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Abstract
In over two decades of research, the field of dictionary learning has gathered a large collection of
successful applications, and theoretical guarantees for model recovery are known only whenever
optimization is carried out in the same model class as that of the underlying dictionary. This work
characterizes the surprising phenomenon that dictionary recovery can be facilitated by searching
over the space of larger over-realized models. This observation is general and independent of
the specific dictionary learning algorithm used. We thoroughly demonstrate this observation in
practice and provide an analysis of this phenomenon by tying recovery measures to generalization
bounds. In particular, we show that model recovery can be upper-bounded by the empirical risk, a
model-dependent quantity and the generalization gap, reflecting our empirical findings. We further
show that an efficient and provably correct distillation approach can be employed to recover the
correct atoms from the over-realized model. As a result, our meta-algorithm provides dictionary
estimates with consistently better recovery of the ground-truth model.
Keywords: Dictionary learning, model recovery, sparse models, over-realization, over-parameterization

1. Introduction

Latent variable models have been very successful for a variety of unsupervised learning problems,
from regularizing inverse problems of different kinds to enabling clustering, classification, or other
down-stream supervised learning problems (Bengio et al., 2013). We focus on sparse representation
models, which posit that data x ∈ X ⊆ Rd admits a sparse decomposition in terms of a redundant
dictionary D ∈ D ⊂ Rd×p, where p > d and D is an appropriate constraint set. In other words,
x = Dγ, where the number of nonzero entries is small: ‖γ‖0 ≤ k � d. These models are most useful
when the model D is learned from a collection of samples {xi}ni=1, thus allowing for greater sparsity
or representation power. This task goes by the name of dictionary learning, and many algorithms
have been proposed over the last two decades to (most often approximately) solve this problem
(Aharon et al., 2006a; Mairal et al., 2010; Engan et al., 1999; Olshausen and Field, 1997; Arora et al.,
2015).
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A central problem in dictionary learning is that of model recovery. More precisely, assuming that
the training samples follow such a generative model, xi = Dγi, and one has access to a learning
algorithm that provides an estimate D̂, how close will the obtained model be from the true generating
dictionary? There exists by now a rich literature on these questions. Some of these results are
concerned with providing recovery guarantees for popular and practical dictionary learning methods,
such as the K-SVD (Aharon et al., 2006b; Schnass, 2014) or simpler online learning algorithms
(Olshausen and Field, 1997; Arora et al., 2015). Others instead propose new algorithms with recovery
guarantees, most often in an alternating minimization manner (Agarwal et al., 2016, 2014; Arora
et al., 2014a,b; Arora and Risteski, 2017), while other results study local identifiability (Geng and
Wright, 2014; Gribonval et al., 2015a) or fundamental limits and min-max optimal bounds (Shakeri
et al., 2018; Jung et al., 2016). Naturally, these guarantees depend on the minimum number of
training samples, n, as well as on the parameters of the model: d, p and k, the particular distribution
of the non-zero values, and possibly the amount of noise contamination in the observations.

Though dictionary learning algorithms vary, by and large they share the following common
scheme: given the constraint set Dp of the ground-truth model, typically Dp = {D ∈ Rd×p : ‖Di‖2 =
1, ∀i ∈ {1, . . . , p}}, and given a collection of n samples from this model, one searches for an estimate
D̂ ∈ Dp by means of some optimization approach. The first question we pose in this work is the
following: Why should one limit to the set Dp instead of searching over a larger class of models?
Somewhat surprisingly, we will show that dictionary recovery can be consistently improved if one
allows the learning algorithm to search for models D̂ ∈ Dp′ ⊂ Rd×p′ , where p′ > p. In other words,
we will search for a larger set of atoms than those that are strictly necessary to sparsely represent
the training data—an over-realized model.

While it is certainly natural that a larger model of p′ > p atoms can approximate the training
samples better than one with p atoms, it is not immediately obvious that this might lead to a
better overall dictionary recovery. After all, how can one evaluate model recovery if the estimate
and ground-truth models belong to different spaces? To this end, we propose a new dissimilarity
metric and show that it can be upper-bounded by a function of the empirical risk (i.e. training error)
and the generalization gap, both of which are computable. This result links recovery guarantees to
generalization bounds, allowing us to characterize the behaviour observed in our experiments, and
leading to a uniform upper bound to the recovery error.

Even if one can improve recovery with a larger model, one might be interested in obtaining
a dictionary of the original size, i.e. only with p columns. We therefore study a second driving
question: given a trained model D̂ ∈ Dp′ , can one distill from it an estimate D̃ ∈ Dp and, in doing
so, improve the recovery of the true dictionary? We will answer this question in the affirmative,
providing a provably correct algorithm under incoherence assumptions. As a result, we will provide
a meta-algorithm for dictionary learning via over-realized models that improves model recovery
over conventional (non over-realized) approaches, across a variety of model parameters and learning
algorithms.

The study of over-realized models in unsupervised learning has received some—but limited—
attention in the past. The work by Dasgupta and Schulman (2007) showed more than a decade ago
that the recovery of k clusters by k-means (Lloyd, 1982) can be improved by a two-step process,
whereby in the first round one uses more random guesses as initialization (more precisely, O(k log k));
see also the recent analysis (Qian et al., 2021; Hong et al., 2022). The recent inspiring work by
Buhai et al. (2020) is the first to show empirical benefits of over-realized models in representation
learning settings. More precisely, the authors demonstrate that over-realization can lead to higher
log-likelihood and improved recovery in three different latent variable models and show that this
phenomenon is robust, in the sense that it persists across different training algorithms and parameter
settings. Buhai et al. (2020) carry out a large empirical study for noisy-OR networks, dictionary
learning, and probabilistic context-free grammar models, demonstrating that in all cases the ground-
truth model can be better recovered by first searching over a larger model class, followed by an
ad-hoc pruning of the latent components. Alas, no analysis is provided in this work.
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In the neural networks community, a new and growing body of work has shown that a large
number of parameters is key to obtaining good empirical performance (Zhang et al., 2021), bringing
forth a surge of interests for providing theoretical support (Goldt et al., 2019; Tian, 2019; Mei and
Montanari, 2019; Belkin et al., 2019; Yang et al., 2020). This over-parameterization regime refers
to models having a larger number of parameters than training samples. In contrast, in this work
we study and analyze how over-realization (having more parameters than that of the underlying
generative model) improves recovery in dictionary learning.

Summary of contributions: In this work we center our study of over-realization in the specific
problem of dictionary learning. We provide a notion of dissimilarity that allows for the quantification
of the recovery error of a ground-truth dictionary through a larger one—that is, one with more
atoms. We do this via a key Lemma linking the recovery error by a measure of the expected
risk (see Lemma 3.1), which can in turn be bounded by the empirical risk employing standard
generalization bounds (see Theorem 3.2). We then present a distillation procedure that provably
recovers correct components (those that are close to the ground-truth p atoms) under incoherence
and sparsity assumptions (see Theorem 4.1). Throughout the presentation of these results, we
numerically illustrate the benefits obtained through over-realized dictionaries, as well as via our
distillation algorithm.

Overview: We first introduce our notation and provide the necessary background in Section 2.
We then address the recovery problem in the over-realized case in Section 3, providing examples and
presenting our main theoretical result. Section 4 tackles the question of the distillation of larger
models, and provides a provably correct algorithm as well as extensive empirical evidence. We finally
delineate final remarks and conclude in Section 5.

2. Preliminaries

We consider data x ∈ Rd, and a redundant dictionary D0 ∈ Dp, p > d. We consider the following
generative model for x throughout this work, providing a sampling distribution P: a sparse repre-
sentation γ ∈ Rp is sampled from a set of k-sparse vectors by (i) sampling its support S uniformly
from the set of all possible

(
p
k

)
supports of cardinality k, and (ii) sampling its non-zero values i.i.d.

from a distribution with mean zero and unit variance (for simplicity). Samples are then obtained as
x = D0γ. Given x and D0, the problem of retrieving the representation γ is termed sparse coding,
and it involves solving a problem of the form

min
γ

1

2
‖x−D0γ‖22 + g(γ), (1)

where g(γ) is a sparsity-promoting function that regularizes the ill-posed recovery problem. Typical
choices for g are the non-convex and non-smooth `0 pseudo-norm, or its convex relaxation, the `1
norm. Alternatively, g may denote an indicator function over a constraint set, such as

gk(γ) =

{
0 if ‖γ‖0 ≤ k,
+∞ otherwise. (2)

In either case, numerous pursuit algorithms exist that allow for the provable recovery of γ under
assumptions like restricted isometry property (Candes and Tao, 2005) or incoherence (Tropp, 2004;
Donoho and Elad, 2003). These exact recovery guarantees are naturally extended to approximate
recovery in the case of noisy measurements. When g(γ) = ‖γ‖1, the problem is termed Basis Pursuit
DeNoising or Lasso (Tibshirani, 1996) (and Basis Pursuit when an `1 ball is used as a constraint set).
Alternatively, one may employ greedy algorithms such as the popular Orthogonal Matching Pursuit
(OMP) (Pati et al., 1993), which approximates the solution to the `0-constrained problem.

When the dictionary is not known, the dictionary learning problem attempts to recover an
estimate as close as possible to the ground-truth model given a set of n training samples xi from it.
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The quality of a dictionary in approximating a sample x is measured by the function value of the
cost above, namely

fx(D) := inf
γ∈Rp

1

2
‖x−Dγ‖22 + g(γ). (3)

In this way, the dictionary learning problem minimizes this loss over the n samples, and can be
written as

min
D∈Dp

1

n

n∑
i=1

fxi(D). (4)

The resulting optimization problem is non-convex and hard to analyze in general (Tillmann, 2014), but
this has not prevented the development of many—and very successful—algorithms. One such methods
is the Online Dictionary Learning (ODL) from Mairal et al. (2010), which minimizes Equation (4) in
an online manner. In a nutshell, given a current estimate for the dictionary, this algorithm iterates
between drawing a sample (or a mini-batch thereof) at random, then employing a pursuit algorithm
to minimize Equation (1), and finally updating the dictionary so as to minimize a surrogate of the
cost in Equation (4). The approach is general in that it can accommodate different pursuit algorithms
for different penalty functions g(γ), and it scales well to large data sets. The very popular K-SVD
(Aharon et al., 2006a), on the other hand, is a batch-learning approach that alternates between
sparse coding (typically with OMP) and dictionary update, which is characteristically carried out
column-by-column by performing rank-1 approximations to atom-wise residuals.

2.1 Recovery

A central question in this setting is that of model recovery, which studies how far the recovered
estimate D̂ ∈ Dp is from the ground-truth dictionary, D0 ∈ Dp. To formalize this question one
needs an appropriate measure of dissimilarity between matrices. The problem in Equation (4) is
permutation (and sign) invariant: the columns of the dictionary can be arbitrarily permuted (or
multiplied by −1) without modifying the cost fx(D). Thus, different measures of recovery have been
used in previous works accounting for such invariance, such as (Arora et al., 2015)

min
P∈Π
‖D0 − D̂P‖2F , (5)

where Π is the set of signed permutation matrices, i.e. orthogonal matrices that contain only {0,±1}.
Several works have addressed these questions of recovery over the last decade. Some of these show
local linear convergence to the global optimum (i.e. the true model) via alternating minimization
employing `1 penalty functions (Agarwal et al., 2014, 2016) or to an ε-close optimum via `0 constraints
(Arora et al., 2015). In the simpler case of orthonormal dictionaries the optimization landscape is
better understood (Zhai et al., 2020), as in the case of learning only one atom (Sun et al., 2015; Qu
et al., 2019). In these settings, these non-convex problems have a benign geometry structure that
allows for provable algorithms. On the other hand, Jung et al. (2016) develops minimax risk bounds
for dictionary recovery, and Shakeri et al. (2018) studies these as a function of their tensor structure.
All of these results, however, analyze the conventional setting whereby the constraint sets of the
ground-truth dictionary and the one enforced during optimization are the same.

2.2 Generalization gap

From a statistical learning standpoint, the dictionary learning problem consists in finding a model
D̂ ∈ Dp that minimizes the above function in expectation over the population, i.e.,

D̂ ∈ argmin
D∈Dp

E
x∼P

[fx(D)] . (6)

Since one does not typically have access to the underlying distribution, the empirical risk minimization
algorithm (ERM) minimizes the empirical estimate of the above risk, which is precisely the problem
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Figure 1: (a) and (b): Risk of the estimated dictionary and dissimilarity with the ground truth
model, as defined in Equation (8), trained with 300 samples. (c) and (d): Risk (test error) and
recovery error for different size of the training data (as indicated by the numbers next to each line).
The dictionary size p′ refers to that of the estimated matrix, whereas the original one remains fixed
containing p = 70 atoms.

in Equation (4). In this context, a central question is given by the generalization gap, which quantifies
the extent to which the empirical error, RS(D) = 1

n

∑n
i=1 fxi(D), differs from its expectation in

Equation (6), termed generalization error, or risk. Uniform bounds have recently been developed for
these models (Maurer and Pontil, 2010; Vainsencher et al., 2011; Seibert, 2019). More specifically,
the work by Gribonval et al. (2015b) shows that, with overwhelming probability over the draw of the
samples, this gap is uniformly bounded,

sup
D∈Dp

∣∣∣RS(D)− E
x∼P

[fx(D)]
∣∣∣ ≤ ηn, (7)

where ηn, depends on the model capacity, the number of samples, as well as the data distribution and
properties of the penalty function g. Slightly more specifically, ηn is O(

√
(dp) log n/n), where (dp) is

the number of parameters in the dictionary with p atoms. This type of bounds are very useful, since
they provide an upper bound to the expected (real) risk given the empirical risk, and they reflect the
natural trade-off between the model size (number of atoms, p) and the number of training samples, n.
The bound above holds not just for norms and norm-like regularization functions (like the `1 norm)
but also for indicator sets as gk in Equation (2). We will keep our derivations maximally general by
simply referring to ηn, and we refer the reader to (Gribonval et al., 2015b) for further details on the
involved constants.

3. Searching for over-realized dictionaries

In this work we focus on the over-realized setting, in which the minimization in Equation (4) is done
over a class of dictionaries Dp′ , with p′ > p, i.e. larger than the original model. One might wonder
as to the need for this change. After all, there exists indeed a global minimum (D0) with p atoms
that achieves both zero training and testing errors. Nonetheless, the problem in Equation (4) is
non-convex, and practical alternating minimization and local-search algorithms may converge to only
local minima. In many settings, however, non-convex optimization problems have been shown to
become easier in over-parametrized settings, in the sense that spurious local minima decrease and
local algorithms are more likely to converge to the global minimum (Safran and Shamir, 2018; Buhai
et al., 2020). As a result, it may be possible to obtain better dictionaries by searching over a larger
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class of matrices. As we will show, this is not only true in terms of their risk, but also with respect
to their dissimilarity to the true generating model.

We first require a dissimilarity measure between dictionaries of potentially different sizes.1 We
will use the following definition for a dissimilarity between a dictionary D0 ∈ Dp and an estimate
D̂ ∈ Dp′ :

d(D0, D̂) :=
1

p

p∑
i=1

min
j∈[p′]

min
c∈{−1,1}

‖D0
i − c D̂j‖22. (8)

Note that this quantity is zero if and only if there exists a match for each of the atoms in D0 in
the estimated D̂, irrespective the size p′. Moreover, this expression provides a generalization of the
commonly used distance measure in Equation (5).2 Lastly, note that this definition does not require
the minimizer over j ∈ [p′] to be unique. On the other hand, Equation (8) does allow for an atom in
D̂ to be chosen as the closest neighbor for two different atoms in D0. This, however, would only
occur in cases where D0 is very coherent.

We now explore the first question posed above, namely: can one obtain an estimate with better
generalization error and lower recovery error by searching in a hypothesis class bigger than that of
the original dictionary? As a motivating example, we construct the following experimental setting.
Data is sampled as described in the previous section from a ground-truth dictionary (with normalized
Gaussian atoms) of size 50× 70, from representations with cardinality k = 3. We construct 300 such
samples for training, leaving 1000 to estimate the population statistics. As a learning algorithm, we
employ ODL (Mairal et al., 2010) for 2000 iterations, which are more than sufficient for convergence.3
We employ OMP for the sparse coding step.

In Figure 1a we depict the risk, or error, on both training and test sets, as a function of the
number of atoms in the estimated dictionary D̂, from 70 (the size of the ground-truth model) to
500. We repeat the experiment 20 times, and present the mean together with the 25% and 75%
percentiles. Interestingly, both train and testing errors, shown in Figure 1a, improve with increasing
dictionary size p′ > p within some range. More surprisingly, the dissimilarity to the estimate to the
ground truth D0 also improves as one searches for bigger dictionaries. Note that because of our
definition of dissimilarity in Equation (8), a small dissimilarity implies a close recovery of the true
atoms, irrespective of the “extra” ones. At the same time, this behaviour is tightly related to that
of model capacity and over-fitting: while increased dictionary size allows for better recovery, the
finite training size eventually becomes insufficient to train the larger model and the generalization
error increases (while perfectly fitting the training data). This is verified in Figure 1c and Figure 1d,
seeing that the generalization error—and dictionary recovery—is precisely controlled by the size of
the training set. In this figure, only the means of the 20 realizations are depicted for the sake of
clarity. For completeness, in Appendix C.1 we present analogous results to those in Figures 1a and
1b, but reporting the best run out of 30 random initializations.

3.1 Recovery guarantees via generalization bounds

While the behaviour observed in Figure 1a and Figure 1c is well understood in the statistical learning
literature, this is still surprising in light of the fact that there exist a ground truth model with just p
atoms that achieves zero risk. Moreover, how this relates to improved recovery of the ground-truth
dictionary in over-realized settings—as shown in Figure 1b and Figure 1d—is, to the best of our
knowledge, unknown. Learning bounds and recovery guarantees for dictionary learning have so far

1. We will use D0
i to denote the ith column, or atom, from D0.

2. Note that our definition in Equation (8) generalizes that in Equation (5) by allowing the set of permutation
matrices to become column-selection (non-square) ones.

3. Available at spams-devel.gforge.inria.fr/. Note that ODL can accommodate different formulations and
algorithms for the sparse coding step (and not just an `1 minimization), which will enable us to explore different
experimental settings.
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remained mostly separated. We will now precisely connect the model recovery error with its expected
risk, providing a theoretical characterization for this phenomenon.

Let f [s]
x (D̂) = infγ:‖γ‖0≤s

1
2‖x− D̂γ‖22 denote the loss measured with s non-zero coefficients. We

will denote the mutual coherence of a dictionary by µ(D) = maxi 6=j |〈Di,Dj〉| (recall that columns
are normalized). Furthermore, for a given atom in the estimate dictionary, D̂j , consider its closest
atom in the ground truth dictionary, D0

i(j)
, where i(j) = argmini∈[p] minc∈{−1,1} ‖D0

i − cD̂j‖2. We
will also need a cross-dictionary coherence, defined as

ν(D̂,D0) = max
j

max
k 6=i(j)

∣∣∣〈D̂j ,D
0
k〉
∣∣∣ .

In words, ν(D̂,D0) quantifies the coherence between D̂ and D0 after excluding the closest neighbor
of each atom.4 While this expression might seem somewhat convoluted, this simply reduces to
the traditional mutual coherence of the dictionary, µ(D0), in the case that D̂ = D0. With these
definitions, we have the following central Lemma.

Lemma 3.1. For a ground-truth dictionary D0 ∈ Dp generating samples xi = D0γi, where γi are
k-sparse with non-zero entries sampled i.i.d. from a zero mean and unit variance distribution, and
for any dictionary D̂ ∈ Dp′ , we have that

2

k
E

x∼P
[f [k]

x (D̂)] ≤ d(D0, D̂) ≤ 4

k
E

x∼P
[f [1]

x (D̂)]− 4

k
ζk(k − 1). (9)

where ζk = max
{

0 , 1− (k − 2)µ(D0)− 2ν(D̂,D0)2
}
.

Note that this result links the dissimilarity, d(D0, D̂), with the expected risk, as measured by
f

[1]
x (D̂) and f [k]

x (D̂). We will comment on further implications of this shortly, but first we present
our main result as a consequence of Lemma 3.1, which is of practical relevance. Employing the
generalization bound from Equation (7), we can bound the dictionary dissimilarity by informative
quantities, as presented in the following main result.

Theorem 3.2. For a ground-truth dictionary D0 ∈ Dp generating samples xi with sparsity of k, and
for any estimate D̂ ∈ Dp′ , with overwhelming probability, we have that

k

4
d(D0, D̂) ≤ 1

n

n∑
i

f [1]
xi

(D̂)− ζk(k − 1) +O

(√
dp′ log(n)

n

)
. (10)

First, this result shows that the dissimilarity to the true model can be upper-bounded by the
empirical risk up to the generalization gap and a model-dependent quantity. This reflects an important
implicit trade-off: dictionary recovery can be decreased by increasing the model capacity (dictionary
size) as long as the generalization gap is kept small by increasing the sample size appropriately. This
is precisely the behaviour observed in Figure 1d above. Second, the term ζk(k− 1) appearing in both
results above accounts for the fact that the upper bound is constructed via f [1]

xi , as opposed to f [k]
xi .

Indeed, note that this term vanishes when k = 1. When k > 1, the empirical estimate of f [1]
xi will

necessarily be greater than zero. It is in these cases where the term ζk(k − 1) provides a non-trivial
tighter bound, as long as k ≤ 2+1/µ(D0)−2ν(D̂,D0)2/µ(D0), which are mild conditions. Moreover,
whenever k > 1 and µ(D0) ≈ ν(D̂,D0) ≈ 0, then ζk ≈ 1. This represents the best case scenario as ζk
will thus decrease the upper bound the most. As the dictionaries become more coherent, the extent
to which ζk improves the bound decreases. However, this result holds for any sparsity level of k.

4. Note that this quantity is still lower than 1 even if several atoms in D̂ are close to the same atom in D0.
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It is natural to inquire how large the gap between f [k]
xi (D̂) and f [1]

xi (D̂) can be. A lower bound
on the difference between the expected values of these quantities can be readily derived from our
Lemma 3.1. From this, one can obtain that 2E

[
f

[1]
x (D̂)

]
− E

[
f

[k]
x (D̂)

]
≥ ζk(k − 1). Based on the

discussion above, the lower bound between these terms is controlled by the dictionary coherence of
D0, as well as the cross-dictionary coherence. An upper bound can also be derived, and we show in
Appendix A.1 that under mild conditions,

f [1]
x (D̂)− f [k]

x (D̂) . (k − 1)‖x‖2‖γ̂‖∞, (11)

where γ̂ = arg minγ f
[k]
x (D̂). This is tight when k = 1.

While we defer the proof of Lemma 3.1 to Appendix A, let us provide a brief proof sketch. The
upper and lower bound for d(D0, D̂) are obtained independently, though with similar techniques.
For the upper bound, we make the observation that the risk E[f

[1]
x (D̂)] can be expressed analytically

in closed form, and can be further decomposed in three terms. Relying on the fact that the non-zero
entries are drawn i.i.d. with mean zero and unit variance, the expectation one of these vanishes.
Another term can be lower-bounded by ζk(k − 1), while the remaining term can be lower bounded
by a quantity that is proportional to the dictionary dissimilarity d(D0, D̂). The lower bound, on
the other hand, is obtained by constructing an analytical (and potentially sub-optimal) solution
for the sparse coding problem represented by f [k]

x (D̂) relying on the atoms that are closest to D0,
thus upper bounding this risk. A series of algebraic manipulations and the final evaluation of the
expectation provide the final upper bound on E[f

[k]
x (D̂)] as a function of the dissimilarity d(D0, D̂).

As we see, these results provide an answer in support of learning larger dictionaries, not only to
minimize the expected risk but also to obtain estimates with small dissimilarity to the ground-truth
model. The reader should note that this result does not explain why this improvement is achieved by
common dictionary learning methods. In other words, our analysis does not address the question of
when obtaining good minimizers for the empirical risk is possible. Instead, we have shown that when
those good minimizers are obtained, good recovery is possible if the generalization gap is controlled
appropriately. Moreover, a different question also remains: can one distill the estimated over-realized
D̂ to recover the best p atoms that are the closest to the real model? This is the question we address
in the next section.

4. Distilling the over-realized model

In this section, we will first show that the recovered atoms in the over-realized dictionary exhibit two
distinct behaviors: any recovered atom is either (very) close to a true atom in D0, or is significantly
far apart from all atoms in D0. We will also show that this clustering behaviour correlates with
the atom usage in the estimated model. From this observation, we will then derive a provably
correct pruning strategy based on the atom’s usage frequency. This distillation approach will recover
an estimate, D̃ ∈ Dp, of the original size with a lower recovery error than the traditional (non
over-realized) learning approach.

As before, given 500 training samples created as the linear combination of k = 3 atoms from a
ground-truth dictionary D0 with 70 atoms in 50 dimensions, we train an over-realized dictionary D̂
with 90 atoms using ODL (with OMP for sparse coding). We then measure, per estimated atom
D̂j , the similarity to its closest neighbor in the ground-truth D0 (computed as − log ‖D̂j −D0

i(j)
‖22).

We plot these similarities as a function of the atom’s usage: the relative number of times it is
used by the training samples upon completion of training. The results are depicted in Figure 2a,
and two observations are worth noting: the recovered atoms either have a high similarity with
those in the ground-truth dictionary or are markedly distinct, with a clear separation between
groups. This is similar to the observation made in (Buhai et al., 2020) in the context of noisy-or
networks and approximate sparse coding. Second, there exists a strong correlation between the
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Figure 2: (a) Atoms in the over-realized D̂: their similarity to their closest atom in the ground-truth
dictionary D0 and its usage frequency. (b) Risk and dissimilarity to the ground truth model by the
over-realized dictionary (i.e. with p′ > p) and by the distilled version, of the same size as the original
model (p′ = p).

Algorithm 1: Meta-algorithm for over-realized dictionary learning
Data: Set of n training samples, X ∈ Rd×n; dictionary size p, and sparse coding parameters

(cardinality or penalty) λ;
Initialization: Choose p′ > p and dictionary learning method LearnD(p,λ);
Dictionary Learning: D̂←LearnD(p′,λ) ;
Distillation: D̃← {top p-used atoms in D̂};
Result: Estimated dictionary D̃

former measure—which cannot be computed in practice, without the original model—and the number
of times an estimated atom is used by the training samples—which can.

Following this observation, we then propose the following simple meta-algorithm, summarized
in Algorithm 1: after learning an over-realized dictionary, we keep the p most frequently used
atoms by the training samples. Other works have suggested similar approaches that prune the
over-realized model to a subset of components and then continue the optimization with these as
better initializations (Dasgupta and Schulman, 2007). This is not needed in our setting, however,
likely due to the significantly more accurate coding step. Our proposed distillation approach is also
similar to the heuristic proposed by Buhai et al. (2020), which simply discards all atoms that were
not used after a step of sparse coding. In light of this, ours can be thought of a refinement of the
same idea. Figure 2b illustrates the same experiment as that in Figure 1a and Figure 1b, though
now with the statistics provided by our distillation strategy. While clearly the distillation procedure
introduces some errors, it still provides a considerable advantage over the traditional approach (i.e.
training with the original size p) by significantly diminishing the recovery error. This is further
explained by the details in Figure 2a, comparing the atoms chosen by this distillation procedure and
the oracle choices—those atoms that are the closest to the ground-truth dictionary. As can be seen,
most atoms selected by this strategy coincide with the oracle ones.

4.1 Theoretical guarantees for distillation

We now strengthen our argument for our distillation strategy. In the following result, we show that if
the atom usage of the over-realized estimate D̂ is measured via OMP (with k = 1), and D̂ contains
at least p atoms that are ε-close to the real ones (plus others that are not), then OMP is guaranteed
to select the correct (i.e. closest) ones, thus retaining them in the pruning stage.
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real atom
close atom

distant atom

Figure 3: Illustration of true and estimated atoms.

Let D0 ∈ Rd×p and consider, without loss of generality, that D̂ = [D̂0,A] ∈ Rd×p′ , p′ > p, with
D̂0 ∈ Rd×m, with p ≤ m ≤ p′, such that d(D̂0

i ,D0) ≤ ε for all i ∈ {1, . . . ,m}, and d(Aj ,D0) > ε for
all j ∈ {1, . . . , p′ −m}. In other words, D̂0 contains all those m atoms that are ε-close to those in
D0, while A contains those that are further away. Additionally, we require that each atom in D0

has at least one ε-neighbor in D̂0; i.e. d(D0
i , D̂0) ≤ ε for all i ∈ {1, . . . , p}. We allow m ≥ p since

the over-realized estimate D̂ may naturally contain several atoms that close to a real one. Also
suppose that both D0 and D̂ are column-wise normalized for simplicity. These assumptions, which
reflect the behavior depicted in Figure 2a, are illustrated in Figure 3 below. Lastly, let us denote by
µ(D0,A) = maxi,j

∣∣〈D0
i ,Aj〉

∣∣ the mutual coherence between D0 and A.
With these definitions, we have the following result, which we prove in Appendix B.

Theorem 4.1. Let x be a k-sparse signal under D0, i.e., there exists γ ∈ Rp with ‖γ‖0 ≤ k such
that x = D0γ, and let D̂ be defined as above. Then, argmaxi |xT D̂i| ∈ [m] as long as

k ≤
1− ε

2 +
√
ε+ µ(D0)

µ(D0) +
√
ε+ µ(D0,A)

.

Note that, on one hand, if the dissimilarity ε = 0 and we replace µ(D0,A) with µ(D0), our
condition can be compared to the traditional incoherence condition for OMP that requires k <
1
2 (1 + 1

µ(D0) ). As shown by the results in Figure 2a, we indeed observe that the similarity in the
un-related atoms to those in D0 is quite low, i.e. µ(D0,A) is very small. Then, in this case (with
ε = 0) our condition is milder than the one for OMP, leading to relaxed and improved guarantees.
This is natural, since we must only select atoms in D̂ that belong to D̂0—as opposed to demanding
the recovery of the correct atoms within it. On the other hand, A itself is allowed to be very coherent,
as our condition only requires µ(D0,A) to be small. Lastly, the result above is more general in that
we allow for ε > 0, which better reflects the empirical behavior depicted in Figure 2a.

4.2 Generalization to different model parameters and algorithms

Thus far we have employed the same experimental setting (dimension, dictionary size and sparsity)
for all the above examples for simplicity. However, the reported findings are general and hold for a
variety of parameters and algorithms. We now demonstrate this in Figure 4 where we report the risk
and dictionary error for the estimates produced by learning a dictionary (with ODL+OMP) in the
traditional setting (i.e., D̂ ∈ Dp) and that produced by searching over a larger set (i.e., D̂ ∈ Dp′ ,
with p′ > p) followed by our distillation strategy. In this way, all reported measures are computed on
estimates of the same size as the original model. Note that an important improvement in risk, but
most importantly in dictionary recovery, is observed across a wide range of parameters. Moreover, the
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Figure 4: Risk and dictionary recovery error (log10 thereof, lower is better) of the estimate provided
by traditional dictionary learning (i.e. D̂ ∈ Dp) and that resulting from the proposed over-realized
approach (i.e. D̂ ∈ Dp′) followed by distillation to the original size, over a number of parameters
(sparsity, dimension, and redundancy).

phenomenon is general across different model parameters and across different learning algorithms and
regularization functions g. In Appendix C.2 we show that similar behaviour (albeit less pronounced)
can be obtained by employing: (i) the ODL method from (Mairal et al., 2010) with an `1 regularizer,
i.e. employing Lasso for sparse coding, and (ii) the batch algorithm K-SVD (Aharon et al., 2006a).

On a different note, we have considered the noiseless setting throughout; i.e. each sample x can
be exactly expressed as x = D0γ. In more realistic cases, samples contain measurement noise, or
model deviations, which can be modelled by assuming that x = D0γ + v, where v is a nuisance
vector. While the thorough study of this setting is out of the scope of this work, we will now show
empirically that the benefit of over-realization is robust to noise contamination. To this end, and
in a similar manner to the above experiments, we contaminate the samples with noise v sampled
from a Gaussian distribution with covariance σ2I. We then measure the risk and recovery error
achieved by traditional dictionary learning (i.e., p′ = p), by the over-realization approach and by our
proposed distillation procedure. These quantities are reported in Figure 5a as relative (normalized)
improvement over the traditional setting.5 As one can see, the benefits of searching over larger model
deteriorates smoothly with increasing noise, both for the general over-realized model as well as for
our practical distillation approach.

5. More precisely, the quantity measured is
(
d(D0, D̂p)− d(D0, D̂p′ )

)
/d(D0, D̂p) where D̂p is the estimate found

by traditional dictionary learning (p = p′) and D̂p′ denotes the estimate found in the over-realized setting, where
p′ > p. The improvement for the distilled version of the estimate is computed analogously.
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Figure 5: (a) Improvement in dictionary recovery relative to that of traditional dictionary learning
for the over-realized case and our distillation procedure, as a function of added Gaussian noise. (b)
Minimal number of atom usage in the estimated dictionary as a function of the model size, for
different dimensions and sparsity levels, and a ground-truth model size of 70.

5. Final Remarks

We have shown that learning over-realized dictionaries can be beneficial not just to provide lower
training and population risk, but to also improve the recovery of the underlying model. Our
characterization of this phenomenon relies on the connection between the recovery error and the
expected risk, thus providing an upper-bound to the former in terms of the empirical risk and a
generalization gap. Moreover, we showed that an estimate of the original size can be distilled from the
larger model, consistently improving recovery error across different model parameters and algorithms.

At the same time, several questions remain unanswered. It is still unclear what determines the
optimal degree of over-realization. Importantly, a complete understanding of the reasons behind
the benefits of over-realization is still missing, and is likely to involve an optimization perspective.
A natural hypothesis is that the improvement might be due to having a larger number of “initial
guesses”, since a bigger model will provide a larger covering of the space at initialization. As a result,
certain initial atoms will be more likely to fall close to some of the ground-truth atoms. This does
not seem to be the sole responsible factor, however, as repeating the training process with only those
atoms found by distillation (from their initialization) deteriorates performance.

On the other hand, we have noted that the optimization problem presents a phase transition
of sorts as the model size grows. We demonstrate this by measuring the minimal number of times
any atom in the estimated dictionary is used, for increasing number of atoms, and we compute this
statistic for different models dimensions and sparsity levels. One can see in Figure 5b that as soon as
the number of atoms exceeds the ground truth size (70 in this case), this statistic drastically drops,
reflecting the two-type behaviour illustrated in Section 4. On the one hand, this can in fact provide a
practical way of determining the (unknown) size of the ground-truth model in practice, which might
be worth in its own right. On the other, we believe this might reflects a fundamental change in the
optimization landscape. In the p′ > p setting, the learning problem might become more amenable to
practical optimization algorithms, thus finding a better solution. Further research in this direction
will enable to characterize the reported results better, and might extend the application of these
ideas to other unsupervised machine learning models.
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Appendix A. Recovery Guarantees

Lemma 3.1. For a ground-truth dictionary D0 ∈ Rd×p generating samples xi = D0γi, where γi are
k-sparse with non-zeros sampled iid from a zero mean and unit variance distribution, and for any
estimate D̂ ∈ Dp′ , with overwhelming probability, we have that

2

k
E

x∼P
[f [k]

x (D̂)] ≤ d(D0, D̂) ≤ 4

k
E

x∼P
[f [1]

x (D̂)]− 2

k
ζk(k − 1). (12)

where ζk = max
{

0 , 1− (k − 2)µ(D)− 2ν(D̂,D0)2
}
.

Proof Recall that x is sampled from distribution P by first sampling its support S from a uniform
distribution of all possible supports with k elements, followed by sampling the non-zeros of its
representation given the support. These non-zero entries are sampled i.i.d. from a distribution with
mean zero and variance of 1. The sample is finally constructed as x = Dγ, with the ground truth
dictionary D.

Upper bound Let us first show the upper bound. Let S = supp(γ). Then,

f [1]
x (D̂) = inf

α:‖α‖0=1

1

2
‖x− D̂α‖22 (13)

= min
j

min
αj

1

2
‖DSγS − D̂jαj‖22 (14)

=
1

2
‖DSγS − D̂j∗

(
D̂T
j∗DSγS

)
‖22, (15)

where the last inequality follows by solving for the optimal α∗j = D̂T
j x, and j∗ denotes the optimal

choice of the atom index, given by (recall atoms are normalized)

j∗ = arg min
j
‖x− D̂jα

∗
j‖22 = arg max

j

∣∣〈DSγS , D̂j〉
∣∣. (16)

See (Elad, 2010, Section 3.1) for a more detailed derivation. Let us denote by Di the closest atom
to D̂j∗ in S; i.e. i = arg mink∈S minc∈{+1,−1} ‖Dk − cD̂j∗‖2. Then, expand the expression above as
follows

2f [1]
x (D̂) =‖

(
Diγi + DS\iγS\i

)
− D̂j∗D̂

T
j∗
(
Diγi + DS\iγS\i

)
‖22 (17)

=‖(Di − D̂j∗D̂
T
j∗Di)γi + (I− D̂j∗D̂

T
j∗)DS\iγS\i‖22 (18)

=‖(Di − D̂j∗D̂
T
j∗Di)γi‖22 + ‖(I− D̂j∗D̂

T
j∗)DS\iγS\i‖22 + . . . (19)

· · ·+ 2
〈

(Di − D̂j∗D̂
T
j∗Di)γi , (I− D̂j∗D̂

T
j∗)DS\iγS\i

〉
(20)

= Ai +Bi + Ci. (21)

Let us now analyze E
x∼P

[2f
[1]
x (D̂)] = E

x∼P
[Ai] + E

x∼P
[Bi] + E

x∼P
[Ci].

Consider first

E
x∼P

[Ai] = E
x∼P

[‖(Di − D̂j∗D̂
T
j∗Di)γi‖22] (22)

= E
S

[
E
γS

[‖Di − D̂j∗(D̂
T
j∗Di)‖22γ2

i | S]

]
(23)

= E
S

[
‖Di − D̂j∗(D̂

T
j∗Di)‖22

]
(24)

=
k

p

p∑
i=1

‖Di − ρiD̂j∗‖22, (25)
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where we used the fact that E[γ2
i ] = 1 and we defined ρi := D̂T

j∗Di.
Looking at the third term,

1

2
E

x∼P
[Ci] = E

x∼P

[〈
(Di − D̂j∗D̂

T
j∗Di)γi , (I− D̂j∗D̂

T
j∗)DS\iγS\i

〉]
(26)

= E
S

[
E
γS

[〈
(Di − ρiD̂j∗)γi , (I− D̂j∗D̂

T
j∗)DS\iγS\i

〉
| S
]]

(27)

= E
S

 ∑
q∈S\i

E
γS

[〈
(Di − ρiD̂j∗)γi, (I− D̂j∗D̂

T
j∗)Dqγq

〉
| S
] (28)

= E
S

 ∑
q∈S\i

E
γS

[γiγq〈(Di − ρiD̂j∗), (I− D̂j∗D̂
T
j∗)Dq〉 | S]

 (29)

= 0 (30)

because E[γiγq] = E[γi]E[γq] = 0, since the variables are independent and of zero mean. Thus, so far
we have that

E
x∼P

[f [1]
x (D̂)] =

k

2p

p∑
i=1

‖Di − ρiD̂j∗‖22 +
1

2
E

x∼P
[Bi]. (31)

First, note that E
x∼P

[Bi] > 0. Consider a tighter lower bound as follows

E
x∼P

[Bi] = E
x∼P

‖(I− D̂j∗D̂
T
j∗)DS\iγS\i‖22 (32)

= E
x∼P

[
‖DS\iγS\i‖22 + ‖D̂j∗D̂

T
j∗DS\iγS\i‖22 − 2〈DS\iγS\i, D̂j∗D̂

T
j∗DS\iγS\i〉

]
(33)

= E
x∼P

‖DS\iγS\i‖22 + E
x∼P
‖D̂j∗D̂

T
j∗DS\iγS\i‖22 − 2 E

x∼P
(D̂T

j∗DS\iγS\i)
2 (34)

≥ E
x∼P

‖DS\iγS\i‖22 − 2 E
x∼P

(D̂T
j∗DS\iγS\i)

2 (35)

= E
x∼P

‖DS\iγS\i‖22 − 2 E
x∼P

 ∑
k∈S\i

D̂T
j∗Dkγk

2

(36)

≥ E
x∼P

‖DS\iγS\i‖22 − 2 max
k∈S\i

∣∣∣D̂T
j∗Dk

∣∣∣2 E
x∼P

( ∑
k∈S\i

γk

)2

(37)

≥ E
x∼P

‖DS\iγS\i‖22 − 2 max
k∈[p]\i

∣∣∣D̂T
j∗Dk

∣∣∣2 E
x∼P

( ∑
k∈S\i

γk

)2

(38)

≥ E
x∼P

‖DS\iγS\i‖22 − 2ν2(k − 1) (39)

where we used the fact that E
x∼P

(∑
k∈S\i γk

)2

= k − 1 since the variables are independent and have

variance of 1. Additionally, we defined ν = maxj maxk∈[p]\i∗
∣∣∣D̂T

j Dk

∣∣∣, with i∗ = arg maxk∈[p]

∣∣∣D̂T
j Dk

∣∣∣.
In other words, i∗ denotes the nearest neighbor in D for every D̂j . Continuing from above,

E
x∼P

[Bi] ≥ E
x∼P

‖DS\iγS\i‖22 − 2ν2(k − 1) (40)

≥ E
x∼P

(1− δk−1)‖γS\i‖22 − 2ν2(k − 1) (41)

≥(1− (k − 2)µ(D))(k − 1)− 2ν2(k − 1) (42)

= max{
[
1− (k − 2)µ(D)− 2ν2

]
(k − 1), 0} (43)
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where δk−1 is the (k− 1)-RIP constant of D, and we then used the bound with the mutual coherence
δk ≤ (k − 1)µ(D). In the last line, we added the condition that E

x∼P
[Bi] ≥ 0.

Thus, defining ζk := max
{

0, 1− (k − 2)µ(D)− 2ν2
}
, we can write

E
x∼P

[f [1]
x (D̂)] ≥ k

2p

p∑
i=1

‖Di − ρiD̂j∗‖22 +
1

2

[
1− (k − 2)µ(D)− 2ν2

]
(k − 1) (44)

≥ k

2p

p∑
i=1

‖Di − ρiD̂j∗‖22 +
1

2
ζk(k − 1). (45)

Finally, recalling the definition of ρi (and that the atoms have unit norm) note that

‖Di − (DT
i D̂j∗)D̂j∗‖22 ≥

1

2
min(‖Di − D̂j∗‖22, ‖Di + D̂j∗‖22) =

1

2
d(Di, D̂j∗)

Recall that Di is the closest atom to D̂j∗ out of those in the support S, and their distance might be
equal or larger to the closest atom in D̂ to Di; i.e.

d(Di, D̂j∗) ≥ min
j
d(Di, D̂j).

Thus,

1

p

p∑
i=1

min
j
d(Di, D̂j) = d(D, D̂) ≤ 4

k
E

x∼P
[f [1]

x (D̂)]− 2

k
ζk(k − 1). (46)

Lower bound Let us now focus on the lower bound for d(D, D̂). For any S, let D̂Ŝ contain the
atoms from D̂ that are closest to the ones in DS , i.e.,

d(DS(i), D̂Ŝ(i)) = d(DS(i), D̂), ∀i ≤ k.

Then,

f [k]
x (D̂) = inf

α:‖α‖0=k

1

2
‖x− D̂α‖22

≤min
αŜ

1

2
‖DSγS − D̂ŜαŜ‖

2
2

=
1

2
‖DSγS − D̂Ŝ(D̂T

Ŝ
D̂Ŝ)−1D̂T

Ŝ
DSγS‖22,

which implies

EγS
[f [k]

x (D̂)] =
1

2
EγS

[‖DSγS − D̂Ŝ(D̂T
Ŝ
D̂Ŝ)−1D̂T

Ŝ
DSγS‖22]

=
1

2

k∑
i=1

‖DS(i) − D̂Ŝ(D̂T
Ŝ
D̂Ŝ)−1D̂T

Ŝ
DS(i)‖22

≤ 1

2

k∑
i=1

‖DS(i) − D̂Ŝ(i)D̂
T
Ŝ(i)

DS(i)‖22

≤ 1

2

k∑
i=1

d(DS(i), D̂Ŝ(i)) =
1

2

k∑
i=1

d(DS(i), D̂),
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where the first line utilizes the fact that each entry of γS is i.i.d. with variance 1, and the third
line follows because ‖DS(i) − D̂Ŝ(D̂T

Ŝ
D̂Ŝ)−1D̂T

Ŝ
DS(i)‖22 is the projection residual of DS(i) onto the

subspace spanned by D̂Ŝ , which is smaller than the one onto a particular column of D̂Ŝ . The last
line follows because

‖a− aaTb‖2 = ‖a‖2 − (aTb)2 ≤ min{‖a‖2 − 2(aTb) + ‖b‖2, ‖a‖2 + 2(aTb) + ‖b‖2} = d(a,b)

for any unit norm vectors a,b ∈ Rd. Thus, finally,

E[f [k]
x (D̂)] = ES

[
EγS

[f [k]
x (D̂) | S]

]
≤ 1

2
ES

[
k∑
i=1

d(DS(i), D̂)

]

=
1

2

(
p−1
k−1

)(
p
k

) p∑
i=1

d(Di, D̂) =
1

2

(p−1)!
(k−1)!(p−k)!

(p)!
(k)!(p−k)!

p∑
i=1

d(Di, D̂) =
1

2

k

p

p∑
i=1

d(Di, D̂)

≤ k

2
d(D, D̂).

A.1 Differences between f
[1]
x and f

[k]
x

Our main result provides an upper bound on the recovery of a ground truth dictionary D based on
the measure f [1]

x , as opposed to the risk f [k]
x . A lower bound on the expectation of their difference

can readily be provided by Lemma 3.1, from which one can obtain E
[
f

[1]
x − f [k]

x

]
≥ ζk

2 (k − 1).
An upper bound between these measures can be derived as follows. Recall that

f [s]
x (D̂) = inf

γ:‖γ‖0≤s

1

2
‖x− D̂γ‖22.

Then,

f [1]
x (D̂) = min

j
min
αj

1

2
‖x− D̂jαj‖22 (47)

=
1

2
‖x− D̂j∗(D̂

T
j∗DSγS)‖22 (48)

=
1

2
‖x− D̂j∗ α̂j∗‖22 (49)

from the same steps as in the proof of Lemma 3.1. On the other hand, there exists a support Ŝ so
that

f [k]
x (D̂) =

1

2
‖x−

∑
i∈Ŝ

D̂iγ̂i‖22 (50)

=
1

2
‖x− D̂Ŝ γ̂Ŝ‖

2
2. (51)

We now assume that the selected atom for f [1]
x is included among the ones selected for f [k]

x , i.e.
j∗ ∈ Ŝ. This holds by making stronger generative assumption (e.g. by requiring k and d(D, D̂) to be
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small), or by employing specific algorithms to compute f [k]
x , such as Matching Pursuit and other

greedy pursuit variations.
Then,

2
(
f [1]
x (D̂)− f [k]

x (D̂)
)

= ‖x− D̂j∗ α̂j∗‖22 − ‖x− D̂Ŝ γ̂Ŝ‖
2
2 (52)

= ‖D̂j∗ α̂j∗‖22 − ‖D̂Ŝ γ̂Ŝ‖
2
2 − 2xT

(
D̂j∗ α̂j∗ − D̂Ŝ γ̂Ŝ

)
(53)

≤ ‖D̂j∗ α̂j∗‖22 − ‖D̂Ŝ γ̂Ŝ‖
2
2 + 2‖x‖2‖D̂j∗ α̂j∗ − D̂Ŝ γ̂Ŝ‖2. (54)

We will now show that ‖D̂j∗ α̂j∗‖22 ≤ ‖D̂Ŝ γ̂Ŝ‖22. To see this, note first that D̂ŜD̂+

Ŝ
< 0. Letting

D̂Ŝ = UΣVT , we have D̂ŜD̂+

Ŝ
= UUT . Since j∗ ∈ Ŝ, D̂j∗ ∈ span(D̂Ŝ), which means that we can

write D̂j∗ = Ub, for some b ∈ R|Ŝ|. Therefore,

D̂ŜD̂+

Ŝ
− D̂j∗D̂

T
j∗ = UUT −UbbTUT = U

(
I− bbT

)
UT < 0,

because ‖b‖2 = ‖D̂j∗‖2 = 1. As a result, and recalling that α̂j = D̂T
j∗x and γ̂Ŝ = D̂+

Ŝ
x, we have that

xT
(
D̂ŜD̂+

Ŝ
− D̂j∗D̂

T
j∗

)
x ≥ 0 (55)

xT D̂ŜD̂+

Ŝ
x ≥ xT D̂j∗D̂

T
j∗x (56)

‖D̂Ŝγ̂Ŝ‖
2
2 = ‖D̂ŜD+

Sx‖22 ≥ ‖D̂j∗D̂
T
j∗x‖22 = ‖D̂j∗ α̂j‖22. (57)

Thus, resuming from Equation (54) and defining ∆j∗ = α̂j∗ − γ̂j∗ , we have

f [1]
x (D̂)− f [k]

x (D̂) ≤ ‖x‖2‖D̂j∗ α̂j∗ − D̂Ŝ γ̂Ŝ‖2 (58)

≤ ‖x‖2
(
|∆j∗ |+ ‖D̂Ŝ\j∗ γ̂Ŝ\j∗‖2

)
(59)

≤ ‖x‖2
(
|∆j∗ |+ (k − 1)‖γ̂Ŝ‖∞

)
. (60)

Note that ∆j∗ = 0 whenever k = 1, and this quantity is bounded by 2‖γ̂Ŝ‖∞ whenever k > 1.
Thus, |∆j∗ | ≤ 2(k − 1)‖γ̂Ŝ‖∞. Putting everything together,

f [1]
x (D̂)− f [k]

x (D̂) ≤ 3(k − 1)‖x‖2‖γ̂‖∞. (61)

Note that this is tight when k = 1.
As a last remark, one could provide a bound for the maximum value of the coefficients γ̂Ŝ for any

Ŝ by noting that

‖γ̂Ŝ‖
2
∞ ≤ ‖γ̂Ŝ‖

2
2 = ‖D̂+

Ŝ
x‖22 ≤ ‖D̂+

Ŝ
‖22‖x‖22 ≤

1

(1− µ(D̂)(k − 1))2
‖x‖22.

See Ben-Haim et al. (2010) for a proof for the last step.

Appendix B. Pruning Guarantees

Let D0 ∈ Rd×p and consider, without loss of generality, that D̂ = [D̂0,A] ∈ Rd×p′ with D̂0 ∈
Rd×m, with m ≤ p′, such that d(D̂0

i ,D0) ≤ ε for all i ∈ {1, . . . ,m}, and d(Aj ,D0) > ε for all
j ∈ {1, . . . , p′ − m}. In other words, D̂0 contains all those m atoms that are ε-close to those in
D0, while A contains those that are further away. Additionally, we require that each atom in
D0 has at least one ε-neighbor in D̂0; i.e. d(D0

i , D̂0) ≤ ε for all i ∈ {1, . . . , p}. We allow m ≥ p
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since the over-realized estimate D̂ may naturally contain several atoms that are close to a real one.
Also suppose that both D0 and D̂ are column-wise normalized for simplicity. Let us denote by
µ(D0,A) = maxi,j

∣∣〈D0
i ,Aj〉

∣∣ the mutual coherence between D0 and A. With these definitions, we
have the following result:

Theorem 4.1. Let x be a k-sparse signal under D0, i.e., there exists γ ∈ Rp with ‖γ‖0 ≤ k such
that x = D0γ. Then, argmaxk |xT d̂i| ∈ [m] as long as

k ≤
1− ε

2 +
√
ε+ µ(D0)

µ(D0) +
√
ε+ µ(D0,A)

. (62)

Proof Without of loss generality, we assume that the entries of γ are placed in the decreasing order
of the values |γi|. Recall that we require each atom in D0 has at least one ε-neighbor in D̂0; i.e.
d(D0

i , D̂0) ≤ ε for all i ∈ {1, . . . , p}. For simplicity, we assume d(D0
i , D̂i) = ‖D0

i − D̂i‖2 ≤ ε for all
i ∈ {1, . . . , p}, i.e., the i-th column of D̂0 (or D̂) is ε-close to the i-th atom of D0.

To show the atom that has the largest correlation with x must be within the first m columns of
D̂, we need to find i ∈ [m] such that ∣∣∣x>D̂0

i

∣∣∣ > ∣∣x>A`

∣∣ , ∀`. (63)

Towards that goal, we choose i = 1 (as |γ1| is the largest sparse coefficient) to get

∣∣∣x>D̂0
1

∣∣∣ =

∣∣∣∣∣
k∑
i=1

γi(D
0
i )
>D̂0

1

∣∣∣∣∣ ≥ (1− ε

2
) |γ1| − (µ(D0) +

√
ε)

k∑
i=2

|γi|

≥
(

(1− ε

2
)− (k − 1)(µ(D0) +

√
ε)
)
|γ1| ,

(64)

where the first inequality follows because

(D0
1)>D̂0

1 = 1− 1

2
‖D0

1 − D̂0
1‖22 ≥ 1− ε

2

and
(D0

i )
>D̂0

1 = (D0
i )
>D0

1 + (D0
i )
>(D̂0

1 −D0
1) ≤ µ(D0) + ‖D̂0

1 −D0
1‖2 ≤ µ(D0) +

√
ε

for all 2 ≤ i ≤ p. On the other hand, we have

∣∣x>A`

∣∣ =

∣∣∣∣∣
k∑
i=1

γi(D
0
i )
>A`

∣∣∣∣∣ ≤ µ(D0,A)

k∑
i=1

|γi| ≤ kµ(D0,A) |γ1| , ∀`.

which together with Equation (64) and Equation (62) gives Equation (63), implying that the element
chosen by the first step of OMP must correspond to the one that is close to the correct dictionary,
D0.

Appendix C. Further Numerical Results

C.1 Descriptive results on over-realized dictionary learning
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Figure 6: Same experimental setting as in Figure 1, but reporting the best run for each p′.

C.2 Results on recovery and risk improvements based on over-realized dictionary
learning followed by distillation
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Figure 7: Risk and dictionary recovery error (log10 thereof, lower is better) of the estimate provided
by traditional dictionary learning (i.e. D̂ ∈ Dp) and that resulting from the proposed over-realized
approach (i.e. D̂ ∈ Dp′) followed by distillation to the original size, over a number of parameters
(sparsity, dimension, and redundancy). Algorithm: ODL+Lasso.
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Figure 8: Risk and dictionary recovery error (log10 thereof, lower is better) of the estimate provided
by traditional dictionary learning (i.e. D̂ ∈ Dp) and that resulting from the proposed over-realized
approach (i.e. D̂ ∈ Dp′) followed by distillation to the original size, over a number of parameters
(sparsity, dimension, and redundancy). Algorithm: K-SVD.
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