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Abstract

Gaussian process (GP) regressors are used in a wide variety of regression tasks, and many re-
cent applications feature domains that are non-Euclidean manifolds or other metric spaces.
In this paper, we examine formal consistency of GP regression on general metric spaces.
Specifically, we consider a GP prior on an unknown real-valued function with a metric
domain space and examine consistency of the resulting posterior distribution. If the kernel
is continuous and the sequence of sampling points lies sufficiently dense, then the variance
of the posterior GP is shown to converge to zero almost surely monotonically and in Lp for
all p > 1, uniformly on compact sets. Moreover, we prove that if the difference between the
observed function and the mean function of the prior lies in the reproducing kernel Hilbert
space of the prior’s kernel, then the posterior mean converges pointwise in L2 to the un-
known function, and, under an additional assumption on the kernel, uniformly on compacts
in L1. This paper provides an important step towards the theoretical legitimization of GP
regression on manifolds and other non-Euclidean metric spaces.

Keywords: Gaussian process, regression, nonparametric inference, Bayesian inference,
reproducing kernel Hilbert space

1. Introduction

Gaussian Process (GP) regression (Rasmussen and Williams, 2006, Chapter 2) is an estab-
lished tool for nonparametric modelling of real-world phenomena. It is a Bayesian approach
to regression of functional data that assumes a Gaussian process prior on the unknown func-
tion, which is updated based on noisy evaluations thereof. While the technique dates back
to the 1940s (Wiener, 1949), it became a major research topic in engineering disciplines
only recently with the growing availability of computational resources and the widespread
popularity of statistical machine learning.

Fundamental research on GP regression comprises consistency proofs. Formal definitions
of consistency vary throughout the literature (see, for example, Ghosh and Ramamoorthi,
2003; Ghosh et al., 2006, and references therein), but it describes the general idea that the
posterior distribution converges in some sense to the true function as more observations
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become available. There are several results available in this direction: Choi and Schervish
(2007) established posterior consistency in the case where the unknown function’s domain
is R and the kernel used for regression is stationary and sufficiently often differentiable.
Shi and Choi (2011) proved consistency of GP regression for a bounded subset of R and
a squared exponential kernel. Ghosal et al. (2006) established consistency results in the
context of binary classification with GPs with multidimensional real covariates, under some
assumptions on the kernel, including differentiability up to a certain order. Further results
have been achieved by Tokdar and Ghosh (2007), who considered non-parametric density
estimation using GPs.

All of these results are concerned with the case where the unknown function’s domain is
Euclidean, and GPs on more general spaces such as manifolds are an active field of research.
Lin et al. (2019) mention several applications of GPs on manifolds and achieve some general
results by constructing embeddings of the manifolds considered there into Euclidean spaces.
Calandra et al. (2016) considered learning a transformation along with the GP regression.

A key challenge when using GPs on manifolds is the definition of a kernel since one has to
ensure it is symmetric and positive definite. One idea is to take the formula of a stationary
Euclidean kernel and replace the difference between two vectors with the geodesic distance
on the manifold. However, the resulting kernel is not necessarily positive definite. For ex-
ample, Feragen et al. (2015) proved that the Gaussian kernel based on the geodesic distance
is only positive definite when the manifold is flat in the sense of Alexandrov (Bridson and
Haefliger, 1999). Nonlinear manifolds, such as the unit sphere, are generally not flat. Fera-
gen et al. (2015) further proved that the Laplacian kernel involving the geodesic distance is
only positive definite when the metric is conditionally negative definite. Borovitskiy et al.
(2020) considered ways to provide valid kernels for manifolds based on the Matérn kernel.

An alternative approach is to define a kernel directly on the considered manifold.
Hitczenko and Stein (2012) provided a covariance function for anisotropic GPs based on
spherical harmonics (Kennedy and Sadeghi, 2013, Section 7.3.3). A practically motivated
GP regression on [0, 2π) with a corresponding kernel function was presented by Wahlström
and Özkan (2015) for extended object tracking. In that work, all objects were modelled
as two-dimensional objects on a plane. A GP regression for three-dimensional objects was
examined by Kumru and Özkan (2018), who considered the manifold of the unit sphere.
A more complicated manifold was regarded for tracking the position and orientation of a
rigid body in a three-dimensional Euclidean space (Lang et al., 2014). The authors used
quaternions to describe rotations, which reside on the three-dimensional unit hypersphere.
A unique property of this representation is that q and −q describe the same orientation,
which was considered in the kernel function.

The consistency of GP regression on manifolds cannot be concluded directly from avail-
able results for Euclidean spaces, even if the manifold can be embedded into a Euclidean
space in a way that the induced Euclidean distance is topologically equivalent to the geodesic
distance on the manifold (such as the unit sphere

{
x ∈ R3 : ‖x‖ = 1

}
with the arc-length

distance). This is because a positive definite kernel on the manifold can, in general, not be
trivially extended to a positive definite kernel on the Euclidean embedding space.

Instead of proving consistency for individual spaces, we provide a proof that covers all
manifolds. Specifically, we consider the more general case of GP regression on metric spaces,
which includes domain spaces that are not manifolds such as GP regression on probability
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density functions (Dolgov and Hanebeck, 2018) or function spaces. More precisely, we
provide a proof for the consistency of GP regression of an unknown, real-valued function f0,
whose domain is a separable metric space (T, ρ). We show that for any non-degenerate GP
prior with continuous kernel K, the variance of the posterior GP converges to zero almost
surely monotonically and in Lp for all p > 1, uniformly on compact sets. Furthermore, if
the difference of f0 to the prior’s mean function lies in the reproducing kernel Hilbert space
(RKHS) of K (see van der Vaart and van Zanten, 2008), then the mean of the posterior
GP converges in L2 to the unknown function f0. We assume that evaluations of f0 happen
at a sequence of known sampling points and are corrupted by Gaussian measurement noise
whose variance is allowed to depend continuously on the sampling point. The sampling
procedure may be random, provided it satisfies a denseness assumption introduced in this
work.

The paper is structured as follows. In the next section, we describe the model and the
prior. In Section 3, we state our main results, which we relate to existing definitions of
consistency and compare with established results when specialized to the Euclidean case in
Section 4. Sections 5 and 6 contain the proofs, and Section 7 comprises a discussion of the
result and possible future work. In Appendices A and B, we present brief introductions to
reproducing kernel Hilbert spaces and Minkowski dimension.

2. Setup and Model

The task is to estimate an unknown function f0 : T → R, where T is a metric space, based on
noisy evaluations of f0 at random sampling points (ti)i∈N. The measurement noise (εi)i∈N
shall be centred Gaussian and independent in subsequent measurements. Its variance may
depend on the sampling point, according to a function σ2 : T → (0,∞). Formally, (εi)i∈N
shall be a sequence of real random variables, conditionally independent given (ti), such that,
for i ∈ N, the conditional distribution of εi, given ti, is N (0, σ2(ti)). More precisely,

P((εi),(ti))( · ) =

∫
TN

∫
RN

1{((xi),(si))∈·}

 ∞⊗
j=1

N (0, σ2(sj))

((.x1, x2, . . .)
)
P(ti)

(
(.s1, s2, . . .)

)
,

where (Ω,A,P) denotes the underlying probability space and PX := P
(
X−1( · )

)
denotes the

distribution of a random variable X defined on (Ω,A). We may achieve this in the following
way. Let ε :=

(
ε(i)
)
i∈N be an i.i.d. sequence independent of (ti), with ε(1) =

(
ε(1)(t)

)
t∈T

an independent family of real random variables such that ε(1)(t) ∼ N (0, σ2(t)) for t ∈ T .
Then,

εi := ε(i)(ti), i ∈ N, (1)

satisfies the above assumptions. The advantage of this definition is that
(
ε(i)
)

is defined
separately from (ti), and can thus be used to define a measurement noise via Equation (1)
for any given sequence of sampling points. Furthermore, noisy evaluations of f0 can now
be treated as ordinary evaluations of the (random) functions f0 + ε(i), i ∈ N.

We shall now specify the GP estimator in this setting. If m : T → R is a function and
K : T × T → R is symmetric and positive definite, then

f ∼ GP(m,K),
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independent of (ti) and (ε(i)), describes a prior on the unknown observed function. Here
GP(m,K) denotes the law of a Gaussian process on T with mean and covariance functions
m and K. Formally, (f(t))t∈T is a family of real random variables, independent of (ti)
and (ε(i)), such that f(s) ∼ N (m(s),K(s, s)) for any n ∈ N and s ∈ Tn. Here we used
the notation m(s) := (m(si))

n
i=1 ∈ Rn and K(s, s) := (K(si, sj))

n
i,j=1 ∈ Rn×n, mutatis

mutandis in similar contexts. We also set ε(s) :=
(
ε(i)(si)

)n
i=1

.
Now if n ∈ N, s ∈ Tn and y ∈ Rn are given, the distribution of f , conditioned on

the events f(si) + ε(i)(si) = yi for i = 1, . . . , n, is that of a GP with mean and covariance
functions given by

fn(t; s,y) := m(t) +K(t, s)B(s, s)−1 (y −m(s)) , t ∈ T, (2)

kn(t, s; s) := K(t, s)−K(t, s)B(s, s)−1K(s, s), t, s ∈ T, (3)

where
B(s, s) := K(s, s) +

(
δijσ

2(si)
)n
i,j=1

.

We omit the dependence of fn and kn on m, K, and σ2. In particular,

fn(t; s,y) = E [f(t) |f(s) + ε(s) = y] , (4)

kn(t, s; s) = Cov (f(t), f(s) |f(s) + ε(s) = y) , (5)

for all n ∈ N, s ∈ Tn, and Pf(s)+ε(s)-almost every (a.e.) y ∈ Rn.
Recall that we assume a random sequence (ti) in T to be given.

Definition 1 Let f0 : T → R be a function. Then, for n ∈ N, set tn := (ti)
n
i=1, and let

f̂n( · ; f0) : T → R and v̂n( · ) : T → R be defined by

f̂n(t; f0) := fn (t; tn,f0(tn) + ε(tn)) , t ∈ T,
v̂n(t) := kn (t, t; tn) , t ∈ T,

the pointwise mean and variance of the posterior GP, given the first n noisy observations
of f0.

Note that we omit the dependence of f̂n and v̂n on m, K, σ2, and (ti), though we will at
one point explicitly denote the dependence of f̂n on ε = (ε(i)) by writing f̂n( · ; f0, ε).

Remark 2 Definition 1 also gives directions on how to implement GP regression on a
general metric space: Given a kernel K, a prior mean function m and an estimate for the
noise function σ2 (in the simplest case one may choose m ≡ 0 and σ2(·) ≡ σ2 for a fixed,
estimated noise variance σ2 > 0), as well as n sampling points tn ∈ Tn and observations
yn ∈ Rn, the estimated function and uncertainty are

f̂n(t) = fn (t; tn,yn) , t ∈ T,
v̂n(t) = kn (t, t; tn) , t ∈ T.

The calculation—see Equations (2) and (3)—requires O(n2) evaluations of K, m, and σ2,
and multiplications and an inversion of matrices in Rn.
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3. Statement of Main Results

We first make a brief remark on the assumptions required of the sequence of sampling
points (ti). Intuitively speaking, averaging out the corrupting noise requires infinitely many
measurements at, or close to, every point t ∈ T . In particular, (ti) must be dense, but this
is not sufficient in general. Indeed, if T contains an isolated point, that is, a point t ∈ T
such that {t} is open, then this point would have to be measured infinitely often, but for
denseness, it is sufficient for (ti) to contain t only once. In this spirit, we call a sequence
(si) ∈ TN recurrently dense if it is dense and, additionally, contains every isolated point
infinitely often. This is equivalent to the less intuitive but technically more handy condition
that (si) has infinitely many points in every open set. Note the obvious but important fact
that such a sequence can only exist if T is separable.

Theorem 3 Let f0 : T → R be a function and suppose that T is separable, K and σ2 are
continuous, and (ti) is almost surely recurrently dense in T . Then, for every compact set
C ⊂ T ,

sup
t∈C

v̂n(t) −→ 0, n→∞,

almost surely monotonically, as well as in Lp for every p ∈ [1,∞). Furthermore, if f0 −m
lies in the RKHS of K, then

f̂n(t; f0)
L2

−→ f0(t), n→∞,

for all t ∈ T .

The following proposition should convince the reader that the distinction between recur-
rently dense and dense is only relevant in theoretical edge cases, and denseness is sufficient
in many common cases. Moreover, i.i.d. sampling according to a distribution whose sup-
port is the full the domain will always yield a recurrently dense sequence. Recall that T is
(topologically) connected if it cannot be written as a disjoint union of two non-empty open
sets.

Proposition 4 Suppose T is separable.

(i) If T is connected or has no isolated points, then any dense sequence is recurrently
dense,

(ii) If (ti) is i.i.d. with a distribution that has full support (that is, assigns positive prob-
ability to every open set), then it is almost surely recurrently dense.

We can replace the pointwise L2-convergence of the posterior mean in Theorem 3 by
uniform L1-convergence on compacts under additional assumptions on T and K. The idea
is to apply a technique first developed by Dudley (1967) to bound the expected supremum
of a Gaussian process. We briefly introduce the relevant terminology.

Definition 5 Given a symmetric and positive definite function k : T × T → R, the Dudley
metric associated with k is

dk(t, s) :=
√
k(t, t) + k(s, s)− 2k(t, s), t, s ∈ T. (6)
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For C ⊂ T compact, denote by N(C, ε, dk) ∈ N ∪ {∞} for ε > 0 the minimal number of
points in an ε-net with respect to (w.r.t.) dk of C (that is, the minimal number of balls of
dk-radius ε needed to cover C). Then the Dudley integral associated with k and C is

J(C, dk) :=

∫ ∞
0

√
logN(C, ε, dk) dε.

Remark 6 The fact that dk is a metric can be seen by taking a GP ξ ∼ GP(0, k) and

noting that dk(t, s) = E
[

(ξt − ξs)2 ]1/2, which implies the triangle inequality. Definiteness
follows from positive definiteness of k, and symmetry is obvious.

Our key additional assumption will be that J(C, dK) < ∞ on compact sets C ⊂ T .
As the following proposition shows, this is easy to satisfy at least in finite-dimensional
applications. Recall the definition of Minkowski dimension from Appendix B and that a
function on T is called locally Lipschitz continuous if, for any point, there is a neighbourhood
on which it is Lipschitz continuous.

Proposition 7 Suppose K is locally Lipschitz continuous, and that the Minkowski dimen-
sion of T is finite. Then, J(C, dK) <∞ for all compact sets C ⊂ T .

In reasonably nice spaces, the Minkowski dimension takes the value one would expect.
In fact, if T is a connected, Riemannian n-manifold with the geodesic metric, then its
Minkowski dimension is n. For general manifolds, this depends on the metric, but it is
certainly always possible to choose one for which the Minkowski dimension is at least finite
(see Lemmas B.2 and B.3).

We will further assume that f0 is continuous, and it is easy to see heuristically why this
should be necessary: If we take m = 0 for the moment, then the posterior mean f̂n(·; f0)
is continuous by continuity of K (regardless of f0), and the uniform limit of a sequence of
continuous functions must be continuous.

Our final additional assumption will be that T is σ-compact, which means it is the
countable union of compact sets. This assumption is not as restrictive as it may at first
seem. First, every manifold is σ-compact (Lee, 2013, Lem. 1.10). Second, if T is complete
and separable, and all samples (ti) are drawn according to the same probability distribution
Q on T , then the support of Q—the subspace that will eventually be explored by (ti)—is
σ-compact, even if T is not (Parthasarathy, 2014, Theorem 3.2). In that case, one might
just take T to be that σ-compact subspace to begin with. Denote by C(T,R) the space
of continuous functions T → R, equipped with the topology of uniform convergence on
compacts.

Theorem 8 If the assumptions of Theorem 3 hold and T is σ-compact, f0 and m are
continuous, and J(C, dK) <∞ for all compact sets C ⊂ T , then

sup
t∈C

∣∣∣f0(t)− f̂n(t; f0)
∣∣∣ L1

−→ 0,

for every compact C ⊂ T . Moreover, the posterior GP is continuous for all n ∈ N, and if
Πn = GP(f̂n(·; f0), kn(·, ·; tn)) denotes its distribution on C(T,R), then

Πn (U)
L1

−→ 1

for every open neighbourhood U of f0.
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4. Comparison with Prior Work

We briefly discuss how our results relate to existing definitions of consistency, and show that
they are of interest even if specialized to the well-studied Euclidean case, by comparing with
established results.

The usual notion of consistency in Bayesian analysis is that the posterior distribution
Πn on (the Borel σ-algebra of) a topological parameter space Θ satisfies

∀U ⊂ Θ open with θ0 ∈ U : Πn(U) −→ 1, (7)

where θ0 ∈ Θ is the true parameter (cf. Section 1.3 in Ghosh and Ramamoorthi, 2003).
This specializes to GP regression if Θ ⊂ RT is a space of functions, θ0 = f0, and the prior
Π0 = GP(m,K) on Θ is a GP. There are two main variables in this definition. Since Πn is
random (it depends on the measurement noise and the sampling points), the sense in which
Πn(U)→ 1 has to be specified, which is usually convergence almost surely or in probability.
Note that the latter is the same as L1 convergence here because the two notions coincide
for bounded random variables. Secondly, one has to specify Θ ⊂ RT and its topology. In
the present literature, T is usually a compact subset of Rd, and common choices include
(cf. Ghosal et al., 2006; Choi and Schervish, 2007)

(i) Θ ⊂ RT is (a subset of) the space of Borel measurable functions with the topology of
convergence in measure w.r.t. a given finite Borel measure Q on T . That is, gn → g
iff Q (t : |gn(t)− g(t)| ≥ ε)→ 0 for all ε > 0,

(ii) Θ and Q as in (i) with the topology of Lp(Q) convergence for some p > 0. That is,
gn → g iff

∫
T |gn(t)− g(t)|pQ(dt)→ 0,

(iii) Θ ⊂ RT is the space of bounded functions (or a subset such as C(T,R)) with the
topology of uniform convergence.

The topologies become increasingly fine in the order we have listed them (if defined on a
suitable common Θ) in the sense that the notion of convergence becomes stronger. This
means that Equation (7) holds for more and finer neighbourhoods of θ0 for topologies further
down the list, hence the associated consistency result becomes stronger.

For general T , (i) and (ii) work without modification, and the natural extension of (iii)
is to consider C(T,R) with the topology of uniform convergence on compact sets, in which
case (7) is precisely the second part of Theorem 8. If we specialize this to T = [0, 1], it
closely resembles a result of Choi and Schervish (2007, Theorem 3). The assertions only
differ in that the topology on C(T,R) they consider is of the type (i) and hence weaker than
ours; on the other hand, the convergence Πn(U)→ 1 they show is almost sure rather than
L1.

Their assumptions are noticeably stronger: m must be continuously differentiable, K
must have continuous partial derivatives up to fourth order (which implies our assumptions
on K by Proposition 7), (ti) must be i.i.d. with full support (which is sufficient for us by
Proposition 4), and f0 must be continuously differentiable. Only the latter assumption is not
easy to compare with our assumption that f0 −m is in the RKHS of K, except for certain
kernels: The Laplacian kernel on [0, 1], for example, contains continuously differentiable
functions (Berlinet and Thomas-Agnan, 2011); in this case at least, our assumption on f0

is hence weaker.
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5. Convergence of Posterior Variance

We turn to the proof of Theorem 3. For the first part, we have to show that if (ti) is fixed
(that is, non-random) and recurrently dense, then v̂n(·), which is then also non-random (see
Definition 1), converges to zero monotonically and uniformly on compact sets. The asserted
Lp-convergence then follows with the monotone convergence theorem, which can be applied
since E [supt∈C v̂1(t)p] ≤ supt∈C K(t, t) <∞ for C ⊂ T compact and p > 1 by Equation (3)
and continuity of K. We first establish monotonicity.

For matrices, we use ≥ to denote the Löwner partial ordering. That is, if k ∈ N and
A,B ∈ Rk×k are symmetric, write A ≥ 0 if A is positive semi-definite, and A ≥ B if
A−B ≥ 0. Note that this is consistent with the ordinary order on R if k = 1.

Lemma 9 Let s ∈ Rn for some n ∈ N, 0 ≤ m ≤ n, and, if m 6= 0, u ∈ Rm a subsequence
of s. Then, for any k ∈ N and t ∈ T k,

kn(t, t; s) ≤ km(t, t;u),

where the right-hand side is K(t, t) if m = 0. In particular, (v̂n(t))n∈N is decreasing for
every t ∈ T .

Proof Let t ∈ T . By using induction, we may assume that m = n − 1 and, WLOG,
u = (s1, . . . , sn−1). We will not treat the case n = 1 (so m = 0) separately, but if the reader
is uncomfortable with this, he will find it easy to translate the following arguments to that
case explicitly. By Equation (3), we have to show that

K(t, s)B(s, s)−1K(s, t) ≥K(t,u)B(u,u)−1K(u, t).

Then,

B(s, s) =

[
B(u,u) K(u, sn)
K(u, sn)> K(sn, sn)

]
=:

[
A b

b> c

]
=: A?,

K(s, t) =

(
K(u, t)
K(sn, t)

)
=:

(
V
w>

)
=: V ?.

We now have to show that V >A−1V ≤ V >? A−1
? V ?. Put χ := c − b>A−1b, which is well-

defined since A = B(u,u) is invertible. Furthermore, χ is the Schur complement of A in
A?, and since A is positive definite, Theorem 1.12(a) of Zhang (2006) implies that χ > 0.
Hence, by the block matrix inversion formula, we have

A−1
? =

[
A−1 0

0 0

]
+ χ−1

[
A−1bb>A−1 −A−1b

−b>A−1 1

]
.

Thus,

V >? A
−1
? V ? = V >A−1V

+ χ−1
[
V >A−1bb>A−1V − V >A−1bw> −wb>A−1V +ww>

]
︸ ︷︷ ︸

=:X

.
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Since χ > 0, it remains to show that X ≥ 0. Set a := V >A−1b ∈ R and note that
b>A−1V = a>, so

X = (a−w)(a−w)> =: xx>.

This implies that X ≥ 0: For any y ∈ Rk, y>Xy =
(
y>x

) (
x>y

)
=
(
x>y

)2 ≥ 0.

Proposition 10 Suppose that T is separable, K and σ2 are continuous, and (ti) is fixed
and recurrently dense in T . Then, for every compact C ⊂ T ,

sup
t∈C

v̂n(t) −→ 0

monotonically as n→∞.

Proof Let C ⊂ T be compact. Since (supt∈C v̂n(t))n∈N is a decreasing sequence by
Lemma 9, it suffices to show convergence of a subsequence. We choose that subsequence in
the following way: For n ∈ N, let δn > 0 be such that∣∣K(s1, s2)−K(s′1, s

′
2)
∣∣ < 1

n3
(8)

for all s1, s2 ∈ C, s′1 ∈ B(s1, δn), and s′2 ∈ B(s2, δn), which exists by uniform continuity of
K on C ×C. We may arrange for δn ↓ 0. Since C is compact, there exists a finite δn-net of
C for each n ∈ N, that is, ln ∈ N open sets O(1,n), . . . , O(ln,n) with diameter at most δn that
cover C. For t ∈ C, let in(t) ∈ {1, . . . , ln} be such that t ∈ O(in(t),n). Then, for any n ∈ N,
we know (since (ti) is recurrently dense) that there exists k(n) ∈ N large enough such that
for each i = 1, . . . , ln, at least n of the points t1, . . . , tk(n) lie in O(i,n), and such that (k(n))
is increasing. For each i = 1, . . . , ln, let t(i,n) ∈ Tn comprise n of those points and put the
corresponding indices into the set I(i,n).

Let t ∈ C. We have to find an upper bound on v̂n(t) that vanishes as n→∞ and does
not depend on t. Set t(n) := t(in(t),n) and In := I(in(t),t) for n ∈ N. Then, by construction,
t(n) is a subsequence of (t1, . . . , tk(n)) of length n such that every point in t(n) has distance
at most δn from t, and the set In ⊂ {1, . . . , k(n)} contains the corresponding indices. For
n ∈ N, set

Bn := B(t(n), t(n)) ∈ Rn×n,
kn := K(t(n), t) ∈ Rn,
κn := K(t, t) (1, . . . , 1) ∈ Rn,

as well as

Cn := K(t, t)


1 + σ2(t)

K(t,t) 1 · · · 1

1 1 + σ2(t)
K(t,t)

. . .
...

...
. . .

. . . 1

1 · · · 1 1 + σ2(t)
K(t,t)

 ∈ Rn×n.
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Intuitively, we expect Cn and κn to be close in some sense to Bn and kn, respectively, as
n grows large.

Definition 1 and Lemma 9 imply

v̂k(n)(t) = kk(n)(t, t; (t1, . . . , tk(n))) ≤ kn(t, t; t(n)) =
∣∣∣K(t, t)− k>nB−1

n kn

∣∣∣
≤
∣∣∣K(t, t)− κ>nC−1

n κn

∣∣∣︸ ︷︷ ︸
(i)

+
∣∣∣κ>nC−1

n κn − k>nB−1
n kn

∣∣∣︸ ︷︷ ︸
(ii)

.

We will prove convergence to zero for each of the summands separately. Before we do that,
however, we compute C−1

n and, subsequently, its spectral norm
∥∥C−1

n

∥∥
2
. The inverse of Cn

is given by

C−1
n =

1

σ2(t)

1

n+ σ2(t)
K(t,t)


n− 1 + σ2(t)

K(t,t) −1 · · · −1

−1 n− 1 + σ2(t)
K(t,t)

. . .
...

...
. . .

. . . −1

−1 · · · −1 n− 1 + σ2(t)
K(t,t)

 , (9)

as can easily be verified by multiplication of the above matrix with Cn. Before we compute
the norm of Cn, recall the definitions of the row-sum norm ‖·‖∞ and the column-sum norm
‖·‖1 and the fact that ‖·‖2 ≤

√
‖·‖1 ‖·‖∞. In particular, ‖A‖2 ≤ ‖A‖∞ for symmetric

matrices A. Since C−1
n is symmetric, we obtain

∥∥C−1
n

∥∥
2
≤
∥∥C−1

n

∥∥
∞ ≤

1

σ2(t)

1

n+ σ2(t)
K(t,t)

(
2n+

σ2(t)

K(t, t)

)
≤ 2

σ2(t)
≤ 2

mσ
, (10)

where mσ := mins∈C σ
2(s) > 0 by compactness of C and since σ2(·) > 0 by assumption.

Let us now consider (i). Using Equation (9), we obtain

κ>nC
−1
n κn = κ>n

1

n+ σ2(t)
K(t,t)

1
...
1

 =
n

n+ σ2(t)
K(t,t)

K(t, t)

and thus

(i) = K(t, t)

∣∣∣∣∣∣1− n

n+ σ2(t)
K(t,t)

∣∣∣∣∣∣ = K(t, t)

σ2(t)
K(t,t)

n+ σ2(t)
K(t,t)

=
σ2(t)

n+ σ2(t)
K(t,t)

≤ maxs∈C σ
2(s)

n
,

which is a vanishing bound independent of t.

10
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For (ii), we repeatedly apply the triangle inequality to obtain∥∥∥κ>nC−1
n κn − k>nB−1

n kn

∥∥∥ ≤ ∥∥∥κ>nC−1
n κn − κnB−1

n κn

∥∥∥︸ ︷︷ ︸
(ii.1)

+
∥∥∥κ>nB−1

n κn − k>nB−1
n κn

∥∥∥︸ ︷︷ ︸
(ii.2)

+
∥∥∥k>nB−1

n κn − k>nB−1
n kn

∥∥∥︸ ︷︷ ︸
(ii.3)

.

For the first summand, we must find a vanishing bound on∥∥C−1
n −B−1

n

∥∥
2

=
∥∥B−1

n BnC
−1
n −B−1

n CnC
−1
n

∥∥
2

=
∥∥B−1

n (Bn −Cn)C−1
n

∥∥
2

≤
∥∥B−1

n

∥∥
2
‖Bn −Cn‖2

∥∥C−1
n

∥∥
2
.

(11)

Recall that since Bn is symmetric and positive definite (as it is the covariance matrix of a
non-degenerate Gaussian distribution), we have∥∥B−1

n

∥∥
2

=
1

λn
,

where λn > 0 is the smallest eigenvalue of Bn. We will now establish a lower bound on λn
that is independent of n. For that purpose, we consider

Z := f(t(n)) + ε(t(n)) ∼ N (m(t(n)),Bn).

Now let u ∈ Rn be an eigenvector of unit norm of Bn with eigenvalue λn. Then

λn = u>Bnu = V
(
u>Z

)
= V

(∑
i∈In

uif(ti) +
∑
i∈In

uiε
(i)(ti)

)

= V

(∑
i∈In

uif(ti)

)
+
∑
i∈In

u2
iV(ε(i)(ti))

≥ 0 +

(∑
i∈In

u2
i

)
︸ ︷︷ ︸

=‖u‖2=1

min
i∈In

V(ε(i)(ti))

= min
i∈In

σ2(ti).

By uniform continuity of σ2 on C, there is some δ > 0 such that σ2(s) ≥ mσ/2 whenever
ρ(s, C) < δ (recall that mσ = mins∈C σ

2(s)). Hence, if n ∈ N is such that δn < δ, then for
all i ∈ In we have ρ(ti, C) ≤ ρ(ti, t) < δn < δ, and thus σ2(ti) ≥ mσ/2. Therefore, we have
λn ≥ mσ/2 and thereby ∥∥B−1

n

∥∥
2
≤ 2

mσ

11
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for all n ≥ n0, for some n0 ∈ N that depends only on σ2 and C.

Let us now consider ‖Cn −Bn‖. Since Cn−Bn = (K(t, t)−K(ti, tj))i,j∈In is symmet-
ric by symmetry of K, we have

‖Cn −Bn‖2 ≤ ‖Cn −Bn‖∞ = sup
j∈In

∣∣∣∣∣∑
i∈In

|K(t, t)−K(ti, tj)|

∣∣∣∣∣ .
By Equation (8) we have |K(t, t)−K(ti, tj)| ≤ 1/n3 for all i, j ∈ In and thus

‖Cn −Bn‖2 ≤
1

n2
, n ∈ N.

Combining these results and recalling Equations (10) and (11), we find

∥∥C−1
n −B−1

n

∥∥ ≤ 2

mσ

1

n2

2

mσ
=

4

n2m2
σ

for all n ≥ n0. Applying this to (ii.1) now yields

(ii.1) ≤ ‖κn‖2
∥∥C−1

n −B−1
n

∥∥ ≤ (∑
i∈In

K(t, t)2

)
4

n2m2
σ

≤ 1

n

4M2
K

m2
σ

−→ 0,

where we have put MK := maxs∈C K(s, s) < ∞. For the remaining two summands (ii.2)
and (ii.3), we first observe that

‖κn − kn‖ =

√√√√∑
i∈In

(K(t, t)−K(t, ti))
2︸ ︷︷ ︸

≤(1/n3)2

≤
√
n

1

n3
≤ 1

n2
,

for all n ∈ N, which gives

(ii.2) ≤ ‖κn − kn‖
∥∥B−1

n

∥∥ ‖κn‖ ≤ 1

n2

2

mσ

√
nMK −→ 0,

as well as

(ii.3) ≤ ‖kn‖
∥∥B−1

n

∥∥ ‖κn − kn‖ ≤ 2MK

√
n

2

mσ

1

n2
−→ 0,

where we have used that |(κn)i| = K(t, t) ≤MK for all n ∈ N and

|(kn)i| = |K(t, ti)| ≤ 2MK

for all i ∈ In and all but finitely many n ∈ N by continuity of K and compactness of C.

This finishes the proof of the first part of Theorem 3.
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6. Convergence of Posterior Mean

We consider the second part of Theorem 3. What we have to show is that, under the given
assumptions, we have

E
[∣∣∣f0(t)− f̂n(t; f0)

∣∣∣2] −→ 0, n→∞,

for all t ∈ T . Note that the expectation averages over the noise and the sequence of sampling
points. As an intermediate step, we show the above in the case where the fixed function f0

is replaced by the GP prior f .

Lemma 11 If n ∈ N, t ∈ T , and the sampling points (ti) are fixed, then

E
[∣∣∣f(t)− f̂n(t; f)

∣∣∣2] = v̂n(t).

Proof We claim that
f̂n(t; f) = E [f(t) |f(tn) + ε(tn)] , (12)

where tn = (t1, . . . , tn). Indeed, this is a special case of the general fact that if X is a real
random variable and Y is a random variable with values in a measurable space E, then, by
definition, E [X |Y = · ] := h( · ), where h : E → R is measurable such that E [X |Y ] = h(Y )
(such a function is uniquely determined up to equality PY -almost everywhere and exists
since E [X |Y ] is σ(Y )-measurable). In this case, X = f(t), Y = f(tn) + ε(tn), E = Rn,
and h( · ) = fn(t; tn, · ) (see Equation (4)), and thus,

f̂n(t; f) = fn(t; tn,f(tn) + ε(tn)) = h(Y ) = E [X |Y ]

= E [f(t) |f(tn) + ε(tn)] ,

where the first equality holds by Definition 1. We conclude that

E
[∣∣∣f(t)− f̂n(t; f)

∣∣∣2] = E
[
E
[∣∣∣f(t)− f̂n(t; f)

∣∣∣2 ∣∣∣∣f(tn) + ε(tn)

]]
= E

[
E
[
|f(t)− E [f(t) |f(tn) + ε(tn)]|2

∣∣∣f(tn) + ε(tn)
]]

= E [V (f(t) |f(tn) + ε(tn))] ,

= E [v̂n(t)] ,

where we used the tower property of conditional expectation in the first step. Now by Def-
inition 1 and since we assumed (ti) to be fixed, v̂n(t) is non-random, and the expectation
can be omitted.

Proposition 12 Suppose that T is separable, K and σ2 are continuous, and (ti) is almost
surely (a.s.) recurrently dense in T . Then

E
[∣∣∣f(t)− f̂n(t; f)

∣∣∣2] −→ 0, t ∈ T,

monotonically as n→∞.

13
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Proof By independence of (ti), ε, and f , we have

E
[∣∣∣f(t)− f̂n(t; f)

∣∣∣2] =

∫
TN

E
[∣∣∣f(t)− f̂n(t; f)

∣∣∣2 ∣∣∣∣ t1 = t′1, . . . , tn = t′n

]
︸ ︷︷ ︸

=:gn(t;(t′i))

P(ti)i∈N
(
d(t′1, . . .)

)
.

Then gn(t; (t′i)) ↓ 0 for all recurrently dense sequences (t′i) by Lemma 11 and Proposition 10,
hence for P(ti)i∈N-almost-all (t′i). Thus, monotone convergence yields

E
[∣∣∣f(t)− f̂n(t)

∣∣∣2] =

∫
TN
gn(t; (ti))P(ti)i∈N(d(t1, . . .)) −→ 0

monotonically as n→∞.

We are now equipped to prove the second part of Theorem 3.

Proposition 13 Let f0 : T → R be a function such that f0 −m lies in the RKHS of K. If
T is separable, K and σ2 are continuous, and (ti) is a.s. recurrently dense in T , then

f̂n(t; f0)
L2

−→ f0(t)

for all t ∈ T .

Proof Let us first consider the case where m ≡ 0. For the scope of this proof, we
will explicitly denote the dependence of f̂n (see Definition 1) on the measurement noise
ε = (ε(i))i∈N by writing f̂n( · ; f, ε).

By Tonelli’s theorem, independence of f , ε, and (ti), and Proposition 12, we have

Ef
[
Eε,(ti)

[∣∣∣f(t)− f̂n(t; f, ε)
∣∣∣2]] = E

[∣∣∣f(t)− f̂n(t; f, ε)
∣∣∣2] −→ 0, (13)

where we used EX [ · ] as shorthand for
∫
· dPX for a random variable X. In other words,

Eε,(ti)
[∣∣∣f(t)− f̂n(t; f, ε)

∣∣∣2] L1

−→ 0.

In particular, every subsequence of (n)n∈N contains an almost surely convergent subse-
quence.

We now use the subsequence criterion to prove that E
[∣∣∣f0(t)− f̂n(t; f0, ε)

∣∣∣2] −→ 0. Let

(l(n))n∈N be a subsequence of (n)n∈N. We choose a subsequence (k(n)) of (l(n)) such that

Eε,(ti)
[∣∣∣f(t)− f̂k(n)(t; f, ε)

∣∣∣2] a.s.−→ 0,

that is,

E
[∣∣∣f1(t)− f̂k(n)(t; f1, ε)

∣∣∣2] −→ 0 for GP(0,K)-a.e. f1 ∈ RT , (14)

14



Consistency of Gaussian Process Regression

say for all f1 ∈ Ω0 ⊂ RT . We now wish to reduce the consistency of the estimator for f0 to

consistency of suitable functions in Ω0. Abbreviating ‖·‖ := ‖·‖L2 =

√
E
[
(·)2
]
, we find, for

any f1 ∈ Ω0,∥∥∥f0(t)− f̂k(n)(t; f0, ε)
∥∥∥ ≤ ∥∥∥f0(t)− f̂k(n)(t; f0, ε) + f1(t)− f̂k(n)(t; f1, ε

′)
∥∥∥

+
∥∥∥f1(t)− f̂k(n)(t; f1, ε

′)
∥∥∥ , (15)

where we introduced ε′ = (ε′(i))i∈N, a noise independent of f and (ti), such that ε, ε′,
and ε + ε′ follow the same distribution. This can be achieved, for example, by choosing
independent vectors(

ε(i)(t)

ε′(i)(t)

)
∼ N

(
0,

(
σ2(t) −σ2(t)/2
−σ2(t)/2 σ2(t)

))
, t ∈ T, i ∈ N.

Then, for all t ∈ T and i ∈ N, ε(i)(t), ε′(i)(t), ε(i)(t) + ε′(i)(t) ∼ N (0, σ2(t)).
By Equation (14), the latter expression in Equation (15) vanishes as n → ∞. For the

former, we note that by Definition 1, Equation (2), and m ≡ 0, the function f̂n(t; · , · ) is
linear in the sum of its arguments. Hence, we can write

f̂k(n)(t; f0, ε) + f̂k(n)(t; f1, ε
′) = f̂k(n)(t; f0 + f1, ε+ ε′), t ∈ T, n ∈ N,

leading to ∥∥∥f0(t)− f̂k(n)(t; f0, ε) + f1(t)− f̂k(n)(t; f1, ε
′)
∥∥∥

=
∥∥∥(f0 + f1)(t)− f̂k(n)(t; f0 + f1, ε+ ε′)

∥∥∥ (16)

=
∥∥∥(f0 + f1)(t)− f̂k(n)(t; f0 + f1, ε)

∥∥∥
for t ∈ T and n ∈ N, where we used that ε + ε′ has the same distribution as ε and is
independent of (ti) in the last step. Plugging Equation (16) back into Equation (15) gives∥∥∥f0(t)− f̂k(n)(t; f0, ε)

∥∥∥ ≤ ∥∥∥(f0 + f1)(t)− f̂k(n)(t; f0 + f1, ε)
∥∥∥

+
∥∥∥f1(t)− f̂k(n)(t; f1, ε)

∥∥∥ . (17)

Glancing back at Equation (14), we conclude that the expressions on the right-hand side of
the above inequality vanish if f0 + f1 ∈ Ω0 and f1 ∈ Ω0, respectively. In order to argue the
existence of such an f1, we need to show that

Ω0 ∩ (Ω0 − f0) 6= ∅,

a sufficient condition for which is that both Ω0 and Ω0 − f0 are one-sets w.r.t. GP(0,K).
The former holds by assumption on Ω0, the latter follows from Proposition A.2, by which
the distributions of f and f + f0 are equivalent and thus have the same one-sets, so

P(f ∈ Ω− f0) = P(f + f0 ∈ Ω0) = Pf+f0(Ω0) = 1.

15
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Now we regard the case of general m. If we denote the estimator we had obtained if
m ≡ 0 by ĝn, then

f̂n(t; f0, ε) = m(t) + ĝn(t; f0 −m, ε), (18)

see Definition 1 and Equation (2). Thus,∥∥∥f0(t)− f̂n(t; f0, ε)
∥∥∥ = ‖f0(t)− (m(t) + ĝn(t; f0 −m, ε))‖

= ‖(f0 −m)(t)− ĝn(t; f0 −m, ε)‖ ,
(19)

which vanishes by what we have already shown, since f0 −m is in the RKHS of K.

This concludes the proof of the second assertion in Theorem 3, and we turn to Theorem 8.
For the remainder of this section, assume that T is separable and σ-compact, K and σ2

are continuous, (ti) is a.s. recurrently dense, f0 and m are continuous and f0 −m is in the
RKHS of K, and J(C, dK) <∞ for every compact C ⊂ T .

Theorem 14 Suppose (ξt)t∈T is a centred GP with kernel k and J(C, dk) < ∞ for every
compact C ⊂ T .

(i) If k is continuous, then there exists a continuous modification ξ̃ of ξ, that is, a con-
tinuous process (ξ̃t)t∈T such that ξt = ξ̃t a.s. for all t ∈ T .

(ii) There is a universal constant c > 0, such that if ξ is continuous, then for any compact
C ⊂ T and any t0 ∈ C,

E
[
sup
t∈C
|ξt − ξt0 |

]
≤ cJ(C, dk).

Proof

(i) Let Ci, i ∈ N, be compact sets such that C1 ⊂ C2 ⊂ . . . and
⋃∞
i=1Ci = T . Then,

for any i ∈ N, a result of Bogachev (1998, Corollary 7.1.4) implies that there exists
a modification ξ̃i = (ξ̃i(t))t∈Ci of ξ

∣∣
Ci

which is continuous w.r.t. dk, hence also w.r.t.

ρ. Indeed, if ρ(sn, s) → 0, then dk(sn, s) → 0 by definition of dk (Equation (6)) and
continuity of k, and thus, ξi(sn)→ ξ(s).

It remains to be shown that the modifications ξ̃i can be “glued” to a single continuous
modification on all of T . For i ∈ N, ξ̃i and ξ̃i+1

∣∣
Ci

are both continuous and modi-

fications of each other, so ξ̃i and ξ̃i+1 almost surely coincide on Ci. By intersecting
countably many sets of full probability, there is a single set of probability one on
which, for every i, j ∈ N, i < j, ξ̃i and ξ̃j coincide on Ci. It is thus well-defined to

put, for t ∈ T , ξ̃(t) := ξ̃i(t) for any i ∈ N with t ∈ Ci, and this yields a continuous
modification ξ̃ = (ξ̃(t))t∈T of ξ.

(ii) This is a variant of a result due to Dudley (1967), stated and proved in this form by
Zhou (2020, Theorem 1.2).
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By Theorem 14 (i), we may choose and fix a modification of f (which we again denote
by f) such that f −m and hence f is continuous. Recall that the kernel of the posterior
GP is kn(·, ·; tn) (see Equations (3) and (5)), which depends only on the sampling points,
and denote by dn := dkn(·,·;tn) for n ∈ N the associated Dudley metric and d0 := dK .

Lemma 15 If (ti) is fixed and recurrently dense, and C ⊂ T is compact, then

J(C, dn+1) ≤ J(C, dn) ≤ J(C, d0)

for all n ∈ N, and J(C, dn) −→ 0 as n→∞.

Proof Fix C ⊂ T . Lemma 9 implies, for s, t ∈ T , n ∈ N0, s := (s, t),

dn+1(s, t)2 = (1,−1)kn+1(s, s; tn+1)

(
1
−1

)
≤ (1,−1)kn(s, s; tn)

(
1
−1

)
= dn(s, t)2.

In particular, any ε-net w.r.t. dn is an ε-net w.r.t. dn+1, so

N(C, ε, dn+1) ≤ N(C, ε, dn) ≤ N(C, ε, d0), n ∈ N, ε > 0, (20)

and thus
J(C, dn+1) ≤ J(C, dn) ≤ J(C, d0) <∞, n ∈ N.

Now take a GP fn ∼ GP(0, kn(·, ·; tn)), so

sup
s,t∈C

dn(s, t)2 = sup
s,t∈C

E
[
(fn(t)− fn(s))2

]
≤ sup

s,t∈C
E
[
2
(
fn(t)2 + fn(s)2

)]
= 2 sup

s,t∈C
(v̂n(t) + v̂n(s)) ≤ 4 sup

t∈C
v̂n(t) =: Dn,

and recall that Dn ↓ 0 by Proposition 10. Hence, if ε > 0 is fixed, then for n ∈ N so large
that Dn ≤ ε, C can be covered in a single ball of dn-radius ε (centred at an arbitrary point),
so logN(C, ε, dn) = log 1 = 0 for all such n ∈ N. Thus, logN(C, ε, dn) −→ 0 as n→∞ for
every ε > 0, so

J(C, dn) =

∫ ∞
0

√
logN(C, ε, dn) dε −→ 0, n→∞,

where we could apply dominated convergence with
√

logN(C, ε, d0) as a dominating inte-
grand by Equation (20) and since

∫∞
0

√
logN(C, ε, d0) dε = J(C, d0) <∞.

The following result replaces Proposition 12 as the central ingredient in the proof of the
first part of Theorem 8.
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Proposition 16 For any compact C ⊂ T ,

E
[
sup
t∈C

∣∣∣f(t)− f̂n(t; f)
∣∣∣] −→ 0.

Proof We may assume m = 0 by the same argument employed in the proof of Proposi-
tion 13 (cf. Equations (18) and (19)), so f is a continuous, centred GP. Consider first the
case where (ti) is non-random. Denote, for n ∈ N, yn := f(tn) + ε(tn), and

fn(t) := f(t)− f̂n(t; f) = f(t)− E [f(t) |yn] , t ∈ T,

where we used Equation (12). Then, fn is a continuous, centred GP (f is continuous, and
so is f̂n(·; f) = K(·, tn)>B(tn, tn)−1yn by continuity of K), and

Cov
(
fn(t), fn(s)

)
= E

[
fn(t)fn(s)

]
= E

[
E
[
fn(t)fn(s)

∣∣yn]]
= E

[
E [f(t)f(s) |yn] + E [f(t) |yn]E [f(s) |yn]

− E
[
f(t)E [f(s) |yn]

∣∣∣yn]︸ ︷︷ ︸
(?)
=E[f(t) |yn]E[f(s) |yn]

−E
[
f(s)E [f(t) |yn]

∣∣∣yn]︸ ︷︷ ︸
(?)
=E[f(s) |yn]E[f(t) |yn]

]

= E
[
E [f(t)f(s) |yn]− E [f(t) |yn]E [f(s) |yn]

]
= E [Cov (f(t), f(s) |yn) | ]
= kn(t, s; tn),

for s, t ∈ T , where we used in (?) that E [f(q) |yn] for q = s, t is measurable w.r.t. yn and
can hence be pulled out of E [· |yn]; and in the final step we used Equation (5) and that (ti)
is non-random. Hence, fn = (fn(t))t∈T is a centred GP with kernel kn(·, ·; tn), so we can
apply Theorem 14 (ii) for some fixed t0 ∈ C to obtain

E
[
sup
t∈C

∣∣fn(t)
∣∣] ≤

≤
√

E[fn(t0)2]=
√
v̂n(t0)︷ ︸︸ ︷

E
[∣∣fn(t0)

∣∣] +E
[
sup
t∈C

∣∣fn(t)− fn(t0)
∣∣]

≤
√
v̂n(t0) + cJ(C, dn)

−→ 0,

(21)

where v̂n(t0) −→ 0 by Proposition 10 and J(C, dn) −→ 0 by Lemma 15. This finishes the
proof for non-random (ti). If (ti) is random and a.s. recurrently dense, then

E
[
sup
t∈C

∣∣fn(t)
∣∣] = E(ti)

[
Ef,ε

[
sup
t∈C

∣∣fn(t)
∣∣]︸ ︷︷ ︸

−→0

]
−→ 0,

by dominated convergence, for the application of which we use that, by Equation (21),

Ef,ε
[
sup
t∈C

∣∣fn(t)
∣∣] ≤√v̂n(t0) + cJ(C, dn) ≤

√
K(t0, t0) + cJ(C, d0),
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where we used that v̂n(t0) = kn(t0, t0; tn) ≤ K(t0, t0) by Lemma 9, and J(C, dn) ≤ J(C, d0)
by Lemma 15. This is a finite bound independent of (ti) and n ∈ N.

Proof of Theorem 8 For the proof of the first assertion, we may assume m = 0 by the
same argument employed in the proof of Proposition 13 (cf. Equations (18) and (19)). Then
f is continuous, hence defines a random element in C(T,R), and by Pf we now denote its
distribution on the Borel σ-algebra of C(T,R)—instead of, as before, the product σ-algebra
on the larger space RT .

We can now essentially copy the proof of Proposition 13, using Proposition 16 in place
of Proposition 12 in Equation (13). That is, we start by writing

Ef
[
Eε,(ti)

[
sup
t∈C

∣∣∣f(t)− f̂n(t; f)
∣∣∣]] = E

[
sup
t∈C

∣∣∣f(t)− f̂n(t; f)
∣∣∣] −→ 0.

In other words, E
[
∆n(C, f)

]
−→ 0, where ∆n(C, g) := E

[
supt∈C

∣∣∣g(t)− f̂n(t; g)
∣∣∣] for g ∈

C(T,R). In particular, for every subsequence (l(n)) of (n)n∈N, there is a subsubsequence
(k(n)) such that ∆k(n)(C, f)

a.s.−→ 0, that is (cf. Equation (14)),

∆k(n)(C, f1) −→ 0 for Pf -a.e. f1 ∈ C(T,R), (22)

say for all f1 ∈ Ω0 ⊂ C(T,R). Here it becomes clear why we must work over C(T,R) instead
of RT : Equation (22) is another way of saying Pf

(
g ∈ C(T,R) : ∆n(C, g) −→ 0

)
= 1; this

would not be possible if we worked over RT , as the event
{
g ∈ RT : ∆n(C, g) −→ 0

}
is

ill-defined. Indeed, the quantity ∆n(C, g) is well-defined for continuous g only because the
supremum inside the expectation can be reduced to a countable one and is thus measurable,
but this is not true for general g ∈ RT .

By copying the arguments leading from Equation (14) to Equation (17), we obtain that,
for any f1 ∈ Ω0,

E
[
sup
t∈C

∣∣∣f0(t)− f̂k(n)(t; f0, ε)
∣∣∣] ≤ E

[
sup
t∈C

∣∣∣(f0 + f1)(t)− f̂k(n)(t; f0 + f1, ε)
∣∣∣]

+ E
[
sup
t∈C

∣∣∣f1(t)− f̂k(n)(t; f1, ε)
∣∣∣] .

This converges to zero if we can find f1 ∈ Ω0 that also satisfies f1 + f0 ∈ Ω0, that is,
f1 ∈ Ω0 ∩ (Ω0 − f0). By Proposition A.3 and because f0 is continuous, Ω0 is also a one-set
w.r.t. Pf+f0 , so Pf (Ω0−f0) = Pf+f0(Ω0) = 1, so both Ω0 and Ω0−f0 and thus Ω0∩(Ω0−f0)
are one-sets w.r.t Pf . In particular, the latter set is non-empty and we find the desired f1,
which finishes the proof of the first part.

We now turn to the second assertion, for which we drop our assumption m = 0. It
will be convenient to define a metric on C(T,R) that induces the correct topology, since it
will give us a concrete description of open neighbourhoods of f0. One such metric can be
obtained by taking compact sets C1 ⊂ C2 ⊂ . . . with

⋃∞
i=1Ci = T (recall that T is σ-finite)

and putting

d(x, y) :=
∞∑
i=1

2−i
(

1 ∧ sup
t∈Ci
|x(t)− y(t)|

)
, x, y ∈ C(T,R),
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where a∧ b = min(a, b). Indeed, one easily checks that d is a metric, and that d(xn, x)→ 0
iff xn → x uniformly on Ci for all i ∈ N, iff xn → x uniformly on every compact set. Denote
by Πn = GP(f̂n(·; f0), kn(·, ·; tn)) the distribution of the posterior GP, and let gn ∼ Πn,
defined on some probability space (F,F , Q). It is important to note here that we have two
nested probability spaces: First there are random realizations of the sampling noise ε and
points (ti), governed by the probability space (Ω,A,P). Then, for fixed ω ∈ Ω (that is, for
fixed ε and (ti)), the posterior GP is itself a random distribution Πn on RT that depends on
ω. To clarify the distinction, we will use Q and EQ to denote probabilities and expectation
w.r.t. the posterior GP for fixed ε and (ti).

Put gn := gn−f̂n(·; t0)
Q∼ GP(0, kn(·, ·; tn)), so that by Theorem 14, and since J(C, dn) ≤

J(C, d0) < ∞ by Lemma 15, we may choose gn such that gn takes values in C(T,R), and
hence also gn, because f̂n(·; t0) is continuous by definition and continuity of m and K.

It now suffices to show that, for fixed but arbitrary δ > 0, Πn(B(f0, δ)) = Q(d(gn, f0) <

δ)
L1

−→ 1. Let i0 ∈ N such that
∑

i>i0
2−i < δ/2, so that d(gn, f0) < δ is implied by∑i0

i=1 2−i
(
1 ∧ supt∈Ci |gn(t)− f0(t)|

)
< δ/2, which is implied by supt∈Ci0

|gn(t)− f0(t)| <
δ/2. Put C := Ci0 . Then,

sup
t∈C
|gn(t)− f0(t)| ≤ sup

t∈C
|gn(t)|+ sup

t∈C

∣∣∣f̂n(t; f0)− f0(t)
∣∣∣ ,

and hence

Q (d(gn, f0) ≥ δ) ≤ Q
(

sup
t∈C
|gn(t)− f0(t)| ≥ δ/2

)
≤ Q

(
sup
t∈C
|gn(t)| ≥ δ/4

)
+ 1

{
sup
t∈C

∣∣∣f̂n(t; f0)− f0(t)
∣∣∣ ≥ δ/4}︸ ︷︷ ︸

≤ 4
δ

supt∈C |f̂n(t;f0)−f0(t)|

. (23)

Since gn = gn− f̂n(·; f0)
Q∼ GP(0, kn(·, ·; tn)), we may apply Theorem 14 (ii) and Lemma 15

to obtain, for some fixed t0 ∈ C,

Q

(
sup
t∈C
|gn(t)| ≥ δ/4

)
≤ 4

δ
EQ
[
sup
t∈C
|gn(t)|

]
≤ 4

δ

(
EQ [|ĝn(t0)|] + EQ

[
sup
t∈C
|gn(t)− gn(t0)|

])
≤ 4

δ

(√
v̂n(t0) + cJ(C, dn)

)
,

(24)

where we used that EQ [|gn(t0)|] ≤
√
EQ [gn(t0)2] =

√
V(gn(t0)) =

√
v̂n(t0). Combining

Equations (23) and (24), we conclude that

E [Πn(B(f0, δ))
c] = E [Q (d(gn, f0) ≥ δ)]

≤ 4

δ

(
E
[√

v̂n(t0)
]

+ cE [J(C, dn)] + E
[
sup
t∈C

∣∣∣f̂n(t; f0)− f0(t)
∣∣∣]) −→ 0,
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where the first term goes to zero by Proposition 10 and monotone convergence, the second
by Lemma 15 and dominated convergence (where J(C, dn) is dominated by J(C, d0) <∞),
and the third by the first part of Theorem 8, which has already been proven.

We close with proofs of Propositions 4 and 7.
Proof of Proposition 4

(i) If T has no isolated points, then definitions of recurrently dense and dense obviously
coincide. Now suppose T is connected and (sn) is a dense sequence. If T = {t} is a
singleton, then t is an isolated point and sn = t for all n ∈ N, so (sn) is recurrently
dense. Otherwise, T cannot have isolated points. Indeed, that would imply that {t}
is open for some t ∈ T , but then T = {t} ∪ (T \ {t}) would be the disjoint union of
two non-empty open sets.

(ii) Since T is separable, its topology admits a countable base {Oj : j ∈ N}. We have to
show that almost surely, every Oj contains infinitely many ti. Let O ∈ {Oj : j ∈ N}
fix and set

Ai := {ti ∈ O} , i ∈ N,
A := lim sup

i→∞
Ai = {ti ∈ O for infinitely many i ∈ N} .

We have to show P(A) = 1, for which we employ the Borel–Cantelli lemma. Clearly,
the events Ai, i ∈ N, are independent, hence it remains to verify that the sequence
(P(Ai)) is not summable. This is obvious, however, since

P(Ai) = P(ti ∈ O) = P(t1 ∈ O) =: p > 0

for all i ∈ N by assumption and thus
∑∞

i=1 P(Ai) =
∑∞

i=1 p =∞. Since there are only
countably many Oj , we conclude

P (∃j ∈ N : |{ti : i ∈ N} ∩Oj | <∞) ≤
∞∑
j=1

P (|{ti : i ∈ N} ∩Oj | <∞)︸ ︷︷ ︸
=0

= 0.

Proof of Proposition 7 Recall Definition B.1, and fix any d ∈ (dimC,∞). Then, there
is an ε0 > 0 such that logN(C, ε, ρ)/(− log ε) ≤ d and thus N(C, ε, ρ) ≤ ε−d for all ε < ε0.

By assumption, K is locally Lipschitz and hence Lipschitz on C, so there is a c > 0 such
that, for s, t ∈ C,

dK(s, t)2 ≤ |K(t, t)−K(t, s)|+ |K(t, s)−K(s, s)| ≤ cρ(t, s).

This implies that

N(C, ε, dK) ≤ N(C,
√
ε/c, ρ) ≤ (

√
ε/c)−d = c′ε−d/2

for any ε ∈ (0, ε0), so logN(C, ε, dK) = O
(
log
(
ε−1
))

for small ε > 0. Since convergence of
the Dudley integral is determined by its convergence at zero (Bogachev, 1998, p. 334), this
implies J(C, dK) <∞.
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7. Conclusion and Outlook

In this paper, we made a crucial first step towards the theoretical legitimization of using GP
regression on non-Euclidean manifolds and other metric domain spaces, as has already been
done by various authors. However, for all of our results to be applicable, one must verify
that the difference between the unknown function and the GP prior’s mean is (expected to
be) in the RKHS of the prior’s kernel. This may be challenging because explicit descriptions
of RKHSes are available only for few kernels, such as the Laplacian kernel (Berlinet and
Thomas-Agnan, 2011). Hence, further research into RKHSes of common kernels is desirable,
especially in the context of metric domain spaces. A first step would be to examine popular
stationary kernels with known RKHS on R when defined over a metric space by replacing the
absolute difference with the metric. Another approach to this problem was suggested by Shi
and Choi (2011), who used a parameterized exponential kernel and assigned a prior to the
parameter. This way, the kernel was not fixed, and they could circumvent the assumption
that the unknown function must be contained in a specific RKHS. It appears plausible
that a similar approach could be used in more general settings, and further research in
this direction may be fruitful. Lastly, it seems reasonable to conjecture that the result
presented here can be generalized to apply whenever the unknown function is contained in
the support of the GP prior, of which the RKHS is a dense subset. If this is not true, it
would be interesting to characterize or bound the error of the posterior mean in that case.

While we considered (possibly random) sampling sequences in this paper, we assumed
the positions to be precisely known to the observer. Another potential area of future research
is to investigate whether it is possible to adapt the model to account for uncertainties in the
sampling points (as has been suggested by Dallaire et al., 2009) and inspect if the presented
results remain true in that setting.

Another assumption we made is that the variance of the measurement noise is known. In
many practical applications, the variance is not known accurately, motivating the question
whether the presented result remains valid in the case where the assumed variance of the
noise differs from its true variance.

Finally, this work aimed to establish asymptotic consistency of GP regression under
as weak as possible assumptions on the observed function and the GP prior, allowing us
to provide results for a large class of domains and kernels. Future work may examine
additional assumptions necessary to prove more specific results on error bounds and rates
of convergence.

Appendix A. Reproducing Kernel Hilbert Spaces

Here, we introduce the notion of the reproducing kernel Hilbert space (RKHS) of a kernel,
which is a special case of the more general concept of a Cameron–Martin space. As is
covered in detail by a work of Bogachev (1998), the Cameron–Martin space is a Hilbert space
associated with a Gaussian measure, which is a generalization of a Gaussian distribution to
locally convex topological vector spaces. As we will see shortly, a GP defines a Gaussian
measure on RT , and the arising Cameron–Martin space is then called the RKHS of the GP’s
kernel.
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We briefly introduce the notion of a Gaussian measure as it is considered by Bogachev
(1998). A topological vector space is a real vector space, endowed with a topology with
respect to which scalar multiplication and addition are continuous. It is called locally
convex if every neighbourhood of zero contains a convex neighbourhood of zero. If X is
a locally convex topological vector space, then E(X) denotes the σ-algebra generated by
cylinders, which are sets of the form

{x ∈ X : (`1(x), . . . , `n(x)) ∈ B} ⊂ X,

where n ∈ N, `1, . . . , `n ∈ X?, and B ∈ B(Rn). Here, X? denotes the topological dual space
of X, which consists of all continuous linear functionals on X. A Gaussian measure on X
is a probability measure γ defined on E(X) such that γ ◦ `−1 is a Gaussian distribution in
R for every ` ∈ X?.

We now show that a GP f on T defines a Gaussian measure on RT in the above sense.
It is elementary to confirm that RT (endowed with the product topology) is a locally convex
topological vector space. Furthermore, it is known that the dual space of RT consists of
functionals of the form

` =
n∑
i=1

aiπti , n ∈ N, a1, . . . , an ∈ R, t1, . . . , tn ∈ T,

where πt : RT → R for t ∈ T denotes the projection map f 7→ f(t). Hence, E(RT ) is
the σ-algebra generated by the projection maps πt for t ∈ T , with respect to which f is
measurable by assumption. The distribution of f thus defines a probability measure on
E(RT ). Now if ` =

∑n
i=1 aiπti ∈ (RT )? for some n ∈ N, a1, . . . , an ∈ R, and t1, . . . , tn ∈ T ,

then

`(f) =
n∑
i=1

aiπti(f) =
n∑
i=1

aif(ti),

which follows a Gaussian distribution, since (f(t1), . . . , f(tn)) does by assumption on f .
We have shown that the distribution of a GP defines a Gaussian measure in the sense in-

troduced above. Thus, we may apply the concept of a Cameron–Martin space as introduced
by Bogachev (1998, p. 44) to this setting, resulting in the following definition.

Definition A.1 Let K : T×T → R be symmetric and positive definite. Then the Cameron–
Martin space of GP(0,K), also called the reproducing kernel Hilbert space (RKHS) of K,
is given by

H := {x : T → R : ‖x‖H <∞} ,

‖x‖H := sup
{
〈a, x(t)〉 : n ∈ N,a ∈ Rn, t ∈ Tn,a>K(t, t)a ≤ 1

}
, x ∈ RT .

There exists a scalar product 〈·, ·〉H that induces ‖·‖H , equipped with which H becomes a
Hilbert space.

Recall that two probability measures are called equivalent if they are absolutely contin-
uous with respect to each other, that is, if they have the same sets of measure zero. Two
random variables are called equivalent (in distribution) if their distributions are equivalent.
One remarkable property of the RKHS is given by the following proposition.
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Proposition A.2 Let H be the RKHS associated with a kernel K. If g ∈ H and f ∼
GP(0,K), then the distributions of f and f + g on E(RT ) are equivalent.

Proof Follows from a result of Bogachev (1998, Cor. 2.4.3).

Proposition A.3 Suppose that T is σ-compact and equipped with the topology of uniform
convergence on compacts, and let H be the RKHS associated with a kernel K. If g ∈
H ∩ C(T,R), and f ∼ GP(0,K) takes values in C(T,R), then the distributions of f and
f + g on the Borel σ-algebra B(C(T,R)) of C(T,R) are equivalent.

Proof Abbreviate C := C(T,R) for this proof, and denote by P and Q the distributions
of f and f + g on E := E(RT ), respectively, which are equivalent by Proposition A.2. It is
a standard fact that B(C) = E ∩C. Hence, if A ∈ B(C) is such that Pf (A) = 0, then there
is an Ã ∈ E with Ã ∩ C = A, so

P (Ã) = P(f ∈ Ã)
(?)
= P(f ∈ Ã ∩ C) = P(f ∈ A) = Pf (A) = 0, (25)

where we used in (?) that f takes values in C. This implies that Q(Ã) = 0, and by
the same argument (for which we need that f + g takes values in C by continuity of g),
Pf+g(A) = Q(Ã) = 0. This shows that Pf+g is absolutely continuous w.r.t. Pf , and the
converse follows the same way.

Appendix B. Minkowski Dimension

We give a brief introduction to Minkowski dimension, which is also known as Kolmogorov
or upper box counting dimension.

Definition B.1 Let C ⊂ T be compact. For ε > 0, denote by N(C, ε) := N(C, ε, ρ) ∈ N the
minimal number of balls with radius ε required to cover C. Then the Minkowski dimension
of C is

dimC := lim
ε→0

logN(C, ε)

− log ε
. (26)

Loosely speaking, dimC = d means that N(C, ε) ≈ ε−d. Note that this notion only
makes sense if N(C, ε) <∞ for all ε > 0, which is why it is only defined for compact sets.
However, this can naturally be extended by putting

dimT := sup {dimC : C ⊂ T is compact} , (27)

which is consistent with Equation (26) if T itself is compact. It is an easy fact that dimRd =
d for all d ∈ N, and in fact for any reasonably nice space this notion coincides with other
definitions of dimension and takes the value one would expect. We make this a bit more
explicit in the case of manifolds.
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Lemma B.2 If T is a connected Riemannian n-manifold and ρ the geodesic distance, then
dimT = n.

Proof By Equation (27), we may assume that T is compact. In that case, T is Ahlfor’s
n-regular (Tholozan, 2021), that is, there exists a Borel measure ν on T and constants
c1, c2 > 0 such that c1r

n ≤ ν(B(x, r)) ≤ c2r
n for all x ∈ E and r ∈ (0, r0], where r0

is the diameter of T . Let ε > 0, and (B(xi, ε/2))mi=1 be a family of minimal size among
all collections of disjoint balls with radius ε. Then, (B(xi, ε))

m
i=1 covers T (assuming the

opposite would contradict minimality), and

c2r
n
0 ≥ ν(T ) ≥

m∑
i=1

ν(B(xi, ε/2)) ≥ m · c1(ε/2)n,

so N(T, ε) ≤ m ≤ c3ε
−n with c3 = c2(2r0)n, and hence

dimT = lim
ε→0

logN(T, ε)

− log ε
≤ lim

ε→0

(
n+

log c3

− log ε

)
= n.

The lower bound follows by a similar argument and is of less relevance to us, so we omit it.

Lemma B.3 If T is a manifold, then it can be metrized in a way that dimT <∞.

Proof Again, we may assume that T is compact. By a theorem due to Hurewicz and
Wallman (2015), T is homeomorphic to a compact subset E of R2n+1, where n ∈ N
denotes the covering dimension of T . If φ : T → E denotes the homeomorphism, then
ρ(s, t) := |φ(t)− φ(s)| for s, t ∈ T defines a metric on T which induces the correct topology
(since φ is a homeomorphism). Since φ is now an isometry between the metric spaces (T, ρ)
and (E, |· − ·|), the Minkowski dimension of T is the same as that of E, in particular no
more than 2n+ 1.
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