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Abstract

We propose a new tool for visualizing complex, and potentially large and high-dimensional,
data sets called Centroid-Encoder (CE). The architecture of the Centroid-Encoder is sim-
ilar to the autoencoder neural network but it has a modified target, i.e., the class centroid
in the ambient space. As such, CE incorporates label information and performs a super-
vised data visualization. The training of CE is done in the usual way with a training set
whose parameters are tuned using a validation set. The evaluation of the resulting CE
visualization is performed on a sequestered test set where the generalization of the model
is assessed both visually and quantitatively. We present a detailed comparative analy-
sis of the method using a wide variety of data sets and techniques, both supervised and
unsupervised, including NCA, non-linear NCA, t-distributed NCA, t-distributed MCML,
supervised UMAP, supervised PCA, Colored Maximum Variance Unfolding, supervised
Isomap, Parametric Embedding, supervised Neighbor Retrieval Visualizer, and Multiple
Relational Embedding. An analysis of variance using PCA demonstrates that a non-linear
preprocessing by the CE transformation of the data captures more variance than PCA by
dimension.

Keywords: Data Science, Machine Learning, supervised dimension reduction, centroid-
encoder, autoencoder, variance.

1. Introduction

The ability to see in high-dimensions can assist data explorers in many ways, including
the characterization of class structure, data separability, and experimental batch effects.
One approach to data visualization is the process of mapping points in dimensions greater
than three down to two or three dimensions, providing a window into high-dimensions so
that they can be seen and interpreted. Principal component analysis (PCA; Pearson, 1901;
Hotelling, 1933) continues to be one of the most widely used methods for data reduction and
visualization over one hundred years after its initial discovery (Jolliffe and Cadima, 2016;
Chepushtanova et al., 2020). Nonetheless, PCA often produces ambiguous results, in some
cases collapsing distinct classes into overlapping regions in the setting where class labels are
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available. It is tempting to incorrectly infer from this that the data is not separable, even
non-linearly, in higher dimensions.

Non-linear extensions to PCA were originally introduced to address the limitations of
optimal linear mappings (Kramer, 1991b, 1992; Oja, 1991), also see (Kirby, 2001) for ad-
ditional early references and details. These papers provided the first applications of au-
toencoder neural networks where data sets are non-linearly mapped to themselves. This is
accomplished by first unfolding them in higher dimensions before passing through a bottle-
neck layer of a reduced dimension where data visualization is typically done. In the process
of non-linear dimension reduction, novel latent or hidden features which are an amalga-
mation of the observables, may be discovered. A theoretical insight into these algorithms
is provided by Whitney’s theorem from differential geometry that connects autoencoders
to manifold learning (Broomhead and Kirby, 2000, 2001). Fundamental innovations were
proposed to these ideas in the setting of deep networks that made their application far more
effective (Hinton and Salakhutdinov, 2006; Hinton et al., 2006).

Data reduction techniques such as PCA and its non-linear extensions have proven ex-
tremely useful for understanding data in high-dimensions, and in particular, as tools for
visualization. In this paper we address the question of how such tools can be adapted to
the case where class label information is available, i.e., supervised data reduction. While
there has been considerable work on this topic related to linear methods, the focus in this
paper is on non-linear labeled data reduction expressly for the purposes of data visualiza-
tion. In this setting, the objective function of the optimization problem that encodes the
goals of the dimension reduction also exploits information related to class membership.

More specifically, this paper concerns the integration of class label information to the
non-linear autoencoder reduction process for the purposes of data visualization. Here we
develop and comparatively evaluate this centroid-encoder (CE) algorithm designed for the
analysis of labeled data. While standard autoencoders map the identity on points, centroid-
encoders map points to their centroids while passing through a low-dimensional represen-
tation. This approach serves to provide a low-dimensional encoding for visualization while
ensuring that elements with the same label retain their class structure. The smoothness
of mapping functions ensures that a similar behavior is captured at the centroid-encoder
bottleneck layer.

Here we summarize the main contributions of this paper. Centroid-encoder maps data
to each class centroid through a low-dimensional bottleneck in a manner analogous to au-
toencoders. Hence it exploits label information in the non-linear data reduction process and
may be viewed as a supervised variant of non-linear principal component analysis (Kramer,
1991b, 1992; Oja, 1991). As a mapping from the input space to the reduced space, CE
generalizes directly to new data without the use of landmarks, or the computation of dis-
tance matrices typical of spectral methods (Belkin and Niyogi, 2003; Roweis and Saul, 2000)
or self-organizing mappings (Kohonen, 1987; Ma et al., 2019). Given its bottleneck style
architecture that implements a continuous non-linear mapping, CE is an effective tool for
the visualization of class-labeled data where neighborhood relationships are transported
from high to low-dimensions without explicitly computing the neighborhood graph in the
ambient space. We show that CE produces similar or better results when compared with a
range of other popular supervised and unsupervised visualization tools across a broad range
of data sets. Our comparisons are both quantitative, using a classification score in the re-

2



Supervised Visualization using Centroid-Encoder

duced space, as well as qualitative, with a visual comparison of neighborhood structures of
well-known data sets. To provide insight into the effectiveness of the reduction model, we
illustrate how it captures the variance of the data in the mapping layers. We apply CE to
produce the first low-dimensional visualization of the large particle Physics Supersymmetry
(SUSY) data set and show that it classifies samples with accuracy comparable to the best
high-dimensional models. Lastly, we observe that CE allows for the use of multiple cen-
troids per class and generalizes as a classifier to dimensions greater than three. However,
our focus in this paper is on the application of CE for supervised data visualization.

The article is organized as follows: In Section 2, we review related work, for both
supervised and unsupervised data visualization. In Section 3 we present the centroid-
encoder algorithm and contrast it with auto-encoder data reduction. In Section 4 we apply
CE to a range of bench-marking data sets taken from the literature. In Section 5, we analyze
these results and conclude in Section 6.

2. Related Work

Data reduction for visualization has a long history and remains an area of active research.
We describe the literature relating to unsupervised and supervised methods where we as-
sume data class labels are unavailable and available, respectively.

This paper proposes a variation to the autoencoder, a dimension reducing mapping
optimized to approximate the identity on a set of training data (Bourlard and Kamp,
1988; Kramer, 1991a; Hinton and Zemel, 1994; Kirby, 2001; Bengio et al., 2006). The
autoencoder was initially proposed as a non-linear version of PCA (Kramer, 1991b, 1992).
A comprehensive description of autoencoders and their variants can be found in (Goodfellow
et al., 2016, chap. 14).

2.1 Unsupervised Methods

Principal Components Analysis is often the first (and last) tool used for visualization of
unlabeled data and is designed to retain as much of the statistical variance as possible (PCA;
Pearson, 1901; Hotelling, 1933), see also (Jolliffe, 1986). Equivalently, PCA minimizes the
mean-square approximation error as well as Shannon’s entropy (Watanabe, 1965). Self-
organizing mappings (SOMs) learn non-linear topology-preserving transformations that map
data points to centers that are then mapped to the center indices. SOMs have been widely
used in data visualization, having been cited over 20,000 times since their introduction
(Kohonen, 1982).

Another class of methods uses interpoint distances as the starting point for data reduc-
tion and visualization. For example, Multidimensional Scaling is a spectral method that
computes a point configuration based on the computation of the eigenvectors of a doubly
centered distance matrix (MDS; Torgerson, 1952). The goal of the optimization problem
behind MDS is to determine a configuration of points whose Euclidean distance matrix is
optimally close to the prescribed distance matrix. A related approach, known as Isomap,
applies MDS to approximate geodesic distances computed numerically from data on a man-
ifold (Isomap; Tenenbaum et al., 2000). Laplacian Eigenmaps is another popular spectral
method that uses distance matrices to reduce dimension and conserve neighborhoods (LE;
Belkin and Niyogi, 2003). These spectral methods belong to a class of techniques referred to
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as manifold learning algorithms; see also locally linear embedding (LLE; Roweis and Saul,
2000), stochastic neighbor embedding (SNE; Hinton and Roweis, 2003), and maximum
variance unfolding (MVU; Weinberger and Saul, 2006).

The technique t-distributed stochastic neighbor embedding (t-SNE; van der Maaten
and Hinton, 2008), an extension of SNE, was developed to overcome the data crowding or
clumping problem often observed with manifold learning methods and is currently a popu-
lar method for data visualization. More recently, the uniform manifold approximation and
projection (UMAP) algorithm has been proposed, which uses Riemannian geometry and
fuzzy simplicial sets to create a low-dimensional and locally uniformly distributed embed-
ding of the data (UMAP; McInnes et al., 2018). It has been reported that the algorithm
has a better run time than t-SNE and offers compelling visualizations. Xie et al. developed
a deeply embedded clustering (DEC) algorithm where the cluster assignment is optimized
using an auxiliary target distribution on the output of the encoder (Xie et al., 2016). This
unsupervised algorithm imposes a structure using Student’s t-distribution to improve the
clustering in the latent space. Note, the gradient update of the DEC algorithm requires
distance calculation of a point to each of the cluster centers.

Note that these spectral methods including MDS, Laplacian Eigenmaps and UMAP
compute embeddings based on solving an eigenvector problem requiring the entire data set.
Such methods do not actually create mappings that can be applied to reduce the dimension
of new data points without repeating the computation or resorting to the use of landmarks
(De Silva and Tenenbaum, 2004). This, in contrast to methods such as PCA, SOM and
autoencoders that serve as mappings for streaming data.

2.2 Supvervised Methods

Fisher’s linear discriminant analysis (LDA) reduces the dimension of labeled data by si-
multaneously optimizing class separation and within-class scatter (see Fisher, 1936; Duda
and Hart, 1973). Both LDA and PCA are linear methods in that they construct optimal
projection matrices, i.e., linear transformations for reducing the dimension of the data.

It is, in general, possible to add labels to unsupervised methods to create their supervised
analogues. A heuristic-based supervised PCA model first selects important features by cal-
culating correlation with the labels and then applies standard PCA of the chosen feature set
(Bair et al., 2006). Another supervised PCA technique, proposed by (Barshan et al., 2011),
uses Hilbert-Schmidt independence criterion to compute the principal components which
have maximum dependence on the labels. Colored maximum variance unfolding (MUHSIC;
Song et al., 2007), which is the supervised version of MVU, is capable of separating different
newsgroups better than MVU and PCA.

The projection of neighborhood component analysis (NCA; Goldberger et al., 2004)
produces a better coherent structure in two-dimensional space than PCA on several UCI
data sets. Dhillon et al. proposed class preserving projection of high dimensional data
(Dhillon et al., 2002). Parametric embedding (PE; Iwata et al., 2007), which embeds high-
dimensional data by preserving the class-posterior probabilities of objects, separates differ-
ent categories of Japanese web pages better than MDS. Optimizing the NCA objective on
a pre-trained deep architecture, Salakhutdinov et al. (nonlinear NCA; Salakhutdinov and
Hinton, 2007) achieved 1% error rate on MNIST test data with 3-nearest neighbor classifier
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on 30-dimensional feature space. Min et al. proposed to optimize the NCA and maximally
collapsing metric learning (MCML; Globerson and Roweis, 2006) objective using a Stu-
dent t-distribution on a pre-trained network (t-Distributed Embedding; Min et al., 2010).
Their approach yielded promising generalization error using a 5-nearest neighbor classifier
on MNIST and USPS data on two-dimensional feature space. Neighbor retrieval visualizer
(NeRV; Venna et al., 2010) optimizes its cost such that the similar objects are mapped
close together in embedded space. Its supervised variant uses the class information to pro-
duce the low-dimensional embedding. NeRV and its supervised counterpart were reported
to outperform some of the state-of-the-art dimension reduction techniques on a variety of
datasets.

There are several proposed methods in literature where label information has been
incorporated into the autoencoder architecture. For example, a supervised autoencoder
(SAE) minimizes a bi-objective cost involving the unsupervised reconstruction loss and a
supervised regression error on the sample labels (Le et al., 2018). Like SAE, Adversarial
Autoencoder (AAE) (Makhzani et al., 2015) optimizes a dual objective in terms of the
traditional reconstruction loss of autoencoders and adversarial criteria (Goodfellow et al.,
2014) to match the aggregated posterior distribution of the autoencoder to an arbitrary
prior distribution. The adversarial cost forces the encoder to learn the user-defined prior
distribution; therefore, the decoder imposes the prior distribution while generating the sam-
ples. Labels are incorporated into the model to guide the data generation. Note AAE falls
into the category of generative models. Nonlinear NCA (NNCA) optimizes the NCA cost
(Goldberger et al., 2004) on a pre-trained (RBM) deep architecture (Salakhutdinov and
Hinton, 2007) using pair-wise distances. The dt-NCA and dG-NCA algorithms also mini-
mizes the NCA cost on a deep architecture, except a Gaussian, or Student’s t-distribution
is used to convert distances into probabilities (Min et al., 2010). Similarly dt-MCML and
dG-MCML optimize the MCML cost (Globerson and Roweis, 2006) using a deep neural
network where pair-wise distances are transformed into probabilities using Gaussian and
Student’s t-distribution correspondingly (Min et al., 2010).

Supervised Isomap (S-Isomap; Cheng et al., 2012), which explicitly uses the class infor-
mation to impose dissimilarity while configuring the neighborhood graph on input data, has
a better visualization and classification performance than Isomap. Zhang et al. suggested to
use labels to optimize the objective of Local Linear Embedding and their supervised model
(Zhang, 2009) performed better than LLE. Similarly, the supervised version of Laplacian
Eigenmaps (Raducanu and Dornaika, 2012) yield better quality visualization than its unsu-
pervised counterpart. Stuhlsatz et al. proposed a generalized discriminant analysis based
on classical LDA (GerDA; Stuhlsatz et al., 2012), which is built on deep neural network
architecture. Min et al. proposed a shallow supervised dimensionality reduction technique
where the MCML objective is optimized based on some learned or precomputed exemplars
(HOPE; Min et al., 2017). Although UMAP is originally presented as an unsupervised
technique, its software package includes the option to build a supervised model 1.

Autoencoder neural networks are the starting point for our approach and are described
in the next section. In a preliminary biological application, centroid-encoder (CE) was used
to visualize the high-dimensional pathway data (Ghosh et al., 2018).

1. Manual located at https://readthedocs.org/projects/umap-learn/downloads/pdf/latest/.
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2.3 Summary of Novelty

Here we summarize the novel aspects of our model. The performance implications of these
innovations will be explored via direct comparison with many of these algorithms in the
context of benchmark data sets from the literature.

• CE uses the sample label to calculate the class-centroids in the ambient space and
then maps the samples of a class to its centroid in the output layer.

• CE doesn’t apply any cost function to the bottleneck layer.

• Models like SAE and AAE use multiple objectives to incorporate class labels. In
contrast, CE uses a single objective to include supervision in training.

• SAE and AAE uses a reconstruction loss term that does not exploit label information.
In contrast, CE employs label information in the reconstruction loss term.

• Unlike NNCA, dt/dG NCA, dt/dG MCML, and DEC Centroid-encoder doesn’t re-
quire the calculation of pair-wise distances.

• Unlike AAE, the centroid-encoder doesn’t employ any prior distribution in training.

• The DEC algorithm updates the cluster centers in the learning process, whereas the
centroid-encoder works with a fixed set of centers, i.e., each class’s centroid. DEC
doesn’t use class labels.

CE uses the sample label to calculate the fixed class-centroids in the ambient space
and then maps the samples of a class through the encoder and decoder to their known
centroids in the output layer. CE doesn’t apply any cost to the bottleneck layer and
uses a single objective based on reconstruction of the class means at the output. Hence,
CE is a fully supervised training approach without any unsupervised, or semi-supervised
characteristics. Unlike many approaches for visualization, CE captures global structures
in the reduced space without the calculation of pair-wise distances or knowledge of prior
distributions during training. The visualization of the high-dimensional data and their
centroids is accomplished by the data reducing encoding.

3. The Centroid-Encoder

Here we propose a form of supervised autoencoder that exploits label information. The
centroid-encoder (CE) is trained by mapping data through a neural network with the ar-
chitecture of an autoencoder, but the learning target of any point is not that actual point,
rather the mean of points in the associated class. So CE does not map the identity, now the
target points in the image of the map are the centroids of the data in the ambient space.
Centroid-encoder is a non-linear parametric map which minimizes the within-class variance
by mapping all the samples of a class/category to its centroid.

Consider an M -class data set with classes denoted Cj , j = 1, . . . ,M where the indices
of the data associated with class Cj are denoted Ij . The centroid of each class is defined as

cj =
1

|Cj |
∑
i∈Ij

xi
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|Cj | is the cardinality of class Cj . The centroid-encoder is trained by determining a mapping
f with the ordered input-output pairs

{(xi, cj)}Ni=1

where cj is the target center for data point xi, i.e., i ∈ Ij .
The cost function of centroid-encoder is defined as

LC(D; θ) =
1

2N

M∑
j=1

∑
i∈Ij

‖cj − f(xi; θ))‖22 (1)

where D = {xi} is the data and θ represents all the unknown parameters, i.e., weights and
biases, in the network. This cost is also referred to as the distortion error (Linde et al.,
1980). In contrast, the cost function for the auto-encoder is

LA(D; θ) =
1

2N

N∑
i=1

‖xi − f(xi; θ))‖22 (2)

The parameters θ in each case are learned by using standard error backpropagation (Rumel-
hart et al., 1985; Werbos, 1974). The output errors ∆ that are being back-propogated are

∆C =
1

N

M∑
j=1

(
∑
i∈Ij

f(xi; θ)− cj) (3)

for centroid-encoder and

∆A =
1

N

N∑
i=1

(f(xi, θ)− xi) (4)

for auto-encoder. These terms ∆A and ∆C capture the difference between auto-encoder
and centroid encoder; the gradient vector g is the same in both cases; see, e.g., (Goodfellow
et al., 2016; Kirby, 2001) for details on the computation of the gradient g.

The mapping f is modeled as the composition f(·) = h(g(·)) of a dimension reducing
encoder mapping g followed by a dimension increasing decoder mapping h. The training
goal is that a point gets mapped to its centroid for centroid-encoder

cj ≈ h(g(xi))

or that a point gets mapped to itself for auto-encoder

xi ≈ h(g(xi)).

The dimension reduced data then corresponds to the output of the encoder yi = g(xi) for
both CE and AE architectures. In this paper we are primarily concerned with visualization
so the dimension of the range of g is 2, or 3; in principle there is no obstacle to taking values
larger than this.
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3.1 The Centroid-Encoder Training Algorithm

The training is very similar to that of an autoencoder and the steps are described in
Algorithm 1. As with autoencoders, the centroid-encoder is a composition of two maps
f(x) = (h◦g)(x). For visualization, we train a centroid-encoder network using a bottleneck
architecture, meaning that the dimension of the image of the map g is 2 or 3.

Algorithm 1: Supervised Non-linear Centroid-Encoder (without pre-training).

Input: Labeled data (D) = {xi}Ni=1 with M classes, Ij index set of class Cj . User
defined parameters: error tolerance τ , learning rate µ, bottleneck
dimension m.

Output: Bottleneck output yi = g(xi); network parameters θ.
Result: Non-linear embedding of data in m dimensions.
Initialization: Class centroids cj = 1

|Cj |
∑

i∈Ij x
i, j = 1, . . . ,M . Iteration t← 0.

Partition D into training (Tr) and validation set (V).
1 while |Lt+1

C (V ) - Lt
C(V )| > τ do

2 Compute the loss/error LC(V ) and LC(Tr) using Equation 1
3 Compute backpropogation error ∆C using Equation 3 on training set Tr.
4 Update model parameters θ by θt+1 = θt − µ∆C .g

t

5 end

3.1.1 Pre-training Centroid-encoder

Here we describe the pre-training strategy of centroid-encoder. We employ a technique we
refer to as pre-training with layer-freeze, i.e., pre-training is done by adding new hidden
layers while mapping samples of a class to its centroid; see Figure 1. In this approach,
weights of hidden layers are learned sequentially. Initially θ = (W1, W̃1) and by the end
of training θ = (W1, . . . ,Wn, W̃n, . . . , W̃1) using our θ notation for the set of unknown
parameters. The algorithm starts by learning the parameters of the first hidden layer using
standard error backpropagation (Rumelhart et al., 1985). Then the second hidden layer
is added in the network with weights initialized randomly. At this point, the associated
parameters of the first hidden layer are kept frozen. Now the parameters of the second
hidden layer are updated using backpropagation. We repeat this step until pre-training
is done for each hidden layer. Once pre-training is complete, we do an end-to-end fine-
tuning by updating the parameters of all the layers at the same time. It’s noteworthy that
our pre-training approach is different than the greedy layer-wise pre-training proposed by
(Hinton et al., 2006) and (Bengio et al., 2006, 2007). The unsupervised pre-training of
Hinton et al. and Bengio et al. uses the activation of the lth hidden layer as the input for
the (l+1)th layer. In our approach, we use the original input-output pair (xi, cj) to pre-train
each hidden layer. As we use the labels to calculate the centroids cj , so our pre-training
is supervised. In the future, we would like to explore the unsupervised pre-training in the
setup of centroid encoding.
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Figure 1: Pre-training a deep centroid-encoder by layer-freeze approach. In the first step, a
centroid-encoder with the first hidden layer is pre-trained (left diagram). The pre-trained

weights are (W1, W̃1). In the next step, a new hidden layer is added by extending the

network architecture. After that, the weights (W2, W̃2) associated with the new hidden

layer are updated while keeping the other weights (W1, W̃1) fixed. This process is repeated
to add more hidden layers.

4. Visualization Experiments

To evaluate centroid-encoder we select three suites of data sets from the literature and
run three bench-marking experiments comparing centroid-encoder with a range of other
supervised dimension reduction techniques. To objectively compare the performance of
these supervised models we employ a standard class prediction error on the two-dimensional
visualization domain.2 The classification error is defined as

Error (%) =
100

N

N∑
i=1

I[li 6= f(x̃i)] (5)

Here N is total number of test samples, li is the true label of the ith test sample, and f
is a classification function which returns the predicted label of the embedded test sample
x̃i. Here I denotes the indicator function. Following the supervised visualization literature

2. This corresponds to the bottleneck layer for CE.
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(Goldberger et al., 2004; Venna et al., 2010; van der Maaten, 2009; Min et al., 2010), we
chose the k-nearest neighbor (k-NN) as the classification function (f).

All results share the following workflow:

• Select a small data set from the training set and run 10-fold cross validation to deter-
mine the network architecture and hyper-parameters

• Using this architecture train K models on different data partitions as described below

• Using the sequestered test set compute average k-NN (k = 5) classification errors on
the 2D representation with standard deviations

We follow this common evaluation strategy in the three bench-marking experiments so
that our CE results are comparable to the published results. We describe details of each
experiment including how the training and test partitions were selected below. In addition
to prediction error, we also visualize the two-dimensional embedding of test samples of each
model to do a subjective comparison. We fix the reduction dimension as 2 in all networks
for our visualization application.

In Section 4.1, we provide the details of the three experiments. We show the implemen-
tation details in Section 4.2 and present the results in Section 4.3.

4.1 Experimental Details

The data sets we employed in our experiments are: (1) MNIST digits, (2) USPS data, (3)
Letter Recognition data, (4) Landsat Satellite data, (5) Phoneme data, (6) Iris data, (7)
Sonar data, and (8) Supersymmetry (SUSY) particle data. The details of the data sets
may be found in the supplementary material. Here we describe the details of the three
experiments.

Experiment 1: The first bench-marking experiment is conducted on the widely studied
MNIST and USPS data sets. We compared CE with the following methods: autoencoder,
non-linear NCA (Salakhutdinov and Hinton, 2007), supervised UMAP (McInnes et al.,
2018), GerDA (Stuhlsatz et al., 2012), HOPE (Min et al., 2017), parametric t-SNE (van der
Maaten, 2009), t-distributed NCA (Min et al., 2010), t-distributed MCML (Min et al.,
2010), and supervised UMAP. All MNIST models were trained using the entire training set
and evaluated on the standard test set. For USPS, we followed the strategy in (Min et al.,
2010), where we randomly split the entire data set into a training set of 8000 samples and
a test set consisting of 3000 samples. We repeat the experiments K = 10 times and report
the average error rate with standard deviation. To determine the model architecture in
each case we took a subset from the training data (3000 and 30,000 for USPS and MNIST
respectively), picked randomly, and ran 10-fold cross-validation. We implemented non-
linear-NCA and Autoencoders in Python, and we used the scikit-learn (Pedregosa et al.,
2011) package to run supervised UMAP. For the rest of the methods, we took the published
results for comparison.

Experiment 2: We conducted the second experiment on Letter, Landsat, and Phoneme
data sets. For evaluation, we compared CE with the following techniques: supervised
neighbor retrieval visualizer (SNeRV) by Venna et al. (2010), multiple relational embedding
(MRE) by Memisevic and Hinton (2004), colored maximum variance unfolding (MUHSIC)
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Dataset Network topology Activation

MNIST d→ 1000→ 500→ 125→ 2 tanh
USPS d→ 2000→ 1000→ 500→ 2 relu

Phoneme d→ 250→ 150→ 2 relu
Letter d→ 250→ 150→ 2 relu

Landsat d→ 250→ 150→ 2 relu
Iris d→ 100→ 2 relu

Sonar d→ 500→ 250→ 2 relu
SUSY d→ 500→ 250→ 125→ 2 relu

Table 1: Network topology used for CE on various data sets. The number d is the input
dimension of the network and is data set dependent.

by Song et al. (2007), supervised isomap (S-Isomap) by Cheng et al. (2012), parametric
embedding (PE) by Iwata et al. (2007), and neighborhood component analysis (NCA)
by Goldberger et al. (2004) and supervised UMAP. Following the experimental setup in
Venna et al. (2010), we randomly selected 1500 samples from each data set and ran 10-fold
cross-validation (K = 10). Except for UMAP and supervised UMAP, we used the published
results in (Venna et al., 2010). We picked the architecture (for CE and AE) and other model
specific hyper-parameters by running 10-fold internal cross-validation on the training set.

Experiment 3: For the third experiment, we compared the performance of centroid-
encoder with supervised PCA (SPCA), and kernel supervised PCA (KSPCA) on the Iris,
Sonar, and a subset of USPS data set. Following (Barshan et al., 2011), test error rates were
obtained by averaging over K = 25 runs on randomly generated 70/30 splits of each data
set. For USPS, we randomly picked 1000 cases and used that subset for our experiment,
as done by (Barshan et al., 2011). Model specific hyper-parameters are tuned using 10-
fold internal cross-validation on the training set. We implemented SPCA and KSPCA in
Python.

4.2 Implementation

We have implemented centroid-encoder in PyTorch to run on GPUs. To train CE with an
optimal number of epochs, we used 10% of training samples as a validation set in all of our
visualization experiments. We measure the generalization error on the validation set after
every training epochs. Once the validation error doesn’t improve, we stop the training.
Finally, we merge the validation set with the training samples and train the model for addi-
tional epochs. The model parameters are updated using Adam optimizer (Kingma and Ba,
2014). Table 1 provides the network architecture used in training of CE on various data sets.
The implementation is available at: https://github.com/Tomojit1/Centroid-encoder/
tree/master/GPU. Apart from centroid-encoder, we have implemented autoencoder (AE),
non-linear NCA (NNCA), supervised PCA (SPCA) and kernel supervised PCA (KSPCA).
These models require the tuning of hyper-parameters as listed in Table 2.
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Model Hyper parameter Range of Values

CE, AE
learning rate 0.1, 0.01, 0.001, 0.0001, 0.0002, 0.0004, 0.0008
mini batch size 16, 25, 32, 50, 64, 75,128, 256, 512, 1024
weight decay 0.001, 0.0001, 0.00001, 0.00002, 0.00004, 0.00008

SUMAP
n neighbors 5, 10, 20, 40, 80
min dist 0.0125, 0.05, 0.2, 0.8

KSPCA
kernel parameter(γ) 0.001, 0.01, 0.025, 0.035, 0.05, 0.1, 1.0, 2.5, 3.0,

5.0, 7.5, 10.0

Table 2: Hyper-parameters for different models.

4.3 Quantitative and Visual Analysis

Now we present the results from a comprehensive quantitative and qualitative analysis across
these diverse data sets. Note that the primary objective of our assessment is to determine
the quality of information obtained from visualization, including class separability, data
scatter, and neighborhood structure. Since this assessment is by its very nature subjective,
we also employ label information to determine classification rates that provide additional
quantitative insight into the data reduction for visualization. Computational expense is
also an essential factor, and we will see that this is a primary advantage of CE over other
methods when the visualizations and error rates are comparable.

4.3.1 MNIST

Method
Dataset

MNIST USPS

Centroid-encoder 2.61± 0.09 2.91± 0.31
Supervised UMAP 3.45± 0.03 6.17± 0.23

NNCA 4.71± 0.57 6.58± 0.80
Autoencoder 22.04± 0.78 16.49± .91

dt-MCML 2.03 2.46± 0.35
dG-MCML 2.13 3.37± 0.18

GerDA 3.2 NA
dt-NCA 3.48 5.11± 0.28
dG-NCA 7.95 10.22± 0.76

AAE 4.20 NA
pt-SNE 9.90 NA

Table 3: Error rates (%) of k-NN (k=5) on the 2D embedded data by various dimensionality
reduction techniques trained with pre-training. Results of GerDA and pt-SNE are taken
from Stuhlsatz et al. (2012) and van der Maaten (2009) correspondingly. Error rates of the
variants of NCA and MCML are reported from Min et al. (2010). The result of AAE is
reported from Makhzani et al. (2015). NA indicates that the result was not reported in the
original source.
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As shown in Tables 3 (results with pre-training) and 4 (results without pre-training), the
models with relatively low error rates for the MNIST data amongst our suite of visualiza-
tion methods are dt-MCML, dG-MCML, centroid-encoder, and HOPE. With pre-training,
the error rate of CE is comparable to the top-performing model dt-MCML and superior
to NNCA and supervised UMAP by a margin of 2.1% and 0.84%, respectively. Note that
methods in the MCML and NCA families require the computation of distance matrix over
the data set, making them significantly more expensive than CE, which only requires dis-
tance computations between the data of a class and its center. It’s noteworthy that the
error of CE is lower than the other non-linear variants of NCA: dt-NCA and dG-NCA.
We also compare CE with a semi-supervised model called adversarial autoencoders (AAE),
which used the label information of some samples to create the two-dimensional embed-
ding. We see that the error rate of CE is better by almost 2%, which is not surprising as
CE is a fully supervised method, whereas AAE is semi-supervised. Among all the models,
parametric t-SNE (pt-SNE) and autoencoder exhibit the poorest performance in terms of
classification error rates on MNIST data are 9.90% and 22.04%, respectively. These high
error rates are not surprising given these methods do not use any label information. The
prediction error of CE with pre-training is relatively low at 2.6%, as shown in Table 3
behind the more computationally expensive dt-MCML and dG-MCML algorithms. With
no pre-training, the numeric performance of centroid-encoder is statistically equivalent to
dt-MCML and HOPE. The HOPE algorithm for supervised data visualization is based on
the MCML objective function and learns a shallow network for data reduction using label
information. Instead of computing the objective on all sample pairs, the authors choose a
small set of samples, they refer to as exemplars, to calculate the MCML objective. These
exemplars are computed using either k-means or as part of an optimization problem. Note,
however, that HOPE requires the user to explore n choose k features, where n is the ambient
dimension of the data and k the number of features being used; hence this approach suffers
from a combinatorial explosion and is only practical for small k.

Method
Dataset

MNIST USPS

Centroid-encoder 3.17± 0.24 2.98± 0.67
Autoencoder 21.55± 0.47 15.17± 0.85

HOPE 3.20 3.03
dt-MCML 3.35 4.07
dt-NCA 3.48 5.11

Table 4: Error rates (%) of k-NN (k=5) on the 2-dimensional data by various techniques
trained without pre-training. Error rate of HOPE, dt-NCA and dt-MCML are reported
from Min et al. (2017).

While the prediction error is essential as a quantitative measure, the visualizations reveal
information not encapsulated in this number. The neighborhood relationships established
by the embedding provide potentially valuable insight into the structure of the data set.
The two-dimensional centroid-encoder visualization of the MNIST training and test sets
are shown in Figure 2. The entire 10,000 test samples are shown in b) while only a subset
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of the training data set, 1000 digits picked randomly from each class, is shown in a). The
separation among the ten classes is easily visible in both training and test data, although
there are few overlaps among the categories in test data. Consistent with the low error rate,
the majority of the test digits are assigned to the correct Voronoi cells.

(a) Visualuzation of 1000 digits per class from MNIST training set.

(b) Visualization of the 10,000 MNIST test samples.

Figure 2: Voronoi cells in 2D of the MNIST data using centroid-encoder. The network
architecture of 784 → [1000, 500, 125, 2, 125, 500, 1000] → 784 is employed to map the data
onto the 2D space. The centroid of the training samples mapped to 2D are used to form
the Voronoi regions for each digit class.
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Figure 3: Two dimensional visualization of 10,000 MNIST test digits by Laplacian Eigen-
map.

Now let’s consider the visualization from a neighborhood relationship perspective. We
compare the results with those of Laplacian Eigenmaps (LE), as shown in Figure 3, an
unsupervised manifold learning spectral method that solves an optimization problem pre-
serving neighborhood relations (Belkin and Niyogi, 2003). Both CE and LE place digits 5
and 8 as neighbors at the center, allowing us to view all digits as being perturbations of
these numbers. Digits 7, 9, and 4 are collapsed to one region; in contrast, CE is built to
exploit label information and separates these neighboring digits. LE clumps 7, 9, 4 next to
1 as well, consistent with the CE visualization. The digit 0 neighbors 6 for both CE and
LE, but LE significantly overlaps the 6 with the digit 5.

Figure 4 shows the two-dimensional arrangement of 10,000 MNIST test set digits using
non-linear NCA, supervised UMAP, UMAP, autoencoder, and t-SNE. It is apparent that
CE is more similar to LE in terms of the relative positioning of the digits in 2D than these
other visualization methods. There are some similarities across all the models, e.g., 0 and
6 are neighbors for all methods (except for SUMAP), as are the digits 4, 9, and 7. The
separation among the different digit groups more prominent in CE than all the methods
save for SUMAP, but as seen above, quantitatively, SUMAP has a higher error rate than
CE. We note that unsupervised UMAP, as well as t-SNE, both agree with CE that the
digits 5 and 8 should be in the center. However, in contrast, CE provides a mapping that
can be applied to streaming data.
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Centroid-encoder

Figure 4: A comparison of the visualizations of 10,000 MNIST test digits by different
methods.

4.3.2 USPS

On USPS, centroid-encoder without pre-training has a prediction error slightly lower than
HOPE but outperformed dt-MCML and dt-NCA by the margins of 1.09% and 2.12%,
respectively, see Table 4. Without pre-training, the centroid-encoder performed better than
NNCA with pre-training and supervised-UMAP on both MNIST and USPS datasets.

On the USPS data, the top three models with pre-training are dt-MCML, centroid-
encoder, and dG-MCML with the error rates of 2.46%, 2.91%, and 3.37%, respectively. The
error rate of centroid-encoder is better than NNCA and supervised-UMAP by a margin of
3.67% and 3.26%, respectively. Like in MNIST, dt-NCA and dG-NCA performed relatively
poorly compared to centroid-encoder. Again, autoencoder performed the worst among all
the models.

In Figure 5, we show the two-dimensional visualization of 3,000 test samples using
non-linear NCA, supervised UMAP, centroid-encoder, and autoencoder. Like MNIST, the
neighborhoods of CE and the other methods share many similarities. Digits 4, 9, and 7
are still neighbors in all the techniques but now sit more centrally. Digits 8 and 6 are now
consistently neighbors across all methods. The within-class scatter of each digit is again
the highest for autoencoder since it is unsupervised. Non-linear NCA also has considerable
variance across all the digit classes. Supervised UMAP has tighter clumping of the classes
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Figure 5: Two dimensional plot of 3000 USPS test digits by different dimensionality reduc-
tion methods.

– apparently an integral feature of SUMAP as well as UMAP. However, supervised UMAP
has some misplaced digits compared to CE, which is evident from the error rate in Table
3. These observations are consistent with MNIST visualizations. SUMAP emphasizes
the importance of local structure over the global structure of the data. In contrast to CE,
Autoencoder doesn’t provide any meaningful information about the neighborhood structure.
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4.3.3 Letter, Landsat and Phoneme Data Sets

Here we compare centroid-encoder with another suite of supervised methods including,
SNeRV, PE, S-Isomap, MUHSIC, MRE, and NCA. Table 5 shows the results on three bench-
marking data sets, including UCI Letter, Landsat, and Phoneme data set. We included
UMAP for additional comparison. CE produces the smallest prediction error on Landsat
and Phoneme data sets and is ranked second on the Letter data set. On Landsat, the
top three models are CE, SUMAP and UMAP. On the Phoneme data, the centroid-encoder
outperforms the second-best model, which is SUMAP, by a small margin of 0.09%. Notably,
the variance of errors of centroid-encoder (1.33) is better than the SUMAP (2.84). On the
Letter dataset, the centroid-encoder achieves the error rate of 23.82%, which is the second-
best model after SNeRV (λ = 0.1), although the variance of the result of centroid-encoder
is better than SNeRV by a margin of 1.47. Surprisingly the performance of SUMAP and
UMAP degrade significantly on this particular data set. It’s also noteworthy that the
variance of errors for centroid-encoder is the lowest in every case.

Method
Dataset

Letter Landsat Phoneme

CE 23.82± 3.13 8.97± 2.55 7.52± 1.33
Supervised UMAP 33.57± 5.29 9.68± 3.12 7.61± 2.84

UMAP 39.15± 5.51 11.89± 2.83 8.47± 3.08
SNeRV λ = 0.1 22.96± 4.6 14.34± 7.38 9.43± 7.79
SNeRV λ = 0.3 24.59± 4.6 13.93± 6.97 9.02± 7.38

PE 31.15± 4.92 14.75± 8.20 9.84± 6.15
S-Isomap 31.97± 7.38 15.16± 9.02 8.61± 5.74

NCA 62.30± 5.74 15.57± 7.38 20.49± 5.73
MUHSIC 79.51± 4.92 15.37± 4.10 14.75± 4.1

MRE 90.98± 7.38 53.28± 34.2 45.08± 18.03

Table 5: Classification error (%) of k-NN (k=5) on the 2D embedded data by different
supervised embedding methods on Letter, Landsat and Phoneme data. Average misclassi-
fications over ten-fold cross-validation are shown along with standard deviation. Results of
methods other than centroid-encoder, UMAP and SUMAP are reported from Venna et al.
(2010).

The visualization of the two-dimensional embedding using centroid-encoder on Landsat
is shown in Figure 6. We might conclude that the water content in the samples is causing
scatter in the 2D plots and decreases as we proceed counter-clockwise. The test samples
encode essentially the same structure. In Figure 7, we show the visualization using SUMAP.
We see tighter clusters, but there is no difference between the damp and non-damp soil
types. The neighborhood relationships, demonstrated by Laplacian Eigemaps, also show
this transition by dampness consistent with CE. Damp and very damp soils are, however,
not neighbors using SUMAP, making the visualization less informative.
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(a) Two-dimensional plot of Landsat training samples.

(b) Two-dimensional plot of Landsat test samples.

Figure 6: Voronoi cells of two-dimensional Landsat data using a
16 → [250, 150, 2, 150, 250] → 16 centroid-encoder. Voronoi regions for each soil type are
formed from the training set.
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(a) Two-dimensional plot of Landsat training samples.

(b) Two-dimensional plot of Landsat test samples.

Figure 7: Voronoi cells of two-dimensional Landsat data using Supervised UMAP. Voronoi
regions for each soil type are formed from the training set.
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(a) KSPCA (b) SPCA (c) Centroid-encoder

(d) KSPCA (e) SPCA (f) Centroid-encoder

(g) KSPCA (h) SPCA (i) Centroid-encoder

Figure 8: Visualization of Iris (top row), Sonar (middle row) and USPS (bottom row) data
using different dimensionality reduction techniques.
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Method
Dataset

IRIS Sonar USPS

Centroid-encoder 3.29± 2.10 14.24± 2.99 12.16± 2.01
KSPCA 5.16± 4.56 21.06± 5.38 51.63± 2.11
SPCA 5.24± 2.23 32.75± 6.78 54.18± 0.66

Table 6: k-NN (k = 5) error (%) on the 2D embedded data by different supervised embed-
ding methods on Iris, Sonar and USPS data. Note that given the limitations of KSPCA we
have restricted the USPS data set to have 1000 total samples.

4.3.4 Iris, Sonar and USPS (revisited) Data Sets

In this experiment, we compare supervised PCA and kernel supervised PCA to centroid-
encoder. Table 6 contains the classification error using a 5-NN classifier, showing that
centroid-encoder outperforms SPCA and KSPCA by considerable margins by this objective
measure. In the top row of Figure 8, we present the two-dimensional visualization of Iris test
data. Among the three methods, centroid-encoder and KSPCA produce better separation
compared to SPCA. SPCA can’t separate the Iris plants Versicolor and Virginica in 2D
space. The dispersion of the three Iris categories is relatively higher in KSPCA and SPCA
compared to centroid-encoder. Surprisingly in KSPCA, three classes are mapped on three
separate lines.

The two-dimensional visualization of Sonar test samples is shown in the middle row of
Figure 8. None of the methods can completely separate the two classes. The embedding of
KSPCA is slightly better than SPCA, which doesn’t separate the data at all. In centroid-
encoder, the two classes are grouped relatively far away from each other. Most of the rock
samples are mapped at the bottom-left of the plot, whereas the mine samples are projected
at the top-right corner.

The visualization of USPS test data is shown at the bottom of Figure 8. Both SPCA
and KSPCA are unable to separate the ten classes, although KSPCA separates digit 0s
from the rest of the samples. In contrast, the centroid-encoder puts the ten digit-classes in
2-D space without much overlap. Qualitatively, the embedding of centroid-encoder is better
than the other two.

4.4 Visualization and Classification of SUSY

The high-energy supersymmetry particle data (SUSY), is a large data set with 4,500,000
training points and 0.5 million test points (Baldi et al., 2014). Here we demonstrate that
CE is effective at visualizing larger data sets; taken as a whole this data set is too large
for many of the other methods compared here such Laplacian Eigenmaps, t-SNE, KSPCA,
SPCA. The sklearn implementation of UMAP required 9 hours 12 minutes to complete on
this data set.

In Figure 9, we show the 2-dimensional embedding of SUSY test samples using centroid-
encoder, supervised UMAP and PCA. Unlike previous exmaples in this paper, here we used
a multi-center per class approach for centroid-encoder. For both the signal and background
classes two centers were determined using standard k-Means algorithm (Lloyd, 1982; Mac-
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Method Dim. of classification space BSR AUC

CE Classifier 2 80.41± 0.02 0.875± 0.002

Baldi et al. (2014) 300 NA 0.879

Le et al. (2018) not reported 77.79± 0.02 NA

Table 7: Balanced success rate (BSR) and area under the curve (AUC) measure of different
methods on SUSY data sets. NA indicates result not reported.

Queen et al., 1967). Now the CE algorithm is applied as before. We observe that the data is
not completely separable in two-dimensional space, as evident from the visualization of each
model. PCA and centroid-encoder put the two classes close together, although centroid-
encoder split the two classes better than PCA. On the other hand, SUMAP produces three
distinct clusters: one for the signals for two for the backgrounds. Notice the overlap of the
samples from signal to the background.

To quantify the quality of the embedding of these models, we again ran k-NN classi-
fication on the two-dimensional space. We vary the number of nearest neighbors (hyper-
parameter k) to investigate the robustness of the embedding as we transition from local to
more global structure. We see that the accuracies remain almost the same for supervised
UMAP as we increase the value of k. On the other hand, the classification improves for
centroid-encoder as k increases. The accuracy starts to saturate after k = 50. The low
classification accuracy of PCA is expected as it’s an unsupervised model. It’s notewor-
thy that the classification performance using the embedding of centroid-encoder is better
than supervised UMAP for each k. The higher classification accuracies for the small and
large values of k indicate that the embedding of centroid-encoder is robust than supervised
UMAP. From the neighborhood perspective, we can say that the centroid-encoder better
preserves the neighborhood of the data both from local to more global sense.

To illustrate how CE can be used as a classifier, we train a one-hot encoded neural
network on the visualized data. In this architecture the decoder is discarded and a softmax
layer with one-hot-encoding is attached with the encoder. The network is further trained
to learn the class label. In this experiment a bottleneck architecture with two nodes in the
bottleneck layer is used; see Table 1. The resulting balanced success rate (BSR) of CE is
better than the supervised autoencoder model of Le et al. (2018) by a margin of 2.65. The
difference of AUC score between our model to Baldi et al. (2014) is not significant. We
should note that we performed the classification on the 2-dimensional space, whereas Baldi
et al. (2014) did the classification on 300-dimensional space; see Table 7.
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(a) PCA projection of the test data set. (b) CE reduction of the test data set.

(c) SUMAP representation of the test data set. (d) k-NN classification accuracy.

Figure 9: Visualization of SUSY data set using PCA, centroid-encoder and supervised
UMAP. We built the models on the training set, and then project the test samples using
the trained models. We display a subset of the test set (5,000 samples selected randomly
from each class) using the three models. The k-NN classification accuracy is shown in panel
(d).

5. Discussion and Analysis of Results

The experimental results in Section 4.3 establish that centroid-encoder performs competi-
tively, i.e., it is the best, or near the best, on a diverse set of data sets. The algorithms that
produce similar classification rates require the computation of distance matrices and are
hence more expensive than centroid-encoders. Here we analyze the CE algorithm in more
detail to discover why this improved performance is perhaps not surprising. This has to do,
at least in part, with the fact that centroid-encoder, implementing a nonlinear mapping,
is actually able to capture more variance than PCA, and this is particularly important in
lower dimensions.
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5.1 Variance Plot to Explain the Complexity of Data

PCA captures the maximum variance over the class of orthogonal transformations (Kirby,
2001). The total variance captured as a function of the number of dimensions is a measure
of the complexity of a data set. We can use variance to establish, e.g., that the digits 0 and
1 are less complex than the digits 4 and 9. To this end, we use two subsets from the MNIST
training set: the first one contains all the digits 0 and 1, and the second one has all the
digits 4 and 9. Next, we compute the total variance captured as a function of dimension;
see Figure 10. Clearly, the variance is more spread out across the dimensions for the digits
4/9. In Figure 11, we show the visualization of these two subsets using PCA. We see that
the 0/1 samples in subset1 are well separated in two-dimensional space, whereas the data
in subset2 are clumped together. This lies in the fact that in low dimension (2D) PCA
captures more variance from subset1 (around 41%) as compared to subset2 (about 22%).
We can say that subset2 is more complex than subset1 .

Figure 10: Variance plot using two different subsets (subset1: all the digits 0 and 1, subset2:
all the digits 4 and 9) of MNIST data. Left: comparison of variance plot of the two subsets
using the first 100 dimensions. Right: a blowup of the plot on the left showing the % of
variance captured in low dimensions.
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(a) Subset 1: digit 0 and 1 (b) Subset 2: digit 4 and 9

Figure 11: Two dimensional embedding using PCA for subset 1 and subset 2.

5.2 Centroid-encoder and Variance

In this section, we demonstrate how centroid-encoder maps a higher fraction of the variance
of the data to lower dimensions. Again, consider the subset of digits 4 and 9 from the
experiment above. We use all the digits 4 and 9 from the MNIST test set as a validation
set. We trained a centroid-encoder with the architecture 784→ [784]→ 784 where we used
hyperbolic tangent (‘tanh’) as the activation function. We keep the number of nodes the
same in all the three layers. After the training, we pass the training and test samples through
the network and capture the hidden activation which we call CE-transformed data. We show
the variance plot and the two-dimensional embedding by PCA on the CE-transformed data.
Figure 12 compares the variance plot between the original data and the CE-transformed
data. In the original data, only 22% of the total variance is captured, whereas about 89%
of the total variance is captured in CE-transformed data. It appears that the non-linear
transformation of centroid-encoder puts the original high dimensional data in a relatively
low-dimensional space. Visualization using PCA of CE-transformed data (both training and
test) is shown in Figure 13. This time, PCA separates the classes in two-dimensional space.
Comparing Figure 13 with Figure 11b, it appears that the transformation by centroid-
encoder is helpful for low-dimensional visualizations.
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Figure 12: Variance plots for the 4/9 digit data. Left: comparison of variance plot of the
original data and CE transformed data using the first 100 dimensions. Right: a blowup of
the plot on the left showing the % of variance captured in low dimensions.

(a) Digits 4 and 9 from training set. (b) Digits 4 and 9 from test set.

Figure 13: Two dimensional embedding using PCA on the CE-transformed data.

5.3 Computational Complexity and Scalability

The computational complexity of the centroid-encoder is effectively the same as the au-
toencoder. Note, both methods, as is typical of neural network approaches, require the
determination of a suitably tuned network architecture. This is a hidden cost for neural
networks in general. The advantage of centroid-encoder over many other data visualization
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techniques is that it is not necessary to compute pairwise distances. If everything else is
fixed, we can view centroid-encoder as scaling linearly with the number of data points. Tech-
niques that require distance matrices scale quadratically with the number of data points
and can be prohibitively slow as the data set size increases. Methods based on distance
matrices include NNCA, dt-NCA, dG-NCA, dt-MCML, and dG-MCML, as well as the spec-
tral methods including MDS, UMAP, Laplacian Eigenmaps, Isomap and their supervised
counterparts. The only overhead of centroid-encoder is the calculation of centroids of each
class, but this is also linear with the number of classes.

6. Conclusion

In this paper, we presented the centroid-encoder as a new tool for data visualization when
class labels are available. CE is well suited to multi-class data visualization tasks for very
large data sets, e.g., over a million data points, such as the SUSY analysis presented here.
In our experience, it is also beneficial for smaller biological data sets residing in high-
dimensions, e.g., 1000 samples with 10,000-50,000 features; this domain-specific application
will appear elsewhere. The objective function can also be easily adapted via the addition of
penalty terms, such as the addition of a sparsity promoting `1-norm term. In future work,
we will explore the application of this penalty term with CE as a sparse non-linear ap-
proach for supervised data reduction that can be applied to the optimal feature extraction
problem. The wide variety of examples presented here suggest that CE shares many qual-
itative performance similarities with techniques such as Laplacian eigenmaps and Fisher
Discriminant analysis, but has the advantages associated with autoencoders and deep neu-
ral networks including the ability to model very large data sets with highly parameterized
deep architectures.

We compared CE to state-of-the-art techniques and showed advantages empirically over
other methods. Our examples illustrate that CE captures the topological structure, i.e.,
neighborhoods of the data, comparable to methods, but with lower cost and generally better
prediction error. These experiments include comparisons to the unsupervised Laplacian
eigenmaps, UMAP, pt-SNE, autoencoders; the supervised UMAP, SPCA, KSPCA as well
as the MCML and NCA class of algorithms. The algorithms that have the most similar
prediction errors when compared to CE require the computation of distances between all
pairs of points. We demonstrated that the 2D embedding of centroid-encoder produces
competitive, if not optimal, prediction errors. We also showed empirically that the model
globally captures high statistical variance relative to optimal linear transformations, i.e.,
more than PCA.

In addition to capturing the global topological structure of the data in low-dimensions,
CE exploits data labels to minimize the within-class variance. This improves the localization
of the mapping such that points are mapped more faithfully to their Voronoi regions in low-
dimensions. CE also provides a mapping model that can be applied to new data without
any retraining being necessary. This is in contrast to the spectral methods described here
that require the entire training and testing set for computing the embedding eigenvectors.
Also, while the experiments run in this paper focus on visualization of labeled data sets,
it would be interesting to explore the classification performance of bottleneck dimensions
larger than three.
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In the future, we plan to extend the CE model to the setting of unsupervised and
semi-supervised learning.
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