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Abstract

The rapid development of high-throughput technologies has enabled the generation of data
from biological or disease processes that span multiple layers, like genomic, proteomic
or metabolomic data, and further pertain to multiple sources, like disease subtypes or
experimental conditions. In this work, we propose a general statistical framework based on
Gaussian graphical models for horizontal (i.e. across conditions or subtypes) and vertical
(i.e. across different layers containing data on molecular compartments) integration of
information in such datasets. We start with decomposing the multi-layer problem into a
series of two-layer problems. For each two-layer problem, we model the outcomes at a node
in the lower layer as dependent on those of other nodes in that layer, as well as all nodes
in the upper layer. We use a combination of neighborhood selection and group-penalized
regression to obtain sparse estimates of all model parameters. Following this, we develop
a debiasing technique and asymptotic distributions of inter-layer directed edge weights
that utilize already computed neighborhood selection coefficients for nodes in the upper
layer. Subsequently, we establish global and simultaneous testing procedures for these edge
weights. Performance of the proposed methodology is evaluated on synthetic and real data.

Keywords: Data integration; Gaussian Graphical Models; neighborhood selection; group
lasso; high-dimensional asymptotics; multiple testing; false discovery rate

1. Introduction

Aberrations in complex biological systems develop in the background of diverse genetic and
environmental factors and are associated with multiple complex molecular events. These
include changes in the genome, transcriptome, proteome and metabolome, as well as epige-
netic effects. Advances in high-throughput profiling techniques have enabled a systematic
and comprehensive exploration of the genetic and epigenetic basis of various diseases, in-

∗. Currently in Splunk.
†. Corresponding Author. Post Address: 205 Griffin Floyd Hall, 1 University Ave, Gainesville, FL, 32611.

c©2022 Subhabrata Majumdar and George Michailidis.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v23/18-131.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v23/18-131.html


Majumdar and Michailidis

Layer X

Layer Y

Layer Z

k = 1 k = 2 k = 3

X1

Y1

Z1

X2

Y2

Z2

X3

Y3

Z3

Figure 1: Multiple multilayer graphical models. The matrices (Xk,Yk,Zk), k = 1, 2, 3 indicate data
for each layer and category k. Within-layer connections (black lines) are undirected, while between-
layer connections (red lines) go from an upper layer to the successive lower layer. For each type of
edges (i.e. within X ,Y,Z and X → Y,Y → Z), there are common edges across some or all k.

cluding cancer (Lee et al., 2016; Kaushik et al., 2016), diabetes (Yuan et al., 2014; Sas et al.,
2018), chronic kidney disease (Atzler et al., 2014), etc. Further, such multi-Omics collec-
tions have become available for patients belonging to different, but related disease subtypes,
with The Cancer Genome Atlas (TCGA: Tomczak et al. (2015)) being a prototypical one.
Hence, there is an increasing need for models that can integrate such complex data both
vertically across multiple modalities and horizontally across different disease subtypes.

Figure 1 provides a schematic representation of the horizontal and vertical structure of
such heterogeneous multi-modal Omics data as outlined above. A simultaneous analysis of
all components in this complex layered structure has been coined in the literature as data
integration. While it is common knowledge that this will result in a more comprehensive
picture of the regulatory mechanisms behind diseases, phenotypes and biological processes in
general, there is a dearth of rigorous methodologies that satisfactorily tackle all challenges
that stem from attempts to perform data integration (Joyce and Palsson, 2006; Gomez-
Cabrero et al., 2014; Gligorijević and Pržulj, 2015). A review of the present approaches
towards achieving this goal, which are based mostly on specific case studies, can be found
in Gligorijević and Pržulj (2015) and Zhang et al. (2017).

Contributions of this paper are two-fold. Firstly, we propose an integrative framework
to conduct simultaneous inference for all parameters in multiple and multi-layer graphical
models, essentially formalizing the structure in Figure 1. We decompose the multi-layer
problem into a series of two-layer problems, propose an estimation algorithm for them based
on group penalization, and derive theoretical properties of the estimators. Generalizing to
group structures on the model parameters allows us to incorporate prior information, as and
when available, on within-layer or between-layer sub-graph components shared across some
or all k = 1, · · · ,K. For biological processes, such information can stem from experimental
or mechanistic knowledge (for example a pathway-based grouping of genes). Secondly,
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we obtain debiased versions of within-layer regression coefficients in this two-layer model,
and derive their asymptotic distributions using estimates of model parameters that satisfy
generic convergence guarantees. Subsequently, we formulate a global test, as well as a
simultaneous testing procedure that controls for False Discovery Rate (FDR) to detect
important pairwise differences among directed edges between layers.

The novel techniques developed are based on a small number of technical assump-
tions that are quite general. For example, the model quantities used in our global test-
ing procedure do not necessarily need to be sparse, and instead are only required to have
O(
√

parameter dimension/n) finite sample error bounds that have become standard in the
high-dimensional literature (for example see Loh and Wainwright (2012); Basu and Michai-
lidis (2015); Basu et al. (2019)). The advantage of this fiexibility is that components can
be switched out to adapt the framework to other technical assumptions. The optional
group sparsity assumptions in our estimation technique can be replaced by other structural
restrictions (or no restrictions), for example low-rank or low-rank-plus-sparse, as deemed
appropriate by the prior dependency assumptions across parameters. As long as these re-
sulting estimates converge to the true parameters at the specified finite-sample rates, they
can be used by the developed testing methodology.

Related work Gaussian Graphical Models (GGM) have been extensively used to model
biological networks in the last few years. While the initial work on GGMs focused on esti-
mating undirected edges within a single network through obtaining sparse estimates of the
inverse covariance matrix from high-dimensional data (e.g. see references in Bühlmann and
van de Geer (2011)), attention has shifted to estimating parameters from more complex
structures. This includes (1) analyzing multiple related but not identical graphical mod-
els simultaneously, and (2) stacking up more multiple graphical models to form hierarchical
multilayer networks, with both directed and undirected edges. For the first class of problems,
Guo et al. (2011) and Xie et al. (2016) assumed perturbations over a common underlying
structure to model multiple precision matrices, while Danaher et al. (2014) proposed using
fused/group lasso type penalties for the same task. To incorporate prior information on
the group structures across several graphs, Ma and Michailidis (2016) proposed the Joint
Structural Estimation Method (JSEM), which uses group-penalized neighborhood regres-
sion and subsequent refitting for estimating precision matrices. For the second problem, a
two-layered structure can be modeled by interpreting directed edges between the two layers
as elements of a multitask regression coefficient matrix, while undirected edges inside either
layer correspond to the precision matrix of predictors in that layer. While several methods
exist in the literature for joint estimation of both sets of parameters (Lee and Liu, 2012; Cai
et al., 2012a), only recently Lin et al. (2016a) made the observation that a multi-layer model
can, in fact, be decomposed into a series of two-layer problems. Subsequently, they proposed
an estimation algorithm and derived theoretical properties of the resulting estimators.

All the above approaches focus either on the horizontal or the vertical dimensions of the
full hierarchical structure depicted in Figure 1. Hence, multiple related groups of heteroge-
neous data sets have to be modeled by analyzing all data in individual layers (i.e. models
for {Xk}, {Yk}, {Zk}), and then separately analyzing individual hierarchies of datasets (i.e.
separate models for (Xk,Yk,Zk), k = 1, 2, 3). In another line of work, Kling et al. (2015);
Zhang et al. (2017) model all undirected edges within all nodes together using penalized
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log-likelihoods. The advantage of this approach is that it can incorporate feedback loops
and connections between nodes in non-adjacent layers. However, it has two considerable
caveats. Firstly, it does not distinguish between hierarchies, hence delineating the direction
of a connection between two nodes across two different Omics modalities is not possible
in such models. Secondly, computation becomes difficult when data from different Omics
modalities are considered, since the number of estimable parameters increases at a faster
late compared to a hierarchical model.

While there has been some progress for parameter estimation in multilayer models,
little is known about the sampling distributions of resulting estimates. Current research
on such distributions and related testing procedures for estimates from high-dimensional
problems has been limited to single-response regression using lasso (Zhang and Zhang,
2014; Javanmard and Montanari, 2014, 2018; van de Geer et al., 2014) or group lasso
(Mitra and Zhang, 2016) penalties, and partial correlations of single (Cai and Liu, 2016) or
multiple (Belilovsky et al., 2016; Liu, 2017) GGMs. From a systemic perspective, testing and
identifying downstream interactions that differ across experimental conditions or disease
subtypes can offer important insights on the underlying biological process (Mao et al.,
2017; Li et al., 2015). In our proposed integrative framework, this can be accomplished by
developing a hypothesis testing procedure for entries in the within-layer regression matrices.

Organization of paper We start with the model formulation in Section 2, then intro-
duce our computational algorithm for a two-layer model, and derive theoretical convergence
properties of the algorithm and resulting estimates. In section 3, we start by introducing
the debiased versions of rows of the regression coefficient matrix estimates in our model,
then use already computed parameter estimates that satisfy some general consistency con-
ditions to obtain its asymptotic distribution. We then move on to pairwise testing, and use
sparse estimates from our algorithm to propose a global test to detect overall differences in
rows of the coefficient matrices, as well as a multiple testing procedure to detect element-
wise differences and perform within-row thresholding of estimates in presence of moderate
misspecification of the group sparsity structure. Sections 4 and 5 are devoted to implemen-
tation of our methodology. In Section 4, we evaluate the performance of our estimation and
testing procedure through several simulation settings, and give strategies to speed up the
computational algorithm for high data dimensions. Section 6 presents a real data example,
where we illustrate how the application of our framework leads to knowledge discovery in
complex biological networks. We conclude the paper with a discussion in Section 5. Proofs
of all theoretical results, as well as some auxiliary results, are given in the Appendix.

Notation We denote scalars by small letters, vectors by bold small letters and matrices
by bold capital letters. For any matrix A, (A)ij denote its element in the (i, j) th position.
For a, b ∈ N, we denote the set of all a × b real matrices by M(a, b). For a positive
semi-definite matrix P, we denote its smallest and largest eigenvalues by Λmin(P) and
Λmax(P), respectively. For any positive integer c, define Ic = {1, . . . , c}. For vectors v and
matrices M, ‖v‖, ‖v‖1 or ‖M‖1 and ‖v‖∞ or ‖M‖∞ denote euclidean, `1 and `∞ norms,
respectively. The notation supp(A) indicates the non-zero edge set in a matrix (or vector)
A, i.e. supp(A) = {(i, j) : (A)ij 6= 0}. For any set S, |S| denotes the number of elements in
that set. For positive real numbers A,B we write A % B if there exists c > 0 independent
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of model parameters such that A ≥ cB. We use the ‘:=’ notation to define a quantity for
the first time.

2. The Joint Multiple Multilevel Estimation Framework

2.1 Formulation

Suppose there are K independent data sets, each pertaining to an M -layered Gaussian
Graphical Model (GGM) that has pm nodes in the m-th layer (1 ≤ m ≤M). The k

th
model

has the following structure:

Layer 1- Dk1 = (Dk
11, . . . , D

k
1p1

) ∼ N (0,Σk
1); k ∈ IK ,

Layer m (1 < m ≤M)- Dkm = Dkm−1B
k
m + Ekm, with Bk

m ∈M(pm−1, pm)
and Ekm = (Ekm1, . . . , E

k
mpm) ∼ N (0,Σk

m); k ∈ IK .

In addition, information is available on horizontal (across k) or vertical (across m) de-
pendencies among nodes within a layer or between nodes of adjacent layers. These are
represented by known structured sparsity (i.e. grouping) patterns, denoted by Gm and Hm,
for the parameters of interest in the above model, i.e. the precision matrices Ωk

m := (Σk
m)−1

and the regression coefficient matrices Bk
m. Our goal is to leverage this side-information to

estimate the full hierarchical structure of the network- specifically to obtain the undirected
edges for the nodes inside a single layer, and the directed edges between two successive
layers through jointly estimating {Ωk

m} and {Bk
m}.

Next, consider a two-layer model, which is a special case of the above model with M = 2:

Xk = (Xk
1 , . . . , X

k
p )T ∼ N (0,Σk

x); (1)

Yk = XkBk + Ek; Ek = (Ek1 , . . . , E
k
p )T ∼ N (0,Σk

y); (2)

Bk ∈M(p, q), Ωk
x = (Σk

x)−1; Ωk
y = (Σk

y)
−1; (3)

wherein we want to estimate {(Ωk
x,Ω

k
y ,B

k); k ∈ IK} from data Zk = {(Yk,Xk); Yk ∈
M(n, q),Xk ∈ M(n, p), k ∈ IK} in presence of known grouping structures Gx,Gy,H respec-
tively and assuming nk = n for all k ∈ IK for simplicity. We focus the theoretical discussion
in the remainder of the paper on jointly estimating Ωy := {Ωk

y} and B := {Bk}. This is

because for M > 2, within-layer undirected edges of any mth layer (m > 1) and between-
layer directed edges from the (m − 1)th layer to the mth layer can be estimated from the
corresponding data matrices in a similar fashion (see details in Lin et al. (2016a)). On the
other hand, parameters in the very first layer are analogous to Ωx := {Ωk

x}, and can be
estimated from {Xk} using any method for joint estimation of multiple graphical models
(e.g. Guo et al. (2011); Ma and Michailidis (2016)). This provides all building blocks for
recovering the full hierarchical structure of our M -layered multiple GGMs.

2.2 Algorithm

We assume an element-wise group sparsity pattern over k for the precision matrices Ωk
x:

Gx = {Gii′x : i 6= i′; i, i′ ∈ Ip},
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Figure 2: Shared sparsity patterns for four 10×10 precision matrices. for elements Gx,ii′ in the upper
5×5 block, matrices (1,2) and (3,4) have the same non-zero support, i.e. Gx,ii′ = {(1, 2), (3, 4)}. On
the other hand, when i, i′ are in the lower block, Gx,ii′ = {(1, 3), (2, 4)}

where each Gii′x is a partition of IK , and consists of non-overlapping index groups g such
that g ⊆ IK ,∪g∈Gii′x

g = IK . First introduced in Ma and Michailidis (2016), this formulation
helps incorporate group structures that are common across some of the precision matrices
being modeled. Figure 2 illustrates this through a small example. Subsequently, we use
the Joint Structural Estimation Method (JSEM, Ma and Michailidis (2016)) to estimate
Ωx, which first uses the group structure given by Gx in penalized nodewise regressions
(Meinshausen and Bühlmann, 2006) to obtain neighborhood coefficients ζi = (ζ1

i , . . . , ζ
K
i )

of each variable Xi, i ∈ Ip, then fits a maximum likelihood model over the combined support
sets to obtain sparse estimates of the precision matrices:

ζ̂i = arg min
ζi

 1

n

K∑
k=1

‖Xk
i −Xk

−iζ
k
i ‖2 +

∑
i′≤i

∑
g∈Gii′x

ηn‖ζ[g]
ii′‖

 ,

Êkx = {(i, i′) : 1 ≤ i < i′ ≤ p, ζ̂kii′ 6= 0 OR ζ̂ki′i 6= 0},
Ω̂k
x = arg min

Ωk
x∈S+(Êk

x)

{
Tr(ŜkxΩk

x)− log det(Ωk
x)
}
. (4)

where Ŝkx := (Xk)TXk/n, ηn is a tuning parameter, and S+(Êkx) is the set of positive-definite
matrices that have non-zero supports restricted to Êkx .

For the precision matrices Ωk
y , we assume an element-wise sparsity pattern Gy defined in

a similar manner as Gx. The sparsity structureH for B is more general, each non-overlapping
group h ∈ H being defined as:

h = {(Sp,Sq,SK) : Sp ⊆ Ip,Sq ⊆ Iq,SK ⊆ IK};
⋃
h∈H

h = Ip × Iq × IK .

In other words, any arbitrary partition of Ip × Iq × IK can be specified as the sparsity
pattern of B.

Denote the neighborhood coefficients of the j
th

variable in the lower layer by θkj , and

Θj := (θ1
j , . . . ,θ

K
j ),Θ = {Θj}. We obtain sparse estimates of B,Θ, and subsequently Ωy,

by solving the following group-penalized least square minimization problem that has the
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tuning parameters γn and λn and then refitting:

{B̂, Θ̂} = arg min
B,Θ

 1

n

q∑
j=1

K∑
k=1

‖Yk
j − (Yk

−j −XkBk
−j)θ

k
j −XkBk

j ‖2

+
∑
j 6=j′

∑
g∈Gjj

′
y

γn‖θ[g]
jj′‖+

∑
h∈H

λn‖B[h]‖

 , (5)

Êky = {(j, j′) : 1 ≤ j < j′ ≤ q, θ̂kjj′ 6= 0 OR θ̂kj′j 6= 0},
Ω̂k
y = arg min

Ωk
y∈S+(Êk

y )

{
Tr(ŜkyΩ

k
y)− log det(Ωk

y)
}
. (6)

The outcome of a node in the lower layer is thus modeled using all other nodes in that layer
using the neighborhood coefficients B̂k

j , and nodes in the immediate upper layer using the

regression coefficients θ̂
k

j .

Remark 1 Common sparsity structures across the same layer are incorporated into the

regression by the group penalties over the element-wise groups θ
[g]
jj′, while sparsity pattern

overlaps across the different regression matrices Bk are handled by the group penalties over
B[h], which denote the collection of elements in B that are in h. Other kinds of structural
assumptions on B or Θ can be handled within the above structure by swapping out the group
norms in favor of other appropriate norm-based penalties.

Remark 2 Group sparsity assumptions are not necessary for the JMMLE framework: rather,
they help leverage additional information regarding interaction of features in and between
the layers in many applications, as and when that information is available. In the vertical
direction of the model, i.e. given a fixed k, a framework agnostic of any structural depen-
dency assumptions amounts to element-wise groups in Bk and Ωk

y. In JMMLE, this occurs
by construction for Θ, and since H consists of all possible partitions of Ip×Iq×IK , it covers
the case of element-wise groups as well. On the other hand, the absence of any horizontal
(i.e. across k) dependency simply decomposes the problems (5) and (6) into K independent
sub-problems that can be solved separately either by setting K = 1 in our framework or by
using existing methods, such as Lin et al. (2016a). The proposed framework provides signfi-
cant more generality and aims at tight vertical and horizontal integration based on available
prior information.

2.2.1 Alternating Block Algorithm

The objective function in (5) is bi-convex, i.e. convex in B for fixed Θ, and vice-versa, but
not jointly convex in {B,Θ}. Consequently, we use an alternating iterative algorithm to
solve for {B,Θ} that minimizes (5) by iteratively cycling between B and Θ, i.e. holding one
set of parameters fixed and solving for the other, then alternating until convergence.

Choice of initial values plays a crucial role in the performance of this algorithm as
discussed in detail in Lin et al. (2016a). We choose the initial values {B̂k(0)} by fitting

7



Majumdar and Michailidis

separate lasso regression models for each j and k:

B̂
k(0)
j = arg min

Bk
j∈Rp

‖Yk
j −XkBk

j ‖2 + λn‖Bk
j ‖1; j ∈ Iq, k ∈ IK . (7)

We obtain initial estimates of Θj , j ∈ Iq by performing group-penalized nodewise re-

gression on the residuals Êk(0) := Yk −XkB̂
k(0)
j :

Θ̂
(0)
j = arg min

Θj

1

n

K∑
k=1

‖Êk(0)
j − Ê

k(0)
−j θkj ‖2 + γn

∑
j 6=j′

∑
g∈Gjj

′
y

‖θ[g]
jj′‖. (8)

The steps of our full estimation procedure, coined as the Joint Multiple Multi-Layer
Estimation (JMMLE) method, are summarized in Algorithm 1.

Algorithm 1 (The JMMLE Algorithm)
1. Initialize B̂ using (7).
2. Initialize Θ̂ using (8).
3. Update B̂ as:

B̂(t+1) = arg min
Bk∈M(p,q)
k∈IK

 1

n

q∑
j=1

K∑
k=1

‖Yk
j − (Yk

−j −XkBk
−j)θ̂

k(t)

j −XkBk
j ‖2 + λn

∑
h∈H
‖B[h]‖


(9)

4. Obtain Êk(t+1) := Yk −XkB
k(t)
j , k ∈ IK . Update Θ̂ as:

Θ̂
(t+1)
j = arg min

Θj∈M(q−1,K)

 1

n

K∑
k=1

‖Êk(t+1)
j − Ê

k(t+1)
−j θkj ‖2 + γn

∑
j 6=j′

∑
g∈Gjj

′
y

‖θ[g]
jj′‖

 (10)

5. Continue till convergence.
6. Calculate Ω̂k

y , k ∈ IK using (6).

2.2.2 Tuning parameter selection

A number of methods have been proposed in the literature to select regularization tuning
parameters in `1-penalized problems. Some approaches rely on traditional criteria like
cross-validation, Akaike Information Criterion (AIC) (Danaher et al., 2014) or the Bayesian
Information Criterion (BIC) (Lin et al., 2016a; Ma and Michailidis, 2016). A number of
studies have proposed their modifications for the case when feature dimensions increase
with sample size (Foygel and Drton, 2010; Gao et al., 2012; Kim et al., 2012).

As a demonstration, to select the tuning parameter λn we use the High-dimensional
BIC (HBIC, Kim et al. (2012); Wang et al. (2013)), and for selecting γn in the node-
wise regression step in the JSEM model (4), employ BIC as in Ma and Michailidis (2016).
Unlike BIC, the penalty term in HBIC scales with the parameter dimensions. As a result,
the tuning parameter selected as the minimizer of HBIC asymptotically identifies the oracle
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estimator in ultra-high dimensional penalized problems (Fan and Tang, 2013; Wang et al.,
2013). In our case, we train multiple JMMLE models using Algorithm 1 over a finite set of
values λn ∈ Dn, and calculate their HBIC:

HBIC(λn; Θ) =
1

n

q∑
j=1

K∑
k=1

‖Yk
j − (Yk

−j −XkB̂k
−j,λn)θkj −XkB̂k

j,λn‖2+

log(log n)
log(pq)

n

K∑
k=1

(
‖Bk‖0 + |Êky,γ∗n(λn)|

)
.

Following this step, we select the optimal λn as the empirical minimizer of HBIC over Dn:
λ∗ = arg minλn∈Dn

HBIC(λ, Θ̂γ∗n(λn)).
The step for updating Θ (i.e. (10) in Algorithm 1) in our JMMLE algorithm is analogous

to the JSEM method Ma and Michailidis (2016), hence we use BIC to select the penalty
parameter γn. In our setting the BIC for a given γn and fixed B is given by:

BIC(γn;B) = Tr
(
SkyΩ̂

k
y,γn

)
− log det

(
Ω̂k
y,γn

)
+

log n

n

K∑
k=1

|Êky,γn |

where γn in subscript indicates the corresponding quantity is calculated taking γn as the
tuning parameter, and Sky := (Yk − XkBk)T (Yk − XkBk)/n. Every time Θ̂ is updated
in the JMMLE algorithm, we choose the optimal γn as the one with the smallest BIC
over a fixed set of values Cn. Thus for a fixed λn ≡ λ, our final choice of γn will be
γ∗n(λ) = arg minγn∈Cn BIC(γn; B̂λn).

2.3 Properties of JMMLE estimators

We now provide theoretical results ensuring the convergence of our alternating algorithm,
as well as the consistency of estimators obtained from the algorithm. We present statements
of theorems in the main body of the paper, while detailed proofs and auxiliary results are
delegated to the Appendix.

We introduce some additional notation and define technical conditions that help estab-
lish the results that follow. Denote the true values of the parameters by Ωx0 = {Ωk

x0},Ωy0 =
{Ωk

y0},Θ0 = {Θ0j},B0 = {Bk
0}. Sparsity levels of individual true parameters are indicated

by sj := | supp(Θ0j)|, bk := | supp(Bk
0)|. Also define S :=

∑q
j=1 sj , B :=

∑K
k=1 bk, s :=

maxj∈Iq sj , and X := {Xk}Kk=1, E := {Ek}Kk=1.

Definition 3 (Bounded eigenvalues) A positive definite matrix Σ ∈ M(b, b) is said to
have bounded eigenvalues with constants (c0, d0) if

0 < 1/c0 ≤ Λmin(Σ) ≤ Λmax(Σ) ≤ 1/d0 <∞

Definition 4 (Diagonal dominance) A matrix M ∈ M(b, b) is said to be strictly diago-
nally dominant if for all a ∈ Ib,

|(M)aa| >
∑
a′ 6=a
|(M)aa′ |

Denote ∆0(M) = mina{|(M)aa| −
∑

a′ 6=a |(M)aa′ |}.
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Our first result establishes the convergence of Algorithm 1 for fixed realizations of (X , E).

Theorem 5 Suppose for any fixed (X , E), estimates in each iterate of Algorithm 1 are
uniformly bounded by some quantity dependent on only p, q and n:∥∥∥(B̂(t), Θ̂(t)

y )− (B0,Θy0)
∥∥∥
F
≤ R(p, q, n); t ≥ 1 (11)

Then, any limit point (B∞,Θ∞y ) of the algorithm is a stationary point of the objective
function, i.e. a point where partial derivatives along all coordinates are non-negative.

As established in Theorems 6 and 7, at sub-iterations of Algorithm 1 (specifically steps
3 and 4) a O(

√
log(pq)/n) bound on B̂(t) leads to Θ̂(t+1) being consistent for Θ0, and a

O(
√

log q/n) bound on Θ̂(t) leads to B̂(t+1) being consistent for B0: both with probability
approaching 1 as p, q, n→∞. Thus, while the constant R(p, q, n) in Theorem 5 above does
not need to obey any explicit bounds for Algorithm 1 to have a limit point, having a tighter
O(
√

log(pq)/n) bound ensures that the limit point lies close to the population parameters
with high enough probability.

The next steps establish that for random realizations of X and E , (a) successive iterates
lie in this non-expanding ball around the true parameters, and (b) the procedures in (7) and
(8) ensure starting values that lie inside the same ball, both with probability approaching 1
as (p, q, n)→∞. To do so, we break down the main problem into two sub-problems. Take
as β = (vec(B1)T , . . . , vec(BK)T )T : any subscript or superscript on B being passed on to
β. Denote by Θ̂ and β̂ the generic estimators given by

Θ̂j = arg min
Θj∈M(q−1,K)

 1

n

K∑
k=1

‖Êk
j − Êk

−jθ
k
j ‖2 + γn

∑
j 6=j′

∑
g∈Gjj

′
y

‖θ[g]
jj′‖

 ; j ∈ Iq, (12)

β̂ = arg min
β∈RpqK

{
−2βT γ̂ + βT Γ̂β + λn

∑
h∈H
‖β[h]‖

}
, (13)

where

Γ̂ =


(T̂1)2 ⊗ (X1)TX1

n
. . .

(T̂K)2 ⊗ (XK)TXK

n

 ; γ̂ =


(T̂1)2 ⊗ (X1)T

n
...

(T̂K)2 ⊗ (XK)T

n


 vec(Y1)

...
vec(YK)

 ,
with

T̂ kjj′ =

{
1 if j = j′

−θ̂kjj′ if j 6= j′
. (14)

Using matrix algebra it is easy to see that solving for B in (5) given a fixed Θ̂ is equivalent
to solving (13).

Next, we assume the following conditions:

10



Joint Multiple Multi-layered Gaussian Graphical Models

(E1) The matrices Ωk
y0, k ∈ IK are diagonally dominant,

(E2) The matrices Σk
y0, k ∈ IK have bounded eigenvalues with constants (cy, dy) that are

common across k.

Now, we are in a position to establish the estimation consistency for (12), as well as the
consistency of the final estimates Ω̂k

y using their support sets.

Theorem 6 Consider random (X , E), any deterministic B̃ that satisfy the following bound

‖B̃k −Bk
0‖1 ≤ Cβ

√
log(pq)

n
,

where Cβ depends only on B0. Then, for sample size n % log(pq) there exist constants
c1, c3, c4 > 0, c2, c5 > 1, τ1 > 2 such that with probability at least

1−K(1/pτ1−2 − c1 exp[−(c2
2 − 1) log(pq)]− 2 exp(−c3n)− c4 exp[−(c2

5 − 1) log(pq)]),

the following bounds hold:
(I) Denote |gmax| = maxg∈Gy |g|. Then for the choice of tuning parameter

γn ≥ 4
√
|gmax|Q0

√
log(pq)

n
,

where Q0 depends on the model parameters only, we have

‖Θ̂j −Θ0,j‖F ≤ 12
√
sjγn/ψ, (15)∑

j 6=j′,g∈Gjj
′

y

‖θ̂[g]

jj′ − θ
[g]
0,jj′‖ ≤ 48sjγn/ψ. (16)

with ψ = mink Λmin(Σk
x0)/2.

(II) For the choice of tuning parameter γn = 4
√
|gmax|Q0

√
log(pq)/n,

1

K

K∑
k=1

‖Ω̂k
y − Ωk

y0‖F ≤ O
(
Q0

√
|gmax|S
K

√
log(pq)

n

)
. (17)

Condition (E2) ensures that the lower layer covariance matrices are well-conditioned,
so that the precision matrices {Ωk

y} exist. The diagonal dominance condition (E1) is a
sufficient condition for the convergence bounds of Theorem 6 to hold. Specifically, the
upper bounds of the finite-sample error rates of estimates Θ̂ and Ω̂y are controlled by the
ratios of off-diagonal to diagonal elements, i.e. ωky,jj/

∑
j′ 6=j |ωky,jj′ | through the multiplier

Q0. A number of `1-penalized problems make Restricted Eigenvalue (RE)-type assumptions
(Bickel et al., 2009; Loh and Wainwright, 2012; Lin et al., 2016a) on the (upper layer) design
matrices. Following Basu and Michailidis (2015); Lin et al. (2016a) (see Lemma B.1 and
Proposition 1 in respective papers), we utilize the diagonal dominance condition to ensure
RE conditions for some key model quantities.

To prove an equivalent result for the solution of (13), we need the following conditions
on the true parameter versions (Tk

0)2, defined from Θ0 similarly as (14).

11
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(E3) The matrices (Tk
0)2, k ∈ IK are diagonally dominant,

(E4) The matrices Σk
x0, k ∈ IK have bounded eigenvalues with common constants (cx, dx).

Given these, we next establish the required consistency results.

Theorem 7 Assume random (X , E), and fixed Θ̃ so that for j ∈ Iq,

‖Θ̃j −Θ0,j‖F ≤ CΘ

√
log q

n

for some CΘ dependent on Θ0 only. Then, given the choice of tuning parameter

λn ≥ 4
√
|hmax|R0

√
log(pq)

n
,

where R0 depends on the population parameters only, with probability at least

1−K(c1 exp[−(c2
2 − 1) log(pq)]− 2 exp(−c3n))

the following bounds hold:

‖β̂ − β0‖1 ≤ 48
√
|hmax|Bλn/ψ∗, (18)

‖β̂ − β0‖ ≤ 12
√
Bλn/ψ∗, (19)∑

h∈H
‖β[h] − β

[h]
0 ‖ ≤ 48Bλn/ψ∗, (20)

(β̂ − β0)T Γ̂(β̂ − β0) ≤ 72Bλ2
n/ψ∗, (21)

where |hmax| = maxh∈H |h|, dk is the maximum degree (Tk
0)2, and

ψ∗ =
1

2
min
k

[
Λmin(Σk

x0)

(
∆0((Tk

0)2)− dkCΘ

√
log(pq)

n

)]
.

Remark 8 In an effort to keep the JMMLE framework as general as possible, we do not
impose any explicit sparsity conditions on the fixed quantities B̃ and Θ̃ used to estimate the
other parameter inside an iteration of Algorithm 1. Since Cβ (or CΘ) depends only on the
population parameter B0 (or Θ0), when that parameter is actually sparse their corresponding
sparsity values can be a part of Cβ (or CΘ). When we do obtain the actual estimates ( (15)–
(17) in Theorem 6 and (18)–(21) in Theorem 7), their finite-sample error bounds scale with
the corresponding sparsity parameters {sj} and B at rates that are standard in the literature
(Basu and Michailidis, 2015; Loh and Wainwright, 2012; Ravikumar et al., 2011).

Following the choice of tuning parameters in Theorems 6 and 7, S = o(n/ log(pq)) and
B = o(n/ log(pq)) are sufficient conditions on the sparsity of corresponding parameters for
the JMMLE estimators to be consistent. As the last step to establish estimation consistency
for the limit points of Algorithm 1, we now ensure that the starting values are satisfactory
as previously discussed.

12
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Theorem 9 Consider the starting values as derived in (7) and (8). For sample size n %
log(pq), and the choice of the tuning parameter

λn ≥ 4c2 max
k∈IK

{
[Λmax(Σk

x0)Λmax(Σk
y0)]1/2

}√ log(pq)

n
,

we have ‖β̂(0) − β0‖1 ≤ 64Bλn/ψ
∗ with probability at least 1− c1 exp(−(c2

2 − 1) log(pq))−
2 exp(c3n). Also, for γn ≥ 4

√
|gmax|Q0

√
log(pq)/n we have

‖Θ̂(0)
j −Θ0,j‖F ≤ 12

√
sjγn/ψ,∑

j 6=j′,g∈Gjj
′

y

‖θ̂[g](0)

jj′ − θ
[g]
0,jj′‖ ≤ 48sjγn/ψ,

with probability at least

1−K(1/pτ1−2 − c1 exp[−(c2
2 − 1) log(pq)]− 2 exp(−c3n)− c4 exp[−(c2

5 − 1) log(pq)]).

Putting all the pieces together, the required consistency result given our choice of start-
ing values follows in a straightforward manner.

Corollary 10 Assume conditions (E1)-(E4), and starting values {B(0),Θ(0)} obtained us-
ing (7) and (8), respectively. Then, for random realizations of X , E,

(I) For the choice of λn

λn ≥ 4 max

[
c2 max

k∈IK

{
[Λmax(Σk

x0)Λmax(Σk
y0)]1/2

}
,
√
|hmax|R0

]√
log(pq)

n
,

we have

‖β̂ − β0‖1 ≤ max
{

48
√
|hmax|, 64

} Bλn
ψ∗

with probability at least 1− 18c1 exp[−(c2
2 − 1) log(pq)]− 4 exp(−c3n).

(II) For the choice of γn

γn ≥ 4
√
|gmax|Q0

√
log(pq)

n
,

(15) and (16) hold, while for γn = 4
√
|gmax|Q0

√
log(pq)/n, (17) holds, both with probability

at least

1−K(2/pτ1−2 − 2c1 exp[−(c2
2 − 1) log(pq)]− 4 exp(−c3n)− 2c4 exp[−(c2

5 − 1) log(pq)]).

Remark 11 To save computation time for high data dimensions, an initial screening step,
e.g. the debiased lasso procedure of Javanmard and Montanari (2014), can be used to
first restrict the support set of Bk

j before obtaining the initial estimates using (7). The
consistency properties of resulting initial and final estimates follow along the lines of the
special case K = 1 discussed in Lin et al. (2016a), in conjunction with Theorem 9 and
Corollary 10, respectively. We leave the details to the reader.
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Remark 12 While the proof of the above results follow roughly similar roadmaps as the case
with K = 1 and simple `1-penalization (Lin et al., 2016a) and the joint structural estimation
of Ma and Michailidis (2016) and utilize Gaussian concentration inequalities, generalization
to K > 1 and an optional grouping structure in B add significant additional technical
complexity to the proofs. More importantly, we work in presence of minimal assumptions,
steering clear of conditions used in previous works, like Incoherence (Lin et al., 2016a) and
Uniform Irrepresentability (Ma and Michailidis, 2016) that are hard to verify in practice.

3. Hypothesis testing in multilayer models

In this section, we lay out a framework for hypothesis testing in our proposed joint multi-
layer structure. Present literature in high-dimensional hypothesis testing either focuses on
testing for similarities in the within-layer connections of single-layer networks (Cai and Liu,
2016; Liu, 2017), or coefficients of single response penalized regression (van de Geer et al.,
2014; Zhang and Zhang, 2014; Mitra and Zhang, 2016). However, to our knowledge no
method is available in the literature to perform testing for between-layer connections in a
two-layer (or multi-layer) setup.

Denote the i th row of the coefficient matrix Bk by bki , for i ∈ Ip. In this section we

are generally interested in obtaining asymptotic sampling distributions of b̂ki , and subse-
quently formulating testing procedures to detect similarities or differences across k in the
full vector bki or its elements. There are two main challenges in doing the above: firstly
the need to mitigate the bias of the group-penalized JMMLE estimators, and secondly the
dependency among response nodes translating into the need for controlling false discovery
rate while simultaneously testing for several element-wise hypotheses concerning the true
values bk0ij , j ∈ Iq. To this end, in Section 3.1 we first propose a debiased estimator for bki
that makes use of already computed (using JSEM) node-wise regression coefficients in the
upper layer, and establish asymptotic properties of scaled version of them. Section 3.2 is
devoted to pairwise testing, where we assume K = 2, and propose asymptotic global tests
for detecting differential effects of a variable in the upper layer, i.e. testing for the null
hypothesis H i

0 : b1
0i = b2

0i, as well as pairwise simultaneous tests across j ∈ Iq for detecting
the element-wise differences b10ij − b20ij .

3.1 Debiased estimators and asymptotic normality

Zhang and Zhang (2014) proposed a debiasing procedure for lasso estimates and subse-
quently calculate confidence intervals for individual coefficients βj in high-dimensional lin-
ear regression: y = Xβ + ε,y ∈ Rn,X ∈M(n, p) and εr ∼ N(0, σ2), r ∈ In for some σ > 0.

Given an initial lasso estimate β̂
(init) ∈ Rp their debiased estimator was defined as:

β̂
(deb)
j = β̂

(init)
j +

zTj (y −Xβ̂
(init)

)

zTxj
,

where zj is the vector of residuals from the `1-penalized regression of xj on X−j . With
centering around the true parameter value, say β0

j , and proper scaling this has an asymptotic
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normal distribution:
β̂

(deb)
j − β0

j

‖zj‖/|zTj xj |
∼ N(0, σ2).

Essentially, they obtain the debiasing factor for the j
th

coefficient by taking residuals from
the regularized regression and scale them using the projection of xj onto a space approx-
imately orthogonal to it. Mitra and Zhang (2016) later generalized this idea to group
lasso estimates. Further, van de Geer et al. (2014) and Javanmard and Montanari (2014)
performed debiasing on the entire coefficient vectors.

We start off by defining debiased estimates for individual rows of the coefficient matrices
Bk in our two-layer model:

ĉki = b̂ki +
1

ntki

(
Xk
i −Xk

−iζ̂
k

i

)T
(Yk −XkB̂k); i ∈ Ip, k ∈ IK , (22)

where b̂ki denotes the i th row of B̂k, and tki = (Xk
i −Xk

−iζ̂
k

i )
TXk

i /n, and ζ̂
k

i , B̂
k are generic

estimators of the neighborhood coefficient matrices in the upper layer and within-layer
coefficient matrices, respectively. By structure this is similar to the proposal of Zhang and
Zhang (2014). However, as seen shortly, minimal conditions need to be imposed on the
parameter estimates used in (22) for the asymptotic results based on a scaled version of the
debiased estimator to go thorugh, and they continue to hold for arbitrary sparsity patterns
over k in all of the parameters.

Present methods of debiasing coefficients from regularized regression require specific
assumptions on the regularization structure of the main regression, as well as on how to
calculate the debiasing factor. While Zhang and Zhang (2014), Javanmard and Montanari
(2014) and van de Geer et al. (2014) work on coefficients from lasso regressions, Mitra
and Zhang (2016) debias the coefficients of pre-specified groups in the coefficient vector
from a group lasso. Current proposals for obtaining the debiasing factor available in the
literature include node-wise lasso (Zhang and Zhang, 2014) and a variance minimization
scheme with `∞-constraints (Javanmard and Montanari, 2014). In comparison, we only
assume the following generic constraints on the parameter estimates used in our procedure.

(T1) For the upper layer neighborhood coefficients, the following holds for all k ∈ IK :

‖ζ̂k − ζk0‖1 ≤ Dζ = O

(√
log p

n

)
,

where Dζ depends only on the true values, i.e. {ζk0 }.
(T2) The lower layer precision matrix estimates satisfy for all k ∈ IK

‖Ω̂k
y − Ωk

y0‖∞ ≤ DΩ = O

(√
log(pq)

n

)
,

where DΩ depends only on Ωy0.
(T3) For the regression coefficient matrices, the following holds for all k ∈ IK :

‖B̂k −Bk
0‖1 ≤ Dβ = O

(√
log(pq)

n

)
,
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where Dβ depends on B0 only.

The above finite-sample error rates are common in high-dimensional problems, and can
pertain to sparse (Ma and Michailidis, 2016; Lin et al., 2016a; Loh and Wainwright, 2012;
Basu and Michailidis, 2015) or non-sparse estimators (Rohde and Tsybakov, 2011; Basu
et al., 2019). Based on the estimators plugged in, additional conditions may be involved in
the estimation step. For example, JMMLE estimators satisfy these bounds under conditions
(E1)-(E4) following the results in Section 2.3.

Given these conditions, the following result provides the asymptotic joint distribution
of a scaled version of the debiased coefficients. A similar result for fixed design in the
context of single-response linear regression can be found in Stucky and van de Geer (2018).
However, the authors use the nuclear norm as the loss function while obtaining the debiasing
factors and employ the resulting Karush-Kuhn-Tucker (KKT) conditions to derive their
results, whereas we leverage bounds on generic parameter estimates combined with the
sub-Gaussianity of our random design matrices.

Theorem 13 Define ŝki =

√
‖Xk

i −Xk
−iζ̂

k

i ‖2/n, and mk
i =
√
ntki /ŝ

k
i . Consider parameter

estimates that satisfy conditions (T1)-(T3). Define the following:

Ω̂y = diag(Ω̂1
y, . . . , Ω̂

K
y ),

Mi = diag(m1
i , . . . ,m

K
i ),

Ĉi = vec(ĉ1
i , . . . , ĉ

K
i )T ,

Di = vec(b1
0i, . . . ,b

K
0i)

T .

Also assume that conditions (E2), (E4) hold, and the matrices Ωk
x0, k ∈ IK are diagonally

dominant. Then, for sample size satisfying log p = o(n1/2), log q = o(n1/2) we have

Ω̂1/2
y Mi(Ĉi −Di) ∼ NKq(0, I) + Rn, (23)

where ‖Rn‖∞ = oP (1).

3.2 Test formulation

We now simply plug in estimators from the JMMLE algorithm in Theorem 13. Doing so is
fairly straightforward. Condition (T1) is ensured by the JSEM penalized neighborhood esti-
mators in (4) (immediate from Proposition A.1 in Ma and Michailidis (2016)). On the other
hand, bounds on total sparsity of the true coefficient matrices: B = o(

√
n/ log(pq)), and

lower layer precision matrices: S = o(n/ log(pq), in conjunction with Corollary 10, ensure
conditions (T2) and (T3), respectively -all with probability approaching 1 as (n, p, q)→∞.

An asymptotic joint distribution of debiased versions of the JMMLE regression estimates
can then be obtained immediately.

Corollary 14 Consider the estimates B̂ and Ω̂y obtained from Algorithm 1, and upper
layer neighborhood coefficients from solving the node-wise regression in (4). Suppose that
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log(pq)/
√
n → 0, and the sparsity conditions B = o(

√
n/ log(pq)), S = o(n/ log(pq)) are

satisfied. Then, with the same notations as in Theorem 13 we have

Ω̂1/2
y Mi(Ĉi −Di) ∼ NKq(0, I) + R1n (24)

where ‖R1n‖∞ = oP (1).

We are now ready to formulate asymptotic global and simultaneous testing procedures
based on Corollary 14. In this paper, we restrict our attention to testing for pairwise
differences only. Specifically, we set K = 2, and are interested in testing whether there are
overall and elementwise differences between individual rows of the true coefficient matrices,
i.e. b1

0i and b2
0i.

When b1
0i = b2

0i, it is immediate from Corollary 14 that a scaled version of the vector
of estimated differences ĉ1

i − ĉ2
i follows a q-variate multivariate normal distribution. Con-

sequently, we formulate a global test for detecting differential overall downstream effect of
the i

th
covariate in the upper layer.

Algorithm 2 (Global test for H i
0 : b1

0i = b2
0i at level α, 0 < α < 1)

1. Obtain the debiased estimators ĉ1
i , ĉ

2
i using (22).

2. Calculate the test statistic

Di = (ĉ1
i − ĉ2

i )
T

(
Σ̂1
y

(m1
i )

2
+

Σ̂2
y

(m2
i )

2

)−1

(ĉ1
i − ĉ2

i )

where Σ̂k
y = (Ω̂k

y)
−1, k = 1, 2.

3. Reject H i
0 if Di ≥ χ2

q,1−α.

Besides controlling the type-I error at a specified level, the above testing procedure
maintains rate optimal power.

Theorem 15 Consider the global test given in Algorithm 2, performed using parameter
estimates satisfying conditions (T1)-(T3). Define δ := b1

0i − b2
0i. Further, assume that

either of the following sufficient conditions are satisfied.

(I) The following bound holds: DΩ ≤ ∆0(Ωk
y0), k ∈ IK ;

(II) For every j ∈ Iq, k ∈ IK , we have
∑q

j′=1 |σky0,jj′ |q ≤ c0(p) for some q ∈ [0, 1) and
positive-valued function c0(·).

Denote σkx0,i,−i = V ar(Xk
i − Xk−iζ

k
0,i). Then, the power of the global test is given by

Kq

χ2
q,1−α + nδT

(
Σ1
y0

σ1
x0,i,−i

+
Σ2
y0

σ2
x0,i,−i

)−1

δ

+ o(1)

where Kq is the cumulative distribution function of the χ2
q distribution. Consequently, for

‖δ‖ > O(n−1/2), P (H i
0 is rejected )→ 1 as (n, p, q)→∞.

17



Majumdar and Michailidis

The conditions (I) or (II) above are needed to derive upper bounds for ‖Σ̂k
y − Σk

y0‖∞
using those for ‖Ω̂k

y − Ωk
y0‖∞. While (I) imposes a potentially more stringent bound on

the estimation error of Ωy, (II) restricts the power calculations to a uniformity class of
covariance matrices (Bickel and Levina, 2008; Cai et al., 2012b).

Remark 16 While the formulation of the testing procedure broadly gives parallel results as
Zhang and Zhang (2014) and Mitra and Zhang (2016), it does so without assuming any
specific penalty function or (group) sparsity conditions (such as strong group sparsity in
Mitra and Zhang (2016)). Instead, we only require the standard finite-sample bounds (T1)-
(T3), satisfied by existing sparse and non-sparse estimators in a high-dimensional setting.

3.3 Control of False Discovery Rate

Given that the null hypothesis is rejected, we consider the multiple testing problem of
simultaneously testing for all entrywise differences, i.e. testing

H ij
0 : b10ij = b20ij vs. H ij

1 : b10ij 6= b20ij

for all j ∈ Iq. Here we use the test statistic

dij =
ĉ1
ij − ĉ2

ij√
σ̂1
jj/(m

1
i )

2 + σ̂2
jj/(m

2
i )

2
, (25)

with σ̂kjj being the j
th

diagonal element of Σ̂k
y , k = 1, 2.

For the purpose of simultaneous testing, we consider tests with a common rejection
threshold τ , i.e. for j ∈ Iq, H ij

0 is rejected if |dij | > τ . We denote Hi0 = {j : b10,ij = b20,ij}
and define the False Discovery Proportion (FDP) and False Discovery Rate (FDR) for these
tests as follows:

FDP (τ) =

∑
j∈Hi

0
I(|dij | ≥ τ)

max
{∑

j∈Iq I(|dij | ≥ τ), 1
} ; FDR(τ) = E[FDP (τ)].

For a pre-specified level α, we choose a threshold that ensures both FDP and FDR ≤ α
using the Benjamini-Hochberg (BH) procedure. The procedure for FDR control is now
given by Algorithm 3.

Algorithm 3 (Simultaneous tests for H ij
0 : b10ij = b20ij at level α, 0 < α < 1)

1. Calculate the pairwise test statistics dij using (3) for j ∈ Iq.
2. Obtain the threshold

τ̂ = inf

τ ∈ R : 1− Φ(τ) ≤ α

2q
max

∑
j∈Iq

I(|dij | ≥ τ), 1

 .

3. For j ∈ Iq, reject H ij
0 if |dij | ≥ τ̂ .
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To ensure that this procedure maintains FDR and FDP asymptotically at a pre-specified
level α ∈ (0, 1), we need some dependence conditions on true correlation matrices in the
lower layer. Following Liu and Shao (2014), we consider the following two types of depen-
dencies:
(D1) Define rkjj′ = σky0,jj′/

√
σky0,jjσ

k
y0,j′j′ for j, j′ ∈ Iq, k = 1, 2. Suppose there exists

0 < r < 1 such that max1≤j<j′≤q |rkjj′ | ≤ r, and for every j ∈ Iq,
q∑

j′=1

I
{
|rkjj′ | ≥

1

(log q)2+θ

}
≤ O(qρ),

for some θ > 0 and 0 < ρ < (1− r)/(1 + r).
(D1*) Suppose there exists 0 < r < 1 such that max1≤j<j′≤q |rkjj′ | ≤ r, and for every
j ∈ Iq,

q∑
j′=1

I
{
|rkjj′ | > 0

}
≤ O(qρ),

for some 0 < ρ < (1− r)/(1 + r).
Originally proposed by Liu and Shao (2014), the above dependency conditions are meant

to control the amount of correlation amongst the test statistics. Condition (D1) allows each
variable to be highly correlated with at most O(qρ) other variables and weakly correlated
with others, while (D1*) limits the number of variables to have any correlation with it to
O(qρ). Note that (D1*) is a stronger condition, and can be seen as the limiting condition
of (D1) as q →∞.

Theorem 17 Suppose µj = b10,ij − b20,ij , σ2
j = σ1

y0,jj/σ
1
x0,i,−i + σ2

y0,jj/σ
2
x0,i,−i. Assume the

following holds as (n, q)→∞,∣∣∣{j ∈ Iq : |µj/σj | ≥ 4
√

log q/n
}∣∣∣→∞. (26)

Next, consider conditions (D1) and (D1*). If (D1) is satisfied, then the following holds
when log q = O(nξ), 0 < ξ < 3/23:

FDP (τ̂)

(|Hi0|/q)α
P→ 1; lim

n,q→∞

FDR(τ̂)

(|Hi0|/q)α
= 1. (27)

Further, if (D1*) is satisfied, then (27) holds for log q = o(n1/3).

The condition (26) is essential for FDR control in a diverging parameter space (Liu and
Shao, 2014; Liu, 2017).

Remark 18 Based on the FDR control procedure in Algorithm 3, we can perform within-
row thresholding in the matrices B̂k to tackle group misspecification.

τ̂ki := inf

τ ∈ R : 1− Φ(τ) ≤ α

2q
max

∑
j∈Iq

I(|
√
ω̂kjjm

k
i ĉ
k
ij | ≥ τ), 1

 ,

b̂k,thrij = b̂kijI
(
|
√
ω̂kjjm

k
i ĉ
k
ij | ≥ τ̂ki

)
. (28)
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Even without group misspecification, this helps identify directed edges between layers that
have high nonzero values. Similar post-estimation thresholdings have been proposed in the
context of multitask regression (Obozinski et al., 2011; Majumdar and Chatterjee, 2018) and
neighborhood selection (Ma and Michailidis, 2016). However, our procedure is the first one
to provide explicit guarantees on the amount of false discoveries while doing so.

Remark 19 Following (26), a sufficient condition on the sparsity of B0 for FDR to be
asymptotically controlled at some specified level is B = o(nζ/ log q) if (D1) is satisfied, and
B = o(n1/3/ log q) if (D1*) is satisfied. In comparison, our results for the global testing
procedure require B = o(

√
n/ log(pq)), and point estimation requires B = o(n/ log(pq)). In

finite samples settings, the stricter sparsity requirements translate to higher sample sizes
being needed (given the same (p, q)) for our testing procedures to have satisfactory perfor-
mances compared to estimation only (See Sections 4.1 and 4.2).

In recent work, Javanmard and Montanari (2018) showed that the o(
√
n/ log p) bound

on the sparsity of the true coefficient vector required to construct confidence intervals from
debiased lasso coefficient estimates (van de Geer et al., 2014; Zhang and Zhang, 2014;
Javanmard and Montanari, 2014) can be weakened to o(n/(log p)2) when the random design
precision matrix is known, or is unknown but satisfies certain sparsity assumptions. Similar
relaxations may be possible in our case. For example, the machinery in Liu (2017), which
performs simultaneous testing in multiple (single layer) GGMs using slightly modified FDR
thresholds, can be useful in obtaining (27) for log q = o(n1/2) under (D1), (D1*) or other
suitable dependency assumptions.

3.4 Effect of tuning parameter selection

A topic not adequately addressed in the high-dimensional hypothesis testing literature con-
cerns the effect of the regularization tuning parameter selection methods (HBIC for λn and
BIC for γn in our case) on the size, power and confidence intervals obtained. Ideally, tun-
ing parameter selection method(s) in the estimation step should ensure that the estimated
quantities from the model with optimal tuning parameter choices can be plugged into the
debiasing procedure to obtain quantities that obey the correct asymptotic properties and
are used in the tests that follow (e.g. Algorithms 2 and 3).

In our case, the broad-based assumptions (T1)-(T3) allow plugging in estimators with
finite-sample error rates that are satisfied by a host of high-dimensional methods, as pre-
viously discussed. Given that the tuning parameters λn and γn are selected to be above
thresholds that scale with feature and sample dimensions, JMMLE estimators adhere to
these error rates with high probability (Corollary 10), ensuring the correctness of our test-
ing procedures. To empirically make it likely that the correct tuning parameters get selected,
in our numerical examples (on synthetic and real data) that follow, we obtain JMMLE es-
timates over ranges of λn and γn that scale with the error rates of estimators. Additional
technicalities will be involved for a more rigorous analysis, possibly using technical material
from approaches such as Foygel and Drton (2010); Wang et al. (2013). We defer this topic
to future work.
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Figure 3: Shared sparsity patterns across k for the precision matrices {Ωk
x0} and {Ωk

y0}

4. Numerical experiments

We evaluate the performance of our proposed JMMLE algorithm and the hypothesis testing
framework in a two-layer simulation setup (Sections 4.1 and 4.2, respectively), and also
introduce some computational techniques that significantly accelerate calculations for high
data dimensions (Section 4.3).

4.1 Simulation 1: estimation

As a first step towards obtaining a two-layer structure with horizontal (across k) integration
and inter-layer directed edges, we generate the precision matrices {Ωk

x0} and {Ωk
y0} using

a dependency structure across k that was first used in the simulation study of Ma and
Michailidis (2016). We set K = 5, and set different shared sparsity patterns across k inside
the lower p/2 × p/2 block of the upper layer precision matrices, and outside the block. In
our notation, this gives the following elementwise group structure:

Gx,ii′ =

{
{(1, 2), (3, 4), 5} if i ≤ p/2 or j ≤ p/2,
{(1, 3, 5), (2, 4)} otherwise.

The schematic in Figure 3 illustrates this structure. We set an off-diagonal element
inside each of these common blocks (i.e. A,B,C and α, β in the figure) to be non-zero
with probability πx ∈ {5/p, 30/p}, then generate the values of all non-zero elements inde-
pendently from the uniform distribution in the interval [−1, 0.5] ∪ [0.5, 1]. The precision
matrices Ωk

x0 are generated by putting together the corresponding common blocks, their
positive definiteness ensured by setting all diagonal elements to be 1 + |Λmin(Ωk

x0)|. Then,
we get elements in the covariance matrix as

σkx0,ii′ = (Ω̄k
x0)ii′/

√
(Ω̄k

x0)ii(Ω̄k
x0)i′i′ , where Ω̄k

x0 = (Ωk
x0)−1,

and generate rows of Xk independently from N (0,Σk
x0). We obtain Σk

y0 and then Ek

using the same setup but with the number of variables being q and setting off-diagonal
elements non-zero with probability πy ∈ {5/q, 30/q}. To obtain the matrices Bk

0, for a fixed
(i, j), i ∈ Ip, j ∈ Iq, we set bk0,ij non-zero across all k with probability π ∈ {5/p, 30/p},
generate the non-zero groups independently from Unif{[−1, 0.5] ∪ [0.5, 1]}, and set Yk =
XkBk

0 + Ek, k ∈ IK . Finally, we generate 150 such independent two-layer datasets for each
of the following model settings:

• Set πx = π = 5/p, πy = 5/q, and

(p, q, n) ∈ {(60, 30, 100), (30, 60, 100), (200, 200, 150), (300, 300, 150)};
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• Set πx = π = 30/p, πy = 30/q, and (p, q, n) ∈ {(200, 200, 100), (200, 200, 200)}.

We use the following scaled arrays of tuning parameters to train Algorithm 1-

γn ∈ {0.3, 0.4, ..., 1}
√

log q

n
; λn ∈ {0.4, 0.6, ..., 1.8}

√
log p

n
,

using a one-step version of the algorithm (Section 4.3) to save computation time.
We use the following performance metrics to evaluate our estimates B̂ = {B̂k}:

• True positive Rate-

TPR(B̂k) =
| supp(B̂k) ∩ supp(Bk

0)|
| supp(Bk

0)| ; TPR(B̂) =
1

K

K∑
k=1

TP(B̂k).

• True negative Rate-

TNR(B̂k) =
|suppc(B̂k) ∩ suppc(Bk

0)|
| suppc(Bk

0)| ; TNR(B̂) =
1

K

K∑
k=1

TNR(B̂k).

• Matthews Correlation Coefficient-

TP(B̂k) = | supp(B̂k) ∩ supp(Bk
0)|; TN(B̂k) = |suppc(B̂k) ∩ suppc(Bk

0)|,

FP(B̂k) = |suppc(Bk
0)| − TN(B̂k); FN(B̂k) = |supp(Bk

0)| − TP(B̂k),

MCC(B̂k) =

TP(B̂k)TN(B̂k)− FP(B̂k)FN(B̂k)√
(TP(B̂k) + FP(B̂k))(TP(B̂k) + FN(B̂k))(TN(B̂k) + FP(B̂k))(TN(B̂k) + FN(B̂k))

,

MCC(B̂) =
1

K

K∑
k=1

MCC(B̂k).

• Relative error in Frobenius norm-

RF(B̂) =
1

K

K∑
k=1

‖B̂k −Bk
0‖F

‖Bk
0‖F

.

We use the same metrics to evaluate the precision matrix estimates Ω̂k
y as well, with TPR

and TNR calculations confined to off-diagonal entries.
Tables 1 and 2 summarize the results. For estimation of B, we compare our results

to the method in Lin et al. (2016a) that estimates parameters in each of the K two-layer
structure separately, while for estimation of Ωy, we compare them with the results in Lin
et al. (2016a) and using the single-layer JSEM (Ma and Michailidis, 2016) that estimates
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(πx, πy) (p, q, n) Method TPR TNR MCC RF

(5/p, 5/q) (60,30,100) JMMLE 0.97(0.02) 0.99(0.003) 0.96(0.014) 0.24(0.033)
Separate 0.96(0.018) 0.99(0.004) 0.93(0.014) 0.22(0.029)

(30,60,100) JMMLE 0.97(0.013) 0.99(0.002) 0.96(0.008) 0.27(0.024)
Separate 0.99(0.009) 0.99(0.003) 0.93(0.017) 0.18(0.021)

(200,200,150) JMMLE 0.98(0.011) 1.0(0) 0.99(0.005) 0.16(0.025)
Separate 0.99(0.001) 0.99 (0.001) 0.88(0.009) 0.18(0.007)

(300,300,150) JMMLE 1.0(0.001) 1.0(0) 0.99(0.001) 0.14 (0.015)
Separate 1.0(0.001) 0.99(0.001) 0.84(0.01) 0.21(0.007)

(30/p, 30/q) (200,200,100) JMMLE 0.97(0.017) 1.0(0) 0.98(0.008) 0.21(0.032)
Separate 0.32(0.01) 0.99(0.001) 0.49(0.009) 0.85(0.06)

(200,200,200) JMMLE 0.99(0.006) 1.0(0) 0.99(0.007) 0.13(0.016)
Separate 0.97(0.004) 0.98(0.001) 0.93(0.002) 0.19(0.07)

Table 1: Table of outputs for estimation of regression matrices, giving empirical mean and standard
deviation (in brackets) of each evaluation metric over 150 replications.

(πx, πy) (p, q, n) Method TPR TNR MCC RF

(5/p, 5/q) (60,30,100) JMMLE 0.76(0.018) 0.90(0.006) 0.61(0.024) 0.32(0.008)
Separate 0.77(0.031) 0.92(0.007) 0.56(0.03) 0.51(0.017)

JSEM 0.24(0.013) 0.8(0.003) 0.05(0.015) 1.03(0.002)
(30,60,100) JMMLE 0.7(0.018) 0.94(0.002) 0.55(0.018) 0.3(0.005)

Separate 0.76(0.041) 0.89(0.015) 0.59(0.039) 0.49(0.014)
JSEM 0.13(0.005) 0.9(0.001) 0.03(0.007) 1.04(0.001)

(200,200,150) JMMLE 0.68(0.017) 0.98(0) 0.48(0.013) 0.26(0.002)
Separate 0.78(0.019) 0.97(0.001) 0.55(0.012) 0.6(0.007)

JSEM 0.05(0.002) 0.97(0) 0.02(0.002) 1.01(0)
(300,300,150) JMMLE 0.71(0.014) 0.98(0) 0.44(0.008) 0.25(0.002)

Separate 0.71(0.017) 0.98(0.001) 0.51(0.011) 0.59(0.005)
JSEM 0.04(0.002) 0.98(0) 0.02(0.002) 1.01(0)

(30/p, 30/q) (200,200,100) JMMLE 0.77(0.016) 0.98(0) 0.46(0.013) 0.31(0.003)
Separate 0.57(0.027) 0.44(0.007) 0.04(0.008) 0.84(0.002)

JSEM 0.05(0.002) 0.97(0) 0.01(0.002) 1.01(0)
(200,200,200) JMMLE 0.76(0.018) 0.98(0) 0.55(0.015) 0.27(0.004)

Separate 0.73(0.023) 0.94(0.003) 0.39(0.017) 0.62(0.011)
JSEM 0.05(0.002) 0.97(0) 0.03(0.003) 1.01(0)

Table 2: Table of outputs for estimation of lower layer precision matrices over 150 replications.

Ωy assuming structured sparsity patterns and centered matrices Yk, but not the data in
the upper layer, i.e. X .

Our joint method has higher average MCC across all data settings than the separate
method for the estimation of B, although TPR and TNR values are similar, except for
p = 200, q = 200, n = 100 where JMMLE has a much higher average TPR. For estimation
of Ωy, incorporating information from the upper layer vastly improves performance, as
demonstrated by the differences in performance between JMMLE and JSEM. For the 4
data settings with lower sparsity (πx = π = 5/p, πy = 5/q), JMMLE produces sparser
estimates compared to the separate method while estimating Ωy- as is evident from the
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(πx, πy) (p, q, n) TPR(B̂) TNR(B̂) MCC(B̂) RF(B̂)

(5/p, 5/q) (60,30,100) 0.98 (0.01) 0.99 (0.002) 0.89 (0.017) 0.29 (0.014)
(30,60,100) 0.94 (0.022) 0.99 (0.003) 0.93 (0.016) 0.31 (0.028)

(200,200,150) 0.99 (0.002) 0.99 (0) 0.98 (0.004) 0.17 (0.007)
(300,300,150) 0.99 (0.001) 1 (0) 0.99 (0.002) 0.15 (0.006)

(30/p, 30/q) (200,200,100) 0.99 (0.006) 1 (0) 0.98 (0.005) 0.2 (0.014)
(200,200,200) 0.99 (0.009) 1 (0) 0.98 (0.005) 0.15 (0.017)

(πx, πy) (p, q, n) TPR(Ω̂y) TNR(Ω̂y) MCC(Ω̂y) RF(Ω̂y)

(5/p, 5/q) (60,30,100) 0.71 (0.024) 0.90 (0.005) 0.64 (0.024) 0.34 (0.008)
(30,60,100) 0.7 (0.019) 0.94 (0.002) 0.59 (0.014) 0.3 (0.004)

(200,200,150) 0.62 (0.012) 0.98 (0) 0.43 (0.009) 0.27 (0.003)
(300,300,150) 0.69 (0.013) 0.98 (0) 0.39 (0.008) 0.26 (0.02)

(30/p, 30/q) (200,200,100) 0.78 (0.024) 0.98 (0) 0.43 (0.012) 0.31 0.003)
(200,200,200) 0.69 (0.026) 0.98 (0.001) 0.5 (0.02) 0.29 (0.004)

Table 3: Table of outputs for joint estimation in presence of group misspecification

(πx, πy) (p, q, n) FDR

(5/p, 5/q) (60,30,100) 0.19 (0.077)
(30,60,100) 0.08 (0.064)

(200,200,150) 0.04 (0.016)
(300,300,150) 0.02 (0.007)

(30/p, 30/q) (200,200,100) 0.03 (0.019)
(200,200,200) 0.03 (0.016)

Table 4: Table of outputs giving empirical FDR for estimating B using JMMLE in presence of group
misspecification

lower TPR and MCC values. However, the RF values indicate that the quality of JMMLE
estimates is significantly better. This in fact is a common pattern across the estimation
of both B and Ωy: JMMLE gives more accurate estimates across the methods, with lower
average RF values across all data settings. Finally, for the estimation of Ωy, JMMLE does
better in both of the higher sparsity settings (πx = π = 30/p, πy = 30/q) across all metrics.

4.1.1 Effect of heterogeneity

We repeat the above setups to check the performance of JMMLE in presence of within-group
misspecification. For this task, we first set individual elements inside a non-zero group to
be zero with probability 0.2 while generating the data, then pass the JMMLE estimates
B̂k through the FDR controlling thresholds as given in (28). The results are summarized
in Tables 3 and 4. Across the simulation settings, values of all metrics are very close to
the correctly specified counterparts in Table 1. Thus, the thresholding step proves largely
effective. Also, in all cases the empirical FDR for estimating entries in B is below 0.2.
The performance is slightly worse than the correctly specified cases when estimating Ωy.
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(πx, πy) (p, q, n) Method Global test Simultaneous test
Power Size Power FDR

(5/p, 5/q) (60,30,100) JMMLE 0.98 (0.016) 0.07 (0.011) 0.94 (0.023) 0.24 (0.027)
Separate 0.99 (0.007) 0.12 (0.02) 0.91 (0.025) 0.34(0.038)
SepLasso 0.99 (0.007) 0.11 (0.02) 0.91 (0.025) 0.33(0.038)

(60,30,200) JMMLE 0.99 (0.014) 0.07 (0.014) 0.97 (0.013) 0.22 (0.032)
Separate 0.99 (0.005) 0.08 (0.014) 0.94 (0.019) 0.26(0.031)
SepLasso 0.99 (0.004) 0.08 (0.014) 0.94 (0.019) 0.26(0.033)

(30,60,100) JMMLE 0.98 (0.024) 0.07 (0.014) 0.92 (0.027) 0.24 (0.035)
Separate 1 (0) 0.07 (0.015) 0.86 (0.036) 0.25(0.039)
SepLasso 1 (0) 0.08 (0.014) 0.85 (0.036) 0.25(0.039)

(30,60,200) JMMLE 0.99 (0.019) 0.08 (0.016) 0.96 (0.023) 0.24 (0.038)
Separate 1 (0) 0.06 (0.013) 0.9 (0.038) 0.21(0.035)
SepLasso 1 (0) 0.06 (0.012) 0.91 (0.038) 0.21(0.034)

(200,200,150) JMMLE 0.99 (0.006) 0.06 (0.003) 0.84 (0.011) 0.22 (0.007)
Separate 1 (0) 0.2 (0.008) 0.93 (0.006) 0.46(0.009)
SepLasso 1 (0) 0.2 (0.008) 0.93 (0.006) 0.46(0.009)

(300,300,150) JMMLE 0.99 (0.004) 0.07 (0.009) 0.54 (0.031) 0.34 (0.016)
Separate 1 (0) 0.27 (0.01) 0.79 (0.007) 0.58(0.008)
SepLasso 1 (0) 0.27 (0.01) 0.79 (0.007) 0.58(0.008)

(300,300,300) JMMLE 0.99 (0.003) 0.03 (0.002) 0.99 (0.003) 0.12 (0.006)
Separate 1 (0) 0.16 (0.005) 0.99 (0.004) 0.4 (0.007)
SepLasso 1 (0) 0.16 (0.005) 0.99 (0.004) 0.4 (0.007)

(30/p, 30/q) (200,200,100) JMMLE 0.99 (0.005) 0.112 (0.003) 0.41 (0.008) 0.52 (0.007)
Separate 1 (0) 0.47 (0.008) 0.75 (0.007) 0.71(0.004)
SepLasso 1 (0) 0.47 (0.008) 0.75 (0.007) 0.71(0.004)

(200,200,200) JMMLE 0.99 (0.004) 0.09 (0.004) 0.96 (0.006) 0.27 (0.008)
Separate 1 (0) 0.42 (0.011) 0.98 (0.005) 0.63(0.006)
SepLasso 1 (0) 0.42 (0.011) 0.98 (0.005) 0.63(0.006)

(200,200,300) JMMLE 0.99 (0.002) 0.06 (0.003) 0.99 (0.004) 0.19 (0.008)
Separate 1 (0) 0.27 (0.01) 0.99 (0.004) 0.52 (0.009)
SepLasso 1 (0) 0.27 (0.01) 0.99 (0.004) 0.52 (0.009)

Table 5: Table of outputs for global and simultaneous hypothesis testing.

This is expected, as the estimates Ω̂y are obtained from neighborhood coefficients that are
calculated based on the pre-thresholding coefficient estimates.

4.2 Simulation 2: testing

We slightly change the data generating model to evaluate our proposed global testing and
FDR control procedure. We set K = 2, then generate the B1

0 by first randomly assigning
each of its element to be non-zero with probability π, then drawing values of those elements
from Unif{[−1,−0.5]∪ [0.5, 1]} independently. After this we generate a matrix of differences
D, where (D)ij , i ∈ Ip, j ∈ Iq takes values –1, 1, 0 with probabilities 0.1, 0.1 and 0.8,
respectively. Finally we set B2

0 = B1
0 + D. We set identical sparsity structures for the

pairs of precision matrices {Ω1
x0,Ω

2
x0} and {Ω1

y0,Ω
2
y0}. We use 150 replications of the above

setup to calculate empirical power of global tests, as well as empirical power and FDR of
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simultaneous tests. To get the empirical sizes of global tests we use estimators obtained
from applying JMMLE on a separate set of data generated setting all elements of D to 0.
The type-I error of global tests is controlled at level 0.05, while FDR is set at 0.2 obtained
by calculating the respective thresholds.

Table 5 reports the empirical mean and standard deviations (in brackets) of all relevant
quantities computed from debiased coefficients obtained from JMMLE, separate estimation,
as well as from applying the original debiasing technique of Zhang and Zhang (2014) on
qK separate lasso estimates of row-level coefficient vectors, i.e. b̂ki . We report outputs for
all combinations of data dimensions and sparsity used in Section 4.1, and also for increased
sample sizes in each setting until a satisfactory FDR is reached. As expected from the
theoretical analysis, higher sample sizes than those used in Section 4.1 result in increased
power for both global and simultaneous tests, and decreased size and FDR for all but
one (p = 30, q = 60) of the settings. While separate estimation has slightly higher power
in global testing, our joint method gives better results everywhere else. The empirical
size of the JMMLE-based global tests remain slightly higher than the nominal level across
the settings considered. This is in all likelihood a consequence of the higher sample size
requirements in testing than estimation, as nominal sizes for JMMLE estimates tend to
go down when p, q are kept constant and n is increased (for example, check setting 6 vs.
setting 7 (p = 300, , q = 300, n = 150, 300), and setting 8 vs. 9 vs. 10 (p = 200, , q =
200, n = 100, 200, 300). This pattern is similar to empirical results in past proposals of
high-dimensional testing methodology (Wang et al., 2015; Wu et al., 2020). However, the
size estimates of JMMLE are much closer to the nominal level across data settings compared
to either separate estimation or separate lasso, owing the fact that only JMMLE is able to
leverage information across the different multilayer networks.

4.3 Computation

Next, we discuss some observations and strategies that speed up the JMMLE algorithm
and reduce computation time significantly, especially for higher number of features in either
layer.

Block update and refit Bk in each iteration. Similar to the case of K = 1 (Lin et al.,
2016a), we use block coordinate descent within each Bk. This means instead of the full
update step (9) we perform the following steps in each iteration to speed up convergence:

{
B̂
k(t+1)
j

}K
k=1

= arg min
bk
j∈Rp

k∈IK

 1

n

q∑
j=1

K∑
k=1

‖Yk
j + r

k(t)
j −XkBk

j ‖2 + λ
∑
h∈H
‖B[h]

j ‖

 ,

where r
k(t)
1 = Ê

k(t)
−1 θ̂

k(t)

1 , and

r
k(t)
j =

j−1∑
j′=1

ê
k(t+1)
j θ̂

k(t)
jj′ +

q∑
j′=j+1

ê
k(t)
j θ̂

k(t)
jj′

for j ≥ 2. Further, when starting from the initializer of the coefficient matrix given in (7),
the support set of coefficient estimates becomes constant after only a few (< 10) iterations
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of our algorithm, after which it refines the values inside the same support until overall
convergence. This process speeds up significantly if a refitting step is added inside each
iteration after the matrices B̂k are updated:

{
B̃
k(t+1)
j

}K
k=1

= arg min
bk∈Rp

k∈IK

 1

n

q∑
j=1

K∑
k=1

‖Yk
j + r

k(t)
j −XkBk

j ‖2 + λ
∑
h∈H
‖B[h]
−j‖

 ;

B̂
k(t+1)
j =

[
(Xk
Sjk)T (Xk

Sjk)
]−

(Xk
Sjk)TYk

j ,

where Sjk = supp(B̃
k(t+1)
j ).

One-step estimator. Algorithm 1, even after the above modifications, is computation-
intensive. The reason behind this is the full tuning and updating of the lower layer neigh-
borhood estimates {Θ̂j} in each iteration. In practice, the algorithm speeds up significantly
without compromising on estimation accuracy if we dispense of the Θ update step in all,
but the last iteration. More precisely, we consider the following one-step version of the
original algorithm.

Algorithm 4 (The one-step JMMLE Algorithm)
1. Initialize B̂ using (7).
2. Initialize Θ̂ using (8).
3. Update B̂ as:

B̂(t+1) = arg min
Bk∈M(p,q)
k∈IK

 1

n

q∑
j=1

K∑
k=1

‖Yk
j − (Yk

−j −XkBk
−j)θ̂

k(0)

j −XkBk
j ‖2 + λn

∑
h∈H
‖B[h]‖


4. Continue till convergence to obtain B̂ = {B̂k}.
5. Obtain Êk := Yk −XkB̂k, k ∈ IK . Update Θ̂ as:

Θ̂j = arg min
Θj∈M(q−1,K)

 1

n

K∑
k=1

‖Êk
j − Êk

−jθ
k
j ‖2 + γ

∑
j 6=j′

∑
g∈Gjj

′
y

‖θ[g]
jj′‖


6. Calculate Ω̂k

y , k ∈ IK using (6).

Compared to one-step algorithms based on first order approximation of the objective
function (Zou and Li, 2008; Taddy, 2017), we let B converge completely, then use these
solutions to recover the support set of the precision matrices. The estimation accuracy of
Ωy depends on the solution B̂ used to solve the sub-problem (12) (Theorem 6 and Lemmas

20 and 21). Thus, letting B converge first ensures that the solutions Θ̂ and Ω̂y obtained
subsequently are of a better quality compared to a simple early stopping of the JMMLE
algorithm.

We compared the performance of both versions of our algorithm for the two data set-
tings with smaller feature dimensions. Computations were performed on the HiperGator
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(p, q, n) Method TPR(B̂) TNR(B̂) MCC(B̂) RF(B̂)

(60,30,100) Full 0.982 (0.013) 0.994 (0.003) 0.959 (0.014) 0.23 (0.021)
One step 0.971 (0.02) 0.996 (0.003) 0.965 (0.014) 0.242 (0.033)

(30,60,100) Full 0.966 (0.015) 0.991 (0.003) 0.954 (0.008) 0.269 (0.026)
One step 0.968 (0.013) 0.992 (0.002) 0.957 (0.008) 0.265 (0.024)

(p, q, n) Method TPR(Ω̂y) TNR(Ω̂y) MCC(Ω̂y) RF(Ω̂y)

(60,30,100) Full 0.756 (0.019) 0.907 (0.005) 0.616 (0.021) 0.318 (0.007)
One step 0.764 (0.018) 0.904 (0.006) 0.678 (0.024) 0.321 (0.008)

(30,60,100) Full 0.695 (0.016) 0.943 (0.002) 0.552 (0.015) 0.304 (0.005)
One step 0.696 (0.018) 0.943 (0.002) 0.552 (0.018) 0.304 (0.005)

Table 6: Comaprison of evaluation metrics for full and one-step versions of the JMMLE algorithm.

(p, q, n) Method Comp. time (min)

(60,30,100) Full 6.1
One-step 0.7

(30,60,100) Full 22.4
One-step 2.7

Table 7: Comaprison of computation times (averaged over 150 replications) for full and one-step
versions of the JMMLE algorithm.

supercomputer1, in parallel across 8 cores of an Intel E5-2698v3 2.3GHz processor with 2GB
RAM per core, the parallelization being done across the range of values for λn within each
replication. As seen in Table 6, performance is indistinguishable across all the metrics, but
the one-step algorithm saves a significant amount of computation time compared to the full
version (Table 7).

5. Real data example

We now apply the proposed methodology to breast cancer data obtained from The Cancer
Genome Atlas2. The data set consists of mRNA and RNAseq expression values for 3980
genes, divided into 88 pathways, for n1 = 262 estrogen receptor positive or ER-positive
(ER+) and n2 = 76 ER-negative (ER–) breast cancer patients. As preprocessing steps,
we consider single-pathway genes, and fit coordinate-wise lasso models to each column of
the log-transformed response matrices Yk, with Xk as predictors (say Lasso(ykj ∼ Xk)).

We then take the top 100 columns of each Yk that have lowest prediction errors (say Sk),
and take unions of these column indices (i.e. S := S1 ∪ S2) to construct the final response
matrices Yk → Yk

S . This gives us the final response dimension as q = 166. To select columns
of Xk, we take the top 200 predictor indices that have the highest mean absolute coefficient
values across the lasso models on the selected response indices, i.e. Lasso(ykj ∼ Xk) where
j ∈ S, and take the union of these indices. The resulting predictor dimension is p = 339.

1. https://www.rc.ufl.edu/services/hipergator

2. https://www.genome.gov/Funded-Programs-Projects/Cancer-Genome-Atlas
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RMSSPE NZ(B̂) NZ(Ω̂y)

JMMLE 14.38 (3.27) 0.014 (0.004) 0.077 (0.009)
Separate 17.1 (2.26) 8.8 ×10−5 (3.5 ×10−4) 0.085 (0.077)
JSEM 18.19 (4.04) 0 (0) 0.09 (0.002)

Table 8: Performance metric comparison over 100 random splits of the real data

Our objective here is to (a) obtain mRNA-mRNA, mRNA-RNAseq and RNAseq-RNAseq
networks for the ER+ and ER– groups while incorporating pathway information, (b) test
for differential strengths of mRNA-RNAseq connections between the two sample groups. To
this end, we take mRNA and RNAseq expression data as the top and bottom layers (X and
Y in our nomenclature), respectively, and consider pathway-wise groups. Note that gene
expression (data in the Y layer) is controlled on two levels. First, transcription is controlled
by limiting the amount of mRNA (data in the X layer) that is produced from a particular
gene. The second level of control is through post-transcriptional events that regulate the
translation of mRNA into proteins. For comparison purposes, we apply JMMLE and the
separate estimation method Lin et al. (2016a) for estimating B and Ωy, and JSEM for es-
timating Ωy. For comparing estimation performances of the methods, we use the following
performance metrics calculated over 100 random 80:20 train-test splits of samples within
each group:

• Root Mean Squared Scaled Prediction Error:

RMSSPE(B̂, Ω̂y) =

[
K∑
k=1

1

nk
Tr
(
Yk −XkB̂k)T (Yk −XkB̂k)Ω̂k

y

)
.

]1/2

• Proportion of non-zero coefficients in B̂:

NZ(B̂k) =
| supp(B̂k)|

pq
; NZ(B̂) =

1

K

K∑
k=1

NZ(B̂k).

• Proportion of non-zero coefficients in off-diagonal entries of Ω̂y:

NZ(Ω̂k
y) =

| supp(Ω̂k
y)− q|

q2
; NZ(Ω̂y) =

1

K

K∑
k=1

NZ(Ω̂k
y).

Table 8 presents the comparison results. JMMLE and the separate estimation procedure
obtain about the same amount of non-zero coefficients in Ωy on average. Estimation of only

the lower layer coefficients detects the most entries in the precision matrices Ω̂y, but has

the highest prediction errors (calculated using B̂ = 0). Separate estimation also hardly
detects any non-zero elements in B, while JMMLE detects around 1.4% of the inter-layer
connection as non-zero. As a result, prediction errors are much lower for JMMLE.

To summarize within-layer and between-layer interactions, we consider the 10 highest
entries in B̂k, Ω̂k

y ; k = 1, 2 in terms of absolute value. Table 9 gives their magnitudes, as
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Sample group ER+ (k = 1) ER- (k = 2)

Value mRNA RNAseq Value mRNA RNAseq
-5.87 TAF9 3 TRA2B 1 -11.32 TAF9 3 TRA2B 1
-5.7 KCNN3 3 THOC7 1 -6.01 TAF9 3 UQCRQ 1
4.9 SQRDL 3 COX6A1 1 -5.38 TAF9 3 TAF9 1
4.35 SQRDL 3 ATP5G3 1 5.17 SQRDL 3 COX6A1 1

Conections -4.34 KCNN3 3 PABPN1 1 5.14 SQRDL 3 ACTR3 1

in B̂ 4.31 SQRDL 3 ACTR3 1 4.55 SQRDL 3 SSU72 1
-4.21 KCNN3 3 SNRPD2 1 -4.52 KCNN3 3 THOC7 1
3.98 CYP7B1 3 ECH1 1 4.4 UNG 3 COX6A1 1
3.88 SQRDL 3 SSU72 1 -4.18 TAF9 3 ATP5J 1
3.87 CYP7B1 3 FTH1 1 4.17 CYP7B1 3 FTH1 1

Value RNASeq1 RNAseq2 Value RNAseq1 RNAseq2
-0.27 ECH1 1 PIGY 1 -0.16 THOC7 1 PABPN1 1
-0.25 THOC7 1 PABPN1 1 -0.12 RBBP4 1 PABPN1 1
-0.22 COX6A1 1 SF3B5 1 -0.11 NAPA 1 CD63 1
-0.21 PCBP1 1 SH3GL1 1 -0.11 SOD1 1 SNRPD3 1

Conections -0.21 ECH1 1 DDX42 1 -0.1 EIF3I 1 TXNL4A 1

in Ω̂y -0.19 EXOSC2 1 QARS 1 -0.1 PCBP1 1 SH3GL1 1
-0.19 QARS 1 PIGY 1 -0.1 TAF9 1 COX7C 1
-0.18 ECH1 1 SDHC 1 -0.1 ECH1 1 HNRNPA1L2 1
-0.18 PABPN1 1 VAMP8 1 -0.1 KARS 1 FUNDC1 1
-0.18 EIF3I 1 TXNL4A 1 -0.1 ECH1 1 PIGY 1

Value mRNA1 mRNA2 Value mRNA1 mRNA2
-0.32 GP1BB 3 COX6A2 3 -0.19 PTPRC 3 ITGAL 3
-0.32 PTTG1 3 PTTG2 3 -0.17 PTPRC 3 CD2 3
-0.3 ABCA8 3 C7 3 -0.16 PDCD1 3 ICOS 3
-0.3 PTPRC 3 CD2 3 -0.16 PDCD1 3 CD2 3

Conections -0.29 ABCA8 3 FXYD1 3 -0.16 PTPRC 3 CYBB 3

in Ω̂x -0.28 PDCD1 3 ICOS 3 -0.15 GP1BB 3 COX6A2 3
-0.26 PDCD1 3 CD2 3 -0.15 PTPRC 3 IL2RG 3
-0.25 CD6 3 PDCD1 3 -0.15 PTPRC 3 CTSS 3
-0.25 PTPRC 3 PTGER4 3 -0.14 PTPRC 3 PTGER4 3
-0.25 LAT 3 PDCD1 3 -0.14 LCP2 3 CYBB 3

Table 9: Top 10 within-layer and between-layer connections obtained by JMMLE.

well as the corresponding mRNA-RNAseq and RNAseq-RNAseq pairs. For the sake of
comparison, we also report the same numbers and mRNA-mRNA pairs from the analysis
of only the top layer using JSEM (Ma and Michailidis, 2016). According to our findings,
the mRNA SQRDL 3 is involved in downregulation of a number of RNA sequences in
both groups of samples. Expression of the SQRDL gene is positively associated with high
macrophage activity (Lyons et al., 2017), and its lower expression has been associated with
breast cancer (Liu et al., 2007; Pires et al., 2018). In the ER+ group, KCNN3 3 seems to
be more heavily involved in doing so than ER–. This is also the case for TAF9 3, but in the
ER– group vs. ER+. Considering the crucial roles of these genes in cancer cell migration,
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(a)

mRNA Statistic

DCTN2 3 17015.2
ST8SIA1 3 13514.6
FUT5 3 8315.7
XPA 3 7194.2
RETSAT 3 5676.0
TAF4B 3 5385.8
CYP7B1 3 4189.6
UNG 3 3709.1
RAD23A 3 2793.8
TAF9 3 2427.1

(b)

mRNA RNAseq Statistic

DCTN2 3 EIF4A1 1 2560.6
DCTN2 3 ARPC4 1 2021.8
ST8SIA1 3 EIF4A1 1 1948.2
DCTN2 3 PAIP1 1 1922.3
DCTN2 3 SNX5 1 1825.1
DCTN2 3 SUMO3 1 1817.6
DCTN2 3 CETN2 1 1779.2
DCTN2 3 SF3B4 1 1755.8
ST8SIA1 3 ARPC4 1 1516.5
ST8SIA1 3 PAIP1 1 1453.9

Table 10: Hypothesis testing outputs from real data analysis: (a) top-10 mRNAs and their global
test statistic (Di) values, (b) top-10 mRNA-RNAseq pairs and their simultaneous test statistic (dij)
values

drug resistance (KCNN3, Liu et al. (2018)) and estrogen signalling (TAF9, Zhang et al.
(2015)), the evidence of differential expression may be significant in developing subtype-
specific therapeutic targets.

After applying our debiasing procedure and performing the global test, 23 mRNA-s were
determined to have significant differences in the corresponding rows across sample groups,
i.e. between b̂1

i and b̂2
i . Within connections of these mRNAs, 957 total mRNA-RNAseq

connections were determined by the simultaneous testing procedure to have significant dif-
ferences between their corresponding coefficients, i.e. between b̂1ij and b̂2ij . Table 10 summa-
rizes the top-10 statistic values in each situation. The DCTN2 3 mRNA shows significant
differential interactions with a number of RNA sequences—up-regulation of the DCTN2
gene has previously been found to be associated with chemotherapy resistance in breast
cancer patients (Folgueira et al., 2005).

6. Discussion

This work introduces an integrative framework for knowledge discovery in multiple multi-
layer Gaussian Graphical Models. We exploit a priori known structural similarities across
parameters of the multiple models to achieve estimation gains compared to separate es-
timation. More importantly, we derive results on the asymptotic distributions of generic
estimates of the multiple regression coefficient matrices in this complex setup, and perform
global and simultaneous testing for pairwise differences within the between-layer edges.

6.1 Performance improvement

The JMMLE algorithm due to the incorporation of prior information about sparsity patterns
improves on the theoretical convergence rates of the estimation method for single multi-layer
GGMs (i.e. K = 1) introduced in Lin et al. (2016a). With our initial estimates, the method
of Lin et al. (2016a) achieves the following convergence rates for the estimation of B and
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Ωy, respectively (using Corollary 4 therein):

‖β̂ − β0‖F ≤
K∑
k=1

O

(√
bk log(pq)

n

)
,

K∑
k=1

‖Ω̂k
y − Ωk

y0‖F ≤ O
(
K

√
(S + q) log(pq)

n

)
.

In comparison, JMMLE has the following rates:

‖β̂ − β0‖F ≤ O
(√
|hmax|B log(pq)

n

)
,

K∑
k=1

‖Ω̂k
y − Ωk

y0‖F ≤ O
(√

KS|gmax| log(pq)

n

)
.

For B, joint estimation outperforms separate estimation when group sizes are small, so

that (|hmax|B)1/2 <
∑

k b
1/2
k . The estimation gain for Ωy is more substantial, especially for

higher values of q. This is corroborated by our simulation outputs (Tables 1 and 2), where
the joint estimates perform better for both sets of parameters, but the differences between
RF errors obtained from joint and separate estimates tend to be lower for Ω̂y than B̂.

6.2 Remaining challenges

Our proposed framework for inference in complex multilayer networks still presents a couple
of challenges, which can benefit from theoretical work pursued in the following directions.
First, the use of tuning parameter selection criteria requires a rigorous analysis, not only to
select parameter estimates that exhibit good finite sample performance, but also to ensure
that the selected estimates when plugged into the hypothesis testing procedures result in
tests and confidence intervals with accurate size, power or coverage guarantees. A number
of existing methods have given consistency results of the (extended) BIC based tuning
parameter selection procedures in high-dimensional regression (Fan and Tang, 2013; Wang
et al., 2013) or graphical model (Foygel and Drton, 2010; Gao et al., 2012) setups. Using
theoretical tools provided therein and generalizing or adapting their conditions to multilayer
settings is a possible avenue that can be explored. To maintain focus on the current problem,
we defer this to future work. Secondly, extending JMMLE to include overlapping within-
or between-layer groups is of interest to tackle practical situations like multiple pathways
sharing a number of common genes. The current algorithm involves fitting multiple group
lasso models (using the R package grpreg), which can be replaced by alternative methods
that can handle overlapping groups.

6.3 Extensions

There are two immediate extensions of our hypothesis testing framework.

(I) In recent work, Liu (2017) proposed a framework to test for structural similarities and
differences across multiple single layer GGMs. For K GGMs with precision matrices Ωk =
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(ωkii′)i,i′∈Ip , a test for the partial correlation coefficients ρkii′ = −ωkii′/
√
ωkiiω

k
i′i′ using residuals

from pK separate penalized neighborhood regressions is developed, one for each variable
of each GGM. To incorporate structured sparsity across k, our simultaneous regression
techniques for all neighborhood coefficients (i.e. (4) and (12)) can be used instead, to
perform testing on the between-layer edges. Theoretical properties of this procedure can
be derived using results in Liu (2017), possibly with adjustments for our neighborhood
estimates to adhere to the rate conditions for the constants an1, an2 therein to account for
a diverging (p, q, n) setup.

(II) For K > 2, detection of the following sets of inter-layer edges can be scientifically
significant:

B1 =

(i, j) :
∑

1≤k<k′≤K

(
bk0,ij − bk

′
0,ij

)2
> 0; i ∈ Ip, j ∈ Iq


B2 =

{
(i, j) : b10,ij = · · · , bK0,ij 6= 0

}
B3 =

{
(i, j) : b10,ij = · · · , bK0,ij = 0

}
e.g. detection of gene-protein interactions that are present, but may have different or
same weights across k (B1 and B2, respectively), and that are absent for all k (B3). The
asymptotic result in Theorem 13 continues to hold in this situation, and an extension of
the global test (Algorithm 2) is immediate. However, extending the FDR control procedure
requires a technically more involved approach.

The strength of our proposed debiased estimator (22) is that only generic estimates of
relevant model parameters that satisfy general rate conditions are necessary to obtain a
valid asymptotic distribution. This translates to a high degree of flexibility in choosing
the method of estimation. Our formulation based on sparsity assumptions (Section 2.2)
is a specific way (motivated by applications in Omics data integration) to obtain the nec-
essary estimates. Sparsity may not be an assumption that is required or even valid in
complex hierarchical structures from different domains of application. For different two-
layer components in such multi-layer setups, low-rank, group-sparse or sparse methods (or
a combination thereof) can be plugged into our alternating algorithm. Results analogous to
those in Section 2.3 need to be established for the corresponding estimators. However, as
long as these estimators adhere to the convergence conditions (T1)-(T3), Theorem 13 can
be used to derive the asymptotic distributions of between-layer edges.

Finally, extending our framework to non-Gaussian data and graph Laplacian structures
is of interest. As seen for the K = 1 case in Lin et al. (2016a), their alternating block
algorithm continues to give comparable results under shrunken or truncated empirical dis-
tributions of Gaussian errors. Similar results may be possible in the general case, and
improvements can come from modifying different parts of the estimation algorithm. For
example, the estimation of the precision matrices based on restricted support sets using
log-likelihoods in (6) can be replaced by methods like nonparanormal estimation (Liu et al.,
2009) or regularized score matching (Lin et al., 2016b). For graph Laplacian structures,
generalization of recent work on multilayer models (Bayram et al., 2020; Kumar et al., 2020)
in the lines of the JMMLE framework may be explored.
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Appendix

Appendix A. Proofs of main results

Proof [Proof of Theorem 5] The theorem is a generalization of Theorem 1 in Lin et al.

(2016a). The proof follows directly from the proof of that theorem, substituting (B̂(k), Θ̂
(k)
ε ), (B∗,Θ∗ε )

and (B∞,Θ∞ε ) therein with (B̂(t), Θ̂
(t)
y ), (B0,Θy0) and (B∞,Θ∞y ), respectively, and their cor-

responding variations as required.

We use the following condition extensively while deriving the results that follow.

Condition 3 (Restricted eigenvalues). A symmetric matrix M ∈ M(b, b) is said to satisfy
the restricted eigenvalue or RE condition with parameters ψ, φ > 0, denoted as curvature
and tolerance, respectively, if

θTMθ ≥ ψ‖θ‖2 − φ‖θ‖21

for all θ ∈ Rb. In short, this is denoted by M ∼ RE(ψ, φ).

Starting from Bickel et al. (2009), different versions of the RE conditions have been
proposed and used in high-dimensional analysis (Loh and Wainwright, 2012; Basu and
Michailidis, 2015; Ma and Michailidis, 2016; van de Geer and Bühlmann, 2009) to ensure
that a covariance matrix satisfies a somewhat relaxed positive-definiteness condition.

Proof [Proof of Theorem 6] The proof strategy is as follows. We first show that given fixed
(X , E), and some conditions on Ẽk := Yk −XkB̃k, k ∈ IK , the bounds in Theorem 6 hold.
We then show that for random (X , E), those conditions hold with probability approaching
1.

Lemma 20 Assume fixed X , E and deterministic B̃ = {B̃k}, and the following conditions.

(A1) For k ∈ IK ,

‖B̃k −Bk
0‖1 ≤ Cβ

√
log(pq)

n

with Cβ is non-negative and depends on B0 only.

(A2) For all j ∈ Iq,

1

n

∥∥∥(Ẽk
−j)

T ẼkTk
0,j

∥∥∥
∞
≤ Q

(
Cβ,Σ

k
x0,Σ

k
y0

)√ log(pq)

n
,

where Q
(
Cβ,Σ

k
x0,Σ

k
y0

)
is non-negative and depends on B0,Σ

k
x0 and Σk

y0 only.

(A3) Denote S̃k = (Ẽk)T Ẽk/n. Then Ŝk ∼ RE(ψk, φk) with Kqφ ≤ ψ/2 where ψ =
mink ψ

k, φ = maxk φ
k.

Then the following hold

(I) Given the choice of tuning parameter

γn ≥ 4
√
|gmax|Q0

√
log(pq)

n
; Q0 := max

k∈IK
Q
(
Cβ,Σ

k
x0,Σ

k
y0

)
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‖Θ̂j −Θ0,j‖F ≤ 12
√
sjγn/ψ, (29)∑

j 6=j′,g∈Gjj
′

y

‖θ̂[g]

jj′ − θ
[g]
0,jj′‖ ≤ 48sjγn/ψ. (30)

| supp(Θ̂j)| ≤ 128sj/ψ (31)

(II) For the choice of tuning parameter γn = 4
√
|gmax|Q0

√
log(pq)/n,

1

K

K∑
k=1

‖Ω̂k
y − Ωk

y0‖F ≤ O
(
Q0

√
|gmax|S
K

√
log(pq)

n

)
(32)

Condition (A1) holds by assumption. When X and E are random, the following propo-
sition ensures that (A2) and (A3) hold with probabilities approaching to 1.

Lemma 21 Consider deterministic B̃ satisfying assumption (A1), and conditions (E1),
(E2) from the main paper. Then for sample size n % log(pq) and k ∈ IK ,

1. S̃k satisfies the RE condition: S̃k ∼ RE(ψk, φk), where

ψk =
Λmin(Σk

x0)

2
; φk =

ψk log p

n
+ 2Cβc2[Λmax(Σk

x0)Λmax(Σk
y0)]1/2

log(pq)

n

with probability ≥ 1− 6c1 exp[−(c2
2 − 1) log(pq)]− 2 exp(−c3n), c1, c3 > 0, c2 > 1.

2. The following deviation bound is satisfied for any j ∈ Iq∥∥∥∥ 1

n
(Ẽk
−j)

T ẼkTk
0,j

∥∥∥∥
∞
≤ Q

(
Cβ,Σ

k
x0,Σ

k
y0

)√ log(pq)

n

with probability ≥ 1−1/pτ1−2−12c1 exp[−(c2
2−1) log(pq)]−6c4 exp[−(c2

5−1) log(pq)], c4 >
0, c5 > 1, τ1 > 2, where

Q
(
Cβ,Σ

k
x0,Σ

k
y0

)
=
[
2C2

βV
k
x + 4Cβc2[Λmax(Σk

x0)Λmax(Σk
y0)]1/2

]√ log(pq)

n
+

c5

[
Λmax(Σk

y0)σky0,j,−j

]1/2
√

log q

log(pq)

with σky0,j,−j = V ar(Ej − E−jθ0,j), and

V k
x =

√
log 4 + τ1 log p

ckxn
; ckx =

[
128(1 + 4Λmax(Σk

x0))2 max
i

(σkx0,ii)
2

]−1

We prove the main theorem by putting together Lemma 20 and Lemma 21, and simplifying
the constants c1 := 12c1, c4 := 6c4.

Proof [Proof of Theorem 7] The strategy is the same as in Theorem 6. We first establish
the theorem statements hold for fixed X , E in the presence of certain regularity conditions,
and then show that those conditions are satisfied with probability approaching 1 when X
and E are random.

39



Majumdar and Michailidis

Lemma 22 Assume fixed (X , E), and deterministic Θ̃ = {Θ̃j}, so that

(B1) For j ∈ Iq,

‖Θ̃j −Θ0,j‖F ≤ CΘ

√
log q

n
,

for some CΘ dependent on Θ0 only.

(B2) Denote Γ̃
k

= (T̃k)2 ⊗ (Xk)TXk/n, γ̃k = (T̃k)2 ⊗ (Xk)TYk/n. Then the deviation
bound holds: ∥∥∥γ̃k − Γ̃

k
β0

∥∥∥
∞
≤ R(CΘ,Σ

k
x0,Σ

k
y0)

√
log(pq)

n
.

where R(CΘ,Σ
k
x0,Σ

k
y0) depends on Θ0,Σ

k
x0 and Σk

y0 only, and {T̃k} are defined using Θ̃
similar to (14).

(B3) Γ̃ ∼ RE(ψ∗, φ∗) with Kpqφ∗ ≤ ψ∗/2.

Then, given the choice of the tuning parameter

λn ≥ 4
√
|hmax|R0

√
log(pq)

n
; R0 := max

k∈IK
R
(
CΘ,Σ

k
x0,Σ

k
y0

)
the following holds

‖β̂ − β0‖1 ≤ 48
√
|hmax|Bλn/ψ∗ (33)

‖β̂ − β0‖ ≤ 12
√
Bλn/ψ

∗ (34)∑
h∈H
‖β[h] − β

[h]
0 ‖ ≤ 48Bλn/ψ

∗ (35)

(β̂ − β0)T Γ̂(β̂ − β0) ≤ 72Bλ2
n/ψ

∗ (36)

Condition (B1) holds by assumption. Next, we verify that conditions (B2) and (B3)
hold with high probability given fixed Θ̂.

Lemma 23 Consider deterministic Θ̂ satisfying assumption (B1). Also assume conditions
(E3), (E4) from the main body of the paper. Then, for sample size n % log(pq),

1. Γ̃ satisfies the RE condition: Γ̃ ∼ RE(ψ∗, φ∗), where

ψ∗ = min
k
ψk

(
min
i
ψjk − dkCΘ

√
log(pq)

n

)
, φ∗ = max

k
φk

(
min
i
φjk + dkCΘ

√
log(pq)

n

)

with probability ≥ 1− 2 exp(c3n), c3 > 0.

2. The deviation bound in (B2) is satisfied with probability ≥ 1−12c1 exp[(c2
2−1) log(pq)],

where

R
(
CΘ,Σ

k
x0,Σ

k
y0

)
= c2

dkCΘ

√
log(pq)

n
[Λmax(Σk

x0)Λmax(Σk
y0)]1/2 +

[
Λmax(Σk

x0)

Λmin(Σk
y0)

]1/2
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The theorem follows straighforwardly by putting together the results from Lemmas 22
and 23, and simplifying the constants c1 := 12c1, c4 := 6c4.

Proof [Proof of Theorem 9] The first part is immediate from the proof of part I of Theorem
4 in Lin et al. (2016a). By choice of λn, we now have

‖B̂k(0) −Bk
0‖1 = O

(√
log(pq)

n

)
,

so we can apply Theorem 6 to prove the bounds on {Θ̂(0)
j }.

Proof [Proof of Theorem 13] Define the following:

D̂i = vec(b̂1
i , . . . , b̂

K
i ); Rk

i = Xk
i −Xk

−iζ̂
k

i ; k ∈ IK
Then, from (22) we have

Mi(Ĉi − D̂i)
T =

1√
n


1
ŝ1i

(R1
i )
T Ê1

...
1
ŝKi

(RK
i )T ÊK

 (37)

We now decompose Êk :

Êk = Yk −XkB̂k

= Ek + Xk(Bk
0 − B̂k)

= Ek + Xk
i (b

k
0i − b̂ki ) + Xk

−i(B
k
0,−i − B̂k

−i)

Putting them back in (37) and using tki = (Rk
i )
TXk

i /n, we get

Mi(Ĉi − D̂i)
T =

1√
n


1
ŝ1i

(R1
i )
TE1

...
1
ŝKi

(RK
i )TEK

+ Mi(Di − D̂i)
T

+
1√
n


1
ŝ1i

(R1
i )
TX1
−i(B

1
0,−i − B̂1

−i)

...
1
ŝKi

(RK
i )TXK

−i(B
K
0,−i − B̂K

−i)



⇒ Ω̂1/2
y Mi(Ĉi −Di)

T =
Ω̂

1/2
y√
n


1
ŝ1

(R1
i )
TE1

...
1
ŝK

(RK
i )TEK

+
Ω̂

1/2
y√
n


1
ŝ1i

(R1
i )
TX1
−i(B

1
0,−i − B̂1

−i)

...
1
ŝKi

(RK
i )TXK

−i(B
K
0,−i − B̂K

−i)


(38)

At this point, we drop k and 0 in the subscripts since there is no ambiguity, and establish
the following:

41



Majumdar and Michailidis

Lemma 24 Given conditions (T1) and (T2), the following holds for sample size n such
that n % log(pq):

1√
nŝi

Ω̂1/2
y ETRi ∼ Nq(0, I) + S1n;

‖S1n‖∞ ≤
D

1/2
Ω (2 +Dζ)c2[Λmax(Σx)Λmax(Σe)]

1/2
√

log(pq)
√
σx,i,−i − n−1/4 −Dζ

√
Vx

= O

(
log(pq)√

n

)
(39)

with probability ≥ 1− 6c1 exp[−(c2
2 − 1) log(pq)]− 1/pτ1−2 − κi/

√
n, where κi := V ar[(Xi −

X−iζ0,−i)
2].

Additionally, given condition (T3) we have∥∥∥∥ 1√
nŝi

RT
i X−i(B−i − B̂−i)Ω̂

1/2
y

∥∥∥∥
∞

≤ Dβ(Λmin(Σy)
1/2 +D

1/2
Ω )

σx,i,−i − n−1/2 −Dζ

√
Vx

[
c7

√
(
√
σx,i,−iΛmax(Σx,−i)) log p+

√
nDζVx

]
= O

(
log(pq)√

n

)
(40)

holds with probability ≥ 1 − 6c6 exp[−(c2
7 − 1) log(pq)] − 1/pτ1−2 − κi/

√
n for some c6 >

0, c7 > 1.

Given Lemma 24, the first and second summands on the right hand side of (38) are
bounded above by applying each of (39) and (40) K times. This completes the proof.

Proof [Proof of Theorem 15] From (38) and Lemma 24 we have that

(Ω̂k
y)

1/2mk
i (ĉ

k
i − bk0i) ∼ Nq(0, I) + Sk2n, (41)

where ‖Sk2n‖∞ = oP (1). We next obtain the following lemma:

Lemma 25 Drop k in superscripts and 0 in subscripts. Given condition (T1), the following
holds with probability ≥ 1− 6c6 exp[−(c2

7 − 1) log(p− 1)]− 1/pτ2−2 − κi/
√
n, τ2 > 2:∣∣∣∣mi√

n
−√σx,i,−i

∣∣∣∣ ≤ δi :=

√
log 4 + τ2

cin
+

Dζ + 1
√
σx,i,−i − n−1/2 −Dζ

√
Vx
×[

c7[(σx,i,−iΛmax(Σx,−i)]
1/2

√
log p

n
+DζVx

]
, (42)

where ci = [128(1 + 4σx,i,−i)
2(σx,i,−i)

2]−1, and the sample size satisfies n % log p.

We also provide the following general result:

Lemma 26 Consider two positive definite matrices A,A1 ∈ M(a, a). Then, for δ > 0, we
have

‖A−A1‖∞ ≤ δ ⇒ ‖A1/2 −A
1/2
1 ‖∞ ≤ δ1/2.
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Applying Lemma 26 it follows immediately from assumption (T2) that∥∥∥Ω̂1/2
y − Ω1/2

y

∥∥∥
∞
≤ D1/2

Ω (43)

Using Lemma 25 in conjunction with (43) we now have

√
n(Ωk

y0)1/2
√
σkx0,i,−i(ĉ

k
i − bk0i) ∼ Nq(0, I) + Sk3n

⇒ √nΣ
−1/2
i (ĉ1

i − ĉ2
i − δ) ∼ Nq (0, I) + S3n, (44)

where Σi := Σ1
y0/σ

1
x0,i,−i + Σ2

y0/σ
2
x0,i,−i and S3n = S1

3n − S2
3n, ‖Sk3n‖∞ = oP (1). We now

break down the left hand side above as

√
nΣ
−1/2
i (ĉ1

i − ĉ2
i − δ) =

√
nΣ
−1/2
i Σ̂

1/2
i Σ̂

−1/2
i (ĉ1

i − ĉ2
i )−

√
nΣ
−1/2
i δ

= (Σ
−1/2
i Σ̂

1/2
i − I).

√
nΣ̂
−1/2
i (ĉ1

i − ĉ2
i )+

√
nΣ̂
−1/2
i (ĉ1

i − ĉ2
i )−

√
nΣ
−1/2
i δ, (45)

with

Σ̂i :=
nΣ̂1

y

(m1
i )

2
+

nΣ̂2
y

(m2
i )

2
.

Next, we obtain the following lemma:

Lemma 27 Given conditions (T1) and (T2), for the pooled covariance matrix estimate Σ̂i,
we have ∥∥∥Σ̂i − Σi

∥∥∥
∞

= o(1),

for sample size n % log p.

Lemma 26 now implies that ‖Σ̂1/2
i − Σ

1/2
i ‖∞ = o(1). Putting this in the first summand of

(45), then using (44) we get

√
nΣ̂
−1/2
i (ĉ1

i − ĉ2
i )−

√
nΣ
−1/2
i δ ∼ Nq (0, I) + S4n,

with ‖S4n‖∞ = oP (1). The power of the global test follows as a consequence. Finally, the
lower bound on the order of ‖δ‖ holds because nδTΣ−1

i δ ≥ n‖δ‖2Λmin(Σ−1
i ), and

Λmin(Σ−1
i ) =

Λmax(Σ1
y0)

σ1
x,i,−i

+
Λmax(Σ2

y0)

σ2
x,i,−i

.

Proof [Proof of Theorem 17] The proof follows the general structure of Theorem 4.1 in Liu
and Shao (2014), with two modifications. Firstly, we replace the bound in equation (12) of
Liu and Shao (2014) by a new deviation bound

P

(∣∣∣∣dij − µj
σj

∣∣∣∣ ≥ t) = (1− Φ(t))(1 + o(1))
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for any t, since (dij − µj)/σj ∼ N(0, 1) + oP (1) from Corollary 14. We replace Gκ(t) in all
following calculations in Liu and Shao (2014) with 1 − Φ(t). Secondly, we need to ensure
that given both Σ1

y0 and Σ2
y0 satisfy the condition (D1) or (D1*), the pooled covariance

matrix Σ1
y0/σ

1
x0,i,−i + Σ2

y0/σ
2
x0,i,−i also does so.

For this, denote ck = σkx0,i,−i, k = 1, 2. Notice that for any C1, C2 > 0,

rkjj′ ≥ Ck ⇒ σky0,jj′ ≥ (σky0,jjσ
k
y0,j′j′)

1/2Ck

⇒
σ1
y0,jj′

c1
+
σ2
y0,jj′

c2
≥

(σ1
y0,jjσ

1
y0,j′j′)

1/2C1

c1
+

(σ2
y0,jjσ

2
y0,j′j′)

1/2C2

c2

⇒
σ1
y0,jj′/c1 + σ2

y0,jj′/c2

(σ1
y0,jjσ

1
y0,j′j′)

1/2/c1 + (σ2
y0,jjσ

2
y0,j′j′)

1/2/c2
≥ min{C1, C2}.

It now follows that (D1) or (D1*) holds for the pooled covariance matrices.

Appendix B. Proofs of auxiliary results

Proof [Proof of Lemma 20] The proof has the same structure as the proof of Theorem 1
in Ma and Michailidis (2016), where consistency of the (single layer) JSEM estimates are
established. Part (I) is analogous to part A.1 therein, but the proof strategy is completely
different, which we provide in detail next. Our part (II) follows along similar lines as parts
A.2 and A.3, incorporating the updated quantities from the first part (A.1). For this part
of the proof, we provide an outline and leave details to the reader.

Proof of part (I). In its reparametrized version, (12) becomes

T̂j = arg min
Tj

 1

n

K∑
k=1

‖(Yk −XkB̂k)Tk
j ‖2 + γn

∑
j 6=j′,g∈Gjj

′
y

‖T[g]
jj′‖

 (46)

with T
[g]
jj′ := (T kjj′)k∈g. Now for any Tj ∈M(q,K) we have

1

n

K∑
k=1

‖(Yk−XkB̂k)T̂k
j ‖2+γn

∑
j 6=j′,g∈Gjj

′
y

‖T̂[g]
jj′‖ ≤

1

n

K∑
k=1

‖(Yk−XkB̂k)Tk
j ‖2+γn

∑
j 6=j′,g∈Gjj

′
y

‖T[g]
jj′‖

For Tj = T0,j this reduces to

K∑
k=1

(dkj )
T Ŝkdkj ≤ −2

K∑
k=1

(dkj )
T ŜkTk

0,j + γn
∑

j 6=j′,g∈Gjj
′

y

(
‖T[g]

jj′‖ − ‖T
[g]
jj′ + d

[g]
jj′‖
)

(47)
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with dkj := T̂k
j − Tk

0,j etc. For the kth summand in the first term on the right hand side,

since dkjj = 0, Êkdkj = Êk
−jd

k
−j . Thus

K∑
k=1

∣∣∣(dkj )T ŜkTk
0,j

∣∣∣ =

K∑
k=1

∣∣∣∣dkj . 1n(Êk)T ÊkTk
0,j

∣∣∣∣
≤

K∑
k=1

∥∥∥∥ 1

n
(Êk
−j)

T ÊkTk
0,j

∥∥∥∥
∞
‖dk−j‖1

≤

 ∑
j 6=j′,g∈Gjj

′
y

‖d[g]
jj′‖

Q0

√
|gmax|

√
log(pq)

n

by assumption (A2). For the second term, suppose S0,j is the support of Θ0,j , i.e. S0,j =

{(j′, g) : θ
[g]
jj′ 6= 0}. Then

∑
j 6=j′,g∈Gjj

′
y

(
‖T[g]

jj′‖ − ‖T
[g]
jj′ + d

[g]
jj′‖
)
≤

∑
(j′,g)∈S0,j

(
‖T[g]

jj′‖ − ‖T
[g]
jj′ + d

[g]
jj′‖
)
−

∑
(j′,g)/∈S0,j

‖d[g]
jj′‖

≤
∑

(j′,g)∈S0,j

‖d[g]
jj′‖ −

∑
(j′,g)/∈S0,j

‖d[g]
jj′‖

so that by choice of γn, (47) reduces to

K∑
k=1

(dkj )
T Ŝkdkj ≤

γn
2

 ∑
(j′,g)∈S0,j

‖d[g]
jj′‖+

∑
(j′,g)/∈S0,j

‖d[g]
jj′‖

+ γn

 ∑
(j′,g)∈S0,j

‖d[g]
jj′‖ −

∑
(j′,g)/∈S0,j

‖d[g]
jj′‖


=

3γn
2

∑
(j′,g)∈S0,j

‖d[g]
jj′‖ −

γn
2

∑
(j′,g)/∈S0,j

‖d[g]
jj′‖

≤ 3γn
2

∑
j 6=j′,g∈Gjj

′
y

‖d[g]
jj′‖ (48)

Since the left hand side is ≥ 0, this also implies∑
(j′,g)/∈S0,j

‖d[g]
jj′‖ ≤ 3

∑
(j′,g)∈S0,j

‖d[g]
jj′‖ ⇒

∑
j 6=j′,g∈Gjj

′
y

‖d[g]
jj′‖ ≤ 4

∑
(j′,g)∈S0,j

‖d[g]
jj′‖ ≤ 4

√
sj‖Dj‖F

with Dj = (d1
j , . . . ,d

K
j ). Now the RE condition on Ŝk means that

K∑
k=1

(dkj )
T Ŝkdkj ≥

K∑
k=1

(
ψk‖dkj ‖2 − φk‖dkj ‖21

)
≥ ψ‖Dj‖2F−φ‖Dj‖21 ≥ (ψ−Kqφ)‖Dj‖2F ≥

ψ

2
‖Dj‖2F

by assumption (A3).
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Combining the above with (48), we finally have

ψ

3
‖Dj‖2F ≤ γn

∑
j 6=j′,g∈Gjj

′
y

‖d[g]
jj′‖ ≤ 4γn

√
sj‖Dj‖F (49)

Since

(Dj)j′,k = T̂ kjj′ − T k0,jj′ =

{
0 if j = j′

−(θ̂kjj′ − θk0,jj′) if j 6= j′

The bounds in (29) and (30) are obtained by replacing the corresponding elements in (49).

For the bound on |Ŝj | := | supp(Θ̂j)|, notice that if θ̂
[g]

jj′ 6= 0 for some (j′, g),

1

n

∑
k∈g

∣∣∣((Êk
−j)

T Êk(T̂k
j −Tk

0,j))
j′
∣∣∣ ≥ 1

n

∑
k∈g

∣∣∣((Êk
−j)

T ÊkT̂k
j )
j′
∣∣∣− 1

n

∑
k∈g

∣∣∣((Êk
−j)

T ÊkTk
0,j)

j′
∣∣∣

≥ |g|γn −
∑
k∈g

Q(Cβ,Σ
k
x,Σ

k
y)

√
log(pq)

n

using the KKT condition for (12) and assumption (A2). The choice of γn now ensures that
the right hand side is ≥ 3|g|γn/4. Hence,

|Ŝj | ≤
∑

(j′,g)∈Ŝj

16

9n2|g|2γ2
n

∑
k∈g

∣∣∣((Êk
−j)

T Êk(T̂k
j −Tk

0,j))
j′
∣∣∣2

≤ 16

9γ2
n

K∑
k=1

1

n

∥∥∥(Êk
−j)

T Êk(T̂k
j −Tk

0,j)
∥∥∥2

=
16

9γ2
n

K∑
k=1

(dkj )
T Ŝkdkj

≤ 8

3γn

∑
j 6=j′,g∈Gjj

′
y

‖d[g]
jj′‖ ≤

128sj
ψ

using (48) and (49).

Proof of part (II). We denote the selected edge set for the kth Y-network by Êk. Denote
its population version by Ek0 . Further, let

Ω̃k
y = diag(Ωk

y0) + Ωk
y,Ek

0∩Êk

Based on similar derivations as in the proof of Corollary A.1 in Ma and Michailidis (2016),
the following two upper bounds can be established:

|Êk| ≤ 128S

ψ
(50)

1

K

K∑
k=1

‖Ω̃k
y − Ωk

y0‖F ≤
12cy
√
Sγn√

Kψ
(51)
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following which, taking γn = 4
√
|gmax|Q0

√
log(pq)/n,

Λmin(Ω̃k
y) ≥ dy −

48cyQ0

√
|gmax|S

ψ

√
log(pq)

n
≥ (1− t1)dy > 0 (52)

Λmax(Ω̃k
y) ≤ cy +

48cyQ0

√
|gmax|S

ψ

√
log(pq)

n
≤ cy + t1dy <∞ (53)

with 0 < t1 < 1, and the sample size n satisfying

n ≥ |gmax|S
[

48cyQ0

ψt1dy

]2

log(pq).

Following the same steps as part A.3 in the proof of Theorem 4.1 in Ma and Michailidis
(2016), it can be proven using (50)–(53) that

K∑
k=1

∥∥∥Ω̂k
y − Ω̃k

y

∥∥∥2

F
≤ O

(
Q2

0|gmax|S
log(pq)

n

)
The proof is now complete by combining this with (51) and then applying the Cauchy-
Schwarz inequality and the triangle inequality.

Proof [Proof of Lemma 21]
We drop the subscript 0 for true values and the superscript k since there is no scope of

ambiguity. For part 1, we start with an auxiliary lemma:

Lemma 28 For a sub-Gaussian design matrix X ∈ M(n, p) with columns having mean 0p
and covariance matrix Σx, the sample covariance matrix Σ̂x = XTX/n satisfies the RE
condition

Σ̂x ∼ RE
(

Λmin(Σx)

2
,
Λmin(Σx) log p

2n

)
with probability ≥ 1− 2 exp(−c3n) for some c3 > 0.

Denote Ê = Y −XB̂. For v ∈ Rq, we have

vT Ŝv =
1

n
‖Êv‖2

=
1

n
‖(E + X(B0 − B̂))v‖2

= vTSv +
1

n
‖X(B0 − B̂)v‖2 + 2vT (B0 − B̂)T

(
(X)TE

n

)
v (54)

For the first summand, vTSkv ≥ ψy‖v‖2 − φy‖v‖21 with ψy = Λmin(Σy)/2, φy = ψy log p/n
by applying Lemma 28 on S. The second summand is greater than or equal to 0. For the
third summand,

2vT (B0 − B̂)T
(

(X)TE

n

)
v ≥ −2Cβ

∥∥∥∥(X)TE

n

∥∥∥∥
∞
‖v‖21

√
log(pq)

n

by assumption (A1). Now, we use another lemma:

47



Majumdar and Michailidis

Lemma 29 For zero-mean independent sub-gaussian matrices X ∈ M(n, p),E ∈ M(n, q)
with parameters (Σx, σ

2
x) and (Σe, σ

2
e) respectively, given that n % log(pq) the following holds

with probability ≥ 1− 6c1 exp[−(c2
2 − 1) log(pq)] for some c1 > 0, c2 > 1:

1

n
‖XTE‖∞ ≤ c2[Λmax(Σx)Λmax(Σe)]

1/2

√
log(pq)

n

Subsequently we collect all summands in (54) and get

vT Ŝv ≥ ψy‖v‖2 −
(
φy + 2Cβc2[Λmax(Σx)Λmax(Σy)]

1/2 log(pq)

n

)
‖v‖21

with probability ≥ 1 − 2 exp(−c3n) − 6c1 exp[−(c2
2 − 1) log(pq)]. This concludes the proof

of part 1.
To prove part 2, we decompose the quantity in question:∥∥∥∥ 1

n
ÊT
−jÊT0,j

∥∥∥∥
∞

=

∥∥∥∥ 1

n

[
E−j + X(B0,j − B̂j)

]T [
E + X(B0 − B̂)

]
T0,j

∥∥∥∥
∞

≤
∥∥∥∥ 1

n
ET
−jET0,j

∥∥∥∥
∞

+

∥∥∥∥ 1

n
ET
−jX(B0 − B̂)T0,j

∥∥∥∥
∞

+

∥∥∥∥ 1

n
(B0,j − B̂j)

TXTX(B0 − B̂)T0,j

∥∥∥∥
∞

+

∥∥∥∥ 1

n
(B0,j − B̂j)

TXTET0,j

∥∥∥∥
∞

= ‖W1‖∞ + ‖W2‖∞ + ‖W3‖∞ + ‖W4‖∞ (55)

Now

W1 =
1

n
ET
−j(Ej −E−jθ0,j)

For node j in the y-network, E−j and Ej − E−jθ0,j are the neighborhood regression coeffi-
cients and residuals, respectively. Thus they are orthogonal, so we can apply Lemma 29 on
E−j and Ej −E−jθ0,j to obtain that for n % log(q − 1),

‖W1‖∞ ≤ c5 [Λmax(Σy,−j)σy,j,−j ]
1/2

√
log(q − 1)

n
(56)

holds with probability ≥ 1− 6c4 exp[−(c2
5 − 1) log(pq)] for some c4 > 0, c5 > 1.

For W2 and W4, identical bounds hold:

‖W2‖∞ ≤
∥∥∥∥ 1

n
ET
−jX(B0 − B̂)

∥∥∥∥
∞
‖T0,j‖1 ≤

∥∥∥∥ 1

n
ETX

∥∥∥∥
∞
‖B0 − B̂‖1‖T0,j‖1

‖W4‖∞ ≤
∥∥∥∥ 1

n
(B0,j − B̂j)

TXTE

∥∥∥∥
∞
‖T0,j‖1 ≤

∥∥∥∥ 1

n
ETX

∥∥∥∥
∞
‖B0 − B̂‖1‖T0,j‖1

Since Ωy is diagonally dominant, |ωy,jj | ≥
∑

j 6=j′ |ωy,jj′ | for any j ∈ Iq. Hence

‖T0,j‖1 =

q∑
j′=1

|Tjj′ | = 1 +
∑
j 6=j′
|θjj′ | = 1 +

1

ωy,jj

∑
j 6=j′
|ωy,jj′ | ≤ 2
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so that for n % log(pq),

‖W2‖∞ + ‖W4‖∞ ≤ 4Cβc2[Λmax(Σx)Λmax(Σy)]
1/2 log(pq)

n
(57)

with probability ≥ 1 − 12c1 exp[−(c2
2 − 1) log(pq)] by applying Lemma 29 and assumption

(A1).
Finally, for W3, we apply Lemma 8 of Ravikumar et al. (2011) on the (sub-gaussian)

design matrix X to obtain that for sample size

n ≥ 512(1 + 4Λmax(Σk
x))4 max

i
(σkx,ii)

4 log(4pτ1) (58)

we get that with probability ≥ 1− 1/pτ1−2, τ1 > 2,∥∥∥∥XTX

n

∥∥∥∥
∞
≤
√

log 4 + τ1 log p

cxn
+max

i
σx,ii = Vx; cx =

[
128(1 + 4Λmax(Σx))2 max

i
(σx,ii)

2

]−1

Thus, with the same probability,

‖W4‖∞ ≤
∥∥∥∥XTX

n

∥∥∥∥
∞
‖B̂−B0‖21‖T0,j‖1 ≤ 2C2

βVx
log(pq)

n
(59)

We now bound the right hand side of (55) using (56), (57) and (59) to complete the proof,
with the leading term of the sample size requirement being n % log(pq).

Proof [Proof of Lemma 22] The proof follows that of part (I) of Lemma 20, with a different
group norm structure. We only point out the differences.

Putting β = β0 in (13) we get

−2β̂
T
γ̂ + βT Γ̂β̂ + λn

∑
h∈H
‖β̂[h]‖ ≤ −2βT0 γ̂ + βT0 Γ̂β0 + λn

∑
h∈H
‖β[h]

0 ‖

Denote b = β̂ − β0. Then we have

bT Γ̂b ≤ 2bT (γ̂ − Γ̂β0) + λn
∑
h∈H

(‖β[h]
0 ‖ − ‖β

[h]
0 + b[h]‖)

Proceeding similarly as the proof of part (I) of Lemma 20, with a different deviation bound
and choice of λn, we get expressions equivalent to (48) and (49) respectively:

bT Γ̂b ≤ 3

2

∑
h∈H
‖b[h]‖ (60)

ψ∗

3
‖b‖2 ≤ λn

∑
h∈H
‖b[h]‖ ≤ 4λn

√
B‖b‖ (61)

Furthermore, ‖b‖1 ≤
√
|hmax|

∑
h∈H ‖b[h]‖. The bounds in (33), (34), (35) and (36) now

follow.
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Proof [Proof of Lemma 23] For part 1 it is enough to prove that with Σ̂k
x := (Xk)TXk/n,

T̂2
k ⊗ Σ̂k

x ∼ RE(ψk∗ , φ
k
∗) (62)

with high enough probability. because then we can take ψ∗ = mink ψ
k
∗ , φ∗ = maxk φ

k
∗. The

proof of (62) follows similar lines of the proof of Proposition 1 in Lin et al. (2016a), only
replacing Θε, Θ̂ε,X therein with (Tk)2, (T̂k)2,Xk, respectively. We omit the details.

Part 2 follows the proof of Proposition 2 in Lin et al. (2016a).

Proof [Proof of Lemma 24] To show (39) we have

1√
nŝi

Ω̂1/2
y ETRi =

1√
nŝi

(Ω̂1/2
y − Ω1/2

y )ETRi +
1√
nŝi

Ω1/2
y ETRi

The second summand is distributed as Nq(0, I). For the first summand,

1√
n

∥∥∥(Ω̂1/2
y − Ω1/2

y )ETRi

∥∥∥
∞
≤ 1√

n

∥∥∥Ω̂1/2
y − Ω1/2

y

∥∥∥
∞

∥∥ETRi

∥∥
1

≤
√
nDΩ

1

n

[
‖ET (Xi −X−iζi)‖1 + ‖ETX−i(ζ̂i − ζi)‖1

]
≤
√
nDΩ

1

n

[
‖ETXi‖∞ + ‖ETX−i‖∞

{
‖ζi‖1 + ‖ζ̂i − ζi‖1

}]
≤
√
nDΩ

[
1

n
‖ETXi‖∞ +

1 +Dζ

n
‖ETX−i‖∞

]
≤
√
nDΩ(2 +Dζ).

1

n
‖ETX‖∞

because Ωx is diagonally dominant implies ‖ζi‖1 =
∑

i′ 6=i |ωx,ii′ |/ωx,ii ≤ 1, and using as-
sumption (T1) and (43). Applying Lemma 29, the following holds for n % log(pq):

1√
n

∥∥∥(Ω̂1/2
y − Ω1/2

y )ETRi

∥∥∥
∞
≤
√
DΩ(2 +Dζ)c2[Λmax(Σx)Λmax(Σe)]

1/2
√

log(pq) (63)

with probability ≥ 1− 6c1 exp[−(c2
2 − 1) log(pq)].

On the other hand,

s2
i :=

1

n

∥∥Xi −X−iζ0,i

∥∥2 ≤ ŝ2
i +

1

n

∥∥∥X−i(ζ̂i − ζ0,i)
∥∥∥2
≤ ŝ2

i + ‖ζ̂i − ζ0i‖21
∥∥∥∥ 1

n
XT
−iX−i

∥∥∥∥
∞

which implies si ≤ ŝi +Dζ

√
Vx. By applying Lemma 8 of Ravikumar et al. (2011),∥∥∥∥ 1

n
XT
−iX−i

∥∥∥∥
∞
≤
∥∥∥∥ 1

n
XTX

∥∥∥∥
∞
≤ Vx (64)

with probability ≥ 1− 1/pτ1−2, τ1 > 2, and

n ≥ 512(1 + 4Λmax(Σx))4 max
i

(σx,ii)
4 log(4pτ1) (65)
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On the other hand, by Chebyshev’s inequality, for any ε > 0

P
(
|si −√σx,i,−i| ≥ ε

)
≤ V ar(si)

ε2
=

κi
nε2

Taking ε = n−1/4, we have si ≥ √σx,i,−i−n−1/4 with probability ≥ 1−κin−1/2. Then, for n

satisfying (65) and
√
σx,i,−i−n−1/4 > Dζ

√
Vx, we get the bound with the above probability:

1

ŝi
≤ 1
√
σx,i,−i − n−1/4 −Dζ

√
Vx

(66)

Combining (63) and (66) gives the upper bound for the right hand side of (39) with the
requisite probability and sample size conditions.

To prove (40) we have

1

n
‖RT

i X−i‖∞ ≤
1

n
‖(Xi −X−iζ0,i)

TX−i‖∞ +
1

n
‖XT
−iX−i(ζ̂i − ζ0,i)‖∞ (67)

Applying Lemma 29, for n % log(p− 1) we have

1

n
‖(Xi −X−iζi)

TX−i‖∞ ≤ c7[σx,i,−iΛmax(Σx,−i)]
1/2

√
log(p− 1)

n
(68)

with probability ≥ 1−6c6 exp[−(c2
7−1) log(p−1)] for some c6 > 0, c7 > 1. By (64), the sec-

ond term on the right side of (67) is bounded above by DζVx with probability ≥ 1−1/pτ1−2

and n satisfying (65). The bound of (40) now follows by conditions (T2), (T3) and (66).
Since

√
σx,i,−i − n−1/4 > Dζ

√
Vx implies

√
σx,i,−i > Dζ

√
Vx, and Dζ = O(

√
log p/n), the

leading term of the overall sample size requirement is n % log(pq).

Proof [Proof of Lemma 25] We drop k in the superscripts. By definition,

mi√
n

=
1

ŝi

(Xi −X−iζ̂i)
TXi

n

=
1

ŝi

[
‖Xi −X−iζ̂i‖2

n
+

(Xi −X−iζ̂i)
TX−iζ̂i

n

]
≤ ŝi +

1

ŝi
.
1

n
‖RT

i X−i‖∞
(
‖ζ̂i − ζ0i‖1 + ‖ζ0i‖1

)
⇒
∣∣∣∣mi√
n
−√σx,i,−i

∣∣∣∣ ≤ |ŝi −√σx,i,−i|+ 1

ŝi
.
1

n
‖RT

i X−i‖∞
(
‖ζ̂i − ζi‖1 + ‖ζi‖1

)
(69)

By applying Lemma 8 in Ravikumar et al. (2011), we have a bound for the first summand
on the right hand side:

|ŝi −√σx,i,−i| ≤
√

log 4 + τ2

cin
; ci =

[
128(1 + 4σx,i,−i)

2σ2
x,i,−i

]−1
,

with probability 1 − 1/pτ2−2 for some τ2 > 2, and n ≥ 512(1 + 4σx,i,−i)
42σ4

x,i,−i log(4).
For the second summand in the right-hand side of (69), 1/ŝi can be bounded using (66),
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(1/n)‖RT
i X−i‖∞ can be bounded using derivations following (67). Finally, ‖ζ̂i−ζi‖1 ≤ Dζ

from assumption (T1), and ‖ζi‖1 ≤ 1 because Ωx is diagonally dominant and |ζii′ | =
|ωx,ii′ |/ωx,ii for i′ 6= i. The lemma now follows by putting everything back together in (69).

Proof [Proof of Lemma 26] ‖A−A1‖∞ ≤ δ implies that A1 + δJa ≥ A and A+ δJa ≥ A1,
where Ja ∈M(a, a) has all entries 1, and for positive definite matrices P,Q, P ≥ Q means
P−Q is positive definite. Now applying Theorem 1 part (a) in Bellman (1968) we have

(A + δJa)
1/2 ≥ A

1/2
1 ; (A1 + δJa)

1/2 ≥ A1/2.

Using the same result, it is easy to prove that

A1/2 +
√
δJa ≥ (A + δJa)

1/2,

and the same for A1. The lemma follows.

Proof [Proof of Lemma 27] We drop k in the superscripts and 0 in subscripts. Note that
it is enough to prove ∥∥∥∥∥ nΣ̂y

(mi)2
− Σy

σx,i,−i

∥∥∥∥∥
∞

= oP (1).

For this, consider the decomposition

nΣ̂y

(mi)2
=

Σ̂y − Σy + Σy

σx,i,−i
.
σx,i,−i

(mi)2/n

⇒ nΣ̂y

(mi)2
− Σy

σx,i,−i
=

Σ̂y − Σy

(mi)2/n
+

Σy

σx,i,−i

[
1− σx,i,−i

(mi)2/n

]
=

n

(mi)2

[
Σ̂y − Σy +

Σy

σx,i,−i

(
(mi)

2

n
− σx,i,−i

)]
.

From Lemma 25 we now have

mi√
n
≥ √σx,i,−i − δi ⇒ m2

i

n
≥ (
√
σx,i,−i − δ)2 ≥ σx,i,−i − δ2

i ,

so that ∥∥∥∥∥ nΣ̂y

(mi)2
− Σy

σx,i,−i

∥∥∥∥∥
∞

≤
‖Σ̂y − Σy‖∞ + σ−1

x,i,−iδ
2
i ‖Σy‖∞

σx,i,−i − δ2
i

, (70)

with probability ≥ 1− 6c6 exp[−(c2
7 − 1) log(p− 1)]− 1/pτ2−2 − κi/

√
n and for sample size

satisfying n % log p, n ≥ 512(1 + 4σx,i,−i)
42(σx,i,−i)

4 log(4) and
√
σx,i,−i > max{δi, n−1/4 −

Dζ

√
Vx}. For the `∞ norms on the right-hand side, we have

‖Σy‖∞ = ‖Ω−1
y ‖∞ ≤ (∆0(Ωy))

−1 (71)
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following Varah (1975). For a bound on ‖Σ̂y − Σy‖∞, if condition (II) of Theorem 15 is
satisfied then we have

‖Σ̂y − Σy‖∞ ≤ D̃Ω (72)

where D̃Ω = O(DΩ) and DΩ = O(D̃Ω) Bickel and Levina (2008). If condition (I) is satisfied,
denote ε = DΩ/∆0(Ωy). Then

‖Σ̂y − Σy‖∞ = ‖Σ̂y(Ωy − Ω̂y)Σy‖∞
≤ ‖Σ̂y‖∞‖Ωy − Ω̂y‖∞‖Σy‖∞
≤ ‖(I + (Ωy − Ω̂y)Σy)

−1‖∞‖Σy‖∞ε

≤ ε

∆0(Ωy)

[
1 +

∞∑
t=1

(‖(Ωy − Ω̂y)Σy‖∞)t

]
≤ ε

(1− ε)∆0(Ωy)

=
DΩ

(∆0(Ωy)−DΩ)∆0(Ωy)
(73)

Combining (71) with (72) or (73) as required and putting them back in the right-hand side
of (70), we get the needed.

Proof [Proof of Lemma 28] This is the same as in Lemma 2 in Appendix B of Lin et al.
(2016a) and its proof can be found there.

Proof [Proof of Lemma 29] This is a part of Lemma 3 of Appendix B in Lin et al. (2016a),
and is proved therein.
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