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Abstract

In linear regression we wish to estimate the optimum linear least squares predictor for
a distribution over d-dimensional input points and real-valued responses, based on a small
sample. Under standard random design analysis, where the sample is drawn i.i.d. from
the input distribution, the least squares solution for that sample can be viewed as the
natural estimator of the optimum. Unfortunately, this estimator almost always incurs an
undesirable bias coming from the randomness of the input points, which is a significant
bottleneck in model averaging. In this paper we show that it is possible to draw a non-
i.i.d. sample of input points such that, regardless of the response model, the least squares
solution is an unbiased estimator of the optimum. Moreover, this sample can be produced
efficiently by augmenting a previously drawn i.i.d. sample with an additional set of d points,
drawn jointly according to a certain determinantal point process constructed from the input
distribution rescaled by the squared volume spanned by the points. Motivated by this, we
develop a theoretical framework for studying volume-rescaled sampling, and in the process
prove a number of new matrix expectation identities. We use them to show that for any
input distribution and ε > 0 there is a random design consisting of O(d log d+ d/ε) points
from which an unbiased estimator can be constructed whose expected square loss over the
entire distribution is bounded by 1 + ε times the loss of the optimum.

We provide efficient algorithms for constructing such unbiased estimators in a number of
practical settings. In one such setting, we let the input distribution be uniform over a large
dataset of n � d points. Here, we obtain the first unbiased least squares estimator that
can be constructed in time nearly-linear in the data size, resulting in strong guarantees for
model averaging. We achieve these computational gains by introducing a new algorithmic
technique, called distortion-free intermediate sampling, which is the first method to enable
sampling from determinantal point processes in time polynomial in the sample size.

Keywords: volume sampling, determinantal point process, linear regression, unbiased
estimators, random design.

1. Introduction

We consider linear regression where the examples (x>, y) ∈ Rd × R are generated by an
unknown distribution D over Rd ×R, with DX denoting the marginal distribution of a row
vector x> and DY|x denoting the conditional distribution of y given x. In statistics, it is
common to assume that the response y is a linear function of x plus zero-mean Gaussian
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noise; the goal is then to estimate this linear function. We decidedly make no such assump-
tion. Instead, we allow the distribution to be arbitrary except for the nominal requirement
that the second moments of the point x and response y are bounded, i.e., E[‖x‖2] <∞ and
E[y2] < ∞. The target of the estimation is the linear least squares predictor of y from x
with respect to D:

w∗D
def
= argmin

w∈Rd
LD(w), where LD(w)

def
= E

[
(x>w − y)2

]
.

Here, we assume E[xx>] is invertible so we have the concise formula w∗D = (E[xx>])−1E[xy].
Our goal is to construct a “good” estimator of this target w∗D from a small sample. For the
rest of the paper we use w∗ as a shorthand.

In our setup, the estimator ŵ of w∗ is based on solving a least squares problem on a
sample of k examples (x>1 , y1), . . . , (x>k , yk). We assume that given x1, . . . ,xk, the responses
y1, . . . , yk are conditionally independent, and the conditional distribution of yi only depends
on xi, i.e., yi ∼ DY|xi for i = 1, . . . , k. However, for the applications we have in mind, the
marginal distribution of x1, . . . ,xk is allowed to be flexibly designed based on DX . The most
standard choice is i.i.d. sampling from the distribution DX of x, i.e., (x>1 , . . . ,x

>
k ) ∼ Dk

X .
We shall seek other choices that can be implemented given the ability to sample from DX
but that lead to better statistical properties for ŵ.

In particular, the properties we want of the estimator ŵ are the following.

1. Unbiasedness: E[ŵ] = w∗.

2. Near-optimal expected loss: E
[
LD(ŵ)

]
≤ (1 + ε)LD(w∗) for some (small) ε > 0.

Together, these properties have many useful implications, such as a bound on the out-of-
sample prediction variance, i.e., Var[x>ŵ] ≤ ε for x> ∼ DX , and improved guarantees for
averaging, e.g., E

[
LD( ŵ1+ŵ2

2 )
]
≤ (1 + ε

2)LD(w∗), where ŵ1 and ŵ2 are independent copies
of ŵ. The central question is how to sample x1, . . . ,xk to achieve these properties with
sample size k = k(ε) as small as possible. Note that while in general it is very natural to
seek an unbiased estimator, in the context of random design regression it is highly unusual.
This is because, as we discuss shortly, standard approaches fail in this regard. In fact, until
recently, unbiased estimators have been considered out of reach for this problem.

An important and motivating case of our general setup occurs when DX is the uniform
distribution over a fixed set of n points and DY|x is deterministic. That is, there is an
n × d fixed design matrix X and a response vector y ∈ Rn such that the distribution is
uniform over the n rows. Here, the loss of w can be written as LD(w) = 1

n‖Xw − y‖2.
This traditionally fixed design setting turns into a random design when we are required
to sample k � n rows of X, observe only the entries of y corresponding to those rows,
and then construct an estimate ŵ of the least squares solution for all of (X,y). Such
constraints are imposed either in the context of experimental design and active learning,
where k represents the budget of responses that we are allowed to observe (e.g., because
the responses are expensive), or to reduce the computational cost of solving the full least
squares problem. Here, an important motivation for unbiasedness is parallel and distributed
model averaging, where we wish to aggragate many independent copies of an estimator. See
Section 1.2 for further discussion of model averaging and experimental design.
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Unbiased estimators for random design regression

Throughout the introduction we give some intuition about our results by discussing the
one dimensional case. For example, consider the following 2× 1 fixed design problem:

X =

[
x1: 1
x2: 2

]
, y =

[
y1: 1
y2: 1

]
, with target: w∗ =

∑
i xiyi∑
i x

2
i

=
3

5
. (1.1)

Suppose that we wish to estimate the target after observing only a single response (i.e.,
k = 1). If we draw the response uniformly at random (i.e., from the distribution D),
then the least squares estimator for this sample will be a biased estimate of the target:
E[ŵ] = 1

2
y1

x1
+ 1

2
y2

x2
= 3

4 6=
3
5 .

The bias in least squares estimators is present even when each input component is drawn
independently from a standard Gaussian. As an example, we let d = 5 and set:

x>= (x1, . . . , xd)
i.i.d.∼ N (0, 1), y = ξ(x)+ε, where ξ(x) =

d∑
i=1

xi +
x3
i

3
, ε ∼ N (0, 1).

The response y is a non-linear function ξ(x) plus independent white noise ε. Note that it
is crucial that the response contains some non-linearity, and it is something that one would
expect in real datasets. The response is cubic and was chosen so that it is easy to solve
algebraically for the optimum solution w∗ = argminw LD(w) (see Appendix A).

10
0

10
1

10
2

10
3

number of estimators

10
-4

10
-3

10
-2

10
-1

10
0

10
1

e
s
ti
m

a
ti
o
n
 e

rr
o
r

i.i.d. samples  k=10

i.i.d. + volume k=10

i.i.d. samples  k=20

i.i.d. + volume k=20

i.i.d. samples  k=40

i.i.d. + volume k=40

T

Figure 1.1: Averaging least squares esti-
mators for Gaussian inputs with d = 5.

For this Gaussian setup we evaluate the bias
of the least squares estimator produced for this
problem by i.i.d. sampling of k points. We do
this by performing model averaging, i.e., pro-
ducing many such estimators ŵ1, . . . , ŵT inde-
pendently, and looking at the estimation error of
the average of those estimators w̃ := 1

T

∑T
t=1 ŵt:

estimation error: ‖w̃ −w∗‖2.

Figure 1.1 (red curves) shows the experiment
for several values of k and a range of values of T
(each presented data point is an average over 50
runs). The i.i.d. sampled estimator is biased for
any sample size (although the bias decreases with k), and therefore the averaged estimator
clearly does not converge to the optimum. We next discuss how to construct an unbiased
estimator (dashed blue curves), for which the estimation error of the averaged estimator
exhibits 1

T convergence to zero (regardless of k). This type of convergence appears as a
straight line on the log-log plot on Figure 1.1.

Recently, Dereziński and Warmuth (2018) developed the first method for constructing
unbiased estimators in the case where D is uniform over a fixed design (X,y). This method,
which we will refer to as discrete volume sampling, jointly draws a subset S ⊆ [n] of k rows
of the design matrix X with probability proportional to det(X>SXS), where XS denotes
the submatrix of X with rows indexed by S. For this distribution, the linear least squares
estimator ŵ = X†SyS is unbiased, i.e., E[ŵ] = w∗ = X†y, where X† denotes the Moore-
Penrose pseudoinverse. Indeed, if we volume sample the set S of size 1 in the example

problem (1.1), then E[ŵ] =
x2

1∑
i x

2
i

x1y1

x2
1

+
x2

2∑
i x

2
i

x2y2

x2
2

=
∑
i xiyi∑
i x

2
i

= w∗.
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1.1 Our contributions

Contribution 1: Unbiased estimator for random design regression Our first contribution
in this paper is proposing a new unbiased estimator for arbitrary distributions D (i.e., not
just uniform over a fixed design matrix). Let the sample x1, . . . ,xk ∈ Rd be drawn jointly
with probability proportional to det(

∑k
i=1 xix

>
i ) Dk

X (x1, . . . ,xk), i.e., we reweigh the k-fold
i.i.d. distribution Dk

X by the determinant of the sample covariance. We refer to this as
volume-rescaled sampling from Dk

X and denote it as VSkDX . In this general context, we
are able to prove that for arbitrary distributions DX and DY|x, volume-rescaled sampling
produces unbiased linear least squares estimators (Theorem 2.10). This result does not
follow from the fixed design analysis, and in obtaining it we derive novel extensions of
fundamental expectation identities for the determinant of a random matrix. In the process,
we develop a new tool kit for computing expectations under volume-rescaled sampling, which
includes new expectation formulas for sampled pseudoinverses, inverses and adjugates.

Contribution 2: Correcting the bias of i.i.d. sampling The fact that volume-rescaled
sampling of size k ≥ d always produces unbiased estimators of the target w∗ stands in
contrast to i.i.d. sampling from DX which generally fails in this regard. Yet surprisingly,
we show that a volume-rescaled sample of any size k ≥ d is essentially composed of an
i.i.d. sample of size k − d from DX plus a volume-rescaled sample of size d (Theorem 2.4).
This means that the linear least squares estimator of such composed sample is also unbiased.
Thus, as an immediate corollary of Theorems 2.4 and 2.10 we reach the following remarkable
conclusion:

Even though i.i.d. sampling typically results in a biased least squares estimator, adding
a volume-rescaled sample of size d to the i.i.d. sample eliminates that bias altogether:

i.i.d. sample (x>1 , y1), . . . , (x>k , yk) ∼ Dk

sol. for i.i.d. sample ŵ = argmin
w

∑
i

(x>i w − yi)2

volume-rescaled sample
d points

x̄>1 , . . . , x̄
>
d ∼ det

−x̄>
1 −

. . .
−x̄>

d−

2

·Dd
X (d - input dimension)

query responses ȳi ∼ DY|x̄i , ∀i=1..d

sol. for i.i.d + volume w̃ = argmin
w

{∑
i

(x>i w − yi)2 +
∑
i

(x̄>i w − ȳi)2
}

Our result: E[w̃] = w∗ even though typically E[ŵ] 6= w∗

Indeed, in the simple Gaussian experiment used for Figure 1.1, the estimators pro-
duced from i.i.d. samples augmented with a volume-rescaled sample of size d (dashed blue
curves) become unbiased (straight lines). To get some intuition, let us show how the bias
disappears in the one-dimensional fixed design case where DX is a uniform sample from
{(x1, y1), . . . , (xn, yn)}. In this case, reweighing the probability of just the first sampled
point by its square already results in an unbiased estimator. Let ŵ be the least squares
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estimator computed from (xi1 , yi1), . . . , (xik , yik) with all indices sampled uniformly from
[n]. Now, suppose that we replace i1 with i′1 sampled proportionally to x2

i′1
, and denote the

modified estimator as w̃. Due to symmetry, it makes no difference which index we choose
to replace, so

E
[
w̃
]

= E
[

x2
i1∑
j x

2
j

ŵ
]

=
1

k

k∑
t=1

E
[

x2
it∑
j x

2
j

ŵ
]

=
E[ 1

k (
∑

t x
2
it

) ŵ]∑
j x

2
j

.

By definition of the least squares estimator, E[ 1
k (
∑

t x
2
it

) ŵ] = E[ 1
k

∑
t xityiy ] =

∑
j xjyj ,

from which it follows that E[w̃] = w∗. This simple argument at once shows the unbiased-
ness of w̃ and the composition property discussed in the previous paragraph. In higher
dimensions, the analysis gets considerably more involved, but it follows a similar outline.

Contribution 3: Near-optimal expected loss bound Perhaps surprisingly, volume-rescaled
sampling may not lead to estimators with near-optimal loss guarantees: We show that for
any k ≥ d there are distributions D for which volume-rescaled sampling of size k results
in the linear least squares estimator having loss at least twice as large as the optimum loss
(with probability at least 0.25). However, we remedy this bad behavior by composing a
volume-rescaled sample of size d with an i.i.d. leverage score sample of size k − d. This
composition achieves the following feat: It does not affect the unbiasedness of the estimator
and, and it leads to good approximation properties. Specifically, in Theorem 3.1 we show
that k = O(d log d+ d/ε) points are sufficient to construct an estimator ŵ such that:

E[ŵ] = w∗ and E
[
LD(ŵ)

]
≤ (1 + ε)LD(w∗).

Note that an analogous loss bound is achievable for vanilla i.i.d. leverage score sampling, but
(1) the estimators produced from leverage score sampling are biased, and (2) the expected
loss bound holds only if we condition on a certain high-probability event (both of those
are significant issues, e.g., in the context of model averaging). To show the expected loss
bound that holds without conditioning and for an unbiased estimator, we break the analysis
into two cases, depending on whether the high-probability event occurs. When it does not,
then our analysis crucially relies on the expectation formulas we develop for volume-rescaled
sampling. Note that the only expected loss bound previously developed for a volume-based
sampling distribution was limited to fixed design, and required d2/ε points to obtain an
approximation factor of 1 + ε (Dereziński and Warmuth, 2018). To our knowledge, that
analysis does not easily extend to k > d, which is why our techniques are radically different.

Contribution 4: Accelerated sampling algorithms Our work also leads to sampling al-
gorithms which significantly improve on the state-of-the-art time complexity of volume-
rescaled sampling, both in the fixed and random design settings, with further algorithmic
implications for the broader class of determinantal point processes (see Section 1.2.3). We
achieve this by introducing a new technique called distortion-free intermediate sampling :
We first sample a larger pool of points based on approximate i.i.d. leverage scores and then
down-sample from that pool to construct the volume-rescaled sample. We use rejection
sampling for the down-sampling step to ensure exactness of the resulting overall sampling
distribution. Surprisingly, this does not adversely affect the complexity because of the
provably high acceptance rate during rejection sampling (see Theorem 5.6).
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When distribution D is defined by a fixed design (X,y) with n � d data points, then,
in Theorem 5.9, we improve upon the time complexity of discrete volume sampling from
O(nd2) to O(nd log n + d4 log d). This cost is nearly-linear in the size of the dataset and,
for the first time, better than solving the full least squares problem directly, which takes
O(nd2) time. Importantly, most of the cost in the new algorithm comes from preprocessing,
and the actual sampling takes only O(d4) time, i.e., independent of the data size, which is
useful when we wish to produce multiple independent samples. Combining this with the
new loss bound, we get the following improvements for obtaining an unbiased subsampled
estimator with loss within 1+ ε of the optimum: The sample size k is reduced from O(d2/ε)
to O(d log d+ d/ε) and the time complexity from O(nd3/ε) to O(nd log n+ d4 log d+ d3/ε).

Remarkably, we show that exact volume-rescaled sampling is possible even when dis-
tribution DX is unknown (and possibly continuous) and we only have oracle access to it.
In this setting, the size of the intermediate sample that is necessary to achieve this grows
linearly with a certain condition number of the distribution (this is likely unavoidable in
general). Finally, in the special case where DX is a multivariate Gaussian distribution with
unknown covariance, we use a different approach to show that only d+2 additional samples
from DX are needed to modify a sample from Dk

X so that it becomes a volume-rescaled
sample of size k.

1.2 Applications of our results

While studying unbiased estimators for least squares regression is an old and classical prob-
lem, our new results have significant implications for modern data science, both from a
computational and statistical perspective. We outline these implications below, along with
some of the recent related work.

1.2.1 Model averaging

Model averaging is a standard technique for boosting the accuracy of a subsampled es-
timator by constructing multiple independent copies and then averaging them. This is
particularly effective in parallel and distributed environments, where the computational
cost of constructing multiple estimators is the same as the cost of computing one estimator.
While model averaging has been proposed as a strategy for least squares regression (e.g.,
see Wang et al., 2017a), the bias which arises for commonly used estimators (e.g., based on
i.i.d. sampling) constitutes a significant bottleneck for this approach.

Our framework for constructing unbiased estimators with expected loss bounds is uniquely
suited for addressing the problem of estimation bias in model averaging. To see this, con-
sider a least squares estimator ŵ that satisfies both the unbiasedness property, E[ŵ] = w∗,
and near-optimal expected loss, E[LD(ŵ)] ≤ (1 + ε)LD(w∗). It immediately follows that if
we construct m independent copies ŵ1, ..., ŵm of ŵ, then the averaged estimator satisfies:

E
[
LD(w̃)

]
≤
(

1 +
ε

m

)
LD(w∗), where w̃ =

1

m

m∑
i=1

ŵi.

Consider for instance the setting where distribution D is defined by a fixed design (X,y)
with n data points. Here, we can use parallel averaging to boost the accuracy of a subsam-
pled least squares estimator from ε to ε/m at virtually no additional computational cost.
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However, for this to be practical, (1) the estimator must be unbiased, and (2) the computa-
tional cost of constructing the estimator must be less than O(nd2), the cost of solving least
squares exactly. We develop the first such estimator, by not only providing an improved
expected loss bound for an unbiased estimator, but also reducing the computational cost
to O(nd log n+ d4 log d), which is much less than O(nd2) when n is sufficiently larger than
d. Finally, we point out that our volume-based sampling algorithms for model averaging
have recently proven relevant in the context of model averaging for distributed second-order
optimization and distributed ridge regression, among others (Dereziński et al., 2020a).

1.2.2 Experimental design

A natural application for volume-rescaled sampling algorithms comes in the context of ex-
perimental design (a.k.a. optimal design of experiments; see Fedorov, 1972; Pukelsheim,
2006). Here, the goal is to select a small set of data points for which the least squares
estimator minimizes a given optimality criterion, typically related to some notion of vari-
ance. Classical experimental design imposes statistical assumptions on the response model,
making the least squares estimator trivially unbiased regardless of how we select the set of
points. Volume-rescaled sampling provides a way of preserving the unbiasedness property
while relaxing the assumptions on the responses. In particular, this leads to a fundamental
connection between the expected loss and the prediction variance, a standard optimality
criterion (V-optimality) in experimental design. Namely, for an estimator ŵ such that
E[ŵ] = w∗, letting x> ∼ DX , we have:

E
[
LD(ŵ)

]
− LD(w∗)︸ ︷︷ ︸

Excess loss

= Var[x>ŵ]︸ ︷︷ ︸
Prediction variance

.

In a recent follow-up work, Dereziński et al. (2019) used these ideas to develop a general
framework for experimental design, which bridges the gap between the statistical perspective
(linear response model) and the setting studied here (arbitrary responses), relying on our
volume-rescaled sampling tool kit (in particular, Theorem 2.4). Furthermore, our strategy
of combining volume-based sampling methods with i.i.d. importance sampling (e.g., leverage
scores) has proven instrumental in developing randomized rounding methods for efficiently
solving a range of experimental design problems (including A/C/D/V-optimal design, and
Bayesian experimental design), drastically reducing their computational cost and improving
the approximation quality, both for discrete (Nikolov et al., 2019; Dereziński et al., 2020b)
and continuous domains (Poinas and Bardenet, 2020).

1.2.3 Determinantal point processes

Volume-rescaled sampling of size d (i.e., VSdDX , see Definition 2.1) belongs to a family of
distributions called Determinantal Point Processes (DPPs), which has been studied exten-
sively in many computational areas as a tractable model of diverse sampling, including in
randomized numerical linear algebra (Dereziński and Mahoney, 2021), machine learning
(Kulesza and Taskar, 2012) and statistics (Bardenet et al., 2017); here we cite selected
surveys that provide a thorough literature review. Our results lead to direct improvements
in the computational cost of sampling for an important class of so-called Projection DPPs.
We outline this here for the case where the support of the distribution is a finite set.
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Determinantal point processes are most commonly defined as a distribution over subsets
S ⊆ {1, ..., n}, parameterized by a positive semidefinite n × n kernel matrix K with all
eigenvalues in [0, 1], so that a sample S ∼ DPP(K) satisfies:

Pr(T ⊆ S) = det(KT,T ), for all T ⊆ {1, ..., n}.

Here, KT,T denotes the |T | × |T | submatrix of K indexed by T . When K is a projection
matrix, i.e., all of its eigenvalues are in {0, 1}, then this is called a Projection DPP and
the size of the sampled set S is equal to the rank of K. An alternate parameterization of
a Projection DPP that appears in the literature relies on an n× d matrix X such that the
kernel K = XX† is the rank d projection onto the column span of X. By letting DX be
uniform over the rows of X, we obtain that VSdDX is the distribution of XS for S ∼ DPP(K),
up to a permutation of the rows (here, XS indicates the rows of X indexed by S).

Prior to our work, the cost of generating each sample from a given Projection DPP was
O(nd2), both for the X and the K parameterizations, by using the algorithm of Hough
et al. (2006). Our technique of distortion-free intermediate sampling drastically reduces
these costs when n � d. If we are using the X parameterization, then after an initial
preprocessing cost of O(nd log n+ d4 log d), we can sample from a Projection DPP in time
O(d4). When given an n×n projection matrix K of rank d, we can sample from DPP(K) in
time O(d6). Here, the preprocessing step involves simply reading the diagonal of K in O(n)
time. In both cases, these are the first poly(d) time sampling algorithms for Projection
DPPs. Follow-up works (Dereziński, 2019; Dereziński et al., 2019; Calandriello et al., 2020)
have extended distortion-free intermediate sampling to the class of L-ensemble DPPs, and
more recently even beyond DPPs, to larger distribution families such as strongly Rayleigh
measures, which have many applications in machine learning and theoretical computer
science (Anari and Dereziński, 2020; Anari et al., 2022).

1.3 Related work

A discrete variant of volume-rescaled sampling of size k = d was introduced to computer
science literature by Deshpande et al. (2006) for sampling from a finite set of n vectors,
with algorithms given later by Deshpande and Rademacher (2010); Guruswami and Sinop
(2012). A first extension to samples of size k > d is due to Avron and Boutsidis (2013), with
algorithms by Li et al. (2017); Dereziński and Warmuth (2018); Dereziński et al. (2018),
and additional applications in experimental design explored by Wang et al. (2017b); Nikolov
et al. (2019); Mariet and Sra (2017). Prior to this work, the best known time complexity
for this sampling method, called here discrete volume sampling, was O(nd2), as shown by
Dereziński and Warmuth (2018). Here, we give an O(nd log n+ d4 log d) time algorithm.

As discussed in Section 1.2.3, volume-rescaled sampling of size d is also known in the
literature as a type of determinantal point process, called Projection DPP (to learn more,
see Dereziński and Mahoney, 2021). Projection DPPs arise in many computational tasks
outside of linear regression, such as dimensionality reduction (Belhadji et al., 2020), nu-
merical integration (Bardenet and Hardy, 2020) and graph algorithms (Guenoche, 1983),
therefore, efficient sampling algorithms for these distributions are of significant interest
(Gautier et al., 2017). More broadly, determinantal point processes have found machine
learning applications in recommendation systems (e.g., Gartrell et al., 2016), data summa-
rization (e.g., Gong et al., 2014), stochastic optimization (e.g., Zhang et al., 2017; Mutný
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et al., 2020), and many others (see Kulesza and Taskar, 2012). The algorithmic technique
of distortion-free intermediate sampling, introduced in this work, has already been applied
beyond Projection DPPs (Dereziński et al., 2019; Calandriello et al., 2020), which makes it
relevant to all of these applications.

The unbiasedness of least squares estimators under volume-based distributions was first
explored in the context of sampling from finite datasets by Dereziński and Warmuth (2018),
drawing on observations of Ben-Tal and Teboulle (1990). Focusing on small sample sizes,
Dereziński and Warmuth (2018) proved multiplicative bounds for the expected loss under
sample size k = d with discrete volume sampling. Because the produced estimators are
unbiased, averaging d/ε such estimators results in an unbiased estimator based on a sample
of size k = d2/ε with expected loss at most 1 + ε times the optimum at a total sampling
cost of O(nd2 · d/ε). In contrast, our new techniques achieve an unbiased estimator with
sample size O(d log d + d/ε) and time complexity O(nd log n + d4 log d + d3/ε). Dereziński
and Warmuth (2018) also showed additional variance bounds for discrete volume sampling
under the assumption that the responses are linear functions of the input points plus white
noise. We extend them here to arbitrary volume-rescaled sampling w.r.t. a distribution.

Other techniques applicable to our linear regression problem include leverage score sam-
pling (Drineas et al., 2006) and algorithms based on spectral sparsification (e.g., Chen and
Price, 2019; Kacham and Woodruff, 2020). Leverage score sampling is an i.i.d. sampling
procedure which achieves loss bounds nearly matching the ones we obtain here for volume-
rescaled sampling, however it produces biased estimators and experimental results (see
Section 6) show that it has weaker performance for small sample sizes. A different and
more elaborate sampling technique based on spectral sparsification (Batson et al., 2012;
Lee and Sun, 2015) was recently shown to be effective for linear regression (Chen and Price,
2019): They show that O(d/ε) samples suffice to produce an estimator with expected loss
(1 + ε)LD(w∗). However this method also does not produce unbiased estimators, which is
a primary concern of this paper and desirable in many settings, as discussed in Section 1.2.

Conference versions of this paper Our work greatly expands and generalizes the
results of two conference papers: Dereziński et al. (2018, 2019). The first paper introduced
the leverage score rescaling method in the limited context of discrete volume sampling,
developed the new intermediate sampling algorithm, and proved the O(d log d+d/ε) sample
size bound for obtaining an unbiased estimator with a (1 + ε) loss bound. Note that
the original loss bound was shown to hold with a constant probability, as opposed to in
expectation, which is a significant obstacle to using it in the context of model averaging.
The second paper showed how to correct the bias of i.i.d. sampling using a small size d
volume-rescaled sample and refined the analysis of intermediate sampling. The current
paper strengthens the loss bound of the first conference paper to the desired in-expectation
form (this requires new technical tools such as Lemma 3.4), and generalizes it to the case of
an arbitrary data distribution D (Theorem 3.1). In the process, we develop new formulas
for the expectation of the inverses and pseudoinverses of random matrices under volume-
rescaled sampling (Theorems 2.8 and 2.9) and characterize the marginals of this distribution
(Theorem 2.7). We also extend the decomposition property of volume-rescaled sampling
given in the second conference paper (Theorem 2.4), thereby greatly simplifying our proofs.
Finally, we give a new lower bound that complements our main results (Theorem 4.1).

9
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Outline

In Section 2 we give our basic definition of volume-rescaled sampling w.r.t. an arbitrary
distribution over the examples and prove the basic expectation formulas as well as the
fundamental decomposition property which is repeatedly used in later sections. We also
show that the linear least squares estimator is unbiased under volume-rescaled sampling.
The decomposition property is then used in Section 3 to show that volume-rescaled leverage
score sampling produces a linear least squares estimator with loss at most (1+ε)LD(w∗) for
sample size O(d log d+ d/ε). The lower bounds in Section 4 show that i.i.d. sampling leads
to biased estimators and plain volume-rescaled sampling does not have 1 + ε loss bounds.

In Section 5 we show that if DX is normal, then d + 2 additional samples can be used
to construct a volume-rescaled sample of size k. When the distribution DX is arbitrary
but we are given an approximation of the covariance matrix of DX , then a special variant
of approximate leverage score sampling can be used to construct a larger intermediate
sample that contains a volume-rescaled sample with high probability. We then show how to
construct an approximate covariance matrix from additional samples from DX . The number
of samples we need grows linearly with a variant of a condition number of DX . Finally we
show how the new intermediate sampling method introduced here leads to improved time
bounds in the fixed design case.

In Section 6 we compare the performance of the algorithms discussed in this paper on
some real datasets. We conclude with an overview and some open problems in Section 7.

2. Volume-rescaled sampling

In this section, we formally define volume-rescaled sampling and describe its basic proper-
ties. We then use it to introduce the central concept of this paper: an unbiased estimator
for random design least squares regression.

Notation. Let a>i denote the ith row of a matrix A, and let AS be the submatrix of A
containing rows of A indexed by the set S. Also, we use A−i, A :,−j and A−i,−j to denote
matrix A with ith row removed, jth column removed, and both removed, respectively.
When A is d× d, we use adj(A) to denote the adjugate of A which is a d× d matrix such
that adj(A)ij = (−1)i+j det(A−j,−i). We use DX to denote the distribution of a d-variate
random row vector x> and we assume throughout that ΣDX = E[xx>] exists and is full rank.
Distribution D is called (d, 1)-variate if it produces a joint sample (x>, y) where x ∈ Rd and
y ∈ R. A random k×d matrix consisting of k independent rows distributed as DX is denoted
X ∼ Dk

X . We also use the following standard shorthand: kd = k!
(k−d)! = k (k−1) · · · (k−d+1).

Definition 2.1 Given a d-variate distribution DX and any k ≥ d, we define volume-rescaled
size k sampling from DX as a k×d-variate probability measure VSkDX such that for any event

A ⊆ Rk×d measurable w.r.t. Dk
X , its probability is

VSkDX (A)
def
=

E
[

det(X>X) · 1[X∈A]

]
E
[

det(X>X)
] , where X ∼ Dk

X .

For k = d, this volume-rescaled sampling is a type of Determinantal Point Process known
as Projection DPP (see Section 1.2.3; to learn more, see Dereziński and Mahoney, 2021).
The case of k > d can be viewed as an extension of that family of distributions.
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Remark 2.2 Distribution X̄ ∼ VSkDX is well-defined whenever ΣDX = EDX [xx>] is finite

and full rank. Also, for any F : Rk×d→R, random variable F (X̄) is measurable if and only
if det(X>X)F (X) is measurable for X ∼ Dk

X , and then it follows that

EX̄[F (X̄)] =
EX[det(X>X)F (X)]

EX[det(X>X)]
=

E[det(X>X)F (X)]

kd det(ΣDX )
.

The remark follows from a key lemma which is an extension of a classic result by van der
Vaart (1965), who essentially showed (2.1) below when A = B, but not (2.2). Part (2.1) of
the lemma lets us rewrite the normalization of volume-rescaled sampling VSkDX as:

EX

[
det(X>X)

]
= (kd/kd) · det

(
E[X>X]

)
= kd · det

(
ΣDX

)
, where ΣDX = EDX [xx>].

Lemma 2.3 If the rows of the random matrices A,B ∈ Rk×d are sampled as an i.i.d. se-
quence of k pairs of joint random vectors (ai,bi), then

kd E
[

det(A>B)
]

= kd det
(
E[A>B]

)
for any k ≥ d, (2.1)

kd−1 E
[

adj(A>B)
]

= kd−1 adj
(
E[A>B]

)
for any k ≥ d− 1. (2.2)

Proof First, suppose that k = d, in which case det(A>B) = det(A) det(B). Recall that
by definition the determinant can be written as:

det(C) =
∑
σ∈Sd

sgn(σ)

d∏
i=1

ci,σi ,

where Sd is the set of all permutations of (1..d), and sgn(σ) = sgn
(
(1..d), σ

)
∈ {−1, 1}

is the parity of the number of swaps from (1..d) to σ. Using this formula and denoting
cij =

(
E[A>B]

)
ij

= dE[a1ib1j ], we can rewrite the expectation as:

dd E
[
det(A) det(B)

]
=
∑

σ,σ′∈Sd

sgn(σ) sgn(σ′)
d∏
i=1

E
[
d · aiσibiσ′i

]
=
∑
σ∈Sd

∑
σ′∈Sd

sgn(σ, σ′)
d∏
i=1

cσiσ′i

= d!
∑
σ′∈Sd

sgn(σ′)

d∏
i=1

ciσ′i

= d! det
(
E[A>B]

)
,

which proves (2.1) for k = d. The case of k > d follows by induction via a standard
determinantal formula:

E
[

det(A>B)
] (∗)

= E
[

1

k − d

k∑
i=1

det
(
A>−iB−i

)]
=

k

k − d
E
[

det
(
A>−kB−k

)]
,

11
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where (∗) follows from the Cauchy-Binet formula. Finally, (2.2) can be derived from (2.1):

kd−1 E
[

adj(A>B)ij
]

= kd−1 E
[
(−1)i+j det

(
(A>B)−j,−i

)]
= (−1)i+j kd−1E

[
det(A>:,−jB :,−i)

]
using (2.1) = (−1)i+j kd−1 det

(
E[A>:,−jB :,−i]

)
= kd−1 (−1)i+j det

(
(E[A>B])−j,−i

)
= kd−1 adj

(
E[A>B]

)
ij
,

where recall that A :,−j ∈ Rk×d−1 denotes matrix A with the jth column removed.

2.1 Basic properties

In this section we look at the relationship between the random matrix X ∼ Dk
X of an

i.i.d. sample from DX and the corresponding volume-rescaled sample X̄ ∼ VSkDX . Even
though the rows of X̄ are not independent, we show that they contain among them an
i.i.d. sample distributed according to Dk−d

X .

Theorem 2.4 Let X̄ ∼ VSkDX and S ⊆ [k] be a random size d set s.t. Pr(S | X̄) ∝ det(X̄S)2.

Then X̄S ∼ VSdDX , X̄[k]\S ∼ Dk−d
X , S is (marginally) uniformly random, and the three

random variables X̄S, X̄[k]\S, and S are mutually independent.

Before proceeding with the proof, we would like to discuss the implications of the theo-

rem at a high level. First, observe that it allows us to “compose” a unique matrix X̄ (which

must be distributed according to VSkDX ) from a d-row draw from VSdDX , a (k−d)-row draw

from Dk−d
X , and a uniformly drawn subset S of size d from [k]. We construct X̄ by placing

the d rows at row indices S and the k − d rows at the remaining indices. Another way to

think of the construction of X̄ is that we index the rows of VSdDX from 1 to d and the rows

of Dk−d
X from d+ 1 to k, and then permute the indices by a random permutation σ:

volume + i.i.d.

VSdDX︷ ︸︸ ︷
x1 . . .xd

Dk−dX︷ ︸︸ ︷
xd+1 . . . . . . . . . . . .xk (2.3)

m
VSkDX xσ1 . . . . . . . . . . . . . . . . . . . . . . .xσk (2.4)

Perhaps more surprisingly, given a volume-rescaled sample of size k from DX (i.e.,
X̄ ∼ VSkDX ), sampling a set S ⊆ [k] of size d with probability ∝ det(X̄S)2 (discrete

volume sampling) “filters out” a size d volume-rescaled sample from DX (i.e., X̄S ∼
VSdDX ). That sample is independent of the remaining rows in X̄, so after reordering
we recover (2.3).

We can repeat the steps of going “back and forth” between (2.3) and (2.4). That
is, we can compose a sample from VSkDX by appending the size d sub-sample we filtered

out from X̄ with its complement and permuting randomly, and then again filter out

12
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a size d volume sub-sample w.r.t. DX from the permuted sample. The size d sub-
samples produced the first and second time are likely going to be different, but they
have the same distribution VSdDX .

This phenomenon can already be observed in one dimension (i.e., d = 1). In
this case, (2.3) samples one point x1 ∼ x2 ·DX and independently draws x2, . . . , xk ∼
Dk−1
X . Note that the k random variables are mutually independent but not identically

distributed. Now, if we randomly permute the order of the variables as in (2.4),
then the new variables are identically distributed but not mutually independent.
Intuitively, this is because observing (the length of) any one of the variables alters
our belief about where the volume-rescaled sample was placed. Applying Theorem 2.4,
we can now “decompose” the dependencies by sampling a singleton subset S = {i}
with probability proportional to x2

i . Even though the selected variable may not be
the same as the one chosen originally, it is distributed according to volume-rescaled
sampling w.r.t. DX and the remaining k−1 points are i.i.d. samples from DX .

Proof The distribution of S conditioned on X̄ is the discrete volume sampling
distribution over sets of size d whose normalization constant is det(X̄>X̄) via the
Cauchy-Binet formula. Denote Sc = [k]\S and let A, B and C be measurable events
for variables S, X̄S and X̄Sc , respectively. We next show that the three events are
mutually independent and we compute their probabilities. The law of total probability
with respect to the joint distribution of S and X̄, combined with Remark 2.2 (using
X ∼ Dk

X ) implies that:

Pr
(
S∈A ∧ X̄S∈B ∧ X̄Sc∈C

)
= EX̄

[
Pr(S∈A ∧ X̄S∈B ∧ X̄Sc∈C | X̄)

]
=

EX

[
det(X>X) · Pr(S∈A ∧ X̄S∈B ∧ X̄Sc∈C | X̄=X)

]
kd det(ΣDX )

(a)
=

E
[

det(X>X) ·
∑

S∈A
det(XS)2

det(X>X)
1[XS∈B]1[XSc∈C]

]
kd det(ΣDX )

(b)
=

∑
S∈A E

[
det(XS)2 1[XS∈B] 1[XSc∈C]

]
kd det(ΣDX )

(c)
=
|A| · E

[
det(X[d])

2 1[X[d]∈B]

]
· E
[
1[X[k]\[d]∈C]

](
k
d

)
d! det(ΣDX )

=
|A|(
k
d

) · VSdDX (B) ·Dk−d
X (C).

Here (a) uses Cauchy-Binet to obtain the normalization for Pr(S | X̄), which is then
cancelled out in (b). Finally (c) follows because the rows of X ∼ Dk

X are i.i.d. so XS

and XSc are independent for any fixed S, and the choice of S does not affect the
expectation.

Theorem 2.4 implies that for k � d, the distributions VSkDX and Dk
X are in fact

very close to each other because they only differ on a small sample of size d. Since the
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rows of X̄ are exchangeable, they are also identically distributed. The marginal dis-
tribution of a single row exhibits a key connection between volume-rescaled sampling
and leverage score sampling (when generalized to our distribution setting), which we
will exploit later. Recall that for a fixed matrix X ∈ Rn×d, the leverage score of row
x>i is defined as x>i (X>X)−1xi. Note that in this case, the n leverage scores sum to
d. The following definition is a natural generalization of leverage scores to arbitrary
distributions.

Definition 2.5 Given a d-variate distribution DX , we define leverage score sampling
from DX as a d-variate probability measure LevDX such that for any event A ⊆ R1×d

measurable w.r.t. DX , its probability is

LevDX (A)
def
=

EDX

[
1[x>∈A] · x>Σ−1

DX
x
]

EDX [x>Σ−1
DX

x]
, where x> ∼ DX .

Clearly, EDX [x>Σ−1
DX

x] = d when ΣDX finite.

Remark 2.6 Distribution x̄ ∼ LevDX is well-defined whenever ΣDX = E[xx>] is finite
and full rank. Also, for any F : R1×d→R, random variable F (x̄>) is measurable if
and only if F (x̄>) x̄>Σ−1

DX
x̄ is measurable for x> ∼ DX , and then it follows that

ELevDX
[F (x̄>)] = EDX [F (x>) x>Σ−1

DX
x] /d.

Theorem 2.7 The marginal distribution of each row vector x̄>i of X̄ ∼ VSkDX is

d

k
· LevDX +

(
1− d

k

)
·DX .

Proof For k = d, this can be derived from existing work on determinantal point
processes (see Lemma 3.3 for more details). We present an independent proof using
the identity det(B + vv>) = det(B) + v>adj(B)v and Lemma 2.3. Given X̄ ∼ VSdDX ,

Pr(x̄>i ∈ A) =
E
[
E[1[x>i ∈A] det(X>X) |xi]

]
d! det(ΣDX )

(where X ∼ Dd
X )

=
E
[
1[x>i ∈A]E[det(X>

−iX−i + xix
>
i ) |xi]

]
d! det(ΣDX )

(a)
=

E
[
1[x>i ∈A]E[x>i adj(X>

−iX−i)xi |xi]
]

d! det(ΣDX )

(b)
=

E
[
1[x>i ∈A] · x>i adj(ΣDX )xi

]
d!

(d−1)!
det(ΣDX )

(c)
= E

[
1[x>i ∈A] · x>iΣ−1

DX
xi
]
/d.

Here (a) follows because det(X>
−iX−i) = 0, and in (b) we use Lemma 2.3 and the fact

that E[X>
−iX−i] = (d−1) ·ΣDX . Finally (c) employs the identity adj(A) = det(A)A−1
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which holds for any full rank A. The case of k > d now follows from the case k = d
combined with Theorem 2.4.

The key random matrix that arises in the context of volume-rescaled sampling is not
X̄ itself but rather its Moore-Penrose pseudoinverse, X̄† = (X̄>X̄)−1X̄>. Its expected
value is given below.

Theorem 2.8 Let X ∼ Dk
X and X̄ ∼ VSkDX for any d-variate DX and k ≥ d. Then

E
[
X̄†
]

=
(
E[X>X]

)−1E[X]>.

Recall that we assume E[X>X] = kΣDX is full rank throughout the paper. The
proof of Theorem 2.8 is delayed to Section 2.2 where we give a slightly more general
statement (Theorem 2.10). We can compute not only the first moment of X̄†, but
also a second matrix moment, namely E[X̄†X̄†>]. Even though X may not always be
full rank, X̄ is full rank almost surely (a.s.), so we can write X̄†X̄†> = (X̄>X̄)−1.

Theorem 2.9 Let X ∼ Dk
X and X̄ ∼ VSkDX for any d-variate DX . If rank(X)=d a.s.,

then

E
[
X̄†X̄†>

]
= E

[
(X̄>X̄)−1

] (∗)
=

k

k − d+ 1
·
(
E[X>X]

)−1
.

If rank(X) < d with some probability then (∗) becomes a positive semi-definite in-
equality �.

Proof For a full rank d× d matrix A we have A−1 = A† and adj(A) = det(A)A−1.
When A is not full rank but psd, then det(A)A† = 0 � adj(A). Thus Lemma 2.3
implies that

E
[
(X̄>X̄)−1

]
=

E
[

det(X>X)(X>X)†
]

E
[

det(X>X)
]

(∗)
�

E
[

adj(X>X)
]

E
[

det(X>X)
]

(Lemma 2.3) =
(kd−1/kd−1) · adj

(
E[X>X]

)
(kd/kd) · det

(
E[X>X]

)
=

k

k − d+ 1
·
(
E[X>X]

)−1
,

where (∗) becomes an equality if X>X is full rank with probability 1.

2.2 Unbiased estimator for random design regression

In fixed design linear regression, given a fixed k × d matrix X and a k-dimensional
response vector y, the least squares estimator X†y = argminw ‖Xw−y‖2 is a canon-
ical solution. When the response vector is random, then the least squares solu-
tion satisfies E[X†y] = X†E[y] = argminw Ey

[
‖Xw − y‖2

]
, i.e., it is an unbiased

15
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estimator of the minimizer of the expected square loss. In random design regres-
sion, where each row-response pair is drawn independently as (x>, y) ∼ D from
some (d, 1)-variate population distribution D, the matrix X ∼ Dk

X also becomes
random. In this context, the minimizer of the expected square loss is defined as
argminw E

[
(x>w− y)2

]
= Σ−1

DX
E[x y]. Note that our assumption that rank(ΣDX ) = d

comes without loss of generality because the redundant components of vector x can be
removed, reducing dimension d to match the rank of ΣDX . The least squares solution
X†y may no longer be an unbiased estimator of the optimum under the random de-
sign model (in most cases it is not). We show that volume-rescaled sampling provides
a natural way of correcting the distribution Dk

X so that the least squares estimator is
always unbiased.

Theorem 2.10 Let (x>, y) ∼ D be (d, 1)-variate. Then for X̄ ∼ VSkDX and ȳi ∼
DY|x=x̄i,

E
[
X̄†ȳ

]
= argmin

w
E
[
(x>w − y)2

]
= w∗.

Proof Let (X,y) ∼ Dk. We first prove the theorem for k = d. In this case, Cramer’s
rule implies that since X is a d× d matrix, we have

det(X>X)X†y = det(X) adj(X) y = det(X) ·

det(X
1←y)

...

det(X
d←y)

 ,
where X

i←y is matrix X with column i replaced by y. It follows that:

E
[
(X̄†ȳ)i

]
=

E
[

det(X>X)(X†y)i
]

d! det(ΣDX )

=
E
[

det(X) det(X
i←y)

]
d! det(ΣDX )

(Lemma 2.3) =
det
(
ED[x (x

i←y)>]
)

det(ΣDX )

=
det
(
ΣDX

i←E[x y]
)

det(ΣDX )

= Σ−1
DX

E[x y] = argmin
w

E
[
(x>w − y)2

]
.

where we applied Lemma 2.3 to the pair of d× d matrices A = X and B = X
i← y.

The case of k > d follows by induction based on the following lemma shown by
Dereziński and Warmuth (2018):
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Lemma 2.11 For any matrix X ∈ Rk×d, where k > d, denoting I−i = I − eie
>
i , we

have

det(X>X) X† =
1

k − d

k∑
i=1

det(X>I−iX) (I−iX)†.

Suppose that the induction hypothesis holds for X̃ ∼ VSk−1
DX

and ỹi ∼ DY|x=x̃i . Then,

E
[
X̄†ȳ

]
=

E
[

det(X>X) X†y
]

kd det(ΣDX )

(a)
=

E
[

1
k−d
∑k

i=1 det(X>I−iX) (I−iX)†y
]

kd det(ΣDX )

=
1

k − d

∑k
i=1 E

[
det(X>I−iX)(I−iX)†y

]
kd det(ΣDX )

(b)
=

k

k − d
(k−1)d

kd
E
[
X̃†ỹ

]
= Σ−1

DX
E[x y],

where (a) follows from Lemma 2.11, while (b) follows because the rows of X ∼ Dk
X

are exchangeable, so removing the ith row is the same as removing the last row.

The expected value of random matrix X̄† (Theorem 2.8) now follows by setting y = 1:

Proof of Theorem 2.8 The columns of X̄†, equal (X̄>X̄)−1x̄i, are exchangeable, so

E
[
(X̄>X̄)−1x̄i

]
=

1

k
· E
[
X†1k

] (∗)
=

1

k
·
(
E[xx>]

)−1E[x] =
(
E[X>X]

)−1E[x],

where (∗) is Theorem 2.10 with y = 1. The desired formula is the matrix form of the
above.

We now briefly discuss the implications of our method in the case when the response
variable is linear plus some well-behaved noise. More precisely, when the response
values are modeled as yi = x>i w∗ + ξi, where E[ξi] = 0, Var[ξi] = σ2 and w∗ ∈ Rd,
then the covariance matrix of the least squares estimator in fixed design regression is
given by Var[X†y |X] = σ2(X>X)−1 (here X is fixed). The covariance matrix of the
volume-rescaled sampling estimator in random design regression takes a similar form.

Theorem 2.12 Let (x>, y) ∼ DX be (d, 1)-variate. Suppose that E[y |x] = x>w∗ for
some w∗ ∈ Rd and Var[y − x>w∗ | x] = σ2 almost surely. Then for X̄ ∼ VSkDX and
ȳi ∼ DY|x=x̄i,

Var
[
X̄†ȳ

] (∗)
=

k

k − d+ 1
· σ2
(
E[X>X]

)−1
, where X ∼ Dk

X ,

as long as rank(X) = d almost surely, otherwise (∗) is replaced by inequality �.
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Proof Since E
[
X̄†ȳ

]
= E

[
X̄† E[ȳ | X̄]

]
= w∗, denoting ξ = ȳ − X̄w∗, we have

Var
[
X̄†ȳ

]
= E

[
X̄†(X̄w∗+ ξ)(X̄w∗+ ξ)>X̄†>

]
−w∗w∗>

= E
[
X̄† E[ξξ>|X̄] X̄†>

]
+ E

[
X̄†X̄w∗w∗>(X̄†X̄)>

]
−w∗w∗>

= σ2 · E
[
X̄†X̄†>

]
(∗)
= σ2 · k

k − d+ 1

(
E[X>X]

)−1
.

Here, (∗) uses Theorem 2.9. It is replaced by � when rank(X) < d with positive
probability.

3. Loss bound for an unbiased estimator

For any distribution D defining a regression problem (x>, y) ∼ D, the quality of a
vector w ∈ Rd is measured by the expected square loss over D:

LD(w) = E
[
(x>w − y)2

]
.

How many samples do we need to use to produce an unbiased estimator ŵ such that
the expected loss of ŵ is no more than 1 + ε times the optimum loss for the problem?
Concretely, given the input distribution DX and ε > 0, our goal is to find the smallest
k for which there is a k × d-variate distribution V k

DX
and an estimator ŵ(ȳ|X̄) such

that
E
[
ŵ(ȳ|X̄)

]
= w∗, and E

[
LD

(
ŵ(ȳ|X̄)

)]
≤ (1 + ε)L(w∗),

where w∗ = argminw LD(w), X̄ ∼ V k
DX

and ȳi ∼ DY|x=x̄i . Theorem 2.10 suggests

that a natural candidate for the sampling distribution V k
DX

of the k points is volume-

rescaled sampling VSkDX paired with the estimator X̄†ȳ. Surprisingly we will show
that this estimator can have very large loss. Since the estimator does not depend on
the ordering of the rows of X̄, it follows from Theorem 2.4 that it can be equivalently
constructed from a volume-rescaled sample of size d and an i.i.d. sample of size k− d
from DX . We denote such a sample as VSdDX · D

k−d
X . Even though this estimator is

unbiased, most of the samples are coming from the input distribution DX , so if this
distribution is particularly ill-conditioned then we may not draw a point with high
leverage until a large number of samples were drawn. In the next section, we present
Theorem 4.2 which implies the following lower bound: For any k ≥ d, there is a
(d, 1)-variate distribution D such that if X̄ ∼ VSkDX , then LD(X̄†ȳ) ≥ 2 ·LD(w∗) with
probability at least 0.25.

The standard solution for avoiding the case when the examples have drastically
different leverage scores is to replace the input distribution with the leverage score
distribution LevDX . If the k points are sampled i.i.d. from LevkDX then it is known
how to construct a biased estimator which satisfies the 1 + ε loss bound for size
k = O(d log d+ d/ε). In the below result we use a sampling distribution consisting of
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a size d volume-rescaled sample and a leverage score sample of size k − d, i.e., the k
points are drawn from VSdDX ·Levk−dDX

to achieve both unbiasedness and the loss bound
with sample size k = O(d log d+ d/ε). The proof is broken down into two parts. The
first part shows that the loss bound holds when conditioned on a high probability
event which indicates when the leverage score sample is sufficiently well conditioned.
This part follows similarly to the standard analysis of leverage score sampling, except
we must additionally account for the negative dependence between the samples drawn
by volume-rescaled sampling. The second part of the proof analyzes the expected loss
when the high probability event fails. Here, standard analysis fails, and to address
this, we use a novel decomposition of the loss, relying on an expectation inequality for
volume-rescaled sampling (Lemma 3.4), which is potentially of independent interest.
In what follows, we use lx = x>Σ−1

DX
x to denote the leverage score of point x.

Theorem 3.1 Let DX be a d-variate distribution. For any ε > 0, there is k =
O(d log d + d/ε) such that for any DY|x, if we sample X̄ ∼ VSdDX · Levk−dDX

and ȳi ∼
DY|x=x̄i then the estimator ŵ = argminw

∑k
i=1

1
lx̄i

(x̄>i w − ȳi)2 satisfies:

E[ŵ] = argmin
w

LD(w) and E
[
LD(ŵ)

]
≤ (1 + ε) ·min

w
LD(w).

Proof Let x̂> ∼ LevDX and ŷ ∼ DY|x=x̂ jointly define distribution (x̂>, ŷ) ∼ D̂ and

(x̃>, ỹ) =

(
1√
lx̂

x̂>,
1√
lx̂
ŷ

)
∼ D̃.

By Remark 2.6, D and D̃ define the same loss function up to a constant factor:

LD̃(w) = ELevDX

[ 1

lx
Eŷ
[
(x̂>w − ŷ)2 | x̂

]]
= ED

[ 1

lx

(
x>w − y)2 · lx

]
/d = LD(w) /d.

Similarly, it follows that ΣD̃X
= 1

d
ΣDX . The key property of distribution D̃X is that

it has uniform leverage scores, implying that LevD̃X
= D̃X :

x̃>Σ−1

D̃X
x̃ =

1

lx̂
x̂>Σ−1

D̃X
x̂ =

d

lx̂
x̂>Σ−1

DX
x̂ = d. (3.1)

Let X̄ and ȳ be distributed as in the theorem. Note that we can write the estimator
ŵ as follows:

ŵ = (PX̄X̄)†PX̄ȳ, where PX =
k∑
i=1

1√
lxi

eie
>
i ∈ Rk×k.
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For any measurable function F (PX̄X̄,PX̄ȳ), using Remarks 2.2 and 2.6, as well as

det(PX)2 =
∏k

i=1
1
lxi

and det(ΣDX ) = det(ΣD̃X
)dd, we obtain

E
[
F (PX̄X̄,PX̄ȳ)

]
=

EDkX

[
Ey[F (PXX,PXy) |X] · det(X[d])

2
∏k

i=d+1 lxi
]

d! det(ΣDX ) dk−d
(X,y) ∼ Dk

=
EDkX

[
Ey[F (PXX,PXy) |X] · det(PX[d]

X[d])
2
∏k

i=1 lxi
]

d! det(ΣD̃X
)dd dk−d

=
ED̂kX

[
Eŷ[F (P̂XX̂, P̂Xŷ) | X̂] · det(P̂X[d]

X̂[d])
2
]

d! det(ΣD̃X
)

(X̂, ŷ) ∼ D̂k,

=
ED̃kX

[
Eỹ[F (X̃, ỹ) | X̃] · det(X̃[d])

2
]

d! det(ΣD̃X
)

(X̃, ỹ) ∼ D̃k.

This means that PX̄X̄ ∼ VSd
D̃X
· D̃k−d
X and Px̄i ȳi ∼ D̃Y|x=Px̄ix̄i

. So, since the losses LD

and LD̃ are the same up to a constant factor and the estimator ŵ = (PX̄X̄)†PX̄ȳ is

distributed identically to the corresponding estimator for D̃, proving the result for D̃
immediately implies the same for D. Thus without loss of generality we can assume

from now on that distribution D is the same as D̃, i.e. we assume that lx = d a.s. for
x ∼ DX . This implies that LevDX = DX and ŵ = X̄†ȳ. Also by Theorem 2.4, matrix
X̄ ∼ VSdDX · D

k−d
X after randomly reordering the rows becomes distributed as VSkDX .

Thus by Theorem 2.10, E[X̄†ȳ] = w∗, where w∗ = argminw LD(w), showing the
unbiasedness property of ŵ.

We are now ready to prove the loss bound. Note that E[(x>w∗−y) x] = E[xx>]w∗−
E[x y] = 0, because w∗ = Σ−1

DX
E[x y]. We use this to perform a standard decomposi-

tion of the square loss:

LD(w) = ED

[
(x>w − y)2

]
= E

[(
x>(w −w∗)

)2]
+

0︷ ︸︸ ︷
E
[
x>(x>w∗ − y)

]
(w −w∗) + E

[
(x>w∗ − y)2

]
= E

[(
x>(w −w∗)

)2]
+ LD(w∗)

= (w −w∗)>E[xx>](w −w∗) + LD(w∗) =
∥∥Σ1/2

DX
(w −w∗)

∥∥2
+ LD(w∗).

(3.2)

Substituting ŵ = X̄†ȳ = (X̄>X̄)−1X̄>ȳ for w, we additionally obtain:∥∥Σ1/2
DX

(ŵ −w∗)
∥∥2

=
∥∥Σ1/2

DX
(X̄>X̄)−1X̄>(ȳ − X̄w∗)

∥∥2

=
∥∥(Σ

−1/2
DX

X̄>X̄Σ
−1/2
DX

)−1Σ
−1/2
DX

X̄>(ȳ − X̄Σ
−1/2
DX

E[Σ
−1/2
DX

xy])
∥∥2
.

Note that, without loss of generality, we can replace the distribution x> ∼ DX by the

distribution of x>Σ
−1/2
DX

, so from now on we will let ΣDX = I, in which case it suffices

to bound E[‖ŵ −w∗‖2] = E[‖(X̄>X̄)−1X̄>(ȳ − X̄w∗)‖2]. A key step in the analysis
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is to ensure that the inverse (X̄>X̄)−1 is bounded. We can ensure that this is true
with high probability by relying on standard matrix Chernoff bounds, such as the one
stated below, essentially due to Ahlswede and Winter (2002). The particular version
we use is adapted from Chen and Price (2019).

Lemma 3.2 There is a C > 0, such that for any DX satisfying x>Σ−1
DX

x ≤ K for all
x ∈ supp(DX ), if X ∼ Dm

X and m ≥ CKε−2 log d/δ, then

(1− ε)ΣDX �
1

m
X>X � (1 + ε)ΣDX with probability ≥ 1− δ.

Applying Lemma 3.2 for DX with K = d, m = k − bk/2c and ε = 1/2 we obtain
that if k ≥ d+ 4Cd log d/δ then the following event holds with probability 1− δ with
respect to X̄ ∼ VSdDX ·D

k−d
X (where, recall that we let ΣDX = I):

E : X̄>
[s]cX̄[s]c �

k

4
· I, where s = bk/2c. (3.3)

We next decompose the expectation E[‖ŵ −w∗‖2] into two components, depending
on whether event E occurs:

E[‖ŵ −w∗‖2] = Pr(E) · E[‖ŵ −w∗‖2 | E ] + Pr(¬E) · E[‖ŵ −w∗‖2 | ¬E ]. (3.4)

The intuition here is that when E succeeds then this ensures a strong control over
the inverse (X̄>X̄)−1 through matrix concentration thanks to the i.i.d. sampled part
of the matrix, i.e., X̄[s]c ∼ Dk−s

X ; whereas when E fails, then we can still control the

inverse by relying on the volume-rescaled sample X̄[s] ∼ VSdDX ·D
s−d
X . Here, thanks to

the exponentially small failure probability, Pr(¬E), we can rely on looser bounds for
the expectation.

Part 1: Event E succeeds We start by bounding the first term in (3.4), using a
standard error decomposition (see Lemma 1 of Drineas et al., 2011):

Pr(E) · E[‖ŵ −w∗‖2 | E ] ≤ Pr(E)E
[
‖(X̄>X̄)−1‖2‖X̄>(ȳ − X̄w∗)‖2 | E

]
≤ 42

k2
Pr(E)E

[
‖X̄>(ȳ − X̄w∗)‖2 | E

]
≤ 42

k2
E
[
‖X̄>(ȳ − X̄w∗)‖2

]
,

where we used that ‖(X̄>X̄)−1‖ ≤ ‖(X̄>
[s]cX̄[s]c)

−1‖ ≤ 4/k, when conditioned on E .

We next bound the expectation E[‖X̄>(ȳ − X̄w∗)‖2]. Unlike with i.i.d. leverage
score sampling, this requires controlling the pairwise dependence between indices
because of the jointness of volume-rescaled sampling. Denoting r̄ = ȳ − X̄w∗, and
observing that vectors X̄>

[d]r̄[d], x̄d+1r̄d+1, . . . , x̄kr̄k are independent and mean zero, we
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have

E
[∥∥X̄>r̄

∥∥2]
= E

[∥∥X̄>
[d]r̄[d]

∥∥2]
+
∑
i∈[d]c

E
[
‖x̄ir̄i‖2

]
=
∑
i,j∈[d]

E
[
r̄ir̄jx̄

>
i x̄j
]

+ (k − d)E
[
d (y − x>w∗)2

]
= d(d−1)E

[
r̄1r̄2x̄

>
1 x̄2

]
+ d2LD(w∗) + (k − d)dLD(w∗). (3.5)

The only difference in using volume-rescaled sampling rather than just Dk
X is the pres-

ence of the first term in (3.5), which would be zero if the rows were fully independent.
We will show that due to the negative dependence of VSdDX this term is in fact non-
positive. We rely on the following lemma which describes the marginal distribution of
subsets of rows in volume-rescaled sampling of size d by relying on known properties
of determinantal point processes (see Proposition 19 in Hough et al., 2006).

Lemma 3.3 The marginal distribution of t rows of X̄ ∼ VSdDX indexed by T ⊆ [d] is

Pr
(
X̄T ∈A

)
= EDtX

[
1[XT∈A] · det

(
XTΣ−1

DX
X>
T

)]
/dt,

where A ⊆ Rt×d is measurable w.r.t. Dt
X .

We apply Lemma 3.3 to the set T = {1, 2} and compute the determinant of a 2× 2
matrix:

det(XTΣ−1
DX

X>
T ) = lx1lx2 − (x>1 Σ−1

DX
x2)2,

Recall that we assumed lx = d for x ∼ DX , and ΣDX = I. We next show that the
first term in (3.5) is non-positive, so the pairwise dependence between the rows in
volume-rescaled sampling can only improve the bound. Denoting ri = yi − x>i w∗, we
have

d(d−1)E
[
r̄1r̄2x̄

>
1 x̄2

]
= d(d−1)ED2

[
r1r2x

>
1 x2 det(XTΣ−1

DX
X>
T )
]
/d2

= ED2

[
r1r2x

>
1 x2

(
d2 − (x>1 x2)2

)]
= d2

∥∥ED[x (y − x>w∗)]︸ ︷︷ ︸
0

∥∥2 − ED2

[
r1r2(x>1 x2)3

]︸ ︷︷ ︸
E

.

E can be written as a sum
∑

c ED2 [fc(x1, y1)fc(x2, y2)] =
∑

c(ED[fc(x1, y1)])2 ≥ 0,
where fc(·) is some expression of its arguments, because (x1, y1) and (x2, y2) are
independent and identically distributed.

Altogether, we obtained that E
[
‖X̄>r̄‖2

]
≤ kdLD(w∗), which in turn implies that

Pr(E) · E[‖ŵ −w∗‖2 | E ] ≤ 42d

k
LD(w∗).
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Part 2: Event E fails Let us again use the notation of r̄ = ȳ− X̄w∗. To bound the
second term in (3.4), we use a somewhat different decomposition of ‖ŵ −w∗‖ than
we did in Part 1:

‖ŵ −w∗‖2 = ‖X̄†r̄‖2 ≤ ‖X̄†‖2 · ‖r̄‖2 = ‖(X̄>X̄)−1‖ ·
(
‖r̄[s]‖2 + ‖r̄[s]c‖2

)
≤ tr

(
(X̄>

[s]X̄[s])
−1
)
·
(
‖r̄[s]‖2 + ‖r̄[s]c‖2

)
.

So, taking expectation, and noting that X̄[s] and r̄[s] are independent of E , we have:

E
[
‖ŵ −w∗‖2 | ¬E

]
≤ E

[
tr((X̄>

[s]X̄[s])
−1)‖r̄[s]‖2

]
+ E

[
tr((X̄>

[s]X̄[s])
−1)
]
E
[
‖r̄[s]c‖2 | ¬E

]
.

Thus, we are able to restrict the conditioning on ¬E to only the term E
[
‖r̄[s]c‖2 |

¬E
]
, which allows us to analyze the remaining terms as if they were distributed

according to volume-rescaled sampling, without the distribution being distorted by
the conditioning. In particular, using Theorem 2.9 we obtain that:

E
[
tr((X̄>

[s]X̄[s])
−1)
]
≤ d

s− d+ 1
≤ 3d

k
.

Next, with a slight abuse of notation, assume that the rows of X̄[s] are permuted (i.e.,
that X̄[s] ∼ VSsDX ) so that they are identically distributed. Then, we have:

E
[
tr((X̄>

[s]X̄[s])
−1)‖r̄[s]‖2

]
=

s∑
i=1

E
[
r̄2
i tr((X̄>

[s]X̄[s])
−1)
]

= s · E
[
r̄2
s tr((X̄>

[s]X̄[s])
−1)
]
.

To apply Theorem 2.9 again, we must disentangle the trace from r2
s , which is addressed

in the following lemma proven at the end of the section.

Lemma 3.4 If X̄ ∼ VSkDX , where ΣDX = I, then for any f : Rd → R≥0 and i ∈ [k],

E
[
f(x̄i) tr((X̄>X̄)−1)

] (∗)
≤ d

k
· EDX

[
f(x)

]
+

d− 1

k(k − d+ 1)
· EDX

[
‖x‖2f(x)

]
,

as long as the right-hand side is well-defined, where (∗) becomes an equality if X ∼ Dk
X

is a.s. rank d. If we also assume that ‖x‖2 = d a.s. for x> ∼ DX , then we get

E
[
f(x̄i) tr((X̄>X̄)−1)

]
= E[f(x̄i)]E[tr((X̄>X̄)−1)] =

d

k − d+ 1
EDX [f(x)].

Using the lemma with f(x̄s) = E[r̄2
s | x̄s], we conclude that:

E
[
tr((X̄>

[s]X̄[s])
−1)‖r̄[s]‖2

]
≤ sd

s− d+ 1
LD(w∗) ≤ 2dLD(w∗).

It remains to bound the final term, E
[
‖r̄[s]c‖2 | ¬E

]
. To that end, we define an

additional event E ′ as follows:

E ′ : X̄>
[s+1,k−1]X̄[s+1,k−1] �

k

4
· I.
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Note that E ′ implies E , and we can easily use Lemma 3.2 to bound its failure proba-
bility. Also, observe that, since the marginal distribution of each vector x̄i for i ∈ [s]c

is the same, and the event E is invariant under permutation of the indices of these
vectors, the marginal distributions of r̄2

i = (ȳi − x̄>i w∗)2 conditioned on ¬E are the
same for each i ∈ [s]c, so:

E
[
‖r̄[s]c‖2 | ¬E

]
=

k∑
i=s+1

E[r̄2
i | ¬E ] ≤ k · E[r̄2

k | ¬E ] = k · E[r̄2
k · 1¬E ]

Pr(¬E)

≤ k · E[r̄2
k · 1¬E ′ ]

Pr(¬E)
= k · E[r̄2

k]Pr(¬E ′)
Pr(¬E)

= k
Pr(¬E ′)
Pr(¬E)

LD(w∗),

where we used the fact that E ′ is independent of r̄k. Putting everything together, we
conclude that:

Pr(¬E) · E
[
‖ŵ −w∗‖2 | ¬E

]
≤ Pr(¬E) ·

(
2dLD(w∗) +

3d

k
· k Pr(¬E ′)

Pr(¬E)
LD(w∗)

)
≤ Pr(¬E ′)5dLD(w∗).

It remains to note that, setting δ = 1/k in Lemma 3.2, we can ensure that Pr(¬E ′) ≤
1/k for k ≥ C ′d log(dk) with sufficiently large constant C ′. This can be easily con-
verted to a condition of the form k ≥ C ′′d log d. Under this condition, combining
Part 1 and Part 2, we obtain the following bound:

E[LD(ŵ)]− LD(w∗) = E
[
‖ŵ −w∗‖2

]
≤ 9d

k
LD(w∗) +

5d

k
LD(w∗) =

14d

k
LD(w∗),

which concludes the proof.

Note that, using Markov’s inequality, we can convert the expected loss bound to
a bound that holds with high probability. Namely, sample size O(d log d + d/(εδ))
suffices to obtain that LD(ŵ) ≤ (1 + ε)LD(w∗) holds with probability 1− δ.

The above result can also be achieved if we replace the exact leverage score sam-
pling distribution with its approximation. As discussed in Section 5, producing sam-
ples from such approximation can be more practical in settings where exact leverage
scores are too expensive to compute.

Lemma 3.5 Theorem 3.1 still holds if we replace lx with any l̂x such that 1
2
lx ≤

l̂x ≤ 3
2
lx for all x> ∈ supp(DX ) and also replace LevDX with the following d-variate

distribution:

L̂ev(A)
def
=

EDX

[
1[x>∈A] l̂x

]
EDX

[
l̂x
] .

The proof presented in Appendix B, follows a similar outline as for Theorem 3.1,

however it has some additional steps because when L̂ev 6= LevDX then the marginal
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distribution of volume-rescaled sampling VSdDX (which is still LevDX , see Theorem 2.7)

is no longer L̂ev.

Proof of Lemma 3.4 Since the rows of X̄ are exchangeable, without loss of gener-
ality assume that i = 1. By definition of volume-rescaled sampling, we have:

E
[
f(x̄1) tr((X̄>X̄)−1)

]
≤ E[f(x1) tr(adj(X>X))]

E[det(X>X)]
, for X ∼ Dk

X .

We next derive a recursion for the numerator in the above expression. To that end,
let F (k) = E[f(x1) tr(adj(X>X))]. As a simple consequence of the Cauchy-Binet

formula, we have adj(X>X) = 1
k−d+1

∑k
i=1 adj(X>

−iX−i) for any k ≥ d, so:

F (k) =
1

k − d+ 1

k∑
i=1

E
[
f(x1) tr(adj(X>

−iX−i))
]

= E[f(x1)]
E[tr(adj(X>

−1X−1))]

k − d+ 1
+

k − 1

k − d+ 1
E
[
f(x1) tr(adj(X>

−kX−k))
]

(a)
= EDX [f(x)]

(k−1)!
(k−d)!

tr(adj(ΣDX ))

k − d+ 1
+

k − 1

k − d+ 1
F (k − 1)

(b)
=

(k − 1)!

(k − d+ 1)!
dEDX [f(x)] +

k − 1

k − d+ 1
F (k − 1)

(c)
=

(k − 1)!

(k − d)!
dEDX [f(x)] +

(
k − 1

d− 2

)
F (d− 1),

where in (a) we used Lemma 2.3, (b) follows because of the assumption that ΣDX = I,
and in (c) we unroll the recursion on F (k) for as long as the Cauchy-Binet can be
applied to the adjugate matrices. To compute F (d− 1), we use the definition of the
adjugate matrix, together with the formula det(A + vv>) = det(A) + v> adj(A)v.
Suppose that X ∼ Dd−1

X , and let j ∈ [d]. Before we compute the desired expectation
formula for the trace, we first derive the expectation formula for the jth diagonal
element of the corresponding matrix:

E
[
f(x1) adj(X>X)jj

]
= E

[
f(x1) det((X−j)>X−j)

]
= E

[
f(x1) det((X−j−1)>X−j−1 + x−j1 (x−j1 )>)

]
(a)
= E

[
f(x1)(x−j1 )>E[adj((X−j−1)>X−j−1)]x−j1

]
(b)
= (d− 2)!E

[
f(x1)(x−j1 )>adj(Id−1)x−j1

]
= (d− 2)!EDX

[
f(x)‖x−j‖2

]
,

where x−j denotes vector x without the jth entry and X−j denotes matrix X with-
out the jth column, (a) follows because det((X−j−1)>X−j−1) = 0 and (b) comes from
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Lemma 2.3. Finally, to compute the trace, we sum up over j:

F (d− 1) = E
[
f(x1)tr(adj(X>X))

]
=

d∑
j=1

E
[
f(x1) adj(X>X)jj

]
= (d− 2)!

d∑
j=1

EDX

[
f(x)‖x−j‖2

]
= (d− 2)!

d∑
j=1

∑
l 6=j

EDX

[
f(x)(xj)2

]
= (d− 2)! · (d− 1)EDX

[
f(x)‖x‖2

]
= (d− 1)!EDX

[
f(x)‖x‖2

]
.

Finally, recalling from Lemma 2.3 that EDkX
[det(X>X)] = k!

(k−d)!
det(ΣDX ), we obtain

that for X ∼ Dk
X :

E[f(x1) tr(adj(X>X))]

E[det(X>X)]
=

(k−1)!
(k−d)!

k!
(k−d)!

dEDX [f(x)] +

(
k−1
d−2

)
k!

(k−d)!

(d− 1)!EDX

[
f(x)‖x‖2

]
=
d

k
EDX [f(x)] +

d− 1

k(k − d+ 1)
EDX

[
f(x)‖x‖2

]
,

which completes the proof of the claim. Note that, analogously as in Theorem 2.9,
under the assumption that rank(X) = d almost surely, we can replace the inequality
in the statement by an equality. If we additionally let ‖x‖2 = d almost surely for
x> ∼ DX , which due to the assumption that ΣDX = I corresponds to the distribution
DX having uniform leverage scores, then the result can be stated in a simpler way:

EVSkDX

[
f(x̄i)tr((X̄

>X̄)−1)
]

= EDX [f(x)]
(d
k

+
d(d− 1)

k(k − d+ 1)

)
= EDX [f(x)]

d

k − d+ 1

= EVSkDX
[f(x̄i)] · EVSkDX

[tr((X̄>X̄)−1)],

which implies that random variables f(x̄i) and tr((X̄>X̄)−1) are uncorrelated.

4. Lower bounds

In this section we present lower bounds demonstrating the limitations of the least
squares estimator under certain random designs, starting with X ∼ Dk

X which samples
k points directly from the data distribution. The key shortcoming of the least squares
estimator X†y in this context is that it is usually biased. In particular, this means
that the loss of the mean of that estimator, LD

(
E[X†y]

)
, is larger than the minimum

loss L(w∗), where w∗ = argminw LD(w). We next show that for some distributions
D this bias can be quite significant.
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Theorem 4.1 Let (x>, y) ∼ D be a (d, 1)-variate distribution s.t. (x>, y) = (Ze>J , Z
3)

for Z ∼ N (0, 1) and J ∼ Uniform
(
[d]
)

drawn independently. Then, for any k ≥ 0

and (X,y) ∼ Dk,

E[X†y] = (1− δ) ·w∗ and LD

(
E[X†y]

)
=
(
1 + 3

2
δ2
)
· LD(w∗),

where δ =
2d

k + 1
·
(

1− d

k + 2
+
d− 1

k + 2
·
(

1− 1

d

)k+1
)
.

Proof Since E[xx>] = (1/d)I and E[yx] = E[Z4eJ ] = (3/d, . . . , 3/d), it follows
that w∗ = (3, . . . , 3). For any c ∈ R, the loss of (1 − c) · w∗ is LD((1 − c) · w∗) =
E[(Z3 − 3(1− c)Z)2] = 6 + 9c2 = (1 + 3c2/2) · LD(w∗).

It remains to show that E[X†y] = (1−δ)·w∗, i.e., each entry of X†y has expectation
3 · (1 − δ). Let us write xi = ZieJi and yi = Z3

i for i = 1, . . . , k, where (Zi, Ji) for
i = 1, . . . , k are independent copies of (Z, J). Furthermore, let Sj := {i ∈ [k] : Ji = j}
for j = 1, . . . , d. Then X>X is a diagonal matrix whose (j, j)-th entry is

∑
i∈Sj Z

2
i ,

and X>y is a vector whose j-th entry is
∑

i∈Sj Z
4
i . Therefore, the j-th entry of X†y

is

(X†y)j =

∑
i∈Sj Z

4
i∑

i∈Sj Z
2
i

.

Here, we use the convention 0/0 = 0 to handle the possibility of Sj = ∅.
We first condition on Sj, and then take expectation with respect to the Zi’s. For

notational convenience, assume Sj = {1, . . . ,m}. Recall that the joint distribution of
(Z1, . . . , Zm) is the same as that of L · u, where L2 is a χ2 random variable with m
degrees of freedom, u = (u1, . . . , um) is uniformly distributed on the unit sphere in
Rm, and L2 and u are independent. Then

E

[∑m
i=1 Z

4
i∑m

i=1 Z
2
i

]
= E

[
L4
∑m

i=1 u
4
i

L2
∑m

i=1 u
2
i

]
(a)
= E

L2

m∑
i=1

u4
i

 (b)
= m2 · E[u4

1]
(c)
= m2 · 3

m(m+ 2)
.

Above, (a) uses the fact that
∑m

i=1 u
2
i = 1; (b) uses the independence of L2 and u,

symmetry, and the fact E[L2] = m; and (c) follows from Proposition A.1. Therefore,
returning to the original notation, we have

E
[
(X†y)j | Sj

]
= 3 ·

(
1− 2

|Sj|+ 2

)
.

(Note that this is consistent with the case where Sj = ∅.)
Now we take expectation with respect to Sj. Observe that |Sj| is Bernoulli-

distributed with k trials and success probability Pr(J = j) = 1/d. Therefore, using
the probability generating function for |Sj|, which is given by G(t) := (1−1/d+t/d)k,
we have

E

[
2

|Sj|+ 2

]
= 2

∫ 1

0

t ·G(t) dt = 2 · d(k − d+ 2) + (d− 1)2(1− 1/d)k

(k + 1)(k + 2)
= δ
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(see, e.g., Chao and Strawderman, 1972). So we conclude E[(X†y)j] = 3 · (1− δ).
In Section 2.2 we showed that a random design based on volume-rescaled sampling,
X̄ ∼ VSkDX , makes the least squares estimator unbiased for all distributions D. Recall

that by Theorem 2.4 the same estimator can also be obtained from X̄ ∼ VSdDX ·D
k−d
X .

Despite offering unbiasedness, this random design does not guarantee strong loss
bounds. This forced us to combine volume-rescaled sampling with leverage score
sampling in Section 3, obtaining distribution VSdDX ·Levk−dDX

. The following lower bound
shows that the loss bound obtained for this random design (Theorem 3.1) cannot be
achieved by vanilla volume-rescaled sampling VSkDX . This general lower bound can
also be easily adapted to the previously studied variants of discrete volume sampling
from finite datasets (Avron and Boutsidis, 2013; Dereziński and Warmuth, 2018).

Theorem 4.2 Let (x>, y) ∼ D be a (d, 1)-variate distribution for which:

(x>, y) =

{
(e>i , 1) for each i ∈ [d] with probability δ

d
,

(γe>i , 0) for each i ∈ [d] with probability 1−δ
d
.

For any k ≥ d, there is γ, δ ∈ (0, 1) such that if X̄ ∼ VSkDX and ȳi ∼ DY|x=x̄i, then

Pr
(
LD

(
X̄†ȳ

)
≥ 2 ·min

w
LD(w)

)
≥ 0.25.

Note that the above statement immediately implies a lower bound for the expected
loss of the estimator X̄†ȳ, namely, that E

[
LD(X̄†ȳ)

]
−LD(w∗) ≥ 0.25 ·LD(w∗). This

shows that the guarantee in Theorem 3.1 cannot be established for vanilla volume-
rescaled sampling with ε < 0.25.

Proof First, we find LD(w∗). Simple calculations show that:

ΣDX =
δ + γ2(1− δ)

d
I and w∗ =

δ

δ + γ2(1− δ)
1d, so

LD(w∗) = δ (1− e>1 w∗)2 + (1− δ) (γe>1 w∗)2 =
γ2δ(1− δ)
δ + γ2(1− δ)

.

Let AX̄ denote the event that there exists j ∈ [d] such that no vector x̄i is equal to
ej. If AX̄ holds then the jth component of X̄†ȳ is 0 so, setting γ2 = δ

2d(1−δ) ,

LD(X̄†ȳ) ≥ δ

d
= 2

γ2δ(1− δ)
δ

≥ 2
γ2δ(1− δ)
δ + γ2(1− δ)

= 2LD(w∗) (conditioned on AX̄).
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It remains to lower bound the probability of AX̄. We use Theorem 2.4 to decompose
X̄ into X̄S ∼ VSdDX and X̄Sc ∼ Dk−d

X . Setting δ = d
4k

, we obtain:

Pr(AX̄)
(a)

≥ Pr(AX̄S
)
(

1− δ

d

)k−d
(b)
=

(
1− det(I)

d! det(ΣDX )
· d!
(δ
d

)d)(
1− δ

d

)k−d
=

(
1− 1

(1 + γ2 1−δ
δ

)d

)(
1− δ

d

)k−d
=

(
1− 1

(1 + 1
2d

)d

)(
1− δ

d

)k−d
(c)

≥
(

1− 1

1 + 1
2

)(
1− δ k − d

d

)
≥ 1

3
· 3

4
=

1

4
,

where (a) follows because if some unit vector ej is missed by X̄S and it is not selected
by any of the k − d i.i.d. samples then AX̄ holds. In (b), factor d!( δ

d
)d is the proba-

bility of selecting some row-permutation of the identity matrix in Dd
X . Finally, (c) is

Bernoulli’s inequality applied twice.

5. Algorithms

We present a number of algorithms for implementing size d volume-rescaled sampling
VSdDX under various assumptions on the distribution DX . Theorem 2.4 implies that

we can then construct VSkDX by combining VSdDX with an i.i.d. sample Dk−d
X . We

can also combine VSdDX with a leverage score sample Levk−dDX
or its approximation

(see Theorem 3.1 and Lemma 3.5) to obtain an unbiased estimator with strong loss
bounds. Efficient algorithms for approximate leverage score sampling were given by
Drineas et al. (2012), as discussed in Section 5.4. Our discussion of volume-rescaled
sampling algorithms starts with the Gaussian random design (Theorem 5.2). We
then propose a more general algorithm for arbitrary distributions (Theorem 5.6),
based on a novel idea of distortion-free intermediate sampling, and we adapt it to
some practical settings. Perhaps the most important setting from the perspective of
computer science is when distribution DX is defined as uniform over a given finite set
of n row vectors in d dimensions, where n � d. In this case, we improve the time
complexity of discrete volume sampling from O(nd2) to O(nd log n+ d4 log d).

5.1 Volume-rescaled Gaussian distribution

In this section, we obtain a simple formula for producing volume-rescaled samples
when DX is a centered multivariate Gaussian with any (non-singular) covariance ma-
trix. We achieve this by making a connection to the Wishart distribution. The main
result follows.
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Remark 5.1 For this theorem, given a p.d. matrix A, we use A
1
2 to denote the

unique lower triangular matrix with positive diagonal entries s.t. A
1
2 (A

1
2 )> = A.

Theorem 5.2 Assume DX is the normal distribution, i.e., x ∼ Nd(0,ΣDX ). If X1 ∼
Dk
X and X2 ∼ Dk+2

X are jointly independent, then X1(X>
1 X1)−

1
2 (X>

2 X2)
1
2 ∼ VSkDX .

The remainder of Section 5.1 is dedicated to proving Theorem 5.2, so we assume that
matrix X ∼ Dk

X consists of centered d-variate normal row vectors with covariance
ΣDX . Then matrix Σ = X>X ∈ Rd×d is distributed according to Wishart distribution
Wd(k,ΣDX ) with k degrees of freedom. The density function of this random matrix is
proportional to det(Σ)(k−d−1)/2 exp(−1

2
tr(Σ−1

DX
Σ)). On the other hand, if Σ̄ = X̄>X̄ is

constructed from X̄ ∼ VSkDX , then its density function is multiplied by an additional

det(Σ̄), thus increasing the value of k in the exponent of the determinant. This
observation leads to the following result.

Lemma 5.3 If x ∼ Nd(0,ΣDX ) and X̄ ∼ VSkDX , then X̄>X̄ ∼ Wd(k + 2,ΣDX ).

Proof Let Σ = X>X ∼ Wd(k,ΣDX ) and Σ̄ ∼ Wd(k + 2,ΣDX ). For any measurable
event A over the random matrix X̄>X̄, we have

Pr
(
X̄>X̄∈A

)
=

E[1[X>X∈A] det(X>X)]

E[det(X>X)]

=
E[1[Σ∈A] det(Σ)]

E[det(Σ)]

(∗)
= Pr

(
Σ̄∈A

)
,

where (∗) follows because the density function of Wishart distribution Σ̄ ∼ Wd(k +
2,ΣDX ) is proportional to det(Σ̄) det(Σ̄)(k−d−1)/2 exp(−1

2
tr(Σ−1

DX
Σ̄)).

This gives us an easy way to produce the total covariance matrix X̄>X̄ of volume-
rescaled samples in the Gaussian case. We next show that the individual vectors can
also be recovered relying on the following lemma proven in the appendix (Lemma C.1).

Lemma 5.4 For any Σ ∈ Rd×d, the conditional distribution of X̄ ∼ VSkDX given

X̄>X̄ = Σ is the same as the conditional distribution of X ∼ Dk
X given X>X = Σ.

Proof of Theorem 5.2 Let Σ1 ∼ Wd(k1,ΣDX ) and Σ2 ∼ Wd(k2,ΣDX ) be indepen-
dent Wishart matrices (where k1 + k2 ≥ d). Then matrix

U = (Σ1+Σ2)−
1
2 Σ1

(
(Σ1+Σ2)−

1
2

)>
is matrix variate beta distributed, written as U ∼ Bd(k1, k2). The following was
shown by Mitra (1970):

Lemma 5.5 (Mitra, 1970, Lemma 3.5) If Σ ∼ Wd(k,ΣDX ) is distributed inde-
pendently of U ∼ Bd(k1, k2), and if k = k1 + k2, then

B = Σ
1
2 U
(
Σ

1
2

)>
and C = Σ

1
2 (I−U)

(
Σ

1
2

)>
are independently distributed and B ∼ Wd(k1,ΣDX ), C ∼ Wd(k2,ΣDX ).
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Now, suppose that we are given a matrix Σ ∼ Wd(k,ΣDX ). We can decompose it
into components of degree one via a splitting procedure described in Mitra (1970),

namely taking U1 ∼ Bd(1, k−1) and computing B1 = Σ
1
2 U1

(
Σ

1
2

)>
, C1 = Σ−Σ1 as

in Lemma 5.5, then recursively repeating the procedure on C1 (instead of Σ) with
U2 ∼ Bd(1, k−2), . . . , until we get k Wishart matrices of degree one summing to Σ:

B1 = Σ
1
2 U1

(
Σ

1
2

)>
B2 = Σ

1
2 (I−U1)

1
2︸ ︷︷ ︸

C
1
2
1

U2

(
(I−U1)

1
2

)>(
Σ

1
2

)>︸ ︷︷ ︸(
C

1
2
1

)>
...

Bk = Σ
1
2 (I−Uk−1)

1
2 . . .︸ ︷︷ ︸

C
1
2
k−1

Uk . . .
(
(I−Uk−1)

1
2

)>(
Σ

1
2

)>︸ ︷︷ ︸(
C

1
2
k−1

)>
.

The above collection of matrices can be described more simply via the matrix variate
Dirichlet distribution. Given independent matrices Σi ∼ Wd(ki,ΣDX ) for i = 1..s,
the matrix variate Dirichlet distribution Dird(k1, . . . , ks) corresponds to a sequence of
matrices

Vi = Σ−
1
2 Σi

(
Σ−

1
2

)>
, i = 1..s, Σ =

s∑
i=1

Σi.

Now, Theorem 6.3.14 from Gupta and Nagar (1999) states that matrices Bi defined
recursively as above can also be written as

Bi = Σ
1
2 Vi

(
Σ

1
2

)>
, (V1, . . . ,Vk) ∼ Dird(1, . . . , 1).

In particular, we can construct them as Bi = x̄ix̄
>
i , where

x̄i = Σ
1
2 (X>X)−

1
2 xi for X ∼ Dk

X .

Note that since matrix Σ is independent of vectors xi, we can condition on it without
altering the distribution of the vectors. The conditional distribution of matrix Bi

determines the distribution of x̄i up to multiplying by ±1, and since both x̄i and
−x̄i are identically distributed, we conclude that the matrix X̄ formed from rows x̄>i
conditioned on X̄>X̄ = Σ has the same distribution as X conditioned on X>X = Σ.
So, applying Lemmas 5.3 and 5.4, if we sample Σ ∼ Wd(k + 2,ΣDX ), then we obtain
X̄ ∼ VSkDX .

5.2 Volume-rescaled sampling for arbitrary distributions

In this section, we present a general algorithm for volume-rescaled sampling which
uses approximate leverage score sampling to generate a larger pool of points from
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which the smaller volume-rescaled sample can be drawn. The strategy introduced
here, called distortion-free intermediate sampling, has since proven effective for sam-
pling from other determinantal sampling distributions (Dereziński, 2019; Dereziński
et al., 2019; Calandriello et al., 2020).

Theorem 5.6 Given Σ̂ ∈ Rd×d and i.i.d. samples from a d-variate distribution
LevΣ̂,X such that

(1− ε)ΣDX � Σ̂ � (1 + ε)ΣDX , where ε =
1√
2d
, (5.1)

and LevΣ̂,X (A)
def
= EDX

[
1[x>∈A]

x>Σ̂−1x

tr(ΣDX Σ̂−1)

]
for any event A, (5.2)

there is an algorithm (Algorithm 1) which returns X̄ ∼ VSdDX , and with probability at

least 1− δ uses O(d2 log 1
δ
) samples from L̂ and has time complexity O(d4 log 1

δ
).

The algorithm relies on a rejection sampling step (line 4) to ensure exact sampling.
Then, to obtain the target sample from the intermediate sample, it uses “reverse
iterative sampling” (Dereziński and Warmuth, 2018) as a subroutine (see Algorithm 2
for a high-level description of this sampling method). Curiously enough, the efficient
implementation of reverse iterative sampling (not repeated here) is again based on
rejection sampling: It samples a set of k points out of n in time O(nd2) (the time
complexity is independent of k and holds with high probability). The key strength
of our sampling method is that it reduces the distribution DX to a small sample of
t vectors on which the reverse iterative sampling algorithm is performed. We show
that this reduction can be done efficiently for t = 2d2. Even when distribution DX
is a finite discrete distribution, for example based on a population of n vectors, our
algorithm can be used to accelerate reverse iterative sampling when n = Ω(d2).

Algorithm 1 Distortion-free intermediate sampling

1: Input: Σ̂, Lev
Σ̂,X , t

2: repeat

3: X̃←
[√

d

x>i Σ̂−1xi
·x>i
]
t×d

where X ∼ Levt
Σ̂,X

4: Sample Acc ∼ Bernoulli
(

det( 1
t
X̃>X̃)

det(Σ̂)

)
5: until Acc = true

6: S ← Algorithm 2 for matrix X̃ and k = d

7: return XS

Algorithm 2 Reverse iterative sampling
(Dereziński and Warmuth, 2018)

1: Input: X ∈ Rn×d and k ≥ d
2: S ← {1..n}
3: while |S| > k

4: ∀i∈S qi←
det(X>

S\iXS\i)

(|S|−d) det(X>SXS)

5: Sample i ∼ (qi)i∈S

6: S ← S\{i}
7: end
8: return S

Proof of Theorem 5.6 The distribution LevΣ̂,X integrates to one because for
x> ∼ DX :

E
[
x>Σ̂−1x

]
= E

[
tr
(
xx>Σ̂−1

)]
= tr

(
ΣDX Σ̂−1

)
.
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Next, we use the geometric-arithmetic mean inequality for the eigenvalues of matrix
1
t
X̃>X̃Σ̂−1 to show that the Bernoulli sampling probability is bounded by 1:

det
(

1
t
X̃>X̃

)
det
(
Σ̂−1

) ≤ ( 1

d t
tr
(
X̃>X̃Σ̂−1

))d
=
( 1

d t

t∑
i=1

d

x>i Σ̂−1xi
tr
(
xix

>
i Σ̂−1

))d
= 1.

Let x̃> ∼ DX̃ be distributed as a row vector of X̃ as sampled in line 3. The distribution

of matrix X̃ returned by rejection sampling after exiting the repeat loop changes to:

EDt
X̃

[
1[X̃∈A]

det(1
t
X̃>X̃)

det(Σ̂)

]
∝ EDt

X̃

[
1[X̃∈A] det

(
X̃>X̃

)]
∝ VStDX̃

(A),

i.e., volume-rescaled sampling from DX̃ . Now Theorem 2.4 implies that X̃S ∼ VSdDX̃
.

In particular, it means that the distribution of XS is the same for any choice of t ≥ d.
We use this observation to compute the probability of an event A w.r.t. sampling of
XS (up to constant factors) by setting t = d:

Pr(A) ∝ EDdX

[
1[X∈A] det

(1

t
X̃>X̃

)
·

d∏
i=1

x>i Σ̂−1xi

]
(∗)
= EDdX

[
1[X∈A]

det(X>X)

(d
t
)d
∏

i x
>
i Σ̂−1xi

·
d∏
i=1

x>i Σ̂−1xi

]
∝ EDdX

[
1[X∈A] det(X>X)

]
∝ VSdDX (A),

where (∗) uses the fact that for t = d, det(X̃>X̃) = det(X̃)2 is the squared volume

of the parallelepiped spanned by the rows of X̃. Thus, we established the correctness
of Algorithm 1 for any t ≥ d, and we move on to complexity analysis. If we think of
each iteration of the repeat loop as a single Bernoulli trial, the success probability

Pr(Acc=true) equals E[det(1
t
X̃>X̃)/ det(Σ̂)] where X̃ ∼ DX̃ . Note that

E
[
X̃>X̃

]
=

t∑
i=1

E
[

d

x>i Σ̂−1xi
xix

>
i

]
=

t∑
i=1

d

tr(ΣDX Σ̂−1)
ΣDX =

d t

tr(ΣDX Σ̂−1)
ΣDX .

So, using Lemma 2.3 on the matrix X̃ we obtain that:

E
[

det(1
t
X̃>X̃)

det(Σ̂)

]
=

(td/td) · det(1
t
E[X̃>X̃])

det(Σ̂)
=

(td/td) · det(ΣDX )

(1
d
tr(ΣDX Σ̂−1))d det(Σ̂)

=

( d−1∏
i=0

t− i
t

)
det(ΣDX Σ̂−1)

(1
d
tr(ΣDX Σ̂−1))d

≥
(

1− d

t

)d
det(ΣDX Σ̂−1)

(1
d
tr(ΣDX Σ̂−1))d

.
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Let λ1, . . . , λd be the eigenvalues of matrix Σ̂Σ−1
DX

. The approximation guarantee for

Σ̂ implies that all of these eigenvalues lie in the range [1−ε, 1+ε]. To lower-bound
the success probability, we use the Kantorovich arithmetic-harmonic mean inequality.
Letting A(·), G(·) and H(·) denote the arithmetic, geometric and harmonic means
respectively:

det(ΣDX Σ̂−1)

(1
d
tr(ΣDX Σ̂−1))d

=

∏d
i=1

1
λi

(1
d

∑d
i=1

1
λi

)d
=

(
H(λ1, . . . , λd)

G(λ1, . . . , λd)

)d
(a)

≥
(
H(λ1, . . . , λd)

A(λ1, . . . , λd)

)d (b)

≥
(
(1−ε)(1+ε)

)d
=
(

1− 1

2d

)d
since ε = 1

2
√
d
, where (a) is the geometric-arithmetic mean inequality and (b) is the

Kantorovich inequality (Kantorovich, 1948) with a = 1− ε and b = 1 + ε:

For 0 < a ≤ λ1, ..., λd ≤ b,
A(λ1,..., λd)

H(λ1,..., λd)
≤
(
A(a, b)

G(a, b)

)2

.

Now setting t = 2d2 we obtain the following lower bound for the acceptance proba-
bility:

Pr(Acc=true) = E
[

det(1
t
X̃>X̃)

det(Σ̂)

]
≥
(

1− 1

2d

)2d

≥ 1

4
.

So a simple tail bound on a geometric random variable shows that the number of
iterations of the repeat loop is r ≤ ln(1

δ
)/ ln(4

3
) w.p. at least 1 − δ. We conclude

that the number of samples needed from LevΣ̂,X is O(d2 log 1
δ
) w.p. at least 1 − δ.

Note that the computational cost per sample is O(d2) and the cost of Algorithm 2 is
O(d4), obtaining the desired complexities.

5.3 Distributions with bounded support

Theorem 5.6 requires some knowledge about the distribution DX , namely the approx-

imate covariance matrix Σ̂ and i.i.d. samples from an approximate leverage score
distribution LevΣ̂,X . In this and the following section we show that these can be
computed efficiently in certain standard settings. For this section, suppose that dis-
tribution DX has bounded support. We use a standard notion of conditioning number
for multivariate distributions (see, e.g., Chen and Price, 2019).

Definition 5.7 Let DX be a d-variate distribution with bounded support set supp(DX ) ⊆
R1×d. The conditioning number KDX of this distribution is defined as:

KDX
def
= sup

x̃∈supp(DX )

x̃>Σ−1
DX

x̃.
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We next show that when the conditioning number KDX is bounded by some known
constant K, then all input arguments of Algorithm 1 can be computed from a small
number of independent draws from DX . In the following result the term sample
complexity refers to the number of i.i.d. samples from DX used by an algorithm.

Theorem 5.8 Suppose that KDX ≤ K. Then for any δ ∈ (0, 1) and positive integer
c, there is an algorithm with sample complexity O(cKd log d/δ) and time complexity

O(cKd3 log d/δ) which succeeds w.p. at least 1− δ and returns a matrix Σ̂ satisfying

(5.1) and X ∼ Levcd
2

Σ̂,X .

Proof Setting ε = 1√
2d

in Lemma 3.2, we observe that the sample complexity of

obtaining Σ̂ with desired accuracy is m = O(KDX d log d/δ), and computing it takes
O(md2) = O(KDX d

3 log d/δ). Sampling from LevΣ̂,X can be done via rejection sam-
pling as follows:

x> ∼ DX , acc ∼ Bernoulli
(

(1− ε) · x>Σ̂−1x /K
)
.

We can lower bound the acceptance probability as follows:

Pr(acc=true) = (1− ε) · E
[

x>Σ̂−1x

K

]
= (1− ε)tr(ΣDX Σ̂−1)

K
≥ 1− ε

1 + ε
· d
K
.

We conclude that with probability at least 1 − δ the number of samples from DX
needed to obtain cd2 samples from LevΣ̂,X is O(cd2(K/d) log 1/δ) = O(cKd log 1/δ).

Computing each acceptance probability takes O(d2), which concludes the proof.

5.4 Sampling from finite datasets

For this section we assume that DX is a uniform distribution over a set of n � d
vectors {x1, . . . ,xn}. In this case, the distribution VSdDX corresponds to sampling a
set S ⊆ [n] of size d such that Pr(S) ∝ det(XS)2, i.e., discrete volume sampling. The
input arguments for Algorithm 1 can be computed efficiently using standard sketching
techniques, which leads to the first algorithm for discrete volume sampling that (for
large enough n) runs in time o(nd2).

Theorem 5.9 Let X ∈ Rn×d be a fixed matrix. For any δ > 0 there is an algorithm
with time complexity O(nd log n + d4 log d) · poly log 1/δ that succeeds w.p. at least
1− δ, and then returns a random set S ⊆ [n] of size d such that Pr(S) ∝ det(XS)2.

Proof Naturally it suffices to show that the inputs for Algorithm 1 can be constructed
efficiently. First note that ΣDX = 1

n
X>X, and we can compute an ε-approximation

Σ̂ of this matrix in time O(nd log n + d3ε−2 log d), where ε = 1
2
√
d
, using a sketching

technique called Fast Johnson-Lindenstraus Transform (Ailon and Chazelle, 2009), as
described in Drineas et al. (2012). Now, we need to produce samples from the leverage
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score-type distribution LevΣ̂,X , which in this setting corresponds to a discrete distri-

bution over the index set [n]. Using a different sketch of the data, an approximation

L̂ = (L̂1, . . . , L̂n) of this distribution can be computed in time O(nd log n + d3) as

shown in Drineas et al. (2012), which satisfies L̂i ≥ x>i Σ̂−1xi

2·tr(ΣDX Σ̂−1)
. Then we can use

rejection sampling to get i.i.d. samples from LevΣ̂,X . All of the above randomized pro-

cedures succeed w.p. at least 1−δ, where the time complexity scales with poly log 1/δ.
Conditioned on them succeeding, Algorithm 1 samples exactly from the distribution
VSdDX in time O(d4) · poly log 1/δ, concluding the proof.

6. Experiments

Subsampling from large datasets is an important practical application of our meth-
ods. In this context, distribution D is defined via a fixed matrix X ∈ Rn×d and a
vector y ∈ Rn by sampling a row-response pair (x>i , yi) uniformly at random. The
square loss for this problem becomes LD(w) = 1

n
‖Xw − y‖2. A commonly used

approach in this problem is leverage score sampling (Drineas et al., 2006). In Sec-
tion 3 we propose a hybrid sampling scheme which combines leverage score sampling
with volume-rescaled sampling. We will call it here leveraged volume sampling. As
discussed in Section 5, this method can be implemented very efficiently (see also Fig-
ure 6.1), with time complexity similar to leverage score sampling. In the following
experiments we evaluate the loss LD of the estimators produced by both methods,
showing that if the sample size is small, then leveraged volume sampling performs
significantly better than leverage score sampling. We also contrast this with the esti-
mators produced by a previously proposed variant of discrete volume sampling, given
by Dereziński and Warmuth (2018), which for larger sample sizes does not perform
as well as the other two methods. Overall, the three estimators we tested are:

volume sampling: ŵ = (XS)†yS, Pr(S) ∼ det(X>
SXS), S ∈

(
[n]

k

)
,

leverage score sampling: ŵ = (P̂XX̂)†P̂Xŷ, X̂ ∼ LevkDX , PX =
k∑
i=1

1√
lxi

eie
>
i ,

leveraged volume sampling: ŵ = (PX̄X̄)†PX̄ȳ, X̄ ∼ VSdDX · Levk−dDX
.

For the latter two estimators, the response vector is constructed from DY|x, i.e.,
to match the selected row vectors. Both the volume sampling-based estimators are
unbiased, however the leverage score sampling estimator is not. The volume sam-
pling method proposed in prior work is very similar to our distribution VSkDX defined
w.r.t. uniform sampling from the dataset, except for the fact that the former does
not allow the same row from the dataset to appear more than once in the sample
(because S is a set). For large datasets that difference does not have any practical
impact on the estimator. In particular, as discussed in Section 4, our lower bound
from Theorem 4.2 can be easily adapted to hold for this method as well.
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Dataset Instances (n) Features (d)
bodyfat 252 14

cpusmall 8,192 12
mg 1,385 21

abalone 4,177 36
cadata 20,640 8
MSD 463,715 90

Table 6.1: Libsvm regression datasets (Chang
and Lin, 2011). We expanded the features in
mg and abalone to all degree 2 monomials,
and removed redundancies.

Figure 6.1: Runtime comparison of algorithms
for discrete volume sampling on the MSD
dataset, varying the data size n by taking row
subsets of the full data matrix.

For each estimator we plotted the loss
LD(ŵ) for a range of sample sizes k, con-
trasted with the loss of the best least-
squares estimator w∗ computed from all
data. Plots shown in Figure 6.2 were av-
eraged over 100 runs, with shaded area
representing standard error of the mean.
We used six benchmark datasets from
the libsvm repository (Chang and Lin,
2011), whose dimensions are given in Ta-
ble 6.1.

The results confirm that our pro-
posed leveraged volume sampling is as
good or better than either of the base-
lines for any sample size k. We can see
that, in some of the examples, standard
volume sampling exhibits bad behavior
for larger sample sizes, as suggested by
the lower bound of Theorem 4.2 (espe-
cially noticeable on bodyfat and cpusmall
datasets). On the other hand, lever-
age score sampling exhibits poor perfor-
mance for small sample sizes due to the
coupon collector problem, which is most
noticeable for abalone dataset, where we
can see a very sharp transition after
which leverage score sampling becomes

effective. Neither of the variants of volume sampling suffers from this issue.
Finally, in Figure 6.1, we compared the computational cost of implementing dis-

crete volume sampling using our new distortion-free intermediate sampling (Algo-
rithm 1) to the prior state-of-the-art method of Dereziński and Warmuth (2018),
reverse iterative sampling (Algorithm 2). Note that the output samples from the
two algorithms are identically distributed according to VSdDX , where DX denotes the
uniform distribution over the dataset, and both of the volume sampling distributions
considered in our experiments can be implemented using either of these algorithms.
In the figure, we distinguished between the “total” cost and “sampling” cost: the
sampling cost excludes any preprocessing steps that can be avoided during repeated
sampling (see Section 1.2 for the motivations of repeated volume sampling). The pre-
processing cost for both methods involves computing the leverage scores of the data
matrix. The experiments were performed on MSD, the largest dataset considered in
this empirical evaluation. We varied the data size by taking subsets of the full data
matrix. The results were averaged over 5 runs, with the shaded area representing
standard deviation. For the total cost, Figure 6.1 shows that both methods scale
linearly with n, however our intermediate sampling approach is considerably faster
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Figure 6.2: Comparison of loss of the subsampled estimator when using leveraged volume
sampling vs using leverage score sampling and standard volume sampling on six datasets.

for large data sizes, up to a factor of 3 in this experiment. When we look at the
sampling cost, the gap between the two approaches becomes much larger because
the cost of reverse iterative sampling still grows linearly with n, whereas the cost of
intermediate sampling stays flat. As a result, for the full MSD dataset we observe
at least an order of magnitude difference. This is consistent with our analysis, since
Algorithm 1 effectively reduces the dataset down to an intermediate sample with
size independent of n, and then runs reverse iterative sampling on that intermediate
sample. Thus, the vast majority of the total cost of intermediate sampling involves
the preprocessing step of computing the leverage scores. It is worth noting that for
even larger datasets, further computational savings in the preprocessing cost can be
achieved by computing the leverage scores approximately (see Section 5.4).
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7. Conclusions

We showed that for any input distribution and ε > 0, there is a random design consist-
ing of O(d log d + d/ε) points from which an unbiased estimator can be constructed
whose expected square loss over the entire distribution is bounded by 1 + ε times
the loss of the optimum. However, two main open problems remain. First, can the
sample size bound be reduced to O(d/ε)? This has already been done with a biased
estimator by Chen and Price (2019), but finding an unbiased estimator of the smaller
size remains open.

Second, the least squares estimator combined with i.i.d. leverage score sampling
already achieves loss 1 + ε times the optimum with O(d log d + d/ε) points. The re-
sulting estimator is biased. However, in our preliminary experiments the bias of exact
leverage score sampling is small and decreases rather quickly (unlike for uniform sam-
pling, or even approximate leverage score sampling, where the bias can be significant).
Thus, one of the key open problems is to quantify the bias of this method.
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Appendix A. Exact calculation of w∗ for the i.i.d. Gaussian experiment
of the introduction and a technical proposition

Since in the setup ΣDX = I, the least squares solution can be computed as:

w∗ = argmin
w

E
[
(x>w − y)2

]
= Σ−1

DX
E[yx]

=
d∑
i=1

E
[(

1
3
x3
i + xi

)
x
]

=

E[1
3
x4

1 + x2
1]

|
E[1

3
x4
d + x2

d]

 =

2
|
2

 .

Here the second to last equality uses the fact that the cross terms are 0 due to
independence and the last equality follows from the fact that E[x4] = 3 and E[x2] = 1,
for x ∼ N (0, 1).

Proposition A.1 (Theorem 2 of Cho, 2009) Let u = (u1, . . . , ud) be a uniformly
random unit vector in Rd. For any k1, . . . , kd ≥ 0,

E
[ d∏
j=1

|uj|2kj
]

=

∏d
j=1 Γ

(
kj + 1

2

)
Γ
(∑d

j=1 kj + d
2

) · Γ
(
d
2

)
Γ
(

1
2

)d .
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Appendix B. Loss bound with approximate leverage scores

In this section we describe the changes needed for the proof of Theorem 3.1 to be
extended to approximate leverage score sampling, as described in Lemma 3.5. Below,
we state the result in its full generality. Recall that we denote a leverage score of
point x as lx = x>Σ−1

DX
x.

Theorem B.1 Let DX be a d-variate distribution. Assign to every x>∈ supp(DX ) a

real-valued l̂x such that 1
2
lx ≤ l̂x ≤ 3

2
lx and define the following d-variate distribution:

L̂ev(A)
def
=

EDX

[
1[x>∈A] l̂x

]
EDX

[
l̂x
] for any DX -measurable A.

For any ε > 0, there is k = O(d log d + d/ε) such that for any DY|x, if we sample

X̄ ∼ VSdDX · L̂ev
k−d

and ȳi ∼ DY|x=x̄i then ŵ = argminw

∑k
i=1

1

l̂x̄i
(x̄>i w− ȳi)2 satisfies:

E[ŵ] = argmin
w

LD(w) and E
[
LD(ŵ)

]
≤ (1 + ε) ·min

w
LD(w).

Proof The reduction described at the beginning of the proof of Theorem 3.1 pro-

ceeds almost unchanged, except that now distribution D̃ is defined in terms of the
approximate leverage scores:

(x̃>, ỹ) =

(
1√
|̂lx̂

x̂>,
1√
|̂lx̂
ŷ

)
∼ D̃,

where x̂ ∼ L̂ev and ŷ ∼ DY|x=x̂. Denoting d̂ = EDX [l̂x] ∈ [1
2
d, 3

2
d], we have ΣD̃X

=

ΣDX /d̂. Also, the leverage scores of D̃ are approximately uniform:

x̃>Σ−1

D̃X
x̃ =

1

l̂x̂
x̂>Σ−1

D̃X
x̂ =

d̂

l̂x̂
x̂>Σ−1

DX
x̂ ∈ [d/3, 3d].

Following the same steps as for Theorem 3.1, we conclude that without loss of gen-

erality it suffices to show the result w.r.t. loss LD̃ for the estimator X̃†ỹ drawn from

X̃ ∼ VSd
D̃X
· D̃k−d
X and ỹi ∼ D̃Y|x̃=x̃i .

Using the above reduction, from now on we assume that lx ∈ [d/3, 3d] a.s. for
x ∼ DX , and we consider the estimator X̄†ȳ, where X̄ ∼ VSdDX ·D

k−d
X . Now, the unbi-

asedness of this estimator follows immediately from Theorems 2.4 and 2.10. Again,
without loss of generality, we can replace the distribution x> ∼ DX by the distribu-

tion of x>Σ
−1/2
DX

, so from now on we will let ΣDX = I. The loss bound reduces to the
following, same as before:

LD(ŵ)− LD(w∗) = ‖ŵ −w∗‖2 ≤
∥∥(X̄>X̄)−1‖2 · ‖X̄>(ȳ − X̄w∗)

∥∥2
. (B.1)
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Applying Lemma 3.2 for DX with K = 3d, m = k−bk/2c and ε = 1/2 we obtain that
if k ≥ d+ 12Cd log d/δ then X̄ ∼ VSdDX ·D

k−d
X with probability at least 1− δ satisfies

E : X̄>
[s]cX̄[s]c �

k

4
· I, where s = bk/2c.

We now decompose the expectation into two terms depending on whether the event
E occurs or not:

E[‖ŵ −w∗‖2] = Pr(E) · E[‖ŵ −w∗‖2 | E ] + Pr(¬E) · E[‖ŵ −w∗‖2 | ¬E ], (B.2)

and the proof is divided into two parts, for handling the two terms.

Part 1: Event E suceeds We use the upper bound from (B.1). Event E implies
that ‖(X̄>X̄)−1‖2 ≤ 42/k2. The second term in (B.1) is decomposed similarly as in
(3.5), however bounding each of the obtained components will require a bit more care.
Denoting r̄ = ȳ − X̄w∗, we have

E
[∥∥X̄>r̄

∥∥2]
=

∑
{i,j}⊆[d]

E
[
r̄ir̄jx̄

>
i x̄j
]

+
∑
i∈[d]

E
[
‖x̄ir̄i‖2

]
+
∑
i∈[d]c

E
[
‖x̄ir̄i‖2

]
= d(d−1)E

[
r̄1r̄2x̄

>
1 x̄2

]
+ dE

[
r̄2

1lx̄1

]
+ (k − d)EDX

[
(y − x>w∗)2lx

]
.

Since lx ≤ 3d, the last component above can be immediately bounded by 3d(k −
d)LD(w∗). Invoking Theorem 2.7, we know that x̄1 ∼ LevDX so the second term
can be bounded as follows: dE[r̄2

1lx̄1 ] = dED[(y − x>w∗)l2x]/d ≤ 9d2LD(w∗). The
remaining term is computed by invoking Lemma 3.3. Denoting ri = yi − x>i w∗, we
have

d(d−1)E
[
r̄1r̄2x̄

>
1 x̄2

]
= d(d−1)ED2

[
r1r2x

>
1 x2 ·

(
lx1lx2 − (x>1 x2)2

)]
/d2

=
∥∥ED[(y − x>w∗)lxx]

∥∥2 − ED2

[
r1r2(x>1 x2)3

]︸ ︷︷ ︸
≥0(∗)

≤ ED

[
(y − x>w∗)l2x

]
≤ 9d2LD(w∗),

where (∗) is implied by the following more general property of the random vector
x> ∼ DX when ΣDX = I: for any random variable b jointly distributed with x we have
‖E[bx]‖2 ≤ E[b2]. This follows because E[xx>] = I, so the components of x, treated
as scalar random variables, form an orthonormal basis of a d-dimensional subspace
of the Hilbert space H of square-integrable random variables. Thus, ‖E[bx]‖2, which
is the H-norm of the projection of b onto that subspace, is no more than the H-norm
of b itself.

Part 2: Event E fails This part follows identically as in the proof of Theorem 3.1,
except that when applying Lemma 3.4, we use the fact that ‖x‖2 ≤ 3d, obtaining:

E
[
tr((X̄[s]X̄[s])

−1)‖r̄[s]‖2
]
≤ s ·

(d
s
· LD(w∗) +

d− 1

s(s− d+ 1)
· EDX

[
‖x‖2r̄2

1

])
≤ d · LD(w∗) +

3d(d− 1)

s− d+ 1
· LD(w∗) ≤ 10dLD(w∗).
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With the remaining steps same as in Theorem 3.1, this concludes the proof.

Appendix C. Volume-rescaled sampling conditioned on the covariance

In this section we present the proof of a lemma used to construct volume-rescaled
samples when DX is a centered multivariate Gaussian distribution.

Lemma C.1 (restated Lemma 5.4) For any Σ ∈ Rd×d, the conditional distribu-
tion of X̄ ∼ VSkDX given X̄>X̄ = Σ is the same as the conditional distribution of

X ∼ Dk
X given X>X = Σ.

Proof Since we are conditioning on an event which may have probability 0, this
requires a careful limiting argument. Let A be any measurable event over the random

matrix X̄ and let Cε
Σ

def
=
{
B ∈ Rd×d : ‖B − Σ‖ ≤ ε

}
be an ε-neighborhood of Σ

w.r.t. the matrix 2-norm such that Pr(X̄>X̄∈Cε
Σ > 0). We write the probability of

X̄ ∈ A conditioned on X̄>X̄ ∈ Cε
Σ as:

Pr
(
X̄∈A | X̄>X̄∈Cε

Σ

)
=

Pr
(
X̄∈A ∧ X̄>X̄∈Cε

Σ

)
Pr
(
X̄>X̄∈Cε

Σ

) =
E
[
1[X∈A]1[X>X∈CεΣ] det(X>X)

]
E
[
1[X>X∈CεΣ] det(X>X)

]
≤

E
[
1[X∈A]1[X>X∈CεΣ] det(Σ)(1 + ε)d

]
E
[
1[X>X∈CεΣ] det(Σ)(1− ε)d

] =
E
[
1[X∈A]1[X>X∈CεΣ]

]
E
[
1[X>X∈CεΣ]

] (
1 + ε

1− ε

)d
= Pr

(
X∈A |X>X∈Cε

Σ

)(1 + ε

1− ε

)d
ε→0−→ Pr

(
X∈A |X>X=Σ

)
.

We can obtain a lower-bound analogous to the above upper-bound, namely Pr
(
X∈

A |X>X ∈ Cε
Σ

)(
1−ε
1+ε

)d
, which also converges to Pr

(
X ∈ A |X>X = Σ

)
. Thus, we

conclude that:

Pr
(
X̄∈A | X̄>X̄=Σ

)
= lim

ε→0
Pr
(
X̄∈A | X̄>X̄∈Cε

Σ

)
= Pr

(
X∈A |X>X=Σ

)
,

completing the proof.
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