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Abstract

In this paper we introduce a novel model for Gaussian process (GP) regression in the fully
Bayesian setting. Motivated by the ideas of sparsification, localization and Bayesian addi-
tive modeling, our model is built around a recursive partitioning (RP) scheme. Within each
RP partition, a sparse GP (SGP) regression model is fitted. A Bayesian additive frame-
work then combines multiple layers of partitioned SGPs, capturing both global trends
and local refinements with efficient computations. The model addresses both the prob-
lem of efficiency in fitting a full Gaussian process regression model and the problem of
prediction performance associated with a single SGP. Our approach mitigates the issue of
pseudo-input selection and avoids the need for complex inter-block correlations in existing
methods. The crucial trade-off becomes choosing between many simpler local model com-
ponents or fewer complex global model components, which the practitioner can sensibly
tune. Implementation is via a Metropolis-Hasting Markov chain Monte-Carlo algorithm
with Bayesian back-fitting. We compare our model against popular alternatives on simu-
lated and real datasets, and find the performance is competitive, while the fully Bayesian
procedure enables the quantification of model uncertainties.
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1. Introduction

Gaussian process (GP) regression is a widely adopted regression model (Rasmussen and
Williams, 2006). Taking a Bayesian approach, its posterior distribution provides a principled
way to quantify uncertainties while having nice theoretical properties (Gelman et al., 2013).
However, the computational cost of GP likelihood evaluations based on an observed dataset
{y,X} of size n is of order O(n3), which primarily results from the need to invert an
n× n covariance matrix. Therefore, the computational cost could be prohibitively high in
scenarios where large datasets need to be analyzed. It is a focus of much current research
to solve this problem of high computational cost for GP regression (Banerjee et al., 2012;
Liu et al., 2020).

Many approaches to circumvent this problem have been explored, such as low-rank
covariance approximation (Titsias, 2009), model likelihood approximations (Kaufman et al.,
2008) and local GP approximations (Snelson and Ghahramani, 2007; Gramacy and Apley,
2015). However, most of these approaches are not fully Bayesian.

We are inspired by the idea of low-rank sparse GP regression (Snelson and Ghahra-
mani, 2006) and localization ideas (Chipman et al., 1998; Lee et al., 2017; Gramacy and
Apley, 2015; Park and Huang, 2016; Nguyen-Tuong et al., 2009; Chipman et al., 2016;
Lee et al., 2017), but we still want to incorporate these methods within a fully Bayesian
framework. Borrowing the framework of Bayesian (generalized) additive modeling (Hastie
and Tibshirani, 1990, 2000), we propose the Sparse Additive Gaussian Process (SAGP)
model. SAGP combines sparse GP regression and a recursive partition (RP) scheme within
a fully Bayesian model. It turns out that our approach can simultaneously handle both
local and global features in large datasets while realizing gains in computational efficiency.
Furthermore, it provides principled uncertainty quantification for parameters and posterior
predictions. A key feature of the approach is a much simplified fixed partitioning scheme
that avoids the added computational costs of stochastic tree-based partitioning models (e.g.
(Chipman et al., 1998, 2016; Gramacy et al., 2007)). To the best of our knowledge, this
kind of additive Bayesian model, combining both sparsification and localization, has never
been explored.

The paper is organized as it follows. In section 2 we will briefly review the background
knowledge for sparse GP, localization and Bayesian additive modeling as they are essential
ingredients of SAGP modeling. In section 3 we will specify the SAGP model. Sections 4
and 5 are analyses of simulated and real-world datasets. Finally, we conclude our paper
with a discussion in section 6.

2. Background

2.1 Gaussian Process Regression

We start with GP regression on the input domain X and use the notation Nd(m,Σ) to
denote the d-dimensional Gaussian distribution with mean vector m and covariance matrix
Σ, and the notation Nd(y |m,Σ) to denote the d-dimensional Normal density evaluated at
y ∈ Rn. The prior of the mean regression function is assumed to be a GP with known mean
and covariance kernel function. Posterior estimation and prediction arise from combining
the prior belief with the information contained in the likelihood of response variables y =
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(y1, . . . , yn)T , observed at known input locations X = {xi ∈ Rd, i = 1, . . . , n} ⊂ X, by using
Bayes theorem. We also call f the target and the variable xi the input, based on the model
form

y(xi) = f(xi) + εi, i = 1, . . . , n
εi ∼ N1(0, σ

2
ε )

(1)

which expresses the relationship between input xi and the unknown response f(xi) observed
as yi with observational error εi having variance σ2ε . Using vector notations we write y =
(y1, . . . , yn)T = (y(x1), y(x2), . . . , y(xn))T , f = (f(x1), . . . , f(xn))T and the noise ε ∼
Nn(0n, σ

2
ε In) to yield y = f + ε.

Without loss of generality, it is often convenient to assume that the mean vector f is a
realization of a zero mean Gaussian process, f ∼ Nn(0,Kn), where Kn = [K(xi,xj)]

n
i,j=1 ,

with covariance kernel K(·, ·) : Rd × Rd → R encoding assumed properties of the unknown
function f to satisfy the application of interest (Rasmussen and Williams, 2006).

2.2 Sparsification of Gaussian Processes

There are a variety of sparse approximation approaches to GP regression (e.g. Lawrence
et al. 2003; Quinonero-Candela and Rasmussen 2005). A popular approach is the pseudo-
input (or latent variable) approach. By replacing the exact covariance matrix in the
likelihood computation with a low-rank approximation, one can greatly reduce compu-
tational cost. Snelson and Ghahramani (2006) propose the Sparse Gaussian Process (SGP)
model by using a subset of the full inputs X = {x1, . . . ,xn} as pseudo-inputs, denoted
as X̄ = {x̄1, . . . , x̄m} ⊂ X , for m � n. Then, f̄ = (f(x̄1), f(x̄2), . . . , f(x̄m))T are called
pseudo-targets, and

Kn := [K(xk,xl)]
n
k,l=1 ,

Km := [K(x̄k, x̄l)]
m
k,l=1 ,

Knm = [K(xi, x̄j)]
n,m
i,j=1 = KT

mn

denote the (cross-)covariance matrices among and between the full targets f and pseudo-
targets f̄ . Their approach treats the pseudo-inputs as (hyper-)parameters, resulting in
a likelihood function that only requires the inversion of the dense m × m matrix Km, a
significant computational savings. The posterior and posterior predictive distributions can
then be written in closed form by Gaussian conjugacy (Snelson and Ghahramani, 2006).

For an SGP model with m pseudo-inputs, the full likelihood is P (y | X , X̄ , f̄ , σ2ε ) =
Nn(y |KnmK

−1
m f̄ ,Λ + σ2ε In) where Λ = diag

(
K(xi,xi)− kTi K−1m ki

)n
i=1

and

ki = (K(x̄1,xi), . . . ,K(x̄m,xi))
T . Using Bayes theorem, we can write the posterior distri-

bution of pseudo-targets as

P ( f̄
∣∣X ,y, X̄ , σ2ε ) = Nm(f̄ |KmQ

−1
m Kmn

(
Λ + σ2ε I

)−1
y, KmQ

−1
m Km)

where Qm = Km + Kmn

(
Λ + σ2ε I

)−1
Knm. The posterior predictive distribution for

y∗ at a new input x∗, after integrating out the pseudo-target f̄ , can be written as P (y∗ |
x∗,X ,y, σ2ε ) = N1(k

T
∗Q
−1
m Kmn

(
Λn + σ2ε In

)−1
y, σ2ε +K∗∗−kT∗K−1m k∗+kT∗Q−1mj

k∗), where
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k∗ = (K(x̄1,x∗), . . . ,K(x̄m,x∗))
T . In particular, when n = m we obtain the posterior

distributions of the full Gaussian process model.

One central problem of the SGP approach is that the sparsification depends on the
choice of the pseudo-inputs X̄ , which are treated as hyperparameters to be (somehow)
selected once and then held fixed. In the original work, Snelson and Ghahramani (2006)
propose to choose the pseudo-inputs by optimizing the marginal likelihood. Others have
suggested to minimize the KL divergence (Titsias, 2009; Damianou and Lawrence, 2013).
In our Bayesian approach, instead of using a fixed choice of pseudo-inputs (Titsias, 2009;
Lee et al., 2017), we draw the pseudo-inputs from a prior distribution.

2.3 Bayesian Additive Modeling and Back-fitting

Bayesian additive modeling (Hastie and Tibshirani, 1990; Chipman et al., 1998) is a flexible
technique that is widely adopted. Such additive models are formed by taking the sum of
many model components, where each component captures a portion of the overall response
variability. In the Gaussian setting, fitting a Bayesian additive model can be accomplished
by using partial residuals and updating each component sequentially in the so-called back-
fitting scheme (Hastie and Tibshirani, 2000). Following this scheme, we can represent an
additive model with N components without intercept term in vector form as y =

∑N
j=1 f j+

ε, ε ∼ Nn(0n, σ
2
ε In).

Bayesian back-fitting proceeds by fitting each additive component, f j , by using the “j-
th partial residuals”, rj = y −

∑
i 6=j f i. These residuals are used as “data” for the j-th

component. Starting with a particular initial value, the back-fitting algorithm (Algorithm
3.1 in Hastie and Tibshirani (2000)) iterates until the joint distribution of all mean functions
f1,f2, . . . ,fN stabilizes.

One insight into the usefulness of this algorithm is to recognize that it allows updating
the fj ’s one at a time rather than requiring an expensive joint update like the full GP
regression on a large dataset. Therefore, it would be advantageous to make the fj updates
computationally cheap.

2.4 Localization via Partition Schemes

Partitioning the input space X =
⋃
j Xj has been another popular way of scaling-up regres-

sion models. In this line of research, pioneering works were performed by Breiman (1984),
Denison et al. (1998) and Chipman et al. (1998, 2010, 2016). Furthermore, various choices
of partition schemes of the input domain are discussed in the local GP regression literature
(Nguyen-Tuong et al., 2009; Gramacy and Apley, 2015; Park and Huang, 2016).

In terms of Bayesian additive modeling, Chipman et al. (1998) model the data in each
partition Xj using an independent model component, conditional on the partitioning defined
by a binary tree. This associates the fitted mean function (or target) f j with the data lying
in the specific partition Xj . Subsequent works (Gramacy and Apley, 2015; Chipman et al.,
2016; Pratola et al., 2020) demonstrate that assembling many simpler models over such
partitioning schemes can usually out-perform a single complex model fitted to the entire
modeling domain.

As pointed out in Gramacy and Apley (2015) and Park and Apley (2018), such lo-
calization of the input-domain will fit and predict non-stationary datasets better. Also,
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multi-scale features of a dataset can usually be well captured by introducing a hierarchical
structure on the input domain (Fox and Dunson, 2012; Lee et al., 2017).

In our approach, capturing global and local features is accomplished through a fixed
partition scheme informed by the data X . We will show how this can be done so that the
partition scheme is well suited to the Bayesian backfitting algorithm, and use sparse model
components to further enhance the scalability of the model.

3. Sparse Additive Gaussian Process Regression (SAGP)

The proposed SAGP model combines the three key ingredients of sparsification, Bayesian
additive modeling (via backfitting), and localization in a clever way. In particular, our
model has the usual additive form,

y =

N∑
j=1

f j + ε, (2)

for some error component ε with variance σ2ε . Much effort in statistical modeling focuses
on the f j . For instance, in linear regression, f j = Xjβj for the jth column of some design
matrix X and vector parameter β. In our approach, each f j has entries which are formed

by weighted linear combinations of the pseudo-targets, W T f̄ j , and each vector of pseudo-

targets f̄ j arise from the pseudo-inputs X̄ (j) belonging to the jth subdomain of the input do-
main X. Additional parameters κ will be involved in each component in forming the weights
W . Finally, the subdomains are defined by a partitioning scheme, BN . Let the collection of
pseudo-inputs belonging to each partition be X̄ (1), . . . , X̄ (N). Then, our model takes a hierar-
chical form involving the likelihood function L(y|f̄1, . . . , f̄N ,κ, σ2ε ,BN , X̄ (1), . . . , X̄ (N),X ) as
well as the prior distributions of the various additive model components in the overall model,
P (f̄1, . . . , f̄N |κ,BN , X̄ (1), . . . , X̄ (N),X ), P (κ | BN ,X ), P (σ2ε ), and P (X̄ (1), . . . , X̄ (N)|BN ,X ).

To perform inference and prediction, we will be interested in the marginal posterior
distribution P (f̄1, . . . , f̄N ,κ, σ

2
ε |y,BN ,X ). Note that the posterior is dependent on the par-

titioning scheme BN , since it is held fixed in our modeling approach. Therefore, we will
start by describing the proposed partitioning scheme. The partitioning scheme reduces
the computational cost by limiting the sample size in each model component by exploiting
localization. Second, conditional on this localization scheme, the model components (i.e.
the fj ’s) themselves leverage the sparse Gaussian Process. This sparsification reduces the
computational cost as described earlier. Finally, our overall model combines all of these
sparse localized components into a Bayesian additive model as defined by the likelihood
function, and the overall model can be efficiently fit using Bayesian back-fitting.

3.1 A Recursive Partitioning Scheme

We consider a recursive partitioning of the domain X that can be represented as a 2d-ary
tree. Each node of the tree corresponds to a subregion Bj of X ⊂ Rd called a block. Only the
node at the first level, i.e., the root of the tree, corresponds to the whole domain (B1 = X).
The collection of blocks corresponding to nodes at the same depth of the tree is referred to
as a layer. The collection of all blocks across all layers of the tree comprises the partitioning
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of X. More formally, we define a Recursive Partitioning (RP) scheme as a collection of blocks
{B1, ..., BN} and layers L1, . . . ,LL of these blocks satisfying the following properties:

P1. (Nestedness) For a block Bi ⊂ Rd in the j-th layer Lj , there exists a unique block
Bk ∈ Lj−1 ⊂ Rd in the (j − 1)-layer Lj−1 such that Bi ⊂ Bk.

P2. (Disjointedness, or non-overlapping) For two blocks Bi, Bk in the j-th layer Lj such
that Bi 6= Bk, their interiors do not intersect.

To facilitate manipulating and storing the RP scheme on a computer, we encode each
block by its centroid cj = (c1j , · · · , cdj ) and half-width wj = (w1

j , . . . , w
d
j ) where for simplicity

we take the half-widths to be the same in each dimension given a layer l, wkj = Rl, k =
1, . . . , d. The j-th block is then defined as

Bj := B(cj ,wj) =
{
x = (x1, . . . , xd) ∈ Rd

∣∣∣ |xk − ckj |≤ wkj , k = 1, . . . , d
}
.

We require each block to have a minimum of mj observations, allowing us to later define
an SGP with mj pseudo-inputs in each Bj . For simplicity of exposition, we will assume
mj = m for all j = 1, . . . , N. We also require pseudo-inputs X̄ (j) to be mutually disjoint, so
that each input setting in X is chosen as a pseudo-input at most once.

An example RP scheme construction with L = 3 layers and m = 3 pseudo-inputs is
shown in Figure 1. The construction starts with a complete 2d-ary tree consisting of layers
L1 = {B1},L2 = {B2, B3} and L3 = {B4, B5, B6, B7}, and a dataset of n = 15 observations,
shown as black dots. Then, the complete tree is pruned according to Algorithm 1, which
ensures that each block Bj will have at least m pseudo-inputs available while also satisfying
the required properties P1 and P2. Finally, given an RP scheme, one possible random
selection of pseudo-inputs is shown.

Algorithm 1 is able to perform the required pruning in general. Essentially, the algorithm
works by requiring that the total number of observations in block Bj and all of Bj ’s children
satisfies the total required number of pseudo-inputs for these components. Starting from
the bottom layer, Algorithm 1 recursively works up the tree, pruning sub-trees that do not
satisfy this constraint on total number of observations. Once the pruning is complete, the
random selection of pseudo-inputs to blocks can be drawn by starting with blocks in layer
L and working back to B1, thereby guaranteeing that all blocks meet the minimum of m
pseudo-inputs per block.

3.2 SAGP Model

Given a (pruned) RP scheme BN , we propose the additive model (2) for the response y,
where each component fj = (fj(x1), . . . , fj(xn))T is described by an SGP model on the
domain Bj and ε ∼ Nn(0n, σ

2
ε In). For block B(cj ,wj), we use X̄ (j) to denote the pseudo-

inputs for that block,

X̄ (j) = {x̄(j)
1 , . . . , x̄(j)

mj
} ⊂ B(cj ,wj) s.t. x̄

(j)
k ∈ X∀k.

The SGP associated with f j and pseudo-inputs X̄ (j) has corresponding pseudo-targets,

f̄ j =
(
fj(x̄

(j)
1 ), fj(x̄

(j)
2 ), . . . , fj(x̄

(j)
mj

)
)T
∈ Rmj , j = 1, . . . , N. (3)
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The initial complete RP scheme as a binary
tree with 3-layers on [0, 1].

Starting from layer 3, we prune
B(c7,w7) since there are only 2 < 3
observations available. We keep
B(c6,w6), B(c5,w5), B(c4,w4) as they
all contain at least m = 3 observations.

Moving to layer 2, B(c3,w3) has the 6 ob-
servations required by itself and its child
B(c6,w6). Checking B(c2,w2), it contains
only 6 observations so we prune its children
B(c4,w4), B(c5,w5).

Moving to layer 1, B(c1,w1) contains 15
observations, therefore there are sufficient
observations for B(c1,w1) and its children
B(c2,w2) , B(c3,w3) and B(c6,w6). We
keep B(c1,w1) and its children, completing
the partitioning.

Given the final RP scheme B(c1,w1),
B(c2,w2), B(c3,w3) and B(c6,w6), one pos-
sible random selection of the pseudo-inputs
X̄j for the j = 1, . . . , N different additive
components (here N = 4) conditional on the
RP scheme is shown as colored dots. Points
with the same color belong to blocks on the
same layer.

Figure 1: RP scheme on the domain X = [0, 1] as a 21-ary tree with 3 layers and m = 3
pseudo-inputs per block. The n = 15 data points X are represented as dots. The
right panels describe the application of the RP pruning Algorithm 1 (a)-(d), and
the selection of pseudo-inputs given the RP scheme in (e). The left panels provide
the analogous graphical construction of the RP scheme.
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Algorithm 1 Pruning algorithm for RP scheme.

Input : RP partition scheme A consisting of N components, Observed dataset {X ,y}.
Output: RP partition scheme A′

consisting of N
′ ≤ N components,

1 for l in L : 1 do
2 for each component j in the l-th layer Ll do
3 for s in L : l do
4 mreq ← Sum of the numbers of pesudo-inputs required for all components con-

tained in B(cj ,wj) in A′
.

5 if | X ∩B(cj ,wj) |≥ mreq then
6 break
7 else
8 Remove all the children components of component j from the model in s-th

layer.
9 end

10 end

11 end

12 end

Conditional on the RP scheme and pseudo-inputs, the joint posterior of pseudo-targets
and other parameters in (2) can be written as:

P (f̄1, . . . , f̄N ,κ,σ
2
ε | BN ,y,X , X̄ (1), . . . , X̄ (N)) ∝

P (y | f̄1, . . . , f̄N ,κ,σ
2
ε ,BN , X̄ (1), . . . , X̄ (N),X )︸ ︷︷ ︸

Likelihood Function

P (f̄1, . . . , f̄N | BN , X̄ (1), . . . , X̄ (N),X ,κ)︸ ︷︷ ︸
Pseudo-target Prior

×

P (κ | BN )︸ ︷︷ ︸
Kernel Prior

P (σ2
ε )︸ ︷︷ ︸

Error Prior

. (4)

In effect, we view the choice of pseudo-inputs X̄ (1), . . . , X̄ (N) as nuisance parameters,
and ultimately will integrate them out with respect to the prior P (X̄ (1), . . . , X̄ (N) | BN ),
which gives the marginal posterior of interest,

P (f̄1, . . . , f̄N ,κ,σ
2
ε | BN ,y,X ) =∫

P (f̄1, . . . , f̄N ,κ,σ
2
ε | BN ,y,X , X̄ (1), . . . , X̄ (N))P (X̄ (1), . . . , X̄ (N) | BN )︸ ︷︷ ︸

Pseudo-input Prior

dx̄m1 . . . dx̄mN ,

where dx̄mj = dx̄
(j)
1 × . . .× dx̄

(j)
mj .

In subsection 3.2.7 we will show a Gibbs sampler algorithm for SAGP fitting and for
calculating predictions, but first we describe in greater detail the likelihood function and
various prior distributions involved in the SAGP model.

3.2.1 Likelihood Function, P (y | f̄1, . . . , f̄N ,κ, σ2ε ,BN , X̄ (1), . . . , X̄ (N),X )

Let us denote the covariance kernel for the SGP in the j-th block by K(j), j = 1, . . . , N . We
use the Gaussian covariance kernel supported inside Bj with parameters κ(j) = (ρ(j), η(j)).
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We have

K(j)(x,x′) :=
1

η(j)
·
(
ρ(j)
)[(x−x′)T (x−x′)]

,∀x,x′ ∈ Bj . (5)

Using (5), we can write down the (cross-)covariance matrices among and between inputs
in X and X̄ (j) as:

K(j)
n :=

[
K(j)(xk,xl)

]n
k,l=1

,

K(j)
mj

:=
[
K(j)(x̄

(j)
k , x̄

(j)
l )
]mj

k,l=1
,

K(j)
nmj

:=
[
K(j)(xk, x̄

(j)
l )
]n,mj

k,l=1
=
(
K(j)

mjn

)T
.

For a general x ∈ Rd, we also have

k
(j)
x :=

(
K(j)(x̄

(j)
1 ,x), . . . ,K(j)(x̄

(j)
mj ,x)

)T
. (6)

Assuming the additive components are conditionally independent, the likelihood is (see
Lemma 1 in Appendix D)

P (y | f̄1, . . . , f̄N ,κ,σ
2
ε ,BN , X̄ (1), . . . , X̄ (N)) = Nn

y
∣∣∣∣∣∣
N∑
j=1

K(j)
nmj

(
K(j)

mj

)−1
f̄ j , σ

2
ε In +

N∑
j=1

Λ(j)
n


(7)

where the matrix Λ
(j)
n := diag

(
K

(j)
ii − k

(j)T
i

(
K

(j)
mj

)−1
k
(j)
i

)
n×n

takes the diagonal form,

with k
(j)
i as defined in (6) (with subscript i being shorthand for xi).

3.2.2 Pseudo-target Prior, P (f̄1, . . . , f̄N | BN , X̄ (1), . . . , X̄ (N),X , κ)

The prior distribution of pseudo-targets given pseudo-inputs and covariance function pa-
rameters is straight-forward. Following Snelson and Ghahramani (2006), the pseudo-targets
are assumed to be a priori conditionally independent, and so have Gaussian distributions
with prescribed kernels:

P (f̄1, . . . , f̄N | BN , X̄ (1), . . . , X̄ (N),X ,κ) =

N∏
j=1

P (f̄ j | BN , X̄ (j),X ,κ(j))

=
N∏
j=1

Nmj

(
f̄ j

∣∣∣0mj ,K
(j)
mj

)
. (8)

3.2.3 Pseudo-input Prior, P (X̄ (1), . . . , X̄ (N) | BN ,X )

The idea of the proposed pseudo-input prior is to sample pseudo-inputs uniformly within
each block Bj while satisfying properties P1–P3 required for the RP scheme, BN . Algo-
rithm 2 implements such a sampling scheme, which we now motivate. Let the index set Ij
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Algorithm 2 Sampling pseudo-inputs given RP scheme BN .

Input : RP scheme BN consisting of N blocks, Observed inputs X .
Output: Sample of X̄ (j), j = 1, . . . , N conditional on RP scheme BN .

1 Initialize XA = X as available inputs.
2 for j in N : 1 do

3 Sample a random sample X̄ (j) ⊂ X ⊂ Rd of size mj from X ∩Bj ∩ XA.

4 XA ← XA \ X̄ (j) // Remove X̄ (j) sampled in the previous step from XA.
5 end

representing the indices of children blocks of block Bj , which is defined as

Ij := {k 6= j such that Bk ⊂ Bj},

and also define the collection of already selected pseudo-inputs of these child blocks as
C(Bj) := ∪k∈Ij X̄ (k). Then,

P (X̄ (1), . . . , X̄ (N) | BN ) =
1∏

`=L

∏
j:Bj∈L`

P (X̄ (j) | C(Bj))

where

P (X̄ (j) | C(Bj)) =

mj∏
i=1

P (x̄
(j)
i | C(Bj))

and

P (x̄
(j)
i | C(Bj)) = Discrete Uniform ({x ∈ X ⊂ Bj\C(Bj)}) .

In the expression above, we essentially draw a random sample from all those observed
locations that have not been selected as pseudo-inputs of any children components in the
lower layers of the RP scheme.

Unlike the standard SGP approach, this allows us to capture the uncertainty of pseudo-
input selection by sampling the pseudo-inputs using Algorithm 2 and propagating this
uncertainty to the posterior. Alternatives such as a continuous uniform prior over each
component domain Bj , or sampling accordingly to design-theoretic considerations (Pratola
et al., 2019), are possible.

3.2.4 Additional Prior Distributions, P (κ | BN ) and P (σ2ε )

We place a conjugate inverse gamma prior on the noise variance, σ2ε ,

σ2ε ∼ InverseGamma(αε, βε).

The hyper-parameters αε and βε may be chosen as the hyper-parameters of the noise vari-
ance in traditional Bayesian GP regression.
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We assume independent priors on the scale and correlation parameters of the kernel,
η(j) and ρ(j),

P (κ) = P (κ(1), . . . ,κ(j)) =
L∏
`=1

∏
Bj∈L`

P (η(j) | αlη, βlη)P (ρ(j)).

The precision parameters η(j) are assumed to have gamma priors,

η(j) ∼ Gamma(αlη, β
l
η),

with αlη, β
l
η > 0, l = 1, . . . , L. The hyper-parameters αlη, β

l
η are the same for components

within the same layer. We set up these hyper-parameters so that the variance of the
response explained by the SAGP model is unequally partitioned across the L layers, with
components in higher layers of the partitioning scheme explaining larger portions of the
variance. To facilitate the set-up of the hyper-parameters, we first normalize the observed
responses y1, . . . , yn, re-centering and re-scaling so that they have mean 0 and variance 1.
For all the components in layer l, we set

αlη =c1η + 1,

βlη =c1η(1− c2η)c
l−1
2η ,

with c1η > 0 and 0 < c2η < 1. For each component j in layer l, this choice implies that
1/η(j), the marginal variance of the component, has prior mean

E[1/η(j)] =
βlη

αlη − 1
= (1− c2η)c

l−1
2η .

For example, if c2η = .1, components on layer l = 1 are expected to have variance 1−c2η = .9,
which is 90% of the variance of the response because of the normalization. Components on
layer l = 2 are expected to have (1 − c2η)c2η = 0.09, 9% of the variance of the response.
Similarly, as l increases, components are expected to explain smaller portions of the variance
of the response. In particular, the geometric decay of the prior mean of 1/η(j) is chosen
so that the expected layer-specific variances add up to approximately the total response
variance, which is guaranteed because, if L is sufficiently big,

∑L
l=1(1 − c2η)c

l−1
2η ≈ 1. The

other hyper-parameter c1η controls the spread of the prior distributions of 1/η(j), with larger
values of c1η imposing a tighter constraint to the prior mean. In our experience, values of
c2η = .1 and c1η between 10 and 50 appear to provide the best results in our applications.

We set the prior distributions on the parameters ρ(j) in the following way. First of all, we
assume that the inputs xi’s have been appropriately scaled, so that the domain X is mapped
into the unit cube [0, 1]d. This facilitates the definition of priors for ρ(j). Second, as for the
η(j), we assume the same prior distribution for parameters corresponding to components
in the same layer l. Third, we adopt a structure of priors imposing smoother behaviors
for components in the top layers of the partitioning scheme. In other words, we impose a
structure of priors where ρ(j) is expected to be greater than ρ(j

′) if component j belongs to a
layer on a higher level than the layer of component j′. Despite a family of beta priors on the
ρ(j) may be tuned to satisfy these properties, we empirically observed that setting the values
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of these parameters to fixed layer-specific constants ρl (i.e., P (ρ(j)) = δρl , the Dirac delta
function on ρl) worked as well but was computationally less expensive. To get the sense
on how the values of ρl affect the layer-specific correlations, one may plot the correlation
for two responses as a function of the distance of their inputs, as specified by Equation (5).
We provide this plot in Appendix A, in the case L = 5 and using the values ρ1 = 10−1,
ρL = 10−50 and the intermediate values ρl, l = 2, . . . , L − 1 to be equally spaced between
ρ1 and ρL on the logarithm (base 10) scale. Even though these values of ρl may appear to
quickly become excessively small, the sizes of the subdomains where the components are
defined (i.e., the blocks Bj) shrink as l increases. In our numerical example, if we consider a
one-dimensional case with two inputs x and x′ at distance 0.0625 (i.e., the largest distance
between two points in one block on the fifth layer), the assumed correlations on components
on layer l = 1 to 5 are 0.99, 0.89, 0.80, 0.71 and 0.64, respectively. Notably, the decay of
such values depends on the number of layers L, which can be tuned using prior beliefs and
the information in the data. In our applications, trading the conventional estimation of the
parameters ρ(j) with a set of fixed ρl and a data-driven selection of L via cross-validation
(see Section 3.2.8) resulted in sufficiently flexible models.

3.2.5 Full Conditional Distribution of Pseudo-targets

In order to implement an MCMC algorithm for SAGP, we apply Bayes theorem on the
pseudo-inputs f̄ j in order to yield its full conditional distribution from (7) and (8) and the
conditional independence assumption,

P (f̄ j | y,X , f̄1, . . . , f̄ j−1, f̄ j+1, . . . f̄N ,BN , X̄ (1), . . . , X̄ (N),κ,σ2
ε )

∝ P (y | f̄1, . . . f̄N ,BN , X̄ (1), . . . , X̄ (N),κ,σ2
ε )×

P (f̄ j | X ,BN , X̄ (j),κ,σ2
ε )

= Nn

(
rj |K(j)

nmj

(
K(j)

mj

)−1
f̄ j ,Λ

(j)
n + σ2ε In

)
×Nmj

(
f̄ j
∣∣0mj ,K

(j)
mj

)
, (9)

where rj = y −
∑

l 6=jK
(l)
nml

(
K

(l)
ml

)−1
f̄ l. Using normal-normal conjugacy, we can identify

the mean and variance of this normal distribution, f̄ j |Meanj ,V arj , where (see Appendix
D)

Meanj = K(j)
mj
Q(j)−1
mj

K(j)
mjn

(
Λ(j)
n + σ2ε In

)−1
rj ,

V arj = K(j)
mj
Q(j)−1
mj

K(j)
mj
,

and Q(j)
mj

=K(j)
mj

+K(j)
mjn

(
Λ(j)
n + σ2ε In

)−1
K(j)

nmj
. (10)

Although we still need to invert an n × n matrix Λ
(j)
n + σ2ε In, it is a diagonal matrix and

hence its computational cost will be O(n).

3.2.6 Full Conditional Distribution of Noise Variance

As we mentioned in the previous section, we want to make use of the Gaussian-inverse
gamma conjugacy. For the observation of sample size n, by conjugacy, the distribution σ2ε
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is again inverse gamma,

P (σ2ε | y,X , f̄1, . . . f̄N ,BN , X̄ (1), . . . , X̄ (N),κ) =

InverseGamma

(
αε +

n

2
, βε +

1

2
(y − ŷ)T (y − ŷ)

)
,

where ŷ :=
∑N

j=1K
(j)
nmj

(
K

(j)
mj

)−1
f̄ j is the “fitted value” from the SAGP model. We can

directly sample this parameter using a Gibbs step.

3.2.7 Sampling Algorithm

SAGP is fitted by a Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm
(Gelfand et al., 1990). For each additive component of the model, we have to use the partial
residuals rj defined in (9) as data. This step is from the back-fitting scheme designed for
fitting additive Bayesian models (Hastie and Tibshirani, 2000).

From the likelihood derivations presented in section 3.2.5, we know that f̄ j can be
directly sampled from their conditional distributions for each j = 1, . . . , N components. The
difficulty in this step is to compute the Meanj ,V arj in (10). As mentioned earlier, the
main computational cost occurs in the inversion of the covariance matrices in section 3.2.1,
which has been reduced compared to a full GP covariance matrix. Numerical instability
in inversion of these matrices may cause additional problems, so we adopt the Cholesky
decomposition method with diagonal perturbation to solve this instability problem as in
Rasmussen and Williams (2006). For each ηj we do not have normal conjugacy, therefore
an adaptive Metropolis-Hasting step is used for sampling ηj (Banerjee et al., 2012).

The advantage of using such a fully Bayesian model is that the uncertainty quantification
comes naturally with the posterior samples from the sampler. Our posterior inference below
can be based on all these posterior samples. The algorithm for overall sampling is presented
in Algorithm 3 in the Appendix C.

3.2.8 Tuning Parameters and Complexity

The trade-off between the number of layers L in the RP scheme and the number of pseudo-
inputs m is central to the SAGP model. On one hand, in SGP modeling (Snelson and
Ghahramani, 2006, 2007; Lee et al., 2017), we need to increase the number of pseudo-inputs
m to get a better fit of the SGP model. On the other hand, for regression tree partitionining
models (Chipman et al., 1998, 2016; Pratola et al., 2020), the more additive components
a model has, the better fit we can expect. In the SAGP model, increasing both factors
(number of pseudo-inputs, m, and number of layers, L,) would certainly improve the overall
fit, but the interesting observation is that there exists a trade-off between these two tuning
parameters. Increasing the number of layers L may counter-act the effect of decreasing the
number of pseudo-inputs m, and vice versa. Theoretically, we can tune the choice of the
number of layers using cross-validation (see Figure 4). Practically, we can usually choose
reasonable m and L depending on the desired granularity of the RP scheme.

This trade-off between m and L can also be observed by considering the model’s com-
putational complexity. We already mentioned above that for a full GP model based on X
the complexity is of order O(n3); for an SGP model with m � n pseudo-inputs selected
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from X , the complexity is of order O(nm2) (Snelson and Ghahramani, 2006). Since each
additive component in our SAGP model is essentially an SGP model, the overall complexity
is given by the following proposition.

Proposition 1 For an RP scheme on input-domain [0, 1]d, with bi-ary tree (Storer, 2012)
in the i-th dimension, the complexity of fitting an L-layer SAGP model with m pseudo-inputs

for each block and an overall sample of size n is at most O
(∑L

`=1

∏d
i=1 b

`−1
i · n ·m2

)
.

Proof See Appendix B.

For N = 1, where there is only one layer and one component, this complexity reduces to
SGP complexity with m pseudo-inputs. We will revisit this component number pseudo-input
trade-off in our data analyses.

4. Simulation Study

4.1 Design

To evaluate the performance of our methodology and compare it to competing approaches,
we run a family of simulations. We focus on the one-dimensional case (d = 1) and we
simulate from a GP with a mean function

f(x) = −5− 6x3 + 30(x− .5)2 + 3 exp(2x− 1) + 3x2 sin(12πx) + cos(6πx), (11)

which is represented in Figure 2 in the interval [0,1]. We generate a sample of n = 200
locations from a uniform distribution on [0, 1] and we define the observed responses as
yi = f(xi) + εi for all xi ∈ X , with εi ∼ N1(0, 0.1). The data are split into training and
testing sets, with sizes 150 and 50, respectively. We consider two scenarios. In the first
scenario, the testing set is selected at random. In the second scenario, the testing set is
chosen as the subset with 50 data points with xi closest to a point randomly chosen in
[0.25, 0.75]. Figure 2 shows an example for each of these scenarios.

We generate 1000 datasets for each scenario (random and interval testing set). In each
dataset, we fit the SAGP model with three configurations of m,L: (i) m = 5, L = 4; (ii)
m = 10, L = 3; (iii) m = 15, L = 3. We compare the SAGP models to the following
methods:

• Full GP regression. We use the implementation of GP regression model in the R
package DiceKriging by Roustant et al. (2012).

• SGP regression. We consider the choices m = 5, m = 10 and m = 15 and use
the implementation of SGP in the Matlab package implementation SPGP at http:

//www.gaussianprocess.org accompanying the paper by Snelson and Ghahramani
(2006).

• Bayesian Additive Regression Trees (BART) Chipman et al. (1998, 2010); Pratola
et al. (2020). We used the default number of trees as specified in Chipman et al.
(2010) and the implementation at http://bitbucket.org/mpratola/openbt.
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Figure 2: Example of data generated in the simulation study. The gray, bold, curve repre-
sents the true mean function f(x). Training and testing sets are represented as
black and red points. Panels (a) and (b) show the scenarios where the 50 data
points of the testing set are chosen at random or as the input location that is
closest to a randomly chosen point (0.5 in the example), respectively. The pos-
terior predictive functions of four models, fit on the training portion of the data,
are provided in both panels.

For each generated dataset, the models are fit on the training data and used to predict the
response on the testing data. For each point in the testing set, we compute the estimated
mean function ŷ(xi) (see Section 3.2.6) and the 95% prediction interval (PI) for yi. The
performance of the estimators of the mean function is evaluated in terms of root mean
squared error (RMSE). To assess the appropriateness of the uncertainty quantification, we
compute the coverage of the PIs and compare it to the nominal prediction level. Finally, we
compare the methods in terms of the average value of interval scores, which is a summary
measure to assess the quality of prediction intervals (Gneiting and Raftery, 2007). Given a
(1− α)100% PI for yi with extremes (li, ui), the interval score at yi is defined as

sα(li, ui; yi) = (ui − li) +
2

α
(li − yi)1(yi < li) +

2

α
(yi − ui)1(yi > ui).

We choose this metric to jointly evaluate a family of intervals in terms of precision (i.e.
the width of the intervals) and accuracy (i.e., the coverage of the true value). Notably, low
values of the score indicate good performance.

15



Luo, Nattino and Pratola

4.2 Results

Figure 3 summarizes the resulting RMSEs, PI coverages and averages of the interval scores
across the 1000 generated datasets for the two scenarios.
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Figure 3: RMSE (top panels), coverage (central panels) and interval score (bottom panels)
over the 1000 simulated datasets. Panel (a) shows the results in the case where
the testing set is chosen at random over [0, 1]. Panel (b) shows the results in the
case where the testing set is chosen in a random interval with center uniformly
selected from [0.25, 0.75].

Panel (a) provides the results in the scenario where the testing set is selected at random.
In terms of RMSE, both the SAGP and SGP models perform better with larger values of m.
As expected, the full GP model attains the smallest RMSEs. The SAGP models with m = 5
and 10 perform better than the SGP models with the same number of pseudo-inputs. For
m = 15, the median RMSEs in the SAGP and SGP models are similar, but the performance
of the SAGP model is more consistent across simulations (the upper quartile of SAGP with
m = 15 is considerably smaller than the one of SGP with m = 15). With the considered
configuration of the parameters, the BART model performs slightly better than the SAGP
model with m = 5, but worse than the SAGP model with m = 10 and m = 15. The coverage
of the 95% PIs is close to the nominal level for all the methods except for BART. The PIs
of the SAGP model appear to be slightly too narrow, as most of the coverages are a little
lower than .95. SGP and GP models show coverages perfectly matching the nominal value.
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However, the BART model produces overly wide PIs, as the median coverage is 100%. The
ranking of the methods in terms of interval score is similar to the one based on the RMSE.
Again, better performances are attained by SAGP and SGP models with larger values of
m. The SAGP models with m = 10 and m = 15 perform better than all the other methods,
except for the full GP model.

Panel (b) provides the results of the simulations in the scenario where the testing set is
an interval with random mid-point. Notably, this prediction problem is much harder than
the one evaluated by the previous scenario, as the models are forced to a certain degree of
extrapolation due to the lack of data. BART, GP and SAGP with m = 15 attain the best
performance in terms of RMSE. Overall, the SAGP model seems to perform better than
SGP. The coverage is suboptimal for all the methods, being much lower (undercoverage)
than expected for SAGP and SGP with m = 5 and higher (overcoverage) for GP. A wide
range of coverages is observed for all the other methods. With respect to the interval score,
GP and BART are the methods that appear to perform best. Among the SAGP and SGP
models, SAGP with m = 15 is the best performing and competitive with GP and BART.

4.3 Computational Details

As for any Bayesian model that is fit using MCMC algorithms, the convergence to the
stationary distribution must be investigated also for the SAGP model. In our specific
implementation, we discard the first 10,000 samples as burn-in and keep the following
1,000 samples to compute posterior estimates. We monitor the convergence of σ2ε , sampled
with Gibbs steps, and of the parameters η(j), which are sampled with Metropolis-Hastings
steps with an adaptive choice of the bandwidth of the proposal distribution to control the
acceptance rate. The considered SAGP models turned out to mix well and reasonably fast
on the basis of trace-plots of the parameters (not shown) and the diagnostics suggested by
Gelman et al. (2013), which are provided in Appendix E. Notably, in our experience, similar
satisfying mixing diagnostic for the SAGP model may be achieved with much fewer steps
than 10,000.

Table 1: Computation time needed to fit the SAGP model on 1,000 simulated datasets on
a 40-core cluster.

m L Testing set CPU time (hh:mm:ss)

10 3 Random 106:53:21
10 3 Interval 107:56:21

5 4 Random 241:17:31
5 4 Interval 175:45:35

15 3 Random 477:22:52
15 3 Interval 479:06:39

With respect to the computation time, setting the burn-in size to 10,000 and the size
of posterior samples to 1,000, an SAGP model can be fit on one dataset of size n = 200 in
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3 to 5 minutes, depending on the configuration of m and L, using a laptop with an Intel
Core-i5 2.30GHz processor. The time that was needed to fit the model on one batch of
1,000 simulated datasets are summarized in Table 1.

5. Real Data Applications

In this section, the proposed model is applied to real data. We considered four datasets
that differ in terms of sample size and number of predictors:

• Heart rate data: n = 1, 664, d = 1;

• Temperature data: n = 247, d = 2;

• Ice Sheet data: n = 2, 226, d = 2;

• UK Housing data: n = 1, 519 and d = 8.

The performance is evaluated quantitatively with the out-of-sample RMSE, coverage of 95%
PIs and average interval score on a 25% test set. Our model is compared to other popular
methods. We considered two Bayesian models: BART and Bayesian CART (BCART)
(Chipman et al., 1998), implemented in the BayesTree package on CRAN (version 0.3-1.4).
We also considered two frequentist models: full GP and Local Approximate GP (laGP)
(Gramacy et al., 2016), implemented in the laGP package on CRAN (version 1.5-5). For
the d = 1 and d = 2 datasets, we also provide a qualitative assessment of the fits via
graphical plots.

5.1 Heart Rate Data

The heart rate (HR) dataset we study here can be used to evaluate the level of physi-
cal preparation and design training/rehabilitation activities (Zakynthinaki, 2015). In this
study, a single runner was asked to run on a treadmill at constant speed. The HR (in
beats/minute) was recorded for about 7 minutes from the beginning of the exercise. Af-
ter the exercise, the HR of the subject was measured for about 10 minutes during the
recovery. The experiment was repeated four times, varying the speed of the exercise
(v = 13.4, 14.4, 15.7 and 17 km/h). For our illustrative purposes, we use the data of the
exercise performed at speed v = 13.4 km/h, which are graphically represented in Figure 5.

We consider SAGP models with m = 5 and m = 10 pseudo-inputs, and use 10-fold cross-
validation to select the number of layers L as shown in Figure 4(a). This plot demonstrates
the trade-off between the values of pseudo imputs m and the number of layers L, with
L = 3,m = 10 being a good choice. The resulting fitted SAGP model, which consists of 7
additive components, is summarized in Figure 5, both in terms of how the fit is decomposed
by layer in panel (a) and the overall fit shown in panel (b). An alternative fit with L =
4,m = 5 is provided in Appendix F.

5.2 Temperature Data

In this section we study a moderate sized 2-dimensional dataset of average daily maximum
temperature in degrees centigrade at 247 locations in Colorado during 1997 (https://
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Figure 4: (a) Out-of-sample MSE (on log10 scale) attained by different models fitted on 1
dimensional heart-rate dataset with m = 5, 10 and L = 1, . . . , 6.
(b) Out-of-sample MSE (on log10 scale) attained by different models fitted on 2
dimensional temperature dataset with m = 5, 10, 15, 20, 25 and L = 1, . . . , 4. For
any L > 4, our pruning algorithm 1 will reduce it to L = 4; for m = 25 our
pruning algorithm will reduce SAGP model to L = 3

www.image.ucar.edu/Data/US.monthly.met/USmonthlyMet.shtml, US precipitation and
temperature (1895-1997) dataset).

Qualitative comparisons of GP, BART and SAGP are shown in Figure 6. For GP re-
gression we used MLE estimates with the Matern(5/2) kernel. For BART we use the default
settings (Chipman et al., 2010). For SAGP, we choose L = 3,m = 25 and calibrate the α, β
of the noise prior in SAGP and the noise estimate in BART according to MLE of noise esti-
mate from GP. The GP model shows reasonable predictions, however, the prediction comes
with high predictive variance in locations away from the observations and especially near
the boundary (not shown). The predictive mean of BART shows it has a slight grid-like
artifact due to its decision tree construction. In addition, the shape of the response around
the mode is noticeably more rectangular than suggested by the other models.

This dataset provides us a 2-dimensional example where the data is limited, which is
actually a disadvantage for SAGP since the sparsification does not cut down the compu-
tational cost significantly yet some information is lost in the procedure. Nonetheless, the
SAGP method captures the major trends and even some of the extremal temperatures
close to 40 degrees centigrade. Compared to BART and GP, the SAGP model behaves
“in-between” these two methods and provides us with very competitive performance.

5.3 Ice Sheet Data

The Ice Sheet data is a larger 2-dimensional dataset but this time with noticeably uneven
sampling as discussed in Park and Apley (2018).The response is ice sheet thickness in meters
collected over a region of west Antarctica (Blankenship et al., 2004).We used the data from
1991, first converting the longitude and latitude into 2-dimensional Euclidean coordinates
and standardizing the dataset to [0, 1]2.
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Figure 5: The panels show the observed HR values over time as black dots and results
about the fit of the SAGP model with m = 10 and L = 3. Panel (a) shows
the posterior means and the 95% CIs of the 7 additive components of the SAGP
model on 100 equispaced locations on the support of the data. Panel (b) shows
the posterior means and the 95% CIs of the sole component in layer 1 (red), of
the components belonging to layer 1 and 2 (green) and of the complete model,
including components from layer 1, 2 and 3. Panel (c) provides the predictive
mean and the corresponding 95% prediction intervals.

A plot of the data and predictive fits for the GP (exponential correlation), laGP, BART,
treed GP (TGP; (Gramacy et al., 2007)) and SAGP models are shown in Figure 7. We
included TGP in this plot as we thought it may be helpful with the unevenly sampled data
but did not end up including it in our overall quantitative results below. For the SAGP
model, we show the fit obtained with L = 3,m = 10.

The fits obtained among these models show quite different behaviors. The full GP fit
possess extreme boundary behavior due to the lack of data near the boundary. The BART
model shows more noticeable grid-like artifacts in this dataset, but does not suffer from the
boundary effects seen with the GP. The TGP regression also does not exhibit boundary
effects but has much higher variability of the mean response in the data-rich region which
does not agree with the other models. The dynamic partitioning of TGP also introduces
considerable computational cost. The laGP model with its default settings and MSPE
criterion exhibits some degree of variability in the fitted mean response, particularly near
the boundaries, however, it is the most computationally efficient method.
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Figure 6: The original max temperature dataset for Colorado in 1997 summer. The horizon-
tal axis is longitude; the vertical axis is latitude; the response is the observed val-
ues of maximal temperature in degrees Celsius. The typical raster plot for predic-
tive means of Gaussian Process regression (Universal kriging with Gaussian ker-
nel and MLE nuggets)/BART(number of trees m = 200)/SAGP(m = 25, L = 3)
evaluated on a fine meshed grid (generated by steplengths of 0.1) on the original
input domain.
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Table 2: Performance of SAGP model and of other competing methods on four datasets.

Dataset Model Details RMSE Coverage (%)
Avg. Int. Score

(log10 scale)

Heart Rate
(n=1,664, d=1)

SAGP L=3, m=10 1.340×102 88.8 2.800
SAGP L=4, m=5 1.342×102 89.5 2.796

GP - 2.727×102 12.0 3.855
SGP m=5 1.366×102 100.0 4.605
SGP m=15 1.347×102 100.0 4.633
SGP m=150 1.325×102 100.0 4.720
laGP ALC 1.325×102 91.7 2.777
laGP MSPE 1.879×102 91.1 2.821

BART - 1.331×102 18.1 3.494
BCART - 1.355×102 94.7 2.751

Temperature
(n=247, d=2)

SAGP L=2, m=5 3.412×100 79.7 1.345
SAGP L=4, m=10 2.910×100 77.4 1.356

GP - 3.041×100 92.5 1.228
SGP m=5 3.401×100 100.0 2.010
SGP m=15 3.345×100 100.0 2.033
SGP m=150 3.043×100 100.0 1.709
laGP ALC 3.206×100 86.6 1.247
laGP MSPE 3.431×100 85.3 1.273

BART - 3.123×100 52.3 1.658
BCART - 3.432×100 90.8 1.195

Ice Sheet
(n=2,226, d=2)

SAGP L=3, m=10 1.944×102 89.6 3.048
SAGP L=3, m=15 1.858×102 89.1 3.038
SAGP L=4, m=5 2.126×102 89.7 3.073

GP - 0.766×102 93.8 2.570
SGP m=5 2.575×102 100.0 5.638
SGP m=15 2.278×102 100.0 5.841
SGP m=150 1.637×102 100.0 6.365
laGP ALC 1.672×102 88.7 2.892
laGP MSPE 1.715×102 88.7 2.894

BART - 1.532×102 49.9 3.322
BCART - 2.231×102 91.3 3.026

UK Budget
(n=1,519, d=8)

SAGP L=2, m=10 3.486×101 92.3 2.327
SAGP L=2, m=15 3.370×101 92.8 2.312
SAGP L=3, m=10 3.478×101 92.2 2.327
SAGP L=3, m=15 3.366×101 92.7 2.313

GP - 3.105×101 94.2 2.245
SGP m=5 3.087×101 5.0 2.904
SGP m=15 3.053×101 13.9 2.855
SGP m=150 3.112×101 49.0 2.647
laGP ALC 4.459×101 55.3 2.679
laGP MSPE 4.529×101 54.7 2.685

BART - 3.065×101 48.1 2.605
BCART - 3.613×101 92.4 2.286
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Figure 7: The scatter point plot shows the ice thickness in a region of Antarctica. The
horizontal and the vertical axis are geographical coordinates in kilometers (km).
The raster plot for predictive means of GP/laGP/BART(number of trees m =
200)/TGP/SAGP(m = 10, L = 3) for ice sheet dataset and evaluation on a fine
meshed grid (generated by steplengths of 0.02) on the original input domain. The
color scales and the axis are the same in these plots.
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The SAGP model fit is reasonable. It does not have extreme values, high variability in
the mean response or boundary effects like some of the other models, yet retains most of
the smoothness suggested by the full GP fit.

5.4 United Kingdom Budget Data

This dataset is a well-known econometric dataset first studied in Blundell et al. (1998).
The dataset consists of a cross-section of 1,519 households drawn from the 1980-1982
British Family Expenditure Surveys. We attempt to predict the total household expen-
diture (rounded to the nearest 10 UK pounds sterling) with 8 variables as inputs. We do
not use the variable of the number of children per household in the regression, since the
dataset is cleaned in such a way that it contains only households with one or two children,
as presented in Blundell et al. (1998).

We choose this dataset to explore the performance of our SAGP model in the higher-
dimensional scenario. As mentioned by Gramacy et al. (2016), such a dataset of high-
dimensionality (d = 8) will usually present computational challenges to classical GP models.
Our main goal is to show that with reasonable increase of computational time, SAGP model
has competitive performance. Since this dataset cannot be easily visualized, we only present
quantitative results as shown in the next section.

5.5 Quantitative Performance Summary

The performance of SAGP and the alternative models considered is summarized quantita-
tively in Table 2. As in Section 4, we summarize the quantitative performance using 25%
test set of original dataset to calculate out-of-sample RMSE, coverage of 95% credible inter-
vals and interval scores. SAGP, SGP, GP, laGP, BART and BCART models were applied
to all datasets. For SAGP, we generally selected L = 2 ∼ 4 and m = 5 ∼ 15 while for SGP
we selected m = 5, 15 or 150. BART and BCART models were fit using their defaults, and
laGP was fit using defaults but with both ALC and MSPE local design criteria.

Generally, we see that models could excel in one aspect (say RMSE) typically at the ex-
pense of another aspect of model fit quality, where the quality of fit depends on the dataset
and application scenario. We notice that BART generally had lower coverage probability
for the 95% PI and higher interval score. BCART had better coverage probability but gen-
erally was not the best in terms of RMSE. For the frequentist GP, two datasets exhibited
good RMSE and two exhibited weaker RMSE performance. The GP is also less informa-
tive in terms of uncertainty quantification than the Bayesian models we considered. The
laGP models often provided good RMSE performance, particularly with the ALC criterion,
however the coverage was lower on the UK dataset.

In comparison, the SAGP model generally provided RMSE performance on par or near
the best model for each dataset. The coverage also shows that SAGP models were consistent
performers, especially compared to BART and laGP. We also see that SGP is uniformly
worse than SAGP, often having either higher RMSE or worse coverage behavior. Overall,
it is clear that SAGP is competitive with the best models for each dataset as summarized
in Table 2, and we often prefer the qualitative aspect of the SAGP fits compared to some
of the alternative models, as demonstrated earlier.
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6. Discussion

The SAGP model effectively borrows ideas from both sparsification and localization. In
particular, we divide the input domain X in such a way that we can choose enough pseudo-
inputs and fit a sparse GP regression within the sub-region block of the partition, which
also produces a trade-off for model parameters. We also showed that SAGP can achieve an
effective reduction in computational cost (see Proposition 1) since all components within a
layer can effectively be fit in parallel.

As a Bayesian additive model, SAGP provides uncertainty quantification and leads to
accurate posterior inference. Along the model building process, we exhibit how the pseudo-
inputs can be sampled to capture the aspect of model uncertainty, which is ignored with
the fixed pseudo-inputs of SGP. The RP partition scheme outlined not only serves as a
localization construction but also guarantees adequate pseudo-inputs for this resampling
are available in each SAGP model component.As shown in the data analysis examples, the
SAGP model is a competitive candidate compared to other generalization of GP regression
methods. SAGP model can easily be generalized to higher dimensions, and our RP partition
scheme is very flexible since it carries a hierarchical structure that allows us to analyze
dataset in a multiscale way. With the homogeneous partition in one dimension, our RP
scheme is similar to the one proposed by Bui and Turner (2014) and Lee et al. (2017); with
heterogeneous partition in higher dimensions, our RP partition scheme is more flexible. For
example, we can use binary partitioning in the first dimension but ternary partitioning in
the second dimension. This will also preserve the hierarchical structure and allow us to
decompose the high-dimensional data through different layers.

As for future works, there are various possible extensions of the proposed SAGP model.
In terms of generalization of our current base model, we are interested in making the
SAGP model admit different covariance kernels and different number of pseudo-inputs in
each component. It is also of interest to extend the SAGP model to binary, count and
categorical responses. To push the computational implementation of SAGP further and
since independent sparse Gaussian process (SGP) regression models are fitted for each local
component, it is readily seen that our model is parallelizable for efficient computation.
Theoretically, we would also like to see a (frequentist) consistency result (Rocková and
van der Pas, 2017) for the SAGP model and a careful analysis of the effect of the choice of
priors in this model.
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Appendix A. Correlation between Targets as Function of the Distance
between Inputs
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Figure 8: Given two one-dimensional inputs xi and xi′ (d = 1), the figure represents the
correlation between fj(xi) and fj(xi′) (i.e., the targets of component j) as a func-
tion of the distance between xi and xi′ . We represent with different colors the
correlation that is assumed for components at different layers (L = 5 in the Fig-
ure). Notably, the size of a component’s domain Bj depends on the layer where
the component is defined (the higher the layer index, the smaller the domain).
Therefore, in our binary recursive partition scheme, the maximum possible dis-
tance between two inputs (highlighted with a vertical dashed line in the Figure)
halves at each layer.

Appendix B. Proof of Proposition 1

We first calculate the total number of components in the SAGP models when the input-
domain is [0, 1]d. For each dimension i = 1, 2, . . . , d, if we bi-ary subdivide the [0, 1] interval,
then there are at most |L`|=

∏d
i=1 b

`−1
i individual components in form of B(cj ,wj) in the

`-th layer of the RP scheme for ` = 1, 2, . . . , L.

For each component in the `-th layer, the number of observations fitted to the j-th com-
ponent is at most |X (j)|≤ n. Then we fit a SGP model with m pseudo-inputs, whose com-
plexity is O(|X (j)|·m2). Then for the `-th layer the total complexity is O(

∑
Bj∈L` |X

(j)|·m2).
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Therefore, for the `-th layer the complexity is at most O(|L`|·n ·m2). Therefore we can com-

pute the total complexity of the model asO(
∑L

`=1|L`|·n·m2) � O
(∑L

`=1

∏d
i=1 b

`−1
i · n ·m2

)
.

Appendix C. MCMC Algorithm for SAGP Model Fitting (Algorithm 3)

Algorithm 3 MCMC algorithm for SAGP model.

Input : RP partition scheme consisting of N components, Number of pseudo-inputs for
each component mj , Hyper-parameters for the prior of parameters, Observed
dataset {X ,y}.

Output: Posterior samples for parameters, X̄ (j), f̄ j , Predictive posterior samples for
y∗,f j ,y.

1 Initialization of the parameter values
2 while not converged do

3 Sample X̄ (j), j = 1, . . . , N as in Algorithm 2.
4 for j in 1 : N do

5 rj ← y −
∑

l 6=jK
(l)
nml

(
K

(l)
ml

)−1
f̄ l

6 f̄ j ← Nmj (Meanj ,V arj) as in (10)

7 ηj,new ← Uniform(ηj ± bandwidth)
8 α← min(1, C · Model Likelihood(ηj,new)/C · Model Likelihood(ηj))
9 if Uniform(0,1)≤ α then

10 ηj ← ηj,new
11 end

// For every burn-in steps/20 steps, we adjust bandwidth.

12 if Acceptance rate of ηj /∈ (0.39, 0.49] then
13 Band width for proposing ηj ← Acceptance rate of ηj/0.44

14 end

15 end
16 σ2ε ← InverseGamma

(
αε + n

2 , βε + 1
2(y − ŷ)T (y − ŷ)

)
17 end

Appendix D. Detailed Derivation of Posterior Distribution in Section
3.2.5

To clarify our derivations, we first stated following simple lemma that will be used, which
can be derived from Woodbury identity (Horn and Johnson, 1990) or a direct verification
(Rasmussen and Williams, 2006).

Lemma 1 For a joint Gaussian distribution a ∈ Rn, b ∈ Rn if(
a
b

)
∝ Nn+m

((
µa

µb

)
,

(
Caa Cab

Cba Cbb

))
(12)

then its conditional distribution is:

a | b ∼ Nn

(
µa + Cab (Cbb)−1 (b−µb), Caa − Cab (Cbb)−1Cba

)
(13)
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In particular, for fl = f(xl), f̄ j = (f̄j(x̄1), . . . , f̄j(x̄mj ))
T and covariance kernel function

K = K(j),K
(j)
ll = K(j)(xl,xl) if(

fl
f̄ j

)∣∣∣∣ X̄ (j),xl ∝ N1+mj

((
0

0mj

)
,

(
K

(j)
ll k

(j)T
l

k
(j)
l K

(j)
mj

))
(14)

then its conditional distribution is:

fl | f̄ j , X̄ (j),xl ∼ N1

(
k
(j)T
l

(
K(j)

mj

)−1
f̄ j ,K

(j)
ll − k

(j)T
l

(
K(j)

mj

)−1
k
(j)
l

)
(15)

We assume a Gaussian prior on the pseudo-targets as in (3.2.2).

P (f̄ j | X̄ (j)) ∼ Nmj

(
f̄ j | 0mj ,K

(j)
mj

)
(16)

and then use Bayesian rule on the parameter f̄ j , recalling that (2) determines the form of

mean and variance of the Gaussian distribution P (y | f̄1, . . . , f̄N , X̄ (1), . . . , X̄ (N),X ,κ).

P (f̄ j | y,X , f̄1, . . . , f̄N , X̄ (1), . . . , X̄ (N),κ)

∝P (y | f̄1, . . . f̄N , X̄ (1), . . . , X̄ (N),κ)×
P (f̄ j | {x}n, f̄1, . . . , f̄ j−1, f̄ j+1, . . . f̄N , X̄ (1), . . . , X̄ (N),κ) (17)

=Nn

y −∑
l 6=j
K(l)

nml

(
K(l)

ml

)−1
f̄ l

∣∣∣∣∣∣K(j)
nmj

(
K(j)

mj

)−1
f̄ j ,Λ

(j)
n + σ2ε In

×
Nmj

(
f̄ j |0mj ,K

(j)
mj

)
(18)

We can derive the posterior using the normal normal conjugacy:

P (f̄ j | y,X , f̄1, . . . , f̄ j−1, f̄ j+1, . . . f̄N , X̄ (1), . . . , X̄ (N),κ)

∝ 1√∣∣∣2π (Λ
(j)
n + σ2ε In

)∣∣∣ exp

−1

2

[
y −

N∑
l=1

K(l)
nml

(
K(l)

ml

)−1
f̄ l

]T (
Λ(j)
n + σ2ε In

)−1
×

[
y −

N∑
l=1

K(l)
nml

(
K(l)

ml

)−1
f̄ l

]}
×

1√∣∣2πKmj

∣∣ exp

{
−1

2
f̄
T
j K

−1
mj
f̄ j

}
(19)

We complete the squares inside the exponent,

∝ exp

{
−1

2
f̄
T
j

(
K−1mj

+

[(
K(j)

mj

)−1
K(j)

mjn

(
Λ(j)
n + σ2ε In

)−1
K(j)

nmj

(
K(j)

mj

)−1])
f̄ j

−fTj
(
Λ(j)
n + σ2ε In

)−1
K(j)

nmj

(
K(j)

mj

)−1
f̄ j + proportionally constant terms

}
(20)
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After completing square we can obtain the mean and variance of the j-th component:

Meanj =

((
K(j)

mj

)−1
+

[(
K(j)

mj

)−1
K(j)

mjn

(
Λ(j)
n + σ2ε In

)−1
K(j)

nmj

(
K(j)

mj

)−1])
×

y −∑
l 6=j
K(l)

nml

(
K(l)

ml

)−1
f̄ l

T (
Λ(j)
n + σ2ε In

)−1
K(j)

nmj

(
K(j)

mj

)−1
T

=K(j)
mj
Q(j)−1
mj

K(j)
mjn

(
Λ(j)
n + σ2ε In

)−1y −∑
l 6=j
K(l)

nml

(
K(l)

ml

)−1
f̄ l

 (21)

By Woodbury identity, we know that for Q
(j)
mj = K

(j)
mj +K

(j)
mjn

(
Λ

(j)
n + σ2ε In

)−1
K

(j)
nmj we

can write its inverse as

Q(j)−1
mj

=

{
K(j)−1

mj
−K(j)−1

mj
K(j)

mjn

[(
Λ(j)
n + σ2ε In

)
+K(j)

nmj
K(j)−1

mj
K(j)

mjn

]−1
K(j)

nmj
K(j)−1

mj

}

Using this mj ×mj matrix Qmj
, we can write down the covariance matrix V arj :

V arj =

((
K(j)

mj

)−1
+

[(
K(j)

mj

)−1
K(j)

mjn

(
Λ(j)
n + σ2ε In

)−1
K(j)

nmj

(
K(j)

mj

)−1])−1
(22)

=K(j)
mj
−K(j)

mj

[(
K(j)

mj

)−1
K(j)

mjn

]
×[(

Λ(j)
n + σ2ε In

)
+K(j)

nmj

(
K(j)

mj

)−1
K(j)

mj

(
K(j)

mj

)−1
K(j)

mjn

]−1
×

K(j)
nmj

(
K(j)

mj

)−1
K(j)

mj
(23)

=K(j)
mj
−K(j)

mjn

[(
Λ(j)
n + σ2ε In

)
+K(j)

nmj

(
K(j)

mj

)−1
K(j)

mjn

]−1
K(j)

nmj

=K(j)
mj

{(
K(j)

mj

)−1
−

(
K(j)

mj

)−1
K(j)

mjn

[(
Λ(j)
n + σ2ε In

)
+K(j)

nmj

(
K(j)

mj

)−1
K(j)

mjn

]−1 (
K(j)

mj

)−1}
K(j)

nmj

(24)

=K(j)
mj
Q(j)−1
mj

K(j)
mj

(25)

Note that although we do need to invert an n×n matrix Λ
(j)
n +σ2ε In, it is a diagonal matrix

and hence easy to invert as claimed before.
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Appendix E. Diagnostic Statistics for the SAGP Model on 1000 Batches
of Simulated Dataset
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Figure 9: The panels of box plots show the Geweke’s convergence diagnostic (Geweke et al.,
1991) and Heidelberger-Welch’s convergence diagnostic (Heidelberger and Welch,
1983) based on the MCMC sample of SAGP model, for parameter η(j) and σ2ε ,
calculated from the 1000 batches of simulated dataset from formula (11) with the
testing set is random or interval.

Appendix F. Heart Rate Dataset Analyzed by SAGP Model Fitted with
m = 5 and L = 4 (Figure 10)
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Figure 10: The panels show the observed HR values over time as black dots and results
about the fit of the SAGP model with m = 5 and L = 4. Panel (a) shows the
posterior means and the 95% CIs of the 15 additive components of the SAGP
model on 100 equispaced locations on the support of the data. Panel (b) shows
the posterior means and the 95% CIs of the sole component in layer 1 (red), of
the components belonging to layer 1 and 2 (green) , of the components belonging
to layer 1, 2, 3 and of the complete model, including components from layer 1,
2, 3 and 4. Panel (c) provides the predictive mean and the corresponding 95%
prediction intervals.
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