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Abstract
Clustering problems are fundamental to unsupervised learning. There is an increased emphasis
on fairness in machine learning and AI; one representative notion of fairness is that no single
group should be over-represented among the cluster-centers. This, and much more general clus-
tering problems, can be formulated with “knapsack” and “partition” constraints. We develop new
randomized algorithms targeting such problems, and study two in particular: multi-knapsack me-
dian and multi-knapsack center. Our rounding algorithms give new approximation and pseudo-
approximation algorithms for these problems.

One key technical tool, which may be of independent interest, is a new tail bound analogous to
Feige (2006) for sums of random variables with unbounded variances. Such bounds can be useful
in inferring properties of large networks using few samples.
Keywords: Dependent rounding, clustering, fairness

This is an extended version of a paper which appeared in the Proc. 23rd International Confer-
ence on Artificial Intelligence and Statistics (AISTATS 2020)

1. Introduction

Clustering is a fundamental technique in unsupervised learning. Our goal is to systematically study
clustering with knapsack constraints, particularly in light of fairness. Consider a data-clustering
problem, with a set F of potential cluster-centers with m non-negative cost functions M1, . . . ,Mm,
a data-set C, and a symmetric distance-metric d on F ∪ C. Our goal is to choose a set S ⊆ F of
cluster-centers to minimize the distances d(j,S), for j ∈ C, while satisfying the budget constraint∑

i∈SMk(i) ≤ 1 for each k.
The metric used to boil down the values d(j,S) into an objective function cost(S) is problem-

specific. We refer to the m× |F| matrix M as the knapsack-constraint matrix; we refer to the case
m > 1 as multi-knapsack and the case m = 1 as single-knapsack. We typically view m as “small”,
e.g., as a constant. The RHS value 1 for the budget constraint is just a normalization. Note that it is
possible to have F = C.
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As a representative example, which is in fact one of the main motivations behind this work,
consider the following scenario. As in classical clustering, we want to select a small number of
clusters of small radius for a population C. In addition, we are given a collection of m groups
A1, . . . , Am, such that we do not wish to disproportionately select our centers S from any group.
For instance, in healthcare facility location in the face of an epidemic, we may not want to open
too many facilities in a geographic region, or with certain types of equipment, or near only some
groups of patients, etc. Thus, for each k = 1, . . . ,m, we have a constraint |S ∩ Ak| ≤ tk where tk
is a target value which is not much larger than the “fair” proportion of Ak compared to the general
population. These can be represented as knapsack constraints; due to the normalization we use, the
cost functions are given by Mk(i) = 1/tk if i ∈ Ak and Mk(i) = 0 otherwise.

A common strategy for clustering problems is to first solve a related linear program (LP), leading
to a fractional configuration y ∈ [0, 1]F over F satisfying the knapsack constraints. Here, the LP
suggests the fractional extent yi for i ∈ F to be chosen as a center. Based on this solution y,
we partition F into groups, which represent sets of cluster-centers “close to” certain items j ∈ C.
Finally, we use some randomized-rounding algorithm to convert the fractional solution y to an
integral solution Y ∈ {0, 1}F representing the chosen solution S, while ensuring that each group
gets a selected center. (This grouping is needed because if some client j has no nearby opened
facilities, then d(j,S) may be very large.)

The vector Y should also have other probabilistic properties related to the vector y, for example
satisfying E[Y ] = y coordinatewise. Clustering problems pose a particular challenge for random-
ized rounding because they are fundamentally non-linear; the distance from j to its closest center
depends on the joint behavior of the selected centers. Consequently, the rounding process should
also ensure strong independence properties, beyond just bounds on the expected values of individual
coordinates of Y .

One obvious rounding method for the LP is for each group to independently choose a single
center i, with probability proportional to yi. This has optimal independence properties, but com-
pletely ignores the knapsack constraints. This paper focuses on a new randomized rounding strategy
for the LP. We develop two key probabilistic techniques, both of which are quite general and may be
of independent interest: (i) a new “Samuels-Feige” type of concentration inequality for unbounded
random variables; and (ii) a new rounding algorithm in the presence of knapsack constraints plus a
single partition constraint.

As we will see, we cannot simultaneously achieve the goals of exactly preserving the knapsack
constraints and mimicking the probabilistic guarantees of independent selection. Nevertheless, we
obtain significantly stronger guarantees compared to previous algorithms. We summarize these
next, and then discuss our new clustering results.

1.1 Dependent rounding and independence

The general problem of randomized rounding while preserving hard combinatorial constraints often
goes by the name “dependent rounding”; see, e.g., Byrka et al. (2017, 2010); Charikar and Li (2012).
In the most straightforward form of dependent rounding, which we call cardinality rounding, we
have a fractional solution x ∈ [0, 1]n that we wish to round to an integral vector X ∈ {0, 1}n
such that E[X] = x and the cardinality constraint

∑
iXi =

∑
i xi holds with probability one.

For example, Charikar and Li Charikar and Li (2012) applied cardinality rounding as part of their
3.25-approximation algorithm for k-median.
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The cardinality constraint can easily be replaced by a single knapsack constraint Ageev and
Sviridenko (2004); Srinivasan (2001). Over the last two decades, increasingly-sophisticated dependent-
rounding techniques have been used for optimization problems over various types of polytopes; see,
e.g., Ageev and Sviridenko (2004); Srinivasan (2001); Gandhi et al. (2006); Călinescu et al. (2011);
Chekuri et al. (2011); Bansal (2019).

Our new rounding algorithm, which we call Knapsack-Partition Rounding (KPR), generalizes
this setting in two distinct ways: it allows multiple knapsack constraints, and it allows a partition
matroid constraint. Formally, we define a knapsack-partition system to be a partition G over a
ground-set U , along with a real-valued m × |U | matrix M and a fractional vector y ∈ [0, 1]U

satisfying y(G) = 1 for each G ∈ G.
Our overarching question is: how well can we approximate independence while preserving the

knapsack and partition constraints? In an ideal scenario, we would like to generate a random
vector Y ∈ {0, 1}U satisfying the following desiderata (which are, to a certain extent, mutually
incompatible and unattainable – indeed, our algorithm instead guarantees certain related conditions
(E1)–(E6)):

(D1) E[Yj ] = yj for every j ∈ U

(D2) The random variables Yj are negatively correlated, in some sense.

(D3) Y (G) = 1 for G ∈ G.

(D4) MY = My

To explain these further, consider the independent-selection rounding strategy. Formally, we
define Y = INDSELECT(G, y) to be the vector obtained by selecting, independently for each block
G, exactly one item j from G and setting Yj = 1, so that each item j is selected with probability yj .
All other (non-selected) items have Yj = 0. This is a valid probability distribution as y(G) = 1 and
the entries of y are in the range [0, 1]. The vector Y satisfies desiderata (D1), (D2), (D3) perfectly.
However, it only weakly satisfies (D4): specifically, the value of MkY will be a sum of negatively-
correlated random variables, which can deviate significantly from its mean Mky.

As we will later discuss in Section 4.2, the cardinality-rounding setting can be viewed as a spe-
cial case of knapsack-partition constraints. The standard cardinality-rounding algorithm perfectly
satisfies (D1) and (D4); (D3) is not meaningful in this case. For (D2), it satisfies a limited but im-
portant form of negative correlation known as the negative cylinder property Chekuri et al. (2010);
Byrka et al. (2017); Srinivasan (2001); Gandhi et al. (2006); namely, for any set S ⊆ U the rounded
variables Xi satisfy the conditions

E
[∏
i∈S

Xi

]
≤
∏
i∈S

xi, and E
[∏
i∈S

(1−Xi)
]
≤
∏
i∈S

(1− xi). (1)

Our clustering results will require more general forms of negative correlation. Ideally, we would
like for arbitrary disjoint sets S, T ⊆ U to satisfy a similar “near-independence” property:

E
[∏
i∈S

Xi

∏
i∈T

(1−Xi)
]
≈
∏
i∈S

xi
∏
i∈T

(1− xi) (2)

For example, Byrka et. al. Byrka et al. (2017) showed this property for the cardinality-rounding
algorithm with a random permutation of the input vector, in some parameter ranges. Note that
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Eq. (2) cannot be preserved exactly in an integral solution; for example, if x1 = x2 = 1/2, then any
integral solution must either satisfy E[X1(1 −X2)] ≥ 1/2 or E[(1 −X1)X2] ≥ 1/2. This is part
of the reason why property (D2) and general negative correlation are much more challenging than
the negative cylinder property.

To overcome this fundamental barrier, our KPR algorithm terminates with a vector which has a
small number t of fractional entries. To provide intuition, let us discuss how our rounding algorithm
works in the cardinality-rounding setting. (We emphasize that it can handle much more general
scenarios.) The precise sense in which it satisfies Eq. (2) is somewhat technical, but, as one example,
we get

E[
∏
i∈S

Xi

∏
i∈T

(1−Xi)] ≤
(∏
i∈S

xi
∏
i∈T

(1− xi)
)

+O(1/t) (3)

We emphasize that Eq. (3) is only a simplified form of our results. In particular, we will handle
cases where S ∪ T has a large size but only a few elements are “significant.”

Let us briefly compare KPR with other dependent rounding algorithms. The first main genre
of such algorithms is based on variants of the Lovász Local Lemma (e.g., Harris and Srinivasan
(2019); Leighton et al. (2001); Srinivasan (2006)). These algorithms have very good independence
properties, but also lead to knapsack violations on the order of the “standard deviation.” A sec-
ond genre of algorithm is based, like KPR, on Brownian motion in the constraint polytope. These
algorithms are often targeted to discrepancy minimization, see e.g., Beck and Fiala (1981); Karp
et al. (1987); Bansal and Nagarajan (2017); Bansal (2019), where the central goal is to show con-
centration bounds on linear functions of the variables. This is closely related to pairwise correlation
(covariance) among the variables. Our algorithm gets tighter bounds and finer negative correla-
tion properties, including correlations among many variables, by taking advantage of the special
properties of the knapsack-partition constraints.

1.2 Additive pseudo-approximation

Knapsack constraints can be intractable to satisfy exactly, and so pseudo-approximations (i.e., so-
lutions which only approximately satisfy the knapsack constraints) are often used instead. Many
previous algorithms (e.g., Byrka et al. (2017)) have focused on what we refer to as ε-multiplicative
pseudo-solutions: namely that

∑
i∈SMk(i) ≤ 1 + ε for each k. This should be distinguished from

a true approximation algorithm, which finds a feasible solution whose objective function is within
some constant factor of the optimal one.

As we have discussed, our rounding algorithm does not generate a fully-integral vector Y , it only
produces a vector Ỹ which is “mostly” integral, that is, Ỹ ∈ [0, 1]U has only a small (essentially
constant) number of fractional entries. This is critical to overcoming the tradeoff between proba-
bilistic independence and satisfying the knapsack constraints. This naturally leads to an alternative,
additive form of knapsack pseudo-approximation. We define this formally as follows:

Definition 1 (q-additive pseudo-approximation) For a single-knapsack constraint (vector of weights
w with capacity 1), a set S is a q-additive pseudo-solution if it has the form S = S0 ∪ S1, where∑

i∈S0 wi ≤ 1 and |S1| ≤ q. (Equivalently, S satisfies the budget constraint after removing its q
highest-weight items.)

For a multi-knapsack constraint M = M1, . . . ,Mm, we say that S is an q-additive pseudo-
solution for M if it is a q-additive solution for each of the m knapsack constraints M1, . . . ,Mm
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separately. That is, for each k = 1, . . . ,m we have S = S(k)
0 ∪S(k)

1 where
∑

i∈S(k)0

Mk(i) ≤ 1 and

|S(k)
1 | ≤ q.

Such additive pseudo-solutions are naturally connected to the method of alteration in the prob-
abilistic method, where we delete/alter some items in a random structure to establish a desired
property Alon and Spencer (2016). Additive pseudo-approximations have appeared implicitly in
prior algorithms, e.g., Li and Svensson (2016); Krishnaswamy et al. (2011). We can summarize
some of their advantages here, from both practical and technical points of view.

First, additive pseudo-approximation can be a useful tool to obtain true approximations. Gven a
q-additive pseudo-solution, we can often “fix” the q additional items in some problem-specific way.
If q is small, this may incur only a small overhead in the cost or computational complexity. This
strategy was used in the k-median approximation algorithm of Li and Svensson (2016). We use it
here for our (true) approximation algorithm for knapsack center. These problems are described in
Section 1.3.

As another example, there is a common strategy to obtain a multiplicative pseudo-approximation
by “guessing” – exhaustively enumerating – the “big” items in an optimal solution, i.e., items with
M(i) > ρ for some parameter ρ. Then, a q-additive pseudo-approximation for the residual problem
yields a ρq-multiplicative pseudo-approximation to the original problem. This approach can be
more efficient than generating the multiplicative pseudo-solution directly. The reverse direction
does not hold, in general; there does not seem to be any way to go from multiplicative to additive
pseudo-solutions.

To see a practical advantage of additive pseudo-approximation, consider our motivating example
concerning fair representation. In this setting, a q-additive pseudo-solution S leads to a relatively
modest violation of the fairness constraint, namely, it has |S ∩ Ak| ≤ tk + q for each population
Ak and associated target value tk. By contrast, an ε-multiplicative pseudo-solution S would give a
substantially larger violation, namely |S ∩Ak| ≤ tk(1 + ε).

1.3 Clustering results

In describing our clustering results, it is convenient to use the language of classical facility location.
We refer to C as a set of clients, F as a set of facilities, and we say that i ∈ F is open if i is placed
into the solution set S. The distance d(j,S) for a client j can be interpreted as the connection cost
of j to its nearest open facility.

We study two clustering problems in particular: the knapsack median and knapsack center prob-
lems. In the knapsack median problem, we minimize the total connection cost(S) =

∑
j d(j,S)

subject to m knapsack constraints. The knapsack center problem is the same except that the objec-
tive is to minimize cost(S) = maxj∈C d(j,S) instead of the sum

∑
j d(j,S).

Knapsack median was first studied by Krishnaswamy et. al. Krishnaswamy et al. (2011), who
obtained an additive pseudo-approximation with an approximation factor of 16. The current best
true approximation factor is 7.08 for the single-knapsack case, due to Krishnaswamy et al. (2018).
The special case when all facilities in F have unit weight and m = 1, known as the classical k-
median problem, can be approximated to within a factor of 2.675 + ε Byrka et al. (2017). Our KPR
rounding algorithm gives the following pseudo-approximation results:

Theorem 2 Let γ, ε ∈ (0, 1). For single-knapsack median, there is a polynomial-time algorithm to
obtain an O(1/γ)-additive pseudo-solution S with cost(S) ≤ (1 +

√
3 + γ) · OPT ≤ 2.733 · OPT
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and an algorithm with nO(ε−1γ−1) runtime to obtain an ε-multiplicative pseudo-solution S with
cost(S) ≤ (1 +

√
3 + γ) · OPT.

We also consider multi-knapsack median, where it is NP-hard to obtain a true approximation.
We apply KPR for a key step in an algorithm of Charikar & Li Charikar and Li (2012) to get an addi-
tive pseudo-approximation. This can also be leveraged into a multiplicative pseudo-approximation.
We summarize these results as follows:

Theorem 3 Let γ, ε ∈ (0, 1). For multi-knapsack median, there is a polynomial-time algorithm to
obtain anO( m√γ )-additive pseudo-solution S with cost(S) ≤ (3.25+γ)·OPT, and an algorithm with

n
O( m

2

ε
√
γ

) runtime to obtain an ε-multiplicative pseudo-solution S with cost(S) ≤ (3.25 + γ) ·OPT.

By contrast, independent selection in the Charikar-Li algorithm would take nÕ(m/ε2) runtime
for an ε-multiplicative approximation (see Theorem 29). This illustrates how additive pseudo-
approximation can be useful for efficient multiplicative pseudo-approximations; in particular, this
gives a better dependence on the parameter ε (though a worse dependence on parameters m and γ).

The single-knapsack center problem was first studied by Hochbaum & Shmoys in Hochbaum
and Shmoys (1986), under the name “weighted k-center”. They gave a 3-approximation algorithm
and proved that this is best possible unless P = NP; see also Khuller et al. (2000). Our approxima-
tion algorithms ensure each client has better bounds on expected connection distance, in addition to
the usual bound on maximum distance. We summarize this as follows:

Theorem 4 Let γ ∈ (0, 1). There is an algorithm for single-knapsack center with nÕ(1/γ) runtime
which returns a feasible solution S such that every client j ∈ C has

E[d(j,S)] ≤ (1 + 2/e+ γ) · OPT, d(j,S) ≤ 3 · OPT with probability one.

More recently, Chen et. al. Chen et al. (2016) considered the multi-knapsack center problem.
They showed that it is intractable to obtain a true constant-factor approximation, and gave a mul-
tiplicative pseudo-approximation with approximation ratio 3. We obtain a number of new pseudo-
approximations for this setting.

Theorem 5 Let γ, ε ∈ (0, 1). For multi-knapsack median, we describe three algorithms to generate
different types of pseudo-solutions S such that every client j ∈ C has E[d(j,S)] ≤ (1 + 2/e+ γ) ·
OPT and d(j,S) ≤ 3 · OPT with probability one.

(a) A polynomial-time algorithm for an Õ(m/
√
γ)-additive pseudo-solution.

(b) An algorithm with nÕ(m2/γ) runtime for an Õ(
√
m)-additive pseudo-solution.

(c) An algorithm with nÕ(m3/2/ε+m2/γ) runtime for an ε-multiplicative pseudo-solution.

Our algorithms thus give finer guarantees: all clients have distance 3 · OPT to an open facility
with probability one and also all clients have expected connection cost at most (1 + 2/e) · OPT ≈
1.74 · OPT. This can be helpful in flexible facility location, such as a streaming-service provider
periodically reshuffling its service locations. It can also be interpreted as a type of fairness in
clustering, where the fairness is in terms of individual users instead of demographic groups. Note
that the constant factor 1 + 2/e cannot be improved unless P = NP, even in the k-supplier setting
Harris et al. (2019).
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1.4 Notation

In the context of clustering problems, we let n = |F ∪ C|. For a client j ∈ C and a real number
x ≥ 0, we define the facility-ball B(j, x) = {i ∈ F | d(i, j) ≤ x}. For a metric d and a set Y , we
write d(x, Y ) = miny∈Y d(x, y).

For a non-negative integer t, we write [t] = {1, . . . , t}. For a set X and an t-dimensional vector
y, we write y(X) =

∑
i∈X yi. The support of y is defined to be the set of indices i where yi 6= 0.

Given an m× n budget matrix M , we write M(i) for the m-dimensional vector corresponding
to the costs of item i, and we write Mk for the n-dimensional vector, which is a single knapsack-
constraint, corresponding to the kth row of M . Likewise, for a set X ⊆ [n], we write M(X) =∑

i∈XM(i). For an n-dimensional vector y, we write My ≤ ~1 to denote that Mky ≤ 1 for all
k = 1, . . . ,m.

Given a vector Y ∈ {0, 1}n where the support of Y is a q-additive pseudo-solution for a multi-
knapsack constraint matrix M , we sometimes say for brevity that Y is a q-additive pseudo-solution
for M , i.e. for each k we can modify Y to some Y ′ by zeroing out at most q entries such that
MkY

′ ≤ ~1.
We use Iverson notation where [[φ]] is the indicator function for a Boolean predicate φ, i.e.,

[[φ]] = 1 if φ is true, and [[φ]] = 0 otherwise. The Õ() notation is defined as Õ(x) = x ·polylog(x).
A partition G of ground set U is a collection of pairwise-disjoint sets G1, . . . , Gk with U =

G1 ∪ · · · ∪Gk. We refer to Gi as the blocks of the partition. For each u ∈ U , we define G(u) to be
the unique block with u ∈ G(u) ∈ G. For W ⊆ U , we define G(W ) ⊆ G to be the set of blocks
involved in W , i.e., G(W ) = {G(w) | w ∈ W}. For a set of blocks D ⊆ G and a set of items
W ⊆ U , we define the restriction of W to D, denoted W ∧ D, to be the set of items in W which
are also part of a block of D, i.e., W ∧ D =

⋃
G∈DW ∩G = {w ∈W | G(w) ∈ D}.

1.5 Organization

In Section 2, we develop a new “Samuels-Feige” type of concentration inequality for unbounded
random variables. This result is quite general, and may be of independent interest. In Section 3,
we develop and analyze the new KPR dependent rounding algorithm. Section 4 describes a few
extensions of this algorithm. Sections 5, 6, 7 describe the applications to knapsack median and
knapsack center problems. Section 8 provides further analysis of concentration bounds and near-
independence properties of the KPR algorithm.

2. A concentration inequality for additive knapsack pseudo-solutions

The main result of this section is to show an intriguing connection between independent rounding
and pseudo-additive solutions. For maximum generality, we state it in terms of a broader class of
random variables satisfying a property known as negative association (NA) Joag-Dev and Proschan
(1983), defined as follows:

Definition 6 (Negatively associated random variables Joag-Dev and Proschan (1983)) Random
variables X1, . . . , Xn are negatively associated (NA) if for every subset A ⊆ [n], and any pair of
non-decreasing functions f1, f2, the random variables f1(Xi : i ∈ A) and f2(Xj : j ∈ [n] − A)
have non-positive covariance. (Here, “f1(Xi : i ∈ A)” means f1 applied to the tuple (Xi : i ∈ A),
and similarly for “f2(Xj : j ∈ [n]−A)”.)
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If X1, . . . , Xn are independent random variables, then they are NA. The class of NA random
variables includes other random processes; for example, the load-vector of the urns in balls-and-urns
processes Dubhashi and Ranjan (1998).

With this definition, we state our main result:

Theorem 7 Let X1, . . . , Xn be negatively-associated, non-negative random variables. Then with
probability at least 1− δ, there is a set W ⊆ [n] (which may depend on the values of X1, . . . , Xn)

with |W | ≤ O(
√
n log 1

δ ) such that
∑

i∈[n]−W Xi ≤
∑

i∈[n] E[Xi].

Theorem 7 can be rephrased in the language of knapsack constraints:

Corollary 8 Let X1, . . . , Xn be negatively-associated, non-negative random variables, and let
a1, . . . , an be non-negative coefficients with

∑
i aiE[Xi] = 1. Then with probability at least 1− δ,

the values X1, . . . , Xn form an O(
√
n log 1

δ )-additive pseudo-solution to the knapsack constraint
a1x1 + · · ·+ anxn ≤ 1.

Notably, this bound does not depend on the variance of the variablesX1, . . . , Xn, which is quite
different from conventional concentration bounds such as Chernoff-Hoeffding. We remark that the
bound is tight for many values of n and δ. For example, consider a system with n independent
Bernoulli(p) variables for any constant p ∈ (0, 1). In this case, we have |W | = max{(

∑
iXi) −

np, 0}, which is on the order of O(
√
n log 1

δ ) with probability at least 1− δ.
Let us briefly summarize the role of this concentration inequality in our overall rounding algo-

rithm. As we have discussed, the KPR rounding algorithm stops with a vector Ỹ ∈ [0, 1]U with
some t remaining fractional entries, and which satisfies the knapsack constraints exactly. One at-
tractive option to obtain a fully integral vector Y is to apply independent selection to Ỹ , ignoring
the knapsack constraints. This may violate the knapsack constraints, but by how much? This is
precisely the random process governed by Corollary 8. The integral entries of Ỹ have no effect and
so Ỹ effectively has t variables. If we set q = O(

√
t logm), then Corollary 8 shows that Y is a

q-additive pseudo-solution to each knapsack constraintMk with probability 1− 1
2m . A union bound

over the m knapsack constraints shows that Y is a q-additive pseudo-solution for M with constant
probability.

By way of comparison, Feige (2006); Garnett (2020); He et al. (2010); Samuels (1966) give
other concentration bounds for sums of nonnegative independent variables without regard to size
or variance. Such results are useful for problems such as hypergraph matchings and probabilistic
estimation of network parameters Goldreich and Ron (2008); Eden et al. (2019); Alon et al. (2012).
We anticipate that Theorem 7 may have broader applications beyond our rounding algorithm.

2.1 Formal proof of Theorem 7

We begin by recalling some useful properties of NA random variables; see Joag-Dev and Proschan
(1983); Dubhashi and Ranjan (1998) for further details.

Proposition 9 Let X1, . . . , Xn be NA random variables.

(Q1) If f1, . . . , fn are univariate non-decreasing functions, then f1(X1), . . . , fn(Xn) are NA as
well.
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(Q2) If X1, . . . , Xn are bounded in the range [0, 1], then the Chernoff-Hoeffding bounds (for both
the upper- and lower-tails of sums) apply to them as they do to independent random variables.

The proof of Theorem 7 has two parts. First, we prove it under the assumption that the ran-
dom variables X1, . . . , Xn have continuous cumulative density functions (CDF’s); we then use a
“smoothing” argument to extend it to arbitrary distributions.

Let us define λ = log 1
δ . If n < cλ for any chosen constant c, then the result will hold trivially

by taking W = [n]. Thus, we assume that n > cλ for any needed constant c in the proof.
Part I. Suppose that X1, . . . , Xn have continuous CDF’s. By rescaling, we assume without

loss of generality that
∑

iE[Xi] = 1. Since the CDF of the Xi variables is continuous and the Xi

variables are non-negative, there is a real number α ≥ 0 such that∑
i∈[n]

Pr(Xi > α) = 10λ (4)

We will take W to be the set of all indices i ∈ [n] with Xi > α, thus E[|W |] = 10λ. We
need to show that |W | ≤ O(λ) and

∑
i∈[n]−W Xi ≤ 1. Let us define the random variables Yi =

min(α,Xi). Noting that Yi = Xi for i /∈ W while Yi = α for i ∈ W , we see that the following
equation holds with probability one:∑

i∈[n]−W

Xi =
∑
i∈[n]

(
Yi − α[[i ∈W ]]

)
= −α|W |+

∑
i∈[n]

Yi (5)

Let E1 denote the event that 5λ ≤ |W | ≤ 20λ and let E2 denote the event that
∑

i Yi ≤ 1+5αλ.
By Eq. (5), when E1 and E2 both hold, we have

∑
i∈[n]−W Xi ≤ 1 and |W | ≤ O(λ), as is desired.

It remains to compute the probabilities of E1 and E2.
First, since the function mapping x to [[x > α]] is non-decreasing, the indicator variables for

i ∈W remain negatively associated by (Q1). By (Q2) and Eq. (4) we therefore have

Pr(E1) = Pr(5λ ≤ |W | ≤ 20λ) ≥ 1− 2e−Ω(λ) ≥ 1− 2e−Ω(
√
n log(1/δ)) ≥ 1− δ/2

using our assumption that n > cλ for any sufficiently large constant c.
Next, since Yi ≤ Xi, we have E[

∑
i Yi] ≤ 1. The random variables Yi are all bounded in the

range [0, α]. Also since the function mapping x to min(x, α) is non-decreasing, by (Q1) the random
variables Yi remain negatively associated. By (Q2) we can apply Hoeffding’s bound, and thus

Pr(¬E2) = Pr(
∑
i∈[n]

Yi > 1 + 5αλ) ≤ e−
−2(5αλ)2

nα2 = e−50λ2/n = e−50 log(1/δ) ≤ δ/2

Thus, we have Pr(E1∩E2) ≥ 1−δ, and in this case we have
∑

i∈[n]−W Xi ≤ 1 for |W | ≤ O(λ).
Part II. Now consider random variables X1, . . . , Xn (with no assumption on their CDF’s).

Let Y1, . . . , Yn be independent random variables which are uniform in the range [0, εn ], and let
Zi = Xi + Yi. The random variables Zi are clearly non-negative, and they have continuous CDF’s.
For any fixed values of Y1, . . . , Yn, the random variables Z1, . . . , Zn are NA by (Q1); this remains
true after integrating over Y1, . . . , Yn.

So as we showed in Part I of the proof, with probability at least 1− δ we have

min
W⊆[n]
|W |≤r

∑
i∈[n]−W

Zi ≤
∑
i∈[n]

E[Zi]

9
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for some parameter r = O(
√
nλ). Since E[Zi] = E[Xi] + εn/2 and Xi ≤ Zi, this implies that

Pr
(

min
W⊆[n]
|W |≤r

∑
i∈[n]−W

Xi ≤
∑
i∈[n]

E[Xi] + ε/2
)
≥ 1− δ

Since this holds for every ε > 0, this implies:

Pr
(

min
W⊆[n]
|W |≤r

∑
i∈[n]−W

Xi ≤
∑
i∈[n]

E[Xi]
)
≥ 1− δ

This concludes the proof. We remark that our result is algorithmically “local” in that it discards
each i if and only if Xi > α for a certain threshold value α; this automatically ensures that the
discarded set is small with good probability.

3. Knapsack-partition systems and rounding

The KPR rounding algorithm takes as input the partition G over ground set U , the constraint matrix
M , the fractional vector y satisfying y(G) = 1 for all G ∈ G, and an integer parameter t. It returns
a mostly rounded vector Ỹ .

For G ∈ G, we define the following functions to count the number of fractional entries:

TG(y) = max
{

0, |{i ∈ G | yi ∈ (0, 1)}| − 1
}
, and T (y) =

∑
G∈G

TG(y)

We then define the algorithm as follows:

Algorithm 1 KPR(G,M, y, t)

1: for each block G ∈ G do
2: Execute an unbiased walk to generate random vector y′ ∈ [0, 1]U with E[y′] = y, and such

that y′ is an extreme point of the polytope:
{
My′ = My, y′(G) = 1, y′j = yj for j /∈ G

}
.

3: Update y ← y′

4: while T (y) > t do
5: Form a set J ⊆ G, wherein each G ∈ G goes into J independently with probability p =

3m/T (y).
6: if

∑
G∈J TG(y) ≥ m+ 1 then

7: Choose δ ∈ RU such that
•Mδ = 0, y + δ ∈ [0, 1]U , and y − δ ∈ [0, 1]U

•There is at least one index iwith yi ∈ (0, 1) such that yi+δi ∈ {0, 1} or yi−δi ∈ {0, 1}.
•δj = 0 if G(j) /∈ J
•δ(G) = 0 for all G ∈ G.

8: With probability 1/2, update y ← y + δ; else, update y ← y − δ
9: return y

The loop at lines 1–3 is a preprocessing step consisting of straightforward dependent rounding
within each block G. We write y′ = INTRABLOCKREDUCE(y) for the vector obtained at the ter-
mination of the loop. After this step, the algorithm repeatedly applies a more-complicated rounding

10
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process which modifies multiple blocks. We write y′ = KPR-ITERATION(y) to denote a single
iteration of the loop at lines 4–8. Thus, the overall algorithm is equivalent to the following:

Algorithm 2 KPR(G,M, y, t), summarized

1: y ← INTRABLOCKREDUCE(y)
2: while T (y) > t do
3: update y ← KPR-ITERATION(y)
4: return y

The KPR algorithm requires throughout that t > 12m; this assumption will not be stated explic-
itly again. Because of this condition, the probability p in line 5 is at most 3m/t ≤ 1/4. (Note that
it is likely impossible to obtain fewer than m fractional entries, while still respecting the knapsack
constraints.)

Also, although budget matrices for clustering problems are usually assumed to be non-negative,
we dol not require this for KPR. The entries of the matrix M can be arbitrary real numbers.

3.1 KPR algorithm: formal results

As we have discussed, desiderata (D1)–(D4) cannot be exactly satisfied. To describe the negative
correlation properties of KPR, we use a potential function Q(W,x) defined for a set W ⊆ U and
vector x ∈ [0, 1]U as follows:

Q(W,x) =
∏
G∈G

(1− x(W ∩G)).

We will show that the vector Ỹ = KPR(G,M, y, t) satisfies the following constraints:

(E1) For all W ⊆ U , E[Q(W, Ỹ )] is “not much more than” Q(W, y);

(E2) Every j ∈ U has E[Ỹj ] = yj ;

(E3) Ỹ (G) = 1 for G ∈ G;

(E4) MỸ = My;

(E5) At most 2t entries of Ỹ are fractional.

(E6) For each block G ∈ G, at most m+ 1 entries of Ỹ are fractional.

(E1) is intentionally vague, as the relationship between E[Q(W, Ỹ )] and Q(W, y) is quite com-
plex. Our main result covers a setting needed for a number of our clustering algorithms, where there
is a relatively small set D of blocks G which have y(G ∩W ) close to one. Formally, we show the
following:

Theorem 10 LetD ⊆ G with |D| = d and let Ỹ = KPR(G,M, y, t) with t ≥ 5000m(d+ 1). Then
for any set W ⊆ U , there holds

E[Q(W, Ỹ )] ≤ Q(W, y) +Q(W ∧ D, y)
(
eO((d+1)2m2/t) − 1

)
11
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Recall that we define W ∧D =
⋃
G∈DW ∩G. Theorem 10 is complex and hard to use directly.

We derive a number of simplified results, such as the following three estimates:

Theorem 11 Let Ỹ = KPR(G,M, y, t) and let W ⊆ U .

(a) For D ⊆ G with t > 5000m2(|D| + 1)2 there holds E[Q(W, Ỹ )] ≤ Q(W, y) + O((|D| +
1)2m2/t) ·Q(W ∧ D, y).

(b) For t > 12m, there holds E[Q(W, Ỹ )] ≤ Q(W, y) +O(m2/t).

(c) For t > 10000md where d = |G(W )|, there holds E[Q(W, Ỹ )] ≤ Q(W, y)eO(m2d2/t).

There are two key steps in KPR to ensure property (E1). First, the modification vector δ in line
4 is always bounded by the current value of y. This ensures that the typical change in the value of
Q(W, y) is proportional to the current value of Q(W, y). Second, the set J , which determines the
entries of y to modify, is randomly selected. This spreads out the (inevitable) correlation among the
entries of y.

Before we show Theorem 10, let us explain the role played by the potential functionQ. Observe
that for Y = INDSELECT(G, y) we have Y (W ) = 0 if and only if Q(W,Y ) = 1 and so

Pr(Y (W ) = 0) = E[Q(W,Y )] = Q(W, y);

thus, Q(W, Ỹ ) is a smoothed measure of whether the KPR output Ỹ satisfies Ỹ (W ) = 0.
Why might one be interested in upper-bounding terms of the form Pr(Y (W ) = 0)? We have

briefly touched on this, but let us spell out in greater detail how such bounds arise in clustering
algorithms, such as our algorithms for knapsack median and knapsack center. The simplest versions
of these algorithms first cluster the facilities in some greedy manner; these are the blocks G of the
partition. They then open a facility suitably at random from each block. Any given client j will
first check if some “nearby” facility gets opened; if not, then it must use a “backup” facility which,
however, is farther away. The bad event of no opened “nearby” facility corresponds to Y (W ) = 0,
where Y is the indicator vector for which facilities are open and W is the set of nearby facilities.

In more advanced algorithms, multiple facilities may be opened from a cluster, or the clusters
may have even more complex interactions. These cases can also be interpreted as knapsack-partition
systems, and again the distance for a client j can be recast in terms of events of the form Y (W ) = 0.

Section 8 shows some further upper bounds on E[Q(W, Ỹ )]. These do not follow from Theo-
rem 10, and are not directly useful for our clustering algorithms. For simplicity, we do not attempt
to optimize the constant factors here or elsewhere in the analysis.

We will begin by showing some easier properties of this algorithm, including that it is well-
defined and terminates in polynomial time. The proof of (E1), which is much harder, comes next.

3.2 Simple properties and convergence of KPR

Proposition 12 The vector y′ = INTRABLOCKREDUCE(y) satisfies properties (E2), (E3), (E4),
(E6). Furthermore, for any W ⊆ U we have E[Q(W, y′)] = Q(W, y).

Proof The polytope in line 2 of KPR has m + 1 constraints among entries yj for j ∈ G, so an
extreme point has at most m + 1 fractional entries. The polytope conditions preserve properties
(E3) and (E4), and preserve (E2) since the walk is unbiased. Finally, the change in y during each

12
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iteration is confined to block G. Since Q(W, y) is linear function of yj for j ∈ G, (E2) ensures that
E[Q(W, y)] does not change.

Proposition 13 The vector δ in line 7 of KPR exists and can be found efficiently.

Proof In forming the vector δ, there is one degree of freedom for each entry i ∈ G with yi ∈ (0, 1)
and G ∈ J . We further have m linear constraints (from the matrix M ) and |J | linear constraints
(from the condition δ(G) = 0 for each G ∈ J ). This gives a total of

∑
G∈J TG(y)−m degrees of

freedom.
So the linear system has a non-zero solution vector v as long as

∑
G∈J TG(y) ≥ m+ 1, which

is precisely the condition at line 6 of KPR. Now let a ∈ R be maximal such that y + av ∈ [0, 1]U

and y − av ∈ [0, 1]U . One may verify that a <∞ and that δ = aγ achieves the claimed result.

Proposition 14 In each iteration y′ ← KPR-ITERATION(y) of KPR, there is a probability of at
least 0.24 that y′ has at least one more integral coordinate than y.

Proof By Proposition 12, the vector y after INTRABLOCKREDUCE has TG(y) ≤ m for each
G ∈ G. We also have T (y) > t, as otherwise KPR would have terminated.

For each G ∈ G, define ZG = [[G ∈ J ]]TG(y) and define Z =
∑

G ZG. If Z ≥ m + 1, then
there is at least 1/2 probability of producing at least one new rounded entry in y′. Also, Z is a sum
of independent random variables with mean pT (y) = 3m; furthermore, each ZG is bounded in the
range [1,m]. A simple analysis with Chernoff’s bound shows that Pr(Z ≥ m + 1) ≥ 0.48, which
gives the claimed result.

We will later need the following stronger version of Proposition 14 where we condition on a
given iteration not touching a given subset of blocks.

Proposition 15 Consider an iteration y′ ← KPR-ITERATION(y) of KPR. For any set of blocks
D ⊆ G with t ≥ 5000m(|D| + 1), there is a probability of at least 1/10 that D ∩ J = ∅ and
T (y′) < T (y).

Proof Let d = |D|. Letting E denote the event that D ∩ J = ∅, we have

Pr(E) = (1− 3m/T (y))d ≥ (1− 3m/t)d ≥
(

1− 3m

5000m(d+ 1)

)d
≥ 0.99

Next, as in Proposition 14, let us define Z =
∑

G∈J [[G ∈ J ]]TG(y). If Z ≥ m + 1,
then with probability 1/2 there will be at least one rounded variable. Furthermore, conditional
on event E , here Z is a sum of independent random variables in the range [1,m] and with mean
µ =

∑
G∈G−D pTG(y). Since T (y) ≥ t and TG(y) ≤ m for all blocks G, we have µ ≥

(3m/t) · (t − dm) ≥ 3m(5000m(d+1)−dm)
5000md ≥ 2.99m. So, by Chernoff’s bound, Pr(Z < m + 1 |

E) ≤ e−(2.99)2(0.34)2/2 ≤ 0.60. Overall, the desired event happens with probability at least
0.99 · (1− 0.60) · 1/2 ≥ 1/10.

13
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Proposition 16 The output Ỹ of KPR(G,M, y, t) satisfies properties (E2) — (E6).

Proof By Proposition 12, the conditions (E2), (E3), (E4), (E6) hold after INTRABLOCKREDUCE.
Each application of KPR-ITERATION updates y ← y± δ. Since δ(G) = 0 and Mδ = 0, properties
(E3), (E4) are preserved. The expected change in y is 1

2δ + 1
2(−δ) = 0, so property (E2) is pre-

served. For property (E5), note that KPR terminates when T (y) ≤ t, in which case Ỹ = y has at
most 2t fractional entries.

Proposition 17 KPR runs in expected polynomial time.

Proof Clearly INTRABLOCKREDUCE runs in polynomial time. By Proposition 14, each iteration
of KPR-ITERATION has a probability Ω(1) of causing a new entry to become integral, in which
case T (y) decreases by at least one. This implies that the expected number of iterations is O(|U |),
and by Proposition 13, each iteration can be implemented in polynomial time.

3.3 Property (E1): Proof of Theorem 10

Before the formal analysis, let us provide an overview. Consider the evolution of the random vari-
able Q(W, y) for some set W . There may be small increase in the expected value of Q(W, y) in
each iteration of KPR, but this is compensated by steady decrease in T (y). To measure this, we will
define a potential function Φ which depends on Q(W, y) and T (y); we will show that E[Φ(y)] does
not increase in any iteration of KPR. Furthermore, when T (y) ≤ t at the end of the process, we
have Φ(y) = Q(W, y). Consequently, the final value E[Q(W, Ỹ )] = E[Φ(Ỹ )] is at most the initial
value Φ(y).

We first show a useful result on how the potential function Q changes during a single iteration
of KPR.

Lemma 18 Suppose we are in the middle of executing KPR with state vector y, and let y′ be state
vector at the next iteration. If we condition on the vector y, then for each W ⊆ U there holds

E[Q(W, y′) | y] ≤ Q(W, y) cosh
( 6m

T (y)

∑
G∈G

y(G ∩W )
)

Proof Define S = Q(W, y) and S′ = Q(W, y′). All probability calculations here are conditioned
on y. Let us first condition as well on the random variable δ. Note y′ = y + δ or y′ = y − δ, each
with probability 1/2. If we define bG = y(G ∩W ) and µG = δ(G ∩W ) for each G ∈ G, we
therefore get:

E[S′ | δ] = 1/2
∏
G

(1− bG − µG) + 1/2
∏
G

(1− bG + µG)

= 1/2
∑
X⊆G

∏
G∈X

(−µG)
∏

G∈U−X
(1− bG) + 1/2

∑
X⊆G

∏
G∈X

(µG)
∏

G∈U−X
(1− bG)

=
∑
X⊆G
|X| even

∏
G∈X

µG
∏

i∈U−X
(1− bG) = S

∑
X⊆G
|X| even

∏
G∈X

µG
1− bG

≤ S
∑
X⊆G
|X| even

∏
G∈X

|µG|
1− bG

14
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For each block G define RG = 2[[G ∈ J ]]bG(1 − bG). We claim that |µG| ≤ RG with
probability one. For, if G 6∈ J , then µG = 0 = RG. If G ∈ J , then necessarily

∑
j∈G∩W (yj + δj)

is bounded in [0, 1], and hence |µG| ≤ min(bG, 1− bG) ≤ 2bG(1− bG) = RG. Therefore,

E[S′ | δ] ≤ S
∑
X⊆G
|X| even

∏
G∈X

|µG|
1− bG

≤ S
∑
X⊆G
|X| even

∏
G∈X

RG
1− bG

The random variables RG are independent, and each has mean E[RG] = (3m/T (y)) · 2bG(1−
bG). Now integrate over random variables δ and J to obtain:

E[S′] ≤ S
∑
X⊆G
|X| even

∏
G∈X

E[RG]

1− bG
≤ S

∞∑
v=0

1

(2v)!

(∑
G

E[RG]

1− bG

)2v

= S cosh

(∑
G

E[RG]

1− bG

)

≤ S cosh

(∑
G

(3m/T (y)) · 2bG(1− bG)

1− bG

)
= S cosh

(
6m
∑

G bG
T (y)

)

We are now ready to show Theorem 10; Theorem 11 will follow as an immediate corolalry.
Proof of Theorem 10 Let us fix D ⊆ G and W ⊆ U with |D| = d and t ≥ 5000m(d + 1). We
define parameter a = 8000m2(d + 1)2 and we define potential function Φ for a vector x ∈ [0, 1]U

by:

Φ(x) =

{
Q(W,x) +Q(W ∧ D, x)

(
e
a( 1
t
− 1
T (x)

) − 1
)

if T (x) ≥ t
Q(W,x) if T (x) < t

The key to the proof is to show that, if we are in the middle of executing KPR, with state vector
y, and we let y′ be the state vector at the next iteration, then there holds

E[Φ(y′) | y] ≤ Φ(y) (6)

To show Eq. (6), let us fix the state y. We may assume that T (y) > t, as otherwise the algorithm
is done and y = y′. We define a number of parameters as follows:

S0 = Q(W ∧ D, y)

S1 = Q(W ∧ (G − D), y)

S = Q(W, y) = S0S1

T = T (y)

β = ea(1/t−1/T )

S′0 = Q(W ∧ D, y′)
S′1 = Q(W ∧ (G − D), y′)

S′ = Q(W, y′) = S′0S
′
1

T ′ = T (y′)

β′ = max{1, ea(1/t−1/T ′)}

With this notation, we observe that

Φ(y) = S + S0(β − 1), Φ(y′) = S′ + S′0(β′ − 1).

Now let E1 denote the event that T ′ < T ; when E1 occurs, then we have β′ ≤ ea(1/t−1/(T−1))

since T > t. Our condition on t implies that T ≥ t ≥ 2
√
a; as we show in Proposition 49, we thus

have

β′ ≤ β − a[[E1]]β

2T 2
.

15
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So Φ(y′) ≤ S′ + S′0
(
β − 1− a[[E1]]β

2T 2

)
. Taking expectations gives

E[Φ(y′)]− Φ(y) ≤ E[S′] + E[S′0(β − 1)]−E
[
S′0
a[[E1]]β

2T 2

]
− S − S0(β − 1)

which we rearrange as:

E[Φ(y′)]− Φ(y) ≤ E[S′ − S] + (β − 1)E[S′0 − S0]− aβE[S′0 | E1] Pr(E1)

2T 2
(7)

Let us consider the terms in Eq. (7) in turn. For the last term, define E2 to be the event that
the set J formed at line 5 of KPR satisfies D ∩ J = ∅. We can estimate E[S′0 | E1] Pr(E1) ≥
E[S′0 | E1 ∩ E2] Pr(E1 ∩ E2). When E1 and E2 occur, then S′0 = S0 as none of the entries in W ∧D
are modified. By Proposition 15, Pr(E1 ∩ E2) ≥ 1/10 so overall E[S′0 | E1] Pr(E1) ≥ S0/10.
Substituting the value of a, we get

aβE[S′0 | E1] Pr(E1)

2T 2
≥ 400m2(d+ 1)2βS0/T

2 (8)

Our next step is to estimate the term E[S′0 − S0]. By Lemma 18 applied to the set W ∧D, we have

E[S′0] ≤ S0 cosh
(

6m
∑
G∈D

y(G ∩W )/T
)
≤ S0 cosh

(
6md/T

)
By our assumption that T ≥ t ≥ 5000m(d+ 1), this is at most S0(1 + (6md/T )2), and so

E[S′0]− S0 ≤ 36S0(md/T )2 ≤ 36S0m
2(d+ 1)2/T 2 (9)

Finally, we turn to estimating E[S′ − S]. By Lemma 18 applied to the set W , we have E[S′] ≤
S cosh

(
6m
∑

G y(G ∩W )/T
)
. Since 0 ≤ y(G ∩W ) ≤ 1 and x ≤ − ln(1− x) for all x ∈ [0, 1],

we have:

E[S′] ≤ S cosh
(6m

T

(∑
G∈D

1−
∑

G∈G−D
ln(1− y(G ∩W ))

))
= S0S1 cosh

(
6m(d− lnS1)/T

)
As we show in Proposition 48, this implies that

E[S′]− S ≤ S0

(
S1 cosh

(
6m(d− lnS1)/T

)
− S1

)
≤ S0

(
6m(d+ 1)/T

)2 (10)

Substituting the estimates of Eqs. (8), (9), (10) into Eq. (7), we see that

E[Φ(y′)]− Φ(y) ≤ 36S0m
2(d+ 1)2/T 2 + 36(β − 1)S0m

2(d+ 1)2/T 2 − 400m2(d+ 1)2S0/T
2

= S0m
2(d+ 1)2

(
36 + 36(β − 1)− 400β

)
/T 2 = −364S0m

2(d+ 1)2/T 2

which is non-positive; this shows Eq. (6) as desired.
To complete the proof of Theorem 10, suppose we execute KPR with input vector y. Let y′

be the vector after INTRABLOCKREDUCE and let Ỹ be the output vector. Since E[Q(X, y′)] =
E[Q(X, y)] for all sets X ⊆ U , we have

E[Φ(y′)] ≤ E[Q(W, y′)] + (ea/t − 1)E[Q(W ∧ D, y′)] = Q(W, y) + (ea/t − 1)Q(W ∧ D, y)
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By Eq. (6), and induction on all iterations of KPR, the output Ỹ satisfies E[Φ(Ỹ )] ≤ E[Φ(y′)]. At
the termination of KPR, we have T (Ỹ ) ≤ t and so Φ(Ỹ ) = Q(W, Ỹ ). Putting these inequalities
together, we have shown that

E[Q(W, Ỹ )] ≤ Q(W, y) +Q(W ∧ D, y)(ea/t − 1) .

Proof [Proof of Theorem 11] For part (a), observe that when t ≥ 5000m2(d + 1)2 we have
eO(m2(d+1)2/t) − 1 = O(m2(d + 1)2/t). Part (b) follows from part (a) with D = ∅; note that
if t < 10000m2 then the bound holds vacuously since Q(W, Ỹ ) ≤ 1 with probability one. Part (c)
follows Theorem 10 with D = G(W ); if if d = 0, then W = ∅ so the bound holds vacuously.

4. Variants of KPR

We summarize here some simpler ways to use KPR, which will occur in a number of algorithmic
scenarios.

4.1 KPR followed by independent selection

One natural rounding strategy for a knapsack-partition problem is to execute KPR up to some stage
t, and then finish by independent rounding. We define this formally as the algorithm FULLKPR:

Algorithm 3 FULLKPR(G,M, y, t)

1: Ỹ ← KPR(G,M, y, t)
2: Y ← INDSELECT(G, Ỹ )
3: return Y

The resulting vector Y ∈ {0, 1}U is fully integral; it will not exactly satisfy the knapsack
constraints, but it will be relatively close (depending on the value of t). Since independent selection
does not change the expectation of Q(W, y), all the analysis for KPR carries over immediately to
FULLKPR.

Theorem 19 Let Y = FULLKPR(G,M, y, t) with t > 12m. Suppose that the constraint matrix
M is non-negative and satisfies My ≤ ~1. Then with probability at least 1 − δ, the vector Y is a
q-additive pseudo-solution to M where q = O(

√
t log m

δ ). This probability bound holds even after
conditioning on the fixed vector Ỹ .

Proof Let us fix Ỹ = KPR(G,M, y, t), and let G′ denote the set of blocks where Ỹ has a fractional
entry. By Proposition 16, we have MỸ = My ≤ ~1, and |G′| ≤ 2t.

Consider some row k of the constraint matrix. Define the random variableZG =
∑

j∈GMk(j)Yj
for each block G ∈ G, and note that MkY =

∑
G∈G ZG. By Corollary 8, with probability

of 1 − δ/m there is a subset of blocks G′k ⊆ G′ with |G′k| ≤ q = O(
√
t log m

δ ), such that∑
G∈G′−G′k

ZG ≤
∑

G∈G′ E[ZG]. The vector Y has one non-zero entry per block, and if we
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zero out the entries in the blocks of G̃′k, the resulting vector Y ′ has MkY
′ ≤

∑
G∈G−G′k

ZG ≤∑
G∈G E[ZG] = MkỸ = Mky. Thus Y is a q-additive pseudo-solution for Mk with probability at

least 1− δ/m. Now take a union bound over all m rows.

Proposition 20 Let Y = FULLKPR(G,M, y, t) and let W ⊆ U .

1. For t > 12m, there holds E[
∏
j∈W Yj ] ≤ O(m2/t) +

∏
j∈W yj .

2. For t > 10000m|W |, there holds E[
∏
j∈W Yj ] ≤ eO(m2|W |2/t)∏

j∈W yj .

Proof We assume that the elements of W all come from distinct blocks, as otherwise the LHS is
zero and this holds immediately. Consider the set W ′ = {j ∈ U − W : G(j) ∈ G(W )}. We
have |G(W ′)| ≤ |G(W )| = |W | and E[

∏
j∈W Yj ] = Q(W,Y ). Finally, note that E[Q(W,Y )] =

E[Q(W, Ỹ )] where Ỹ is the vector at line 1 of FULLKPR. Now apply Theorem 11.

4.2 Dependent rounding for knapsack constraints

Given a vector x ∈ [0, 1]U and a multi-knapsack constraint M with Mx ≤ ~1, the problem of
knapsack rounding is to produce an integral vector X ∈ {0, 1}U which (as closely as possible)
satisfies the knapsack constraint MX ≤ ~1 and has probabilistic properties related to vector x such
as E[X] = x coordinatewise. Note that this includes cardinality rounding as a special case, with
m = 1 and M(i) = 1/r for all i ∈ U .

We can interpret knapsack rounding as a special case of KPR. To do so, we extend the set U to
a larger ground-set U ; for each item i ∈ U , we have a corresponding “dummy” item ī. We then
form a vector y ∈ [0, 1]U by setting yi = xi and yī = 1− xi for each i ∈ U , and we define a block
Gi = {i, ī}. We lift the knapsack constraints M to U by setting M (̄i) = 0 for all i.

We can then run KPR on this resulting knapsack-partition instance, and return the fractional
vector X̃ ∈ [0, 1]U defined as X̃i = Ỹi for i ∈ U . We let X̃ = KNAPROUND(x,M, t) be the result
of this process. Note that MX̃ = MỸ = My, and that X̃ has at most 2t fractional entries. We can
state a particularly crisp form of our near negative-correlation bounds in this setting:

Proposition 21 Let X̃ = KNAPROUND(x,M, t), and let S, T be disjoint subsets of U . Let d =
|S ∪ T |.

1. For t > 12m there holds E
[∏

i∈S X̃i
∏
i∈T (1− X̃i)

]
≤ O(m2/t) +

∏
i∈S xi

∏
i∈T (1− xi)

2. For t > 10000md there holds E
[∏

i∈S X̃i
∏
i∈T (1− X̃i)

]
≤ eO(m2d2/t) ·

∏
i∈S xi

∏
i∈T (1−

xi)

Proof Define W ⊆ U by W = {̄i | i ∈ S} ∪ {i | i ∈ T}. Clearly |W | = d. Also, we have
Q(W, y) =

∏
i∈S xi

∏
i∈T (1 − xi) and Q(W, Ỹ ) =

∏
i∈S X̃i

∏
i∈T (1 − X̃i). Now apply Theo-

rem 11.

This technique of creating “dummy elements” (in this case, the elements ī), as indicators for not
selecting items, will appear in a number of constructions.
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5. Pseudo-approximation algorithm for single-knapsack median

We now describe a (1 +
√

3 + γ)-pseudo-approximation algorithm for single-knapsack median.
This is inspired by an approximation algorithm of Li & Svensson Li and Svensson (2016) for k-
median. The idea is to solve a relaxation called a “bi-point solution”, and then round it to an
additive pseudo-solution. This can also be used to obtain a multiplicative pseudo-approximation.
The k-median algorithm of Li and Svensson (2016) has an additional postprocessing step to correct
it to a true solution; however, this step does not seem to work for knapsack median.

Recall that we define the cost for a facility set S ⊆ F by cost(S) =
∑

j∈C d(j,S) and the
weight by M(S) =

∑
i∈SM(i). We define OPT to be the minimum value of cost(S) over feasible

sets S. By a straightforward adaptation of Williamson and Shmoys (2011); Jain et al. (2002) to the
knapsack setting, we get the following result:

Theorem 22 There is a polynomial-time algorithm to compute two sets F1,F2 ⊆ F and a param-
eter b ∈ [0, 1] satisfying the following properties:

• M(F1) ≤ 1 ≤M(F2),

• (1− b) ·M(F1) + b ·M(F2) ≤ 1

• (1− b) · cost(F1) + b · cost(F2) ≤ 2 · OPT.

The sets F1,F2 are called the bi-point solution. For i ∈ F2 we define σ(i) to be the closest
facility of F1. Following Li and Svensson (2016), we define Star(i) for each facility i ∈ F1 to be
the set of facilities k ∈ F2 with σ(k) = i, that is, Star(i) = σ−1(i). The intent is that for each
i ∈ F1, with probability 1− b we open i and with the complementary probability b we open all the
facilities of Star(i). In order to preserve the knapsack constraints, there are a few exceptional cases
where we open both i and some subset of Star(i).

The full details of our rounding algorithm are spelled out in Algorithm 4. Here, t is an integer
parameter to be specified; we assume throughout that t ≥ 20000. Note that the modified constraint
matrix M ′ can have negative entries, but this does not cause a problem for executing KPR.

Algorithm 4 ROUNDSTARS(t)

1: Define vectors y,M ′ ∈ [0, 1]F1 by setting yi = 1 − b,M ′(i) = M(i) −M(Star(i)) for each
i ∈ F1.

2: Ỹ ← KNAPROUND(y,M ′, t)
3: Define the vector z ∈ [0, 1]F2 , by setting zi = 1− Ỹσ(i).
4: Z̃ ← KNAPROUND(z,M, t)
5: return S = {i ∈ F1 | Ỹi > 0} ∪ {i ∈ F2 | Z̃i > 0}.

Proposition 23 The solution S is a 4t-additive pseudo-solution with probability one.

Proof Let S ′1 denote the facilities i ∈ F1 with Ỹi ∈ (0, 1) and let S ′2 denote the set of facilities
i ∈ F2 with Z̃i ∈ (0, 1), and let S ′ = S ′1 ∪S ′2. Since Ỹ and Z̃ have at most 2t fractional entries, we
have |S ′| ≤ 4t. We now claimM(S−S ′) ≤ 1, which shows that S is a 4t-additive pseudo-solution.
We have:

M(S − S ′) =
∑
i∈F1

[[Ỹi = 1]]M(i) +
∑
i∈F2

[[Z̃i = 1]]M(i) ≤
∑
i∈F1

M(i)Ỹi +
∑
i∈F2

M(i)Z̃i.
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By Property (E4) of KPR, this equals∑
i∈F1

M(i)Ỹi +
∑
i∈F2

M(i)zi =
∑
i∈F1

M(i)Ỹi +
∑
i∈F2

M(i) · (1− Ỹσ(i)).

Here,
∑

i∈F2
M(i) · (1− Ỹσ(i)) contributes M(Star(i))(1− Ỹi) for each i ∈ F1. Thus, the sum is

at most ∑
i∈F1

M(i)Ỹi + (1− Ỹi)M(Star(i)) =
∑
i∈F1

M(Star(i)) +M ′(i)Ỹi

By Property (E4) of (KPR), this equals
∑

i∈F1
M(Star(i)) +M ′(i)yi, which can be simplified as∑

i∈F1

M(Star(i)) + (1− b)(M(i)−M(Star(i))) = (1− b)M(F1) + bM(F2)

which is at most 1 by the properties of the bi-point solution.

Proposition 24 For any facilities i1 ∈ F1, i2 ∈ F2, Algorithm 4 yields

Pr(i2 6∈ S) ≤ 1− b, Pr(i1 6∈ S ∧ i2 6∈ S) ≤ b(1− b)(1 +O(1/t))

Proof Let k = σ(i2). Conditioned on the vector Ỹ we have

Pr(i2 6∈ S | Ỹ ) = Pr(Z̃i2 = 0 | z) ≤ E[1− Z̃i2 | z] = 1− zi2 = Ỹk (11)

Integrating over z shows that Pr(i2 6∈ S) ≤ E[Ỹk] = yk = 1− b, as claimed.
For the second result, note that in order to have i1 6∈ S and i2 6∈ S, we must have Ỹi1 = Z̃i2 = 0

and i1 6= k. So by Eq. (11) we have

Pr(i1 6∈ S ∧ i2 6∈ S | Ỹ ) = [[Ỹi1 = 0]] Pr(i2 /∈ S | Ỹ ) ≤ [[Ỹi1 = 0]]Ỹk ≤ (1− Ỹi1)Ỹk.

Since i1 6= k, and we are assuming t ≥ 20000, Proposition 21 gives:

E[Ỹi1(1− Ỹk)] ≤ yi1(1− yk)eO(m2(1+1)2/t) = b(1− b)(1 +O(1/t))

Proposition 25 Each client j ∈ C has expected cost

E[d(j,S)] ≤ (1− b)d(j,F1) + bd(j,F2) + 2d(j,F2)b(1− b)(1 +O(1/t))

Proof Let i1, i2 denote the closest facilities in F1,F2 to j, and let k = σ(i2). We also define
d1 = d(j,F1) = d(j, i1) and d2 = d(j,F2) = d(j, i2).

If i2 ∈ S then d(j,S) ≤ d2 and likewise if i1 ∈ S then d(j,S) ≤ d1. If neither holds, then
necessarily facility k is open. Since k is the closest facility in F1, we must have d(i2, k) ≤ d(i2, i1).
We then have

d(j,S) ≤ d(j, k) ≤ d(j, i2)+d(i2, k) ≤ d(j, i2)+d(i2, i1) ≤ d(j, i2)+d(i2, j)+d(j, i1) = 2d2+d1

20



DEPENDENT RANDOMIZED ROUNDING FOR CLUSTERING AND PARTITION SYSTEMS WITH KNAPSACK CONSTRAINTS

Putting these together gives

E[d(j, S)] ≤ Pr(i2 ∈ S)d2 + Pr(i1 ∈ S ∧ i2 6∈ S)d1 + Pr(i1 6∈ S ∧ i2 6∈ S)(2d2 + d1)

= d2 + (d1 − d2) Pr(i2 6∈ S) + 2 Pr(i1 6∈ S ∧ i2 6∈ S)d2

Proposition 24 gives Pr(i2 6∈ S) ≤ 1− b and Pr(i1 6∈ S ∧ i2 6∈ S) ≤ b(1− b)(1 +O(1/t)).

We are now ready to obtain our bi-factor approximation algorithm.

Theorem 26 There is an algorithm with poly(n/γ) runtime to obtain an O(1/γ)-additive pseudo-
solution S with cost(S) ≤ (1 +

√
3 + γ) · OPT.

Proof We will use Algorithm 4, and output either the solution S it returns or the feasible solution
F1 (whichever has least cost). By Proposition 23, the solution S is a 4t-additive pseudo-solution.

Define D1 =
∑

j d(j,F1) and D2 =
∑

j d(j,F2). Applying Proposition 25 and summing over
all clients j ∈ C, we see that S satisfies

E[cost(S)] ≤ (1− b)D1 + bD2 + 2b(1− b)D2 · (1 +O(1/t))

Since the cost of A is the minimum of the cost of F1 and S , this implies that

E[cost(A)] ≤ (1 +O(1/t)) ·min{D1, (1− b)D1 + bD2 + 2b(1− b)D2}

It can be routinely verified that1

min{D1, (1− b)D1 + bD2 + 2b(1− b)D2} ≤
1 +
√

3

2

(
(1− b)D1 + bD2

)
Since F1,F2 is a bi-point solution, we have (1− b)D1 + bD2 ≤ 2 · OPT. Therefore,

E[cost(A)] ≤ (1 +O(1/t)) · 2 · OPT · 1 +
√

3

2
= (1 +O(1/t)) · (1 +

√
3) · OPT

If we set t = Ω(1/γ), then after an expected O(1/γ) repetitions of this process, we obtain a
solution of cost at most (1 +O(γ)) · OPT.

We can leverage this to obtain a multiplicative pseudo-approximation.

Theorem 27 There is an algorithm with nO(ε−1γ−1) runtime to obtain an ε-multiplicative pseudo-
solution S with cost(S) ≤ (1 +

√
3 + γ) · OPT.

Proof Call a facility i big if M(i) ≥ ρ = Θ(εγ). The solution may have at most 1/ρ big facil-
ities, which we can guess in nO(1/ρ) time. Now construct a residual instance where all other big
facilities, aside from the ones guessed to be in our solution, are removed. Apply Theorem 26 to this
residual instance; after rescaling, the resulting solution S satisfies cost(S) ≤ (1 +

√
3 + γ) · OPT

and M(S) ≤ 1 + O(ρ/γ), since each facility now has weight at most ρ. Our choice of ρ ensures
that M(S) ≤ 1 + ε and gives a runtime of nO(1/ρ) · (n/γ)O(1)nO(ε−1γ−1).

1. For example, this inequality can be encoded in the first-order theory of real-closed fields, in terms of indeterminates
b,D1, D2. This theory is decidable, so it can be checked that it holds for all values b ∈ [0, 1], D1 ≥ 0, D2 ≥ 0.
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6. Pseudo-approximation algorithm for multi-knapsack median

In this section, we give a 3.25-pseudo-approximation algorithm for multi-knapsack median. This
is based on applying KPR for a key rounding step in the 3.25-approximation algorithm of Charikar
& Li Charikar and Li (2012) for k-median. Although this is not the best approximation ratio for
k-median, the main benefits of that algorithm is its good approximation ratio as a function of the
“obvious” LP relaxation defined as follows:

minimize
∑
j∈C

∑
i∈F

xi,jd(i, j)

subject to
∑
i∈F

xi,j = 1 ∀j ∈ C

0 ≤ xi,j ≤ yi ≤ 1 ∀i ∈ C, j ∈ F
My ≤ ~1

Here, xi,j represents fractionally how client j is matched to facility i, and yi is an indicator that
facility i is open. The final constraint specifies that each of the m knapsack constraints is satisfied.
For any client j ∈ C, let rj =

∑
i xijd(i, j) denote the fractional connection cost of j. By standard

facility-splitting methods (see e.g., Swamy (2004)), we can ensure that yi > 0 and xi,j ∈ {0, yi}
for all i, j.

6.1 The Charikar-Li algorithm

Given an LP solution, the Charikar-Li algorithm has two phases, which we briefly summarize here.
Please see Charikar and Li (2012) for further details. The bundling phase can be divided into four
stages:

1. A client set C′ ⊆ C is chosen, such that the clients j, j′ ∈ C′ are relatively far apart from each
other. For j ∈ C let σ(j) be the closest client in C′.

2. For each j ∈ C′, we define a set Uj ⊆ F which are the facilities “claimed by” j. The sets
Uj are called “bundles”; they are disjoint and have 1/2 ≤ y(Uj) ≤ 1. We define Rj =
1
2d(j, C′ − j) for j ∈ C′.

3. The clients in C′ are paired up, giving a partition of C′ into cardinality-two sets.2 We refer to
this as the matchingM of C′.

4. We also define U0 = F −
⋃
j∈C′ Uj ; these are the “unbundled” facilities.

In the selection phase, each pair {j, j′} ∈ M′ selects either one or two facilities to open from
Uj ∪ Uj′ , and in addition some unbundled facilities are opened.

The simplest strategy for this, which is a baseline for more advanced algorithms, is independent
selection. Here, we first choose a set of “open clients” in C′, wherein for each pair {j, j′} ∈ M, we
open j or j′ with the following probabilities: (i) open j alone with probability 1− y(Uj′), (ii) open

2. If |C′| is odd, then C′ has one remaining unmatched client. The Charikar & Li algorithm has some additional steps to
handle this case. We can avoid these exceptional steps by adding an additional dummy client and dummy zero-cost
facility, with distance zero to each other and distance∞ to all other clients. This allows us to assume without loss of
generality that |C′| is even.
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j′ alone with probability 1−y(Uj), or (iii) open both j, j′ with probability y(Uj)+y(Uj′)−1. Then,
for each open client j, we open exactly one facility i in Uj , wherein i is chosen with probability
proportional to yi. Also, for each facility i ∈ U0, we open i independently with probability yi.

Charikar & Li shows a number of powerful bounds and properties for this process.

Proposition 28 (Charikar and Li (2012)) Under independent selection, the following bounds hold:

(B1) Pr(i ∈ S) ≤ yi for any facility i.

(B2) The events [[i ∈ S]], for i ∈ F , are cylindrically negatively correlated.

(B3) For any client j ∈ C we have E[d(j,S)] ≤ 3.25rj .

(B4) For any client j ∈ C we have rσ(j) ≤ rj and d(j, σ(j)) ≤ 4rj

(B5) For any client j ∈ C′, it holds that d(j,S) ≤ βRj with probability one, where β is some
constant.

(B6) For any client j ∈ C′, there holds rj ≤ Rj and B(j, Rj) ⊆ Uj

This leads to a simple multiplicative pseudo-approximation algorithm for multi-knapsack me-
dian.

Theorem 29 Let γ, ε ∈ (0, 1). There is an algorithm with nO(m log(m/γ)/ε2) runtime to obtain an
ε-multiplicative pseudo-solution S with cost(S) ≤ (3.25 + γ) · OPT.

Proof [Proof (Sketch)] Say a facility i ∈ F is big if Mk(i) ≥ ρ = ε2

10 log(m/γ) for any k ∈ [m].

We can guess the big facilities in an optimal solution in nO(m/ρ) time. Next, solve the LP and
run the Charikar-Li rounding on the resulting residual instance. By properties (B1), (B2), each∑

iMk(i)[[i ∈ S]] is a sum of negatively-correlated random variables with mean
∑

iMk(i)yi ≤ 1,
and each is bounded in the range [0, ρ]. By Chernoff’s bound, the probability that it exceeds 1 + ε
is at most e−ε

2/(3ρ) = O(γ/m).

6.2 Facility selection as a knapsack-partition system

In the selection phase, each pair e ∈ M needs to select one or two facilities, according to a certain
probability distribution. We also need to decide the status of the unbundled facilities. We can
encode these requirements in terms of a knapsack-partition system. Here, the ground-set U will be
a polynomial-size subset of the power set 2F , where F is F plus some dummy items. That is, each
element of U is itself a set containing (possibly dummy) facilities.

For this construction, for each pair e = {j, j′} ∈ M, we create a block Ge ⊆ 2F defined as

Ge =
{
{i} | i ∈ Uj ∪ Uj′

}
∪
{
{i, i′}, | i ∈ Uj , i′ ∈ Uj′

}
For each unbundled facility i ∈ U0, we create a block Gi ⊆ 2F defined as

Gi =
{
{i}, {̄i}

}
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where ī is a dummy item (which indicates that facility i is not to be opened).
The ground set is U =

⋃
e∈MGe ∪

⋃
i∈U0 Gi. Since the sets Uj are disjoint, the blocks Ge

and Gi form a partition of U , which we denote by G. Correspondingly, we also define a vector
z ∈ [0, 1]U as follows. For each e = {j, j′} ∈ M, and every pair of facilities i ∈ Uj , i′ ∈ Uj′ , we
set:

z{i} = (1− y(Uj′))
yi

y(Uj)
, z{i′} = (1− y(Uj))

yi′

y(Uj′)

z{i,i′} = (y(Uj) + y(Uj′)− 1)
yiyi′

y(Uj)y(Uj′)

Likewise, for each i ∈ U0, we define

z{i} = yi, z{̄i} = 1− yi

Finally, we extend the knapsack constraints to U , by setting Mk (̄i) = 0 for each dummy item i

and setting Mk(V ) =
∑

i∈V Mk(i) for V ⊆ 2F . It can be seen that that z is a fractional solution to
the partition system; also, by the way we have extended M to U , we have Mz = My.

Given any facility set W ⊆ F , we define a corresponding set W ∗ ⊆ U by W ∗ = {V ∈
U | V ∩W 6= ∅}. The following observation summarizes how the knapsack partition system is
connected to the Charikar-Li selection phase and independent selection.

Observation 30 Given an integral vector Z ∈ {0, 1}U , we can generate a corresponding facility
set S by opening all (non-dummy) facilities in all sets V with ZV = 1, i.e., S =

⋃
V :ZV =1 V ∩ F .

In this case, we have the following:

• There holds M(S) ≤MZ.

• For any set of facilities W ⊆ F , there holds S ∩W 6= ∅ if and only Q(W ∗, Z) = 0.

• If Z is generated as Z = INDSELECT(G, z), then the resulting solution set S has the same
probability distribution as in independent selection for the Charikar-Li algorithm.

We omit the proofs since they follow immediately from definitions. As one important conse-
quence of Observation 30, we can write the expected distance for a client j in terms of the potential
function Q for the resulting knapsack-partition system:

Proposition 31 If S is generated as in Observation 30, then any client j has

d(j,S) =

∫ 4rj+βRσ(j)

u=0
Q(B(j, u)∗, Z) du.

Proof Let s = 4rj + βRσ(j). By properties (B4) and (B5), we have d(j,S) ≤ d(j, σ(j)) +
d(σ(j),S) ≤ s with probability one. For any u ≥ 0, we have S ∩ B(j, u) = ∅ if and only if
Q(B(j, u)∗, Z) = 1, and so

d(j,S) =

∫ s

u=0
[[d(j,S) > u]] du =

∫ s

u=0
[[S ∩ B(j, u) = ∅]] du =

∫ s

u=0
Q(B(j, u)∗, Z) du
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6.3 KPR selection strategy

Our approximation algorithm, summarized as Algorithm 5, uses FULLKPR rounding instead of
independent selection in the Charikar-Li algorithm.

Algorithm 5 MULTIKNAPSACKMEDIANROUND(t)

1: Let x, y be the solution to the LP.
2: Run the Charikar-Li bundling phase, resulting in fractional vector z ∈ [0, 1]U and partition G.
3: Let Z = FULLKPR(G,M, z, t).
4: return S =

⋃
V :ZV =1 V ∩ F .

Our main rounding result is that Algorithm 5 has a similar probability of opening a facility in
any given set W compared to independent selection.

Lemma 32 Let t ≥ 20000m2. Then for any client j ∈ C′ and any setW ⊆ F , Algorithm 5 satisfies

E[Q(W ∗, Z)] ≤ Q(W ∗, z) +O(m2/t) ·
( rj
Rj

+
∑

i∈Uj−W
xi,j

)
Proof Let e = {j, j′} ∈ M be the pair in the matching corresponding to j. We apply Theorem 11(a)
with respect to D = {Ge}. Since |D| = 1, this gives

E[Q(W ∗, Z)] ≤ Q(W ∗, z) +O(m2/t) ·Q(W ∗ ∧ D, z)

To finish the proof, we need to show that

Q(W ∗ ∧ D, z) ≤ rj/Rj +
∑

i∈Uj−W
xi,j . (12)

For this, we calculate:

Q(W ∗ ∧ D, z) = 1−
∑

V ∩W 6=∅
V ∈Ge

zV ≤ 1−
∑

i∈W∩Uj

z{i} −
∑

i∈W∩Uj ,i′∈Uj′

z{i,i′}

= 1−
∑

i∈Uj∩W

(1− y(Uj′))yi
y(Uj)

−
∑

i∈W∩Uj ,i′∈Uj′

(y(Uj) + y(Uj′)− 1)yiyi′

y(Uj)y(Uj′)

= 1− y(Uj ∩W )

The facility-splitting step ensures that yi = xi,j for any i ∈ Uj . So 1 − y(W ∩ Uj) = 1 −∑
i∈W∩Uj xi,j = 1 −

∑
i∈Uj xi,j +

∑
i∈Uj−W xi,j . Finally, to bound the term 1 −

∑
i∈Uj xi,j , we

use property (B6):

1−
∑
i∈Uj

xi,j ≤ 1−
∑

i∈B(j,Rj)

xi,j =
∑

i:d(i,j)>Rj

xi,j ≤
∑
i

d(i, j)

Rj
xi,j =

rj
Rj

This shows Eq. (12) and hence shows the claimed result.

This, in turn, allows us to bound expected distances for the rounding algorithm.
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Proposition 33 If t ≥ 20000m2, then for any client j the set S returned by Algorithm 5 satisfies
E[d(j,S)] ≤ Dj +O(rjm

2/t), whereDj is the expected distance of j under independent selection.

Proof For u ≥ 0, define Cu = B(j, u)∗, and let j′ = σ(j). By Proposition 31, the expected
distance of j is given by:

E[d(j,S)] =

∫ s

u=0
E[Q(Cu, Z)] du

where s = 4rj + βRj′ . Using Lemma 32 with respect to client j′ and facility set W = B(j, u)
gives:∫ s

u=0
E[Q(Cu, Z)] du ≤

∫ s

u=0

(
Q(Cu, z) +O(m2/t)

( rj′
Rj′

+
∑

i∈Uj′−B(j,u)

xi,j′
))

du

=

∫ s

u=0
Q(Cu, z) du+O(m2/t)

(
srj′

Rj′
+

∫ s

u=0

∑
i∈Uj′−B(j,u)

xi,j′ du

)

Now note that, under independent selection, we have E[Q(Cu, Z)] = Q(Cu, z) for each u.
Thus, by Proposition 31, the first term here is preciselyDj . To estimate the last term, we interchange
summation and use the triangle inequality to get:∫ s

u=0

∑
i∈Uj′−B(j,u)

xi,j′ du =
∑
i∈Uj′

xi,j′

∫ s

u=0
[[d(i, j) > u]] du =

∑
i∈Uj′

xi,j′ min(s, d(i, j))

≤
∑
i∈Uj′

xi,j′
(
d(j, j′) + d(i, j′)

)
= d(j, j′)

∑
i∈Uj′

xi,j′ +
∑
i∈Uj′

d(i, j′)xi,j′ ≤ d(j, j′) + rj′

Therefore
E[d(j,S)] ≤ Dj +O(m2/t)

(srj′
Rj′

+ d(j, j′) + rj′
)

Now, since rj′ ≤ rj and rj′ ≤ Rj′ , we have srj′/Rj′ = 4rj(rj′/Rj′) + r′j ·βRj′/Rj′ ≤ O(rj).
Also, by (B4), we have d(j, j′) + rj′ ≤ O(rj). Overall, we see that

srj′

Rj′
+ d(j, j′) + rj′ ≤ O(rj),

which concludes the proof.

From property (B3), this immediately shows the following:

Corollary 34 If t ≥ 20000m2, then Algorithm 5 ensures E[d(j,S)] ≤ (3.25 + O(m2/t))rj for
every client j ∈ C, and furthermore E[cost(S)] ≤ (3.25 +O(m2/t)) · OPT.

We now show Theorem 3, restated here for convenience.

Theorem 3 Consider a multi-knapsack median instance with m constraints, and let ε, γ ∈ (0, 1).
There is an algorithm with poly(n/γ) runtime to obtain an O( m√γ )-additive pseudo-solution S

with cost(S) ≤ (3.25 + γ) · OPT, and an algorithm with nÕ(m2ε−1γ−1/2) runtime to obtain an
ε-multiplicative pseudo-solution S with cost(S) ≤ (3.25 + γ) · OPT.
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Proof Let us define V = cost(S)/OPT; Proposition 28 shows that E[V ] ≤ (3.25 + O(m2/t)) for
t ≥ 20000m2. We will choose t = m2/γ (which satisfies t ≥ 20000m2 for γ sufficiently small).

Let E be the event that Z is an q-additive pseudo-solution for the given value q. By Theorem 19,
we have Pr(E) ≥ 1− γ. Since each element in U contains at most two facilities, the solution S is a
2q-additive pseudo-solution to the original knapsack whenever E holds. Also, we have E[V | E ] ≤
3.25 + O(γ). So, after an expected O(1/γ) repetitions we find a set S such that E holds and such
that V ≤ 3.25 +O(γ). Overall, we get a runtime of O(1/γ) · nO(1); the result follows by rescaling
γ and simplifying.

For the second result, say a facility i is big if Mk(i) > ρ = Θ(
ε
√
γ

m
√

log(m/γ)
) for any k ∈ [m].

We can guess the big facilities in an optimal solution in nO(m/ρ) time. We then construct a residual
instance where all other big facilities are discarded, and apply the additive pseudo-approximation
to it. The overall runtime is (n/γ)O(1) · nO(m/ρ); with simplification of parameters, this gives the
claimed runtime.

7. The knapsack center problem

We now analyze the knapsack center problems, proving Theorems 4 and 5. There are only
(
n
2

)
possible values for the optimal radius R = OPT, and so we can guess this value in O(n2) time. To
simplify the notation for this section, let us suppose that we have guessed R and rescaled to have
R = 1.

Given some arbitrary γ > 0, our goal is to find a distribution Ω over solution sets S, such that
every client j ∈ C has

ES∼Ω[d(j,S)] ≤ 1 + 2/e+ γ, d(j,S) ≤ 3 with probability one (13)

We refer to the distribution Ω as a γ-fair solution. Let us define a weighting function a to be a map
a : C → [0, 1] with

∑
j∈C aj = 1. In such a distribution Ω, every weighting function a would have

a corresponding solution set S satisfying∑
j∈C

ajd(j,S) ≤ 1 + 2/e+ γ, max
j∈C

j d(j,S) ≤ 3 (14)

By LP duality, the converse also holds. Furthermore, the multiplicative weights update (MWU)
method makes this efficient: if we have an efficient algorithm A which takes as input a weighting
function a and returns a solution set S satisfying Eq. (14), then it can be converted into an efficient
randomized algorithm which returns a O(γ)-fair solution. We summarize this as the following
Algorithm 6:

Algorithm 6 KNAPSACKCENTERMWU

1: Initialize the vector a(1)
j = 1 for all clients j ∈ C.

2: for k = 1, . . . , v do
3: Use algorithm A with the weighting function a(k)

a(k)(C) to get solution set Sk.

4: for each j ∈ C do update a(k+1)
j = eεd(j,Sk)a

(k)
j

5: Return SK for K uniformly chosen from [v].
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Lemma 36 Suppose that, for every weighting function a, the algorithm A runs in time T and
generates a solution S satisfying Eq. (14) from some family S. Then with appropriate parameters
v, ε, Algorithm 6 runs in poly(n/γ) · T time and outputs an O(γ)-fair solution S in S.

Proof Let β = 1 + 2/e + γ. The output SK is clearly in S, since S1, . . . ,Sk are all in S. Let us
define Φk =

∑
j∈C a

(k)
j . Since d(j,Sk) ≤ 3, for sufficiently small ε we have

Φk+1 =
∑
j∈C

a
(k)
j eεd(j,Sk) ≤

∑
j∈C

a
(k)
j (1 + εd(j,Sk) + ε2d(j,Sk)2) ≤ a(k)(C) + (ε+ 3ε2)β

∑
j

a
(k)
j d(j,S)

The algorithm A ensures that
∑

j

a
(k)
j

a(k)(C)d(j,S) ≤ β and therefore

Φk+1 ≤ a(k)(C) + (ε+ 3ε2)βa(k)(C) = (1 + (ε+ 3ε2)β)Φk

Since Φ1 ≤ n, this implies that Φv+1 ≤ (1 + (ε+ 3ε2)β)vn ≤ ev(ε+3ε2)βn.
Now consider some client j at the end of this process. We have eε

∑v
k=1 d(j,Sk) = a

(v+1)
j ≤

Φv+1 ≤ ev(ε+3ε2)(1+2/e+γ)n. Taking logarithms and simplifying, this shows
∑v

k=1 d(j,Sk) ≤
vβ(1 + 3ε) + logn. Therefore, with ε = γ and v = logn

γ2
, the output SK has E[d(j,SK)] =

1
v

∑k
j=1 d(j,Sk) ≤ β +O(γ).

7.1 The knapsack center LP

We use the following LP consisting of points (x, y) satisfying constraints (C1) – (C4):

(C1)
∑

i∈B(j,1) xij = 1 for all j ∈ C (all clients should get connected to some open facility),

(C2) xij ≤ yi for all i, j ∈ C (client j can only connect to facility i if it is open),

(C3) My ≤ ~1 (the m knapsack constraints),

(C4) 0 ≤ xij , yi ≤ 1 for all i, j ∈ C.

By splitting facilities we may enforce an additional constraint:

(C5) For all i ∈ F , j ∈ C, we have xij ∈ {0, yi},

We say a facility i is integral if yi ∈ {0, 1}; else it is fractional. For j ∈ C we define Fj := {i ∈
F : xij > 0} and similarly for i ∈ F we define Hi = {j ∈ C : xij > 0}. We may form a subset
C′ ⊆ C, such that the sets Fj , Fj′ for j, j′ ∈ C′ are pairwise disjoint, and such that C′ is maximal
with this property. We also define F0 = F −

⋃
j∈C′ Fj .

We turn this into a knapsack-partition instance as follows. For each j ∈ C′, we define a block
Gj to be simply Fj . For each i ∈ F0, we create a dummy item ī with yī = 1 − yi and M (̄i) = 0,
and we create a block Gi = {i, ī}. (If we select ī, it simply means that we do not choose to open
facility i). By Property (C5), we have y(Fj) = 1 for all j, and so y satisfies the partition constraints.

The following result shows how the knapsack center instance relates to this knapsack-partition
system, in particular to the potential function Q.
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Proposition 37 Let j ∈ C be any client. If (x, y) is a fractional LP solution, then Q(Fj , y) ≤ 1/e.
If Y is an integral solution to the partition system, and we open the (non-dummy) facilities in the
support of Y , then d(j,S) ≤ 1 + 2Q(Fj , Y ).

Proof For the first claim, since y(Fj) = 1 and the blocks G are pairwise disjoint, we have

Q(Fj , y) =
∏
G∈G

(1− y(G ∩ Fj)) ≤
∏
G∈G

e−y(G∩Fj) = e−y(Fj) = 1/e

For the second claim, if some i ∈ Fj is opened (i.e., if Q(Fj , Y ) = 0), then d(j,S) ≤ 1. Also,
by maximality of C′, there must exist some facility k ∈ C′ with Fj∩Fk 6= ∅ (possibly k = j). There
will be some facility opened in Fk, and so d(j,S) ≤ d(j, i)+d(i, k)+d(k,S) ≤ 3 with probability
one.

7.2 Removing dense facilities

Given some fixed weighting function a, we first need a preprocessing step to ensure that no facility
i serves a large (weighted) fraction of the clients.

Proposition 38 For any δ > 0 and weighting function a, there is an algorithm with nO(1/δ) runtime,
which returns a fractional LP solution (x, y) such that every fractional facility i ∈ F has a(Hi) ≤ δ.
A solution (x, y) with this property is called δ-sparse with respect to a.

Proof We recursively execute the following procedure: First, solve the LP to obtain a fractional
solution (x, y). Next, if this solution contains some fractional facility i ∈ F with a(Hi) > δ, then
we form two subproblems; in the first, we force yi = 0 and in the latter, we force yi = 1 and xij = 1
for j ∈ Hi.

Since there is an optimal integral solution, this branching process generates at least one feasible
subproblem. Furthermore, each time we execute a branch with yi = 1, the resulting subproblem has
a(Cfrac) reduced by at least δ, where Cfrac denotes the set of clients which are served by a fractional
facility. So the search tree has depth at most 1/δ. At a leaf of this branching process, there holds
a(Hi) ≤ δ for every fractional facility i. Since each subproblem can be solved in poly(n) time, the
overall runtime is nO(1/δ).

The next results show how δ-sparse fractional solutions are in certain senses “stable” under
small modifications, and how this interacts with the KPR rounding process.

Proposition 39 Suppose that (x, y) is a δ-sparse LP solution with respect to weighting function
a, and vector y′ is obtained by modifying t fractional entries of y. Then

∑
j∈C ajQ(Fj , y

′) ≤
tδ +

∑
j∈C ajQ(Fj , y).

Proof Let A denote the modified facilities and let V =
⋃
i∈AHi; these are the clients which are

affected by the modified facilities. For j ∈ C − V , we have Q(Fj , y
′) = Q(Fj , y), as none of the

clients i ∈ Fj get modified. Thus, we can write:∑
j∈C

ajQ(Fj , y
′) ≤

∑
j∈C

ajQ(Fj , y) +
∑
j∈V

ajQ(Fj , y
′)
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For the latter term, δ-sparsity implies a(Hi) ≤ δ for each i, and so∑
j∈V

ajQ(Fj , y
′) ≤

∑
j∈V

aj ≤
∑
i∈A

a(Hi) ≤ tδ

Proposition 40 If (x, y) is a δ-sparse fractional LP solution with respect to weighting function a
and Ỹ = KPR(G,M, y, t) for some integer t with 12m ≤ t < 2/δ, then we have∑

j

aj E[Q(Fj , Ỹ )] ≤ 1/e+O(m2δ log 1
δt)

Proof It is convenient to take the following alternative, slowed-down view of the KPR rounding
process, where k ≥ 0 is a parameter to be determined.

1: set y0 = KPR(G,M, y, t2k)
2: for ` = 1, . . . , k do set y` = KPR(G,M, y`−1, 2k−`t)
3: Output Ỹ = yk

Let us defineC` =
∑

j∈S ajQ(Fj , y
`) for ` = 0, . . . , k. Thus we need to estimateCk =

∑
j aj E[Q(Fj , Ỹ )].

To do so, we will compute E[C0] and E[C` − C`−1] for all ` = 1, . . . , k.
For the C0 term, we use Theorem 11(b) to get

E[C0] =
∑
j∈C

aj E[Q(Fj , y
0)] ≤

∑
j∈C

aj(Q(Fj , y) +O(m2/(t2k))) (15)

By Proposition 37, we have Q(Fj , y) ≤ 1/e and therefore E[C0] ≤ 1/e+O(m2/(t2k)).
Next, suppose we condition on vector y`−1 for some ` > 0. By Theorem 11(b), every client

j ∈ C has

E[Q(Fj , y
`) | y`−1] ≤ Q(Fj , y

`−1) +O
( m2

t2k−`
)
.

Define the set of clients A =
⋃
i:y`−1∈(0,1)Hi. By Property (E5), the vector y`−1 has at most

2t ·2k−` fractional entries i, and by δ-sparsity each such facility i has a(Hi) ≤ δ. Thus,
∑

j∈A aj ≤
(2t · 2k−`)δ. Now observe that for j /∈ A we have Q(Fj , y

`) = Q(Fj , y
`−1) with probability one

(both are equal to zero or one). From this and Eq. (15), we get

E[C`−C`−1 | y`−1] =
∑
j∈A

aj(E[Q(Fj , y
`) | y`−1]−Q(Fj , y

`−1)) ≤
∑
j∈A

aj ·O
( m2

t2k−`

)
= O(δm2)

This implies that E[C` − C`−1] ≤ O(δm2), and so summing over ` gives

E[Ck] = E[C0] +

k∑
`=1

E[C` − C`−1] ≤ 1/e+O
(m2

t2k

)
+O(δkm2)

Setting k = dlog2
1
δte gives E[Ck] = 1/e+O(m2δ log 1

δt). (Note k ≥ 0 by our assumption on
t.)
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7.3 Proof of Theorem 4

When m = 1 (the single-knapsack center problem), we use the following Algorithm 7 to satisfy the
knapsack constraint with no violation while guaranteeing that all clients get an expected approxi-
mation ratio arbitrarily close to 1 + 2/e.

Algorithm 7 SINGLEKNAPSACKCENTERROUND (M,a, δ)

1: Use Proposition 38 to obtain a δ-sparse fractional solution (x, y) with respect to a.
2: Let Ỹ = KPR(G,M, y, 12)
3: for each block G do
4: open the facility i ∈ G with yi > 0 which has the smallest weight M(i).

Theorem 4 For any γ ∈ (0, 1), a γ-fair feasible solution can be obtained in nÕ(1/γ) runtime.

Proof Without loss of generality assume δ is sufficiently small. In light of Lemma 36, and by
rescaling γ, it suffices to show that for any weighting function a, Algorithm 7 generates a solution
set S satisfying

∑
j ajd(j,S) ≤ 1 + 2/e+O(γ) and maxj d(j,S) ≤ 3.

It is useful to view lines 3–4 of Algorithm 7 as a two-part process. First, we convert the fractional
vector Ỹ into an integral vector z ∈ {0, 1}n, by moving all the mass in each block to the item with
smallest weight. We then open all facilities i with zi = 1. Note that at most 24 entries of Ỹ are
modified compared to z.

First, we claim that S is feasible. For, the fractional solution (x, y) satisfies My ≤ 1, and
Proposition 16 ensures that the vector Ỹ satisfies MỸ = My. The modification process can only
decrease Mz, so M(S) = Mz ≤ MỸ . Finally, by Proposition 37, every client j has d(j,S) ≤ 3
with probability one.

We now turn to analyzing the connection cost. By Proposition 37 we have:∑
j∈C

ajd(j,S) ≤
∑
j∈C

aj(1 + 2Q(Fj , z))

Since at most 24 entries of y are modified to get the integral vector z, Proposition 39 gives∑
j∈C

ajd(j,S) ≤ O(δ) +
∑
j∈C

aj(1 + 2Q(Fj , y))

By Proposition 40 (noting that m = 1 and t = 12), we can take expectations of this quantity to
get ∑

j∈C
ajE[d(j,S)] ≤ O(δ) +O(δ log 1

δ ) +
∑
j∈C

aj(1 + 2/e)

Setting δ = γ/ log(1/γ), we get E[
∑

j ajd(j,S)] ≤ 1+2/e+O(γ). By running for an expected
O(1/γ) iterations of this process, we obtain a solution S with

∑
j ajd(j,S) ≤ 1 + 2/e + O(γ).

The overall runtime is O(1/γ)nO(1/δ) = nO(log(1/γ)/γ).
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7.4 Proof of Theorem 5

When there are multiple knapsack constraints, then the final rounding step cannot satisfy them
all exactly. Instead, we use independent selection to obtain an additive pseudo-approximation, as
shown in Algorithm 8.

Algorithm 8 MULTIKNAPSACKCENTERROUND (M,a, δ, t)

1: Use Proposition 38 to obtain a δ-sparse fractional solution x, y with respect to weighting func-
tion a.

2: Let Y = FULLKPR(G`,M, y, t).
3: return S = {i | Yi = 1}

Depending on the parameter δ, there is a trade-off between approximation ratio, budget viola-
tion, and running time. We summarize this as follows:

Theorem 5 Consider a multi-knapsack center instance with with m ≥ 1 constraints and let γ, ε ∈
(0, 1).

(a) A γ-fair O
(m√log(m/γ)√

γ

)
-additive pseudo-solution can be obtained in poly(n/γ) runtime.

(b) A γ-fair O(
√
m logm)-additive pseudo-solution can be obtained in nÕ(m2/γ) runtime.

(c) A γ-fair ε-multiplicative pseudo-solution can be obtained in nÕ(m3/2/ε+m2/γ) runtime.

Proof In light of Lemma 36, and by rescaling γ, it suffices to show that for any weighting function
a, we can get a solution S of the above form satisfying

∑
j ajd(j,S) ≤ 1 + 2/e + O(γ) and

maxj d(j,S) ≤ 3.
For result (a), we use Algorithm 8 with t = m2/γ and δ = 1. By Proposition 37 we have∑
j ajd(j,S) ≤

∑
j aj(1 + 2Q(W,Y )). By Theorem 11(b) we have E[Q(Fj , Y )] ≤ Q(Fj , y) +

O(m2/t). By Proposition 37, this in turn is at most 1/e+O(m2/t). Since m2/t = γ, we have

E[
∑
j

ajd(j,S)] ≤
∑
j

aj(1 + 2/e+O(γ)) = 1 + 2/e+O(γ)

Let E be the desired event that S is a q-additive pseudo-solution for q = O(
√
t log(m/γ)). By

Theorem 19, we have Pr(E) ≥ 1−γ and so E[
∑

j ajd(j,S) | E ] ≤ 1+2/e+O(γ)
1−γ ≤ 1+2/e+O(γ).

Thus, after an expected O(1/γ) repetitions, we get a solution S which is a q-additive pseudo-
solution and which has

∑
j ajd(j,S) ≤ 1 + 2/e + O(γ). With this choice of δ, Algorithm 8 runs

in poly(n/γ) time.
For result (b), we use Algorithm 8 with parameters t = 12m2 and δ = γ

m2 log(1/γ)
. We can

break the process of generating Y into two steps: we first generate Ỹ = KPR(G,M, y, 12m2) and
then generate Y = INDSELECT(G, Ỹ ). We may assume γ is smaller than any needed constant, so
t < 2/δ. Therefore, Proposition 40 gives

E
[∑
j

aj(1 + 2Q(Fj , Ỹ ))
]
≤ 1 + 2/e+O(m2δ log 1

δt).
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Our choice of δ and t ensures this is at most 1 + 2/e + O(γ). So after an expected Ω(1/γ)
repetitions the solution Ỹ satisfies

∑
j aj(1 + 2Q(Fj , Ỹ )) ≤ 1 + 2/e + O(γ). Now suppose

that this event has occurred, and let us condition on the fixed vector Ỹ . Proposition 37 shows that∑
j ajd(j,S) ≤

∑
j aj(1+2Q(Fj , Y )). The vector Y is derived by modifying at most 2t fractional

entries of vector Ỹ . Therefore, by Proposition 39, we have∑
j

aj(1 + 2Q(Fj , Y )) ≤ 2δt+
∑
j

aj(1 + 2Q(Fj , Ỹ )) ≤ 1 + 2/e+O(γ)

Furthermore, by Theorem 19, the resulting solution Y is an O(
√
m logm)-additive pseudo-

solution with probability Ω(1). (We are using the fact that this result holds even after conditioning
on Ỹ ). Integrating over Ỹ , we see that the vector Y has the desired properties with probability
Ω(1/γ). Since Algorithm 8 takes nO(1/δ) time, the overall expected runtime is O(1/γ)nO(1/δ) =
nO(m2 log(1/γ)/γ).

For result (c), say facility i is big if Mk(i) ≥ ρ = Θ( ε√
m logm

) for any constraint k. We can

guess the big facilities in an optimal solution in nO(m/ρ) time. We remove all other big facilities, and
apply result (b) to the residual instance. This gives a solution S with M(S) ≤ (1 +O(

√
m logm) ·

ρ)~1 ≤ (1 + ε)~1. The runtime is nO(m/ρ+m2 log(1/γ)/γ) = nO(m3/2 logm/ε+m2 log(1/γ)/γ).

By contrast, independent rounding would require nO(m log(m/γ)/ε2) time for an ε-multiplicative
pseudo-solution, which is a significantly worse dependence upon ε.

8. Further correlation bounds for KPR

In this section, we show some additional near-negative-correlation properties for KPR. Although
these are not directly used by our clustering algorithms, they may be useful elsewhere. We also
remark that the dependent rounding algorithm of Bansal (2019) has been specifically designed to
give concentration bounds, which would be similar to (and incomparable in strength with) the ones
we develop here.

8.1 Analyzing property (E1) for small Q(W, y)

The additive gap in Theorem 11(b) can make it unsuitable when Q(W, y) is small. Theorem 11(c)
has a multiplicative gap, but has an undesirable dependence on the size of W . Although we cannot
achieve a multiplicative gap independent of the size ofW , we can get something which is somewhat
in between an additive and multiplicative gap. We show the following main result:

Theorem 41 Let W ⊆ U and t ≥ 12m, and define θ = m2/t. Let Ỹ = KPR(G,M, y, t). Then,
for any b > 2 there holds E[Q(W, Ỹ )] ≤ eO(θ2 log3 b)(Q(W, y) + θ/b).

Let us fix W, t, y for the remainder of this section and define θ = m2/t. Our overall strategy
will be to solve a recurrence relation on Q(W, y). One significant complication, which requires
much technical delicacy, is that the intermediate values of Q(W, y) are random variables.

Consider the main loop of KPR, and define yi to be the state vector after the ith iteration of
applying KPR-ITERATION. Let us select an integer parameter k > 20, whose role will be clarified
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later. For each u = 1, . . . , k we define Iu to be the first iteration i such that T (yi) ≤ t orQ(W, yi) >
αu, where we define αu = 2u−k. We also define α0 = 0 and I0 = 0. Thus, y0 is the vector after
INTRABLOCKREDUCE. Also yk is the final output vector Ỹ since αk = 1.

Throughout we write Si = Q(W, yi) and Ti = T (yi). For each value u = 0, . . . , k we define
Hu = SIu , and so H0 = Q(W, y0) while Hk is the final value Q(W, Ỹ ).

There are three stages to analyze the evolution of E[Si]. First, we analyze the change in a single
round (going from Si to Si+1). Second, we analyze the change over each value of u (going from
Hu to Hu+1). Finally, we analyze the total change from H0 to Hk.

Proposition 42 Let u ≥ 0, and suppose that we condition on all state up to round i with i < Iu. If
t ≥ 100mk, then we have E[Si+1] ≤ Si +O(αum

2k2/T 2
i ).

Proof By Lemma 18, we have:

E[Si+1] ≤ Si cosh
(6m

Ti

∑
G

yi(G ∩W )
)

≤ Si cosh
(6m

Ti

∑
G

ln(1− yi(G ∩W )
)

= Si cosh
(6m lnSi

Ti

)
where the second inequality uses the fact that x ≤ − ln(1− x) for x ∈ [0, 1]. Also, by definition of
Iu, we have Si ≤ αu and Ti ≥ t. To finish, we claim that

Si cosh

(
6m lnSi
Ti

)
− Si ≤ O

(
αum

2k2

T 2
i

)
. (16)

To show this, let β = 6m/Ti, and observe that since Ti ≥ t ≥ 100mk we have β ≤ 1/k. Now
consider the function f(s) = s cosh(β ln s) − s. Simple analysis shows that f(s) is an increasing
function for s ≤ w = (1−β

1+β )1/β . Furthermore, the restriction that β ≤ 1/k ≤ 1/20 ensures that
w = Θ(1). So if αu ≤ w, then f(Si) ≤ f(αu) = αu cosh(β lnαu)−αu, and a second-order Taylor
series for cosh then shows that f(αu) ≤ O(αuβ

2 log2 αu) ≤ O(αuβ
2k2), implying Eq. (16). If

αu ≥ w, then Proposition 48 shows that f(Si) ≤ O(β2) = O(αuβ
2) and again Eq. (16) holds.

Proposition 43 If t ≥ 100mk, then E[Hu+1 | Hu] ≤ Hu + [[Hu ≥ αu]] ·O(αu+1θk
2) for each u.

Proof Suppose we condition on Iu as well as all state up to iteration i = Iu, including the random
variable Hu. By definition of Iu, we must have either Si ≥ αu or Ti < t. In the latter case, we
immediately have Iu+1 = i as well and so Hu+1 = Hu. So, let us assume that Si ≥ αu and we
want to show that E[Hu+1] ≤ Hu +O(αu+1θk

2).
For each j ≥ i, define S̃j = Smin(j,Iu+1). Note that S̃i = Si = Hu and limj→∞ S̃j = Hu+1.

We claim that, for all v ≥ i, there holds

E[S̃v+1 | S̃v] ≤ S̃v + [[Tv > t]] ·O
(
αu+1m

2k2/T 2
v

)
(17)

For, if v ≥ Iu+1 or Tv ≤ t, we have S̃v+1 = S̃v with probability one; otherwise, we have
Sv = S̃v and so this follows from Proposition 42. Since S̃i = Hu, we can sum Eq. (17) over
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v = i, . . . , j − 1 and use iterated expectations to obtain:

E[S̃j ] ≤ S̃i +O(m2αuk
2) ·

j−1∑
v=i

Pr(Tv > t)

T 2
v

= Hu +O(m2αu+1k
2)

∞∑
`=t+1

j∑
v=i

Pr(Tv = `)

`2

By Proposition 14, the vector y gains an integral entry with probability at least 0.24 in each
round. This implies that the number of iterations v with Tv = `, is stochastically dominated by a
Geometric(0.24) random variable. Thus

∑∞
v=i Pr(Tv = `) ≤ 1/0.24 ≤ 5 and so

E[S̃j ] ≤ Hu +O(m2αu+1k
2) ·

∞∑
`=t+1

5/`2 ≤ Hu +O(m2αu+1k
2/t)

Since Hu+1 = limj→∞ S̃j and m2/t = θ, this implies that E[Hu+1] ≤ Hu +O(αu+1θk
2).

Proposition 44 We have E[Hk] ≤
(
E[H0] +O(θk22−k)

)
eO(θk3).

Proof If t < 100mk, then (E[H0] + θk22−k)eθk
3 ≥ e−Ω(k) · e0.01mk2 ≥ Ω(1). Since Hk ≤ 1,

the claimed bound will then hold vacuously. So assume that t ≥ 100mk. By Proposition 43 and
iterated expectations, we have for each u ≥ 0:

E[Hu+1] ≤ E[Hu] + Pr(Hu ≥ αu) ·O(αu+1θk
2) (18)

For u = 0, recall that α0 = 0, α1 = 21−k; thus Eq. (18) implies E[H1] ≤ E[H0] +O( θk
2

2k
). For

each u ≥ 1, Markov’s inequality applied to Eq. (18) gives

E[Hu+1] ≤ E[Hu] +O
(E[Hu]

αu
· αu+1θk

2
)

= E[Hu](1 +O(θk2))

Combining these bounds for u = 0, . . . , k − 1 gives

E[Hk] ≤
(
E[H0] +O( θk

2

2k
)
)(

1 +O(θk2)
)k ≤ (E[H0] +O( θk

2

2k
)
)
eO(θk3)

Proof [Proof of Theorem 41] Set k = dc log2 be, for some constant c > 20. By Proposition 44, we
have

E[Hk] ≤
(
E[H0] +

Kθc2 log2 b

bc
)
eKc

3θ log3 b

for an absolute constantK ≥ 1. Choosing c to be a sufficiently large constant givesKc2 log2 b/(bc) ≤
1/b for all b > 2, and so E[Hk] ≤

(
E[H0] + θ/b

)
eKc

3θ log3 b. Finally, recall that Q(W, Ỹ ) = Hk

and by Proposition 12 we have E[H0] = Q(W, y).
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8.2 Concentration bounds for FULLKPR

The analysis in Section 8.1 can be used show a lower-tail concentration bound for FULLKPR.

Theorem 45 Let Y = FULLKPR(G,M, y, t) for t > 12m and let θ = m2/t. If y • w ≥ µ for
some parameters µ ≥ 1 and w ∈ [0, 1]U , then

Pr(Y • w ≤ µ(1− δ)) ≤ eO(θ(1+δµ)3) ·
( e−δ

(1− δ)1−δ

)µ
Proof Let E be the event Y •w ≤ µ(1−δ). Consider forming a random setW , wherein each j ∈ U
goes into W independently with probability qwj for some parameter q ∈ [0, 1] to be specified. We
will compute E[Q(W,Y )] in two different ways. First, suppose we condition on the event E , as
well as all the random variables Y . Then by Proposition 47,

E[Q(W,Y ) | E , Y ] = E
[∏
G∈G

(1− q
∑
j∈G

wjYj) | E , Y
]
≥ E[(1− q)Y •w | E , Y ] ≥ (1− q)µ(1−δ)

Therefore, E[Q(W,Y )] ≥ Pr(E)(1 − q)µ(1−δ). On the other hand, if we condition on the
random variable W then Theorem 41 gives E[Q(W,Y ) |W ] ≤ eO(θ log3 b)(Q(W, y) + θ/b) for any
parameter b > 2. By the way we form W , we can compute

E[Q(W, y)] = E
[∏
G∈G

(1−
∑
j∈G

yj [[j ∈W ]])
]

=
∏
G∈G

(1− q
∑
j∈G

wjyj) ≤ e−
∑
j qwjyj = e−qµ

and hence we have
E[Q(W,Y )] ≤ eO(θ log3 b)(e−qµ + θ/b)

Putting these two bounds together, we see Pr(E) ≤ eO(θ log3 b)(e−qµ+θ/b)

(1−q)µ(1−δ) . Let us now set q = δ

and b = e1+δµ > 2. With these parameters, we have

Pr(E) ≤ eO(θ(1+δµ)3)(e−δµ + θe−1−δµ)

(1− δ)µ(1−δ) ≤ eO(θ(1+δµ)3)
( e−δ

(1− δ)1−δ

)µ

To show upper tail bounds, we use an approach of Schmidt et al. (1995) based on symmetric
polynomials. We also use a number of extremal bounds from that paper for such polynomials.

Theorem 46 Let Y = FULLKPR(G,M, y, t) and let θ = m2/t. If y•w ≤ µ and t > 10000m(1+
δµ) for some parameters µ ≥ 1 and w ∈ [0, 1]U , then

Pr
(
Y • w ≥ µ(1 + δ)

)
≤ eO(θ(1+δµ)2) ·

( eδ

(1 + δ)1+δ

)µ
Proof Let us consider the random variable defined by

H =
∑
L⊆U
|L|=k

∏
j∈L

wjYj
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where k = dµδe. We use Proposition 20 to compute the expectation of H:

E[H] =
∑
L⊆U
|L|=k

(
∏
j∈L

wj)E
[∏
j∈L

Yj
]
≤ eO(θk2k2)

∑
L⊆U
|L|=k

∏
j∈L

wjyj .

This is precisely the kth symmetric polynomial applied to the quantities wjyj . As shown in Schmidt
et al. (1995), there holds: ∑

L⊆U
|L|=k

∏
j∈L

wjyj ≤
(
∑

j wjyj)
k

k!
=
µk

k!

As shown in Schmidt et al. (1995), whenever k ≤ bac and Y • w ≥ a for a real number a ≥ 0,
there holds H ≥

(
a
k

)
. We use this fact with a = µ(1 + δ); note k ≤ bµ(1 + δ)c since µ ≥ 1.

Applying Markov’s inequality to H gives

Pr
(
Y • w ≥ µ(1 + δ)

)
≤ E[H](µ(1+δ)

k

) ≤ eO(θk2) µk/k!(µ(1+δ)
k

)
Finally, as shown in Schmidt et al. (1995), the value k = dµδe ensures that µk/k!

(µ(1+δ)k )
≤
(

eδ

(1+δ)1+δ

)µ
.

So for t > 10000m(1 + δµ), we have shown that

Pr
(
Y • w ≥ µ(1 + δ)

)
≤ eO(θ(1+δµ)2) ·

( eδ

(1 + δ)1+δ

)µ
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Appendix A. Some technical lemmas

Proposition 47 For Y ∈ {0, 1}n, w ∈ [0, 1]n, λ ∈ [0, 1], we have (1 − λ)Y •w ≤
∏
G∈G(1 −

λ
∑

j∈GwjYj).

Proof Since Y is an integral vector and Y (G) ≤ 1, we have 1−λ
∑

j∈GwjYj =
∏
j∈G(1−λwjYj)

for any block G. Therefore, we get∏
G∈G

(1− λ
∑
j∈G

wjYj) =
∏
G∈G

(1− λ
∑
j∈G

wjYj) =
∏
G∈G

∏
j∈G

(1− λwjYj) =
n∏
i=1

(1− λwjYj)

≥
n∏
i=1

(1− λ)wjYj as (1 + ab) ≥ (1 + a)b for a ≥ −1 and b ∈ [0, 1]

= (1− λ)Y •w

37



HARRIS, PENSYL, SRINIVIASAN, TRINH

Proposition 48 For u ∈ Z≥0 and a ∈ [0, 1
u+1 ] and s ∈ [0, 1], we have s cosh(a(u − ln s)) − s ≤

a2(u+ 1)2.

Proof Let f(s) = s cosh(a(u − ln s)) − s. The critical points of function f(s) occur at s0 = eu

and s1 = eu(1−a
1+a)1/a. Since s0 is outside the allowed parameter range, this means that maximum

value of f(s) in the interval [0, 1] must occur at either s = 0, s = s1, or s = 1.
At s = 0, we have f(s) = 0. At s = 1, we have f(1) = cosh(au)− 1, which is at most (au)2

since au ≤ 1. Let us now bound s1. One can check that (1−a
1+a)1/a is a decreasing function of a,

Thus, as a ≤ 1/(u+ 1), we have s1 ≥ eu
(1−1/(u+1)

1+1/(u+1)

)u+1
= eu

(
u/(u+ 2)

)u+1. This is larger than
1 for u ≥ 3, so it is out of the range of interest.

So we only need to check f(s1) ≤ a2(u+ 1)2 for u = 0, 1, 2; these are are all routine calcula-
tions.

Proposition 49 For real numbers T, t, a with T ≥ t ≥ 2
√
a > 0, we have

ea(1/t−1/(T−1)) ≤ ea(1/t−1/T ) − aea(1/t−1/T )

2T 2

Proof Dividing both sides by ea(1/t−1/T ), we need to show that e−a/(T−1)+a/T ≤ (1− a/(2T 2)).
Since T ≥ 2

√
a, we have a/(2T 2) ≤ 1/8. Therefore, 1 − a/(2T 2) ≥ e−3/4(a/T 2). So it suffices

to show that −a/(T − 1) + a/T ≤ −(3/4)a/T 2. It is routine to verify this holds for a > 0 and
T ≥ 2.
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