ◦ R, with layers L` of the form (7), and for which
there exists a “width” w ∈ N, such that the Fourier multiplier P`(k) ≡ 0, for |k|∞ > w.

We can now state the following theorem, which shows that Ψ-FNOs N ∗ provide an
arbitrarily close approximation of a given FNO N :

Theorem 14 Assume that the activation function σ ∈ Cm is globally Lipschitz continuous.
Let N : Hs(Td;Rda) → L2(Td;Rdu) be a FNO of finite width, with s > d/2. and assume
that m > s. Then for any ε, B > 0, there exists N ∈ N and a Ψ-FNO N ∗ : L2

N (Td;Rda)→
L2
N (Td;Rdu), such that

sup
‖a‖Hs≤B

‖N (a)−N ∗(a)‖L2 ≤ ε.

For the proof, we refer to Appendix D.5. In particular, the last theorem implies an
extension of the universal approximation theorem 5 to Ψ-FNOs, provided that the input
functions have sufficient regularity for the pseudo-spectral projection (49) to be well-defined:

Theorem 15 (Universal approximation for Ψ-FNOs) Let s > d/2, and let s′ ≥ 0.
Let G : Hs(Td;Rda)→ Hs′(Td;Rdu) be a continuous operator. And let K ⊂ Hs(Td;Rda) be a
compact subset. Then for any ε > 0, there exists N ∈ N and a Ψ-FNO N ∗ : L2

N (Td;Rda)→
L2
N (Td;Rdu), such that

sup
a∈K
‖G(a)−N ∗(a)‖Hs′ ≤ ε.

Proof Similar to the proof of the universal approximation theorem for FNOs, we again
note that the general case s′ ≥ 0 can be deduced from the statement of Theorem 15 for the
special case s′ = 0. This is the content of the following lemma, whose proof is provided in
Appendix D.6:

Lemma 16 Assume that Theorem 15 holds for s′ = 0. Then it holds for arbitrary s′ ≥ 0.

The special case s′ = 0 follows immediately from Theorem 14 and the observation that
the FNO approximation constructed in the proof of the universal approximation theorem
for FNOs, Theorem 5, has finite width.

Remark 17 The form of the universal approximation theorem 5 stated above shows that
any continuous operator G : Hs → Hs′, s ≥ d/2, can be approximated to arbitrary accuracy
by a Ψ-FNO, on a given compact subset K ⊂ Hs. In practical applications, the parameters

12
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of neural networks are usually trained from data, i.e. based on the minimization of an
empirical loss of the form

1

M

M∑
m=1

‖N ∗(am)− G(am)‖2
Hs′ , (17)

where a1, . . . , aM ∼ µ are (iid) samples from a probability measure µ ∈ P(Hs) on the input
function space. The empirical loss is a discretization of the following continuous quantity:ˆ

Hs

‖N ∗(a)− G(a)‖2
Hs′ dµ(a). (18)

The form of the continuous loss (18) might suggest to measure the distance between N ∗
and G in the L2

µ(Hs;Hs′)-metric (the square root of equation 18), rather than the sup-
norm. This L2

µ-approach has been followed in recent work on DeepONets by Lanthaler et al.
(2021), to explain some observations of the numerical experiments of Lu et al. (2021). In
the present work, we focus instead on the sup-norm over compact subsets K ⊂ Hs:

sup
a∈K
‖N ∗(a)− G(a)‖Hs′ . (19)

Clearly, if the support of µ is a compact subset, with supp(µ) = K, then our sup-estimates
immediately imply corresponding bounds on the L2

µ-distance, since the sup-norm is a con-
siderably stronger distance-measure than the L2

µ-norm. On the other hand, the restriction
to compact subsets K ⊂ Hs does not allow for popular choices of the probability measure µ,
such as Gaussian measures. Furthermore, the sup-estimates do not allow for discontinuous
operators G.

Expanding on the last remark, we would like to point out that the universal approxi-
mation theorem, Theorem 15, combined with a technical cut-off argument, can be used to
prove a corresponding universal approximation theorem in the L2

µ-norm, following an idea
in Lanthaler et al. (2021). We state this extension without proof:

Theorem 18 Assume that the activation function σ ∈ C∞(R) is strictly monotonically
increasing and satisfies limx→−∞ σ(x) > −∞. Let µ ∈ P(Hs(Td;Rda)) be a probability
measure. Let G : Hs(Td;Rda) → Hs′(Td;Rdu) be a µ-measurable operator, for s ≥ d/2,
s′ ≥ 0, and assume that

´
Hs ‖G(a)‖2

Hs′ dµ(a) < ∞. Then, for any ε > 0, there exists

N ∈ N, and a Ψ-FNO N ∗ : L2
N (Td;Rda)→ L2

N (Td;Rdu), such that(ˆ
Hs

‖G(a)−N ∗(a)‖2
Hs′ dµ(a)

)1/2

≤ ε.

Theorem 18 removes the compactness assumption from the support of µ, and allows
for discontinuous operators G—albeit at the expense of measuring the distance in the less
informative L2

µ-norm.
Before moving on to a detailed discussion of the structure of Ψ-FNOs in the next section,

which will form the basis of our quantitative estimates for two concrete model problems
in the remainder of this work, we would like to provide a final remark on the differences
between the sup-estimates which form the focus of the present work and similar L2

µ-estimates
derived in Lanthaler et al. (2021):
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Remark 19 A benefit of the sup-estimates in the present work is that they are independent
of the precise properties of the input measure µ, depending only on its topological support.
This independence of the details of the input measure may make the estimates more readily
applicable to a wide range of possible training distributions µ (with compact support) than
similar results in Lanthaler et al. (2021), which depend on the finer properties of µ, such
as the decay rates of the eigenvalues of the covariance operator of µ. On the other hand,
taking into account the fine properties of µ in Lanthaler et al. (2021) has allowed to explain
certain empirical observations by Lu et al. (2021), such as the exponential decay of the
encoding error as a function of the number of sensor points used for the DeepONet encoding
of the input function. As shown in Lanthaler et al. (2021), the explanation of this empirical
finding depends crucially on the fine properties of the input measure µ, and in particular the
decay of the eigenvalues, which cannot generally be derived by considering only the operator
G together with the topological support, supp(µ), of µ.

In the remainder of this work, our goal will be to derive quantitative error and complexity
estimates for two concrete non-linear operators, arising from the stationary Darcy equations
and Navier-Stokes equations, respectively. To avoid additional technical difficulties, these
results will be derived for input functions a ∈ K, taken from a suitable compact subset
K ⊂ Hs. Given the discussion of Remarks 17, 19, we will thus focus on deriving estimates
in the sup-norm over K.

2.5.1 Structure and Properties of Ψ-FNOs

We conclude this section by pointing out some aspects of the structure of Ψ-FNOs (14)
that will be relevant in the following. To start with, we can simplify Ψ-FNOs by viewing
them in terms of two types of layers. which we will refer to as σ- and F-layers, respec-
tively. A σ-layer L∗ of a Ψ-FNO is a local, non-linear layer of the form L∗(v)(x) =
INσ (AINv(x) + b), or, in the numerical implementation (cp. equation 16)

L̃∗(v)j = σ (Avj + bj) , ∀ j ∈ JN ,

with A ∈ Rdv×dv , and bj ∈ RJN×dv defining an affine mapping. A F-layer L∗ of a Ψ-FNO
is a non-local, linear layer of the form L∗(v)(x) = F−1(P (k) · F(INv)(k))(x), which in a
practical implementation corresponds to

L̃∗(v)j = F−1
N

(
P (k) · FN (v)(k)

)
j
, ∀ j ∈ JN ,

where P : KN → Cdv×dv is a collection of complex weights, with P (−k) = P (k)† the
Hermitian transpose of P (k), and FN (F−1

N ) denotes the discrete (inverse) Fourier transform.
The main point of these definitions is that each Ψ-FNO can be decomposed into a finite

number of σ-layers and F-layers, and that the converse is also true; i.e. any composition of
σ-layers and F-layers can be represented by a Ψ-FNO. These statements are made precise
in a series of technical Lemmas, which are stated and proved in Appendix D.7.

3. Approximation of PDEs by Ψ-FNOs

We have shown in the previous section that FNOs (6) as well as their computational re-
alizations (Ψ-FNOs, see equation 14) are universal, i.e., they approximate any continuous
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operator, defined in the Setting 1, to desired accuracy. However, as repeatedly discussed in
the introduction, universality alone does not suffice to claim that FNOs can approximate
operators efficiently. In particular, it could happen that the size of the FNO is unfeasibly
large to ensure a given accuracy of the approximation. In fact, the following result implies
that (Ψ-)FNOs provides inefficient approximations in certain cases, where the underlying
output functions are very rough:

Theorem 20 Let G : A(Td;Rda) → Hs′(Td;Rdu) be an operator defined on an arbitrary
function space A, and let K ⊂ A(Td;Rda) be a compact set. Then any Ψ-FNO approxima-
tion N ∗ : L2

N → L2
N satisfies the following lower bound

sup
a∈K
‖N ∗(a)− G(a)‖Hs′ ≥ sup

a∈K
‖(1− PN )G(a)‖Hs′ .

Proof The proof is almost trivial: Since N ∗(a) ∈ L2
N , then for any a ∈ A, we have

‖N ∗(a)− G(a)‖Hs′ ≥ inf
u∈L2

N

‖u− G(a)‖Hs′ = ‖PNG(a)− G(a)‖Hs′ .

Remark 21 In particular, the last Theorem 20 implies that if the image G(K) contains
functions whose Fourier series converges only at a logarithmic rate log(N)−1, then the size
of any Ψ-FNO achieving an approximation accuracy ε must scale exponentially, size(N ∗) &
exp(N). A concrete example is provided by the Ψ-FNO approximation of the identity oper-
ator G = Id : Hs(T)→ Hs(T) (s ≥ 0), on

K :=

{
a ∈ Hs(T)

∣∣∣∣with Fourier coeff.: |âk| ≤
1

|k|s+1/2 log(1 + k)
, k ∈ Z

}
.

Thus, one reason for the potentially large sizes and consequently the inefficient approxima-
tion due to FNOs lies in the roughness of output functions. In the following remark, we
point out an independent reason why the operators constructed in our proof of the universal
approximation theorem may not yield an efficient approximation:

Remark 22 We observe from the proof of Theorem 5 that the desired FNO, approximating
the operator G, is constructed as NIFT◦N̂ ◦NFT, with NFT,NIFT approximating the Fourier
and Inverse Fourier transforms, respectively, whereas N̂ : R2KN → R2KN is a canonical
finite-dimensional neural network approximation of the “Fourier conjugate operator” (11):
ĜN : R2KN → R2KN . We note that N herein has to be chosen sufficiently large in order to
yield the desired error tolerance of ε. By Theorems 40, 20, this depends on the smoothness
of the input and output spaces, i.e., if the input (output) a ∈ K ⊂ Hs (G(a) ∈ Hs′), for
some s, s′ > 0, then we need to choose N such that N−s, N−s

′ ∼ ε. For simplicity, we
assume s = s′. Further assuming that the mapping G is Lipschitz continuous, implies that
the Fourier conjugate operator Ĝ is also Lipschitz continuous as a mapping from R2KN

to R2KN . Hence, neural network approximation results, such as those of Yarotsky (2017)
for ReLU activations or De Ryck et al. (2021) for tanh activations, yield that the size of
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the approximating neural network N̂ scales as size(N̂ ) & ε−D, where D is the dimension
of the domain of ĜN . The crucial observation is that, in the present case, the dimension
D = |KN | ∼ Nd ∼ ε−d/s, is not fixed. Therefore, this yields an estimate

size(N̂ ) & ε−ε
−d/s

. (20)

This scaling represents a super-exponential growth in the size of the FNO N , with respect
to the error ε, incurred in approximating the underlying operator G.

Given the above remarks, we infer that in the worst case, a FNO approximating a
generic Lipschitz continuous operator G might require extremely large sizes to achieve the
desired accuracy, making it unfeasible in practice. The same holds for Ψ-FNOs of the form
(14). This super-exponential growth appears as a form of curse of dimensionality, i.e.,
exponential growth of complexity (measured here in the size of the FNO), with respect to
the error.

Hence, it is reasonable to ask how these extremely pessimistic complexity bounds on
FNOs (Ψ-FNOs), can be reconciled to their robust numerical performance for approximating
PDEs, as reported in Li et al. (2021). The rest of the section investigates this fundamental
question.

The starting point of our explanation for the robustness of FNOs in approximating PDEs
is the observation that operators which arise in the context of PDEs have a special structure
and are not merely generic continuous operators mapping one infinite-dimensional function
space to another. To see this, we point out that many time-dependent PDEs arising in
physics can be written in the general abstract form,

∂tu+∇ · F (u,∇u) = 0, (21)

where for any (t, x) ∈ [0, T ] × D ⊂ Rd, u(t, x) ∈ Rdu is a vector of physical quantities,
describing e.g. density, velocity or temperature of a fluid or other material at a given point
x ∈ D in the domain D and at time t ∈ [0, T ]. Equation (21) describes the general form
of a conservation law for the physical quantities u with a flux function F (u,∇u), which is
typically non-linear, and can e.g. represent advection or diffusion terms. The flux function
F (u,∇u) may also depend on u in a non-local manner. For example, for the incompressible
Navier-Stokes equations in Rd,

u(x, t) = (u1(x, t), . . . , ud(x, t)) ∈ Rd,

represent the fluid velocity at (x, t), and the flux is defined by

F (u,∇u) = −u⊗ u− p+ ν∇u,

where p = p(u) depends on u in a non-local manner:

p = R : (u⊗ u), R := (−∆)−1(∇⊗∇),

where R is a (non-local) operator closely related to the Riesz transform.
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A popular numerical method for time-dependent PDEs, of the form (21), particularly
on periodic domains D = Td, is the pseudo-spectral method (Canuto et al., 2007), wherein
(21) is discretized as,

∂tuN +∇ · INF (uN ,∇uN ) = 0, (22)

where uN ∈ L2
N is a trigonometric polynomial of degree ≤ N .

The resulting system of ODEs (22) can be further discretized in time using a time-
marching scheme. For simplicity, the forward Euler discretization with time step τ leads
to,

un+1
N = unN − τ∇ · INF (unN ,∇unN ). (23)

One might prove that the system (23) provides a convergent approximation for the underly-
ing time-dependent PDE (21) for many different choices of the flux F . In order to connect
the approximation (23) with FNOs, we decompose the right hand side of (23) as,

unN
R7−→

{
unN
unN

}
F7−→

{
unN
∇unN

}
σ7→ . . .

σ7→

{
unN

F σN (unN ,∇unN )

}
F7−→

{
unN

∇ · F σN (unN ,∇unN )

}
7−→ unN − τ∇ · F σN (unN ,∇unN ).

Here, R is the lifting operator and σ, F are the σ- and F-layers, respectively, of a Ψ-
FNO, that are defined in Section 2.5.1. The above representation suggests that the Fourier
F-layers of a Ψ-FNO allow us to take exact derivatives, and a composition of σ-layers
of a Ψ-FNO allows us to approximate continuous functions to any desired accuracy (via
the standard universal approximation theorem for finite-dimensional neural networks); in
particular, a composition of σ-layers can provide an approximation

(u,∇u) 7→ F σN (u,∇u) ≈ INF (u,∇u).

Thus, by a suitable composition of σ- and F-layers, Ψ-FNOs can emulate pseudo-spectral
methods, providing a mechanism by which such neural operators can approximate solution
operators for a large class of PDEs, efficiently.

We will make this intuition precise in the following. However, instead of considering a
generic abstract form of PDEs, we focus on two PDEs, often encountered in physics, which
serve as prototypes for a wide variety of PDEs. We note that pseudo-spectral methods have a
long and successful history in the numerical approximation of PDEs (Gottlieb and Orszag,
1977). Unfortunately, for the particular applications of the current work, the required
detailed convergence estimates are not available in the literature, and therefore we include
an extended discussion of suitable pseudo-spectral methods for the considered PDEs, as
well as a detailed analysis of their convergence in the appendices. We start with an elliptic
PDE below.

17



Kovachki, Lanthaler and Mishra

3.1 Stationary Darcy Flow

We consider the elliptic PDE of the form,

−∇ · (a∇u) = f. (24)

Here, u ∈ H1(Td), can correspond to the steady-state pressure for a fluid, flowing according
to the Darcy’s law, in a porous medium with the positive coefficient a ∈ L∞(Td), denoting
the rock permeability. Another model for (24) is that of a diffusion equation, with u
modeling the temperature and a the thermal conductivity of the medium.

For simplicity, we assume periodic boundary conditions on Td, and we impose that´
Td f dx =

´
Td u dx = 0. Employing a suitable rescaling, we will furthermore assume that a

can be written in the form:

a = 1 + ã, ã ∈ Hs(Td), s > d/2.

We note that the assumption s > d/2 ensures that ‖ã‖L∞ <∞, via the Sobolev embedding
Hs(Td)↪→L∞(Td) (cp. Theorem 39). To ensure that (24) is well-posed, we assume the
following coercivity condition: There exists λ > 0, such that 1 + ã ≥ λ. In fact, we shall
assume the slightly stronger condition that

‖ã‖L∞ ≤ C‖ã‖Hs ≤ 1− λ, (25)

where C is the norm of the embedding Hs(Td)↪→L∞(Td). The condition (25) clearly implies
the λ-coercivity of (24).

The underlying operator G : L∞(Td) → H1(Td), maps a coefficient a ∈ L∞(Td) to the
solution u ∈ H1(Td) of (24). Our aim is to learn this operator efficiently using a Ψ-FNO.
To this end, we will follow the program discussed above and first present a pseudo-spectral
method that approximates the Darcy flow PDE (24) accurately. Then, this pseudo-spectral
method will be emulated by a suitable Ψ-FNO.

3.1.1 A Fourier-Galerkin Approximation of (24)

We fix N ∈ N and assume that the coefficient field and right-hand side a = 1 + ã, f ∈
Hs(Td), for some s > d/2, such that the pseudo-spectral projections IN ã and INf are
well-defined. We can now define a Fourier-Galerkin approximation of (24) as the (unique)
solution uN ∈ L2

N (Td), with
´
uN dx = 0, and such that

−ṖN∇ · (aN∇uN ) = fN , (26)

where we set aN := 1 + ãN and {
ãN := ṖNI2N ã,

fN := ṖNI2Nf.
(27)

See notation for PN , ṖN and IN in Appendix B. We observe from (27) that ãN and fN
are obtained by first carrying out a pseudo-spectral projection of ã, f on the regular grid
{xj}j∈J2N (with 2N grid points in each direction), yielding a representation of the form

I2N ã =
∑
|k|≤2N

âke
i〈k,x〉, I2Nf =

∑
|k|≤2N

f̂ke
i〈k,x〉,
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for coefficients âk, f̂k ∈ C, and then projecting these expressions onto L̇2
N (Td):

ṖNI2N ã =
∑

0<|k|≤N

âke
i〈k,x〉, ṖNI2Nf =

∑
0<|k|≤N

f̂ke
i〈k,x〉.

The reason for this particular choice of the projection (27) lies in the fact that the mapping

L2
N (Td)× L2

N (Td)→ L2
N (Td), (aN , uN ) 7→ −PN∇ · (aN∇uN ) ,

can be exactly represented by a pseudo-spectral method on {xj}j∈J2N , i.e., on a denser grid
of 2N grid points in each direction. Indeed, it is easy to see that if aN , uN ∈ L2

N , then∇uN ∈
L2
N , and the values ∇uN (xj) can be computed exactly via the discrete Fourier transform

from the values uN (xj), j ∈ J2N . Since the product aN∇uN ∈ L2
2N is a trigonometric

polynomial of degree ≤ 2N , the Fourier coefficients of aN∇uN can also be recovered from
knowledge of the point-values aN (xj)∇uN (xj) at the grid points xj ∈ J2N . Finally, since
the divergence and projection PN can be evaluated exactly via discrete Fourier transforms,
we conclude that the mapping (aN , uN ) 7→ −PN∇ · (aN∇uN ) can be computed based on
knowledge of the grid values aN (xj), and uN (xj). The above procedure of computing a
product of two trigonometric polynomials of degree ≤ N exactly, based on the point-values
on a finer grid of size 2N + 1 in each direction is well-known in the context of pseudo-
spectral methods, and is usually referred in the numerical analysis literature as de-aliasing
(cf. section 3.4.2 of the textbook by Canuto et al. (2007)).

In order to computationally realize the Fourier-Galerkin method (26), we are going to
recast it as a fixed point problem uN = FN (uN ; aN , fN ), where FN ( · ; aN , fN ) : L2

N (Td)→
L2
N (Td) is defined by

FN (uN ; aN , fN ) = ṖN (−∆)−1∇ · (ãN∇uN ) + (−∆)−1fN . (28)

In Lemma 48 Appendix E, we show that the map (28) is a contraction and can be efficiently
realized by a Picard type fixed-point iteration scheme. This leads to the following algorithm
for realizing the Fourier-Galerkin method (26) computationally,

Algorithm 23 (Approximate solution of Darcy equation)

Input: N ∈ N, a ∈ Hs(Td), f ∈ Ḣk−1(Td), with s > d/2 + k > d, k ∈ N, k ≥ 1.
Output: uN ∈ H1

N (Td), such that uN ≈ u, where u ∈ H1(Td) solves (24) with
coefficient field a and right-hand side f .

1. Compute pseudo-spectral projections ãN , fN ∈ L2
N (Td), defined via the values on “de-

aliased” grid {xj}j∈J2N (cp. equation 27):{
ãN := ṖNI2N (a− 1),

fN := ṖNI2Nf

}
∈ L2

N (Td).

2. Set

K :=

⌈
log
(
λ−1N−k

)
log (1− λ/2)

⌉
.
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3. Set u0
N := 0 ∈ L2

N (Td).

4. For k = 1, 2, . . . ,K: compute

ukN := ṖN (−∆)−1∇ ·
(
ãN∇uk−1

N

)
+ (−∆)−1fN .

5. Set uN := uKN .

We have the following theorem on the convergence of the Algorithm 23,

Theorem 24 Let u be the unique solution of (24). Let k ∈ N be given, with k > d/2+1, and
assume that the coefficient a ∈ Hs(Td) for s > d/2+k satisfies the coercivity condition (25).
Assume furthermore that f ∈ Hk−1(Td). Then there exists N0 = N0(s, d, ‖a‖Hs , λ) ∈ N,
such that for any integer N ≥ N0, there exists a unique solution of the discretized elliptic
equation (26), and there exists a constant C = C(s, d, λ, ‖a‖Hs , ‖f‖Hk−1) > 0, such that

‖u− uN‖H1 ≤ CN−k,

where uN is the output of Algorithm 23.

The proof of Theorem 24 relies only on standard techniques of numerical analysis and
is presented in Appendix E.1.

3.1.2 Ψ-FNO Approximation of the Darcy Equations

We will emulate the pseudo-spectral fixed point Algorithm 23 by a Ψ-FNO, allowing us to
derive approximation bounds. We consider the following setting,

Setting 25 Let s ≥ d/2 + k + δ for some k ∈ N, δ ∈ (0, 1) be a given Sobolev regularity
parameter, and let λ ∈ (0, 1) be a (coercivity) constant. Denote by Asλ(Td) ⊂ Hs(Td) the
set of λ-coercive coefficients a ∈ Hs(Td) of the form a = 1 + ã, and such that

‖a‖Hs ≤ λ−1, ‖ã‖L∞ ≤ C‖ã‖Hd/2+δ ≤ 1− λ.

Here C > 0 denotes the norm of the embedding Hd/2+δ(Td)↪→L∞(Td). We consider the
operator G : Asλ(Td)→ Ḣ1(Td), a 7→ u, where u solves the Darcy equation

−∇ · (a∇u) = f,

 
Td
u(x) dx = 0,

on the periodic torus Td, with right-hand side f ∈ Ḣk−1.

With this setting in place, we can now state our main FNO approximation theorem for
the solution operator G : Asλ(Td)→ H1(Td) of the Darcy problem:

Theorem 26 Assume Setting 25, and assume that the activation function σ is non-linear
and σ ∈ C3(R). Then there exists a constant C = C(s, λ, d) > 0, such that for any N ∈ N,
there exists a Ψ-FNO N : Asλ(Td)→ H1(Td), such that

sup
a∈Asλ

‖G(a)−N (a)‖H1(Td) ≤ CN−k
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and
depth(N ) ≤ C log(N), lift(N ) = dv ≤ C.

In particular, we have
size(N ) . Nd log(N).

The proof of this theorem, presented in Appendix E.3, relies crucially on the efficient ap-
proximation of quadratic nonlinearities by shallow neural networks with smooth activation
functions, see Lemma 50 in Appendix E for the precise statement and proof.

Remark 27 To achieve a FNO approximation error of order ε for the Darcy problem,
Theorem 26 shows that a Ψ-FNO N with

size(N ) .

(
1

ε

)d/k
log(ε−1), depth(N ) . log(ε−1), (29)

is sufficient. Furthermore, the lifting dimension dv can be kept uniformly bounded, inde-
pendently of ε. In particular, for k > d, the required total size of the Ψ-FNO scales sub
log-linearly in the approximation accuracy ε, indicating that Ψ-FNOs may provide a very
efficient approximation to the solution operator of the Darcy problem, in this case.

As a concrete example for illustrating the approximation of Darcy equations by FNOs, we
consider the following example.

Example 1 A possible model for coefficients a with a typical length scale ` > 0, is to assume
an expansion of a = a(x;Y ) in terms of random variables Y = (Y1, Y2, . . . ) ∈ [−1, 1]N (not
necessarily i.i.d.), of the following form, similar to the ansatz in (Schwab and Zech, 2019):

a(x;Y ) = 1 +
∑

k∈Zd\{0}

bkYke
i〈k,x〉,

where we assume that the coefficients bk satisfy a decay condition of the form |bk| ≤
Cb exp(−`|k|) for a constant Cb > 0. We also assume that a(x;Y ) satisfy the coercivity
condition

‖a( · ;Y )− 1‖L∞ ≤ C‖a( · ;Y )− 1‖Hd/2+δ(Td) ≤ 1− λ,

for some δ, λ ∈ (0, 1), and that the source term f ∈ C∞(Td). Under these assumptions, we
have a ∈ Hs for any s > 0, and hence it follows from Theorem 26 that for any r ∈ N, there
exists a constant C = C(r, `, ‖f‖Ck , δ), with the following property (cp. also Remark 27):
For any ε > 0, there exists a Ψ-FNO N , such that

sup
Y ∈[−1,1]N

‖G(a( · , Y ))−N (a( · , Y ))‖H1 < ε,

and
size(N ) ≤ Cε−1/r, depth(N ) ≤ C log(ε−1). (30)

The complexity bounds (29) and (30) suggest that the size of a Ψ-FNO approximating the
operator G stemming from the Darcy equations, scales only sub-linearly (or even better) in
the desired accuracy ε. This should be contrasted with the fact that the size of a Ψ-FNO
for a generic Lipschitz operator grows super-exponentially in the desired error (20). Thus,
we are able to show that a Ψ-FNO can approximate this PDE solution operator much more
efficiently than it might a generic infinite-dimensional operator.
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3.2 Incompressible Navier-Stokes Equations

The motion of a viscous, incompressible Newtonian fluid is modeled by the incompressible
Navier-Stokes equations, {

∂tu+ u · ∇u+∇p = ν∆u,

div(u) = 0, u(t = 0) = u0,
(31)

Here, u ∈ Rd is the fluid velocity and p ∈ R is the pressure of the fluid, acting as a Lagrange
multiplier to enforce the divergence-free constraint div(u) = 0. The initial fluid velocity
is denoted by u0. For simplicity, we assume periodic boundary conditions in the domain
Td. The viscosity is denoted by ν ≥ 0 and we would like to state that the subsequent
analysis also applies for ν = 0, where (31) reduces to the incompressible Euler equations
modeling an ideal fluid. For definiteness, we recall the following well-known theorem for
the well-posedness of the Navier-Stokes equations (31),

Theorem 28 (see e.g. Thm 3.4 of Majda and Bertozzi (2001)) Let r > d/2 + 2.
For any u0 ∈ Hr, there exists T > 0 and a unique classical solution of the Navier-Stokes
equations (31), such that u ∈ C([0, T ];Hr) ∩ C1([0, T ];Hr−2) with u(t = 0) = u0.

It is well known that in two space dimensions d = 2, the time interval for existence of solu-
tions [0, T ] can be extended to any finite T as long as u0 ∈ Hr, whereas the corresponding
finite-time well-posedness result for three space-dimensions is an outstanding open problem
(Majda and Bertozzi, 2001).

We recall that if the initial data u0 of (31) belongs to L̇2(Td;Rd), i.e. if
ˆ
Td
u0(x) dx = 0,

then we also have that the corresponding solution u(x, t) ∈ L̇2(Td;Rd) (reflecting momentum
conservation). Next, we introduce the Leray-projection operator P : L2(Td;Rd) →
L̇2(Td; div), as the L2-orthogonal projection onto the subspace L̇2(Td; div) ⊂ L̇2(Td;Rd),
consisting of divergence-free vector fields; i.e. we have u ∈ L̇2(Td; div) if, and only if,
u ∈ L̇2(Td;Rd) and ˆ

Td
u(x) · ∇φ(x) dx = 0, ∀φ ∈ C∞(Td).

In terms of Fourier series, the Leray projection P : L̇2(Td;Rd) → L̇2(Td; div) is explicitly
given by

P

∑
k∈Zd

ûke
i〈k,x〉

 =
∑

k∈Zd\{0}

(
1− k ⊗ k

|k|2

)
ûke

i〈k,x〉. (32)

In terms of the Leray projection P, we can now equivalently write the incompressible
Navier-Stokes equations (31) as the following equation on the Hilbert space L̇2(Td; div) as,{

∂tu = −P (u · ∇u) + ν∆u,

u(t = 0) = u0.
(33)
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Given this background, our main objective in this section is to construct a Ψ-FNO that
will approximate the operator G which maps the initial data u0 to the solution u( · , T ) (at
the final time T ) of the incompressible Navier-Stokes equations (31), (33). To this end, we
will follow the general program outlined at the beginning of this section and introduce a
suitable pseudo-spectral method for approximating the Navier-Stokes equations. Then, we
construct a Ψ-FNO that can efficiently emulate this pseudo-spectral method.

3.2.1 A Fully-Discrete Ψ-spectral Approximation of the Navier-Stokes
Equations (31)

The form of the Leray-projected Navier-Stokes equations (33) naturally suggests the fol-
lowing fully-discrete approximation of (31):

un+1
N − unN

τ
+ PN

(
unN · ∇un+1

N

)
= ν∆un+1

N ,

u0
N = INu(t = 0).

(34)

Here, we fix N ∈ N and introduce the space, L̇2
N (Td; div) := L̇2(Td; div) ∩ L̇2

N (Td;Rd).
We fix a time-step τ > 0 and let unN ∈ L̇2

N (Td; div), for all n = 0, . . . , nT , with nT such
that τnT = T . Moreover, we use the following finite-dimensional Leray-Fourier projection
operator PN : L̇2(Td;Rd)→ L̇2

N (Td; div) in analogy with (32):

PN

∑
k∈Zd

ûke
i〈k,x〉

 :=
∑

0<|k|∞≤N

(
1− k ⊗ k

|k|2

)
ûke

i〈k,x〉, (35)

to complete the description of the scheme (34).

We observe that the scheme (34) is implicit i.e., at each time step n, one has to solve
an operator equation to compute the velocity field un+1

N at the next time step. Thus, one
needs to show the solvability of this operator equation in order to ensure that the scheme
(34) is well-defined. Under the following CFL condition for choosing a small enough time
step τ ,

τ‖unN‖L∞N ≤
1

2
, (36)

we prove in Appendix F.1 that the scheme (34) is well-defined.

Next, in practice, one has to numerically approximate the solutions of the implicit
equation (34) for evaluating the velocity field un+1

N , at the next time-step. We choose to
do so by recasting the solution of the implicit equation (34) to finding a fixed point for the
mapping,

wN 7→ F (wN ) := (1− ντ∆)−1unN − τ(1− ντ∆)−1PN (unN · ∇wN ). (37)

In Appendix F.1 Lemma 54, we show that a standard Picard-type iteration converges to a
fixed point for the map (37). This suggests the following numerical algorithm for approxi-
mating strong solutions of the incompressible Navier-Stokes equations (31),
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Algorithm 29 (Pseudo-spectral approximation of the Navier-Stokes equations (31))

Input: U > 0, N ∈ N, T > 0, a time-step τ > 0, such that nT = T/τ ∈ N, and
τUNd/2+1 ≤ 1

2e , initial data u0
N ∈ L2

N (Td; div), such that ‖u0
N‖L2 ≤ U .

Output: unTN ∈ L2
N (Td; div) an approximation of the solution unTN ≈ u(t = T ) of

(31) at time t = T .

1. Set

κ0 :=

⌈
log
(
T 2/τ2

)
log(2)

⌉
∈ N.

2. For n = 0, . . . , nT − 1:

(a) Set wn,0N := 0,

(b) For k = 1, . . . , κ0: Compute

wn,kN := (1− ντ∆)−1unN − τ(1− ντ∆)−1PN
(
unN · ∇w

n,k−1
N

)
,

(c) Set un+1
N := wn,κ0N ,

The convergence of the Algorithm 29, together with a convergence rate, to the strong
solution of the Navier-Stokes equations is summarized in the following theorem,

Theorem 30 Let U, T > 0. Consider the Navier-Stokes equations on Td, for d ≥ 2.
Assume that r ≥ d/2 + 2, and let u ∈ C([0, T ];Hr) ∩ C1([0, T ];Hr−2) be a solution of
the Navier-Stokes equations (31), such that ‖u‖L2 ≤ U . Choose a time-step τ , such that
τUNd/2+1 ≤ (2e)−1. There exists a constant

C = C(T, d, r, ‖u‖Ct(Hr
x), ‖u‖C1

t (Hr−2
x )) > 0,

such that with u0
N := INu(0), and for the sequence u1

N , . . . , u
nT
N ∈ L2

N (Td; div) generated by
Algorithm 29, we have

max
n=0,...,nT

‖unN − u(tn)‖L2 ≤ C
(
τ +N−r

)
,

where nT τ = T . In particular, choosing τ ∼ N−r, we have

max
n=0,...,nT

‖unN − u(tn)‖L2 ≤ CN−r,

with nT ∼ N r (and enlarging the constant C > 0 by a constant factor).

The proof of this theorem relies on several techniques from numerical analysis and is pre-
sented in detail in Appendix F.2.
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3.2.2 Approximation of Algorithm 29 by Ψ-FNOs

Next, we are going to construct a Ψ-FNO of the form (14), which can efficiently emulate
the pseudo-spectral Algorithm 29. To this end, we have the following result (proved in
Appendix F.3) on the efficient approximation of the non-linear term in the Navier-Stokes
equations by FNOs,

Lemma 31 Assume that the activation function σ ∈ C3 is three times continuously differ-
entiable and non-linear. There exists a constant C > 0, such that for any N ∈ N, and for
any ε, B > 0, there exists a Ψ-FNO N : L2

2N (Td;Rd)× L2
2N (Td;Rd)→ L2

2N (Td;Rd), with

depth(N ), lift(N ) = dv ≤ C,

such that we have

‖PN (uN · ∇wN )−N (uN , wN )‖L2
N
≤ ε,

for all trigonometric polynomials uN , wN ∈ L2
N (Td;Rd) ⊂ L2

2N (Td;Rd) of degree |k|∞ ≤ N ,
satisfying the bound ‖uN‖L2 , ‖wN‖L2 ≤ B.

Thus, from the preceding Lemma, we have that the nonlinearities in Algorithm 29 can be
efficiently approximated by Ψ-FNOs. This paves the way for the following theorem on the
emulation of the pseudo-spectral Algorithm 29 by Ψ-FNOs,

Theorem 32 Let U, T > 0 and viscosity ν ≥ 0. Consider the Navier-Stokes equations on
Td, for d ≥ 2. Assume that r ≥ d/2 + 2, and let V ⊂ C([0, T ];Hr) ∩ C1([0, T ];Hr−2) be a
set of solutions of the Navier-Stokes equations (31), such that supu∈V ‖u‖L2 ≤ U , and

U := sup
u∈V

{
‖u‖Ct(Hr

x) + ‖u‖C1
t (Hr−2

x )

}
<∞.

For t ∈ [0, T ], denote Vt := {u(t) |u ∈ V}. Let G : V0 → VT denote the solution operator of
(31), mapping initial data u0 = u(t = 0), to the solution u(T ) at t = T of the incompressible
Navier-Stokes equations. There exists a constant

C = C(d, r, U, U, T ) > 0,

such that for N ∈ N there exists a Ψ-FNO N : L2
N (Td;Rd)→ L2

N (Td;Rd), such that

sup
u∈V0
‖G(u)−N (u)‖L2 ≤ CN−r,

and such that

depth(N ) ≤ CN r log(N), lift(N ) = dv ≤ C.

The proof of this theorem is provided in Appendix F.3.

Remark 33 It is straightforward to observe from Theorem 32 that the size of a Ψ-FNO to
achieve a desired error tolerance of ε > 0, scales (neglecting log-terms) as

size(N ) ≤ Cε−(1+ d
r ), (38)
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Given that we need r ≥ d/2 + 2, we observe from (38) that the size of the Ψ-FNO approxi-
mating the initial data to solution operator G for the Navier-Stokes equations (31) scales at
most sub-quadratically with respect to the error tolerance ε for the physically relevant val-
ues d = 2, 3. This polynomial scaling should be compared with the super-exponential growth
(see Remark 22) of the size of FNOs in approximating a generic Lipschitz-continuous op-
erator. Thus, we are able to demonstrate that Ψ-FNOs can approximate the solutions of
Navier-Stokes equations far more efficiently than what the universal approximation theorem
15 suggests.

Remark 34 From the convergence theorem 30, we observe that the underlying scheme (34)
is first-order in time. This low accuracy of the scheme necessitates a large number of time
steps and affects the overall complexity. We describe a second-order accurate time discretized
version of the pseudo-spectral method for approximating the Navier-Stokes equations (31) in
Appendix F.4 and in complete analogy with Theorem 32 (see Theorem 58 in Appendix F.4),
we can construct a Ψ-FNO to emulate this second-order in time pseudo-spectral scheme,
resulting in a Ψ-FNO of

size(N ) ≤ Cε−( 1
2

+ d
r ), (39)

to obtain a desired accuracy of ε. Thus, we can obtain a more efficient approximation of the
underlying operator than Ψ-FNO emulating the first-order time scheme (34). In particular
for r ≥ 2d, we obtain that the size of a Ψ-FNO only grows sub-linearly in terms of the
desired accuracy, making this FNO approximation comparable in complexity to the FNO
approximation of the Darcy equation (see equation 29).

4. Comparison of FNOs with DeepOnets

In this section, we will compare Ψ-FNOs with another operator learning framework, namely
DeepOnets of Chen and Chen (1995); Lu et al. (2021), defined as follows:

Definition 35 Fix m, p ∈ N. A DeepOnet D with output dimension p and sensor points
x1, . . . , xm ∈ Td is a mapping D : C(Td;Rda)→ C(Td;Rdv) of the form

D(a)(x) =

p∑
k=1

βk(a(x1), . . . , a(xp))τk(x),

where β : Rm×da → Rp×du, α 7→ β(α) = (β1(α), . . . , βp(α)), and τ : Rd 7→ Rp, x 7→ τ(x) =
(τ1(x), . . . , τp(x)) are (ordinary) neural networks. We refer to β and τ as the branch and
trunk nets, respectively.

In the following theorem (proved in Appendix G), we show that a Ψ-FNO can naturally be
viewed as a DeepOnet with a specific choice of the branch and trunk-nets; where the trunk
net is fixed to represent a trigonometric basis, and the branch net is constrained by a specific
choice of hidden layer architecture, which provides a more parsimonious representation
compared to a canonical DeepOnet implementation based on dense layers.
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Theorem 36 (DeepOnet approximation of Ψ-FNOs) Let N : L2
N (Td;Rda)→ L2

N (Td;Rdu)
be a Ψ-FNO, and fix B > 0. For any ε > 0, there exists p ∈ N and a DeepOnet (β, τ), with
branch net β, trunk net τ , and sensor points {xj}j∈JN , such that

sup
‖a‖L∞≤B

sup
y∈Td

∣∣∣∣∣N (a)(y)−
p∑

k=1

βk(a)τk(y)

∣∣∣∣∣ ≤ ε,
where the first supremum is taken over all a ∈ C(Td), such that ‖a‖L∞ ≤ B. Furthermore,
we have

width(β) ∼ lift(N )Nd = dvN
d, depth(β) = depth(N ),

and the trunk net τ defines a mapping τ : Rd → RKN , which approximates an (arbitrary)
orthonormal trigonometric basis {ek}k∈KN with span{ek}k∈KN = span{ei〈k,x〉}k∈KN , such
that

max
k∈KN

‖ek − τk‖L∞ ≤ ε/B,

where

B := (2N + 1)d

(
sup

‖a‖L∞≤B
‖N (a)‖L2

)
.

Remark 37 We note that due to the particular architecture of Ψ−Fourier neural operators,
the total size of a Ψ-FNO N is upper bounded by

size(N ) . depth(N )d2
vN

d.

In contrast, since β and τ in the DeepOnet approximation of Theorem 36 are conventional
(dense) deep neural networks, the total number of degrees of freedom (i.e. the total number
of weights and biases) is given, in general, by

size(β) ∼ depth(β)width(β)2 ∼ depth(N )d2
vN

2d,

and size(τ) ∼ depth(τ)width(τ)2. So that in particular, comparing the sizes of the Ψ-FNO
and the corresponding (fully connected) DeepOnet approximation, we have

size(N )

size(β, τ)
. N−d.

In particular, this indicates that the Ψ-FNO provides a more parsimonious approximation
of the underlying operator than the DeepOnet “emulator” constructed in Theorem 36, with
size(N )� size(β, τ).

Before summarizing and discussing the main results of this work in the next section,
we would like to make a final remark on the different definition of “size” employed in the
present work, compared to related work such as Lanthaler et al. (2021):

Remark 38 In the approximation theory of neural networks, especially in the context of
fully connected neural networks, it is customary to define the “size” of a neural network
as the number of non-zero weights needed to approximate a given function (or operator) to
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accuracy ε. As a consequence, approximation estimates often depend crucially on consider-
able additional sparsity, which may be present in a particular construction in the proof of
such results. We would like to emphasize that due to the special (constrained) architecture
of Ψ-FNOs considered in the present work, our results do not depend on such additional
sparsity properties. Instead, the size of our neural networks is measured in terms of the
total number of weights and biases (be they zero or not). This is another indication of the
potential parsimony of FNOs over other architectures, such as DeepONets.

5. Summary and Discussion

Many learning tasks, particularly, but not exclusively, in scientific computing, are naturally
formulated as learning operators mapping one infinite-dimensional space to another. Neural
operators have recently been proposed as a framework for operator learning. A particular
form, the so-called Fourier Neural Operators (FNOs) (6), have been shown to be efficient
in approximating a wide variety of operators that arise in PDEs (Li et al., 2021). Our main
aim in this paper was to analyze FNOs and Ψ-FNOs (14), which is a concrete computational
realization of FNOs. To this end, we have presented the following results,

• We showed in Theorem 5 and Theorem 15 that FNOs (resp. Ψ-FNOs) are universal,
i.e., they can approximate any continuous operator to desired accuracy. Our proof
relies heavily on the ability of FNOs to approximate the Fourier transform and its
inverse, together with the neural network approximation of the finite-dimensional
Fourier conjugate operator (11). Thus, FNOs have the same universal approximation
property as canonical neural networks for finite-dimensional functions and DeepOnets
for operators (Lanthaler et al., 2021). This universality result paves the way for the
widespread use of FNOs in the context of operator learning.

• However as stated in Remark 22, in the worst case, the size of a FNO can grow
super-exponentially in terms of the desired error for approximating a general Lipschitz
continuous operator. This might inhibit the use of FNOs. On the other hand, we
argue in the beginning of Section 3 that Ψ-FNOs, which are a concrete computational
realization of FNOs, can approximate the nonlinearities and differential operators
that define PDEs, very efficiently. Hence, one can think of Ψ-FNOs as a new form of
pseudo-spectral methods for PDEs, which in practice are adapted to, and optimized
based on the given training data. Thus, one can expect that Ψ-FNOs can approximate
PDEs efficiently.

• We consider two widely used prototypical PDEs, namely the elliptic PDE (24) that
arises in a stationary Darcy flow and the well-known incompressible Navier-Stokes
equations for fluid dynamics. For both these PDEs, we prove rigorously that there
exists a Ψ-FNO which can approximate the underlying nonlinear operators efficiently,
as we can show that the size of the Ψ-FNO only needs to grow polynomially in terms
of the error. In fact, we show that the size grows sub-linearly in terms of the error.
Thus, FNOs can approximate these widely used PDEs efficiently, corroborating the
empirical results presented in Li et al. (2021).

28



Fourier Neural Operators

Hence, our analysis provides very strong theoretical evidence that FNOs are an effective
framework for operator learning. Moreover, we also compare FNOs to an alternative oper-
ator learning framework, that of DeepOnets (Lu et al., 2021) and show that Ψ-FNOs can
be thought of a special case of DeepOnets with a trunk net approximating trigonometric
functions and sensor points being equi-distributed Cartesian grid points. Given its special
architecture, we argue that a Ψ-FNO can allow for a more parsimonious representation of
operators than a DeepOnet, enabling a cheaper approximation of certain operators.

The comparison with DeepOnets also brings out some obvious limitations of FNOs.
In particular, FNOs are efficient on rectangular domains as the Ψ-FNO can be evaluated
efficiently with FFT. Although one can use FNOs for operators defined on arbitrary domains
using suitable extension and restriction operators (see Theorem 9), it is unclear if these
operators can be realized computationally in an efficient manner. Moreover, FNOs fix the
trigonometric basis as the trunk net in the underlying DeepOnet (see Theorem 36). On the
other hand, a general DeepOnet can learn trunk nets from the data during training, allowing
the possibility of learning a more suitable representation from data. These considerations
call for a more thorough computational comparison between DeepOnets and FNOs, and
possibly other operator learning frameworks such as the one from Bhattacharya et al. (2021).

Similarly, extending the analysis of this article to other neural operators can be readily
envisaged. The use of FNOs for more general operators, particularly those arising in non-
scientific computing settings, such as images, text and speech, also needs to be investigated.
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Appendix A. Glossary of Mathematical Notation

Symbol Description Page

σ activation function
Td periodic torus, identified with [0, 2π]d

d spatial dimension of domain p. 4
da, du, dv number of components of input, output and lifting p. 4
A(D;Rda) input function space p. 4
U(D;Rdu) output function space p. 4
F , F−1 Fourier transform and inverse Fourier transform p. 31

FN , F−1
N discrete Fourier transform and inverse p. 33

{xj}j∈JN regular periodic grid, xj = 2πj/(2N + 1) p. 33
JN grid point indices, JN = {0, . . . , 2N}d p. 33
KN Fourier wavenumbers KN =

{
k ∈ Zd

∣∣ |k|∞ ≤ N}
R lifting operator p. 4
L` neural operator layer p. 6
Q projection operator p. 4
F-layer linear, non-local layer; v(x) 7→ F−1(PFv)(x) p. 14
σ-layer non-linear, local layer; v(x) 7→ σ(Wv(x) + b(x)) p. 14

Banach spaces

L2 Space of square-integrable functions

L̇2 L̇2 ⊂ L2 square-integrable functions with zero mean p. 31
L2
N L2

N ⊂ L2 trigonometric polynomials of degree ≤ N p. 31

L̇2
N L̇2

N = L̇2 ∩ L2
N trigonometric polynomials with zero mean p. 31

Hs Sobolev space of smoothness s, with norm ‖ · ‖Hs p. 31

Ḣs Sobolev space with zero mean, with norm ‖ · ‖Ḣs p. 31

Projection operators

PN L2-orthogonal Fourier projection PN : L2 → L2
N p. 31

ṖN Fourier projection ṖN : L2 → L̇2
N with zero mean p. 32

IN Pseudo-spectral Fourier projection, i.e. trigonometric interpola-
tion on regular grid {xj}j∈JN

p. 32

P Leray projection onto divergence-free vector fields p. 22
PN Leray projection followed by projection PN ; PN = PN ◦ P p. 23

Appendix B. Notation and Technical Preliminaries

In this section, we introduce frequently used notation in the article main text and recall
some essential facts about Fourier analysis.

In the main text, our focus is functions defined on the periodic torus Td, identified
as Td = [0, 2π]d. Following standard practice, we denote by L2(Td) the space of square-
integrable functions. For any such function v ∈ L2(Td), we can define the Fourier Transform
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as,

F(v)(k) :=
1

(2π)d

ˆ
Td
v(x)e−i〈k,x〉 dx, ∀ k ∈ Zd. (40)

For any k ∈ Zd, the k-th Fourier coefficient of v is denoted by v̂k = F(v)(k).
Given a set of Fourier coefficients {v̂k}k∈Zd , the inverse Fourier Transform is defined

as,

F−1(v̂)(x) :=
∑
k∈Zd

v̂ke
i〈k,x〉, ∀x ∈ Td. (41)

Using the Fourier transform (40) and for s ≥ 0, one can denote by Hs(Td) the Sobolev
space of functions v ∈ L2(Td), with Fourier coefficients {v̂k}k∈Zd , having a finite Hs-norm:

‖v‖2Hs :=
(2π)d

2

∑
k∈Zd

(1 + |k|2s)|v̂k|2 <∞. (42)

Note that with this definition, we have from Parseval’s identity, that ‖v‖H0 = ‖v‖L2 , so
that H0(Td) = L2(Td).

We also introduce the corresponding homogeneous Sobolev spaces Ḣs(Td) (and
L̇2(Td) := Ḣ0(Td)), consisting of functions v(x) ∈ Hs(Td) and with zero mean

ffl
Td v(x) dx =

v̂0 = 0, and with norm

‖v‖Ḣs :=

(2π)d
∑

k∈Zd\{0}

|k|2s|v̂k|2
1/2

. (43)

Given N ∈ N, throughout this work, we will denote by L2
N (Td), the space of trigono-

metric polynomials vN : Td → R, of the form

vN (x) =
∑
|k|∞≤N

cke
i〈x,k〉, (44)

where the summation is over all k = (k1, . . . , kd) ∈ Zd such that

|k|∞ := max
i=1,...,d

|ki| ≤ N.

The space L2
N (Td) is viewed as a normed vector space with norm ‖ · ‖L2 . Similarly, for

s ≥ 0, we denote by Hs
N (Td) the normed vector space of trigonometric polynomials vN of

degree ≤ N , with norm ‖ · ‖Hs .
We note that in order to ensure that vN (x) ∈ R is real-valued for all x ∈ Td, the

coefficients ck ∈ C must satisfy the relations c−k = ck for all |k|∞ ≤ N , and where ck
denotes the complex conjugate of ck.

We denote by

PN : L2(Td)→ L2
N (Td), v 7→ PNv, (45)
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the L2-orthogonal projection onto L2
N(Td); or more explicitly,

PN

∑
k∈Zd

cke
i〈k,x〉

 =
∑
|k|∞≤N

cke
i〈k,x〉, ∀ (ck)k∈Zd ∈ `2(Zd).

In fact, the mapping PN defines a projection Hs(Td) → Hs
N (Td) for any s ≥ 0. We have

the following spectral approximation estimate: Let s > 0 be given. There exists a constant
C = C(s, d) > 0, such that for any v ∈ Hs(Td), we have

‖v − PNv‖Hς ≤ CN−(s−ς)‖v‖Hs , for any ς ∈ [0, s]. (46)

We also define a natural projection

ṖN : L2(Td)→ L̇2
N (Td), (47)

by removing the mean, i.e. ṖNv = PNv −
ffl
Td v(x) dx, or equivalently:

ṖN

∑
k∈Zd

cke
i〈k,x〉

 =
∑

0<|k|∞≤N

cke
i〈k,x〉, ∀ (ck)k∈Zd ∈ `2(Zd).

Furthermore, we denote by by

IN : C(Td) 7→ L2
N (Td), u 7→ INu, (48)

the pseudo-spectral projection onto L2
N (Td); we recall that the pseudo-spectral pro-

jection INv of a continuous function v is defined as the unique trigonometric polynomial
INv ∈ L2

N (Td), such that

INv(xj) = v(xj), ∀ j ∈ JN , (49)

where {xj}j∈JN denotes the set of all regular grid points xj ∈ Zd of the form xj = 2πj/(2N+
1) ∈ Td, j ∈ Zd (cp. equation 50).

We also recall the following embedding theorem for the Sobolev spaces Hs(Td):

Theorem 39 (Sobolev embedding) Let d ∈ N. For any s > d/2, we have a compact
embedding Hs(Td)↪→C(Td) into the space of continuous functions. In particular, there exists
a constant C = C(s, d) > 0, such that

‖v‖L∞ ≤ C‖v‖Hs , ∀ v ∈ Hs(Td).

The Sobolev embedding theorem implies in particular that the pseudo-spectral projection
IN is well-defined as an operator IN : Hs(Td)→ L2

N (Td) for s > d/2. In the following theo-
rem, we recall a well-known approximation error estimate for the pseudo-spectral projection
IN :
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Theorem 40 (Pseudo-spectral approximation estimate) Let d ∈ N. For any s >
d/2 and N ∈ N, the spectral interpolation operator IN : Hs(Td)→ L2

N (Td) is well-defined.
Furthermore, there exists a constant C = C(s, d) > 0, such that the following approximation
error estimate holds

‖(1− IN )v‖Hς ≤ CN−(s−ς)‖v‖Hs , ∀ v ∈ Hs(Td),

for any ς ∈ [0, s].

Finally, for N ∈ N, we fix a regular grid {xj}j∈JN of values

xj =
2πj

2N + 1
, (50)

where the index j ∈ JN belong to the index set

JN := {0, . . . , 2N}d. (51)

Recall the set of Fourier wave numbers (10) and we define the discrete Fourier transform
FN : RJN → CKN by

FN (v)(k) :=
1

(2N + 1)d

∑
j∈JN

vje
−2πi〈j,k〉/N , (52)

with inverse F−1
N : CKN → RJN ,

F−1
N (v̂)(j) :=

∑
k∈KN

v̂ke
2πi〈j,k〉/N . (53)

Lemma 41 (Periodic extension operator) Let Ω ⊂ Rd be a bounded, Lipschitz do-
main. There exists a continuous, linear operator E : Wm,p(Ω) → Wm,p(B) for any m ≥ 0
and 1 ≤ p ≤ ∞ where B b Rd is a hypercube with Ω ⊂ B such that, for any u ∈Wm,p(Ω),

1. E(u)|Ω = u,

2. E(u) is periodic on B (including its derivatives).

Proof By (Stein, 1970, Chapter 6, Theorem 5), there exists a continuous, linear operator
Ẽ : Wm,p(Ω)→Wm,p(Rd) such that Ẽ(u)|Ω = u for any u ∈Wm,p(Ω). Let Φ ∈ C∞(Rd) be
a mapping whose zeroth level set defines a curve ∂Ω′ such that Ω ⊂ Ω′ and dist(∂Ω′, ∂Ω) > 0
where Ω′ is a bounded domain with boundary ∂Ω′. Furthermore, suppose that the first level
set of Φ defines a curve ∂Λ such that Ω′ ⊂ Λ and dist(∂Λ, ∂Ω′) > 0 where, again, Λ is a
bounded domain with boundary ∂Λ. For example, we may take Φ(x) = x2

1 + · · · + x2
d − r

for some r > 0 large enough then Ω′ is d-ball of radius
√
r enclosing Ω, and Λ is a d-ball of

radius
√

1 + r clearly enclosing Ω′. We will now follow the approach of (Boyd, 2005) and
construct a windowing function ρ ∈ C∞c (Rd). In particular, we define

ρ(x) = H
(
1− 2Φ(x)

)
, ∀x ∈ Rd
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where

H(t) =
1

2

(
1 + S(t)

)
, ∀t ∈ R

and

S(t) =


−1, t < −1

erf
(

t√
1−t2

)
, −1 ≤ t ≤ 1

1, t > 1

, ∀t ∈ R

with erf, the Gauss error function,

erf(t) =
2√
π

ˆ t

0
e−z

2
dz, ∀t ∈ R.

Define B b Rd to be a large enough d-cube such that Λ ⊂ B and dist(∂Λ, ∂B) > 0. It is
easy to check that ρ ∈ C∞c (Rd) and we have that ρ|Ω = ρ|Ω′ = 1 and ρ|B\Λ = 0 with ρ and
all of its derivatives vanishing on ∂Λ. Furthermore,

‖ρ‖Cm(B) <∞

for any m ≥ 0. We can thus define E : Wm,p(Ω)→Wm,p(B) by

E(u) = ρẼ(u), ∀u ∈Wm,p(Ω).

By Leibniz’s rule and the generalized triangle inequality, there exists a constant C1 =
C1(d,m, p) > 0 (independent of p in the case p =∞) such that

‖E(u)‖Wm,p(B) ≤ C1‖ρ‖Cm(B)‖Ẽ(u)‖Wm,p(B).

Since Ẽ is bounded, there is a constant C2 > 0 such that

‖E(u)‖Wm,p(B) ≤ C1‖ρ‖Cm(B)‖Ẽ(u)‖Wm,p(B)

≤ C1‖ρ‖Cm(B)‖Ẽ(u)‖Wm,p(Rd)

≤ C1C2‖ρ‖Cm(B)‖u‖Wm,p(Ω)

hence E is a continuous, linear operator. Since ρ|Ω = 1, we immediately have E(u)|Ω =
Ẽ(u)|Ω = u. Since supp(∂αρ) ⊆ Λ for any multi-index 0 ≤ |α| ≤ m, we conclude that
∂αE(u)|B\Λ = 0 hence E(u) is periodic on B as desired.

Appendix C. Non-Linear Lifting and Projection Operators

Lemma 42 Assume that the activation function σ ∈ C2 is non-linear and that ‖σ‖C2(R) <

∞. Let N : L2(D;Rda) → L2(D;Rdu) be a neural operator of the form N = Q ◦ LL ◦
· · · ◦ L1 ◦ R, with Lipschitz continuous layers L` : L2(D;Rdv) → L2(D;Rdv), and with
linear lifting/projection operators R, Q of the form (1) and (2), respectively. For any
K ⊂ L2(D;Rdv) compact and ε > 0, there exist neural networks R̂ : Rda × D → Rdv ,
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Q̂ : Rdv ×D → Rdu with a single hidden layer and width(R̂),width(Q̂) ≤ 2dv, such that the
mapping N̂ : A(D;Rda)→ U(D;Rdu) defined by

N̂ (a) := Q̂ ◦ LL ◦ · · · ◦ L1 ◦ R̂(a),

where R(a)(x) := R̂(a(x), x), Q(v) := Q̂(v(x), x), approximates N to order ε:

sup
a∈K
‖N (a)− N̂ (a)‖L2 ≤ ε.

Proof We recall that, by our definition of a neural operator, we have R(a)(x) = Ra(x),
Q(v)(x) = Qv(x), where R ∈ Rdv×da , Q ∈ Rdu×dv . By assumption on the non-linearity of
σ, there exists z0 ∈ R, such that σ′(z0) 6= 0. For any h > 0, we now define

Q̂h(v, x) :=
σ(z0 + hQv)− σ(z0 − hQv)

2hσ′(z0)
,

R̂h(a, x) :=
σ(z0 + hRa)− σ(z0 − hRa)

2hσ′(z0)
.

We remark that in the above expressions, the addition of z0 ∈ R and hQv ∈ Rdu , hRa ∈ Rdv
is carried out componentwise, as is the evaluation of σ.

Since the interior layers L1, . . . ,LL are fixed, we introduce the short-hand notation
L := LL ◦ · · · ◦ L1. By assumption on the activation function and the layers, we have that
L : L2(D;Rdv) → L2(D;Rdv) is a Lipschitz continuous mapping. Our goal is to show that
for any K ⊂ L2 compact and ε > 0, there exists a sufficiently small h > 0, such that

sup
a∈K
‖N (a)− N̂h(a)‖L2 ≤ ε,

where N̂h(a) := Q̂h ◦ L ◦ R̂h(a). To this end, we note that for any a ∈ K, we have

‖N (a)− N̂h(a)‖L2 = ‖Q ◦ L ◦ R(a)− Q̂h ◦ L ◦ R̂h(a)‖L2

≤ ‖Q ◦ L ◦ R(a)− Q̂h ◦ L ◦ R(a)‖L2

+ ‖Q̂h ◦ L ◦ R(a)− Q̂h ◦ L ◦ R̂h(a)‖L2 .

Introducing K̃ := L ◦ R(K), we note that K̃ ⊂ L2 is compact, and

sup
a∈K
‖N (a)− N̂h(a)‖L2 ≤ sup

v∈K̃
‖Q(v)− Q̂h(v)‖L2

+ Lip(Q̂h)Lip(L) sup
a∈K
‖R(a)− R̂h(a)‖L2 .

The proof of this lemma thus follows form the following three claims:
Claim 1: There exists C > 0, independent of h, such that Lip(Q̂h) ≤ C for all h > 0.
Claim 2: For any ε > 0 and K̃ ⊂ L2 compact, there exists h > 0, such that

sup
v∈K̃
‖Q̂h(v)−Q(v)‖L2 ≤ ε.
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Claim 3: For any ε > 0 and K ⊂ L2 compact, there exists h > 0, such that

sup
a∈K
‖R̂h(a)−R(a)‖L2 ≤ ε.

Clearly, the only difference between Claims 2 and 3 is notational, hence it suffices show
Claims 1 and 2 to conclude the proof of the present lemma.

Proof of Claim 1: We note that for any v(x), v′(x) ∈ Rdv , we have

|Q̂h(v(x), x)− Q̂h(v′(x), x)| ≤ 1

2h|σ′(z0)|
2Lip(σ)|hQ(v(x)− v′(x))| (54)

≤ Lip(σ)‖Q‖
|σ′(z0)|

|v(x)− v′(x)|, (55)

where | · | denotes the Euclidean norm and ‖Q‖ denotes the operator norm of Q. Hence, it
follows that for any v, v′ ∈ L2(D;Rdv), we have

‖Q̂h(v)− Q̂h(v′)‖L2 ≤
Lip(σ)‖Q‖
|σ′(z0)|

‖v − v′‖L2 ,

and thus,

Lip(Q̂h) ≤ Lip(σ)‖Q‖
|σ′(z0)|

,

is bounded independently of h > 0.
Proof of Claim 2: It follows form Taylor expansion that Q̂h(v(x), x) = Qv(x)+hR(h;Qv(x)),

where the remainder R satisfies a uniform bound

|R(h;Qv(x))| ≤ C‖σ‖C2

|σ′(z0)|
|Qv(x)|2, ∀h ∈ (0, 1], v(x) ∈ Rdv .

In particular, considering the L2-norm of the left-hand side and assuming x 7→ v(x) to be
bounded, we conclude that there exists a constant C = C(σ, ‖Q‖) > 0, depending only on the
activation function σ and the (Euclidean) operator norm ‖Q‖ of Q : (Rdv , | · |)→ (Rdu , | · |),
such that

‖Q̂h(v)−Q(v)‖L2 = ‖R(h;Qv)‖L2 ≤ C‖v‖L∞‖v‖L2 , ∀ v ∈ L2 ∩ L∞. (56)

Next, for M > 0 we introduce a cut-off operator pM : L2 → L2 ∩ L∞, by

pM (v(x)) :=

{
v(x), (|v(x)| ≤M),

0, (|v(x)| > M).

Since K̃ ⊂ L2 is compact, it follows that

lim
M→∞

sup
v∈K̃
‖v − pM (v)‖L2 = 0.

We can thus choose M > 0 sufficiently large, such that

sup
v∈K̃
‖v − pM (v)‖L2 ≤

ε

2
(

suph∈(0,1] Lip(Q̂h) + Lip(Q)
) ,
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where we note that suph∈(0,1] Lip(Q̂h) < ∞, by Claim 1. Furthermore, and again by com-

pactness of K̃ ⊂ L2, there exists a constant M̃ > 0, such that

sup
v∈K̃
‖v‖L2 ≤ M̃.

With this M̃ , our choice of M and the estimate (56) on the remainder R, it follows that for
any v ∈ K̃:

‖Q̂h(v)−Q(v)‖L2 ≤ ‖Q̂h(v)− Q̂h(pM (v))‖L2

+ ‖Q̂h(pM (v))−Q(pM (v))‖L2

+ ‖Q(pM (v))−Q(v)‖L2

≤
(

Lip(Q̂h) + Lip(Q)
)
‖v − pM (v)‖L2

+ Ch‖pM (v)‖L∞‖pM (v)‖L2

≤ ε/2 + CMM̃h.

Finally, choosing h = ε/(2CMM̃) implies that

sup
v∈K̃
‖Q̂h(v)−Q(v)‖L2 ≤ ε.

This concludes the proof.

Appendix D. Proofs and Technical Details for Section 2

D.1 Proof of Lemma 6

The proof of Lemma 6 will rely on the following technical lemma:

Lemma 43 Let s′ ≥ 0, N ∈ N be given. Let K ⊂ Hs′ be compact, and assume that
σ ∈ Cm, where m > s′ is integer. Then for any ε > 0, there exists a single-layer FNO
L : Hs′ → Hs′, such that

sup
v∈K
‖PNv − L(v)‖Hs′ ≤ ε.

Proof [Proof of Lemma 43] First, we note that the Fourier projection PN : Hs′ → Hs′ is a
continuous operator, and hence the image PNK ⊂ Hs′ is compact. Furthermore, PN maps
into a finite-dimensional subspace ofHs′ , spanned by smooth (trigonometric) functions. Due
to the norm-equivalence on finite-dimensional spaces, there thus exists C0 = C0(N,K) > 0,
such that

sup
v∈K
‖PNv‖L∞ ≤ C0, sup

v∈K
‖PNv‖Hm ≤ C0. (57)
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Let x0 ∈ R be such that σ′(x0) 6= 0. We define, for h > 0,

ψh(x) :=
σ(x0 + hx)− σ(x0 − hx)

2hσ′(x0)
. (58)

One readily shows that ψh ∈ Cm, and that there exists a constant C1 = C1(σ,C0) > 0, such
that

‖ψh‖Cm([−C0,C0]) ≤ C1, ∀h ∈ (0, 1]. (59)

Furthermore, by Taylor expansion, we have

|ψh(x)− x| ≤ Ch, ∀x ∈ [−C0, C0], ∀h ∈ (0, 1]. (60)

By the composition rule for Sobolev functions, we have that ψh◦PNv ∈ Hm, for PNv ∈ Hm,
and there exists a constant C2 = C2(C1, C0) > 0, such that

‖ψh(PNv)‖Hm ≤ C2, ∀ v ∈ K. (61)

We finally observe that the mapping v 7→ Lh(v) := ψh(PNv) can be represented by a
single-layer FNO, and by (61), we have

‖Lh(v)‖Hm ≤ C2, ∀ v ∈ K. (62)

From the interpolation inequality between Sobolev spaces, it follows that

‖Lh(v)− PNv‖Hs′ ≤ ‖Lh(v)− PNv‖θL2‖Lh(v)− PNv‖1−θHm ,

where θ = 1−s′/m > 0. By (62) and (57), the second factor can be bounded independently
of h > 0. By (60) and (57), we have

‖Lh(v)− PNv‖L2 = ‖ψh(PNv)− PNv‖L2 ≤ Ch,

for a constant C > 0, independent of h and v ∈ K. We conclude that

‖Lh(v)− PNv‖Hs′ ≤ Chθ → 0,

as h→ 0, for some constant C > 0, independent of h. This proves the claim.

We can now prove:
Proof [Proof of Lemma 6] Let G : Hs → Hs′ be a continuous operator, and let K ⊂ Hs be
compact. We assume that FNOs are universal approximators of operators Hs → L2, and
we wish to show that for any ε > 0, there exists a FNO approximation of G : Hs → Hs′ to
accuracy ε. We first note that by the compactness of G(K) ⊂ Hs′ , there exists N ∈ N, such
that

sup
a∈K
‖G(a)− PNG(a)‖Hs′ ≤ ε/2. (63)
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Fix δ > 0 for the moment. A suitable choice of δ will be specified at the end of this proof.
By assumption on the universal approximation of operators Hs → L2, there exists a FNO
Ñ : Hs → L2, continuous as an operator Hs → L2, such that

sup
a∈K
‖PNG(a)− Ñ (a)‖L2 ≤ δ. (64)

One difficulty in the present construction is that there is no guarantee that Ñ defines a
mapping Hs → Hs′ , and indeed for s′ > s this is not generally the case. We circumvent
this issue by composing with an additional FNO layer L̃ : L2 → Hs′ . By Lemma 43, there
exists a single-layer FNO v 7→ L̃(v), satisfying the identity

L̃(v) = L̃(PNv), (65)

for all v, and defining a continuous operator Hs′ → Hs′ , such that

sup
v∈K′

‖PNv − L̃(v)‖Hs′ ≤ δ, (66)

where K ′ := PN Ñ (K) ⊂ Hs′ is a compact subset of Hs′ .1 Next, we define a new FNO by
the composition N := L̃ ◦ Ñ : Hs → Hs′ . N is a continuous operator Hs → Hs′ , since it
can be written as the composition

Hs Ñ−→ L2 PN−→ Hs′ L̃−→ Hs′ ,

of continuous operators. We observe that for any a ∈ K, we have the following bound:

‖PNG(a)−N (a)‖Hs′ ≤ ‖PNG(a)− PN Ñ (a)‖Hs′ + ‖PN Ñ (a)−N (a)‖Hs′

≤ CN s′‖PNG(a)− Ñ (a)‖L2 + ‖PN Ñ (a)− L̃(PN Ñ (a))‖Hs′ ,

having made use of the inequality ‖PNv‖Hs′ ≤ CN s′‖PNv‖L2 for a constant C = C(Td, s′) >
0 independent of N , and the fact that N (a) = L̃(Ñ (a)) = L̃(PN Ñ (a)) (cp. equation 65).
Using (64), we can estimate

CN s′‖PNG(a)− Ñ (a)‖L2 ≤ CN s′δ.

The bound (66) implies that ‖PN Ñ (a) − L̃(PN Ñ (a))‖Hs′ = ‖PNv − L̃(v)‖Hs′

(66)
↓

≤ δ, with
v := PNN (a) ∈ K ′. We thus obtain

‖PNG(a)−N (a)‖Hs′ ≤ (CN s′ + 1)δ, (67)

where C = C(Td, s′) > 0 is independent of δ. Since δ > 0 was arbitrary, we can ensure that
(CN s′ + 1)δ ≤ ε/2. From this estimate, and the bound (63), we conclude that there exists

1. We note that N (K) ⊂ L2 is compact as the continuous image of K, and that PN : L2 → Hs′ defines a
continuous mapping for fixed N ∈ N.
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a FNO N : Hs → Hs′ , such that

sup
a∈K
‖G(a)−N (a)‖Hs′ ≤ sup

a∈K
‖G(a)− PNG(a)‖Hs′

+ sup
a∈K
‖PNG(a)−N (a)‖Hs′

≤ ε,

This concludes our proof.

D.2 Proof of Lemma 7

Proof Step 1: In this first step, for any ε > 0, we will construct a FNO

N1 : L2(Td;R)→ L2(Td;R2KN ),

such that {
‖N1(v)1,k − PNv(x) cos(〈k, x〉)‖L∞ < ε,

‖N1(v)2,k − PNv(x) sin(〈k, x〉)‖L∞ < ε,
∀ k ∈ KN . (68)

To see how to construct such N1, we first define a lifting

R1 : L2(Td;R)→ L2(Td;R4KN ), v(x) 7→ ŵ(x),

where ŵ(x) := {(v(x), 0, v(x), 0)}k∈KN ∈ R4KN for any x ∈ Td. In the following, we will
identify R4KN ' Rdv , with dv = 4|KN |. Next, we define the inner part of the first FNO
layer (i.e. the matrix W , multiplier P , bias b(x) in (7)), such that P (k) ≡ 1|k|≤N1dv×dv
either vanishes (for |k| > N) or is the unit matrix (for |k| ≤ N), W ≡ 0 is zero and the bias
function b(x) := {(0, b2,k(x), 0, b4,k(x))}k∈KN , b2,k(x) = cos(〈k, x〉), b4,k(x) = sin(〈k, x〉),
such that

L̂1(v̂)(x) := Wŵ(x) + b(x) + F−1(PFŵ)(x)

=
{(
PN ŵ1,k(x), cos(〈k, x〉), PN ŵ3,k(x), sin(〈k, x〉)

)}
k∈KN

.

Next, we recall that by assumption, we have ‖v‖L2 ≤ B, and by construction, we have
ŵ1,k(x) = ŵ3,k(x) = v(x), implying that

‖PN ŵ1,k‖L∞ = ‖PN ŵ3,k‖L∞ = ‖PNv‖L∞ ≤ C‖PNv‖L2 ≤ CB,

where C = C(N) ∝ Nd/2 is a constant depending on N . By the universal approximation
theorem for (ordinary) neural networks, there exists a neural network

N̂ : [−CB,CB]× [−1, 1]× [−CB,CB]× [−1, 1]→ R2

with activation function σ, such that max(a,b,c,d) |N̂ (a, b, c, d) − (ab, cd)| < ε, and where
the maximum is taken over all a, c ∈ [−CB,CB], b, d ∈ [−1, 1]. But then, the point-wise
mapping

N1 = N̂ ◦ L̂ ◦ R1 :

{
L2(Td;R)→ L2(Td;R2KN ),

v(x) 7→ w̃(x) := L̂1(R1(v))(x) 7→ N̂ (w̃(x)),
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satisfies (68), and N1 can be represented by a FNO (cp. Remark 3). Step 2: By the last
step, we have ‖N1(v)1,k−PNv(x) cos(〈k, x〉)‖L∞ < ε and ‖N1(v)2,k−PNv(x) sin(〈k, x〉)‖L∞ <
ε for all v ∈ L2(Td) with ‖v‖L2 ≤ B. We next note that, since

PNv(x) =
∑
|k|∞≤N

v̂ke
i〈k,x〉,

and since v(x) is real-valued, the Fourier coefficients v̂k satisfy v̂−k = v̂k, where v̂k denotes
the complex conjugate of v̂k, and

 
Td
PNv(x) cos(〈k, x〉) dx = Re(v̂k),

 
Td
PNv(x) sin(〈k, x〉) dx = −Im(v̂k),

In particular, this implies that the 0-th Fourier modes of PNv(x) cos(〈k, x〉), and PNv(x) sin(〈k, x〉),
respectively, are given by

F
[
PNv cos(〈k, · 〉)

]
(0) = Re(v̂k), F

[
PNv sin(〈k, · 〉)

]
(0) = −Im(v̂k),

and, as a consequence, we have with the Fourier multiplier

δ0(k′) =

{
1, (k′ = 0)

0, (k′ 6= 0),
∀ k′ ∈ Zd,

and with w(x) := N1(v)(x) ∈ L2(Td;R2KN ), written as w(x) = {(w1,k(x), w2,k(x))}k∈KN ,
that ∥∥∥F−1

(
δ0(k′)F(w1,k)(k

′)
)

(x)− Re(v̂k)
∥∥∥
L∞

< ε,∥∥∥F−1
(
δ0(k′)F(w2,k)(k

′)
)

(x) + Im(v̂k)
∥∥∥
L∞

< ε,

for all v ∈ L2(Td) with ‖v‖L2 ≤ B. We use this observation to define a suitable FNO layer;
with local matrix W = 0, bias b(x) = 0 and a Fourier multiplier matrix P : Zd → Cdv×dv ,
k′ 7→ P (k′) (where dv = 2|KN |, and Cdv ' C2KN ), with entries

[P (k′)]
(`,k),(˜̀,k̃)

:= δ0(k′) {δ`=1(`)− δ`=2(`)}1dv×dv .

With this definition of the Fourier multiplier P , we define L̂2 : L2(Td;R2KN )→ L2(Td;R2KN ),
by

L̂2(w) := Ww(x) + b(x) + F−1
(
PFw

)
(x).

Then, by construction, we have for any v ∈ L2(Td) with ‖v‖L2 ≤ B that the output
w := L̂2(N1(v)), w(x) = {(w1,k(x), w2,k(x))}k∈KN , satisfies{

‖w1,k(x)− Re(v̂k)‖L∞ < ε,

‖w2,k(x)− Im(v̂k)‖L∞ < ε.

We also note that L̂2 outputs only constant functions, by construction. This is almost the
desired result, except for the fact that the composition L̂2 ◦N1 does not define a FNO, since
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the linear layer L̂2 is missing the non-linearity σ. This can be rectified by composition with
a suitable (ordinary) σ-neural network Ñ , which approximates the identity: Indeed, the last
estimate implies in particular that |w`,k| ≤ |v̂k| + ε ≤ B + ε for all `, k. By the (ordinary)

universal approximation theorem, there exists a neural network Ñ : R2KN → R2KN , such
that

‖Ñ (w)− w‖`∞ < ε, ∀w ∈ R2KN , ‖w‖`∞ ≤ B + ε.

Then the composition N2 := Ñ ◦ L̂2 : L2(Td;R2KN ) → L2(Td;R2KN ), given by w(x) 7→
Ñ
(
L̂2(w)(x)

)
, does define a FNO.

Step 3: We finally observe that since both N1 and N2 can be represented by FNOs,
then also their composition

N := N2 ◦ N1 : L2(Td)→ L2(Td;R2KN ),

can be represented by a FNO with depth(N ) = depth(N1)+depth(N2), lift(N ) = maxj=1,2 lift(Nj).
Furthermore, the mapping v 7→ N (v) maps to constant functions, and for any v ∈ L2(Td),
‖v‖L2 ≤ B, we have {

‖Re(v̂k)−N (v)1,k‖L∞ < 2ε,

‖Im(v̂k)−N (v)2,k‖L∞ < 2ε.

Since ε > 0 was arbitrary, the claim follows.

D.3 Proof of Lemma 8

Proof Step 1: We first construct a FNO N1 : L2(Td;R2KN )→ L2(Td;R2KN ), such that
‖N1(w)1,k − PNw1,k(x) cos(〈k, x〉)‖L∞ <

(
2|KN ||Td|1/2

)−1
ε,

‖N1(w)2,k − PNw2,k(x) sin(〈k, x〉)‖L∞ <
(

2|KN ||Td|1/2
)−1

ε,

(69)

for all w(x) = (w1,k(x), w2,k(x)), such that ‖w1,k‖L∞ , ‖w2,k‖L∞ ≤ B, for all k ∈ KN . Here
|Td| = (2π)d denotes the Lebesgue measure of Td and |KN | = (2N + 1)d the number of
elements of KN .

To construct such N1, we first define a lifting R : L2(Td;R2KN ) → L2(Td;R4KN ),
{(w1,k(x), w2,k(x))}k∈KN 7→ {(w1,k(x), 0, w2,k(x), 0)}k∈KN , followed by a linear layer L :
L2(Td;R4KN ) → L2(Td;R4KN ), which only introduces a bias (setting W ≡ 0, b(x) =
{(0, cos(〈k, x〉), 0, sin(〈k, x〉))}k∈KN , P ≡ 0), to yield

L ◦ R(w) = {(w1,k(x), cos(〈k, x〉), w2,k(x), sin(〈k, x〉))}k∈KN ,

for all w ∈ L2(Td;R2KN ). There exists an ordinary neural network N̂ : [−B,B]× [−1, 1]×
[−B,B] × [−1, 1] → R2, such that maxa,b,c,d |N̂ (a, b, c, d) − (ab, cd)| < (2|KN ||Td|1/2)−1ε,
where the maximum is taken over a, c ∈ [−B,B] and b, d ∈ [−1, 1]. Since, by assumption,
we have ‖w1,k‖L∞ , ‖w2,k‖L∞ ≤ B for the inputs of interest, we conclude that N1(w) :=

N̂ ◦ L ◦ R(w) satisfies (69). Furthermore, by Lemma 44 and Lemma 46, N1 is represented
by a FNO.
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Step 2: We define a projection Q (cp. the definition of neural operators, equation 2),
mapping w(x) ∈ L2(Td);R2KN ) to a scalar-valued function, by

Q : L2(Td;R2KN )→ L2(Td), w(x) 7→
∑
k∈KN

(w1,k(x)− w2,k(x)) .

Then N := Q ◦ N1 : L2(Td;R2KN ) → L2(Td) is an FNO, and for any v ∈ L2
N (Td), and

w = {(Re(v̂k), Im(v̂k))}k∈KN defined as in the statement of this lemma, we have

‖v −N (w)‖L2 =

∥∥∥∥∥∥v −
∑
k∈KN

(
N1(w)1,k −N1(w)2,k

)∥∥∥∥∥∥
L2

≤
∑
k∈KN

‖N1(w)1,k − Re(v̂k) cos(〈k, x〉)‖L2

+
∑
k∈KN

‖N1(w)2,k − Im(v̂k) sin(〈k, x〉)‖L2

≤
∑
k∈KN

‖N1(w)1,k − Re(v̂k) cos(〈k, x〉)‖L2

+
∑
k∈KN

‖N1(w)2,k − Im(v̂k) sin(〈k, x〉)‖L2

≤ |KN ||Td|1/2 max
k∈KN

‖N1(w)1,k − w1,k cos(〈k, x〉)‖L∞

|KN ||Td|1/2 max
k∈KN

‖N1(w)2,k − w2,k sin(〈k, x〉)‖L∞

< ε.

D.4 Proof of the Universal Approximation Theorem 5

As mentioned in the sketch of the proof of Theorem 5, we only need to consider the special
case s′ = 0, due to Lemma 6; i.e. given a continuous operator G : Hs(Td) → L2(Td),
K ⊂ Hs(Td) compact, and ε > 0, we wish to construct a FNO N : Hs(Td)→ L2(Td), such
that supa∈K ‖G(a)−N (a)‖L2 ≤ ε.

Throughout this proof, we set da = du = 1 for notational convenience. The general
case with da, du > 1 follows analogously. For N ∈ N, let PN denote the orthogonal Fourier
projection (45). First, we note that since K ⊂ Hs(Td) is compact, one can prove by
elementary arguments that the set K̃ given by

K̃ := K ∪
⋃
N∈N

PNK,

is compact. Since G is continuous, its restriction to K̃ is uniformly continuous, i.e. there
exists a modulus of continuity ω : [0,∞)→ [0,∞), such that

‖G(a)− G(a′)‖L2 ≤ ω
(
‖a− a′‖Hs

)
, ∀ a, a′ ∈ K̃.
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From the definition of the projection GN (8), we have,

‖G(a)− GN (a)‖L2 ≤ ‖G(a)− PNG(a)‖L2 + ‖PNG(a)− PNG(PNa)‖L2

≤ ‖G(a)− PNG(a)‖L2 + ‖G(a)− G(PNa)‖L2

≤ sup
v∈G(K̃)

‖(1− PN )v‖L2 + ω

(
sup
a∈K̃
‖(1− PN )a‖Hσ

)
. (70)

Since K̃ is compact, also the image G(K̃) is compact leading to,

lim sup
N→∞

sup
u∈G(K̃)

‖(1− PN )v‖L2 = 0 = lim sup
N→∞

sup
a∈K̃
‖(1− PN )a‖Hs .

In particular, there exists N ∈ N, such that

‖G(a)− GN (a)‖L2 ≤ ε, ∀ a ∈ K ⊂ K̃. (71)

In the remainder of this proof, we will construct an FNO approximation of GN . In fact, we
note that GN defines a continuous operator GN : L2(Td) → L2(Td), via a 7→ PNG(PNa),
and the compact set K remains compact also as a subset of L2(Td). We will show that
there exists a FNO N : L2(Td)→ L2(Td), such that

sup
a∈K
‖GN (a)−N (a)‖L2 < ε.

Then the restriction of N to Hs(Td) ⊂ L2(Td) provides an approximation of G, such that

sup
a∈K
‖G(a)−N (a)‖L2 < 2ε.

Since ε > 0 was arbitrary, the claim follows from this.
As outlined in the sketch, our proof for the existence of a FNO approximating GN relies

on the decomposition (12), which in turn is defined via the Fourier conjugate operator ĜN
(11). Our aim is to show that each operator in the decomposition (12) can be approximated
by FNOs to desired accuracy. To this end, let ε > 0 be given, and choose RK , RK̂ , RĜ > 0,
such that 

K ⊂ BRK (0) := {‖u‖L2 ≤ RK} ⊂ L2(Td),

FN ◦ PN (BRK (0)) ⊂
[
−
R
K̂

2
,
R
K̂

2

]2KN
,

ĜN
(
[−R

K̂
, R

K̂
]2KN

)
⊂
[
−
RĜ
2
,
RĜ
2

]2KN
.

(72)

The reason for introducing RK , RK̂ , RĜ lies in the fact that in order to approximate GN by
a composition of FNOs, we need to ensure that each FNO in this composition maps its own
domain into the domain of the next FNO. The FNO approximations of the individual steps
in the composition GN = F−1

N ◦ ĜN ◦ (FN ◦ PN ) are constructed below:
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FNO approximation of F−1
N : We start with our construction of a FNO approximation

of the last step in the composition. To this end, we are going to interpret the mapping

F−1
N : [−R,R]2KN ⊂ R2KN → L2(Td),

as a mapping

F−1
N :

{
L2(Td; [−R,R]2KN )→ L2(Td),
{Re(v̂k), Im(v̂k)}|k|≤N 7→ v(x),

(73)

where the input {Re(v̂k), Im(v̂k)}|k|≤N ∈ [−R,R]2KN is identified with a constant function

in L2(Td; [−R,R]2KN ) (for non-constant input function v(x), we apply F−1
N to the constant

function x 7→
ffl
Td v(ξ) dξ to define the mapping in equation 73 for general inputs). By

Lemma 8, the mapping (73) can be approximated to any desired accuracy by an FNO
NIFT : L2(Td;R2KN )→ L2(Td), such that

‖NIFT(v̂)−F−1
N (v̂)‖L2 ≤ ε/3, (74)

for all constant input functions v̂ ∈ L2(Td; [−R,R]2KN ).
FNO approximation of ĜN : We view the Fourier conjugate operator ĜN (11) as a
continuous mapping

ĜN : [−R
K̂
, R

K̂
]2KN ⊂ R2KN → R2KN .

Since [−R
K̂
, R

K̂
]2KN is compact, there exists a finite-dimensional canonical neural network

N̂ : R2KN → R2KN , such that

sup
v̂∈[−R

K̂
,R
K̂

]2KN
‖ĜN (v̂)− N̂ (v̂)‖`2 ≤ ε/3. (75)

Furthermore, by (72), we have

ĜN
(
[−R

K̂
, R

K̂
]2KN

)
⊂
[
−
RĜ
2
,
RĜ
2

]2KN
.

Therefore, by choosing a neural network approximation N̂ with sufficiently high accuracy,
we can also ensure that

N̂
(
[−R

K̂
, R

K̂
]2KN

)
⊂
[
−RĜ , RĜ

]2KN
,

in addition to (75). Finally, we note that for v ∈ L2(Td;R2KN ), the corresponding mapping

N̂ : L2(Td;R2KN )→ L2(Td;R2KN ), v(x) 7→ N̂ (v(x)),

is in fact an FNO, with only local layers of the form

v`(x) 7→ σ (A`v`(x) + b`) , (A` ∈ Rdv×dv , b` ∈ Rdv),
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and where dv := 2|KN |, i.e. a FNO for which all P` ≡ 0 (cp. Remark 3). We shall thus
identify N̂ with this particular FNO, in the following.
FNO approximation of FN ◦ PN : Finally, we can similarly interpret

FN ◦ PN : BRK (0) ⊂ L2(Td)→ R2KN ,

as a mapping

FN ◦ PN :

{
BRK (0)→ L2(Td;R2KN ),

v 7→ {Re(v̂k), Im(v̂k)}|k|≤N ,
(76)

where the output {Re(v̂k), Im(v̂k)}|k|≤N ∈ R2KN is a constant function in L2(Td;R2KN ).
By Lemma 7, the mapping (76) can be approximated to any desired accuracy by an FNO
NFT : BRK (0) → L2(Td;R2KN ) (with constant output functions). In particular, denoting

Lip(N̂ ) the Lipschitz constant of the FNO constructed in the previous step, we can ensure
that

Lip(N̂ ) ‖FNPNv −NFT(v)‖`2 ≤ ε/3, ∀ v ∈ BRK (0), (77)

and furthermore, since by (72), we have

FN ◦ PN (BRK (0)) ⊂
[
−
R
K̂

2
,
R
K̂

2

]2KN
,

we can in addition ensure that

NFT (BRK (0)) ⊂
[
−R

K̂
, R

K̂

]2KN .
Error estimate for resulting FNO approximation: We now define a FNO N (a) :=
NIFT ◦ N̂ ◦NFT(a), where the right-hand side terms have been constructed above. We note
that

sup
K
‖GN −N‖L2

≤ sup
BRK (0)

∥∥∥F−1
N ◦ ĜN ◦ FN ◦ PN −NIFT ◦ N̂ ◦ NFT

∥∥∥
L2

≤ sup
BRK (0)

∥∥∥F−1
N ◦ ĜN ◦ FN ◦ PN −F

−1
N ◦ N̂ ◦ NFT

∥∥∥
L2

+ sup
BRK (0)

∥∥∥F−1
N ◦ N̂ ◦ NFT −NIFT ◦ N̂ ◦ NFT

∥∥∥
L2

≤ sup
BRK (0)

∥∥∥ĜN ◦ FN ◦ PN − N̂ ◦ NFT

∥∥∥
L2

+ sup
N̂(NFT(BRK (0)))

∥∥F−1
N −NIFT

∥∥
L2

=: (I) + (II).
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For the second term (II), we note that

N̂ (NFT (BRK (0))) ⊂ N̂
(
[−R

K̂
, R

K̂
]2KN

)
⊂
[
−RĜ , RĜ

]2KN
,

and hence, by (74), we can bound

(II) ≤ sup

[−RĜ ,RĜ]
2KN

∥∥F−1
N −NIFT

∥∥
L2 ≤ ε/3.

To estimate the first term (I), we note that

(I) = sup
BRK (0)

∥∥∥ĜN ◦ FN ◦ PN − N̂ ◦ NFT

∥∥∥
L2

≤ sup
BRK (0)

∥∥∥ĜN ◦ FN ◦ PN − N̂ ◦ FN ◦ PN∥∥∥
L2

+ sup
BRK (0)

∥∥∥N̂ ◦ FN ◦ PN − N̂ ◦ NFT

∥∥∥
L2

=: (Ia) + (Ib).

To estimate (Ia), we note that

FN (PN (BRK (0))) ⊂
[
−R

K̂
, R

K̂

]2KN ,
and hence

(Ia) ≤ sup

[−RK̂ ,RK̂ ]
2KN

∥∥∥ĜN − N̂∥∥∥
L2
≤ ε/3,

by (75). Finally, to estimate (Ib), we note that

(Ib) ≤ Lip(N̂ ) sup
BRK (0)

‖FN ◦ PN −NFT‖L2 ≤ ε/3,

by (77). Combining these estimates, we conclude that

sup
a∈K
‖GN (a)−N (a)‖L2 ≤ ε,

This shows that the continuous operator GN can be approximated by a FNO N to any
desired accuracy ε > 0, and together with (9) concludes our proof of the universal approxi-
mation theorem 5 for the special case s′ = 0. The general case with s′ ≥ 0 now follows from
Lemma 6.

D.5 Proof of Theorem 14

Proof The proof involves 4 steps.

Step 1: We may wlog assume that all biases b`(x) ∈ C∞.
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Indeed, it is easy to see that under the finite width assumption and for Lipschitz continuous
σ, each layer L` defines a Lipschitz continuous mapping L2 → L2. Replacing b`(x) by it’s
δ-mollification bδ`(x) we obtain a new layer Lδ` , i.e.

Lδ`(v) = σ
(
W`v(x) + bδ`(x) + F−1 (P`Fv) (x)

)
.

Then we have

‖L`(v)− Lδ`(v)‖L2 .Lip(σ),` ‖b` − bδ`‖L2 → 0, (78)

and uniformly in δ > 0, we have

‖Lδ`(v)− Lδ`(v′)‖L2 .Lip(σ),` ‖v − v′‖L2 . (79)

In particular, this implies that Lip(Lδ`) ≤ C(Lip(σ), `) is uniformly bounded in δ ≥ 0. Thus,
there exists M ≥ 1, such that Lip(Q) ≤M and Lip(Lδ`) ≤M , for all ` = 1, . . . , L and δ > 0.
Properties (78) and (79) are sufficient to show that with a sufficiently small choice of δ > 0,
we have

sup
‖a‖Hs≤B

‖N (a)−N δ(a)‖L2 ≤ ε, (80)

where N δ := Q ◦ LδL ◦ · · · ◦ Lδ1 ◦ R: To see this, we introduce N δ
` := Q ◦ LδL ◦ . . .Lδ`+1 ◦ L` ◦

· · · ◦ L1 ◦ R, and we note that for any a ∈ L2, we have

‖N δ
` (a)−N δ

`−1(a)‖L2 ≤ Lip(Q ◦ LδL ◦ · · · ◦ Lδ`+1)‖L`(a′)− Lδ`(a′)‖L2 ,

where a′ := L`−1 ◦ · · · ◦ L1 ◦ R(a). Using the uniform Lipschitz bound M and the estimate
(78), we obtain

‖N δ
` (a)−N δ

`−1(a)‖L2 ≤ML‖b` − bδ`‖L2 .

It now follows from the telescoping sumN (a)−N δ(a) = N δ
L(a)−N δ

0 (a) =
∑L

`=1

(
N δ
` (a)−N δ

`−1(a)
)

that

‖N (a)−N δ(a)‖L2 ≤
L∑
`=1

‖N δ
` (a)−N δ

`−1(a)‖L2

≤ML
L∑
`=1

‖b` − bδ`‖L2 .

Since the bound on the right-hand side is independent of a, and since limδ→0 ‖b`−bδ`‖L2 = 0,
choosing δ > 0 sufficiently small, we obtain (80).

Step 2: Using Step 1, we will assume wlog that all biases are smooth, in the following.
Given a ∈ Hs, let a` := L` ◦ . . .L1 ◦ R(a). We claim that there exists a constant B′ > 0,
depending only on B, the activation function σ and the biases b`(x), such that ‖a`‖Hs ≤ B′,
provided that ‖a‖Hs ≤ B and ` = 1, . . . , L.
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Indeed, it is a well-known fact that if v ∈ Hs, s > d/2, and if σ ∈ Cbsc+1 (satisfied by
assumption), then σ ◦v ∈ Hs.2 In fact, there exists a monotonically increasing function Cσ,
such that ‖σ ◦ v‖Hs ≤ Cσ(‖v‖Hs). The claimed existence of B′ now follows immediately
from this result on compositions with σ, and the observation that the linear part of each
layer define a continuous (bounded, affine) mapping Hs → Hs, due to the finite width
assumption, and the assumption that b` ∈ C∞ ⊂ Hs.

Step 3: Let ς1, ς2 be given such that s ≥ ς1 > ς2 > d/2. Each layer defines a Hölder
continuous mapping L` : D` ⊂ Hς1 → Hς2 , with Hölder exponent α = 1− ς2/s, and where
D` denotes the image of the set {‖a‖Hs ≤ B} under the previous `− 1 layers.

By Step 2, we have that ‖L`(v)‖Hs ≤ B′ for all v ∈ D`. Furthermore, as observed in
Step 1, (79), L` : L2 → L2 is Lipschitz continuous. It follows that for any v ∈ D`, we have,
by the interpolation inequality, that

‖L`(v)− L`(v′)‖Hς2 . ‖L`(v)− L`(v′)‖
1−ς2/s
L2 ‖L`(v)− L`(v′)‖

ς2/s
Hs

.ς2,B′ ‖L`(v)− L`(v′)‖αL2

.ς2,B′,σ,` ‖v − v′‖αL2

. ‖v − v′‖αHς1 .

Step 4: We use Steps 1-3 to conclude that for a sufficiently large choice of N ∈ N, the
Ψ-FNO N ∗ : L2

N → L2
N , given by

N ∗(a) := Q ◦ IN ◦ LL ◦ IN ◦ LL−1 ◦ IN ◦ · · · ◦ L1 ◦ IN ◦ R,

satisfies
sup

‖a‖Hs≤B
‖N (a)−N ∗(a)‖L2 ≤ ε.

In the following, we will denote by L∗` := IN ◦ L` ◦ IN the “pseudo-spectral projection”
of the layer L`, and we observe that

N ∗ = Q ◦ L∗L ◦ · · · ◦ L∗1 ◦ R.

Fix a sequence s = ς0 > ς1 > ς2 > · · · > ςL > d/2. By Step 3, we may view the `-th layer
L` as a Hölder continuous mapping L` : Hς`−1 → Hς` . Furthermore, since ς` > d/2 for all
`, we also have that IN : Hς` → Hς` is a bounded linear operator, with operator norm that
is uniformly bounded in N . In particular, this implies that there exists a constant C ≥ 1,
independent of N , such that, for all a, a′ ∈ D`:

‖L∗` (a)− L∗` (a′)‖Hς` = ‖INL`(INa)− INL`(INa′)‖Hς`

≤ ‖IN‖‖L`‖C1−ς`/s‖IN‖1−ς`/s‖a− a′‖
1−ς`/s
Hς`−1

≤ C‖a− a′‖1−ς`/s
Hς`−1 .

2. This is well-known in the integer case s ∈ N, but remains true also for fractional Sobolev spaces (Brezis
and Mironescu, 2001).
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We now introduce N ∗` := Q ◦ L∗L ◦ · · · ◦ L∗`+1 ◦ L` ◦ . . .L1 ◦ R, for any ` = 0, . . . , L. Then,

N (a) − N ∗(a) =
∑L

`=1

(
N ∗` (a)−N ∗`−1(a)

)
, and using the Hölder regularity of the L∗` , we

obtain

‖N ∗` (a)−N ∗`−1(a)‖L2 ≤ ‖N ∗` (a)−N ∗`−1(a)‖HςL

≤ Lip(Q)C
L‖L∗` (a′)− L∗` (a′)‖

β`
Hς` ,

where a′ := L`−1 ◦ . . .L1 ◦ R(a) belongs to D` ⊂ {a′ ∈ Hs | ‖a′‖Hs ≤ B′} (cp. Step 3), and
β` :=

∏L
k=`+1

(
1− ςk

s

)
is the Hölder exponent of the composition of the layers L∗L◦· · ·◦L∗`+1 :

Hς`+1 → HςL . To estimate the last difference, we recall that if ‖a‖Hs ≤ B, then ‖a′‖Hs ≤ B′,
by Step 2. In particular, it follows from the uniform Hölder continuity of the layers L`,
established in Step 3 and the pseudo-spectral approximation estimate, that

‖L`(a′)− L∗` (a′)‖Hς` = ‖L`(a′)− INL`(INa′)‖Hς`

≤ ‖L`(a′)− INL`(a′)‖Hς` + ‖IN‖‖L`(a′)− L`(INa′)‖Hς`

.
B′

N−(s−ς`)
+ ‖a′ − INa′‖1−ς`/sHς`−1

.
B′

N−(s−ς`)
+

(
B′

N−(s−ς`−1)

)(1−ς`/s)
,

where the implied constant is independent of N . In particular, we have

lim
N→∞

sup
a′∈D`

‖L`(a′)− L∗` (a′)‖Hς` = lim
N→∞

sup
a′∈D`

‖L`(a′)− L`(INa′)‖Hς` = 0,

for all ` = 1, . . . , L. Choosing N sufficiently large, we can thus ensure that

sup
‖a‖Hs≤B

‖N (a)−N ∗(a)‖L2 ≤
L∑
`=1

sup
‖a‖Hs≤B

‖N ∗` (a)−N ∗`−1(a)‖L2

≤ Lip(Q)C
L

L∑
`=1

sup
a′∈D`

‖L`(a′)− L∗` (a′)‖
β`
Hς`

≤ ε.

This concludes the proof.

D.6 Proof of Lemma 16

Proof Let ε > 0 be given. Let G : Hs → Hs′ be continuous operator, and K ⊂ Hs a
compact subset. We wish to show that there exists N0 ∈ N, such that for any N ≥ N0,
there exists a Ψ-FNO N ∗ : L2

N → L2
N such that

sup
a∈K
‖G(a)−N ∗(a)‖Hs′ ≤ ε. (81)
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Choose M ∈ N, such that

sup
a∈K
‖PMG(a)− G(a)‖Hs′ ≤ ε/2. (82)

Fix δ > 0 for the moment. We will specify a suitable choice of δ = δ(M, s′,Td, ε) > 0 at the
end of this proof. We emphasize that δ will depend only on parameters already introduced
at this point of the proof. By assumption of the validity of the universal approximation
theorem for Ψ-FNOs for s′ = 0, we can choose Ñ0 = Ñ0(G,K, δ) ∈ N, depending on G, K
and δ, such that for any N ≥ Ñ0, there exists a Ψ-FNO Ñ ∗ : L2

N → L2
N , such that

sup
a∈K
‖G(a)− Ñ ∗(a)‖L2 ≤ δ.

We define N0 := max(Ñ0,M). By our choice of Ñ0 and M , the constant N0 depends only on
the underlying operator G, the compact set K and the parameter δ > 0. Let N ≥ N0. We
claim that if δ = δ(M, s′,Td, ε) > 0 is been chosen sufficiently small, then for any N ≥ N0,
there exists a Ψ-FNO N ∗ : L2

N → L2
N satisfying (81).

To see this, let N ≥ N0, and let Ñ ∗ : L2
N → L2

N be a Ψ-FNO such that supa∈K ‖G(a)−
Ñ ∗(a)‖L2 ≤ δ. Then we have

sup
a∈K
‖PMG(a)− PM Ñ ∗(a)‖Hs′ ≤ CM s′δ, (83)

where C = C(Td, s′) > 0 is independent of M , N and δ. Let m ∈ N be the smallest natural
number strictly bigger than s′ and d/2, i.e. m > max(s′, d/2). Let

K ′ := Ñ ∗(K) ⊂ L2
N , (84)

be the compact image of K ⊂ Hs under the (continuous) mapping Ñ ∗ : Hs → L2
N . We note

that since L2
N is a finite-dimensional space, the L2-norm is equivalent to the Hm-norm on

L2
N . This implies that K ′ ⊂ Hm is also compact when considered as a subset of Hm, with

respect to norm ‖ · ‖Hm . By Lemma 43, there exists a single-layer FNO L : Hm → Hm,
such that

sup
v∈K′

‖PMv − L(v)‖Hm ≤ δ. (85)

We define a Ψ-FNO N ∗ : L2
N → L2

N by the following composition

N ∗ := IN ◦ L ◦ IN ◦ Ñ ∗ = IN ◦ L ◦ Ñ ∗,

where IN is the pseudo-spectral projection operator. We note that, since N ≥ N0 ≥M , we
have INPM = PM , and recall that for m > d/2, the mapping IN : Hm → Hm is continuous,
with an operator norm that can be bounded independently of N . Hence, we can estimate,
for any a ∈ K,

‖PM Ñ ∗(a)−N ∗(a)‖Hs′ = ‖IN ◦ PM Ñ ∗(a)− IN ◦ L ◦ Ñ ∗(a)‖Hs′

(m>s′)
↓

≤ ‖IN ◦ PM Ñ ∗(a)− IN ◦ L ◦ Ñ ∗(a)‖Hm

≤ C‖PMv − L(v)‖Hm ,
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where C = C(Td,m) > 0 is independent of M and N , and where v := Ñ ∗(a) ∈ K ′, with
K ′ = Ñ ∗(K) defined in (84). From (85), we conclude that

sup
a∈K
‖PM Ñ ∗(a)−N ∗(a)‖Hs′ ≤ Cδ, (86)

where C = C(Td,m) > 0 is independent of M , N and δ. In fact, since m is defined as the
smallest integer > max(s′, d/2), the above constant only depends on s′ and the dimension
d of the domain, i.e. we have C = C(Td, s′, d). Combining (82), (83) and (86), we find that
for N ≥ N0 and for any δ > 0, there exists a Ψ-FNO N ∗ : L2

N → L2
N , such that

sup
a∈K
‖G(a)−N ∗(a)‖Hs′ ≤ ε/2 + C(1 +M s′)δ,

where C = C(Td, s′, d) > 0 is a constant independent of δ. Thus, if we choose δ =
δ(M, s′, d,Td, ε) > 0 at the beginning of this proof sufficiently small to ensure that

C(1 +M s′)δ ≤ ε/2,

then we conclude that for any N ≥ N0, there exists a Ψ-FNO N ∗ : L2
N → L2

N , such that

sup
a∈K
‖G(a)−N ∗(a)‖Hs′ ≤ ε.

This concludes the proof.

D.7 Technical Results on the Structure of Ψ-FNOs

Recall Section 2.5.1 where we introduced σ layers and F-layers and claimed that Ψ-FNOs
can be decomposed in terms of these layers. We have the following series of lemmas, which
make this observation precise.

Lemma 44 Let Φ : Rda → Rdu be a (ordinary) neural network with activation function σ.
For any N ∈ N, the mapping

N ∗ : L2
N (Td;Rda)→ L2

N (Td;Rdu), a(x) 7→ N ∗(a)(x) := INΦ(a(x)),

can be represented by a Ψ-FNO, with

depth(N ∗) = depth(Φ), lift(N ∗) = width(Φ).

The proof is straight-forward and completely analogous to the same statement for FNOs
in Remark 3. We also note the following lemma, which allows us in practice to replace F-
layers by proper FNO layers:

Lemma 45 (Linear approximation lemma) Assume that the activation function σ ∈
C2 is twice continuously differentiable and non-constant. Let L∗ be a linear Ψ-FNO layer
of the form

L∗ : L2
N (Td;Rdv)→ L2

N (Td;Rdv), L∗(vN ) := WvN (xj) + bj + F−1
N (PFNvN )j .
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There exists a constant C > 0, independent of N , such that for any ε, B > 0, there exists
a Ψ-FNO N ∗ : L2

N (Td;Rdv)→ L2
N (Td;Rdv), such that

sup
‖vN‖L2≤B

‖N ∗(vN )− L∗(vN )‖L2 ≤ ε,

and
depth(N ∗) ≤ C, lift(N ∗) = dv ≤ C.

Proof This follows from the observation that, by assumption, there exists x0 ∈ R, such
that σ′(x0) 6= 0. By Taylor expansion, we have

σ(x0 + hy)− σ(x0 − hy)

hσ′(x0)
= y +R(h, y),

where |R(h, y)| ≤ CB
2
h for any y ∈ [−B,B] and 0 < h ≤ 1. Replacing y by the output of

the linear layer L̂, and choosing B sufficiently large, we obtain with

N ∗h (vn) :=
σ(x0 + hL∗(vN ))− σ(x0 − hL∗(vN ))

hσ′(x0)
,

that

‖L∗(vN )−N ∗h (vN )‖L2 = O(h),

uniformly for all vN ∈ L2
N (Td;Rdv), such that ‖vN‖L2 ≤ B, and for 0 < h ≤ 1. In particular,

choosing h = h(ε) > 0 sufficiently small, we can ensure that

‖L∗(vN )−N ∗h (vN )‖L2 ≤ ε,

for all vn ∈ L2
N (Td;Rdv), such that ‖vN‖L2 ≤ B. The proof is concluded by observing that

the mapping vN 7→ N ∗h (vN ) defines a Ψ-FNO, and that the size (depth, lift) is uniformly
bounded in h.

According to Lemma 44, any composition of σ-layers can be identified with a Ψ-FNO.
Lemma 45 shows that we can approximate F-layers to arbitrary accuracy with a Ψ-FNO
of uniformly bounded size. In the following lemma, we record the simple fact that a com-
position of Ψ-FNOs is again representable by a Ψ-FNO:

Lemma 46 (Composition Lemma) For p ∈ N, let N ∗1 , . . . ,N ∗p be Ψ-FNOs, defined

with respect to the same grid {xj}j∈JN , and defining operators N ∗k : L2
N (Td;Rdk−1) →

L2
N (Td;Rdk) for d0, . . . , dp ∈ N, such that the composition N ∗p ◦ . . .N ∗1 : L2

N (Td;Rd0) →
L2
N (Td;Rdp) is well-defined. Then there exists a Ψ-FNO N ∗ : L2

N (Td;Rd0)→ L2
N (Td;Rdp),

such that N ∗ = N ∗p ◦ · · · ◦N ∗1 , and such that depth(N ∗) ≤
∑p

k=1 depth(N ∗k ), and lift(N ∗) ≤
maxk=1,...,p lift(N ∗k ).

The proof of the previous lemma is straight-forward, and only requires a padding of each
layer with zeros to achieve a uniform lifting dimension dv across all layers. The following
lemma will be central for our approximation and complexity estimates:
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Lemma 47 (Replacement Lemma) Assume that σ is Lipschitz continuous. For p ∈ N,
let Ñ1, . . . , Ñp be continuous operators Ñk : L2

N (Td;Rdk−1) → L2
N (Td;Rdk) for d0, . . . , dp ∈

N, such that the composition Ñ := Ñp◦· · ·◦Ñ1 : L2
N (Td;Rd0)→ L2

N (Td;Rdp) is well-defined.
Assume that there exist constants Dk, Lk > 0, k = 1, . . . , p, such that for any ε, M > 0,
there exists a Ψ-FNO N ∗k : L2

N (Td;Rdk−1)→ L2
N (Td;Rdk), such that

sup
‖u‖L2≤M

‖Ñk(u)−N ∗k (u)‖L2
N
≤ ε,

and depth(N ∗k ) ≤ Dk, lift(N ∗k ) ≤ Lk. Then for any ε > 0 and M > 0, there exists a Ψ-FNO
N ∗ : L2

N (Td;Rd0)→ L2
N (Td;Rdp), such that

sup
‖u‖L2≤M

‖Ñ (u)−N ∗(u)‖L2
N
≤ ε,

and depth(N ∗) ≤
∑p

k=1Dk, and lift(N ∗) ≤ maxk=1,...,p Lk.

Proof We prove the statement by induction on p ∈ N. We start the induction at p = 2:
Let ε > 0 and M > 0 be given, and let Ñ1, Ñ2 satisfy the hypotheses of this lemma. Since
BM (0) ⊂ L2

N (Td;Rd0), the closed ball of radius M , is compact in the finite-dimensional

space L2
N (Td;Rd0), and since Ñ1 is continuous, it follows that the image Ñ1(BM (0)) is

also compact; in particular, there exists M1 > 0, such that Ñ1(BM (0)) ⊂ BM1(0). By
assumption, there exists a Ψ-FNO N ∗2 : L2

N (Td;Rd1)→ L2
N (Td;Rd2), such that

sup
‖u‖L2≤2M1

‖Ñ2(u)−N ∗2 (u)‖L2
N
≤ ε/2.

We note that (for Lipschitz continuous σ) Ñ2 is Lipschitz continuous on B2M1(0) ⊂ L2
N . Let

Lip(Ñ2) denote the corresponding Lipschitz constant. By assumption on Ñ1, there exists a
Ψ-FNO N ∗1 : L2

N (Td;Rd0)→ L2
N (Td;Rd1), such that

sup
‖u‖L2≤M

‖Ñ1(u)−N ∗1 (u)‖L2
N
≤ min

(
ε

2Lip(Ñ2)
,M1

)
.

Note that this estimate implies in particular that

‖N ∗1 (u)‖L2 ≤ ‖Ñ1(u)−N ∗1 (u)‖L2 + ‖Ñ1(u)‖L2 ≤ 2M1.

Thus, we can estimate

sup
‖u‖L2≤M

‖Ñ2 ◦ Ñ1(u)−N ∗2 ◦ N ∗1 (u)‖L2

≤ sup
‖u‖L2≤M

‖Ñ2 ◦ Ñ1(u)− Ñ2 ◦ N ∗1 (u)‖L2

+ sup
‖u‖L2≤M

‖Ñ2 ◦ N ∗1 (u)−N ∗2 ◦ N ∗1 (u)‖L2

≤ Lip(Ñ2) sup
‖u‖L2≤M

‖Ñ1(u)−N ∗1 (u)‖L2

+ sup
‖v‖≤2M1

‖Ñ2(v)−N ∗2 (v)‖L2

< ε.
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The estimate on the depth and lift is immediate (cp. Lemma 46). This proves the base
case p = 2 of the induction.

Let now p > 2, and assume that the claim holds for the composition of p− 1 operators.
Given Ñ1, . . . , Ñp as in the statement of the lemma, we can apply the induction hypothesis

for the composition of p− 1 operators, to see that the two continuous operators N̂1 := Ñ1

and N̂2 := (Ñp ◦ · · · ◦ Ñ2) fulfill all assumptions of the lemma (with p = 2), and with depths

and lifts of the approximating FNOs given by D̂1 = D1, L̂1 = L1, and D̂2 =
∑p

k=2Dk,

L̂2 = maxk=2,...,p Lk. The proof of the induction step now follows from the base case (with
p = 2) already considered above.

Appendix E. Technical Results and Proofs for Section 3.1

In this section, we collect some technical results and proofs for the material in Section 3.1
of the main text. We start with the following Lemma on the contraction property of the
map (28).

Lemma 48 Let k ∈ N, k > d/2 + 1, and let s > d/2 + k be given. Assume that the
coefficient a ∈ Hs(Td) satisfies the λ-coercivity condition (25) for some λ ∈ (0, 1), and
that the right-hand side of the stationary Darcy equation (24) belongs to the Sobolev space
f ∈ Hk−1. Then there exists N0 = N0(s, d, ‖a‖Hs , λ) ∈ N, such that for any N ≥ N0, we
have aN ≥ λ/2 and the mapping FN defined by (28) is a contraction, with

Lip
(
FN : Ḣ1 → Ḣ1

)
≤ 1− λ

2
.

Proof As uN 7→ FN (uN ) is an affine mapping, we can express the Lipschitz constant in
terms of the following supremum

Lip
(
FN : Ḣ1 → Ḣ1

)
= sup

uN∈Ḣ1\{0}

∥∥∥ṖN (−∆)−1∇ · (ãN∇uN )
∥∥∥
Ḣ1

‖uN‖Ḣ1

.

We now observe that∥∥∥ṖN (−∆)−1∇ · (ãN∇uN )
∥∥∥
Ḣ1
≤
∥∥(−∆)−1∇ · (ãN∇uN )

∥∥
Ḣ1

= ‖ãN∇uN‖L2

≤ ‖ãN‖L∞‖uN‖Ḣ1 ,

for all uN ∈ Ḣ1
N (Td). To finish the proof, we note that

‖ãN‖L∞ ≤ ‖ã‖L∞ + ‖ã− ãN‖L∞ ,

where the first term is bounded by 1 − λ by the coercivity assumption. By our definition
of ãN (cp. equation 27), we have

‖ã− ãN‖L∞ ≤
∥∥∥ã− ṖN ã∥∥∥

L∞
+
∥∥∥ṖN ã− ṖNI2N ã

∥∥∥
L∞

.
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But by the spectral/pseudo-spectral approximation estimates, we now have∥∥∥ã− ṖN ã∥∥∥
L∞

.d,δ

∥∥∥ã− ṖN ã∥∥∥
Hd/2+δ

.s,d,δ N
−(s−d/2−δ)‖a‖Hs ,

and ∥∥∥ṖN ã− ṖNI2N ã
∥∥∥
L∞

.d,δ

∥∥∥ṖN ã− ṖNI2N ã
∥∥∥
Hd/2+δ

≤ ‖ã− I2N ã‖Hd/2+δ

.s,d,δ N
−(s−d/2−δ)‖a‖Hs .

To be definite, let us choose δ := (s − d/2)/2. In particular, it follows that there exists a
constant C = C(s, d), and N0 = N0(s, d, ‖a‖Hs , λ) ∈ N, such that

‖ã− ãN‖L∞ ≤
λ

2
,

for N ≥ N0, and hence aN = 1 + ãN ≥ 1 + ã− λ/2 ≥ λ/2, and

Lip(FN ) ≤ ‖ãN‖L∞ ≤ ‖ã‖L∞ + ‖ã− ãN‖L∞ ≤ 1− λ

2
,

for all N ≥ N0. The claim follows.

Next, we provide the detailed proof of Theorem 24 which guarantees convergence of the
Algorithm 23 to the solutions of the Darcy equation (24).

E.1 Proof of Theorem 24

Proof Choose N0 ∈ N as in Lemma 48.

Step 1: Well-posedness and error estimate of the FG approximation (26).

We consider the bilinear form B : Ḣ1
N × Ḣ1

N → R, given by

B(uN , wN ) :=

ˆ
Td
aN (x)∇uN (x) · ∇wN (x) dx.

We note that uN solves (26), if and only if,

B(uN , wN ) = 〈fN , wN 〉L2 , (87)

for all wN ∈ Ḣ1
N . By Lemma 48, we have aN ≥ λ/2 for all N ≥ N0, and hence

B(wN , wN ) ≥ λ/2‖wN‖2Ḣ1 .

Thus, B is a coercive bilinear form. The existence and uniqueness of a solution u∗N ∈ Ḣ1
N

of (87) follows from this for any right-hand side fN . Furthermore, we have the estimate

‖u∗N‖2H1 ≤ 2‖u∗N‖2Ḣ1 ≤
4

λ
B(u∗N , u

∗
N ) =

4

λ
〈u∗N , fN 〉L2 ≤

4

λ
‖u∗N‖H1‖fN‖H−1 ,
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and thus, ‖u∗N‖H1 ≤ 4λ−1‖fN‖H−1 .
It is also straightforward to show that by inductive differentiation of (24), one can also

obtain higher-order estimates for k ∈ N, k ≥ 1 for the (non-discretized) elliptic equation
(24), of the form:

‖u‖Hk+1 ≤ C‖f‖Hk−1 , (88)

where C = C(k, d, ‖a‖Ck) > 0.
To prove the claimed error estimate, we note that if u solves (24), then PNu ∈ Ḣ1

N

solves

−PN∇ · (aN∇PNu) = PNf + PN∇ · ((a− aN )∇PNu)

+ PN∇ · (a∇(1− PN )u).

It thus follows that wN = PNu− u∗N solves

−PN∇ · (aN∇wN ) = (PNf − fN ) + PN∇ · ((a− aN )∇PNu)

+ PN∇ · (a∇(1− PN )u)

=: (I) + (II) + (III).

The stability estimate then implies that ‖wN‖H1 ≤ 4λ−1‖(I) + (II) + (III)‖H−1 , can be
bounded in terms of the H−1-norm of the right-hand side. We can now estimate

‖(I)‖H−1 = ‖(PNf − fN )‖H−1

≤ ‖(1− PN )f‖H−1 + ‖f − fN‖H−1 .d,s N
−k‖f‖Hk−1 .

The last inequality follows from the fact that f ∈ Hk−1(Td), for k − 1 > d/2, and the
(pseudo-)spectral approximation estimate. For the second term, we fix a small δ > 0, and
obtain

‖(II)‖H−1 ≤ ‖(a− aN )∇PNu‖L2

.d ‖a− aN‖L∞‖u‖H1

.d,δ,λ ‖a− aN‖Hd/2+δ‖f‖H−1 ,

where we have used the embedding Hd/2+δ↪→L∞ in the last step. Assuming that δ > 0 is
chosen sufficiently small, so that s ≥ d/2 + δ, we can then estimate

‖(II)‖H−1 .s,d λ
−1N−(s−d/2−δ)‖a‖Hs‖f‖H−1 .

Finally, the third term can be bounded as follows:

‖(III)‖H−1 .d ‖a∇(1− PN )u‖L2

.d ‖a‖L∞‖(1− PN )u‖H1

.s,d N
−k‖a‖Hs‖u‖Hk+1

.s,d,λ,k,‖a‖
Ck

N−k‖a‖Hs‖f‖Hk−1 .
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In the last step, we used the higher regularity estimate (88). We note that for this step
we assume that a ∈ Hs, s > d/2 + k, so that we have an embedding Hs↪→Ck. Under this
condition, we can further estimate (II) by

‖(II)‖H−1 .s,d N
−(s−d/2−δ)λ−1‖a‖Hs‖f‖H−1

.s,d,λ,‖a‖Hs ,‖f‖H−1
N−k.

Combining the above estimates for (I), (II) and (III), we conclude that for any s ∈ R and
k ∈ N satisfying s > d/2 + k, we have

‖wN‖H1 = ‖u∗N − PNu‖H1 ≤ CN−k,

provided that a ∈ Hs, f ∈ Hk−1, where C = C (s, d, λ, k, ‖a‖Hs , ‖f‖Hk−1) > 0 is indepen-
dent of N .

The proof is now finished by observing that

‖u− u∗N‖2H1 = ‖(1− PN )u‖2H1 + ‖PNu− u∗N‖2H1 ,

and that, by the higher-regularity estimate (88), we have

‖(1− PN )u‖H1 .k,d N
−k‖u‖Hk+1 .s,k,d,λ,‖a‖Hs ,‖f‖Hk−1

N−k.

Thus, it follows that there exists a constant C = C(s, k, d, λ, ‖a‖Hs , ‖f‖Hk−1) > 0, such
that

‖u− u∗N‖H1 ≤ CN−k, (89)

where u∗N is the solution of the Fourier-Galerkin discretization (26).

Step 2: Picard iteration estimate.

The output of Algorithm 23 is obtained by Picard iteration, i.e. by K-fold application
of the mapping FN : Ḣ1

N → Ḣ1
N , yielding a recursively defined sequence u0

N := 0, and
ukN = FN (uk−1

N ), for k = 1, . . . ,K. Since FN is a contraction with Lip(FN ) ≤ 1 − λ/2 for
N ≥ N0, by Lemma 48, and since u∗N is the unique fixed point of FN , this implies that

‖uKN − u∗N‖Ḣ1 ≤ (1− λ/2)K‖u∗N‖Ḣ1 .

Using the definition of H1, Ḣ1, and the regularity estimate (88), we can further estimate

‖uKN − u∗N‖H1 ≤ 2‖uKN − u∗N‖Ḣ1 ≤ 8λ−1(1− λ/2)K‖fN‖H−1 .

By definition of K, we have

K ≥ log(λN−k)

log(1− λ/2)
,

and hence (1− λ/2)K ≤ λN−k. This yields

‖uKN − u∗N‖H1 ≤ 8N−k‖fN‖H−1 .
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Combining Steps 1 and 2, implies that there exists a constant C > 0, depending on s,
k, d, λ, ‖a‖Hs and ‖f‖Hk−1) > 0, such that

‖u− uN‖H1 ≤ CN−k,

for all N ≥ N0, where uN := uKN is the output of Algorithm 23. This is the claimed esti-
mate.

E.2 Neural Network Approximation of Quadratic Non-Linearities

Our next aim is to prove Theorem 26. As stated in the main text, the proof relies crucially
on the following Lemmas, which show that neural networks can efficiently approximate
certain quadratic non-linearities. We start with the following result,

Lemma 49 Let σ ∈ C3 be a activation function. Let d ∈ N. There exists a constant
C = C(d) > 0, such that for any ε > 0 and B > 0, there exists

1. a neural network Φ1 : R2 → R, such that

sup
|a|,|b|≤B

|Φ1(a, b)− ab| ≤ ε,

and width(Φ1) ≤ C, depth(Φ1) ≤ C,

2. a neural network Φ2 : R× Rd → Rd, such that

sup
|a|,‖v‖`2≤B

|Φ2(a, v)− av| ≤ ε,

and width(Φ2) ≤ C, depth(Φ2) ≤ C,

3. a neural network Φ3 : Rd × Rd×d → Rd, such that

sup
‖v‖`2 ,‖U‖`2→`2≤B

|Φ3(v, U)− v · U | ≤ ε,

and width(Φ3) ≤ C, depth(Φ3) ≤ C.

Proof Points (2) and (3) easily follow from (1), by parallelizing multiple networks Φ1. To
see the first claim (1), we note that the quadratic function y 7→ y2 can be approximated for
y ∈ [−B,B], B > 0, to arbitrary precision by finite differences

y2 =
σ(x+ hy)− 2σ(x) + σ(x− hy)

h2σ(2)(x)︸ ︷︷ ︸
sqh(y)

+R(h; y),

where we assume that x is chosen so that the second derivative σ(2)(x) 6= 0, and |R(h, y)| ≤
Ch for all y ∈ [−B,B], and C = C(B). Finally, following (Yarotsky, 2017), we observe that
the product ab of two numbers a, b can be expressed in the form

ab =
1

2

(
(a+ b)2 − a2 − b2

)
=

1

2
(sqh(a+ b)− sqh(a)− sqh(b)) + R̃(h; a, b),
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where R̃ is related to R, and there exists a constant C = C(B), such that |R̃(h; a, b)| ≤ Ch,
for all a, b ∈ [−B,B]. Since sqh is a neural network of finite width and depth (independent
of h), and since the last expression

Φh(a, b) :=
1

2
(sqh(a+ b)− sqh(a)− sqh(b)) ,

is simply a linear combination of sqh, we conclude that N̂h is a neural network of uniformly
bounded width and depth (uniform in h), and for sufficiently small h > 0, we have

sup
a,b∈[−B,B]

|Φh(a, b)− ab| ≤ ε.

This concludes the proof.

Using the above lemma, one can prove the following result,

Lemma 50 Assume that the activation function σ ∈ C3 is three times continuously differ-
entiable and non-linear. There exists a constant C > 0, such that for any N ∈ N, and for
any ε, B > 0, there exists a Ψ-FNO N ∗ : L2

2N (Td;R)× L2
2N (Td;R)→ L2

2N (Td;R), with

depth(N ∗), lift(N ∗) = dv ≤ C,

such that we have
‖PN (aN∇uN )−N ∗(aN , uN )‖L2

N
≤ ε,

for all trigonometric polynomials aN , uN ∈ L2
N (Td;R) ⊂ L2

2N (Td;R) of degree |k|∞ ≤ N ,
satisfying the bound ‖aN‖L2 , ‖uN‖L2 ≤ B.

Proof First, we observe that there exists a linear FNO layer L∗ : L2
2N → L2

2N , with a
suitable choice of the Fourier multiplier matrix P , such that

L∗(uN ) = F−1
2N (PF(uN )) = F−1

2N

 ∑
|k|∞≤2N

ikûke
i〈k,x〉

 = ∇uN ,

is satisfied exactly for all uN ∈ L2
2N (Td;R). We also note that if ‖uN‖L2 ≤ B, then

‖∇uN‖L2 ≤ NB. By the fact that all norms are equivalent on the finite-dimensional space
L2

2N (Td;Rd×d), there exists a constant C ′ > 0 (depending on N), such that

sup
x∈Td

‖∇uN (x)‖`2 ≤ C ′‖∇uN‖L2 ≤ C ′NB,

whenever ‖uN‖L2 ≤ B. We similarly see that by norm equivalence on L2
2N (Td;R), there

exists a constant C ′′ > 0 (depending on N), such that we also have

sup
x∈Td

|aN (x)| ≤ C ′′‖aN‖L2 ≤ C ′′B,

for any ‖aN‖L2 ≤ B. Let B := max(C ′NB,C ′′B). By Lemma 49, there exists an ordi-
nary neural network Φ : R × Rd → Rd with width(Φ), depth(Φ) ≤ C(d) (with C = C(d)
independent of N), such that

sup
|a|,‖v‖`2≤B

‖Φ(a, v)− av‖`2 ≤ ε.
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By Lemmas 44, 45 and the composition lemma 46, the composition

(aN , uN ) 7→ (aN ,L∗(uN )) = (aN ,∇uN ) 7→ Φ(aN ,∇uN ),

can be represented by a Ψ-FNO Ñ ∗ : L2
2N (Td;R2)→ L2

2N (Td;Rd), and by construction, we
have

sup
x∈Td

‖aN (x)∇uN (x)− Ñ ∗(aN , uN )(x)‖`2 ≤ ε, (90)

for all aN , uN ∈ L2
2N , with ‖aN‖L2 , ‖uN‖L2 ≤ B. Furthermore, since L∗ is a linear layer,

and Φ is an ordinary neural network with width(Φ), depth(Φ) ≤ C = C(d), we in fact
conclude that for some new constant C = C(d) > 0, we have

depth(Ñ ∗) ≤ C, lift(Ñ ∗) = dv ≤ C.

Finally, we note that the projection PN : L2
2N → L2

2N onto Fourier modes with wavenumbers

|k|∞ ≤ N can again be represented exactly by a linear Ψ-FNO layer L̂∗, and by Lemmas
45, 46, there exists a Ψ-FNO N ∗ : L2

2N (Td;R2) → L2
2N (Td;Rd), such that ‖N ∗(aN , uN ) −

L̂∗ ◦ Ñ ∗(aN , uN )‖L2 ≤ ε, for all ‖aN‖L2 , ‖uN‖L2 ≤ B, and such that

depth(N ∗) ≤ C, lift(N ∗) = dv ≤ C,

where C = C(d) > 0 depends only on d. Combining this with (90), we conclude that N ∗
satisfies

‖PN (aN∇uN )−N ∗(aN , uN )‖L2 ≤ ‖L̂∗ ◦ Ñ ∗(aN , uN )−N ∗(aN , uN )‖L2

+ ‖PN (aN∇uN )− L̂∗ ◦ Ñ ∗(aN , uN )‖L2

= ‖L̂∗ ◦ Ñ ∗(aN , uN )−N ∗(aN , uN )‖L2

+ ‖PN (aN∇uN )− PN Ñ ∗(aN , uN )‖L2

≤ ε+ ‖aN∇uN − Ñ ∗(aN , uN )‖L2

≤ ε+ |Td|1/2 sup
x∈Td

‖aN (x)∇uN (x)− Ñ ∗(aN , uN )(x)‖`2

≤
(

1 + (2π)d/2
)
ε,

for all ‖aN‖L2 , ‖uN‖L2 ≤ B. Since ε > 0 was arbitrary, the claim follows.

E.3 Proof of Theorem 26

The stage is now set for the proof of Theorem 26 in the following,
Proof [Proof of Theorem 26] Since the claim is an asymptotic statement, it suffices to
consider N ≥ N0, where N0 is the constant of Lemma 48. Indeed, the exceptional cases
N < N0 can be handled by suitably enlarging the constant C. We will thus assume that
N ≥ N0, and f ∈ Ḣk−1 are given. We fix FN := (−∆)fN ∈ L2

N (Td) for the rest of this
proof, where fN := ṖNI2Nf is defined as in Algorithm 23.
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We define two operators N̂1, N̂2 as follows: We let

N̂1 : L2
2N (Td;R2)→ L2

2N (Td;R× Rd), N̂1(a, u) := (a, PN (a∇u)),

and define N̂2 : L2
2N (Td;R× Rd)→ L2

2N (Td;R2) by

N̂2(a, U) :=
(
a, ṖN (−∆)−1∇ · U + FN

)
.

In terms of N̂1, N̂2, Algorithm 23, which defines a mapping a 7→ uN = N̂ (a), can be written
in the form

N̂ (a) = Q̂ ◦ N̂2 ◦ N̂1 ◦ · · · ◦ N̂2 ◦ N̂1︸ ︷︷ ︸
K-fold composition

◦R̂(a),

where R̂(a) := (a, 0), Q̂(a, u) := u and where K . log(N). By the composition lemma 46,
to prove the claim of this theorem, it therefore suffices to show the following

Claim: For any B > 0, there exists C > 0, such that for any ε > 0, there exist Ψ-FNOs
N ∗1 and N ∗2 , with depth(N ∗1 ), depth(N ∗2 ), lift(N ∗1 ), lift(N ∗2 ) ≤ C, and such that

‖N̂1(u)−N ∗1 (u)‖L2 , ‖N̂2(u)−N ∗2 (u)‖L2 ≤ ε,

for all u ∈ L2
2N (Td) with bounded norm ‖u‖L2 ≤ B.

For N̂1, the claim follows from Lemma 50. For N̂2, we note that N̂2 can be represented

exactly by a linear FNO layer with W =

(
1 0
0 0

)
, bias bj = (0, FN (xj)), and with Fourier

multiplier matrix P (k) =

(
0 0

0 P̃ (k)

)
, where P̃ (k) := 1[|k|∞≤N ]

ikT

|k|2 , so that

N̂2(v)j = N̂2(v)(xj) = Wvj + bj + F−1
N (PFNv)j ,

for vj = (a(xj), U(xj)). The claim for N̂2 thus follows from the linear approximation lemma
45.

Appendix F. Technical Results and Proofs from Section 3.2

F.1 Properties of the Pseudo-Spectral Scheme (34)

Our first aim is to show that the implicit operator equation that defines the scheme (34).
To this end, we have following lemmas,

Lemma 51 If v ∈ L2
N (Td;Rd) and τ‖v‖L∞N ≤ 1

2 , then we have

‖τPN (v · ∇w)‖L2 ≤
1

2
‖w‖L2 ,

for all w ∈ L2
N (Td;Rd). In particular, this estimate holds provided that

τ‖v‖L2Nd/2+1 ≤ 1

2
.
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Proof We first note that for any v ∈ L2
N , we have

τ‖v‖L∞N ≤ τ‖v‖L2Nd/2+1 ≤ 1

2
.

The claim is now an immediate consequence of the fact that

‖τPN (v · ∇w)‖L2 ≤ ‖τv · ∇w‖L2

≤ τ‖v‖L∞‖∇w‖L2

≤ τ‖v‖L∞N‖w‖L2 ,

for any w ∈ L2
N (Td;Rd).

We can now state the following lemma on the well-posedness:

Lemma 52 Let U > 0. If ‖unN‖L2 ≤ U for n = 0, . . . , nT , and if the CFL condition

τUNd/2+1 ≤ 1

2
, (91)

is satisfied, then the recursion (34) is well-defined.

Proof The recursion (34) can be written in the form

Tnun+1
N = un, (92)

where the operator Tn : L̇2
N (Td; div)→ L̇2

N (Td; div) is given by

TnwN := wN + τPN (unN · ∇wN )− ντ∆wN .

The claimed well-posedness of the recursion follows from the fact that, under the CFL
assumption (91), the operator Tn is invertible: Indeed, by Lemma 51, this implies that for
any wN ∈ L2

N (Td; div), we have

‖τPN (unN · ∇wN ) ‖L2 ≤
1

2
‖wN‖L2 .

But then, we have for any wN ∈ L2
N (Td; div), that

‖TnwN‖L2 ≥ ‖(1− τν∆)wN‖L2 − ‖τPN (unN · ∇wN ) ‖L2
N

≥ ‖wN‖L2 −
1

2
‖wN‖L2

=
1

2
‖wN‖L2 ,

where, in the first step, we have used the fact that −τν∆ is a non-negative operator. In par-
ticular, the estimate ‖TnwN‖L2 ≥ 1

2‖wN‖L2 implies that Tn : L2
N (Td; div)→ L2

N (Td; div) is
injective. Since L2

N (Td; div) is finite-dimensional, we conclude that Tn is actually invertible,
and hence the recursion (34) is well-defined, i.e. it can be solved for un+1

N , given unN .

By Lemma 52, to prove the well-posedness of the scheme (34), it remains to be shown
that with a suitable choice of the time-step τ , we have a uniform L2-energy bound of the
form ‖unN‖L2 ≤ U , for some U > 0. This is the content of the following lemma:
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Lemma 53 Assume that ‖u0
N‖L2 ≤ U , then the first-order scheme (34) is well-defined

for any time-step satisfying the CFL condition τUNd/2+1 ≤ 1
2 , and we have ‖unN‖L2 ≤

‖u0
N‖L2 ≤ U for all n = 0, . . . , nT .

Proof We show inductively that if ‖unN‖L2 ≤ U , then ‖un+1
N ‖L2 ≤ ‖unN‖L2 ≤ U . The

well-posedness then follows from Lemma 52. To see that ‖un+1
N ‖L2 ≤ ‖unN‖L2 , we integrate

(34) against un+1
N , to find

‖un+1
N ‖2L2 = 〈un+1

N , unN 〉 − τ
〈
un+1
N ,PN

(
unN · ∇un+1

N

)〉
− ντ‖∇un+1

N ‖2L2

= 〈un+1
N , unN 〉 − τ

〈
un+1
N , unN · ∇un+1

N

〉︸ ︷︷ ︸
=0

−ντ‖∇un+1
N ‖2L2

≤
∣∣〈un+1

N , unN 〉
∣∣ ≤ ‖un+1

N ‖L2‖unN‖L2 .

This proves the claim.

Next, we have the following Lemma on the convergence of the iterations in Algorithm 29,

Lemma 54 Given ‖unN‖L2 ≤ U , assume that the CFL condition τUNd/2+1 ≤ 1
2 is satisfied.

Define a recursive sequence wn,kN ∈ L̇2
N (Td; div), k ∈ N, by wn,0N := 0, and wn,k+1

N :=

F (wn,kN ), where F is defined by (37). Then, we have ‖un+1
N − wn,kN ‖L2 ≤ 2−k‖unN‖L2, for

k ∈ N, and ‖wn,kN ‖L2 ≤ (1 + 2−k)‖unN‖L2.

Proof By Lemma 51, and the fact that (1 − ντ∆)−1 is a contraction, it follows that
Lip(F ) ≤ 1

2 . By Picard iteration, and recalling that un+1
N is the unique fixed point of the

recursion wn,kN (k ∈ N), it immediately follows that

‖un+1
N − wn,kN ‖L2 ≤

1

2k
‖un+1

N − wn,0N ‖L2 ≤
‖unN‖L2

2k
.

The last step is a consequence of the a priori L2-bound ‖un+1
N ‖L2 ≤ ‖unN‖L2 proven in

Lemma 53. In particular, this estimate implies that

‖wn,kN ‖L2 ≤ ‖un+1
N ‖L2 + ‖wn,kN − un+1

N ‖L2 ≤ (1 + 2−k)‖unN‖L2 .

Remark 55 Note that as a consequence of Lemma 54, we recursively find that

‖un+1
N ‖L2 = ‖wn,κ0N ‖L2 ≤ (1 + 2−κ0)‖unN‖L2 ≤

(
1 +

τ2

T 2

)
‖unN‖L2

≤ · · · ≤
(

1 +
τ2

T 2

)n
‖u0

N‖L2 ≤ exp
( τ
T

)
U ≤ eU,

for n = 0, . . . , nT . In particular, this ensures that the CFL condition (91) is satisfied for
all unN , generated by Algorithm 29.

Finally, we provide the proof of the convergence Theorem 30.
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F.2 Proof of Theorem 30

In this appendix, we provide a detailed proof of the convergence estimate of Theorem 30,
for the first-order scheme defined by Algorithm 29.

To this end, let u(t) be an exact solution of (31), satisfying the assumptions of Theorem
30, and let u0

N , . . . , u
nT
N denote the sequence generated by Algorithm 29. For any n =

0, . . . , nT − 1, we denote by un+1,∗
N the solution of a single time-step with the semi-implicit

scheme (34), starting from unN , i.e. satisfying

un+1,∗
N − unN

τ
+ PN

(
unN · ∇u

n+1,∗
N

)
= ν∆un+1,∗

N . (93)

We recall that by Lemma 54 and Remark 55, we have a uniform bound ‖unN‖L2 ≤ eU .
Since by assumption, the time-step τeUNd/2+1 ≤ 1

2 satisfies the relevant CFL condition, it

follows that a unique solution un+1,∗
N exists for all n. We also recall that by Lemma 54, and

by our choice of the number of iteration steps κ in Algorithm 29, we have

‖un+1,∗
N − un+1

N ‖L2 ≤ 2−keU ≤ Cτ2,

where C > 0 depends only on U and the final time T .
Our first goal is to derive an estimate on the magnification of the approximation error

due to a single timestep unN 7→ un+1
N . Let u(t) be the exact solution of (31). Observing that

‖un+1
N − u(tn+1)‖L2 ≤ ‖un+1

N − un+1,∗
N ‖L2 + ‖un+1,∗

N − u(tn+1)‖L2

≤ Cτ2 + ‖un+1,∗
N − u(tn+1)‖L2 ,

(94)

we only need to consider the error introduced by a single time-step unN 7→ un+1,∗
N of the

semi-implicit scheme (34). To this end, we can write

u(tn+1)− u(tn)

τ
+ PN

(
u(tn) · ∇u(tn+1)

)
= ν∆u(tn+1) + En,

where En collects all error terms:

En = Enτ + EnNL + EnP + Enν ,

where

Enτ =
u(tn+1)− u(tn)

τ
− ∂tu(tn),

EnNL = P
(
u(tn) · ∇

(
u(tn+1)− u(tn)

))
,

EnP = (1− PN ) (u(tn) · ∇u(tn)) ,

Enν = −ν∆
(
u(tn+1)− u(tn)

)
.

Subtracting (93), and introducing the short-hand notation en := u(tn) − unN , en+1 :=
u(tn+1)− un,∗N , we find

en+1 − en

τ
= −PN

(
en · ∇u(tn+1)

)
− PN

(
unN · ∇en+1

)
+ ν∆en+1 + En.
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Next, integrate against en+1
N := PNe

n+1 to find

1

2τ

(
‖en+1
N ‖2L2 + ‖en+1

N − enN‖2L2 − ‖enN‖2L2

)
≤ ‖en‖L2‖∇u‖L∞t,x‖e

n+1
N ‖L2 − 〈PN (unN · ∇en+1), en+1〉 − ν‖∇en+1‖2L2 + 〈En, en+1〉.

We note that

〈PN (unN · ∇en+1), en+1〉 = 〈PN (unN · ∇en+1), en+1〉
= 〈unN · ∇en+1, en+1〉 − 〈(1− PN )unN · ∇en+1, en+1〉
= 0− 〈unN · ∇en+1, (1− PN )en+1〉
= −〈unN · ∇en+1, (1− PN )u(tn+1)〉
= 〈en+1, unN · ∇(1− PN )u(tn+1)〉
= −〈en+1, en · ∇(1− PN )u(tn+1)〉

+ 〈en+1, u(tn) · ∇(1− PN )u(tn+1)〉

(95)

We now note that we can rewrite the last term as follows:

〈en+1, u(tn) · ∇(1− PN )u(tn+1)〉 =
〈
(1− PN )

(
en+1 ⊗ u(tn)

)
,∇u(tn+1)

〉
Using the fact that

(1− PN )
(
en+1 ⊗ u(tn)

)
= (1− PN )

(
(1− PN/2)en+1 ⊗ (1− PN/2)u(tn)

)
,

it then follows that we have

〈PN (unN · ∇en+1), en+1〉 = −〈en+1, en · ∇(1− PN )u(tn+1)〉〈
(1− PN )

(
en+1 ⊗ u(tn)

)
,∇u(tn+1)

〉
≤ ‖en+1‖L2‖en‖L2‖(1− PN )∇u(tn+1)‖L∞

+ ‖en+1‖L2‖(1− PN/2)u(tn)‖L2‖(1− PN )∇u(tn+1)‖L∞ .

For r > d/2+1, we have a continuous embedding Hr↪→W 1,∞, and an inequality of the form

‖(1− PN/2)u(tn)‖L2 .r,d
1

N r
‖u(tn)‖Hr .

Hence we can estimate

〈PN (unN · ∇en+1), en+1〉 .r,d ‖en+1‖L2‖en‖L2‖u(tn)‖Hr

+ ‖en+1‖L2

‖u(tn)‖2Hr

N2r
.

Estimating the products on the right-hand side using the inequality ab ≤ εa2 + 1
4εb

2 with
suitable ε > 0, it follows that there exists a constant C > 0 (independent of ν > 0, N and
n), such that

‖en+1‖2L2 ≤
(

1 + Cτ‖u‖2Ct(Hr
x)

)
‖en‖2L2 − ν‖∇en+1‖2L2

+ CτN−2r‖u‖4Ct(Hr
x) + Cτ |〈En, en+1〉|.

(96)
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F.2.1 Time-Differencing Error

We note that

〈Enτ , en+1〉 =
1

τ

ˆ tn+1

tn

ˆ t

tn

〈
∂2
t u(s), en+1

〉
ds dt

=
1

τ

ˆ tn+1

tn

ˆ t

tn

〈
−P {∂tu(s) · ∇u(s) + u(s) · ∇∂tu(s)} , en+1

〉
ds dt

+
1

τ

ˆ tn+1

tn

ˆ t

tn

〈
ν∆u(s), en+1

〉
ds dt

=: (I)τ + (II)τ .

The first term can be bounded from above by

(I)τ . τ
(
‖u‖C1

t (L2
x)‖u‖Ct(W 1,∞

x )
+ ‖u‖Ct(L∞x )‖u‖C1

t (H1
x)

)
‖en+1‖L2

.r,d τ‖u‖C1
t (Hr−2)‖u‖Ct(Hr)‖en+1‖L2 ,

provided that r > d/2+2 ≥ 3 (the last bound is automatic for d ≥ 2). For the second term,
we derive the bound

(II)τ . τν‖u‖Ct(H1
x)‖∇en+1‖L2 .

Thus, for any ε > 0 (to be specified later), we have for some constant C = C(r, d) > 0:

|〈Enτ , en+1〉| ≤ ε
(
‖en+1‖L2 + ν‖∇en+1‖L2

)
+
Cτ2

ε

(
‖u‖2C1

t (Hr−2)‖u‖
2
Ct(Hr) + ν‖u‖2Ct(H1

x)

)
.

(97)

F.2.2 Non-Linear Time-Differencing Error

For the error associated with EnNL, we simply estimate (for ε > 0 to be determined later)

|〈EnNL, en+1〉| ≤ ε‖en+1‖2L2 + ε−1‖EnNL‖2L2 ,

and we observe that

‖EnNL‖L2 ≤ τ‖u‖Ct(L∞x )‖u‖C1
t (H1

x) ≤ τ‖u‖Ct(Hr
x)‖u‖C1

t (Hr−2
x ),

assuming that r > d/2 + 2 ≥ 3. This yields

|〈EnNL, en+1〉| ≤ ε‖en+1‖2L2 +
τ2

ε
‖u‖2Ct(Hr

x)‖u‖
2
C1
t (Hr−2

x )
(98)

F.2.3 Nonlinear Projection Error

Again, we estimate the error EnP using the simple estimate

|〈EnP , en+1〉| ≤ ε‖en+1‖2L2 + ε−1‖EnP ‖2L2 ,
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with ε > 0 to be specified later. We furthermore note that

(1− PN )
{
u(tn) · ∇u(tn+1)

}
= (1− PN )

{
(1− PN/2)u(tn) · (1− PN/2)∇u(tn+1)

}
,

which implies that

‖EnP ‖L2 ≤ ‖(1− PN/2)u(tn)‖L2‖(1− PN/2)∇u(tn+1)‖L∞ .r,d N
−r‖u‖2Ct(Hr).

In the last step, we have used the fact that ‖(1− PN/2)v‖L2 .r,d N
−r‖v‖Hr for r ≥ 0, and

that by Sobolev embedding

‖(1− PN/2)∇u(tn+1)‖L∞ .d ‖(1− PN/2)u(tn+1)‖Hr ≤ ‖u‖Ct(Hr
x),

for any r > d/2 + 1. Thus, there exists C = C(d, r) > 0, such that

|〈EnP , en+1〉| ≤ ε‖en+1‖2L2 +
C

εN2r
‖u‖2Ct(Hr

x). (99)

F.2.4 Viscosity Error

Finally, we note that

|〈Enν , en+1〉| ≤ ν‖∇(u(tn+1)− u(tn))‖L2‖∇en+1‖L2

≤ νε‖∇en+1‖2L2 +
ντ2

ε
‖u‖2C1

t (H1
x)

≤ νε‖∇en+1‖2L2 +
ντ2

ε
‖u‖2

C1
t (Hr−2

x )
, (100)

for any r > d/2 + 2 ≥ 3.

F.2.5 The Final Stability Estimate

Choosing ε = 1/4, it follows from (97), (98), (99) and (100), that the total error term
〈En, en+1〉 can be estimated by

|〈En, en+1〉| ≤ ‖en+1‖2L2 + ν‖∇en+1‖2L2 + C∗
(
τ2 +N−2r

)
. (101)

for some constant C∗ > 0, depending only on r > d/2 + 2, the spatial dimension d and the
norms ‖u‖Ct(Hr), ‖u‖C1

t (Hr) of the exact solution u.
Substitution of the error estimate (101) in (96) finally yields

(1− τ)‖en+1‖2L2 ≤ (1 + C∗τ) ‖en‖2L2 + τC∗
(
τ2 +N−2r

)
,

where the constant C∗ depends only on r ≥ d/2 + 2, the dimension d and the norms
‖u‖Ct(Hr

x) and ‖u‖C1
t (Hr−2

x ). Assuming that τ ≤ 1/2, dividing by (1− τ), and noting that

1 + C∗τ

1− τ
= 1 + τ

(
C∗ +

(1 + C∗τ)

1− τ

)
≤ 1 + τ2 (C∗ + 1) ,

and
C∗

1− τ
≤ 2C∗,
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we can clearly absorb the additional factor of (1 − τ)−1 by increasing the constant C∗, if
necessary.

From this, we conclude that for a time-step τ ≤ 1/2 satisfying the CFL condition (91),
there exists a constant C∗ = C∗(r, d, ‖u‖Ct(Hr

x), ‖u‖C1
t (Hr−2

x )) > 0, such that

‖un+1,∗
N − u(tn+1)‖2L2 ≤ (1 + C∗τ) ‖unN − u(tn)‖2L2 + τC∗

(
τ2 +N−2r

)
. (102)

In fact, recalling also that ‖un+1
N − un+1,∗

N ‖L2 ≤ Cτ2 by (94), we find that an inequality of

the form (102) remains true with un+1,∗
N replaced by un+1

N . Indeed, we have

‖un+1
N − u(tn+1)‖2L2 ≤ ‖un+1,∗

N − u(tn+1)‖2L2 + 2Cτ2‖un+1,∗
N − u(tn+1)‖L2 + C2τ4

≤ (1 + ε) ‖un+1,∗
N − u(tn+1)‖2L2 + C2(1 + 4ε−1)τ4

(ε:=τ)
↓
= (1 + τ) ‖un+1,∗

N − u(tn+1)‖2L2 + C2(1 + 4τ−1)τ4

≤ (1 + C∗τ) ‖unN − u(tn)‖2L2 + τC∗
(
τ2 +N−2r

)
,

(103)

where the last estimate follows from (102), and C∗ has been suitably enlarged (but still only
depends on r, d, ‖u‖Ct(Hr

x), ‖u‖C1
t (Hr−2

x )). In particular, denoting En := ‖unN − u(tn)‖2L2 , we

have obtained
En+1 ≤ (1 + C∗τ)En + τC∗

(
τ2 +N−2r

)
,

and from Gronwall’s inequality it now follows that

En ≤ eC∗T
[
E0 + C∗T

(
τ2 +N−2r

)]
.

We note that E0 = ‖(1− ṖNI2N )u(t = 0)‖2L2 ≤ N−2r‖u‖2Hr . And hence, we finally find, for
n = 0, . . . , nT , that

‖unN − u(tn)‖L2 =
√
En ≤ C

(
τ +N−r

)
, (104)

where C > 0 depends only on T , r, d, ‖u‖Ct(Hr
x) and ‖u‖C1

t (Hr−2
x ).

F.3 Proof of Theorem 32

In this appendix, we provide a proof for Theorem 32. At this proof relies on Lemma 31, we
prove this lemma below.
Proof [Proof of Lemma 31] The proof of Lemma 31 is almost identical to the proof of
Lemma 50; where in the present case, we replace aN → uN and refer to Lemma 49 point
(3), rather than point (2). The only main difference being that in the last step of the proof,
the projection PN is now replaced by the Leray projection PN . However, also for PN , we
observe that PN : L2

2N (Td;Rd)→ L2
2N (Td;Rd) can again be represented exactly by a linear

Ψ-FNO layer. Thus, replacing the linear Ψ-FNO layer L̂∗ which represents PN in the proof
of Lemma 50 by a layer representing PN , an almost identical argument also applies in this
case, and yields for any ε, B > 0, a Ψ-FNO N ∗ : L2

2N (Td;Rd)→ L2
2N (Td;Rd), such that

‖PN (uN · ∇uN )−N ∗(uN )‖L2 ≤ ε,
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for all ‖uN‖L2 ≤ B, with
depth(N ∗), lift(N ∗) = dv ≤ C,

where C = C(d).

Proof [Proof of Theorem 32] Given N ∈ N, choose τ ∼ N−r, such that the CFL condition
τNd/2+1U ≤ 1

2 is satisfied. This is possible, since r ≥ d/2 + 2, by assumption. It then
follows that nT ∼ N r, and we note that Algorithm 29 can be written as the composition of
O(nT log(nT )) = O(N r log(N)) mappings of the form

N̂1(unN , w
n,k
N ) :=

[
unN

(1− ντ∆)−1unN − τ(1− ντ∆)−1PN
(
unN · ∇w

n,k
N

)] ,
where ‖unN‖L2 , ‖wn,kN ‖L2 ≤ 2U for all k, n. Applying the replacement lemma, Lemma 47,
the claim will thus follow if we can show that there exists a constant C > 0 independent of
N , such that for any ε > 0, there exists a Ψ-FNO N ∗1 : L2

2N (Td; div)→ L2
2N (Td; div), such

that ‖N ∗1 (uN , wN )− N̂1(uN , wN )‖L2 ≤ ε, and

N ∼ Cε−1/r, depth(N ∗1 ) ≤ C, lift(N ∗1 ) ≤ C.

This is immediate for the approximation of the first component of N̂1. For the second
component, we note that we can write it as a composition:[

unN
wnN

]
7→

[
unN

PN
(
unN · ∇w

n,k
N

)] 7→ (1− ντ∆)−1
{
unN − τPN

(
unN · ∇w

n,k
N

)}
.

To finish the proof, we note that the first mapping can be approximated to arbitrary accu-
racy ε > 0 with a Ψ-FNO of uniformly bounded depth and lift, by Lemma 31. The second
mapping can be represented exactly by a linear FNO layer. Thus, N ∗1 can be obtained as
the composition of a Ψ-FNO approximating the quadratic non-linearity, and a linear FNO
layer, implying the claimed complexity estimate.

F.4 A Second-Order in Time Accurate Pseudo-Spectral Method for
Approximating the Navier-Stokes Equation (31) and its Emulation by
Ψ-FNOs

Our aim is to describe a second-order accurate (in time) version of the pseudo-spectral
scheme (34). To this end, we propose the following scheme,

un+1
N − unN

τ
+ PN

([
3

2
un − 1

2
un−1

]
· ∇1

2

[
un+1 + un

])
= ν∆

1

2

[
un+1 + un

]
, (105)

In contrast to the first-order method (34) of the last section, to start the scheme (34), we now
require two starting values u0

N ≈ u(t0) and u1
N ≈ u(t1). Given initial data u0 ∈ Ḣr(Td; div),

r ≥ d/2, we propose to define u0
N := INu0, where IN denotes the pseudo-spectral projection,
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and to generate u1
N by the first-order accurate Algorithm 29 applied on the time-interval

[0, τ ], with reduced time-step of size ∼ τ2.
As in the case of (34), one needs to solve an implicit operator equation in the time

update for (105). Analogously, we will use a fixed point iteration to approximate this
implicit equation, resulting in the following algorithm,

Algorithm 56 (Second-order in time approximation of (31))
Input: U > 0, N ∈ N, T > 0, ν ≥ 0, a time-step τ > 0, such that nT = T/τ ∈ N,

and τUNd/2+1 ≤ 1
2e , initial data u0

N ∈ L2
N (Td; div), such that ‖u0

N‖L2 ≤
U .

Output: unTN ∈ L2
N (Td; div) an approximation of the solution ST (u0

N ) of (31) at
time t = T .

1. Set

κ :=

⌈
log
(
T 3/τ3

)
log(2)

⌉
∈ N.

2. Compute u1
N ≈ u(t1) by applying Algorithm 29 on the time-interval [0, τ ], with nT

steps and with time-step τ ′ = τ/nT .

3. For n = 1, . . . , nT − 1:

(a) Set wn,0N := 0,

(b) For k = 1, . . . , κ0: Given the values un−1
N , unN from the previous steps, compute

wn,kN := Fn2 (wn,k−1
N ),

(c) Set un+1
N := wn,κ0N ,

Next, we have the following convergence theorem for the Algorithm 56,

Theorem 57 Let U, T > 0. Consider the Navier-Stokes equations on Td, for d ≥ 2.
Assume that r ≥ d + 2, and let u ∈ C([0, T ];Hr) ∩ C1([0, T ];Hr−2) ∩ C2([0, T ];H1) be a
solution of the Navier-Stokes equations (31), such that ‖u‖L2 ≤ U . Choose a time-step τ ,
such that τUNd/2+1 ≤ (2e)−1. There exists a constant

C = C(T, d, r, ‖u‖Ct(Hr
x), ‖u‖C1

t (Hr−2
x ), ‖u‖C2

t (H1
x)) > 0,

such that with u0
N := INu(0), if ‖u(t1) − u1

N‖L2 ≤ δ, and for the sequence u2
N , . . . , u

nT
N ∈

L2
N (Td; div) generated by Algorithm 29, we have

max
n=0,...,nT

‖unN − u(tn)‖L2 ≤ C
(
δ + τ2 +N−r

)
,

where nT τ = T . In particular, choosing a suitable time-step τ ∼ N−r/2, and assuming that
δ ≤ CN−r, we have

max
n=0,...,nT

‖unN − u(tn)‖L2 ≤ 3CN−r,

with nT ∼ N r/2.
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The proof uses very similar techniques as the proof of Theorem 30 and we omit it here.
Finally and in complete analogy with the proof of Theorem 32, one can prove the

following Theorem for the approximation of scheme (105) with a Ψ-FNO,

Theorem 58 Let U, T > 0 and viscosity ν ≥ 0. Consider the Navier-Stokes equations
on Td, for d ≥ 2. Assume that r ≥ d + 2, and let V ⊂ C([0, T ];Hr) ∩ C1([0, T ];Hr−2) ∩
C2([0, T ];H1) be a set of solutions of the Navier-Stokes equations (31), such that supu∈V ‖u‖L2 ≤
U , and

U := sup
u∈V

{
‖u‖Ct(Hr

x) + ‖u‖C1
t (Hr−2

x ) + ‖u‖C2
t (H1

x)

}
.

For t ∈ [0, T ], denote Vt := {u(t) |u ∈ V}. Let G : V0 → VT denote the solution operator of
(31), mapping initial data u0 = u(t = 0), to the solution u(T ) at t = T of the incompressible
Navier-Stokes equations. Then there exists a constant

C = C(d, r, U, U, T ) > 0,

such that for any N ∈ N there exists a Ψ-FNO N ∗ : L2
2N (Td;Rd)→ L2

2N (Td;Rd), such that

sup
u∈V0
‖G(u)−N ∗(u)‖L2 ≤ CN−r,

and such that
depth(N ∗) ≤ CN r/2 log(N), lift(N ∗) = dv ≤ C.

Appendix G. Proof of Theorem 36

Proof First, we note that each layer

v(xj) 7→ σ
(
Wv(xj) + bj + F−1

N (PFNv)
)
,

is simply the composition of

• an affine mapping Rdv×JN → Rdv×JN , and

• a componentwise application of the activation function σ.

In particular, the Ψ-FNO N ∗, interpreted as a mapping

RJN×da → RJN×dv → · · · → RJN×dv → RJN×du ,

can be represented by an ordinary neural network β̃ : RJN×da → RJN×du , with

width(β̃) = |JN |dv ∼ Nddv, depth(β̃) = depth(N ).

In fact, by suitably modifying the linear output layer of β̃, we can map the grid val-
ues encoded in the output β̃j(a) = N (a)(xj) to the corresponding coefficients in a (real)
trigonometric basis {ek}k∈KN with span{ek}k∈KN = span{ei〈k,x〉}k∈KN ; i.e. by modifying

the linear output layer of β̃ (and re-indexing the components of the output), we obtain
another neural network β : RJN×da → RKN×du , such that

N (a)(xj) =
∑
k∈KN

βk(a)ek(xj), ∀ j ∈ JN . (106)
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Since β̃ and β only differ in their output layers, we clearly have

width(β) = width(β̃) ∼ dvNd, depth(β) = depth(β̃) = depth(N ).

Since {ek}k∈KN has the same span as {ei〈k,x〉}k∈KN , it follows form (106), that

N (a)(x) =
∑
k∈KN

βk(a)ek(x), ∀x ∈ Td.

To prove the claim, it thus suffices to observe that there exists a neural network

τ : Rd → RKN , x 7→ {τk(x)}k∈KN ,

such that the DeepOnet defined by (β, τ) satisfies

sup
‖a‖L∞≤B

sup
x∈Td

∣∣∣∣∣∣N (a)(x)−
∑
k∈KN

βk(a)τk(x)

∣∣∣∣∣∣
= sup
‖a‖L∞≤B

sup
x∈Td

∣∣∣∣∣∣
∑
k∈KN

βk(a) [ek(x)− τk(x)]

∣∣∣∣∣∣
≤ (2N + 1)d

(
sup

‖a‖L∞≤B
max
k∈KN

|βk(a)|

)
sup
x∈Td

max
k∈KN

|ek(x)− τk(x)|

≤ (2N + 1)d

(
sup

‖a‖L∞≤B
‖N (a)‖L2

)
sup
x∈Td

max
k∈KN

|ek(x)− τk(x)|

= B sup
x∈Td

max
k∈KN

|ek(x)− τk(x)| .
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