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Abstract

Latent Dirichlet Allocation (LDA) is a popular machine-learning technique that identifies
latent structures in a corpus of documents. This paper addresses the ongoing concern that
formal procedures for determining the optimal LDA configuration do not exist by introduc-
ing a set of parametric tests that rely on the assumed multinomial distribution specification
underlying the original LDA model. Our methodology defines a set of rigorous statistical
procedures that identify and evaluate the optimal topic model. The U.S. Presidential Inau-
gural Address Corpus is used as a case study to show the numerical results. We find that
92 topics best describe the corpus. We further validate the method through a simulation
study confirming the superiority of our approach compared to other standard heuristic
metrics like the perplexity index.

Keywords: topic modeling, Latent Dirichlet Allocation, model selection, parametric
testing, optimization

1. Introduction

Textual analysis has been widely used in a number of different contexts across a wide range
of disciplines that include, for example, finance, accounting, marketing, health care, and,
even, movie choices (Rubin and Syeyvers, 2006; Core et al., 2008; Larcker and Zakolyukina,
2012; Lu et al., 2016; Toubia et al., 2019). A category of existing approaches is known
as Bag-of-Words (BoW) techniques and typically rely on simple word counts rather than
evaluating word choices in their intended context. This implies that the order of the words
is not necessary to describe a document. Textual analysis is a broad discipline and its
techniques vary in terms of scope and complexity. Examples include:

• Calculating the number of words that are contained in topic-specific dictionaries;
Examples of recent work include Li (2006); Core et al. (2008); Loughran et al. (2009);
Larcker and Zakolyukina (2012);
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• Metrics that attempt to discern the clarity of text such as the Fog Index (Gunning,
1969) and the Flesch-Kincaid score (Kincaid et al., 1975). These types of measures
are also called readability indexes;

• Supervised learning approaches like Näıve Bayes classification (Russell and Norvig,
2016; Rish et al., 2001; Li, 2010);

• Unsupervised topic modeling techniques such as Latent Dirichlet Allocation (LDA,
(Blei et al., 2003));

• Word embedding techniques that capture a large number of syntactic and semantic
word relationships by building a vector representation of the corpus (Mikolov et al.,
2013).

The focus of this paper is topic modeling, a statistical technique that allows the re-
searcher to extract latent features, called topics, from a collection of textual documents.
One of the most important advantages of topic modeling is its inherent statistical nature.
The identified topics and their atomic components, called words, are both drawn from
probability distributions.

The genesis for this family of models began with the development of Latent Semantic
Indexing (LSI) by Deerwester et al. (1990). This approach uses a singular value decom-
position to extract uncorrelated topics much like principal components analysis. Hofmann
(1999, 2017) extends LSI by specifying a generative model for the data that treats topics
as probability distributions over words. This intuition enables the researcher to disentangle
polysemous words so that one can recognize their potential different meanings. Blei et al.
(2003) further extend this framework by developing a Bayesian version of the probabilistic
LSI (pLSI) model, called Latent Dirichlet Allocation (LDA), to also include a statistical
model at the level of documents.1

LDA is a generative statistical model that identifies narrative topics from a corpus of
documents under the assumption that the document-topic and topic-word distributions
have Dirichlet priors. It relies on the intuition that a document can be represented by a
set of common topics and that the content of a specific document can be described by the
weights that are placed on these topics. The generative nature of LDA is a key advan-
tage because it does not require researcher pre-judgment and is replicable. In this sense,
it differs from dictionary-based approaches that rely on ad-hoc lists of words that are de-
veloped by researchers to represent pre-specified thematic content. For example, Loughran
and McDonald (2011) develop a number of finance-specific dictionaries that classify words
according to their narrative content. They include lists of positive words, negative words,
uncertainty words, litigious words, strong and weak modal words.2

A limitation of LDA, as well as of any other unsupervised method, is that the optimal
number of topics is unknown a-priori. As Gerlach et al. (2018) note:

1. LDA assumes that topics are uncorrelated. Although it is not a focus of this paper, Blei et al. (2007)
extend LDA by introducing a specification that accommodates correlated topics.

2. The general word lists can be found here: https://sraf.nd.edu/textual-analysis/resources/#LM%

20Sentiment%20Word%20Lists.

2

https://sraf.nd.edu/textual-analysis/resources/#LM%20Sentiment%20Word%20Lists
https://sraf.nd.edu/textual-analysis/resources/#LM%20Sentiment%20Word%20Lists


A Statistical Approach for Optimal Topic Model Identification

[...]Despite its success and overwhelming popularity, LDA is known to suffer
from fundamental flaws in the way it represents text. In particular, it lacks
an intrinsic methodology to choose the number of topics and contains a large
number of free parameters that can cause overfitting.[...]

This is problematic because different specifications will likely lead to different interpreta-
tions of the corpus. Since researchers using LDA must pre-specify the number of topics
to be estimated, an underspecified model is too coarse to be useful in uncovering the un-
derlying structure, while a model that estimates too many topics could instead generate
uninformative and possibly redundant topics.

In their work, Gerlach et al. (2018) overcome these issues by relying on a different
approach. They represent the word-document matrix as a bipartite network which makes
the problem of estimating the topics equivalent to finding communities. They then develop
a formal correspondence that builds on the mathematical equivalence of pLSI and Stochastic
Block Models (SBMs) (Holland et al., 1983; Airoldi et al., 2008; Ball et al., 2011; Karrer
and Newman, 2011). In contrast to Gerlach et al. (2018), our paper relies on the classic
LDA framework as described in Blei et al. (2003). We define a parametric test that builds
and exploits the mathematical constructs as defined in the original LDA setting. Rather
than modify the estimation procedure, as in Gerlach et al. (2018), we develop a simple
parametric approach that identifies the optimal topic specification ex-post. This provides
the researcher with an internally consistent statistical framework for optimal topic selection
that only requires LDA estimates.

In the context of topic modeling, there exist several ad-hoc evaluation strategies that
provide guidance on how to identify the “optimal” number of topics. For instance, it is
common for researchers to run a series of models with slightly different specifications or use
cross-validation on hold out document sets. For example, Zhao et al. (2015) describe how it-
erative approaches can evaluate alternative specifications using cross-validation on hold out
data. Two additional relatively common approaches were introduced by Cao et al. (2009)
and Arun et al. (2010) and consist of a density-based clustering and a matrix factorization
exploiting KL-divergence, respectively. Another standard, and far more intuitive, approach
determines which specification is the least perplexed by the test sets. Perplexity is based
on the intuition that a high degree of similarity, identified as a low level of perplexity, can
be used to determine the appropriate number of topics (Blei et al., 2003; Hornik and Grün,
2011). Formally, for a test set of J documents, perplexity is defined as:

perplexity(Dtest) = exp

{
−
∑J

j=1 log [Pr(Dj)]∑J
j=1 Pj

}
, (1)

where Pr(Dj) is the probability of the observed document Dj and Pj is the number of
words in document Dj .

This paper develops a formal parametric solution to optimal topic identification that
is rigorous yet intuitive. It is based on the conjecture that, if there exists a finite number
of topics that fully characterize a corpus, they should explain the corpus better than any
other specification and that additional topics should not provide significant incremental
explanatory power. Under the assumption that the optimal topic distribution is optimally
characterized by a set of K topics, it should display three properties:
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Property 1. A K-topic model should fully characterize the word distributions
for the documents in the corpus.

Property 2. The K most similar topics from a K̂-topic model should be sta-
tistically indistinguishable from the topics estimated from the optimal K-topic
model where K̂ > K. The K most similar topics from a K̂-topic model are the
K topics that have the highest cosine similarities with the K topics from the
optimal topic model.

Property 3. The K̂ −K topics that are least similar should not provide signifi-
cant incremental explanatory power relative to the K most similar topics when
compared to the actual word distributions for the documents in the corpus. The
K̂−K least similar topics are those that are not identified as being most similar.

More recent works like Gerlach et al. (2018) and Fortunato (2010) develop a nonpara-
metric approach for determining the number of topics by exploiting the parallelism between
topic models and community detection methods. In particular, Gerlach et al. (2018) argue
that the assumption of Dirichlet priors is a conceptual limitation of LDA models as it is
not always supported by the data and the inability to identify the number of topics is a
practical limitation.

Our parametric approach addresses this second concern. It relies on the intuition that,
as one increases the number of estimated topics, a point is reached where K topics are
sufficient to explain the narrative content of the corpus. We call this concept topic stability.

The tests we describe are rigorous and follow directly from the classic LDA specification
as given in Blei et al. (2003). In this sense, our methodology is fully parametric. It also
is heuristic because it appeals to intuitive concepts that should be expected to hold if the
model conforms to our conjecture about topic stability.

2. LDA: the Basic Setup

LDA (Blei et al., 2003) is based on the idea that a corpus can be represented by a set of
topics. LDA uses a likelihood approach to discover latent clusters of text, namely topics, that
frequently appear in a corpus. The method assumes that the document generation process
arises from an underlying topic distribution rather than a distribution over individual words.
A particular topic can be characterized as a distribution over a common vocabulary of words
where the relative probability weight assigned to each word indicates its relative importance
to that topic.

We refer to the probability weights assigned to specific words as Topic Word Weights
(TWWs). A topic is thus a word vector where each element represents that word’s relative
importance to the topic. For example, the words “oil” and “electricity” might be important
to topics associated with Natural Resources and Manufacturing, but one might expect oil
to receive a higher weighting than electricity in the Natural Resources topic. The opposite
might be true for the Manufacturing topic. Each document is then represented as a linear
combination of different topics. We refer to the weights applied to each topic within a
specific document as a vector of Document Topic Weights (DTW).
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If one assumes that the words in different documents are drawn from K topics, the
distribution of words can then be characterized as a mixture of these topics such that the
probability of observing word wp is:

Pr(wp) =
K∑
k=1

Pr(wp|zp = k)Pr(zp = k) with p = 1, . . . , P, (2)

where zp is a latent variable that indicates the topic from which wp was drawn. Pr(wp|zp =
k) is the probability of wp in the k-th topic, and Pr(zp = k) is the probability that the
word is drawn from that same k-th topic.3

The observable data are contained in a corpus denoted by D made of J documents
such that D = {D1, . . . , DJ}. Each document Dj is a sequence of Pj words such that
Dj =

{
w1, . . . , wPj

}
. Conceptually, a document Dj is generated by drawing a topic k from

the topic distribution and then word wp from the word distribution conditional on topic k.4

The model is formalized by assuming that for each document Dj there is a multinomial
distribution over the K topics with parameter vector θKj . This implies that word wp in

document Dj is selected from topic k with probability Pr(zp = k) = θKjk. Intuitively,

when we aggregate this probability at the corpus level we obtain a J ×K matrix θK which
represents the DTWs. For each topic k there is a multinomial distribution over P words
with parameter vector φKp such that Pr(wp|zp = k) = φKpk. By collecting the parameter

vectors, we obtain a K × P matrix φK which represents the TWWs.

LDA estimation is conducted by choosing the optimal values of θK and φK . To make
predictions about the corpus D, both θK and φK are assumed to have Dirichlet prior
distributions with respective scalar hyper-parameters α and β. The Dirichlet distribution
is a natural choice because it is the conjugate prior to the multinomial distribution.

Following Blei et al. (2003) and suppressing hyper-parameters α and β for expositional
clarity, the generative process for LDA corresponds to the following joint distribution of
latent and observed variables:

Pr(D,Z,θK ,φK) =
J∏
j=1

Pr (θj)
K∏
k=1

Pr
(
φKk
) P∏

p=1

Pr
(
zjp|θKj

)
Pr
(
wjp|zjp, φK

) , (3)

where Z denotes a P ×J matrix where each element zjp is the topic assignment for the p-th
word in document Dj .

The output of a LDA estimation is represented by a J ×K DTW matrix and a K ×P
TWW matrix. Due to the coupling of θK and φK , exact inference is intractable (Dickey,
1983). Various approximate algorithms such as variational inference or Markov Chain Monte
Carlo are typically used for inference (Jordan, 1998). This paper uses the Variational
Expectation-Maximization (VEM) method (Jordan et al., 1999).

3. For an excellent discussion of LDA, see the paper by Griffiths and Steyvers (2004).
4. This intuition forms the basis for estimating LDA models that rely on a Monte Carlo Markov Chain

simulation coupled with a Gibbs sampler.
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3. Identification of the Optimal K-Topic Model

Our initial test of overall model adequacy evaluates how well a K-topic model explains
the corpus. To do this, we describe a chi-square test that identifies the optimal number of
topics. The test relies on the observation that each word in document Dj can be represented
as:

dj =
K∑
k=1

θKjkφ
K
k + εj , (4)

where dj is a 1 × P row vector of word proportions associated with document Dj and θKjk
is a J × 1 column vector of DTWs associated with k-th topic and document Dj . The test
statistic in Equation (4) is used by estimating different sized topic models and then selecting
the topic structure that most closely matches the word proportions in the underlying corpus.

To test the adequacy of different specifications, we define a Pearson chi-square statis-
tic (Agresti, 1996) that exploits the underlying assumption that dj and

∑K
k=1 θ

K
jkφ

K
k are

distributed multinomial. If a K-topic model fully characterizes the corpus, we would be
unable to reject the hypothesis that the observed and estimated word distributions for the
document Dj are statistically indistinct.

Due to the large number of TWWs with near zero probabilities, we collapse relatively
unimportant words into a single bin if IKjp < Ij,min where:5

IKjp =
K∑
k=1

θKjpkφ
K
pk. (5)

The probability of observing a relatively unimportant word related to document Dj is then
defined as:

IKj,min =
∑

p∈{IKjp<Ij,min}

IKj,p, (6)

and the actual frequencies of observing the same set of words in document Dj is:

Dj,min =
∑

p∈{IKjp<Ij,min}

Dj,p. (7)

Note that, even though each document has a unique number of relatively unimportant
words, the basis for identifying the cutoff value is the LDA model rather than the actual
documents in the corpus. Also note that, by collapsing the relatively unimportant words in
this manner we preserve the underlying assumption that TWWs are distributed multino-
mial. The chi-square statistic is then calculated as follows:

5. We identify Ij,min as the smallest value of IKjp such that
∑p̂

p=1 I
K
jp < IK , where IK is a minimum

probability cutoff. We use IK = 0.05 in the numerical example.
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Test 1 (Aggregate DTW and TWW Stability) A K-topic model fully characterizes
the corpus if the observed and estimated word vectors are statistically indistinct. The test
statistic for the corpus is:

OpTopKJ =
J∑
j=1

(Pj + 1)

 Pj∑
p=1

(
Djp − IKjp

)2
IKjp

+

(
Dj,min − IKj,min

)2
IKj,min


 ∼ χ2

PJ
, (8)

where OpTopKJ is distributed chi-square with PJ =
∑J

j=1 Pj degrees of freedom and Pj is
the number of relatively important words in document Dj.

4. Topic Stability

A corpus is said to be K-topic stable (Property 2 ) when the K topics that best characterize
its narrative content do not change as additional topics are added. TWW-stability is a
necessary but not sufficient condition for a corpus to be K-topic stable. It is defined as
follows:

Definition 1 (TWW Stability) The TWWs are deemed “stable” when the absolute dif-

ference between φK and the K most similar topics from a K̂-topic model, φK̂ (κ), approaches
zero where K̂ > K6. Formally we have:

K∑
k=1

P∑
p=1

∣∣∣φKpk − φK̂pk (κ)
∣∣∣→ 0, (9)

where φK̂ (κ) is the subset of K̂ topics that have the highest cosine similarity with φK , i.e.,:

φK̂k (κ) = max
p∈{1,...,K̂}

φK
T

k φK̂p , ∀k ∈ {1, . . . , K̂}. (10)

Since LDA is based on the assumption that each topic follows an independent multino-
mial distribution, we can test whether the TWW distributions for each of the individual k
topics from a K-topic model are stable relative to the K most similar topics from a K̂-topic
model using a Pearson chi-square test.

Once again, we mitigate the influence of relatively unimportant words by collapsing all
words that have TWWs less than φmin into a single bin. The probability of observing
uninformative words related to topic k is:

φKk,min =
∑

p∈{φKpk<φk,min}

φKp,k, (11)

6. Our definition of most similar topics is cosine similarity. This measure is commonly used to assess how
close two vectors are to each other (Singhal et al., 2001).
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and the corresponding frequency of observing uninformative words in the most similar topic
from a K̂-topic model is:

φK̂k,min =
∑

p∈{φKpk<φk,min}

φK̂p,k (κ) . (12)

Note that, the relatively unimportant words that comprise φK̂k,min are identified relative to
the “optimal” K-topic model.

Test 2 (k-th Topic TWW Stability) The k-th topic from a K-topic LDA model is stable
relative to its most similar topic from a K̂-topic model if one cannot reject the hypothesis
that TWWK

k is statistically different from zero where:

TWWK
k = (Pk + 1)

 Pk∑
p=1

(
φK̂pk (κ)− φKpk

)2
φKpk

+

(
φK̂k,min(κ)− φKk,min

)2
φKk,min

 ∼ χ2
Pk
, (13)

and Pk is the number of words in the vocabulary that have φKpk ≥ φmin. TWWK
k is distributed

chi-square with Pk degrees of freedom.

Since the sum of K chi-square distributions is a chi-square, we can formally test whether
the corpus displays aggregate K-topic stability by summing across all K topics:7

Test 3 (Aggregate TWW Stability) The K topics from a K-topic model are stable
relative to their most similar topics from a K̂-topic model if one cannot reject the hypothesis
that TWWK is statistically different from zero where:

TWWK =
K∑
k=1

TWWK
k ∼ χ2

PK
. (14)

TWWK is distributed chi-square with PK =
∑K

k=1 Pk degrees of freedom.

5. Tests of Overall Model Adequacy

The above set of tests allow the researcher to identify the K-topic model that best describes
the corpus (Test 1) and to infer whether the TWWs are stable (Tests 2 and 3). These
three tests are used to determine whether successive LDA iterations uncover the same set of
topics. An implication of a corpus that displays topic stability is that K topics are sufficient
to fully characterize its narrative content.

7. An alternative test can be designed that relies on the Central Limit Theorem. Since the chi-square
distribution is a sum of independent random variables, TWWK

k converges to a normal distribution for
large P . The K most similar topics across successive LDA estimations are stable if one cannot reject
the hypothesis that ZTWW

K is statistically indistinct from zero, i.e.,

ZTWW
K =

K∑
k=1

TWWK
k − P√

2
∑K

k=1 Pk

→ N (0, 1) .
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To test whether a specific K-topic model characterizes the narrative content of a corpus
(Property 3 ), we next describe two overall goodness-of-fit tests. Both tests are based on the
idea that the fitted values from a K̂-topic model can be decomposed into informative and
uninformative components.

5.1 Identification of Informative and Uninformative Components

All of the tests in this section decompose the fitted values in Equation (4) into their informa-
tive and uninformative components. The informative component is calculated by selecting
the K topics from a K̂-topic model that are most similar to those from a K-topic model.
The uninformative component then represents that portion of the fitted values associated
with the remaining K̂ −K topics.

We therefore test whether we can reject the hypothesis that the fitted values from an
optimal K-topic model and the K most similar topics from a K̂-topic model follow the

same distribution. To do this, we replace θKjk in Equation (4) with θ̂K̂jk(K). This yields a
P × 1 word vector that corresponds to the P words in the corpus dictionary such that:

ÎK̂j =

{ ∑K
k=1 θ̂

K̂
jpk(κ)φKpk∑P

p=1

∑K
k=1 θ̂

K̂
jpk(κ)φKpk

}P
p=1

. (15)

The uninformative component is calculated as:

Û K̂j =


∑K̂−K

k=1 θ̂K̂jpk(κ)φKpk∑P
p=1

∑K̂−K
k=1 θ̂K̂jpk(κ)φKpk


P

p=1

. (16)

where θK̂jk(κ) is the set of K̂−K TWWs that are least similar to the TWWs from a K-topic
model. We also scale the informative and uninformative components in Equations (15) and

(16) by
∑P

p=1

∑K
k=1 θ̂

K̂
jpk(κ)φKpk and

∑P
p=1

∑K−K̂
k=1 θ̂K̂jpk(κ)φKpk, respectively, so that ÎK̂j and

Û K̂j both sum to one and can be interpreted as conditional multinomial distributions.

5.2 Chi-square Tests of Relative Information Content

Once it is determined that K topics are sufficient and stable (Tests 1, 2 and 3), the next
step is to test whether the information contained in the informative component from a
K̂-topic model closely tracks that from the optimal K-topic model.

5.2.1 Aggregate K-topic Stability

This procedure is different from Test 3 because it only considers the fitted values associated
with the informative component of a K-topic model. The test statistic is defined as:

Test 4 (Aggregate K-Topic Stability) A K topic model fully characterize a corpus of
D made of J documents if one cannot reject the hypothesis that the K most similar topics

9



Lewis and Grossetti

from a K̂-topic model are statistically distinct. The test statistic AGG STABK
Î

is specified
as:

AGG STABK
Î

=
J∑
j=1

(Pj + 1)

 Pj∑
p=1

(
ÎKjp − IKjp

)2
IKjp

+

(
ÎKj,min − IKj,min

)2
IKj,min


 ∼ χ2

PJ
, (17)

where Pj is the number of relatively important words in document Dj that have IKjp ≥ Imin.

AGG STABK
Î

is distributed chi-square with PJ =
∑J

j=1 Pj degrees of freedom.

5.2.2 Relative Importance of Incremental Topics

We next evaluate whether the K̂ −K additional (least similar) topics contain incremental
information that can be relevant in explaining the corpus. The idea is to compare how well
the K most similar topics describe the corpus relative to the remaining K̂−K least similar
ones. We introduce an F-test that is essentially a horse-race between the informative and
uninformative components.

Test 5 (Relative Importance of Incremental Topics) K topics adequately charac-
terize a corpus D made of J documents if the incremental information contained in the
uninformative component ÛKjp relative to the informative one ÎKjp is statistically indistinct

from zero. The test statistic FCORP
K is defined as follows:

FCORP
K =

INFORMK
Î

UNINFORMK
Û

∼ F(PJ ,PJ ), (18)

where FCORP
K is distributed as F(PJ ,PJ ), PJ =

∑J
j=1 Pj is the number of degrees of free-

dom, and Pj is the number of relatively important words in document Dj. The chi-square
statistics INFORMK

Î
and UNINFORMK

Û
consider whether the distributions implied by the

informative component ÎKj and the uninformative one ÛKj for document Dj are similar to
the distribution of document Dj’s observed word proportions. They are defined as follows:

INFORMK
Î

=

J∑
j=1

(Pj + 1)

 Pj∑
p=1

(
Djp − ÎK̂jp

)2
ÎK̂jp

+

(
Dj,min − ÎK̂j,min

)2
ÎK̂j,min


 ∼ χ2

PJ
, (19)

UNINFORMK
Û

=

J∑
j=1

(Pj + 1)

 Pj∑
p=1

(
Djp − Û K̂jp

)2
Û K̂jp

+

(
Dj,min − Û K̂j,min

)2
Û K̂j,min


 ∼ χ2

PJ
.

(20)
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6. Case Study: the U.S. Presidential Inaugural Address Corpus

We test our algorithm on the U.S. presidential inaugural address texts (Peters, 2018). The
corpus contains 58 documents of US president’s inaugural addresses starting with George
Washington’s first inaugural address in 1789. Table 1 reports that the mean number of
sentences per speech is 86. On average, each speech is comprised of 2,332 Tokens and 805
of these words are distinct (Types). This implies that each word is used approximately 2.9
times. While some documents are quite lengthy, others are very short.

Percentiles
Mean Std. Dev. 1% 25% 50% 75% 99%

Types 805 324 198 556 773 988 1,634
Tokens 2,332 1,382 376 1,434 2,084 2,892 6,726
Sentences 86 47 14 44 88 118 202

Table 1: Summary statistics for the 58 inaugural speeches by all the U.S. Presidents.

6.1 The Optimal K-topic Model — Test 1

As we mentioned at the beginning of the paper, the usual method to assess the optimal
number of topics given a set of independent LDA models is the perplexity index as given in
Equation (1). Figure 1 reports the in-sample perplexity index for the LDA models ranging
from 2 to 200 topics which concludes that the best fit is given by 86 topics.

1000

1500

2000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Topics

P
er
pl
ex
ity

Figure 1: Perplexity index for LDA models ranging from 2 to 200 topics.

Test 1 introduced in Equation (8) formally identifies the topic model that best char-
acterizes the corpus using a parametric test. We first consider how well different topic
specifications explain individual documents. We then aggregate these results to consider
the entire corpus. The overall conclusion is that an LDA model with 92 topics fits best. The
optimum is identified as the K-topic model with the minimum OpTopKJ across all models
ranging from 2 to 200 topics. Figure 2 shows the results for this initial test. Notice that
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Figure 2: Standardized OpTopKJ statistics for Aggregate DTW-TWW Stability for
LDA models ranging from 2 to 200 topics. The test identifies 92 as the optimal
number of topics for the case study corpus.

the standardized OpTopKJ chi-square statistic tracks the perplexity measure but has the
advantage of being a parametric test that assesses the goodness-of-fit.

6.2 Addressing Topic Stability — Tests 2 and 3

To provide a comprehensive picture of individual topic stability, Figure 3 illustrates the
TWWK

k statistics associated with Test 2 for higher dimensional models that range from
93 to 200 topics relative to the identified optimal 92-topic model. Intuitively, we are looking
for a substantially flat plot. As we can see from Figure 3, the vast majority is indeed flat
with some exceptions given by “ridges”. These identify certain topic models that appear to
be dissimilar. A so-called “ridge” reflects the TWWK

k statistics for a model with K̂ topics.
Visually, a topic model with 157 topics has the relatively largest TWWK

k statistics. Even
though this models appear to be different from a 92-topic model, the chi-square statistics
are small in an absolute sense, i.e., they are not significantly different from zero. As one
moves along the K̂-topic model axis, one can see that there is no evidence of persistent
dissimilarity across models.

Finally, we are able to visualize and evaluate aggregate K topic stability. In other
words, we formally test if the corpus displays aggregate K topic stability. Figure 4 shows
the TWWK statistics associated with Test 3. To enhance comparability, we normalize
the test statistics by scaling them by their respective means. The scaled means rapidly
approach 1.0 — a benchmark that is well below the one-standard deviation cutoff of 1.414.8

One can see that, relative to the optimal 92-topic model, one cannot reject the hypothesis
of topic stability at conventional significance levels as the number of topics increase.

8. A chi-square distributed random variable has a mean equal to the number of degrees of freedom and a
variance equal to 2 times the number of degrees of freedom.
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Figure 3: Chi-square Statistics for k − th TWW Stability for models ranging from 93 to
200 topics relative to a 92-topic model.
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Figure 4: Chi-square statistics for TWWK for models ranging from 93 to 200 topics relative
to a 92-topic model.

6.3 Addressing Overall Model Adequacy — Tests 4 and 5

Test 4 compares the fitted value from the optimal K-topic model to the informative
component derived from K̂-topic models. In Figure 5, we show the chi-square statistics
AGG STABK

Î
(Equation (17)) that are obtained for each document in the corpus. The

average value is 3.6× 10−3 and the corresponding median is 7.1× 10−6. The AGG STABK
Î

statistics indicate that the most similar topics from LDA models with K̂ topics follow the
same distribution as the optimal K-topic model. One can see that a few documents do not
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fit particularly well, but they are clearly outliers that do not change our overall assessment
of model adequacy.
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Figure 5: chi-square statistics for AGG STABK
Î

for above optimality models ranging from
93 to 200 topics. Colors represent different documents in the corpus.

Given that the most similar topics and their corresponding document topic weights
are stable for different values of K̂, Test 5 provides a formal testing methodology that
compares the relative explanatory power of the informative and uninformative components
of different K̂-topic models. The FCORP

K statistic given in Equation (18) generally rejects
the hypothesis that the uninformative component have significant incremental explanatory
power relative to the informative component. Figure 6 depicts the results for the FCORP

K

statistic by showing the chi-square statistics for each document across all of the topic models.

7. Simulation Study

We further validate our method by performing a simulation study based on the estimated
optimal LDA model with 92 topics. We synthetically construct the true underlying topic
structure for our simulations by randomly selecting Ksim-columns from DTW and Ksim-
rows from TWW. The simulation is then based on a set of synthetic corpora containing
a range of topics from 10 to 35 in increments of 5, i.e., Ksim = {10, 15, 20, 25, 30, 35}.
For each Ksim, we simulate M = 50 corpora each of which contains J = 58 documents.9

This generates a total of 300 synthetic corpora on which we re-estimate a battery of LDA
models. Specifically, we consider a window of Ksim ± 20. This implies, for example, that
when the “ground truth” is Ksim = 30, we estimate a set of LDAs with k = {10, . . . , 50}.
For Ksim = {10, 15, 20}, we start the estimation at k = 2.

For each simulation run, we directly compare our Goodness-of-Fit (GoF) metric OpTop
with the perplexity index (Blei et al., 2003). In Figure 7, we show the results of the simu-

9. The simulation step exploits the classical LDA structure. The full numerical implementation can be
found in the function sim LDA data() in the R package LDATS (Simonis et al., 2020).
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Figure 6: F statistics FCORP
K for above optimality models ranging from 93 to 200 topics.

Colors represent different documents in the corpus.

lation study. In each panel, we report the two metrics given as the grand mean computed
over the M simulation runs for each LDA specification. The solid black line represents
our proposed metric OpTop, while the long-dashed black line is the perplexity score. The
vertical gray dot-dashed line marks the true optimal topic instead (or ground truth). The
optimal model specification is identified as the point where the reported metrics are min-
imized. In principle, we would look for a global minimum or a sudden change in the first
derivative of the function. As Figure 7 shows, OpTop is the only one that “bends” around
the true optimal topic. This is particularly clear in Panel (e) where the true optimal topic
is Ksim = 30. Conversely, the perplexity index is monotonically decreasing throughout the
range depicted in Figure 7. Note also that the perplexity with respect to k does not bend
even after Ksim. This indicates that an eventual flattening in the perplexity would occur
at a location where the true number of topics would be strongly overestimated. Besides
the clear implications regarding the overall statistical performance of the model, this would
also imply that a higher dimensional model must be implemented with a demand for much
more computational resources.

We acknowledge that OpTop does not always identify the exact optimal number of
topics. For these cases, the approach still works well as the optimum is typically adjacent
or in close proximity to Ksim. Table 2 reports the proportion of time OpTop is more
accurate than perplexity. In the majority of cases, OpTop outperforms the perplexity.

We compute two additional GoF metrics: a density-based method proposed by Cao et al.
(2009) and a matrix factorization-based method proposed by Arun et al. (2010) that exploits
the KL-Divergence to identify the natural number of topics. In untabulated results, OpTop
is still more accurate than these two metrics. Overall, the simulation analysis establishes
that OpTop provides a superior GoF metric relative to other more ad-hoc approaches.

15



Lewis and Grossetti

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Topics

N
or

m
al

iz
ed

 M
et

ric

Panel (a)
Ground truth K = 10

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Topics

N
or

m
al

iz
ed

 M
et

ric

Panel (b)
Ground truth K = 15

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Topics

N
or

m
al

iz
ed

 M
et

ric

Panel (c)
Ground truth K = 20

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Topics

N
or

m
al

iz
ed

 M
et

ric

Panel (d)
Ground truth K = 25

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Topics

N
or

m
al

iz
ed

 M
et

ric

Panel (e)
Ground truth K = 30

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
Topics

N
or

m
al

iz
ed

 M
et

ric

Panel (f)
Ground truth K = 35

Metric OpTop Perplexity

Figure 7: Normalized GoF metrics for a set of LDA models estimated around the true
optimal topic Ksim. Panels (a), (b), (c), (d), (e), and (f) report the results for
Ksim = {10, 15, 20, 25, 30, 35}, respectively. The solid black line represents our
metric OpTop, the long-dashed line is the perplexity (Blei et al., 2003). The
vertical gray dot-dashed line marks the true optimal topic.

Ksim OpTop vs. Perplexity
(1) (2)

Ksim = 10 0.84
Ksim = 15 0.90
Ksim = 20 1.00
Ksim = 25 1.00
Ksim = 30 1.00
Ksim = 35 1.00

Table 2: Proportion of times when OpTop is closer than perplexity to the true optimal topic.
Column (1) gives the true optimal topic and Column (2) compares OpTop with
the perplexity (Blei et al., 2003).

8. Numerical Implementation

Text processing and management have been carried out with the R package quanteda

(Benoit et al., 2018). LDA models are estimated with the R package topicmodels (Hornik
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and Grün, 2011) which exploits the original C code for the VEM fitting implemented by Blei
et al. (2003).10 We estimate 199 consecutive LDA models ranging from 2 to 200 topics over
the U.S. presidential inaugural address texts (Peters, 2018) corpus included in the package
quanteda (Benoit et al., 2018). From this set, we use the procedures introduced in this
paper to find the optimal topic specification. The test statistics are calculated using the
original code developed in MATLAB. The simulation study relies on the R package LDATS

(Simonis et al., 2020). The authors are currently developing the corresponding R package
OpTop that will calculate all the tests introduced in this work. The package directly in-
teracts with topicmodels and the related LDA VEM class (Hornik and Grün, 2011) which
provides the estimates for the LDA models.11

9. Conclusion

This paper develops a rigorous yet intuitive parametric approach to address the problem
of optimal topic identification. Using the fact that Latent Dirichlet Allocation assumes
that the vocabulary associated with a corpus can be described by a set of multinomial
distributions, we design a chi-square test to identify the optimal number of topics (Property
1 ). We then provide a series of additional chi-square tests to determine i) whether the
corpus displays topic stability (Property 2 ) and ii) the relative ability of the K most-similar
topics to explain actual word choices relative to the K̂ −K least similar topics (Property
3 ).

We illustrate the identification strategy using the U.S. Presidential Inaugural Address
Corpus as a case study. We determine that a 92-topic model is the optimal specification.
As additional topics are added, the optimal specification displays topic stability and the
most similar topics explain the actual word choices significantly better than the least similar
ones. Moreover, we find that the uninformative topics do not have significant incremental
explanatory power. To further validate our findings, we perform a simulation study and we
conclude that our proposed statistical approach outperforms other heuristic procedures like
the perplexity index.
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