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Abstract

We consider the problem of estimating the difference between two undirected functional
graphical models with shared structures. In many applications, data are naturally regarded
as a vector of random functions rather than as a vector of scalars. For example, electroen-
cephalography (EEG) data are treated more appropriately as functions of time. In such
a problem, not only can the number of functions measured per sample be large, but each
function is itself an infinite-dimensional object, making estimation of model parameters
challenging. This is further complicated by the fact that curves are usually observed only
at discrete time points. We first define a functional differential graph that captures the
differences between two functional graphical models and formally characterize when the
functional differential graph is well defined. We then propose a method, FuDGE, that
directly estimates the functional differential graph without first estimating each individual
graph. This is particularly beneficial in settings where the individual graphs are dense but
the differential graph is sparse. We show that FuDGE consistently estimates the functional
differential graph even in a high-dimensional setting for both fully observed and discretely
observed function paths. We illustrate the finite sample properties of our method through
simulation studies. We also propose a competing method, the Joint Functional Graphi-
cal Lasso, which generalizes the Joint Graphical Lasso to the functional setting. Finally,
we apply our method to EEG data to uncover differences in functional brain connectivity
between a group of individuals with alcohol use disorder and a control group.
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1. Introduction

We consider a setting where we observe two samples of multivariate functional data, Xi(t)
for i = 1, . . . , nX and Yi(t) for i = 1, . . . , nY . The primary goal is to determine if and how
the underlying populations—specifically their conditional dependency structures—differ.
As a motivating example, consider electroencephalography (EEG) data, where the electri-
cal activity of multiple regions of the brain can be measured simultaneously over a period of
time. Given samples from the general population, fitting a graphical model to the observed
measurements would allow a researcher to determine which regions of the brain are depen-
dent after conditioning on all other regions. The EEG data analyzed in Section 6.2 consists
of two samples: one from a control group and the other from a group of individuals with
alcohol use disorder (AUD). Using these data, researchers may be interested in explicitly
comparing the two groups and investigating the complex question of how brain functional
connectivity patterns in the AUD group differ from those in the control group.

The conditional independence structure within multivariate data is commonly repre-
sented by a graphical model (Lauritzen, 1996). Let G = {V,E} denote an undirected
graph where V is the set of vertices with |V | = p and E ⊂ V 2 is the set of edges. At
times, we also denote V as [p] = {1, 2, . . . , p}. When the data consist of random vectors
X = (X1, . . . , Xp)

>, we say that X satisfies the pairwise Markov property with respect to G
if Xv 6⊥⊥ Xw | {Xu}u∈V \{v,w} holds if and only if {v, w} ∈ E. When X follows a multivariate
Gaussian distribution with covariance Σ = Θ−1, then Θvw 6= 0 if and only if {v, w} ∈ E.
Thus, recovering the structure of an undirected graph from multivariate Gaussian data is
equivalent to estimating the support of the precision matrix, Θ.

When the primary interest is in characterizing the difference between the conditional
independence structure of two populations, the object of interest may be the differential
graph, G∆ = {V,E∆}. When X and Y follow multivariate normal distributions with co-
variance matrices ΣX and ΣY , let ∆ = ΘX −ΘY , where ΘX = (ΣX)−1 and ΘY = (ΣY )−1

are the precision matrices of X and Y , respectively. The differential graph is then defined
by letting E∆ = {{v, w} : ∆v,w 6= 0}. This type of differential model for vector-valued data
has been adopted in Zhao et al. (2014a), Xu and Gu (2016), and Cai (2017).

In the motivating example of EEG data, electrical activity is observed over a period
of time. When the measurements smoothly vary over time, it may be more natural to
consider the observations as arising from an underlying function. This is particularly true
when data from different subjects are observed at different time points. Furthermore, when
characterizing conditional independence, it is likely that the activity of each region depends
not only on what is occurring simultaneously in the other regions but also on what has
previously occurred in other regions; this suggests that a functional graphical model might
be appropriate.

In this paper, we define a differential graph for functional data that we refer to as a
functional differential graphical model. Similar to differential graphs for vector-valued data,
functional differential graphical models characterize the differences in the conditional de-
pendence structures of two distributions of multivariate curves. We build on the functional
graphical model developed in Qiao et al. (2019). However, while Qiao et al. (2019) required
that the observed functions lie in a finite-dimensional space in order for the functional
graphical model to be well defined, the functional differential graphical models may be well

2



Functional Differential Graph Estimation

defined even in certain cases where the observed functions live in an infinite-dimensional
space.

We propose an algorithm called FuDGE to estimate the differential graph and show
that this procedure enjoys many benefits, similar to differential graph estimation in the
vector-valued setting. Most notably, we show that under suitable conditions, the proposed
method can consistently recover the differential graph even in the high-dimensional setting
where p, the number of observed variables, may be larger than n, the number of observed
samples.

A conference version of this paper was presented at the Conference on Neural Infor-
mation Processing Systems (Zhao et al., 2019). Compared to the conference version, this
paper includes the following new results.

• We give a new definition for a differential graph for functional data, which allows us
to circumvent the unnatural assumption made in the previous version and take a truly
functional approach. Specifically, instead of defining the differential graph based on
the difference between conditional covariance functions, we use the limit of the norm
of the difference between finite-dimensional precision matrices.

• We include new theoretical guarantees for discretely observed curves. In practice, we
can only observe the functions at discrete time points, so this extends the theoretical
guarantees to a practical estimation procedure. Discrete observations bring an addi-
tional source of error when the estimated curves are used in the functional PCA. In
Theorem 13, we give an error bound for estimating the covariance matrix of the PCA
score vectors under mild conditions.

• We introduce the Joint Functional Graphical Lasso, which is a generalization of the
Joint Graphical Lasso (Danaher et al., 2014) to the functional data setting. Empir-
ically, we show that the procedure performs competitively in some settings but is
generally outperformed by the FuDGE procedure.

The software implementation can be found at https://github.com/boxinz17/FuDGE.
The repository also contains the code to reproduce the simulation results.

1.1 Related Work

The work we develop lies at the intersection of two different lines of literature: graphical
models for functional data and direct estimation of differential graphs.

Many previous works have studied the structure estimation of a static undirected graph-
ical model (Chow and Liu, 1968; Yuan and Lin, 2007; Cai et al., 2011; Meinshausen and
Bühlmann, 2006; Kolar and Xing, 2012a; Wang and Kolar, 2016; Vogel and Fried, 2011; Sun
et al., 2015; Suggala et al., 2017). Previous methods have also been proposed to characterize
conditional independence for multivariate observations recorded over time. For example,
Talih and Hengartner (2005), Xuan and Murphy (2007), Ahmed and Xing (2009), Song
et al. (2009a), Song et al. (2009b), Kolar et al. (2010b), Kolar et al. (2009), Kolar and Xing
(2009), Zhou et al. (2010), Yin et al. (2010), Kolar et al. (2010a), Kolar and Xing (2011),
Kolar and Xing (2012b), Wang and Kolar (2014), Lu et al. (2018), Geng et al. (2019a),
Geng et al. (2019b), Tsai et al. (2020) studied methods for dynamic graphical models that

3

https://github.com/boxinz17/FuDGE


Zhao, Wang, and Kolar

assume that data are sampled independently at different time points but generated by re-
lated distributions. In these works, the authors proposed procedures to estimate a series of
graphs that represent the conditional independence structure at each time point; however,
they assumed that the observed data do not encode “longitudinal” dependence. In contrast,
Wang et al. (2020) focused on graphical models for time series data, while Qiao et al. (2019),
Zhu et al. (2016), Li and Solea (2018), Zhang et al. (2021), Zhao et al. (2021) considered
the setting where the data are multivariate random functions. Most similar to the setting
we consider, Qiao et al. (2019) assumed that the data are distributed as a multivariate
Gaussian process (MGP) and use a graphical lasso type procedure on the estimated func-
tional principal component scores. Zhu et al. (2016) also assumed an MGP but proposed a
Bayesian procedure. Crucially, however, both required that the covariance kernel can essen-
tially be represented by a finite-dimensional object. Zapata et al. (2021) showed that under
various notions of separability—roughly when the covariance kernel can be decomposed
into covariance across time and covariance across nodes—the conditional independence of
the MGP is well defined even when the functional data are truly infinite-dimensional and
that the conditional independence graph can be recovered by the union of a (potentially
infinitely) countable number of graphs over finite-dimensional objects. Zhao et al. (2021)
adopted a neighborhood selection approach to learn the conditional independence structure
of an MGP, which does not need to assume that functional data are finite-dimensional or
that the MGP is separable to ensure consistency. In a different approach, Li and Solea
(2018) did not assume that random functions are Gaussian and instead used the notion of
additive conditional independence to define a graphical model for random functions. Qiao
et al. (2020) also assumed that the data are random functions, but allowed the dependency
structure to change smoothly over time—similar to a dynamic graphical model.

We also draw on recent literature that has shown that when the object of interest
is the difference between two distributions, directly estimating the difference can provide
improvements over first estimating each distribution and then taking the difference. Most
notably, when estimating the difference in graphs in a high-dimensional setting, even if each
individual graph does not satisfy the appropriate sparsity conditions, the differential graph
may still be recovered consistently. Zhao et al. (2014a) considered data drawn from two
Gaussian graphical models and showed that even if both underlying graphs are dense, if
the difference between the precision matrices of each distribution is sparse, the differential
graph can still be recovered in the high-dimensional setting. Liu et al. (2014) proposed
procedure based on KLIEP (Sugiyama et al., 2007) that estimates the differential graph
by directly modeling the ratio of two densities. They did not assume Gaussianity but
required that both distributions lie in some exponential family. Fazayeli and Banerjee
(2016) extended this idea to estimate the differences in Ising models. Wang et al. (2018)
also proposed direct difference estimators for directed graphs when data are generated by
linear structural equation models that share a common topological ordering.

1.2 Notation

Let | · |p denote the vector p-norm and ‖ · ‖p denote the matrix/operator p-norm. For
example, for a p× 1 vector a = (a1, a2, . . . , ap)

>, we have |a|1 =
∑

j |aj |, |a|2 = (
∑

j |a2
j |)1/2

and |a|∞ = maxj |aj |. For a p × q matrix A with entries ajk, |A|1 =
∑

j,k |ajk|, ‖A‖1 =
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maxk
∑

j |ajk|, |A|∞ = maxj,k |ajk|, and ‖A‖∞ = maxj
∑

k |ajk|. Let ‖A‖F = (
∑

j,k a
2
jk)

1/2

be the Frobenius norm of A. When A is symmetric, let tr(A) =
∑

j ajj denote the trace of
A. Let λmin(A) and λmax(A) denote the minimum and maximum eigenvalues, respectively.
Let an � bn denote 0 < C1 ≤ infn |an/bn| ≤ supn |an/bn| ≤ C2 < ∞ for some positive
constants C1 and C2.

We assume that all random functions belong to a separable Hilbert space H. For any
two functions f1, f2 ∈ H, we define their inner product as 〈f1, f2〉 =

∫
f1(t)f2(t)dt. The

induced norm is ‖f1‖ = ‖f1‖L2 = {
∫
f2

1 (t)dt}1/2.
For a function vector f(t) = (f1(t), f2(t), . . . , fp(t))

>, we let ‖f‖L2,2 = (
∑p

j=1 ‖fj‖2)1/2

denote its L2, 2-norm. For a bivariate function g(s, t), we define the Hilbert-Schmidt norm
of g(s, t) as ‖g‖HS =

∫ ∫
{g(s, t)}2dsdt. Typically, we will use f(·) (and similarly g(·, ∗)) to

denote the entire function f , while we use f(t) (and similarly g(s, t)) to mean the value of
f evaluated at t.

For a vector space V, we use V⊥ to denote its orthogonal complement. For v1, . . . , vK ∈
V and v = (v1, . . . , vK)>, we use Span {v1, v2, . . . , vK} = Span (v) to denote the vector
subspace spanned by v1, . . . , vK .

2. Functional Differential Graphical Models

In this section, we review functional graphical models and introduce the notion of a func-
tional differential graphical model.

2.1 Functional Graphical Model

Suppose Xi(·) = (Xi1(·), Xi2(·), . . . , Xip(·))> is a p-dimensional multivariate Gaussian pro-
cess (MGP) with mean zero and common domain T , where T is a closed interval of the real
line with length |T |.1 Each observation, for i = 1, 2, . . . , n, is i.i.d. In addition, assume that
for j ∈ V , Xij(·) is a random element of a separable Hilbert space H. Qiao et al. (2019),
define the conditional cross-covariance function for Xi(·) as

CXjl (s, t) = Cov (Xij(s), Xil(t) | {Xik(·)}k 6=j,l) . (1)

If CXjl (s, t) = 0 for all s, t ∈ T , then the random functions Xj(·) and Xl(·) are conditionally
independent given the other random functions, and the graph GX = {V,EX} represents
the pairwise Markov property of Xi(·) if

EX =
{

(j, l) : j < l and ‖CXjl ‖HS 6= 0
}
. (2)

In general, we cannot directly estimate (2), since Xi(·) may be an infinite-dimensional
object. Thus, before applying a statistical estimation procedure, dimension reduction is
typically required. Qiao et al. (2019) used functional principal component analysis (FPCA)
to project each observed function onto an orthonormal function basis defined by a finite
number of eigenfunctions. Their procedure then estimates the conditional independence
structure from the “projection scores” of this basis. We outline their approach in the fol-
lowing. However, in contrast to Qiao et al. (2019), we do not restrict ourselves to dimension

1. We assume mean zero and a common domain T to simplify the notation, but the methodology and
theory generalize to non-zero means and different time domains.
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reduction by projecting onto the FPCA basis, and in our discussion we instead consider a
general function subspace.

Let VMj

j ⊆ H be a subspace of a separable Hilbert space H with dimension Mj ∈ N+ for
all j = 1, 2, . . . , p. Our theory easily generalizes to the setting where Mj may differ, but to

simplify the notation, we assume Mj = M for all j and simply write VMj instead of VMj

j .

Let VM[p] := VM1 ⊗ VM2 ⊗ · · · ⊗ VMp .

For any function g(·) ∈ H and a subspace F ⊆ H, let π(g(·);F) ∈ F denote the projection
of the function g(·) onto the subspace F, and let

π(Xi(·);VM[p]) =
(
π(Xi1(·);VM1 ), π(Xi2(·);VM2 ), . . . , π(Xip(·);VMp )

)>
.

When the choice of subspace is clear from the context, we will use the following shorthand
notation: Xπ

ij(·) = π(Xij(·);VMj ), j = 1, 2, . . . , p, and Xπ
i (·) = π(Xi(·);VM[p]).

Similarly to the definitions in (1) and (2), we define the conditional independence graph
of Xπ(·) as

EπX =
{
{j, l} : j < l and ‖CX,πjl ‖HS 6= 0

}
, (3)

where
CX,πjl (s, t) = Cov

(
Xπ
ij(s), X

π
il(t) | {Xπ

ik(·)}k 6=j,l
)
.

Note that EπX depends on the choice of VM[p] through the projection operator π, and, as we
discuss below, EπX may be recovered from the observed samples.

When data arise from an MGP, we can estimate the projected graphical structure by
studying the precision matrix of projection score vectors (defined below) with any orthonor-
mal function basis of the subspace VM[p]. Let eMj = (ej1(·), ej2(·), . . . , ejM (·))> be any or-

thonormal function basis of VMj and let eM (·) = {eMj }
p
j=1 be an orthonormal function basis

of VM[p]. Let

aXijk =

∫
T
Xij(t)ejk(t)dt

denote the projection score of Xij(·) onto ejk(·) and let

aX,Mij = (aXij1, a
X
ij2, . . . , a

X
ijM )> and aX,Mi = ((aX,Mi1 )>, . . . , (aX,Mip )>)> ∈ RpM .

Since Xi(·) is a p-dimensional MGP, aX,Mi follows a multivariate Gaussian distribution and
we denote the covariance matrix of that distribution as ΣX,M = (ΘX,M )−1 ∈ RpM×pM .
Each function Xij(·) is associated with M rows and columns of ΣX,M corresponding to

aX,Mij . We use ΘX,M
jl to refer to the M ×M submatrix of ΘX,M that corresponds to the

functions Xij(·) and Xil(·). Lemma 1, from Qiao et al. (2019), shows that the conditional
independence structure of the projected functional data can be obtained from the block
sparsity of ΘX,M .

Lemma 1 [Qiao et al. (2019)] Let ΘX,M be the inverse covariance of the projection scores.
Then, Xπ

ij(s) ⊥⊥ Xπ
il(t) | {Xπ

ik(·)}k 6=j,l for all2 s, t ∈ T if and only if ΘX,M
jl ≡ 0. This implies

2. More precisely, we only need the conditional independence to hold for all s, t ∈ T except for a subset of
T 2 with zero measure.
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that EπX—as defined in (3)—can be equivalently defined as

EπX =
{
{j, l} : j < l and ‖ΘX,M

jl ‖F 6= 0
}
.

Although Qiao et al. (2019) only considered projections onto the span of the FPCA
basis (that is, the eigenfunctions of Xij(·) corresponding to M largest eigenvalues), the
result trivially extends to the more general case of any subspace and any orthonormal
function basis of that subspace.

Although ΘX,M depends on the specific basis onto which Xi(·) is projected, the edge
set EπX only depends on the subspace VM[p], that is, the span of the basis onto which Xi(·)
is projected. Thus, Lemma 1 implies that although the entries of ΘX,M can change when
using different orthonormal function bases to represent VM[p], the block sparsity pattern of

ΘX,M only depends on the span of the selected basis.
When Xi(·) 6= Xπ

i (·), EπX may not be the same as EX ; furthermore, it may not be the
case that EπX ⊆ EX or EX ⊆ EπX . Thus, Condition 2 of Qiao et al. (2019) requires a finite
M? <∞ such that Xij lies in VM?

[p] almost surely. When M = M?, then Xi(·) = Xπ
i (·) and

EπX = EX . Under this assumption, to estimate EπX = EX , Qiao et al. (2019) proposed the
functional graphical lasso estimator (fglasso), which solves the following objective:

Θ̂X,M = arg max
ΘX,M

log det
(
ΘX,M

)
− tr

(
SX,MΘX,M

)
− γn

∑
j 6=l

∥∥∥ΘX,M
jl

∥∥∥
F

. (4)

In (4), ΘX,M is a symmetric positive definite matrix, ΘX,M
jl ∈ RM×M corresponds to the

(j, l) submatrix of ΘX,M , γn is a non-negative tuning parameter, and SX,M is an estimator of
ΣX,M . The matrix SX,M is obtained by using FPCA on the empirical covariance functions
(see Section 2.3 for details). The resulting estimated edge set for the functional graph is

ÊπX =
{
{j, l} : j < l and

∥∥∥Θ̂X,M
jl

∥∥∥
F
> 0
}
.

We also note that the objective in (4) was previously used in Kolar et al. (2013) and Kolar
et al. (2014) for the estimation of graphical models from multi-attribute data.

However, the requirement that Xi(·) lies in a subspace with finite-dimension may be
violated in many practical applications and negates one of the primary benefits of consid-
ering the observations as functions. Unfortunately, the extension to infinite-dimensional
data is nontrivial, and indeed Condition 2 in Qiao et al. (2019) requires that the observed
functional data lie within a finite-dimensional span. To see why, we first note that ΣX,M?

is
always a compact operator on RpM?

. Thus, as M? →∞, the smallest eigenvalue of ΣX,M?

will go to zero. As a consequence, ΣX,M?
becomes increasingly ill-conditioned, and ΘX,M?

,
the inverse of ΣX,M?

will become ill-defined when M? = ∞. This behavior makes the es-
timation of a functional graphical model—at least through the basis expansion approach
proposed by Qiao et al. (2019)—generally infeasible for truly infinite-dimensional functional
data. When the data are truly infinite-dimensional, the best we can do is to estimate a
finite-dimensional approximation and hope that it captures the relevant information.
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2.2 Functional Differential Graphical Models: Finite-Dimensional Setting

In this paper, rather than estimating the conditional independence structure of a single
MGP, we are interested in characterizing the difference between two MGPs, X and Y . For
brevity, we will typically only explicitly define the notation forX; however, the reader should
infer that all the notation for Y is defined analogously. As described in the introduction, Li
et al. (2007) and Zhao et al. (2014a) consider the setting where X and Y are multivariate
Gaussian vectors, and define the differential graph G∆ = {V,E∆} by letting

E∆ = {(v, w) : v < w and ∆vw 6= 0}

where ∆ = (ΣX)−1 − (ΣY )−1 and ΣX ,ΣY are the covariance matrices of X and Y .

We extend this definition to the functional data setting and define functional differential
graphical models. To develop intuition, we first start by defining the differential graph with
respect to the finite-dimensional projections of functional data, that is, with respect toXπ

i (t)
and Y π

i (t) for some choice of VM[p]. As implied by Lemma 1, in the functional graphical model
setting, the M×M blocks of the precision matrix of the projection scores play a similar role
to the individual entries of a precision matrix in the vector-valued Gaussian graphical model
setting. Thus, we also define a functional differential graphical model by the difference of
the precision matrices of the projection scores. Note that for each j ∈ V , we require that
both aXij and aYij be calculated using the same function basis of VMj . Let ΘX,M =

(
ΣX,M

)−1

and ΘY,M =
(
ΣY,M

)−1
be the precision matrices for the projection scores for X and Y ,

respectively, where the inverse should be understood as the pseudo-inverse when ΣX,M or
ΣY,M are not invertible.

We now define the functional differential graphical model. Let ∆M = ΘX,M −ΘY,M and
∆M
jl be the (j, l)-th M ×M block of ∆M . We define the edges of the functional differential

graph of the projected data as:

Eπ∆ =
{

(j, l) : j < l and ‖∆M
jl ‖F > 0

}
. (5)

While the entries of ∆M depend on the choice of orthonormal function basis, the defini-
tion of Eπ∆ is invariant to the particular basis and only depends on the span. The following
lemma formally states this result.

Lemma 2 Suppose that span(eM (·)) = span(ẽM (·)) for two orthonormal bases eM (·) and
ẽM (·). Let Eπ∆ and Eπ̃∆ be defined by (5) when projecting X and Y onto eM (·) and ẽM (·),
respectively. Then, Eπ∆ = Eπ̃∆.

Proof See Appendix B.1.

We have several comments about Eπ∆ defined in (5).

Projecting X and Y onto different subspaces: While we project both X and Y
onto the same subspace VM[p], our definition can be easily generalized to a setting where we

project X onto VX,M[p] and Y onto VY,M[p] , with VX,M[p] 6= VY,M[p] . For example, naively follow-

ing the procedure of Qiao et al. (2019), we could perform FPCA on X and Y separately,
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and subsequently we could use the difference between the precision matrices of the pro-
jection scores to define the functional differential graph. Although defining the functional
differential graph using this alternative approach may be suitable for some applications, it
may result in the undesirable case where (j, l) ∈ Eπ∆ even though CX,πjl (·, ∗) = CY,πjl (·, ∗),
CX,πjj (·, ∗) = CY,πll (·, ∗), and C

\j,X,π
ll (·, ∗) = C

\j,Y,π
ll (·, ∗). Therefore, we restrict our discussion

to the setting where X and Y are projected onto the same subspace.

Connection to Multi-Attribute Graphical Models: The selection of a specific
functional subspace is connected to multi-attribute graphical models (Kolar et al., 2014). If
we treat the random function Xij(·) as representing an infinite number of attributes, then
Xπ
ij(·) will be an approximation using M attributes. The chosen attributes are given by

the subspace VMj . While we allow different nodes to choose different attributes by allowing

VMj to vary across j, we require that the same attributes are used to represent both X and

Y by restricting VM[p] to be the same for X and Y . The specific choice of VM[p], can extract
different attributes from the data. For instance, using the subspace spanned by the Fourier
basis can be viewed as extracting frequency information, while using the subspace spanned
by the eigenfunctions—as introduced in the next section—can be viewed as extracting the
dominant modes of variation.

Given the definition (5) and the Lemma 2, there are two main questions to answer: First,
how do we choose VM[p]? Second, what happens when X and Y are infinite-dimensional? We
answer the first question in Section 2.3 and the second question in Section 2.4.

2.3 Choosing Functional Subspace via FPCA

As discussed in Section 2.2, the choice of VM[p] in Definition 5 decides—roughly speaking—
the attributes or dimensions in which we compare the conditional independence structures
of X and Y . In some applications, we may have very good prior knowledge about this
choice. However, in many cases, we may not have a strong prior knowledge. In this section,
we describe our recommended “default choice” that uses FPCA on the combined X and Y
observations. In particular, suppose that there exist subspaces {VM?

j }j∈V such that VM?

j

has dimension M? <∞ and Xij(t), Yij(t) ∈ VM?

j for all j ∈ V . Then, FPCA—when given
population values—recovers this subspace.

Similarly to the way principal component analysis provides the L2 optimal lower di-
mensional representation of vector-valued data, FPCA provides the L2 optimal finite-
dimensional representation of functional data. Let KX

jj (t, s) = Cov(Xij(t), Xij(s)) de-
note the covariance function for Xij for j ∈ V . Then, there exist orthonormal eigen-
functions and eigenvalues {φXjk(t), λXjk}k∈N such that

∫
T K

X
jj (s, t)φ

X
jk(t)dt = λXjkφ

X
jk(s) for

all k ∈ N (Hsing and Eubank, 2015). Since KX
jj (s, t) is symmetric and non-negative

definite, we assume, without loss of generality, that {λXjs}s∈N+ is non-negative and non-
increasing. By the Karhunen-Loève expansion (Hsing and Eubank, 2015, Theorem7.3.5),
Xij(t) can be expressed as Xij(t) =

∑∞
k=1 a

X
ijkφ

X
jk(t), where the principal component scores

satisfy aXijk =
∫
T Xij(t)φ

X
jk(t)dt and aXijk ∼ N(0, λXjk) with E(aXijka

X
ijl) = 0 if k 6= l. Be-

cause the eigenfunctions are orthonormal, the L2 projection of Xij onto the span of the

first M eigenfunctions is XM
ij (t) =

∑M
k=1 a

X
ijkφ

X
jk(t). Similarly, we can define KY

jj(t, s),

9



Zhao, Wang, and Kolar

{φYjk(t), λYjk}k∈N and YM
ij (t). Let Kjj(s, t) = KX

jj (s, t) + KY
jj(s, t) and let {φjk(t), λjk}k∈N

be the eigenfunction-eigenvalue pairs of Kjj(s, t).
Lemma 3 implies that Xij(·) and Yij(·) lie within the span of the eigenfunctions cor-

responding to the non-zero eigenvalues of Kjj . Furthermore, this subspace is minimal in
the sense that no subspace of a smaller dimension contains Xij(·) and Yij(·) almost surely.
Thus, the FPCA basis of Kjj provides a good default choice for dimension reduction.

Lemma 3 Let |V| denote the dimension of a subspace V and suppose that

M ′j = inf{|V| : V ⊆ H, Xij(·), Yij(·) ∈ V almost surely}.

Let {φjk(t), λjk}k∈N be the eigenfunction-eigenvalue pairs of Kjj(s, t) and

M?
j = sup{M ∈ N+ : λjM > 0}.

Then M ′j = M?
j and Xij , Yij ∈ Span{φj1(·), φj2(·), . . . , φj,M?

j
(·)} almost surely.

Proof See Appendix B.2.

2.4 Infinite-Dimensional Functional Data

In Section 2.2, we defined a functional differential graph for functional data that have finite-
dimensional representation. In this section, we present a more general definition that also
allows for infinite-dimensional functional data.

As discussed in Section 2.1, when the data are infinite-dimensional, estimating a func-
tional graphical model is not straightforward because the precision matrix of the scores
does not have a well-defined limit as M , the dimension of the projected data, increases
to ∞. When estimating the differential graph, however, although ‖ΘX,M‖F → ∞ and
‖ΘY,M‖F → ∞ as M → ∞, it is still possible for ‖ΘX,M − ΘY,M‖F to be bounded as
M → ∞. For instance, xn, yn ∈ R may both tend to infinity, but limn xn − yn may still
exist and be bounded. Furthermore, even when ‖ΘX,M −ΘY,M‖F → ∞, it is still possible
for the difference ΘX,M − ΘY,M to be informative. This observation leads to Definition 4
below. To simplify notation, in the rest of the paper, we assume that Xij(·) and Yij(·) live in
an M? dimensional space where M? ≤ ∞. Recall that {φXjk(·), λXjk}k∈N and {φYjk(·), λYjk}k∈N
denote the eigenpairs of KX

jj and KY
jj respectively.

Definition 4 (Differential Graph Matrix and Comparability) The MGPs X and Y
are comparable if the following two conditions hold:

1. For all j ∈ [p], KX
jj and KY

jj have M? non-zero eigenvalues and

span
(
{φXjk}M

?

k=1

)
= span

(
{φYjk}M

?

k=1

)
.

2. For every (j, l) ∈ V 2 where j 6= l and a projection subspace sequence
{
VM[p]

}
M≥1

satisfying limM→M? VMj = span
(
{φXjk}M

?

k=1

)
, we have either:

lim
M→M?

‖∆M
jl ‖F = 0 or lim inf

M→M?
‖∆M

jl ‖F > 0.

10
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We say that X and Y are incomparable, if for some j, KX
jj and KY

jj have a different

number of non-zero eigenvalues, or if span
(
{φXjk}M

?

k=1

)
6= span

(
{φYjk}M

?

k=1

)
, or if there exists

some (j, l) such that given
{
VM[p]

}
M≥1

satisfying limM→M? VMj = span
(
{φXjk}M

?

k=1

)
, we have

lim inf
M→M?

‖∆M
jl ‖F = 0, but lim sup

M→M?
‖∆M

jl ‖F > 0.

When X and Y are comparable, we define the differential graph matrix (DGM)
D = (Djl)(j,l)∈V 2 ∈ Rp×p, where

Djl = lim inf
M→M?

‖∆M
jl ‖F.

In Definition 4 we say limM→M? VMj = span
(
{φXjk}M

?

k=1

)
, to mean the following: For any

ε > 0 and all g ∈ span
(
{φXjk}M

?

k=1

)
, there exists M ′ = M ′(ε) < ∞ such that ‖g − gMP ‖ < ε

for all M ≥M ′, where gMP denotes the projection of g onto the subspace of VMj .
When M? <∞, the conditional independence structure in Xi and Yi can be fully cap-

tured by a finite-dimensional representation. When M? =∞, as M →∞, ∆M
jl approaches

the difference of two matrices with unbounded eigenvalues. However, when X and Y are
comparable, the limits are still informative. This would suggest that by using a sufficiently
large subspace, we can capture such a difference arbitrarily well. However, if the MGPs are
not comparable, then using a larger subspace may not improve the approximation regard-
less of the sample size. For this reason, in the remainder of the article, we focus only on
the setting where X and Y are comparable.

To our knowledge, there is no existing procedure to estimate a graphical model for
functional data when the functions are infinite-dimensional. Thus, it is not straightforward
to determine whether the comparability condition is stronger or weaker than what might
be required for estimating the graphs separately and then comparing post hoc. However,
we hope to provide some intuition to the reader.

Suppose that X and Y are of the same dimension, M?. If M? <∞ and the functional
graphical model for each sample could be estimated separately (that is, ‖ΘX,M‖F <∞ and
‖ΘY,M‖F <∞), then X and Y are comparable when the minimal basis that spans X and
Y is the same. Thus, the functional differential graph is also well defined. On the other
hand, the conditions required by Qiao et al. (2019, Condition 2) for consistent estimation
are not satisfied when M? = ∞, since limM→∞ ‖ΘX,M‖F = ∞ due to the compactness
of the covariance operator. However, X and Y may still be comparable depending on the
limiting behavior of ΘX,M and ΘY,M . Thus, there are settings where the differential graph
may exist and can be consistently recovered even when each individual graph cannot be
recovered (even when p is fixed).

However, when one MGP is finite-dimensional and the other is infinite-dimensional, then
the MGPs are incomparable. To see this, without loss of generality, we assume that MGP
X has infinite-dimension MX

j = M?
X = ∞ for all j ∈ V and MGP Y has finite-dimension

MY
j = M?

Y <∞ for all j ∈ V . Then ΘY,M is ill-defined when M > M?
Y and recovering the

differential graph is not straightforward.
We now define the notion of a functional differential graph.

11



Zhao, Wang, and Kolar

Definition 5 When two MGPs X and Y are comparable, we define their functional dif-
ferential graph as an undirected graph G∆ = {V,E∆}, where E∆ is defined as

E∆ = {{j, l} : j < l and Djl > 0} .

Remark 6 The functional graphical model defined by Qiao et al. (2019) uses the condi-
tional covariance function CXjl (·, ∗) given in (1). Thus, it would be quite natural to use the
conditional covariance functions directly to define a differential graph, where

E∆ =
{
{j, l} : j < l and CXjl (·, ∗) 6= CYjl (·, ∗)

}
. (6)

Unfortunately, this definition does not always coincide with the one we propose in Defi-
nition 5. However, the functional differential graph given in Definition 5 has many nice
statistical properties and retains important features of the graph defined in (6).

The primary statistical benefit of the graph defined in Definition 5 is that it can be
directly estimated without estimating each conditional independence function: CXjl (·, ·) and

CYjl (·, ·). Similarly to the vector-valued case considered by (Zhao et al., 2014a), this allows
for a much lower sample complexity when each individual graph is dense but the difference
is sparse. In some settings, there may not be enough samples to accurately estimate each
individual graph, but the difference may still be recovered. This result is demonstrated in
Theorem 10.

The statistical advantages of our estimand unfortunately come at the cost of a slightly
less precise characterization of the difference in the conditional covariance functions. How-
ever, many of the key characteristics are still preserved. Suppose Xi and Yi are both M?-
dimensional with M? < ∞ and further suppose that {φjm(·)φlm′(∗)}m,m′∈[M?]×[M?] is a
linearly independent set of functions. Suppose that the conditional covariance functions for

j, l ∈ V are unchanged so that CXjj (·, ∗) = CYjj(·, ∗) and C
\j,X
ll (·, ∗) = C

\j,Y
ll (·, ∗), where

C
\j,X
ll (·, ∗) := Cov(Xl(·), Xl(∗) |Xk(·), k 6= j, l)

and C
\j,Y
ll (·, ∗) is defined similarly; then, ∆jl = 0 if and only if CXjl (·, ∗) = CY,πjl (·, ∗). When

this holds for all pairs j, l ∈ V , then the definitions of a differential graph in Definition 5 and
(6) are equivalent. When the conditional covariance functions change so that CXjj (·, ∗) 6=
CYjj(·, ∗), then we still have ∆jl 6= 0 if CX,πjl (·, ∗) = 0 and CY,πjl (·, ∗) 6= 0 (or vice versa).
Thus, even in this more general setting, the functional differential graph given in Definition 5
captures all qualitative differences between conditional covariance functions CXjl (·, ∗) and

CYjl (·, ∗).

Our objective is to directly estimate E∆ without first estimating EX or EY . Since the
functions we consider may be infinite-dimensional objects, in practice, what we can directly
estimate is actually Eπ∆ defined in (5). We will use a sieve estimator to estimate ∆M , where
M increases with the sample size n. When M? = M , then Eπ∆ = E∆. When M < M? ≤ ∞,
then this is generally not true; however, we would expect the graphs to be similar when M
is large enough compared to M?. Thus, by constructing a suitable estimator of ∆M , we
can still recover E∆.

12
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2.5 Illustration of Comparability

We provide a few examples that illustrate the notion of comparability. In the first two
examples, the graphs are comparable, whereas in the third example, the graphs are in-
comparable. First, we state a lemma that will be helpful in the following discussion. The
lemma follows directly from the properties of the multivariate normal and the inverse of
block matrices.

Lemma 7 Let HX,M
jl = Cov(aX,Mij , aX,Mil | aX,Mik , k 6= j, l) and H

\l,X,M
jj = Var(aX,Mij |

aX,Mik , k 6= j, l). For any j ∈ V , we have ΘX,M
jj = (HX,M

jj )−1. For any (j, l) ∈ V 2 and j 6= l,

we have ΘX,M
jl = −(HX,M

jj )−1HX,M
jl (H

\j,X,M
ll )−1.

Proof See Appendix B.3.

The following proposition follows directly from Lemma 7.

Proposition 8 Assume that for any (j, l) ∈ V 2 and j 6= l, we have

aXijm ⊥⊥ aXijm′ | a
X,M
ik , k 6= j and aXijm ⊥⊥ aXijm′ | a

X,M
ik , k 6= j, l,

for any M and 1 ≤ m 6= m′ ≤M . We then have

ΘX,M
jj = diag

 1

Var
(
aXij1 | a

X,M
ik , k 6= j

) , . . . , 1

Var
(
aXijM | a

X,M
ik , k 6= j

)


and

ΘX,M
jl,mm′ =

Cov
(
aXijm, a

X
ilm′ | a

X,M
ik , k 6= j, l

)
Var

(
aXijm | a

X,M
ik , k 6= j

)
Var

(
aXilm′ | a

X,M
ik , k 6= j

) ∆
= v̄X,jl,Mmm′ ,

for any M and 1 ≤ m 6= m′ ≤M . In addition, if

aYijm ⊥⊥ aYijm′ | a
Y,M
ik , k 6= j and aYijm ⊥⊥ aYijm′ | a

Y,M
ik , k 6= j, l,

for any M and 1 ≤ m 6= m′ ≤M , then

ΘX,M
jj −ΘY,M

jj = diag


Var

(
aYijm | a

Y,M
ik , k 6= j

)
−Var

(
aXijm | a

X,M
ik , k 6= j

)
Var

(
aXijm | a

X,M
ik , k 6= j

)
Var

(
aYijm | a

Y,M
ik , k 6= j

)

M

m=1


∆
= diag

(
w̄j,M1 , w̄j,M2 , . . . , w̄j,MM

)
and

ΘX,M
jl,mm′ −ΘY,M

jl,mm′ =
Cov

(
aXijm, a

X
ilm′ | a

X,M
ik , k 6= j, l

)
Var

(
aXijm | a

X,M
ik , k 6= j

)
Var

(
aXilm′ | a

X,M
ik , k 6= j

)
13
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−
Cov

(
aYijm, a

Y
ilm′ | a

Y,M
ik , k 6= j, l

)
Var

(
aYijm | a

Y,M
ik , k 6= j

)
Var

(
aYilm′ | a

Y,M
ik , k 6= j

)
= v̄Y,jl,Mmm′ − v̄

X,jl,M
mm′

∆
= z̄jl,Mmm′ ,

for any M and 1 ≤ m 6= m′ ≤M .

With the notation defined in Proposition 8, we have that

‖∆M
jj ‖2HS =

M∑
m=1

(
w̄j,Mm

)2
and ‖∆M

jl ‖2HS =
M∑

m′=1

M∑
m=1

(
z̄jl,Mmm′

)2
.

As a result, we have the following condition for comparability.

Proposition 9 Under the assumptions in Proposition 8, assume that MGPs X and Y are
M?-dimensional, with 1 ≤ M? ≤ ∞, and lie in the same space. Then they are comparable
if and only if for every (j, l) ∈ V × V , we have either

lim inf
M→M?

M∑
m′=1

M∑
m=1

(
z̄jl,Mmm′

)2
> 0 or lim

M→M?

M∑
m′=1

M∑
m=1

(
z̄jl,Mmm′

)2
= 0,

where z̄jl,Mmm′ are defined in Proposition 8.

We now give an infinite-dimensional comparable example.

Example 1 Assume that {εXi1k}k≥1, {εXi2k}k≥1, and {εXi3k}k≥1 are all independent mean zero
Gaussian variables with Var(εXijk) = σ2

X,jk, j = 1, 2, 3, k ≥ 1 for all i. For any k ≥ 1, let

aXi1k = aXi2k + εXi1k, aXi2k = εXi2k, aXi3k = aXi2k + εXi3k.

Let aX,Mij = (aXij1, · · · , aXijM )>, j = 1, 2, 3. We then define Xij(t) =
∑∞

k=1 a
X
ijkbk(t), j =

1, 2, 3, where {bk(t)}∞k=1 is some orthonormal function basis of H. We define {εYijk}k≥1,

{aYijk}k≥1, aY,Mij , and Yij(t), j = 1, 2, 3, similarly.

The graph structure of X and Y is shown in Figure 1. Since aX,Mij follows a multivariate
Gaussian distribution, for any M ≥ 2, 1 ≤ m,m′ ≤M and m 6= m′:

Var
(
aXi1m | a

X,M
i2 , aX,Mi3

)
= σ2

X,1m,

Var
(
aXi3m | a

X,M
i1 , aX,Mi2

)
= σ2

X,3m,

Var
(
aXi2m | a

X,M
i1 , aX,Mi3

)
=

σ2
X,1mσ

2
X,2mσ

2
X,3m

σ2
X,1mσ

2
X,2m + σ2

X,1mσ
2
X,3m + σ2

X,2mσ
2
X,3m

,
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1 2 3

Figure 1: The conditional independence graph for both X and Y in Example 1. The dif-
ferential graph between X and Y has the same structure.

and

Var
(
aXi1m | a

X,M
i2

)
= σ2

X,1m,

Var
(
aXi1m | a

X,M
i3

)
=
σ2
X,1mσ

2
X,2m + σ2

X,1mσ
2
X,3m + σ2

X,2mσ
2
X,3m

σ2
2m + σ2

3m

,

Var
(
aXi3m | a

X,M
i2

)
= σ2

X,3m,

Var
(
aXi3m | a

X,M
i1

)
=
σ2
X,1mσ

2
X,2m + σ2

X,1mσ
2
X,3m + σ2

X,2mσ
2
X,3m

σ2
2m + σ2

1m

,

Var
(
aXi2m | a

X,M
i1

)
=

σ2
X,1mσ

2
X,2m

σ2
X,1m + σ2

X,2m

,

Var
(
aXi2m | a

X,M
i3

)
=

σ2
X,3mσ

2
X,2m

σ2
X,3m + σ2

X,2m

.

In addition, we also have

Cov(aXi1m, a
X
3m′ | a

X,M
i2 ) = 0,

Cov(aXi1m, a
X
i2m′ | a

X,M
i3 ) = 1(m = m′) ·

σ2
X,3mσ

2
X,2m

σ2
X,3m + σ2

X,2m

,

Cov(aXi2m, a
X
i3m′ | a

X,M
i3 ) = 1(m = m′) ·

σ2
X,1mσ

2
X,2m

σ2
X,1m + σ2

X,2m

.

Similar results hold for Y . Suppose that

σ2
X,jk, σ

2
Y,jk � k−α and |σ2

X,jk − σ2
Y,jk| � k−β, j = 1, 2, 3,

where α, β > 0 and β > α. Then

z̄13,M
mm′ = 0,

z̄12,M
mm′ = 1(m = m′)

σ2
X,1m − σ2

Y,1m

σ2
X,1m · σ2

Y,1m

� 1(m = m′) ·m−(β−α),

z̄23,M
mm′ = 1(m = m′)

σ2
X,3m − σ2

Y,3m

σ2
X,3m · σ2

Y,3m

� 1(m = m′) ·m−(β−α).
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This implies that

‖∆M
13‖2F =

M∑
m′=1

M∑
m=1

(
z̄13,M
mm′

)2
= 0,

‖∆M
12‖2F =

M∑
m′=1

M∑
m=1

(
z̄12,M
mm′

)2
�

M∑
m=1

1

mβ−α ,

‖∆M
23‖2F =

M∑
m′=1

M∑
m=1

(
z̄23,M
mm′

)2
�

M∑
m=1

1

mβ−α .

When β > α+ 1, we have 0 < limM→∞ ‖∆M
12‖F = limM→∞ ‖∆M

23‖F <∞. When β ≤ α+ 1,
we have limM→∞ ‖∆M

12‖F = limM→∞ ‖∆M
23‖F = ∞. In both cases, the two graphs are

comparable.

Comparability describes population quantities and does not immediately imply that the
differential graph is easy to estimate. The following example describes a sequence of MGPs
that are comparable; however, the differential graph can be arbitrarily hard to estimate.

Example 2 We define {εXijk}k≥1, {aXijk}k≥1, {εYijk}k≥1, and {aYijk}k≥1 as in Example 1.

Let Xij(t) =
∑M?

k=1 a
X
ijkbk(t) and Yij(t) =

∑M?

k=1 a
Y
ijkbk(t), j = 1, 2, 3, where M? is a positive

integer. Suppose that

σ2
X,jk, σ

2
Y,jk � k−α and |σ2

X,jk − σ2
Y,jk| � 1(k = M?)k−β, j = 1, 2, 3,

where α, β > 0 and β > α. Following the argument in Example 1, for any 1 ≤ M ≤ M?,
we have

z̄13,M
mm′ = 0,

z̄12,M
mm′ = 1(m = m′)1(m = M?) ·

σ2
X,1m − σ2

Y,1m

σ2
X,1m · σ2

Y,1m

� 1(m = m′)1(m = M?) ·m−(β1−2α1),

z̄23,M
mm′ = 1(m = m′)1(m = M?) ·

σ2
X,3m − σ2

Y,3m

σ2
X,3m · σ2

Y,3m

� 1(m = m′)1(m = M?) ·m−(β3−2α3).

This implies that

‖∆M
13‖2F =

M∑
m′=1

M∑
m=1

(
z̄13,M
mm′

)2
= 0,

‖∆M
12‖2F =

M∑
m′=1

M∑
m=1

(
z̄12,M
mm′

)2
�M−2(β−2α)

1(M = M?),

‖∆M
23‖2F =

M∑
m′=1

M∑
m=1

(
z̄23,M
mm′

)2
�M−2(β−2α)

1(M = M?).

On the basis of the calculation above, we observe that estimation of the differential
graph here is intrinsically hard. For any M < M?, we have ‖∆M

12‖F = ‖∆M
23‖F = 0.
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Figure 2: Signal Strength D12 � (M?)−2(β−2α) in Example 2.

Thus, when M < M? is used for estimation, the resulting target graph Eπ∆ would be empty.
However, by Definition 4 and Definition 5, we have D12 = D23 � (M?)−2(β−2α) > 0 and
E∆ = {(1, 2), (2, 3)}.

In practice, if M? is very large and we do not have enough samples to accurately estimate
∆M for a large M , then it is impossible for us to estimate the differential graph correctly.
Furthermore, the situation is worse if β > 2α, since D12 and D23—the signal strength—
vanishes as M? increases. Figure 2 shows how the signal strength (defined as D12) changes
as M? increases for three cases: β < 2α, β = 2α, and β > 2α.

This problem is intrinsically hard because the difference between two graphs occurs only
between components with the smallest positive eigenvalue. To capture this difference, we
have to use a large number of bases M to approximate the functional data, which is sta-
tistically expensive. As we increase M , no useful information is captured until M = M?.
Furthermore, if the difference between the eigenvalues decreases quickly relative to the de-
crease of the eigenvalues, the signal strength will be very weak when the intrinsic dimension
is large.

In Example 1, we characterized a pair of infinite-dimensional MGPs that are comparable,
and in Example 2 we discussed a sequence of models that are all comparable, but increasingly
difficult to recover. The following example demonstrates that there are infinite-dimensional
MGPs that may share the same eigenspace but are still not comparable.

Example 3 We construct two MGPs that are both infinite-dimensional and have the same
eigenspace but are incomparable. As in the previous two examples, let V = {1, 2, 3}. We
assume that X and Y share a common set of eigenfunctions: {φm}∞m=1 for j = 1, 2, 3.

We construct the distribution of the scores of X and Y as follows. For any m ∈ N+,
let aXi ·m denote the vector of scores (aXi1m, a

X
i2m, a

X
i3m) and define aYi ·m analogously. For any

natural number z, we first assume that

aXi · (3z−2), a
X
i · (3z−1), a

X
i · (3z) ⊥⊥ {a

X
i · k}k 6=3z,3z−1,3z−2.

Thus, the conditional independence graph for individual scores is a set of disconnected sub-
graphs corresponding to {aXi · (3z−2), a

X
i ·,(3z−1), a

X
i · (3z)} for z ∈ N+. We make an analogous

assumption for the scores of Y .
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aXi1(3z−2) aXi2(3z−2) aXi3(3z−2)

aXi1(3z−1) aXi2(3z−1) aXi3(3z−1)

aXi1(3z) aXi2(3z) aXi3(3z)

(a) CI graph for X scores

aYi1(3z−2) aYi2(3z−2) aYi3(3z−2)

aYi1(3z−1) aYi2(3z−1) aYi3(3z−1)

aYi1(3z) aYi2(3z) aYi3(3z)

(b) CI graph for Y scores

Figure 3: CI graph for the individual scores for two incomparable MGPs.

Within sets {aXi · (3z−2), a
X
i · (3z−1), a

X
i · (3z)} and {aYi · (3z−2), a

Y
i · (3z−1), a

Y
i · (3z)}, we assume

that the conditional independence graph has the structure shown in Figure 3. By con-
struction, when projecting onto the span of the first M functions, the edge set of individual
functional graphical models for Xπ and Y π is not stable as M → ∞. In particular, for
both X and Y , the edges (1, 2) and (2, 3) will persist; however, the edge (1, 3) will appear or
disappear depending on M .

If M = 3z − 2 for some z ∈ N+, which corresponds to the first row in Figure 3, then

{aXi1k}k<M ⊥⊥ {aXi3k}k<M | {aXi2k}k≤M and {aYi1k}k<M ⊥⊥ {aYi3k}k<M | {aYi2k}k≤M .

However, aXi1M 6⊥⊥ aXi3M | {aXi2k}k≤M since we do not condition on aXi2(M+1). Similarly,

aYi1M 6⊥⊥ aYi3M | {aYi2k}k≤M since we do not condition on aYi2(M+2). Thus, the edge (1, 3) is

in the functional graphical model for both Xπ and Y π; however, the specific values of ΘX,M

and ΘY,M may differ.
In contrast to the previous case, when M = 3z − 1 for some z ∈ N+, which corresponds

to the second row of Figure 3, the functional graphical models for Xπ and Y π now differ.
Note that {aXi1k}k≤M ⊥⊥ {aXi3k}k≤M | {aXi2k}k≤M . Thus, the edge (1, 3) is absent from the

functional graphical model for Xπ and ΘX,M
1,3 = 0. Considering Y π, we have {aYi1k}k<M−1 ⊥

⊥ {aYi3k}k<M−1 | {aYi2k}k≤M . However, because we do not condition on aYi2(M+1) (the node

in the third row of Figure 3), the (1, 3) edge exists in the functional graphical model for Y π

since aYi1(M−1) 6⊥⊥ a
Y
i3(M−1) | {a

Y
i2k}k≤M .

Suppose that the covariance of the scores is

z−β×



aY
i1(3z−2)

aY
i1(3z−1)

aY
i1(3z)

aY
i2(3z−2)

aY
i2(3z−1)

aY
i2(3z)

aY
i3(3z−2)

aY
i3(3z−1)

aY
i3(3z)

aY
i1(3z−2)

3/2 0 0 0 0 −1 1/2 0 0

aY
i1(3z−1)

0 1 0 0 0 0 0 0 0

aY
i1(3z)

0 0 1 0 0 0 0 0 0

aY
i2(3z−2)

0 0 0 8 0 0 0 0 0

aY
i2(3z−1)

0 0 0 0 4 0 0 0 0

aY
i2(3z)

−1 0 1 0 0 2 −1 0 0

aY
i3(3z−2)

1/2 0 0 0 0 −1 3/2 0 0

aY
i3(3z−1)

0 0 0 0 0 0 0 1 0

aY
i3(3z)

0 0 0 0 0 0 0 0 1


,
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where β > 0 is a parameter that determines the decay rate of the eigenvalues (see Assump-
tion 3). We then set all other elements of the covariance as 0. The support of the inverse of
this matrix corresponds to the edges of the graph in Figure 3. However, when we consider
the marginal distribution of the first M scores and invert the corresponding covariance,
ΘY,M

1,3 is 0 everywhere except for the element corresponding to aYi,1,M−1 and aYi,3,M−1, that

is, the nodes in the top row of Figure 3, which is equal to −1/4 × ((M + 1)/3)β. Thus,
‖∆M

1,3‖F = 1/4× ((M + 1)/3)β and lim supM→∞ ‖∆M
1,3‖F =∞.

Finally, when M = 3z for some z ∈ N+, the (1, 3) edge is absent in both functional
graphical models for Xπ and Y π because

{aXi1k}k≤M ⊥⊥ {aXi3k}k≤M | {aXi2k}k≤M and {aYi1k}k≤M ⊥⊥ {aYi3k}k≤M | {aYi2k}k≤M .

Thus, ΘX,M
1,3 = ΘY,M

1,3 = ∆M
1,3 = 0. This implies that lim infM→∞ ‖∆M

1,3‖F = 0.

Because lim infM→∞ ‖∆M
1,3‖F = 0, but lim supM→∞ ‖∆M

1,3‖F =∞, X and Y are incom-
parable.

The notion of comparability illustrates the intrinsic difficulty of dealing with functional
data. However, it also illustrates when we can still hope to estimate the differential network
consistently. We have formally stated when two infinite-dimensional functional graphi-
cal models will be comparable and have given conditions and examples of comparability.
Unfortunately, these conditions cannot be checked using the observed data. For this rea-
son, we mainly discuss the methodology and theoretical properties for estimation of Eπ∆.
Prior knowledge about the problem at hand should be used to decide whether two infinite-
dimensional functional graphs are comparable. This is similar to other assumptions common
in the graphical modeling literature, such as “faithfulness” (Spirtes et al., 2000), that are
critical to graph recovery, but can not be verified.

3. Functional Differential Graph Estimation: FuDGE

In this section, we detail our methodology for estimating a functional differential graph.
Unfortunately, in most situations, there may not be prior knowledge on which subspace
to use to define the functional differential graph. In such situations, we suggest using the
principle component scores of Kjj(s, t) = KX

jj (s, t) + KY
jj(s, t), j ∈ V as a default choice.

In addition, each observed function is only recorded (potentially with measurement error)
at discrete time points. In Section 3.1 we consider this practical setting. Of course, if an
appropriate basis for dimension reduction is known in advance or if the functions are fully
observed at all time points, then the estimated objects can always be replaced with their
known/observed counterparts.

3.1 Estimating the Covariance of the Scores

For each Xij , suppose we have measurements at time points tijk, k = 1, . . . , T ,3 and the
recorded data, hijk, are the function values with random noise. That is,

hijk = gij(tijk) + εijk, (7)

3. For simplicity, we assume that all functions have the same number of observations, however, our method
and theory can be trivially extended to allow a different number of observations for each function.

19



Zhao, Wang, and Kolar

where gij can denote either Xij or Yij and the unobserved noise εijk is i.i.d. Gaussian with
mean 0 and variance σ2

0. Without loss of generality, we assume that tij1 < . . . < tijT for
any 1 ≤ i ≤ n and 1 ≤ j ≤ p. We do not assume that tijk = ti′jk for i 6= i′, so that each
observation may be observed on a different grid.

We first use a basis expansion to estimate a least squares approximation of the whole
curve Xij(t) (see Section 4.2 in Ramsay and Silverman (2005)). Specifically, given an initial
basis function vector b(t) = (b1(t), . . . , bL(t))>—for example, the B-spline or Fourier basis—
our estimated approximation for Xij(t) is given by:

X̂ij(t) = β̂>ijb(t),

β̂ij =
(
B>ijBij

)−1
B>ijhij ,

where hij = (hij1, hij2, . . . , hijT )> and Bij is the design matrix for gij :

Bij =

b1(tij1) · · · bL(tij1)
...

. . .
...

b1(tijT ) · · · bL(tijT )

 ∈ RT×L. (8)

The computational complexity of the basis expansion procedure is O(npT 3L3), and in
practice, there are many efficient package implementations of this step; for example, fda
(Ramsay et al., 2020).

We repeat this process for the observed Y functions. After obtaining {X̂ij(t)}j∈V,i=1,...,nX

and {Ŷij(t)}j∈V,i=1,...,nY
, we use them as inputs for the FPCA procedure. Specifically, we

first estimate the sum of the covariance functions by

K̂jj(s, t) = K̂X
jj (s, t) + K̂Y

jj(s, t) =
1

nX

nX∑
i=1

X̂ij(s)X̂ij(t) +
1

nY

nY∑
i=1

Ŷij(s)Ŷij(t). (9)

Using K̂jj(s, t) as input to FPCA, we can estimate the corresponding eigenfunctions φ̂jk(t),
k = 1, . . . ,M , j = 1, . . . , p. Given the estimated eigenfunctions, we compute the estimated
projection scores

âXijk =

∫
T
X̂ij(t)φ̂jk(t)dt and âYijk =

∫
T
Yij(t)φ̂jk(t)dt,

and collect them into vectors

âX,Mij = (âXij1, · · · , âXijM )> ∈ RM and âX,Mi = ((âX,Mi1 )>, . . . , (âX,Mip )>)> ∈ RpM ,

âY,Mij = (âYij1, · · · , âYijM )> ∈ RM and âY,Mi = ((âY,Mi1 )>, . . . , (âY,Mip )>)> ∈ RpM .

Finally, we estimate the covariance matrices of the score vectors, ΣX,M and ΣY,M , as

SX,M =
1

nX

nX∑
i=1

âX,Mi (âX,Mi )> and SY,M =
1

nY

nY∑
i=1

âY,Mi (âY,Mi )>.
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3.2 FuDGE: Functional Differential Graph Estimation

Now we describe the FuDGE algorithm for Functional Differential Graph Estimation. To
estimate ∆M , we solve the following optimization program:

∆̂M ∈ arg min
∆∈RpM×pM

L(∆) + λn
∑

{i,j}∈V 2

‖∆ij‖F , (10)

where

L(∆) = tr

[
1

2
SY,M∆>SX,M∆−∆>

(
SY,M − SX,M

)]
(11)

and SX,M and SY,M are obtained as described in Section 3.1.
We construct the loss function, L(∆), so that the true parameter value, that is, ∆M =(

ΣX,M
)−1 −

(
ΣY,M

)−1
, minimizes the population loss E [L(∆)], which for a differentiable

and convex loss function is equivalent to selecting L so that E
[
∇L(∆M )

]
= 0. Since ∆M

satisfies
ΣX,M∆MΣY,M − (ΣY,M − ΣX,M ) = 0,

a choice for ∇L(∆) is

∇L(∆M ) = SX,M∆MSY,M −
(
SY,M − SX,M

)
(12)

so that
E
[
∇L(∆M )

]
= ΣX,M∆MΣY,M − (ΣY,M − ΣX,M ) = 0.

Given this choice of ∇L(∆), L(∆) in (10) directly follows from properties of the differential
of the trace function. The chosen loss is quadratic (see (B.6) in appendix) and leads to an
efficient algorithm. Similar loss functions are used in Xu and Gu (2016), Yuan et al. (2017),
Na et al. (2021), and Zhao et al. (2014a).

We also include the additional group lasso penalty (Yuan and Lin, 2006) to promote
blockwise sparsity in ∆̂M . The objective in (10) can be solved by a proximal gradient
method detailed in Algorithm 1. Finally, we form Ê∆ by thresholding ∆̂M so that:

Ê∆ =
{
{j, l} : ‖∆̂M

jl ‖F > εn or ‖∆̂M
lj ‖F > εn

}
. (13)

The thresholding step in (13) is used for theoretical purposes. Specifically, it helps correct for
bias induced by finite-dimensional truncation and relaxes commonly used assumptions for
the recovery of the graph structure, such as the irrepresentability or incoherence condition
(van de Geer and Bühlmann, 2009). In practice, one can simply set εn = 0, as we do in the
simulations.

3.3 Optimization Algorithm for FuDGE

The optimization program (10) can be solved using a proximal gradient method (Parikh
and Boyd, 2014) summarized in Algorithm 1. Specifically, at each iteration, we update the
current value of ∆, denoted as ∆old, by solving the following problem:

∆new = arg min
∆

1

2

∥∥∥∆−
(

∆old − η∇L
(

∆old
))∥∥∥2

F
+ η · λn

p∑
j,l=1

‖∆jl‖F

 , (14)
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Algorithm 1 Functional differential graph estimation

Input: SX,M , SY,M , λn, η.
Output: ∆̂M .

Initialize ∆(0) = 0pM .
repeat
A = ∆− η∇L(∆) = ∆− η

(
SX,M∆SY,M −

(
SY,M − SX,M

))
for 1 ≤ i, j ≤ p do

∆jl ←
(
‖Ajl‖F−λnη
‖Ajl‖F

)
+
·Ajl

end for
until Converge

where ∇L(∆) is defined in (12) and η is a step size specified by the user. Note that ∇L(∆) is
Lipschitz continuous with Lipschitz constant λSmax = ‖SY,M⊗SX,M‖2 = λmax(SY,M )λmax(SX,M ).
Thus, for any step size η such that 0 < η ≤ 1/λSmax, the proximal gradient method is guar-
anteed to converge (Beck and Teboulle, 2009).

The update in (14) has a closed-form solution:

∆new
jl =

[(
‖Aold

jl ‖F − λnη
)
/‖Aold

jl ‖F
]

+
·Aold

jl , 1 ≤ j, l ≤ p, (15)

where Aold = ∆old − η∇L(∆old) and x+ = max{0, x}, x ∈ R, represents the positive part
of x. Detailed derivations are given in the appendix. Note that although true ∆M is
symmetric, we do not explicitly enforce symmetry in ∆̂M in Algorithm 1.

After performing FPCA, the proximal gradient descent method converges inO
(
λSmax/tol

)
iterations, where tol is a user specified optimization error tolerance, and each iteration takes
O((pM)3) operations; see Tibshirani (2010) for a convergence analysis of the general prox-
imal gradient descent algorithm.

3.4 Selection of Tuning Parameters

There are four tuning parameters that must be chosen for the implementation of FuDGE:
L (basis dimension used to estimate the curves from the discretely observed data), M
(subspace dimension to estimate projection scores), λn (regularization parameter to tune
the block sparsity of ∆M ), and εn (thresholding parameter for Ê∆). While we need the
thresholding parameter εn in (13) to establish theoretical results, in practice, we simply set
εn = 0. To select M , we follow the procedure in Qiao et al. (2019). More specifically, for
each discretely-observed curve, we first estimate the underlying functions by fitting an L-
dimensional B-spline basis. Both M and L are chosen by 5-fold cross-validation as discussed
in Qiao et al. (2019).

Finally, to choose λn, we recommend using selective cross-validation (SCV) (She, 2012).
Given a value of λn, we use the entire data set to estimate a sparsity pattern. Then, fixing
the sparsity pattern, we use a typical cross-validation procedure to calculate the CV error,
where the CV error is measured by an unpenalized version of the loss function in (11) on
the held-out data set. Ultimately, we choose the value of λn that results in the sparsity
pattern that minimizes CV error. In addition to SCV, if we have prior knowledge about
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the number of edges in the differential graph, we can also choose λn which results in the
desired level of sparsity of the differential graph.

4. Theoretical Properties

In this section, we provide theoretical guarantees for FuDGE. We first give a deterministic
result for Ê∆ defined in (13) when the max-norm of the difference between the estimates
SX,M , SY,M and their corresponding parameters, ΣX,M ,ΣY,M , is bounded by δn. We then
show that when projecting the data onto either a fixed basis or an estimated basis—under
some mild conditions—δn can be controlled and the bias of the finite-dimensional projection
decreases fast enough that E∆ can be consistently recovered.

4.1 Deterministic Guarantees for Ê∆

In this section, we assume that SX,M , SY,M are good estimates of ΣX,M ,ΣY,M and give a
deterministic result in Theorem 10. Let n = min{nX , nY }. We assume that the following
holds.

Assumption 1 The matrices SX,M , SY,M are estimates of ΣX,M ,ΣY,M that satisfy

max
{
|SX,M − ΣX,M |∞, |SY,M − ΣY,M |∞

}
≤ δn. (16)

We also require that E∆ be sparse. This does not preclude the case where EX and EY
are dense, as long as there are not too many differences in the precision matrices. This
assumption is also required when estimating a differential graph from vector-valued data;
for example, see Condition 1 in Zhao et al. (2014a).

Assumption 2 There are s edges in the differential graph; that is, |E∆| = s and s� p.

We introduce the following three quantities that characterize the problem instance and
will be used in Theorem 10 below:

ν1 = ν1(M) = min
(j,l)∈E∆

‖∆M
jl ‖F , ν2 = ν2(M) = max

(j,l)∈EC
∆

‖∆M
jl ‖F ,

and
τ = τ(M) = ν1(M)− ν2(M).

Roughly speaking, ν1(M) indicates the “signal strength” present when we use the M -
dimensional representation and ν2(M) measures the bias. By Definition 4, when X and Y
are comparable, we have lim infM→M? ν1(M) > 0 and limM→M? ν2(M) = 0. Therefore, for
a sufficiently large M , we have τ > 0. However, a smaller τ implies that the differential
graph is harder to recover.

Before we give the deterministic result in Theorem 10, we first define additional quan-
tities that will be used in subsequent results. Let

σmax = max{|ΣX,M |∞, |ΣY,M |∞},
λ∗min = λmin

(
ΣX,M

)
× λmin

(
ΣY,M

)
, and

Γ2
n =

9λ2
ns

κ2
L

+
2λn
κL

(ω2
L + 2p2ν2),
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where
λn = 2M

[(
δ2
n + 2δnσmax

) ∣∣∆M
∣∣
1

+ 2δn
]
,

κL = (1/2)λ∗min − 8M2s
(
δ2
n + 2δnσmax

)
,

ωL = 4Mp2ν2

√
δ2
n + 2δnσmax,

and δn is defined in Assumption 1. Note that Γn—which measures the estimation error
of ‖∆̂M −∆M‖F—implicitly depends on δn through λn, κL, and ωL. We observe that Γn
decreases to zero as δn goes to zero. The quantity κL is the maximum restricted eigenvalue
from the analysis framework of Negahban et al. (2012). Finally, ωL is the tolerance param-
eter that comes from the fact that ν2 could be larger than zero, and will decrease to zero
as ν2 goes to zero.

Theorem 10 Given Assumptions 1 and 2, when ν1(M), ν2(M), δn, λn, σmax,M and s sat-
isfy

0 < Γn < τ/2 and δn < (1/4)
√(

λ∗min + 16M2s(σmax)2
)
/ (M2s)− σmax,

then setting εn ∈ [ν2 + Γn, ν1 − Γn) ensures that Ê∆ = E∆.

As shown in Section 4.2, under some additional conditions, Assumption 1 holds for a
sequence of δn that decreases to 0 as n goes to infinity. Thus, as M and n both increase
to infinity, we have ν2 + Γn ≈ 0 and ν1 − Γn ≈ min(j,l)∈E∆

Djl, and we only require
0 ≤ εn < min(j,l)∈E∆

Djl.

4.2 Theoretical Guarantees for SX,M and SY,M

In this section, we prove that under some mild conditions, (16) will hold with a high
probability for specific values of δn. We discuss the results in two cases: the case where the
curves are fully observed and the case where the curves are only observed at discrete time
points.

4.2.1 Fully Observed Curves

In this section, we discuss the case where each curve is fully observed. We first consider the
case where the basis defining the differential graph is known in advance; that is, the exact
form of {ejk}k≥1 for all j ∈ V is known. In this case, the projection score vectors aX,Mi

and aY,Mi can be recovered exactly for all i = 1, 2, . . . , n. By the assumption that Xi(t)
and Yi(t) are p-dimensional multivariate Gaussian processes with mean zero, we then have
aX,Mi ∼ N(0,ΣX,M ) and aY,Mi ∼ N(0,ΣY,M ). The following result follows directly from the
standard results on the sample covariance of multivariate Gaussian variables.

Theorem 11 Assume that SX,M and SY,M are computed as in Section 3.1, except that the
basis functions {ejk}k≥1, j ∈ V , are fixed and known in advance. Recall that

n = min{nX , nY } and σmax = max{|ΣX,M |∞, |ΣY,M |∞}.

Fix ι ∈ (0, 1]. Suppose that n is large enough so that

δn = σmax

√
C1

n
log

(
8p2M2

ι

)
≤ C2,
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for some universal constants C1, C2 > 0. Then (16) holds with probability at least 1− ι.

Proof The proof follows directly from Lemma 1 of Ravikumar et al. (2011) and a union
bound.

With fully observed curves and known basis functions, it follows from Theorem 11 that
(1) is satisfied for δn �

√
log(p2M2)/n with high probability. As assumed in Section 2.2

(and also in Qiao et al. (2019)), when λXjm′ = λYjm′ = 0 for all j and m′ > M (where M
is allowed to grow with n), then ν2(M) = 0, τ(M) = ν1(M) = min(j,l)∈E∆

Djl > 0, and
E∆ = Eπ∆. We can recover E∆ with high probability even in the high-dimensional setting,
as long as

max

{
sM2 log(p2M2)|∆M |21/((λ?min)2τ2)

n
,
sM2 log(p2M2)/λ?min

n

}
→ 0.

Even with an infinite number of positive eigenvalues, high-dimensional consistency is still
possible for quickly increasing ν1 and quickly decaying ν2.

We then consider the case where the curves are fully observed, but we do not have
any prior knowledge on which orthonormal function basis should be used. In this case, as
discussed in Section 2.3, we recommend using the eigenfunctions of Kjj(·, ∗) = KX

jj (·, ∗) +

KY
jj(·, ∗) as basis functions. We use FPCA to estimate the eigenfuctions of Kjj(·, ∗) and

make the following assumption.

Assumption 3 Let {λjk, φjk(·)} be the eigenpairs of Kjj(·, ∗) = KX
jj (·, ∗)+KY

jj(·, ∗), j ∈ V ,
and suppose that λjk are non-increasing in k.

(i) Suppose maxj∈V
∑∞

k=1 λjk < ∞ and assume that there exists a constant β > 1 such
that, for each k ∈ N, λjk � k−β and djkλjk = O(k) uniformly in j ∈ V , where djk =
2
√

2 max{(λj(k−1) − λjk)−1, (λjk − λj(k+1))
−1}, k ≥ 2, and dj1 = 2

√
2(λj1 − λj2)−1.

(ii) For all k, φjk(·)’s are continuous on the compact set T and satisfy

max
j∈V

sup
s∈T

sup
k≥1
|φjk(s)|∞ = O(1).

This assumption was used in Qiao et al. (2019, Condition 1). We have the following result.

Theorem 12 Suppose Assumption 3 holds and the basis functions are estimated using the
FPCA of Kjj(·, ∗) with fully observed curves. Fix ι ∈ (0, 1]. Suppose that n is large enough
so that

δn = M1+β

√
log (2C2p2M2/ι)

n
≤ C1,

for some universal constants C1, C2 > 0. Then (16) holds with probability at least 1 − ι.
Note that C1, C2 may be different constants from those of Theorem 11.

Proof The proof follows directly from Theorem 1 of Qiao et al. (2019) and the fact that
‖K̂jj(·, ∗)−Kjj(·, ∗)‖HS ≤ ‖K̂X

jj (·, ∗)−KX
jj (·, ∗)‖HS + ‖K̂Y

jj(·, ∗)−KY
jj(·, ∗)‖HS.
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It follows from Theorem 12 that (1) holds for δn � M1+β
√

log(p2M2/)/n with high
probability. Compared to Theorem 11, there is an additional M1+β term that arises from
FPCA estimation error. Similarly, when λXjm′ = λYjm′ = 0 for all j and m′ > M , we can
recover E∆ with high probability as long as

max

{
sM (4+2β) log(p2M2)|∆M |21/((λ?min)2τ2)

n
,
sM (4+2β) log(p2M2)/λ?min

n

}
→ 0.

4.2.2 Discretely-Observed Curves

Finally, we discuss the case where the curves are only observed at discrete time points—
possibly with measurement error. Following Chapter 1 of Kokoszka and Reimherr (2017),
we first estimate each curve from the available observations by basis expansion; then, we
use the estimated curves to form empirical covariance functions from which we estimate the
eigenfunctions using FPCA. The estimated eigenfunctions are then used to calculate the
scores.

Recall the model for discretely observed functions given in (7):

hijk = gij(tijk) + εijk,

where gij denotes either Xij or Yij , εijk are i.i.d. Gaussian noise with mean 0 and variance
σ2

0. Assume that tij1 < · · · < tijT for any 1 ≤ i ≤ n and 1 ≤ j ≤ p. Note that we do not
need X and Y to be observed at the same time points and we use tijk to represent either
tXijk or tYijk. Furthermore, recall that we first compute a least squares estimator of Xij(·)
and Yij(·) by projecting it onto the basis b(·) = (b1(·), . . . , bL(·)).

First, we assume that as we increase the number of basis functions, we can approximate
any function in H arbitrarily well.

Assumption 4 We assume that {bl}∞l=1 is a complete orthonormal system (CONS) (See

Definition 2.4.11 of Hsing and Eubank, 2015) of H, that is, Span
(
{bl}∞l=1

)
= H.

Assumption 4 requires that the basis functions are orthonormal. When this assumption is
violated—for example, when using the B-splines basis—we can always first use an orthonor-
malization process, such as Gram-Schmidt, to convert the basis to an orthonormal one. For
B-splines, there are many algorithms that can efficiently provide orthonormalization (Liu
et al., 2022).

To establish theoretical guarantees for the least squares estimator, we require smoothness
in both the curves we are trying to estimate as well as the basis functions we use.

Assumption 5 We assume that the basis functions {bl(·)}∞l=1 satisfy the following condi-
tions:

D0,b := sup
l≥1

sup
t∈T
|bl(t)| <∞, D1,b(l) := sup

t∈T
|b′l(t)| <∞, D1,b,L := max

1≤l≤L
D1,b(l).

We also require that the curves gij satisfy the following smoothness condition:

max
1≤j≤p

∞∑
m=1

E
[
(〈gij , bm〉)2

]
D2

1,b(m) <∞. (17)
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To better understand Assumption 5, we use the Fourier basis as an example. Let
T = [0, 1] and bm(t) =

√
2 cos(2πmt), 0 ≤ t ≤ 1 and m ∈ N. Thus, {bm(t)}∞m=0 then

constitutes an orthonormal basis of H = L2[0, 1]. We then have b′(t) = −2
√

2πm sin(2πmt),
D0,b =

√
2, D1,b(m) = 2

√
2πm and D1,b,L = 2

√
2πL. In this case, (17) is equivalent to

max
1≤j≤p

∞∑
m=1

E
[
(〈gij , bm〉)2

]
m2 <∞.

On the other hand, gij(t) =
∑∞

m=1〈gij , bm〉bm(t) and g′ij(t) =
∑∞

m=1〈gij , bm〉b′m(t). Suppose

that E
[
‖g′ij‖2

]
<∞. Then

E
[
‖g′ij‖2

]
=
∞∑
m=1

E
[
(〈gij , bm〉)2

]
‖b′m‖2 �

∞∑
m=1

E
[
(〈gij , bm〉)2

]
m2.

Therefore, max1≤j≤p E
[
‖g′ij‖2

]
<∞, which is a commonly used assumption in nonparam-

eteric statistics (e.g., Section 7.2 of Wasserman (2006)), implies (17).
Finally, we require that each function be observed at time points that are “evenly

spaced.” Formally, we require the following assumption.

Assumption 6 The observation time points {tijk : 1 ≤ i ≤ n, 1 ≤ j ≤ p, 1 ≤ k ≤ T}
satisfy

max
1≤i≤n

max
1≤j≤p

max
1≤k≤T+1

∣∣∣∣ tijk − tij(k−1)

|T |
− 1

T

∣∣∣∣ ≤ ζ0

T 2
,

where tij0 and tij(T+1) are endpoints of T for any 1 ≤ i ≤ n, 1 ≤ j ≤ p, and ζ0 is a positive
constant that does not depend on i or j.

Any gij can be decomposed into gij = gqij +g⊥ij , where gqij ∈ Span(b) and g⊥ij ∈ Span(b)⊥.
We denote the eigenvalues of the covariance operator of gij as {λjk}k≥1 and λj0 =

∑∞
k=1 λjk;

and we denote the eigenvalues of the covariance operator of g⊥ij as {λ⊥jk}k≥1 and λ⊥j0 =∑∞
k=1 λ

⊥
jk. Note that under Assumption 3, we have max1≤j≤p λj0 <∞. Let 1 < λ0,max <∞

be a constant such that max1≤j≤p λj0 ≤ λ0,max. Let Bij be the design matrix of gij as defined

in (8) and let λBmin = min1≤i≤n,1≤j≤p

{
λmin(B>ijBij)

}
. We define

ψ̃1(T, L) =
σ0L√
λBmin

, ψ̃2(T, L) =
L2

(λBmin)2

(
λ0

(
c̃1D

2
1,b,L + c̃2

)
ψ̃3(L) + c̃1ψ̃4(L)

)
,

ψ̃3(L) = max
1≤j≤p

(
λ⊥j0/λj0

)
, ψ̃4(L) = max

1≤j≤p

∑
m>L

E
[
(〈gij , bm〉)2

]
D2

1,b(m),

Φ(T, L) = min

{
1/ψ̃1(T, L), 1/

√
ψ̃3(L)

}
,

where c̃1 = 18D2
0,b(ζ0 + 1)4|T |2 and c̃2 = 36D4

0,b(2ζ0 + 1)2.
We now use superscripts or subscripts to indicate the specific quantities for X and Y .

In this way, we define LX , LY , TX , TY , ψ̃X1 -ψ̃X4 , ψ̃Y1 -ψ̃Y4 , and ΦX ,ΦY . Furthermore, let T =
min{TX , TY }, L = min{LX , LY }, ψ̄k = max{ψ̃Xk , ψ̃Yk }, k = 1, · · · , 4, Φ̄ = min{ΦX ,ΦY },
and let n, β be defined as in Section 4.1.
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Theorem 13 Assume the observation model given in (7). Suppose Assumption 3 holds and
Assumptions 4-6 hold for both X and Y . Suppose T and L are large enough so that

ψ̄1(T, L) ≤ γ1
δn

M1+β
, ψ̄3(L) ≤ γ3

δ2
n

M2+2β

where

δn = max

{
M1+β log

(
4C̄1np/ι

)
C̄2Φ̄(T, L)

,M1+β

√
1

C6
ψ̄2(T, L) log

(
C5npL

ι

)
,

M1+β

√
log
(
4C̄3p2M2/ι

)
C̄4n

 , (18)

C̄1 = max{CX1 , CY1 }, C̄2 = min{CX2 , CY2 }, C̄3 = max{CX3 , CY3 }, C̄4 = min{CX4 , CY4 },
C̄5 = max{CX5 , CY6 }, C̄6 = min{CX6 , CY6 }. γXk , γYk , k = 1, 3, and CXk , CYk , k = 1, · · · , 6
are constants that do not depend on n, p, and M . Then

max
{
|SX,M − ΣX,M |∞, |SY,M − ΣY,M |∞

}
≤ δn

holds with probability at least 1− ι.

Proof See Appendix B.5.

The rate δn in Theorem 13 is composed of three terms. The first two terms correspond
to the error incurred by measuring the curves at discrete locations and are approximation
errors. The third term, which also appears in Theorem 12, is the sampling error.

We provide some insight into how ψ̃1, ψ̃2, ψ̃3, and ψ̃4 depend on T and L. Note that we
choose an orthonormal basis. Then, as T →∞, we have

1

T
B>ijBij =

1

T

T∑
k=1

 b21(tijk) b1(tijk)b2(tijk) · · · b1(tijk)bL(tijk)
...

...
. . .

...
bL(tijk)b1(tijk) bL(tijk)b2(tijk) · · · b2L(tijk)


≈

 ‖b1‖
2 〈b1, b2〉 · · · 〈b1, bL〉

...
...

...
〈bL, b1〉 〈bL, b2〉 · · · ‖bL‖2


=

1 0 · · · 0
...

...
...

0 0 · · · 1

 .
Thus, as T grows, we expect λmin(B>ijBij) ≈ T for any 1 ≤ j ≤ p and 1 ≤ i ≤ n. This

implies that ψ̃1(T, L) ≈ L/
√
T and ψ̃2(T, L) ≈

(
D2

1,b,Lψ̃3(L) + ψ̃4(L)
)
L2/T 2. Furthermore,

D2
1,b,L � L2 when we use the Fourier basis.

To understand ψ̃3(L) and ψ̃4(L), note that λ⊥j0 = E[‖g⊥ij‖2] = Egij [Eε[‖g⊥ij‖2 | gij ]].
Under Assumption 4, λ⊥j0 → 0 as L → ∞; however, the speed at which λ⊥j0 goes to zero

28



Functional Differential Graph Estimation

will depend on H and the choice of the basis functions. For example, for a fixed gij , by
well-known approximation results (see, for example, Barron and Sheu (1991)), if gij has
r-th continuous and square integrable derivatives, ‖g⊥ij‖2 ≈ 1/Lr for frequently used bases
such as the Legendre polynomials, B-splines, and Fourier basis. Thus, roughly speaking, we
should have ψ̃3(L) ≈ 1/Lr when H is a Sobolev space of order r. When gij is an infinitely
differentiable function and all derivatives can be uniformly bounded, then ‖g⊥ij‖2 ≈ exp(−L)

and thus ψ̃3(L) ≈ exp(−L). Similarly, we have ψ̃4(L) ≈ 1/Lr−1 if gij has r-th continuous
and square integrable derivatives; and ψ̃4(L) ≈ exp(−L) if gij is an infinitely differentiable
function and all derivatives can be uniformly bounded.

To roughly show how M , T , L and n may co-vary, we assume that p and s are fixed
and all elements of H have r-th continuous and square integrable derivatives. Then FuDGE
will recover the differential graph with high probability if M � n1/(2+2β),

√
T/L�M1+β,

T � L2−r/2, and L�M (1+β)/r.
As a reviewer pointed out, the noise term in (7) will create a nugget effect in the

covariance, meaning that Var(hijk) = Var(gij(tijk)) + σ2
0. This nugget effect leads to bias

in the estimated eigenvalues (variances of the scores). In our theorem, the nugget effect
is reflected by σ0 in ψ̃1. When σ0 is large, adding a regularization term when estimating
eigenvalues can improve the estimation of FPCA scores and their covariance matrices (see
Chapter 6 of Hsing and Eubank (2015)). However, adding a regularization term increases
the number of tuning parameters that need to be chosen. An alternative approach to
estimating the covariance matrix is through local polynomial regression (Zhang and Wang,
2016). Since the focus of the paper is on the estimation of differential functional graphical
models, we do not explore ways to improve the estimation of FPCA scores. However, we
recognize that there are alternative approaches that can perform better in some cases.

5. Joint Functional Graphical Lasso

In this section, we introduce two variants of a Joint Functional Graphical Lasso (JFGL)
estimator, which we compare empirically with our proposed FuDGE procedure in Sec-
tion 6.1. Danaher et al. (2014) proposed the Joint Graphical Lasso (JGL) to estimate mul-
tiple related Gaussian graphical models from different classes simultaneously. Given Q ≥ 2
data sets, where the q-th data set consists of nq independent random vectors drawn from
N(µq,Σq), JGL simultaneously estimates {Θ} = {Θ(1),Θ(2), . . . ,Θ(Q)}, where Θ(q) = Σ−1

q

is the precision matrix of the q-th data set. Specifically, JGL constructs an estimator
{Θ̂} = {Θ̂(1), Θ̂(2), . . . , Θ̂(Q)} by solving the penalized log-likelihood:

{Θ̂} = arg min
{Θ}

−
Q∑
q=1

nq

(
log detΘ(q) − trace

(
S(q)Θ(q)

))
+ P ({Θ})

 , (19)

where S(q) is the sample covariance of the q-th data set and P ({Θ}) is a penalty function.
The fused graphical lasso (FGL) is obtained by setting

P ({Θ}) = λ1

Q∑
q=1

∑
i 6=j
|Θ(q)

ij |+ λ2

∑
q<q′

∑
i 6=j
|Θ(q)

ij −Θ
(q′)
ij |,
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while the group graphical lasso (GGL) is obtained by setting

P ({Θ}) = λ1

Q∑
q=1

∑
i 6=j
|Θ(q)

ij |+ λ2

∑
i 6=j

√√√√ Q∑
q=1

(
Θ

(q)
ij

)2
.

The terms λ1 and λ2 are non-negative tuning parameters, while Θ
(q)
ij denotes the (i, j)-

th entry of Θ(q). For both penalties, the first term is the lasso penalty, which encourages
sparsity for the off-diagonal entries of all precision matrices; however, FGL and GGL differ in
the second term. For FGL, the second term encourages the off-diagonal entries of precision
matrices among all classes to be similar, which means that it encourages not only a similar
network structure but also similar edge values. For GGL, the second term is a group lasso
penalty, which encourages the support of the precision matrices to be similar but allows
the specific values to differ. See Tsai et al. (2021) for a recent survey of joint estimation
procedures for joint Gaussian graphical models.

A similar approach can be used to estimate the precision matrix of the score vectors.
Unlike the direct estimation procedure proposed in Section 3, we could first estimate Θ̂X,M

and Θ̂Y,M using a joint graphical lasso objective, and then take the difference to estimate
∆.

In the functional graphical model setting, we are interested in the block sparsity, so we
modify the entry-wise penalties to a block-wise penalty. Specifically, we propose to solve
the objective function in (19), where S(q) and Θ(q) denote the sample covariance and the
estimated precision of the projection scores for the q-th group. Note that now S(q), Θ(q) and
Θ̂(q), q = 1, . . . , Q are all pM × pM matrices. Similarly to the GGL and FGL procedures,
we define the Grouped Functional Graphical Lasso (GFGL) and Fused Functional Graphical

Lasso (FFGL) penalties for functional graphs. Specifically, letting Θ
(q)
jl denote the (j, l)-th

M ×M block matrix, the GFGL penalty is

P ({Θ}) = λ1

Q∑
q=1

∑
j 6=l
‖Θ(q)

jl ‖F + λ2

∑
j 6=l

√√√√ Q∑
q=1

‖Θ(q)
jl ‖2F, (20)

where λ1 and λ2 are non-negative tuning parameters. The FFGL penalty can be defined in
two ways. The first way is to use the Frobenius norm for the second term:

P ({Θ}) = λ1

Q∑
q=1

∑
j 6=l
‖Θ(q)

jl ‖F + λ2

∑
q<q′

∑
j,l

‖Θ(q)
jl −Θ

(q′)
jl ‖F. (21)

The second way is to keep the element-wise L1 norm as in FGL:

P ({Θ}) = λ1

Q∑
q=1

∑
j 6=l
‖Θ(q)

jl ‖F + λ2

∑
q<q′

∑
j,l

|Θ(q)
jl −Θ

(q′)
jl |1, (22)

where λ1 and λ2 are non-negative tuning parameters.
The Joint Functional Graphical Lasso accommodates an arbitrary Q. However, when

estimating the functional differential graph, we set Q = 2. We will refer to (21) as FFGL
and to (22) as FFGL2. The algorithms to solve GFGL, FFGL, and FFGL2 are given in the
Appendix A.
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6. Experiments

We examine the performance of FuDGE using both simulations and a real data set.4

6.1 Simulations

Given a graph GX , we generate samples of X such that Xij(t) = b′(t)>δXij . The coefficients

δXi = ((δXi1 )>, . . . , (δXip )>)> ∈ Rmp are drawn from N
(
0, (ΩX)−1

)
where ΩX is described

below. In all cases, b′(t) is an m-dimensional basis with disjoint support over [0, 1] such
that for k = 1, . . .m:

b′k(t) =

{
cos (10π (x− (2k − 1)/10)) + 1 if (k − 1)/m ≤ x < k/m;

0 otherwise.
(23)

To generate noisy observations at discrete time points, we sample data

hXijk = Xij(tk) + eijk, eijk ∼ N(0, 0.52),

for 200 evenly spaced time points 0 = t1 ≤ . . . ≤ t200 = 1. Yij(t) and hYijk are sampled in an
analogous procedure. We use m = 5 for the experiments below, except for the simulation,
where we explore the effect of m on empirical performance.

We consider three different simulation settings for the construction of GX and GY . In
each setting, we let nX = nY = 100 and p = 30, 60, 90, 120, and replicate the procedure 30
times for each p and the model setting.

Model 1: This model is similar to the setting considered in Zhao et al. (2014a), but
modified for the functional case. We generate the support of ΩX according to a graph with
p(p − 1)/10 edges and a power law degree distribution with an expected power parameter
of 2. Although the graph is sparse with only 20% of all possible edges present, the power-
law structure mimics certain real-world graphs by creating hub nodes with a large degree
(Newman, 2003). For each non-zero block, we set ΩX

jl = δ′I5, where δ′ is sampled uniformly
from ±[0.2, 0.5]. To ensure positive definiteness, we further scale each off-diagonal block by
1/2, 1/3, 1/4, 1/5 for p = 30, 60, 90, 120 respectively. Each diagonal element of ΩX is set to
1 and the matrix is symmetrized by averaging it with its transpose. To get ΩY , we first
select the top 2 hub nodes in GX (i.e., the nodes with top 2 largest degree), and for each
hub node we select the top (by magnitude) 20% of edges. For each selected edge, we set
ΩY
jl = ΩX

jl +W where Wkk′ = 0 for |k−k′| ≤ 2, and Wkk′ = c otherwise, where c is generated

the same way as δ′. For all other blocks, ΩY
jl = ΩX

jl .
Model 2: We first generate a tridiagonal block matrix Ω∗X with Ω∗X,jj = I5, Ω∗X,j,j+1 =

Ω∗X,j+1,j = 0.6I5, and Ω∗X,j,j+2 = Ω∗X,j+2,j = 0.4I5 for j = 1, . . . , p. All other blocks are
set to 0. We form GY by adding four edges to GX . Specifically, we first let Ω∗Y,jl = Ω∗X,jl
for all blocks, then for j = 1, 2, 3, 4, we set Ω∗Y,j,j+3 = Ω∗Y,j+3,j = W , where Wkk′ = 0.1

for all 1 ≤ k, k′ ≤ M . Finally, we set ΩX = Ω∗X + δI, ΩY = Ω∗Y + δI, where δ =
max {|min(λmin(Ω∗X), 0)|, |min(λmin(Ω∗Y ), 0)|}+ 0.05.

Model 3: We generate Ω∗X according to an Erdös-Rényi graph. We first set Ω∗X,jj = I5.
With probability .8, we set Ω∗X,jl = Ω∗X,lj = 0.1I5, and set it to 0 otherwise. Thus, we

4. Code to replicate the simulations is available at https://github.com/boxinz17/FuDGE.
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Figure 4: Average ROC curves across 30 simulations. Different columns correspond to
different models, different rows correspond to different dimensions.

expect 80% of all possible edges to be present. Then we form GY by randomly adding s
new edges to GX , where s = 3 for p = 30, s = 4 for p = 60, s = 5 for p = 90, and s = 6 for
p = 120. We set each corresponding block as Ω∗Y,jl = W , where Wkk′ = 0 when |k − k′| ≤ 1
and Wkk′ = c otherwise. We let c = 2/5 for p = 30, c = 4/15 for p = 60, c = 1/5 for
p = 90, and c = 4/25 for p = 120. Finally, we set ΩX = Ω∗X + δI, ΩY = Ω∗Y + δI, where
δ = max {|min(λmin(Ω∗X), 0)|, |min(λmin(Ω∗Y ), 0)|}+ 0.05.

We compare FuDGE with four competing methods. The first competing method (de-
noted multiple in Figure 4) ignores the functional nature of the data. We select 15 equally
spaced time points and at each time point implement a direct difference estimation proce-
dure (Zhao et al., 2014a) to estimate the graph at that time point. Specifically, for each t,
Xi(t) and Yi(t) are simply p-dimensional random vectors, and we use their sample covari-
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ances in (10) to obtain a p× p matrix ∆̂. This produces 15 differential graphs, and we use
a majority vote to form a single differential graph. The ROC curve is obtained by changing
the L1 penalty, λn, used for all time points.

The other three competing methods all estimate two functional graphical models using
either the Joint Graphical Lasso or the Functional Joint Graphical Lasso introduced in
Section 5. For each method, we first estimate the sample covariances of the FPCA scores
for X and Y . The second competing method (denoted FGL) ignores the block structure
in precision matrices and applies the fused graphical lasso method directly. The third
and fourth competing methods take into account the block structure and apply FFGL and
FFGL2 defined in Section 5. To draw an ROC curve, we follow the same approach as
in Zhao et al. (2014a). We first fix λ1 = 0.1, which controls the overall sparsity in each
graph; then we form an ROC curve by varying λ2, which controls the similarity between
two graphs.

For each setting and method, the ROC curve averaged across the 30 replications is shown
in Figure 4. We see that FuDGE clearly has the best overall performance in recovering the
support of the differential graph for all cases. We also note that explicit consideration of
block structure in the joint graphical methods does not seem to make a substantial difference
as the performance of FGL is comparable to FFGL and FFGL2.

The effect of the number of basis functions: To examine how the accuracy of the
estimation is associated with the dimension of the functional data, we repeat the experiment
under Model 1 with p = 30 and vary the number of basis functions used to generate the
data in (23). In each case, the number of principal components selected by cross-validation
is M = 4. In Figure 5, we see that as the gap between the true dimension m and the number
of dimensions used M increases, the performance of FuDGE degrades slightly, but remains
relatively robust. This is because the FPCA procedure is data adaptive and produces an
eigenfunction basis that approximates the true functions well with a relatively small number
of basis functions.

6.2 Neuroscience Application

We apply our method to electroencephalogram (EEG) data obtained from a study (Zhang
et al., 1995; Ingber, 1997), which included 122 total subjects; 77 individuals with alcohol use
disorder (AUD) and 45 in the control group. Specifically, the EEG data was measured by
placing p = 64 electrodes at various locations on the subject’s scalp and measuring voltage
values over time. We follow the preprocessing procedure in Knyazev (2007) and Zhu et al.
(2016), which filters the EEG signals at α frequency bands between 8 and 12.5 Hz.

Qiao et al. (2019) estimate separate functional graphs for each group, but we directly
estimate the differential graph using FuDGE. We choose λn so that the estimated differential
graph has approximately 1% of possible edges. The estimated edges of the differential graph
are shown in Figure 6.

In this setting, an edge in the differential graph suggests that the communication pat-
tern between two different regions of the brain may be affected by alcohol use disorder.
However, the differential graph does not exactly indicate how the communication pattern
has changed. For example, the edge between P4 and P6 suggests that AUD affects the com-
munication pattern between those two regions; however, it could be that these two regions
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Figure 5: ROC curves for Model 1 with p = 30 and changing number of basis functions m.
Each curve is drawn by averaging across 30 simulations. The number of eigen-
functions, M , selected by cross-validation is 4 in each replication.

are (conditionally) associated with the control group, but not with the AUD group or vice
versa. It could also be that the two regions are (conditionally) associated in both groups,
but the conditional covariance is different. However, many interesting observations can be
gleaned from the results and may generate interesting hypotheses that could be investigated
more thoroughly in an experimental setting.

We give two specific observations. First, edges are generally between nodes located in
the same region—either the anterior region or the posterior region—and there is no edge
that crosses between regions. This observation is consistent with the result in Qiao et al.
(2019) where there are no connections between the anterior and posterior regions for both
groups. We also note that electrode X, lying in the middle left region, has a high degree in
the estimated differential graph. Although there is no direct connection between the anterior
and posterior regions, this region may play a role in helping the two parts communicate
and may be greatly affected by AUD. Similarly, P08 in the anterior region also has a high
degree and is connected to other nodes in the anterior region, which may indicate that this
region can be an information exchange center for the anterior regions, which, at the same
time, may be heavily affected by AUD.

7. Discussion

We proposed a method to directly estimate the differential graph for functional graphical
models. In certain settings, direct estimation allows the differential graph to be recovered
consistently, even if each underlying graph cannot be consistently recovered. Experiments
with simulated data also show that preserving the functional nature of the data rather
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Figure 6: Estimated differential graph for EEG data. The anterior region is the top of the
figure and the posterior region is the bottom of the figure.

than treating the data as multivariate scalars can also result in better estimation of the
differential graph.

A key step in the procedure is to first represent the functions with an M -dimensional
basis using FPCA. Definition 4 ensures that there exists some M large enough so that
the signal, ν1(M), is larger than the bias, ν2(M), due to the use of a finite-dimensional
representation. Intuitively, τ = ν1(M)−ν2(M) is tied to the eigenvalue decay rate; however,
we defer the derivation of the explicit connection for future work.

We have provided a method for direct estimation of the differential graph, but the devel-
opment of methods that allow for inference and hypothesis testing in functional differential
graphs is a fruitful avenue for future work. In recent years, a number of studies have fo-
cused on inference in high-dimensional linear models (Zhang and Zhang, 2014; van de Geer
et al., 2014; Javanmard and Montanari, 2014; Zhao et al., 2014b; Bradic and Kolar, 2017;
Wang et al., 2021). Subsequently, these approaches were extended for statistical inference of
low-dimensional parameters in graphical models (Ren et al., 2015; Wasserman et al., 2014;
Janková and van de Geer, 2015, 2017; Barber and Kolar, 2018; Yu et al., 2016, 2020) and
differential graphical models (Xia et al., 2015; Liu, 2017; Kim et al., 2021). Future work
may extend these results to the functional graph setting. A promising approach would be to
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extend the inference procedures developed for semi- and non-parametric models (see, e.g.,
Lu et al., 2020; Dai and Kolar, 2021).
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A. Derivation of Optimization Algorithm

In this section, we derive the key steps for optimization algorithms.

A.1 Optimization Algorithm for FuDGE

We derive closed-form updates for the proximal method stated in (15). In particular, recall
that for all 1 ≤ j, l ≤ p, we have

∆new
jl =

[(
‖Aold

jl ‖F − λnη
)
/‖Aold

jl ‖F
]

+
×Aold

jl ,

where Aold = ∆old − η∇L(∆old) and x+ = max{0, x} represents the positive part of x ∈ R.
Proof [Proof of (15)] Let Aold = ∆old − η∇L(∆old) and let fjl denote the loss decomposed
over each j, l block so that

fjl(∆jl) =
1

2λnη
‖∆jl −Aold

jl ‖2F + ‖∆jl‖F

and
∆new
jl = arg min

∆jl∈RM×M

fjl(∆jl).

The loss fjl(∆jl) is convex, so the first-order optimality condition implies that:

0 ∈ ∂fjl
(
∆new
jl

)
, (A.1)

where ∂fjl (∆jl) is the subdifferential of fjl at ∆jl:

∂fjl(∆jl) =
1

λnη

(
∆jl −Aold

jl

)
+ Zjl,

where

Zjl =


∆jl

‖∆jl‖F if ∆jl 6= 0{
Zjl ∈ RM×M : ‖Zjl‖F ≤ 1

}
if ∆jl = 0.

(A.2)

Claim 1 If ‖Aold
jl ‖F > λnη > 0, then ∆new

jl 6= 0.
We verify this claim by proving the contrapositive. Suppose ∆new

jl = 0. Then by (A.1)

and (A.2), there exists a Zjl ∈ RM×M such that ‖Zjl‖F ≤ 1 and

0 = − 1

λnη
Aold
jl + Zjl.

Thus, ‖Aold
jl ‖F = ‖λnη · Zjl‖F ≤ λnη, so that Claim 1 holds.

Combining Claim 1 with (A.1) and (A.2), for any j, l such that ‖Aold
jl ‖F > λnη, we have

0 =
1

λnη

(
∆new
jl −Aold

jl

)
+

∆new
jl

‖∆new
jl ‖F

,

which is solved by

∆new
jl =

‖Aold
jl ‖F − λnη
‖Aold

jl ‖F
Aold
jl . (A.3)
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Claim 2 If ‖Aold
jl ‖F ≤ λnη, then ∆new

jl = 0.
Again, we verify the claim by proving the contrapositive. Suppose ∆new

jl 6= 0. Then
the first-order optimality implies the updates in (A.3). However, taking the Frobenius
norm on both sides of the equation gives ‖∆new

jl ‖F = ‖Aold
jl ‖F − λnη, which implies that

‖Aold
jl ‖F − λnη ≥ 0.
Updates in (15) follow immediately by combining Claim 2 and (A.3).

A.2 Solving the Joint Functional Graphical Lasso

As in Danaher et al. (2014), we use the alternating directions method of multipliers (ADMM)
algorithm to solve (19); see Boyd et al. (2011) for a detailed exposition of ADMM.

To solve (19), we first rewrite the problem as:

max
{Θ},{Z}

−
Q∑
q=1

nq

(
log detΘ(q) − trace

(
S(q)Θ(q)

))
+ P ({Z})

 ,

subject to Θ(q) � 0 and Z(q) = Θ(q), where {Z} = {Z(1), Z(2), . . . , Z(Q)}. The scaled
augmented Lagrangian (Boyd et al., 2011) is given by

Lρ ({Θ}, {Z}, {U}) = −
Q∑
q=1

nq

(
log detΘ(q) − trace

(
S(q)Θ(q)

))
+ P ({Z})

+
ρ

2

Q∑
q=1

‖Θ(q) − Z(q) + U (q)‖2F, (A.4)

where ρ > 0 is a tuning parameter and {U} = {U (1), U (2), . . . , U (Q)} are dual variables.
The ADMM algorithm will then solve (A.4) by iterating the following three steps. At the
i-th iteration, they are as follows:

1. {Θ(i)} ← arg min{Θ} Lρ
(
{Θ}, {Z(i−1)}, {U(i−1)}

)
.

2. {Z(i)} ← arg min{Z} Lρ
(
{Θ(i)}, {Z}, {U(i−1)}

)
.

3. {U(i)} ← {U(i−1)}+ ({Θ(i)} − {Z(i)}).
We now give more details on the above three steps.

ADMM algorithm for solving the joint functional graphical lasso problem

Input: {S(q)}Qq=1, {nq}Qq=1, and the penalty term P (·).
Output: {Θ̂(q)}Qq=1.

(a) Initialize the variables: Θ
(q)
(0) = IpM , U

(q)
(0) = 0pM , and Z

(q)
(0) = 0pM , q = 1, . . . , Q.

(b) Select a scalar ρ > 0.
(c) For i = 1, 2, 3, . . . until convergence

(i) For q = 1, . . . , Q, update Θ
(q)
(i) as the minimizer (with respect to Θ(q)) of

−nq
(

log detΘ(q) − trace
(
S(q)Θ(q)

))
+
ρ

2
‖Θ(q) − Z(q)

(i−1) + U
(q)
(i−1)‖

2
F
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Let V DV > denote the eigendecomposition of S(q) − ρZ
(q)
(i−1)/nq + ρU

(q)
(i−1)/nq.

The solution is given by V D̃V >, where D̃ is the diagonal matrix with the j-th
diagonal element being

nq
2ρ

(
−Djj +

√
D2
jj + 4ρ/nq

)
,

where Djj is the (j, j)-th entry of D.
(ii) Update {Z(i)} as minimizer (with respect to {Z}) of

min
{Z}

ρ

2

Q∑
q=1

‖Z(q) −A(q)‖2F + P ({Z}), (A.5)

where A(q) = Θ
(q)
(i) + U

(q)
(i−1), q = 1, . . . , Q.

(iii) U
(q)
(i) ← U

(q)
(i−1) + (Θ

(q)
(i) − Z

(q)
(i) ), q = 1, . . . , Q.

(d) Output Θ̂(q) as Θ
(q)
(i) , q = 1, . . . , Q, from the final round.

There are three things that are worth noting. 1. The key step is to solve (A.5), which
depends on the form of penalty term P (·); 2. This algorithm is guaranteed to converge to
the global optimum when P (·) is convex (Boyd et al., 2011); 3. The positive-definiteness
constraint on {Θ̂} is naturally enforced by step (c) (i).

A.3 Solving (A.5) for different penalty functions

We provide solutions to (A.5) for three problems (GFGL, FFGL, FFGL2) defined by (20),
(21), and (22).

A.3.1 Solution to (A.5) for GFGL

Let the solution for

min
{Z}

ρ

2

Q∑
q=1

‖Z(q) −A(q)‖2F + λ1

Q∑
q=1

∑
j 6=l
‖Z(q)

jl ‖F + λ2

∑
j 6=l

 Q∑
q=1

‖Z(q)
jl ‖

2
F

1/2

be denoted as {Ẑ} = {Ẑ(1), Ẑ(2), . . . , Ẑ(Q)}. Let Z
(q)
jl , Ẑ

(q)
jl be the (j, l)-th M ×M block of

Z(q) and Ẑ(q), q = 1, . . . , Q. Then, for j = 1, . . . , p, we have

Ẑ
(q)
jj = A

(q)
jj , q = 1, . . . , Q, (A.6)

and, for j 6= l, we have

Ẑ
(q)
jl =

‖A(q)
jl ‖F − λ1/ρ

‖A(q)
jl ‖F


+

1− λ2

ρ

√∑Q
q=1

(
‖A(q)

jl ‖F − λ1/ρ
)2

+


+

A
(q)
jl , (A.7)

where q = 1, . . . , Q. Details of the proof of (A.6) and (A.7) are given in Appendix A.4.
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A.3.2 Solution to (A.5) for FFGL

For FFGL, there is no simple closed-form solution. When Q = 2, (A.5) becomes

min
{Z}

ρ

2

2∑
q=1

‖Z(q) −A(q)‖2F + λ1

 2∑
q=1

∑
j 6=l
‖Z(q)

jl ‖F

+ λ2

∑
j,l

‖Z(1)
jl − Z

(2)
jl ‖F.

For each 1 ≤ j, l ≤ p, we compute Ẑ
(1)
jl , Ẑ

(2)
jl by solving

min
{Z(1)

jl ,Z
(2)
jl }

1

2

2∑
q=1

‖Z(q)
jl −A

(q)
jl ‖

2
F +

λ1

ρ
1j 6=l

2∑
q=1

‖Z(q)
jl ‖F +

λ2

ρ
‖Z(1)

jl − Z
(2)
jl ‖F, (A.8)

where 1j 6=l = 1 when j 6= l and 0 otherwise.

When j = l, by Lemma 16, we have the following closed-form updates for {Ẑ(1)
jj , Ẑ

(2)
jj },

j = 1, . . . , p. If ‖A(1)
jj −A

(2)
jj ‖F ≤ 2λ2/ρ, then

Ẑ
(1)
jj = Ẑ

(2)
jj =

1

2

(
A

(1)
jj +A

(2)
jj

)
.

If ‖A(1)
jj −A

(2)
jj ‖F > 2λ2/ρ, then

Ẑ
(1)
jj = A

(1)
jj −

λ2/ρ

‖A(1)
jj −A

(2)
jj ‖F

(
A

(1)
jj −A

(2)
jj

)
,

Ẑ
(2)
jj = A

(2)
jj +

λ2/ρ

‖A(1)
jj −A

(2)
jj ‖F

(
A

(1)
jj −A

(2)
jj

)
.

For j 6= l, we get {Ẑ(1)
jl , Ẑ

(2)
jl } using the ADMM algorithm again. We construct the

scaled augmented Lagrangian as:

L′ρ′ ({W}, {R}, {V }) =
1

2

2∑
q=1

‖W (q) −B(q)‖F +
λ1

ρ

2∑
q=1

‖W (q)‖F

+
λ2

ρ
‖R(1) −R(2)‖F +

ρ′

2

2∑
q=1

‖W (q) −R(q) + V (q)‖2F,

where ρ′ > 0 is a tuning parameter, B(q) = A
(q)
jl , q = 1, 2, and W (q), R(q), V (q) ∈ RM×M ,

q = 1, 2. {W} = {W (1),W (2)}, {R} = {R(1), R(2)}, and {V } = {V (1), V (2)}. The detailed
ADMM algorithm is described as below:

ADMM algorithm for solving (A.8) for j 6= l

Input: A
(q)
jl , q = 1, 2; λ1, λ2 ≥ 0.

Output: {Ẑ(1)
jl , Ẑ

(2)
jl }.

(a) Initialize the variables: W
(q)
(0) = IM , R

(q)
(0) = 0M , V

(q)
(0) = 0M , B(q) = A

(q)
jl , q = 1, 2.

(b) Select a scalar ρ′ > 0.
(c) For i = 1, 2, 3, . . . until convergence

(i) {W(i)} ← arg min{W} L
′
ρ′
(
{W}, {R(i−1)}, {V(i−1)}

)
.
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This is equivalent to

{W(i)} ← arg min
{W}

1

2

2∑
q=1

‖W (q) − C(q)‖2F +
λ1

ρ(1 + ρ′)

2∑
q=1

‖W (q)‖F,

where

C(q) =
1

1 + ρ′

[
B(q) + ρ′

(
R

(q)
(i−1) − V

(q)
(i−1)

)]
.

Similar to (14), we have

W
(q)
(i) ←

(
‖C(q)‖F − λ1/(ρ(1 + ρ′))

‖C(q)‖F

)
+

· C(q), q = 1, 2.

(ii) {R(i)} ← arg min{R} L
′
ρ′
(
{W(i)}, {R}, {V(i−1)}

)
.

This is equivalent to

{R(i)} ← arg min
{R}

1

2

2∑
q=1

‖R(q) −D(q)‖2F +
λ2

ρρ′
‖R(1) −R(2)‖F,

where D(q) = W
(q)
(i) + V

(q)
(i−1). By Lemma 16, if ‖D(1) −D(2)‖F ≤ 2λ2/(ρρ

′), then

R
(1)
(i) = R

(2)
(i) ←

1

2

(
D(1) +D(2)

)
,

and if ‖D(1) −D(2)‖F > 2λ2/(ρρ
′), then

R(1) ← D(1) − λ2/(ρρ
′)

‖D(1) −D(2)‖F

(
D(1) −D(2)

)
,

R(2) ← D(2) +
λ2/(ρρ

′)

‖D(1) −D(2)‖F

(
D(1) −D(2)

)
.

(iii) V
(q)

(i) ← V
(q)

(i−1) +W
(q)
(i) −R

(q)
(i) , q = 1, 2.

(d) Output {Ẑ(1)
jl , Ẑ

(2)
jl } as {W (1)

(i) ,W
(2)
(i) } from the final round.

A.3.3 Solution to (A.5) for FFGL2

For FFGL2, there is also no closed-form solution. Similarly to Section A.3.2, we compute a

closed-form solution for {Ẑ(1)
jj , Ẑ

(2)
jj }, j = 1, . . . , p, and use an ADMM algorithm to compute

{Ẑ(1)
jl , Ẑ

(2)
jl }, 1 ≤ j 6= l ≤ p.

For any 1 ≤ j, l ≤ p, we solve:

min
{Z(1)

jl ,Z
(2)
jl }

1

2

2∑
q=1

‖Z(q)
jl −A

(q)
jl ‖

2
F +

λ1

ρ
1j 6=l

2∑
q=1

‖Z(q)
jl ‖F +

λ2

ρ

∑
1≤a,b≤M

|Z(1)
jl,ab − Z

(2)
jl,ab|, (A.9)

where 1j 6=l = 1 when j 6= l and 0 otherwise.
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By Lemma 16, when j = l we have(
Ẑ

(1)
jj,ab, Ẑ

(2)
jj,ab

)

=


(
A

(1)
jl,ab − λ2/ρ,A

(2)
jl,ab + λ2/ρ

)
if A

(1)
jl,ab > A

(2)
jl,ab + 2λ2/ρ(

A
(1)
jl,ab + λ2/ρ,A

(2)
jl,ab − λ2/ρ

)
if A

(1)
jl,ab < A

(2)
jl,ab − 2λ2/ρ((

A
(1)
jl,ab +A

(2)
jl,ab

)
/2,
(
A

(1)
jl,ab +A

(2)
jl,ab

)
/2
)

if
∣∣∣A(1)

jl,ab −A
(2)
jl,ab

∣∣∣ ≤ 2λ2/ρ

,

where the subscript denotes the (a, b)-th entry, 1 ≤ a, b ≤M and j = 1, . . . , p.

For j 6= l, we get {Ẑ(1)
jl , Ẑ

(2)
jl }, 1 ≤ j 6= l ≤ p using an ADMM algorithm. Let B(q) = A

(q)
jl ,

q = 1, 2. We first construct the scaled augmented Lagrangian:

L′ρ′ ({W}, {R}, {V }) =
1

2

2∑
q=1

‖W (q) −B(q)‖F +
λ1

ρ

2∑
q=1

‖W (q)‖F

+
λ2

ρ

∑
a,b

|R(1)
a,b −R

(2)
a,b |+

ρ′

2

2∑
q=1

‖W (q) −R(q) + V (q)‖2F,

where ρ′ > 0 is a tuning parameter, W q, R(q), V (q) ∈ RM×M , q = 1, 2, {W} = {W (1),W (2)},
{R} = {R(1), R(2)}, and {V } = {V (1), V (2)}. The detailed ADMM algorithm is described
below.

ADMM algorithm for solving (A.9) for j 6= l

Input: A
(q)
jl , q = 1, 2; λ1, λ2 ≥ 0.

Output: {Ẑ(1)
jl , Ẑ

(2)
jl }.

(a) Initialize the variables: W
(q)
(0) = IM , R

(q)
(0) = 0M , V

(q)
(0) = 0M , B(q) = A

(q)
jl , q = 1, 2.

(b) Select a scalar ρ′ > 0.

(c) For i = 1, 2, 3, . . . until convergence

(i) {W(i)} ← arg min{W} .L
′
ρ′
(
{W}, {R(i−1)}, {V(i−1)}

)
This is equivalent to

{W(i)} ← arg min
{W}

1

2

2∑
q=1

‖W (q) − C(q)‖2F +
λ1

ρ(1 + ρ′)

2∑
q=1

‖W (q)‖F,

where

C(q) =
1

1 + ρ′

[
B(q) + ρ′

(
R

(q)
(i−1) − V

(q)
(i−1)

)]
.

Similarly to (14), we have

W
(q)
(i) ←

(
‖C(q)‖F − λ1/(ρ(1 + ρ′))

‖C(q)‖F

)
+

· C(q), q = 1, 2.

(ii) {R(i)} ← arg min{R} L
′
ρ′
(
{W(i)}, {R}, {V(i−1)}

)
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This is equivalent to

{R(i)} ← arg min
{R}

1

2

2∑
q=1

‖R(q) −D(q)‖2F +
λ2

ρρ′

∑
a,b

∣∣∣R(1)
ab −R

(2)
ab

∣∣∣ ,
where D(q) = W

(q)
(i) + V

(q)
(i−1). Then, by Lemma 16, we have(

R
(1)
(i),ab, R

(2)
(i),ab

)

=


(
D

(1)
ab − λ2/(ρρ

′), D
(2)
ab + λ2/(ρρ

′)
)

if D
(1)
ab > D

(2)
ab + 2λ2/(ρρ

′)(
D

(1)
ab + λ2/(ρρ

′), D
(2)
ab − λ2/(ρρ

′)
)

if D
(1)
ab < D

(2)
ab − 2λ2/(ρρ

′)((
D

(1)
ab +D

(2)
ab

)
/2,
(
D

(1)
ab +D

(2)
ab

)
/2
)

if
∣∣∣D(1)

ab −D
(1)
ab

∣∣∣ ≤ 2λ2/(ρρ
′)

,

where the subscript denotes the (a, b)-th entry, 1 ≤ a, b ≤M and 1 ≤ j, l ≤ p.
(iii) V

(q)
(i) ← V

(q)
(i−1) +W

(q)
(i) −R

(q)
(i) , q = 1, 2.

(d) Output {Ẑ(1)
jl , Ẑ

(2)
jl } as {W (1)

(i) ,W
(2)
(i) } from the final round.

A.4 Derivation of (A.6) and (A.7)

Note that for any 1 ≤ j, l ≤ p, we can obtain Ẑ
(1)
jl , Ẑ

(2)
jl , . . . , Ẑ

(Q)
jl by solving

arg min
Z

(1)
jl ,Z

(2)
jl ,...,Z

(Q)
jl

ρ

2

Q∑
q=1

‖Z(q)
jl −A

(q)
jl ‖

2
F+λ11j 6=l

Q∑
q=1

‖Z(q)
jl ‖F+λ21j 6=l

 Q∑
q=1

‖Z(q)
jl ‖

2
F

1/2

, (A.10)

where 1j 6=l = 1 when j 6= l and 0 otherwise. By (A.10), we have Ẑ
(q)
jj = A

(q)
jj for any

j = 1, . . . , p and q = 1, . . . , Q, which is (A.6). We then prove (A.7). Denote the objective

function in (A.10) by L̃jl. Then, for j 6= l, the subdifferential of L̃jl with respect to Z
(q)
jl is

∂
Z

(q)
jl

L̃jl = ρ(Z
(q)
jl −A

(q)
jl ) + λ1G

(q)
jl + λ2D

(q)
jl ,

where

G
(q)
jl =


Z

(q)
jl

‖Z(q)
jl ‖F

when Z
(q)
jl 6= 0

{G(q)
jl ∈ RM×M : ‖G(q)

jl ‖F ≤ 1} otherwise

,

and

D
(q)
jl =


Z

(q)
jl(∑Q

q=1 ‖Z
(q)
jl ‖

2
F

)1/2 when
∑Q

q=1 ‖Z
(q)
jl ‖

2
F > 0

{D(q)
jl ∈ RM×M :

∑Q
q=1 ‖D

(q)
jl ‖

2
F ≤ 1} otherwise

.

To obtain the optimum, we need

0 ∈ ∂
Z

(q)
jl

L̃jl(Ẑ
(q)
jl )
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for all q = 1, . . . , Q. Now we split our discussion into two cases.

(a) Suppose
∑Q

q=1 ‖Ẑ
(q)
jl ‖

2
F = 0 or equivalently Ẑ

(q)
jl = 0 for all q = 1, . . . , Q.

In this case, there exist G
(q)
jl , where ‖G(q)

jl ‖F ≤ 1, q = 1, . . . , Q; and also D
(q)
jl , where∑Q

q=1 ‖D
(q)
jl ‖

2
F ≤ 1, such that

0 = −ρ ·A(q)
jl + λ1G

(q)
jl + λ2D

(q)
jl .

This implies that

D
(q)
jl =

ρ

λ2

(
A

(q)
jl −

λ1

ρ
G

(q)
jl

)
.

Thus, we have

‖D(q)
jl ‖F =

ρ

λ2

∥∥∥∥A(q)
jl −

λ1

ρ
G

(q)
jl

∥∥∥∥
F

≥ ρ

λ2

(
‖A(q)

jl ‖F −
λ1

ρ
‖G(q)

jl ‖F
)

+

≥ ρ

λ2

(
‖A(q)

jl ‖F −
λ1

ρ

)
+

,

which implies that

ρ2

λ2
2

Q∑
q=1

(
‖A(q)

jl ‖F −
λ1

ρ

)2

+

≤
Q∑
q=1

‖D(q)
jl ‖

2
F ≤ 1.

Therefore, √√√√ Q∑
q=1

(
‖A(q)

jl ‖F − λ1/ρ
)2

+
≤ λ2/ρ. (A.11)

(b) Suppose
∑Q

q=1 ‖Ẑ
(q)
jl ‖

2
F > 0.

For those q’s such that Ẑ
(q)
jl = 0, there exists G

(q)
jl , where ‖G(q)

jl ‖F = 1, such that

0 = −ρA(q)
jl + λ1G

(q)
jl .

Thus, we have

‖A(q)
jl ‖F =

λ1

ρ
‖G(q)

jl ‖F ≤
λ1

ρ
,

which implies that (
‖A(q)

jl ‖F − λ1/ρ
)

+
= 0. (A.12)

On the other hand, for those q’s such that Ẑ
(q)
jl 6= 0, we have

0 = ρ
(
Ẑ

(q)
jl −A

(q)
jl

)
+ λ1

Ẑ
(q)
jl

‖Ẑ(q)
jl ‖F

+ λ2

Ẑ
(q)
jl(∑Q

q=1 ‖Ẑ
(q)
jl ‖2F

)1/2
,
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which implies that

A
(q)
jl = Ẑ

(q)
jl

1 +
λ1

ρ‖Ẑ(q)
jl ‖F

+
λ2

ρ
(∑Q

q=1 ‖Ẑ
(q)
jl ‖2F

)1/2

 , (A.13)

and

‖A(q)
jl ‖F = ‖Ẑ(q)

jl ‖F + λ1/ρ+ (λ2/ρ) ·
‖Ẑ(q)

jl ‖F(∑Q
q=1 ‖Ẑ

(q)
jl ‖2F

)1/2
. (A.14)

By (A.14), we have

(
‖A(q)

jl ‖F − λ1/ρ
)

+
>
λ2

ρ
·

‖Ẑ(q)
jl ‖F√∑Q

q=1 ‖Ẑ
(q)
jl ‖2F

> 0. (A.15)

By (A.12) and (A.15), we have

Q∑
q=

(
‖A(q)

jl ‖F − λ1/ρ
)2

+
=

∑
q:‖Ẑ(q)

jl ‖F 6=0

(
‖A(q)

jl ‖F − λ1/ρ
)2

+

>
λ2

2

ρ2

∑
q:‖Ẑ(q)

jl ‖F 6=0

‖Ẑ(q)
jl ‖

2
F∑Q

q=1 ‖Ẑ
(q)
jl ‖2F

> λ2
2/ρ

2.

(A.16)

Now we make the following claims.

Claim 1.
∑Q

q=1 ‖Ẑ
(q)
jl ‖

2
F = 0⇐⇒

√∑Q
q=

(
‖A(q)

jl ‖F − λ1/ρ
)2

+
≤ λ2/ρ.

This claim is easily shown by (A.11) and (A.16).

Claim 2. When
∑Q

q=1 ‖Ẑ
(q)
jl ‖

2
F > 0, we have ‖Ẑ(q)

jl ‖F = 0⇐⇒ ‖A(q)
jl ‖F ≤ λ1/ρ.

This claim is easily shown by (A.12) and (A.15).

Claim 3. When ‖Ẑ(q)
jl ‖F 6= 0, then we have

Ẑ
(q)
jl =

‖A(q)
jl ‖F − λ1/ρ

‖A(q)
jl ‖F


1− λ2

ρ

√∑Q
q=

(
‖A(q)

jl ‖F − λ1/ρ
)2

+

A
(q)
jl .

To prove this claim, note that by Claim 2 and (A.14), we have

(
‖A(q)

jl ‖F − λ1/ρ
)

+
= ‖Ẑ(q)

jl ‖F

1 +
λ2

ρ
(∑Q

q=1 ‖Ẑ
(q)
jl ‖2F

)1/2

 , q = 1, . . . , Q.
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Thus, √√√√ Q∑
q=1

(
‖A(q)

jl ‖F − λ1/ρ
)2

+
=

√√√√ Q∑
q=1

‖Ẑ(q)
jl ‖2F + λ2/ρ,

which implies that √√√√ Q∑
q=1

‖Ẑ(q)
jl ‖2F =

√√√√ Q∑
q=1

(
‖A(q)

jl ‖F − λ1/ρ
)2

+
− λ2/ρ.

Thus, by (A.14), we have

‖Ẑ(q)
jl ‖F =

‖A(q)
jl ‖F − λ1/ρ

1 + λ2/ρ√∑Q

q′=1

(
‖A(q′)

jl ‖F−λ1/ρ
)2

+
−λ2/ρ

=

1− λ2

ρ

√∑Q
q′=1

(
‖A(q′)

jl ‖F − λ1/ρ
)2

+

(‖A(q)
jl ‖F − λ1/ρ

)
.

Claim 3 follows by combining the above display with (A.13).
Finally, combining Claims 1-3, we obtain (A.7).
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B. Main Technical Proofs

We give proofs of the results given in the main text.

B.1 Proof of Lemma 2

We only need to prove that when we use two sets of orthonormal function basis eM (t) =
{eMj (t)}pj=1 and ẽM (t) = {ẽMj (t)}pj=1 to expand the same subspace VM[p], the definition

of Eπ∆ will not change. Since both eMj (t) = (eMj1 (t), eMj2 (t), . . . , eMjM (t))> and ẽMj (t) =

(ẽMj1 (t), ẽMj2 (t), . . . , ẽMjM (t))> are orthonormal function basis of VMj , there must exist an or-

thonormal matrix Uj ∈ RM×M satisfying U>j Uj = UjU
>
j = IM , such that ẽMj (t) = Uje

M
j (t).

Let aX,Mij be the projection score vectors of Xij(t) onto eMj (t) and ãX,Mij be the projection

score vectors of Xij(t) onto ẽMj (t). Then ãX,Mij = Uja
X,M
ij . Denote

U = diag{U1, U2, . . . , Up} ∈ RpM×pM .

We then have

ãX,Mi = ((ãX,Mi1 )>, (ãX,Mi2 )>, . . . , (ãX,Mip )>)>

= ((aX,Mi1 )>U>1 , (a
X,M
i2 )>U>2 , . . . , (a

X,M
ip )>U>p )> = UaX,Mi

and
Σ̃X,M = Cov

(
ãX,M

)
= UCov

(
ãX,M

)
U> = UΣX,MU>.

Thus

Θ̃X,M =
(

Σ̃X,M
)−1

= U
(
ΣX,M

)−1
U> = UΘX,MU>.

Therefore, Θ̃X,M
jl = UjΘ

X,M
jl U>l for all j, l ∈ V 2 and, therefore, ‖Θ̃X,M

jl ‖F = ‖ΘX,M
jl ‖F for

all j, l ∈ V 2. This implies the final result.

B.2 Proof of Lemma 3

We first show that Xij , Yij ∈ Span
{
φj1, . . . , φjM?

j

}
almost surely. Let

MX
j = sup{M ∈ N+ : λXjM > 0}.

By Karhunen–Loève theorem, we have Xij =
∑MX

j

k=1〈Xij , φ
X
jk〉φXjk almost surely. Thus, we

have Xij ∈ Span

{
φXj1, . . . , φ

X
j,MX

j

}
almost surely. For any 1 ≤ k ≤MX

j , we have that∫
T
Kjj(s, t)φ

X
k (s)φXk (t)dsdt ≥

∫
T
KX
jj (s, t)φ

X
k (s)φXk (t)dsdt = λXjk > 0,

which implies that φXk ∈ Span
{
φj1, . . . , φjM?

j

}
. Thus, we have Span

{
φXj1, . . . , φ

X
j,MX

j

}
⊆

Span
{
φj1, . . . , φjM?

j

}
and Xij ∈ Span

{
φj1, . . . , φjM?

j

}
almost surely. Similarly, we have

that Yij ∈ Span
{
φj1, . . . , φjM?

j

}
almost surely.
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Next, we show that M ′j = M?
j by contradiction. By the definition of M ′j , we have that

M ′j ≤ M?
j . If M ′j 6= M?

j , then we have V
M ′j
j ⊆ H such that M ′j < M?

j and Xij , Yij ∈ V
M ′j
j

almost surely. This implies that there exists φ ∈ Span
{
φj1, . . . , φjM?

j

}
\ V

M ′j
j such that

E
[
(〈φjk(t), Xij(t)〉)2

]
= 0 and E

[
(〈φjk(t), Yij(t)〉)2

]
= 0

⇒
∫
T
KX
jj (s, t)φjk(s)φjk(t)dsdt = 0 and

∫
T
KY
jj(s, t)φjk(s)φjk(t)dsdt = 0

⇒
∫
T
Kjj(s, t)φjk(s)φjk(t)dsdt = 0,

⇒λjk = 0,

which contradicts the definition of M?
j . Thus, we must have M ′j = M?

j .

B.3 Proof of Lemma 7

Let U = V \{j, l}, and aX,MU =
(

(aX,Mj )>, j ∈ U
)>

. Without loss of generality, assume that

ΣX,M and ΘX,M take the following block structure:

ΣX,M =

ΣX,M
jj ΣX,M

jl ΣX,M
jU

ΣX,M
lj ΣX,M

ll ΣX,M
lU

ΣX,M
Uj ΣX,M

Ul ΣX,M
UU

 , ΘX,M =

ΘX,M
jj ΘX,M

jl ΘX,M
jU

ΘX,M
lj ΘX,M

ll ΘX,M
lU

ΘX,M
Uj ΘX,M

Ul ΘX,M
UU

 .
Let P denote the submatrix:

P =

[
ΘX,M
jj ΘX,M

jl

ΘX,M
lj ΘX,M

ll

]
.

By standard results for the multivariate Gaussian (Johnson and Wichern, 2014), we have

Var
(
aX,Mj | aX,Mk , k 6= j

)
= HX,M

jj = (ΘX,M
jj )−1,

Var

([
aX,Mj

aX,Ml

]
| aX,MU

)
= P−1 =

[
(P−1)11 (P−1)12

(P−1)21 (P−1)22

]
.

Thus, the first statement directly follows from the first equation. To prove the second
statement, we only need to note that

HX,M
jl = Cov

(
aX,Mj , aX,Ml | aX,MU

)
= (P−1)12

= −(ΘX,M
jj )−1ΘX,M

jl (P−1)22

= −HX,M
jj ΘX,M

jl H
\j,X,M
ll ,

where the second to last equation follows from the 2× 2 block matrix inverse and the last
equation follows from the property of multivariate Gaussian. This completes the proof.
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B.4 Proof of Theorem 10

We provide the proof of Theorem 10, following the framework introduced in Negahban et al.
(2012). We start by introducing some notation.

We use ⊗ to denote the Kronecker product. For ∆ ∈ RpM×pM , let θ = vec(∆) ∈ Rp2M2

and θ∗ = vec(∆M ), where ∆M is defined in Section 2.2. Let G = {Gt}t=1,...,NG be a set of
indices, where NG = p2 and Gt ⊂ {1, 2, · · · , p2M2} is the set of indices for θ that correspond
to the t-th M ×M submatrix of ∆M . Thus, if t = (j− 1)p+ l, then θGt = vec (∆jl) ∈ RM2

,
where ∆jl is the (j, l)-th M × M submatrix of ∆. Denote the group indices of θ∗ that
belong to blocks corresponding to E∆ as SG ⊆ {1, 2, · · · , NG}. Note that we define SG using
E∆ and not E∆M . Therefore, as stated in Assumption 2, |SG | = s. We further define the
subspace M as

M := {θ ∈ Rp
2M2 | θGt = 0 for all t /∈ SG}. (B.1)

Its orthogonal complement with respect to the Euclidean inner product is

M⊥ := {θ ∈ Rp
2M2 | θGt = 0 for all t ∈ SG}.

For a vector θ, let θM and θM⊥ be the projection of θ on the subspaces M and M⊥,
respectively. Let 〈·, ·〉 represent the Euclidean inner product. Let

R(θ) :=

NG∑
t=1

|θGt |2 , |θ|1,2. (B.2)

For any v ∈ Rp2M2
, the dual norm of R is given by

R∗(v) := sup
u∈Rp2M2\{0}

〈u, v〉
R(u)

= sup
R(u)≤1

〈u, v〉. (B.3)

The subspace compatibility constant of M with respect to R is defined as

Ψ(M) := sup
u∈M\{0}

R(u)

|u|2
. (B.4)

Proof By Lemma 15 and Assumption 1, we have

|(SY,M ⊗ SX,M )− (ΣY,M ⊗ ΣX,M )|∞ ≤ δ2
n + 2δnσmax (B.5)

and
| vec (SY,M − SX,M )− vec (ΣY,M − ΣX,M )|∞ ≤ 2δn.

The problem (10) can be written in the following form:

θ̂λn ∈ arg min
θ∈Rp2M2

L(θ) + λnR(θ),

where

L(θ) =
1

2
θ>(SY,M ⊗ SX,M )θ − θ> vec(SY,M − SX,M ). (B.6)

49



Zhao, Wang, and Kolar

Here, we slightly abuse the notation and use L(·) to denote the function of θ rather than
∆. The loss L(θ) is convex and differentiable with respect to θ, and it can easily be verified
that R(·) defines a vector norm. For h ∈ Rp2M2

, the error of the first-order Taylor series
expansion of L is:

δL(h, θ∗) := L(θ∗ + h)− L(θ∗)− 〈∇L(θ∗), h〉 =
1

2
h>(SY,M ⊗ SX,M )h. (B.7)

From (B.6), we see that ∇L(θ) = (SY,M ⊗SX,M )θ− vec(SY,M − SX,M ). By Lemma 19, we
have

R∗(∇L(θ∗)) = max
t=1,2,··· ,NG

∣∣∣[(SY,M ⊗ SX,M )θ∗ − vec(SY,M − SX,M )
]
Gt

∣∣∣
2
.

Now we establish an upper bound for R∗(∇L(θ∗)). First, note that

(ΣY,M ⊗ ΣX,M )θ∗ − vec(ΣY,M − ΣX,M ) = vec(ΣX,M∆MΣY,M − (ΣY,M − ΣX,M )) = 0.

Letting (·)jl denote the (j, l)-th submatrix, we have∣∣∣[(SY,M ⊗ SX,M )θ∗ − vec(SY,M − SX,M )
]
Gt

∣∣∣
2

=
∣∣∣[(SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M )θ∗ − vec ((SY,M − ΣY,M )− (SX,M − ΣX,M ))

]
Gt

∣∣∣
2

= ‖(SX,M∆MSY,M − ΣX,M∆MΣY,M )jl − (SY,M − ΣY,M )jl − (SX,M − ΣX,M )jl‖F
≤ ‖(SX,M∆MSY,M − ΣX,M∆MΣY,M )jl‖F + ‖(SY,M − ΣY,M )jl‖F + ‖(SX,M − ΣX,M )jl‖F .

For any M ×M matrix A, ‖A‖F ≤M |A|∞, so∣∣∣[(SY,M ⊗ SX,M )θ∗ − vec(SY,M − SX,M )
]
Gt

∣∣∣
2

≤M
[∣∣(SX,M∆MSY,M − ΣX,M∆MΣY,M )jl

∣∣
∞

+
∣∣(SY,M − ΣY,M )jl

∣∣
∞ +

∣∣(SX,M − ΣX,M )jl
∣∣
∞
]

≤M
[∣∣SX,M∆MSY,M − ΣX,M∆MΣY,M

∣∣
∞ + |SY,M − ΣY,M |∞ + |SX,M − ΣX,M |∞

]
.

For any A ∈ Rk×k and v ∈ Rk, we have |Av|∞ ≤ |A|∞|v|1. Thus, we also have

|SX,M∆MSY,M − ΣX,M∆MΣY,M |∞ = |[(SY,M ⊗ SX,M )− (ΣX,M ⊗ ΣY,M )] vec (∆M )|∞
≤ |(SY,M ⊗ SX,M )− (ΣX,M ⊗ ΣY,M )|∞| vec (∆M )|1
= |(SY,M ⊗ SX,M )− (ΣX,M ⊗ ΣY,M )|∞|∆M |1.

Combining the inequalities gives an upper bound uniform over G (i.e., for all Gt):∣∣∣[(SY,M ⊗ SX,M )θ∗ − vec(SY,M − SX,M )
]
Gt

∣∣∣
2

≤M [|(SY,M ⊗ SX,M )− (ΣX,M ⊗ ΣY,M )|∞|∆M |1
+ |SY,M − ΣY,M |∞ + |SX,M − ΣX,M |∞],
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which implies

R∗ (∇L(θ∗)) ≤M [|(SY,M ⊗ SX,M )− (ΣX,M ⊗ ΣY,M )|∞|∆M |1
+ |SY,M − ΣY,M |∞ + |SX,M − ΣX,M |∞].

Assuming |SX,M − ΣX,M |∞ ≤ δn and |SY,M − ΣY,M |∞ ≤ δn implies

R∗ (∇L(θ∗)) ≤M [(δ2
n + 2δnσmax)|∆M |1 + 2δn].

Setting
λn = 2M

[(
δ2
n + 2δnσmax

) ∣∣∆M
∣∣
1

+ 2δn
]
, (B.8)

then implies that λn ≥ 2R∗ (∇L(θ∗)). Thus, invoking Lemma 1 in Negahban et al. (2012),
h = θ̂λn − θ∗ must satisfy

R(hM⊥) ≤ 3R(hM) + 4R(θ∗M⊥),

where M is defined in (B.1). Equivalently,

|hM⊥ |1,2 ≤ 3|hM|1,2 + 4|θ∗M⊥ |1,2. (B.9)

By the definition of ν2, we have

|θ∗M⊥ |1,2 =
∑
t/∈SG

|θ∗Gt
|2 ≤ (p(p+ 1)/2− s) ν2 ≤ p2ν2.

Next, we show that δL(h, θ∗), as defined in (B.7), satisfies the Restricted Strong Con-
vexity property: δL(h, θ∗) ≥ κL|h|22 − ω2

L (θ∗) whenever h satisfies (B.9). We have

θ>(SY,M ⊗ SX,M )θ = θ>(ΣY,M ⊗ ΣX,M )θ + θ>(SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M )θ

≥ θ>(ΣY,M ⊗ ΣX,M )θ − |θ>(SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M )θ|
≥ λ∗min|θ|22 −M2|SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M |∞|θ|21,2,

where the last inequality follows from Lemma 17 and λ∗min = λmin(ΣX,M ) × λmin(ΣY,M ) =
λmin(ΣY,M ⊗ ΣX,M ) > 0. Thus,

δL(h, θ∗) =
1

2
h>(SY,M ⊗ SX,M )h

≥ 1

2
λ∗min|h|22 −

1

2
M2|SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M |∞|h|21,2.

By Lemma 18 and (B.9), we have

|h|21,2 = (|hM|1,2 + |hM⊥ |1,2)2 ≤ 16(|hM|1,2 + |θ∗M⊥ |1,2)2

≤ 16(
√
s|h|2 + p2ν2)2 ≤ 32s|h|22 + 32p4ν2

2 .

Combining with the above equation, we get

δL(h, θ∗) ≥
[

1

2
λ∗min − 16M2s|SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M |∞

]
|h|22

− 16M2p4ν2
2 |SY,M ⊗ SX,M − ΣY,M ⊗ ΣX,M |∞

≥
[

1

2
λ∗min − 8M2s

(
δ2
n + 2δ2

nσmax

)]
|h|22

− 16M2p4ν2
2

(
δ2
n + 2δnσmax

)
.
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Thus, appealing to (B.5), the Restricted Strong Convexity property holds with

κL =
1

2
λ∗min − 8M2s

(
δ2 + 2δnσmax

)
,

ωL = 4Mp2ν2

√
δ2
n + 2δnσmax.

When δn <
1
4

√
λ∗min+16M2s(σmax)2

M2s
− σmax as we assumed in the theorem, then κL > 0. By

Theorem 1 of Negahban et al. (2012) and Lemma 18, letting

λn = 2M
[(
δ2
n + 2δnσmax

)
|∆M |1 + 2δn

]
,

as in (B.8), ensures that

‖∆̂M −∆M‖2F = |θ̂λn − θ∗|22

≤ 9
λ2
n

κ2
L

Ψ2(M) +
λn
κL

(
2ω2
L + 4R(θ∗M⊥)

)
=

9λ2
ns

κ2
L

+
2λn
κL

(ω2
L + 2p2ν2)

= Γ2
n.

We then prove that Ê∆ = E∆. Recall that we have assumed that 0 < Γn < τ/2 = (ν1−
ν2)/2 and ν2 + Γn ≤ εn < ν1−Γn. Note that we have ‖∆̂M

jl −∆M
jl ‖F ≤ ‖∆̂M −∆M‖F ≤ Γn

for any (j, l) ∈ V 2. Recall that

E∆ = {(j, l) ∈ V 2 : j 6= l,Djl > 0}.

First, we prove that E∆ ⊆ Ê∆. For any (j, l) ∈ E∆, by the definition of ν1 in Section 4.1,
we have

‖∆̂M
jl ‖F ≥ ‖∆M

jl ‖F − ‖∆̂M
jl −∆M

jl ‖F
≥ ν1 − Γn

> εn.

The last inequality holds because we have assumed that εn < ν1−Γn. Thus, by the definition
of Ê∆ in (13), we have (j, l) ∈ Ê∆, which further implies that E∆ ⊆ Ê∆.

We then show Ê∆ ⊆ E∆. Let Êc∆ and Ec∆ denote the complement of Ê∆ and E∆. For
any (j, l) ∈ Ec∆, which also means that (l, j) ∈ Ec∆, by the definition of ν2, we have that

‖∆̂M
jl ‖F ≤ ‖∆M

jl ‖F + ‖∆̂M
jl −∆M

jl ‖F
≤ ν2 + Γn

≤ εn.

Again, the last inequality is true because we have assumed εn ≥ ν2 + Γn. Thus, by the defi-
nition of Ê∆, we have (j, l) /∈ Ê∆ or (j, l) ∈ Êc∆. This implies that Ec∆ ⊆ Êc∆, or Ê∆ ⊆ E∆.

Combining with the previous conclusion that E∆ ⊆ Ê∆, the proof is complete.
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B.5 Proof of Theorem 13

We only need to prove that

P
(
|SM − ΣM |∞ > δ

)
≤ C1np exp{−C2Φ(T, L)M−(1+β)δ}

+ C3(pM)2 exp{−C4nM
−2(1+β)δ2}+ C5npL exp

{
−C6M

−2(1+β)δ2

ψ̃2(T, L)

}
, (B.10)

where SM can be understood as SX,M or SY,M and ΣM can be understood as ΣX,M or
ΣY,M , with Ck = CXk or Ck = CYk for k = 1, 2, 3, 4. To see that (B.10) implies (18), we first
note that (B.10) implies that

P
(
|SX,M − ΣX,M |∞ ≤ δ and |SY,M − ΣY,M |∞ ≤ δ

)
≥ 1− P

(
|SX,M − ΣX,M |∞ > δ

)
− P

(
|SY,M − ΣY,M |∞ > δ

)
≥ 1− 2C̄1pM exp{−C̄2Φ(T, L)M−(1+β)δ} − 2C̄3(pM)2 exp{−C̄4nM

−2(1+β)δ2},

where C̄k for k = 1, 2, 3, 4 are defined in Theorem 13. Thus, letting the last two terms in
the last line of the above equation be ι/2, we then have (18). In this way, the rest of the
proof will focus on proving (B.10).

Denote the (j, l)-th submatrix of SM as SMjl , and the (k,m)-th entry of SMjl as σ̂jl,km.

We have SM = (σ̂jl,km)1≤j,l≤p,≤k,m≤M and ΣM = (σjl,km)1≤j,l≤p,≤k,m≤M . Then, by the
definition of SM and ΣM , we have

σ̂jl,km =
1

n

n∑
i=1

âijkâilm and σjl,km = E [aijkailm] .

Note that

âijk = 〈ĝij , φ̂jk〉
= 〈gij + ĝij − gij , φjk + φ̂jk − φjk〉
= 〈gij , φjk〉+ 〈gij , φ̂jk − φjk〉+ 〈ĝij − gij , φjk〉+ 〈ĝij − gij , φ̂jk − φjk〉
= aijk + 〈gij , φ̂jk − φjk〉+ 〈ĝij − gij , φjk〉+ 〈ĝij − gij , φ̂jk − φjk〉.

Thus, we have

σ̂jl,km − σjl,km =
1

n

n∑
i=1

(âijkâilm − σjl,km) =

16∑
u=1

Iu,

where

I1 =
1

n

n∑
i=1

(aijkailm − E(aijkailm)) ,

I2 =
1

n

n∑
i=1

aijk〈ĝil − gil, φlm〉,

I3 =
1

n

n∑
i=1

aijk〈gil, φ̂lm − φlm〉,
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I4 =
1

n

n∑
i=1

aijk〈ĝil − gil, φ̂lm − φlm〉,

I5 =
1

n

n∑
i=1

ailm〈ĝij − gij , φjk〉,

I6 =
1

n

n∑
i=1

〈ĝij − gij , φjk〉〈ĝil − gil, φlm〉,

I7 =
1

n

n∑
i=1

〈ĝij − gij , φjk〉〈gil, φ̂lm − φlm〉,

I8 =
1

n

n∑
i=1

〈ĝij − gij , φjk〉〈ĝil − gil, φ̂lm − φlm〉,

I9 =
1

n

n∑
i=1

〈gij , φ̂jk − φjk〉ailm,

I10 =
1

n

n∑
i=1

〈gij , φ̂jk − φjk〉〈ĝil − gil, φlm〉,

I11 =
1

n

n∑
i=1

〈gij , φ̂jk − φjk〉〈gil, φ̂lm − φlm〉,

I12 =
1

n

n∑
i=1

〈gij , φ̂jk − φjk〉〈ĝil − gil, φ̂lm − φlm〉,

I13 =
1

n

n∑
i=1

〈ĝij − gij , φ̂jk − φjk〉ailm,

I14 =
1

n

n∑
i=1

〈ĝij − gij , φ̂jk − φjk〉〈ĝil − gil, φlm〉,

I15 =
1

n

n∑
i=1

〈ĝij − gij , φ̂jk − φjk〉〈gil, φ̂lm − φlm〉,

I16 =
1

n

n∑
i=1

〈ĝij − gij , φ̂jk − φjk〉〈ĝil − gil, φ̂lm − φlm〉.

Note that Iu, u = 1, . . . , 16 depend on j, l, k,m. To simplify the notation, we do not
explicitly denote this fact. Thus, for any 0 < δ ≤ 1, when for any 1 ≤ j, l ≤ p and
1 ≤ k,m ≤ M , if |Iu| ≤ δ/16, u = 1, . . . , 16, we have |SM − ΣM |∞ ≤ δ. We now calculate
the probability of |Iu| ≤ δ/16, u = 1, . . . , 16, 1 ≤ j, l ≤ p and 1 ≤ k,m ≤M .

By Assumption 3 (i), we have constants d1, d2 > 0, such that λjk ≤ d1k
−β, djk ≤ d2k

1+β

for any j = 1, . . . , p and k ≥ 1. Let d0 = max{1,
√
d1, d2} and ξijk = λ

−1/2
jk aijk so that

ξijk ∼ N(0, 1) are i.i.d. for i = 1, . . . , n. Let

δ1 =
δ

144d2
0M

1+β
√

3λ0,max

and δ2 = 9λ0,maxδ1 =
δ

16d2
0M

1+β
√

3λ0,max

,
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where λ0,max = maxj∈V
∑∞

k=1 λjk. Recall that K̂jj , j = 1, . . . , p, are defined in (9). We
define five events A1-A5 as follows:

A1 : ‖ĝij − gij‖ ≤ δ1, ∀i = 1, . . . , n ∀j = 1, . . . , p,

A2 : ‖K̂jj −Kjj‖HS ≤ δ2 ∀j = 1, . . . , p,

A3 :
1

n

n∑
i=1

ξ2
ijk ≤

3

2
∀j = 1, . . . , p ∀k = 1, . . . ,M,

A4 :
1

n

n∑
i=1

‖gij‖2 ≤ 2λ0,max ∀j = 1, . . . , p,

A5 : | 1
n

n∑
i=1

aijkailm − σjl,km| ≤
δ

16
∀1 ≤ j, l ≤ 1 ≤ k,m ≤M.

Without loss of generality, we assume that 〈φ̂jl, φjl〉 ≥ 0 for any 1 ≤ j ≤ p and 1 ≤ k ≤M (if
this is not true, we only need to use −φjl to substitute φjl). Then, by Lemma 20-Lemma 35,
when A1-A5 hold simultaneously, we have |Iu| ≤ δ/16 for all u = 1, . . . , 16, 1 ≤ j, l ≤ p and
1 ≤ k,m ≤M . Therefore,

P
(
|SM − ΣM |∞ ≤ δ

)
≥ P (|Iu| ≤ δ/16, for all 1 ≤ u ≤ 16, 1 ≤ j, l ≤ 1 ≤ k,m ≤M)

≥ P

(
5⋂

w=1

Aw

)
,

which implies

P
(
|SM − ΣM |∞ > δ

)
≤ P

(
5⋃

w=1

Āw

)
≤

5∑
w=1

P
(
Āw
)
,

where the last inequality follows Boole’s inequality and Ā denotes the complement of A.
Then we only need to give an upper bound for P (Āw), w = 1, . . . , 5.

By Theorem 14 and the definition of ψ̃1-ψ̃4, we have

P (Ā1) = P (‖ĝij − gij‖ > δ1 ∃1 ≤ i ≤ n, 1 ≤ j ≤ p)

≤ 2(np)

{
exp

(
− δ2

1

72ψ̃2
1(T, L) + 6

√
2ψ̃1(T, L)δ1

)
+ L exp

(
− δ2

1

ψ̃2(T, L)

)

+ exp

− δ2
1

72λ0,maxψ̃3(L) + 6
√

2λ0,maxψ̃3(L)δ1

 .

Let γ1 =
√

2/(12×144d2
03
√

3λ0,max) and γ3 = 1/(72λ0,max×(144d2
0

√
3λ0,max)2). If ψ̃1 < γ1 ·

δ/M1+β and ψ̃3 < γ3 · δ2/M2+2β, then 72ψ̃2
1 < 6

√
2ψ̃1δ1 and 72λ0,maxψ̃3 < 6

√
2λ0,maxψ̃3δ1,
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which implies that

P (Ā1)

≤ 2np

exp

(
− δ1

12
√

2ψ̃1(T, L)

)
+ exp

− δ1

12
√

2λ0,max

√
ψ̃3(L)

+ L exp

(
− δ2

1

ψ̃2(T, L)

)
(i)

≤ 2np

{
exp

(
− δ1

12
√

2
Φ(T, L)

)
+ exp

(
− δ1

12
√

2λ0,max

Φ(T, L)

)
+ L exp

(
− δ2

1

ψ̃2(T, L)

)}
(ii)

≤ 4np exp

(
− δ1

12
√

2λ0,max

Φ(T, L)

)
+ 2npL exp

(
− δ2

1

ψ̃2(T, L)

)

= 4np exp

(
− 1

1728
√

6λ0,maxd2
0

· δ

M1+β
· Φ(T, L)

)

+ 2npL exp

(
− δ2

6228d4
0λ0,maxM2+2βψ̃2(T, L)

)
,

(B.11)
where (i) follows the definition of Φ(T, L) and (ii) follows the fact that λ0,max > 1.

Next, we bound P (Ā4). For any two real values z1, z2 and any positive integer k, we
have

(z1 + z2)k ≤ (|z1|+ |z2|)k = 2k
(

1

2
|z1|+

1

2
|z2|
)k
≤ 2k−1 (|z1|+ |z2|) ,

where the last line follows from Jensen’s inequality. Since E[‖gij‖2] = λj0, i = 1, . . . , n,
j = 1, 2 . . . , p, then, by Jensen’s inequality and Lemma 41, for any k ≥ 2, we have

E
[(
‖gij‖2 − λj0

)k] ≤ 2k−1
(
E
[
‖gij‖2k + λkj0

])
≤ 2k−1

(
(2λj0)kk! + λkj0

)
≤ (4λj0)kk! .

Thus,
n∑
i=1

E
[(
‖gij‖2 − λj0

)k] ≤ k!

2
n× (32λ2

j0)× (4λj0)k−2.

Then by Lemma 39, for any ε > 0, we have

P

(∣∣∣∣∣ 1n
n∑
i=1

‖gij‖2 − λj0

∣∣∣∣∣ > ε

)
≤ 2 exp

(
− nε2

64λ2
j0 + 8λj0ε

)
.

Finally,

P

(
1

n

n∑
i=1

‖gij‖2 > 2λ0,max

)
≤ P

(
1

n

n∑
i=1

‖gij‖2 > 2λj0

)

≤ P

(∣∣∣∣∣ 1n
n∑
i=1

‖gij‖2 − λj0

∣∣∣∣∣ > λj0

)
≤ 2 exp

(
− n

72

)
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and

P (Ā4) = P

(
1

n

n∑
i=1

‖gij‖2 > 2λ0,max, ∃j = 1, . . . , p

)
≤ 2p exp

(
− n

72

)
. (B.12)

Next, we bound P (Ā2). Let K̂g
jj(s, t) = 1

n

∑n
i=1 gij(s)gij(t) andKjj(s, t) = E[gij(s)gij(t)],

j ∈ V , and define
A′2 : ‖K̂g

jj −K
g
jj‖HS ≤ δ2 ∀j = 1, . . . , p.

Note that

‖K̂g
jj(s, t)−K

g
jj(s, t)‖HS

=

∥∥∥∥∥ 1

n

n∑
i=1

[ĝij(s)− gij(s) + gij(s)] [ĝij(t)− gij(t) + gij(t)]−Kg
jj(s, t)

∥∥∥∥∥
HS

≤ 1

n

n∑
i=1

‖ĝij − gij‖2 +
2

n

n∑
i=1

‖ĝij − gij‖ · ‖gij‖+

∥∥∥∥∥ 1

n

n∑
i=1

[
gij(s)gij(t)−Kg

jj(s, t)
]∥∥∥∥∥

HS

.

Let

A6 :

∥∥∥∥∥ 1

n

n∑
i=1

[
gij(s)gij(t)−Kg

jj(s, t)
]∥∥∥∥∥

HS

≤ 4λ0,maxδ1, ∀j = 1, . . . , p.

We show that A1 ∩A4 ∩A6 =⇒ A′2. By Jensen’s inequality, we have

1

n

n∑
i=1

‖gij‖ ≤

√√√√ 1

n

n∑
i=1

‖gij‖2.

On the event A4, we have (1/n)
∑n

i=1 ‖gij‖ ≤
√

2λ0,max for any j = 1, . . . , p. When A1, A4,
and A6 hold simultaneously, we have

‖K̂g
jj(s, t)−K

g
jj(s, t)‖HS ≤ δ2

1 + 2
√

2λ0,maxδ1 + 4λ0,maxδ1 ≤ 9λ0,maxδ1,

which is A2. Therefore, A1 ∩A4 ∩A6 =⇒ A′2, which implies that Ā′2 =⇒ Ā1 ∪ Ā4 ∪ Ā6 and
P (Ā′2) ≤ P (Ā1) + P (Ā4) + P (Ā6). We upper bound P (Ā6) next.

By Lemma 42, for any j = 1, . . . , p, we have

P

(∥∥∥∥∥ 1

n

n∑
i=1

[gij(s)gij(t)−Kg(s, t)]

∥∥∥∥∥
HS

> 4λ0,maxδ1

)
≤ 2 exp

(
−nδ

2
1

6

)
.

Thus,

P (Ā6) ≤ 2p exp

(
−nδ

2
1

6

)
= 2p exp

(
− 1

373248d4
0λ

2
0,max

× n δ2

M2+2β

)
. (B.13)

Combining (B.11), (B.12), and (B.13), we have

57



Zhao, Wang, and Kolar

P (Ā′2) ≤ 4pM exp

(
− 1

1728
√

6λ0,maxd2
0

· δ

M1+β
· Φ(T, L)

)
+ 2p exp

(
− n

72

)
+ 2p exp

(
− 1

373248d4
0λ

2
0,max

× n δ2

M2+2β

)
.

Finally, P (Ā2) ≤ P (Ā′X,2)+P (Ā′Y,2), where A′X,2 and A′Y,2 are defined similarly to A′2 with
g being X and Y , since

‖K̂jj(s, t)−Kjj(s, t)‖HS ≤ ‖K̂X
j j(s, t)−KX

jj (s, t)‖HS + ‖K̂Y
j j(s, t)−KY

jj(s, t)‖HS.

Thus, we have

P (Ā2) ≤ 8pM exp

(
− 1

1728
√

6λ0,maxd2
0

· δ

M1+β
· Φ(T, L)

)
+ 4p exp

(
− n

72

)
+ 4p exp

(
− 1

373248d4
0λ

2
0,max

× n δ2

M2+2β

)
.

For P (Ā3), note that
∑n

i=1 ξ
2
ijk ∼ χ2

n for any j = 1, . . . , p and k = 1, . . . ,M . By Pages
28-29 of Boucheron et al. (2013), for any ε > 0, we have

P

(
1

n

n∑
i=1

ξ2
ijk − 1 > ε

)
≤ exp

(
− nε2

4 + 4ε

)
.

Letting ε = 1/2, we have

P (Ā3) ≤ pM exp
(
− n

24

)
.

Finally, we upper bound P (Ā5). Note that

E
[
(aijkailm − E(aijkailm))k

]
= λ

k/2
jk λ

k/2
lm E

[
(ξijkξilm − E(ξijkξilm))k

]
≤ dk0E

[
(ξijkξilm − E(ξijkξilm))k

]
,

and
E
[
(ξijkξilm − E(ξijkξilm))k

]
≤ 2k−1

(
E
[
|ξijkξilm|k

]
+ |E(ξijkξilm)|k

)
≤ 2k−1

(
E[ξ2k

ij1] + 1
)

≤ 2k−1(2kk! + 1)

≤ 4kk! .

Thus
E
[
(aijkailm − E(aijkailm))k

]
≤ (4d0)kk!

and Lemma 39 tells us that for any 1 ≤ j, l ≤ p and 1 ≤ k,m ≤M , we have

P

(∣∣∣∣∣ 1n
n∑
i=1

aijkailm − σjl,km

∣∣∣∣∣ > δ

16

)
≤ 2 exp

(
− nδ2

16512d2
0

)
.
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Therefore,

P
(
Ā5

)
≤ 2(pM)2 exp

(
− nδ2

16512d2
0

)
.

Let C1 = 12, C2 = 1/(1728
√

6λ0,max), C3 = 9, C4 = 1/(373248d4
0λ

2
0,max), C5 = 2, and

C6 = 1/(6228d4
0λ0,max). The final result follows by combining the upper bounds on P (Āw),

w = 1, . . . , 5.
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C. Additional Results

In this section, we establish additional results that are needed to prove the main results.

C.1 Theorem 14 and Its Proof

We give a non-asymptotic error bound on the function estimated using the basis expansion,
which is subsequently used to establish Theorem 13.

For a random function g(t) ∈ H, where t ∈ T , T is a closed interval of the real line,
and H is a separable Hilbert space, we have noisy discrete observations at time points
t1, t2, . . . , tT generated from the model below:

hk = g(tk) + εk,

where εk
i.i.d.∼ N(0, σ2

0), k = 1, . . . , T . Let b(t) = (b1(t), b2(t), . . . , bL(t))> be the vector of
the basis functions. Let ĝ(t) = β̂>b(t) be the estimator of g(t), where β̂ ∈ RL is obtained
by minimizing the least square loss:

β̂ = arg min
β∈RL

T∑
k=1

(
β>b(tk)− hk

)2
.

We define the design matrix B as

B =

b1(t1) · · · bL(t1)
...

. . .
...

b1(tT ) · · · bL(tT )

 ∈ RT×L,

so that

β̂ =
(
B>B

)−1
B>h,

where h = (h1, h2, . . . , hT )> ∈ RT .
We assume that g(t) =

∑∞
m=1 β

∗
mbm(t), and we can decompose g(t) as g = gq + g⊥,

where gq ∈ Span(b) and g⊥ ∈ Span(b)⊥. Let λ0 := E[‖g‖2] and λ⊥0 := E[‖g⊥‖2]. It is then
easy to check that λ0 =

∑∞
m=1 E[(β∗m)2] and λ⊥0 =

∑∞
m>L E[(β∗m)2]. We assume that the

basis functions {bl(t)}∞l=1 make up a complete orthonormal system (CONS) of H, that is,

Span
(
{bl}∞l=1

)
= H (see Definition 2.4.11 of Hsing and Eubank (2015)), and have continuous

derivative functions with

D0,b := sup
l≥1

sup
t∈T
|bl(t)| <∞, D1,b(l) := sup

t∈T
|b′l(t)| <∞, D1,b,L := max

1≤l≤L
D1,b(l).

We further assume that the observation time points {tk : 1 ≤ k ≤ T} satisfy

max
1≤k≤T+1

∣∣∣∣ tk − t(k−1)

|T |
− 1

T

∣∣∣∣ ≤ ζ0

T 2
,

where t0 and t(T+1) are endpoints of T and ζ0 is a positive constant. We further assume
that

∑∞
m=1 E

[
(β∗m)2

]
D2

1,b(m) <∞, and we define

ψ4(L) =
∑
m>L

E
[
(β∗m)2

]
D2

1,b(m).
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Let

ψ1(T, L) =
σ0L√

λmin (B>B)
, ψ3(L) = λ⊥0 /λ0,

and

ψ2(T, L) =
1

(λBmin)2

(
18λ0

[
D2

0,b(ζ0 + 1)4|T |2D2
1,b,L + 2D4

0,b(2ζ0 + 1)2
]
L2ψ3(L)

+D2
0,b(ζ0 + 1)4|T |2L2ψ4(L)

)
,

Then we have the following theorem.

Theorem 14 For any δ > 0, we have

P (‖g − ĝ‖ > δ) ≤ 2 exp

(
− δ2

72ψ2
1(T, L) + 6

√
2ψ1(T, L)δ

)
+ L exp

(
− δ2

ψ2(T, L)

)

+ 2 exp

(
− δ2

72λ0ψ3(L) + 6
√

2λ0

√
ψ3(L)δ

)
.

Proof For a fixed g, since Span
(
{bl}∞l=1

)
= H, we can assume that g(t) =

∑∞
l=1 β

∗
l bl(t)

where β∗l = 〈g, bl〉 =
∫
T g(t)bl(t)dt. Let β∗ = (β∗1 , · · · , β∗L)> ∈ RL. We have gq(t) =

(β∗)>b(t) =
∑L

l=1 β
∗
l bl(t) and g⊥(t) =

∑
l>L β

∗
l bl(t). Thus, we have

hk = g(tk) + εk = (β∗)>b(tk) + g⊥(tk) + εk.

Let h⊥ =
(
g⊥(t1), g⊥(t2), . . . , g⊥(tT )

)>
and ε = (ε1, ε2, . . . , εT )>, so that h = Bβ∗+ h⊥+ ε.

Then, E(β̂) = β∗ +
(
B>B

)−1
B>h⊥ and

ĝ(t)− g(t) = ĝ(t)− gq(t)− g⊥(t) = ĝ(t)− (β∗)>b(t)− g⊥(t)

=
(
β̂ − E(β̂)

)>
b(t) +

((
B>B

)−1
B>h⊥

)>
b(t)− g⊥(t).

By Lemma 36, we then have

‖ĝ − g‖ ≤
∥∥∥∥(β̂ − E(β̂)

)>
b(t)

∥∥∥∥+

∥∥∥∥∥
((

B>B
)−1

B>h⊥
)>

b(t)

∥∥∥∥∥+
∥∥∥g⊥∥∥∥

≤
∣∣∣β̂ − E(β̂)

∣∣∣
2
× ‖b‖L2,2 +

∣∣∣∣(B>B)−1
B>h⊥

∣∣∣∣
2

× ‖b‖L2,2 +
∥∥∥g⊥∥∥∥

≤
∣∣∣β̂ − E(β̂)

∣∣∣
2
× ‖b‖L2,2 +

1

λmin(B>B)
×
∣∣∣B>h⊥∣∣∣

2
× ‖b‖L2,2 +

∥∥∥g⊥∥∥∥ .
Let

J1 =
∣∣∣β̂ − E(β̂)

∣∣∣
2
× ‖b‖L2,2 , J2 =

1

λmin(B>B)
× |B>h⊥|2 × ‖b‖L2,2, J3 = ‖g⊥‖,
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where |T | denotes the length of the interval, then ‖ĝ − g‖ ≤ J1 + J2 + J3. This equation
holds with probability one, since it holds for any g ∈ H. We then bound J1, J2, and J3

individually.
We bound J1. Recall that ‖b‖L2,2 =

√
L and ψ1(T, L) = σ0‖b‖L2,2

√
L/
√
λmin (B>B).

Treating g as fixed, we have β̂ ∼ NL

(
E(β̂), σ2

0

(
B>B

)−1
)

and

1

σ0

(
B>B

)1/2 (
β̂ − E(β̂)

)
∼ NL (0, IL) .

Since

J1 =
∣∣∣β̂ − E(β̂)

∣∣∣
2
× ‖b‖L2,2 =

∣∣∣∣(B>B)−1/2 (
B>B

)1/2 (
β̂ − E(β̂)

)∣∣∣∣
2

× ‖b‖L2,2

≤
σ0 ‖b‖L2,2√
λmin (B>B)

∣∣∣∣ 1

σ0

(
B>B

)1/2 (
β̂ − E(β̂)

)∣∣∣∣
2

,

we have

P (J1 > δ) ≤ P

(∣∣∣∣ 1

σ0

(
B>B

)1/2 (
β̂ − E(β̂)

)∣∣∣∣
2

>
δ

σ0‖b‖L2,2/
√
λmin (B>B)

)
(i)

≤ 2 exp

(
− δ2

8ψ2
1(T, L) + 2

√
2ψ1(T, L)δ

)
,

(C.1)

where (i) follows Lemma 38. The bound does not depend on g, so it holds when g is also
random.

Next, we bound J2. Let (B>h⊥)l denote the l-th element of the vector B>h⊥. Then

(B>h⊥)l =
T∑
k=1

bl(tk)g
⊥(tk) =

∑
m>L

β∗m

T∑
k=1

bl(tk)bm(tk)

and (B>h⊥)l follows a mean zero Gaussian distribution, since g is a Gaussian random
function with mean zero. Furthermore,

E
[
(B>h⊥)2

l

]
=
∑
m>L

E
[
β∗2m
]( T∑

k=1

bl(tk)bm(tk)

)2

(C.2)

From the definition of D0,b, D1,b(·), for any l < m, we have

sup
t∈T

(bl(t)bm(t)) ≤ D2
0,b,

sup
t∈T

(bl(t)bm(t))′ = sup
t∈T
{b′l(t)bm(t) + bl(t)b

′
m(t)} ≤ D0,b(D1,b(l) +D1,b(m)).

Note that
∫
T bl(t)bm(t)dt = 0, l < m. Then, by Lemma 40, for all 1 ≤ l < m <∞, we have∣∣∣∣∣ 1

T

T∑
k=1

bl(tk)bm(tk)

∣∣∣∣∣ =

∣∣∣∣∣ 1

T

T∑
k=1

bl(tk)bm(tk)−
1

|T |

∫
T
bl(t)bm(t)dt

∣∣∣∣∣
≤
D0,b(D1,b(l) +D1,b(m))(ζ0 + 1)2|T |/2 +D2

0,b(2ζ0 + 1)

T
,
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which implies that∣∣∣∣∣
T∑
k=1

bl(tk)bm(tk)

∣∣∣∣∣ ≤ 1

2
D0,b(ζ0 + 1)2|T |(D1,b(l) +D1,b(m)) +D2

0,b(2ζ0 + 1).

Then,(
T∑
k=1

bl(tk)bm(tk)

)2

≤
(

1

2
D0,b(ζ0 + 1)2|T |(D1,b(l) +D1,b(m)) +D2

0,b(2ζ0 + 1)

)2

≤ 1

2
D2

0,b(ζ0 + 1)4|T |2(D1,b(l) +D1,b(m))2 + 2D4
0,b(2ζ0 + 1)2

≤ D2
0,b(ζ0 + 1)4|T |2(D2

1,b(l) +D2
1,b(m)) + 2D4

0,b(2ζ0 + 1)2

and, by (C.2),

E
[
(B>h⊥)2

l

]
≤
[
D2

0,b(ζ0 + 1)4|T |2D2
1,b(l) + 2D4

0,b(2ζ0 + 1)2
] ∑
m>L

E
[
β∗2m
]

+D2
0,b(ζ0 + 1)4|T |2

∑
m>L

E
[
β∗2m
]
D2

1,b(m)

≤
[
D2

0,b(ζ0 + 1)4|T |2D2
1,b(l) + 2D4

0,b(2ζ0 + 1)2
]
λ⊥0 +D2

0,b(ζ0 + 1)4|T |2ψ4(L)

≤
[
D2

0,b(ζ0 + 1)4|T |2D2
1,b,L + 2D4

0,b(2ζ0 + 1)2
]
λ⊥0 +D2

0,b(ζ0 + 1)4|T |2ψ4(L)

= λ0

[
D2

0,b(ζ0 + 1)4|T |2D2
1,b,L + 2D4

0,b(2ζ0 + 1)2
]
ψ3(L)

+D2
0,b(ζ0 + 1)4|T |2ψ4(L).

Using a tail bound for Gaussian random variable (e.g., Section 2.1.2 of Wainwright (2019)),
we have

P (J2 > δ) ≤ P
(
|B>h⊥|2 >

λBminδ√
L

)
≤ P

(
max

1≤l≤L
(B>h⊥)l >

λBminδ

L

)
≤ L exp

(
− 9δ2

ψ2(T, L)

)
.

(C.3)

Finally, we bound J3. By Lemma 41 and the definition of ψ3(L), we have E
[
‖g⊥‖2k

]
≤

(2λ0ψ3(L))kk!. By Jensen’s inequality, we have

E
[
‖g⊥‖k

]
= E

[√
‖g⊥‖2k

]
≤
√
E [‖g⊥‖2k] ≤

(√
2λ0ψ3(L)

)k
k!.

Thus, by Lemma 39, we have

P (J3 > δ) = P
(
‖g⊥‖ > δ

)
≤ 2 exp

(
− δ2

8λ0ψ3(L) + 2
√

2λ0

√
ψ3(L)δ

)
. (C.4)

The final result follows from (C.1), (C.3), and (C.4).
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D. Lemmas and Their Proofs

In this section, we introduce some useful lemmas along with their proofs.

Lemma 15 Let σmax = max{|ΣX,M |∞, |ΣY,M |∞}. Suppose that

|SX,M − ΣX,M |∞ ≤ δ, |SY,M − ΣY,M |∞ ≤ δ, (D.1)

for some δ ≥ 0. Then

|(SY,M ⊗ SX,M )− (ΣY,M ⊗ ΣX,M )|∞ ≤ δ2 + 2δσmax,

and

| vec (SY,M − SX,M )− vec (ΣY,M − ΣX,M )|∞ ≤ 2δ. (D.2)

Proof Note that for any (j, l), (j′, l′) ∈ V 2 and 1 ≤ k, k′,m,m′ ≤M , by (D.1), we have∣∣∣SX,Mjl,kmS
Y,M
j′l′,k′m′ − ΣX,M

jl,kmΣY,M
j′l′,k′m′

∣∣∣
≤
∣∣∣SX,Mjl,km − ΣX,M

jl,km

∣∣∣ · ∣∣∣SY,Mj′l′,k′m′ − ΣY,M
j′l′,k′m′

∣∣∣+
∣∣∣ΣX,M

jl,km

∣∣∣ · ∣∣∣SY,Mj′l′,k′m′ − ΣY,M
j′l′,k′m′

∣∣∣
+
∣∣∣ΣY,M

j′l′,k′m′

∣∣∣ · ∣∣∣SX,Mjl,km − ΣX,M
jl,km

∣∣∣
≤
∣∣SX,M − ΣX,M

∣∣
∞
∣∣SY,M − ΣY,M

∣∣
∞ + σmax

∣∣SY,M − ΣY,M
∣∣
∞ + σmax

∣∣SX,M − ΣX,M
∣∣
∞

≤ δ2 + 2δσmax.

For (D.2), note that∣∣vec (SY,M − SX,M )− vec (ΣY,M − ΣX,M )
∣∣
∞ =

∣∣(SX,M − ΣX,M )− (SY,M − ΣY,M )
∣∣
∞

≤ |SX,M − ΣX,M |∞ + |SY,M − ΣY,M |∞
≤ 2δ.

This completes the proof.

Lemma 16 Given Z(1), Z(2), A(1), A(2) ∈ RM×M and λ > 0, let {Ẑ(1), Ẑ(2)} denote the
solution of

arg min
{Z(1),Z(2)}

1

2

2∑
q=1

‖Z(q) −A(q)‖2F + λ‖Z(1) − Z(2)‖F. (D.3)

If ‖A(1) −A(2)‖F ≤ 2λ, then

Ẑ(1) = Ẑ(2) =
1

2

(
A(1) +A(2)

)
. (D.4)

If ‖A(1) −A(2)‖F > 2λ, then

Ẑ(1) = A(1) − λ

‖A(1) −A(2)‖F

(
A(1) −A(2)

)
,

Ẑ(2) = A(2) +
λ

‖A(1) −A(2)‖F

(
A(1) −A(2)

)
.

(D.5)
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Proof The subdifferential of the objective function in (D.3) is

G(1)(Z(1), Z(2)) := Z(1) −A(1) + λT (Z(1), Z(2)),

G(2)(Z(1), Z(2)) := Z(2) −A(2) − λT (Z(1), Z(2)),

where

T (Z(1), Z(2)) =

{
Z(1)−Z(2)

‖Z(1)−Z(2)‖F
if Z(1) 6= Z(2){

T ∈ RM×M : ‖T‖F ≤ 1
}

if Z(1) = Z(2)
.

The optimality condition is 0 ∈ G(q)(Z(1), Z(2)).
Claim We have Ẑ(1) 6= Ẑ(2) if and only if ‖A(1) −A(2)‖F > 2λ.
We first prove the necessity, that is, when Ẑ(1) 6= Ẑ(2), then ‖A(1) − A(2)‖F > 2λ. By

the optimality condition, we have

Ẑ(1) − Ẑ(2) −
(
A(1) −A(2)

)
− 2λ

Ẑ(1) − Ẑ(2)

‖Ẑ(1) − Ẑ(2)‖F
= 0,

which implies that
‖A(1) −A(2)‖F = 2λ+ ‖Ẑ(1) − Ẑ(2)‖F > 2λ.

We then prove the sufficiency, that is, when ‖A(1) −A(2)‖F > 2λ, then Ẑ(1) 6= Ẑ(2). By the
optimality condition, we have Ẑ(1) + Ẑ(2) = A(1) +A(2). If Ẑ(1) = Ẑ(2), then Ẑ(1) = Ẑ(2) =
(A(1) +A(2))/2. Furthermore, ‖Ẑ(1) −A(1)‖F = ‖A(1) −A(2)‖F/2 = λ‖T (Ẑ(1), Ẑ(2))‖F ≤ λ,
which implies that ‖A(1) − A(2)‖F ≤ 2λ. This contradicts the assumption that ‖A(1) −
A(2)‖F > 2λ. Thus, we must have Ẑ(1) 6= Ẑ(2).

By proving the claim, we have already established (D.4). We now prove (D.5). When
‖A(1) −A(2)‖F > 2λ, according to the claim above, we must have Ẑ(1) 6= Ẑ(2). Then

Ẑ(1) −A(1) +
λ

‖Ẑ(1) − Ẑ(2)‖F

(
Ẑ(1) − Ẑ(2)

)
= 0,

Ẑ(2) −A(2) − λ

‖Ẑ(1) − Ẑ(2)‖F

(
Ẑ(1) − Ẑ(2)

)
= 0,

which implies that Ẑ(1) − Ẑ(2) = α ·
(
A(1) −A(2)

)
, where α is a constant. The result in

(D.5) follows by substituting the relationship back into the above display.

Lemma 17 Let | · |1,2 be defined as in (B.2), where G = {Gt}t=1,...,NG is a set of indices.

For any matrix A ∈ Rp2M2×p2M2
and θ ∈ Rp2M2

, we have |θ>Aθ| ≤M2|A|∞|θ|21,2.

Proof By direct calculation, we have

|θ>Aθ| ≤
∑
i

∑
j

|Aijθiθj | ≤ |A|∞

(∑
i

|θi|

)2

= |A|∞

NG∑
t=1

∑
k∈Gt

|θk|

2

= |A|∞

NG∑
t=1

|θGt |1

2

≤ |A|∞

NG∑
t=1

M |θGt |2

2

= M2|A|∞|θ|21,2,
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where we use that for any vector v ∈ Rn, |v|1 ≤
√
n|v|2.

Lemma 18 Suppose thatM is defined as in (B.1). For any θ ∈M, we have |θ|1,2 ≤
√
s|θ|2.

Furthermore, for Ψ(M) as defined in (B.4), we have Ψ(M) =
√
s.

Proof By the definitions of M and | · |1,2, we have

|θ|1,2 =
∑
t∈SG

|θGt |2 +
∑
t/∈SG

|θGt |2 =
∑
t∈SG

|θGt |2 ≤
√
s

∑
t∈SG

|θGt |22

 1
2

=
√
s|θ|2.

To show Ψ(M) =
√
s, it suffices to show that the upper bound above can be achieved. Se-

lect θ ∈ Rp2M2
so that |θGt |2 = c, ∀t ∈ SG , where c is some positive constant. This implies

that |θ|1,2 = sc and |θ|2 =
√
sc so that |θ|1,2 =

√
s|θ|2. Thus, Ψ(M) =

√
s.

Lemma 19 Let R(·) be the norm defined in (B.2). Its dual norm R∗(·), defined in (B.3),
is

R∗(v) = max
t=1,...,NG

|vGt |2.

Proof For any u satisfying |u|1,2 ≤ 1 and v ∈ Rp2M2
, we have

〈v, u〉 =

NG∑
t=1

〈vGt , uGt〉 ≤
NG∑
t=1

|vGt |2|uGt |2 ≤
(

max
t=1,2,··· ,NG

|vGt |2
) NG∑
t=1

|uGt |2

=

(
max

t=1,2,··· ,NG
|vGt |2

)
|u|1,2 ≤ max

t=1,2,··· ,NG
|vGt |2.

We show that this upper bound can be obtained. Let t∗ = arg maxt=1,2,··· ,NG |vGt | and set
u such that

uGt =

{
0 t 6= t∗
vGt∗
|vGt∗ |2

t = t∗
.

Then |u|1,2 = 1 and 〈v, u〉 = |vGt∗ |2 = maxt=1,...,NG |vGt |2.

Lemma 20 Given that A1-A5 hold, we have |I1| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof This follows directly from the assumption that A5 is true.

Lemma 21 Given that A1-A5 hold, we have |I2| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .
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Proof We have

|I2| =

∣∣∣∣∣〈 1n
n∑
i=1

aijk(ĝil − gil), φlm〉

∣∣∣∣∣ ≤
∥∥∥∥∥ 1

n

n∑
i=1

aijk(ĝil − gil)

∥∥∥∥∥
(i)

≤

√√√√ 1

n

n∑
i=1

a2
ijk

√√√√ 1

n

n∑
i=1

‖ĝil − gil‖2
(ii)

≤ δ1

√√√√ 1

n

n∑
i=1

a2
ijk = δ1λ

1/2
jk

√√√√ 1

n

n∑
i=1

ξ2
ijk

(iii)

≤
√

3

2
δ1λ

1/2
jk ≤

√
3

2

√
d1δ1k

−β/2 ≤
√

3

2

√
d1δ1,

where (i) follows Lemma 36, (ii) follows A1, (iii) follows A3. From the definition of d0, we
have |I2| ≤

√
3/2d0δ1. Since

δ1 = δ/
(

144d2
0M

1+β
√

3λ0,max

)
≤ δ/(8

√
6d0), (D.6)

we have √
3

2
d0δ1 ≤

√
3

2
d0 ·

δ

8
√

6d0

=
δ

16
. (D.7)

Thus, |I2| ≤ δ/16.

Lemma 22 Given that A1-A5 hold, we have |I3| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof We have

|I3| =

∣∣∣∣∣〈 1n
n∑
i=1

aijkgil, φ̂lm − φlm〉

∣∣∣∣∣ ≤ λ1/2
jk

∥∥∥∥∥ 1

n

n∑
i=1

ξijkgil

∥∥∥∥∥∥∥∥φ̂lm − φlm∥∥∥
(i)

≤ λ
1/2
jk

(
1

n

n∑
i=1

ξ2
ijk

)1/2(
1

n

n∑
i=1

‖gil‖2
)1/2

‖φ̂lm − φlm‖

(ii)

≤ λ
1/2
jk

(
1

n

n∑
i=1

ξ2
ijk

)1/2(
1

n

n∑
i=1

‖gil‖2
)1/2

dlm‖K̂ll −Kll‖HS,

where (i) follows Lemma 36, and (ii) follows Lemma 37. Since λ
1/2
jk ≤

√
d1k
−β/2, dlm ≤

d2m
1+β, and A2-A4 hold, we have

|I3| ≤
√
d1d2k

−β/2m1+β

√
3

2

√
2λ0,maxδ2 ≤ d2

0M
1+β
√

3λ0,maxδ2.

By the definition of δ2, we have

d2
0M

1+β
√

3λ0,maxδ2 ≤ d2
0M

1+β
√

3λ0,max ×
δ

16d2
0M

1+β
√

3λ0,max

=
δ

16
. (D.8)

Thus, |I3| ≤ δ/16.
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Lemma 23 Given that A1-A5 hold, we have |I4| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof We have

|I4| ≤ λ1/2
jk

1

n
‖
n∑
i=1

ξijk (ĝil − gil)‖‖φ̂lm − φlm‖

(i)

≤ λ
1/2
jk

(
1

n

n∑
i=1

ξ2
ijk

)1/2(
1

n

n∑
i=1

‖ĝil − gil‖2
)1/2

‖φ̂lm − φlm‖

(ii)

≤ λ
1/2
jk dlm

(
1

n

n∑
i=1

ξ2
ijk

)1/2(
1

n

n∑
i=1

‖ĝil − gil‖2
)1/2

‖K̂ll −Kll‖HS,

where (i) follows Lemma 36, and (ii) follows Lemma 37. Since λ
1/2
jk ≤

√
d1k
−β/2, dlm ≤

d2m
1+β, and A1-A3 hold, we have

|I4| ≤
√

3

2

√
d1d2k

−β/2m1+βδ1δ2 ≤
√

3

2
d2

0M
1+βδ1δ2

(iii)

≤ δ

16
×

√
3
2d

2
0M

1+βδ1δ2√
3
2d0δ1

≤ δ

16
× δ

16d0

√
3λ0,max

≤ δ

16
,

where (iii) follows (D.7).

Lemma 24 Given that A1-A5 hold, we have |I5| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof This proof is similar to the proof of Lemma 21, thus is omitted.

Lemma 25 Given that A1-A5 hold, we have |I6| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof We have

|I6| ≤

√√√√ 1

n

n∑
i=1

|〈ĝij − gij , φjk〉|2 ·

√√√√ 1

n

n∑
i=1

|〈ĝil − gil, φlm〉|2

≤

√√√√ 1

n

n∑
i=1

‖ĝij − gij‖2 ·

√√√√ 1

n

n∑
i=1

‖ĝil − gil‖2.

By the assumption that A1 holds, we have |I6| ≤ δ2
1 . By (D.6),(D.7) and Lemma 21, we

have

δ2
1 ≤

δ

16
× δ2

1√
3
2d0δ1

≤ δ

16
, (D.9)

which completes the proof.
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Lemma 26 Given that A1-A5 hold, we have |I7| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof We have

|I7| ≤

√√√√ 1

n

n∑
i=1

|〈ĝij − gij , φjk〉|2 ·

√√√√ 1

n

n∑
i=1

|〈gil, φ̂lm − φlm〉|2

≤

√√√√ 1

n

n∑
i=1

‖ĝij − gij‖2 ·

√√√√ 1

n

n∑
i=1

‖gil‖2‖φ̂lm − φlm‖2

(i)

≤ δ1‖φ̂lm − φlm‖ ·

√√√√ 1

n

n∑
i=1

‖gil‖2
(ii)

≤ δ1

√
2λ0,max · ‖φ̂lm − φlm‖

(iii)

≤ δ1

√
2λ0,maxdlm‖K̂ll −Kll‖HS

(iv)

≤ δ1δ2

√
2λ0,maxdlm ≤ d0

√
2λ0,maxM

1+βδ1δ2,

where (i) follows since A1 holds, (ii) follows since A4 holds, (iii) follows from Lemma 37,
and (iv) follows since A2 holds. By (D.6) and (D.8), we have

|I7| ≤
δ

16
×
d0

√
2λ0,maxM

1+βδ1δ2

d2
0M

1+β
√

3λ0,maxδ2

≤ δ

16
×
√

2

3
× δ

8
√

6d2
0

≤ δ

16
,

which completes the proof.

Lemma 27 Given that A1-A5 hold, we have |I8| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof We have

|I8| ≤

√√√√ 1

n

n∑
i=1

|〈ĝij − gij , φjk〉|2 ·

√√√√ 1

n

n∑
i=1

|〈ĝil − gil, φ̂lm − φlm〉|2

≤

√√√√ 1

n

n∑
i=1

‖ĝij − gij‖2 ·

√√√√ 1

n

n∑
i=1

‖ĝil − gil‖2‖φ̂lm − φlm‖2

(i)

≤ δ2
1‖φ̂lm − φlm‖

(ii)

≤ δ2
1dlm‖K̂ll −Kll‖HS ≤ δ2

1d2m
1+β‖K̂ll −Kll‖HS

≤ δ2
1d0M

1+β‖K̂ll −Kll‖HS

(iii)

≤ d0M
1+βδ2

1δ2,

where (i) follows since A1 holds, (ii) follows from Lemma 37, and (iii) follows since A2

holds. By (D.9), we have

|I8| ≤
δ

16
× d0M

1+βδ2
1δ2

δ2
1

≤ δ

16
,

which completes the proof.
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Lemma 28 Given that A1-A5 hold, we have |I9| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof This proof is similar to the proof of Lemma 22, and is therefore omitted.

Lemma 29 Given that A1-A5 hold, we have |I10| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof This proof is similar to the proof of Lemma 26, and is therefore omitted.

Lemma 30 Given that A1-A5 hold, we have |I11| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof We have

|I11| ≤

√√√√ 1

n

n∑
i=1

|〈gij , φ̂jk − φjk〉|2 ·

√√√√ 1

n

n∑
i=1

|〈gil, φ̂lm − φlm〉|2

≤

√√√√ 1

n

n∑
i=1

‖gij‖2 ·

√√√√ 1

n

n∑
i=1

‖gil‖2 · ‖φ̂jk − φjk‖ · ‖φ̂lm − φlm‖

(i)

≤ 2λ0,max‖φ̂jk − φjk‖‖φ̂lm − φlm‖
(ii)

≤ 2λ0,maxδ
2
2djkdlm ≤ 2λ0,maxδ

2
2d

2
2k

1+βm1+β,

where (i) follows since A4 holds and (ii) follows from Lemma 37. Then, we have

|I11| ≤ 2d2
0λ0,maxM

2+2βδ2
2 .

By (D.8), we have

2d2
0λ0,maxM

2+2βδ2
2 ≤

δ

16
× 2d2

0λ0,maxM
2+2βδ2

2

d2
0M

1+β
√

3λ0,maxδ2

≤ δ

16
, (D.10)

which completes the proof.

Lemma 31 Given that A1-A5 hold, we have |I12| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof We have

|I12| ≤

√√√√ 1

n

n∑
i=1

|〈gij , φ̂jk − φjk〉|2 ·

√√√√ 1

n

n∑
i=1

|〈ĝil − gil, φ̂lm − φlm〉|2

≤

√√√√ 1

n

n∑
i=1

‖gij‖2 ·

√√√√ 1

n

n∑
i=1

‖ĝil − gil‖2 · ‖φ̂jk − φjk‖ · ‖φ̂lm − φlm‖

(i)

≤
√

2λ0,maxδ1δ
2
2djkdlm ≤ d2

2

√
2λ0,maxk

1+βm1+βδ1δ
2
2 ,
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where (i) follows since A1-A3 hold and Lemma 37. Then, we have

|I12| ≤ d2
0

√
2λ0,maxM

2+2βδ1δ
2
2 .

By (D.6) and (D.10), we have

d2
0

√
2λ0,maxM

2+2βδ1δ
2
2 ≤

δ

16
×
d2

0

√
2λ0,maxM

2+2βδ1δ
2
2

2d2
0λ0,maxM2+2βδ2

2

≤ δ

16
, (D.11)

which completes the proof.

Lemma 32 Given that A1-A5 hold, we have |I13| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof This proof is similar to the proof of Lemma 23, and is therefore omitted.

Lemma 33 Given that A1-A5 hold, we have |I14| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof This proof is similar to the proof of Lemma 27, and is therefore omitted.

Lemma 34 Given that A1-A5 hold, we have |I15| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤
M .

Proof This proof is similar to the proof of Lemma 21, thus is omitted.

Lemma 35 Given that A1-A5 hold, we have |I16| ≤ δ/16 for all 1 ≤ j, l ≤ p, 1 ≤ k,m ≤M .

Proof We have

|I16| ≤

√√√√ 1

n

n∑
i=1

‖ĝij − gij‖2 ·

√√√√ 1

n

n∑
i=1

‖ĝil − gil‖2 · ‖φ̂jk − φjk‖ · ‖φ̂lm − φlm‖

(i)

≤ δ2
1djkdlmδ

2
2 ≤ d2

2k
1+βm1+βδ2

1δ
2
2 ≤ d2

0M
2+2βδ2

1δ
2
2 ,

where (i) follows since A1 and A2 hold, and Lemma 37. Thus, by (D.7) and (D.11), we have

|I16| ≤
δ

16
× d2

0M
2+2βδ2

1δ
2
2

d2
0

√
2λ0,maxM2+2βδ1δ2

2

≤ δ

16
,

which completes the proof.
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Lemma 36 Suppose f1, f2, . . . , fn ∈ H and v1, v2, . . . , vn ∈ R. Then∥∥∥∥∥
n∑
i=1

vifi

∥∥∥∥∥ ≤
√√√√ n∑

i=1

v2
i ·

√√√√ n∑
i=1

‖fi‖2.

Proof Note that∥∥∥∥∥
n∑
i=1

vifi

∥∥∥∥∥
2

=

∫ ( n∑
i=1

vifi(t)

)2

dt

(i)

≤
∫ ( n∑

i=1

v2
i

)(
n∑
i=1

f2
i (t)

)
dt =

(
n∑
i=1

v2
i

)(
n∑
i=1

‖fi‖2
)
,

where (i) follows the Cauchy-Schwarz inequality. This directly implies the result.

Lemma 37 (Lemma 4.3 of Bosq (2000)) Suppose that Assumption 3 holds. Denote

φ̃jk = sgn
(
〈φ̂jk, φjk〉

)
φjk, where sgn(t) = 1 if t ≥ 0 and sgn(t) = −1 if t < 0. Then

‖φ̂jk − φ̃jk‖ ≤ djk‖K̂jj −Kjj‖HS,

where dj1 = 2
√

2(λj1 − λj2)−1 and djk = 2
√

2 max{(λj(k−1) − λjk)−1, (λjk − λj(k+1))
−1},

k ≥ 2.

Lemma 38 Suppose z ∼ NL (0, IL). Then

P (‖z‖2 > δ) ≤ 2 exp

(
− δ2

8L+ 2
√

2Lδ

)
, δ > 0.

Proof Since

E
[
‖z‖2k2

]
=

Γ(L2 + k)

Γ(L2 )
× 2k ≤ k!(2L)k,

we have

E
[
‖z‖k2

]
≤
√
E
[
‖z‖2k2

]
≤
√
k!
(√

2L
)k
≤ k!

2
· 4L · (

√
2L)k−2

for k ≥ 2. The result follows from Lemma 39.

Lemma 39 (Theorem 2.5 (2) of Bosq (2000)) Let Z1, Z2, . . . , Zn be independent ran-
dom variables in a separable Hilbert space with norm ‖·‖. If E[Zi] = 0, i = 1, . . . , n, and

n∑
i=1

E
[
‖Zi‖k

]
≤ k!

2
nL1L

k−2
2 , k ≥ 2,

for two positive constants L1 and L2, then

P

(
‖
n∑
i=1

Zi‖ ≥ nδ

)
≤ 2 exp

(
− nδ2

2L1 + 2L2δ

)
, δ > 0.
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Lemma 40 Let f(t) be a function defined on T and suppose that f has a continuous
derivative. Let D0,f := supt∈T |f(t)| and D1,f := supt∈T |f ′(t)|. Assume that D0,f , D1,f <
∞. Let |T | denote the length of the interval T , and let u1 < u2 < · · · < uT ∈ T . We denote
the endpoints of T as u0 and uT+1. Assume that there is a positive constant ζ0 such that

max
1≤k≤T+1

∣∣∣∣uk − uk−1

|T |
− 1

T

∣∣∣∣ ≤ ζ0

T 2
. (D.12)

Let ζ1 = ζ0 + 1. Then∣∣∣∣∣ 1

T

T∑
k=1

f(uk)−
1

|T |

∫
T
f(t)dt

∣∣∣∣∣ ≤ D1,fζ
2
1 |T |/2 +D0,f (ζ1 + ζ0)

T
.

Proof Since∣∣∣∣∣ 1

T

T∑
k=1

f(uk)−
1

|T |

∫
T
f(t)dt

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

T

T∑
k=1

f(uk)−
1

|T |

T∑
k=1

f(uk)(uk − uk−1)

∣∣∣∣∣
+

∣∣∣∣∣ 1

|T |

T∑
k=1

f(uk)(uk − uk−1)− 1

|T |

∫
T
f(t)dt

∣∣∣∣∣ ,
we proceed to show that the first part is smaller than D0,fζ0/T and that the second part is
smaller than (D1,fζ

2
1 |T |/2 +D0,fζ1)/T . For the first part, we have∣∣∣∣∣ 1

T

T∑
k=1

f(uk)−
1

|T |

T∑
k=1

f(uk)(uk − uk−1)

∣∣∣∣∣ ≤
T∑
k=1

|f(uk)|
∣∣∣∣ 1

T
− uk − uk−1

|T |

∣∣∣∣
≤ max

1≤k≤T

∣∣∣∣uk − uk−1

|T |
− 1

T

∣∣∣∣ T∑
k=1

|f(uk)| ≤
ζ0

T 2
× T ×D0,f =

ζ0D0,f

T
.

To prove the second part, we first note that based on (D.12), we have

max
1≤k≤T+1

|uk − uk−1| ≤
ζ1|T |
T

.

Then, for any t ∈ (uk, uk+1), by Taylor’s expansion, we have f(t) = f(uk) + f ′(t̄)(t − uk),
where t̄ ∈ (uk, t), and |f(t)− f(uk)| = |f ′(t̄)|(t− uk) ≤ D1,f (t− uk). Therefore,∣∣∣∣∣ 1

|T |

T∑
k=1

f(uk)(uk − uk−1)− 1

|T |

∫
T
f(t)dt

∣∣∣∣∣
≤ 1

|T |

T∑
k=1

∫ uk

uk−1

|f(uk)− f(t)|dt+
1

|T |

∫ uT+1

uT

|f(t)|dt

≤ 1

|T |
× T ×D1,f ×

∫ uk

uk−1

(t− uk)dt+
1

|T |
×D0,f ×

ζ1|T |
T
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=
1

|T |
× T ×D1,f ×

(uk+1 − uk)2

2
+

1

|T |
×D0,f ×

ζ1|T |
T

≤ 1

|T |
× T ×

D1,f

2
×
(

max
1≤k≤T+1

|uk+1 − uk|
)2

+
1

|T |
×D0,f ×

ζ1|T |
T

≤ 1

|T |
× T ×

D1,f

2
×
(
ζ1|T |
T

)2

+
1

|T |
×D0,f ×

ζ1|T |
T

=
D1,fζ

2
1 |T |/2 +D0,fζ1

T
.

The result follows by combining the two bounds.

Lemma 41 Let g be a mean zero Gaussian random function in a Hilbert space H. We have
E
[
‖g‖2k

]
≤ (2λ0)k · k! where λ0 = E

[
‖g‖2

]
.

Proof Let {φm}m≥1 be the orthonormal eigenfunctions of g and am = 〈g, φm〉. Then am ∼
N(0, λm) and λ0 =

∑
m≥1 λm. Let ξm = λ

−1/2
m am. By the Karhunen-Loève theorem, we

have g =
∑∞

m=1 λ
1/2
m ξmφm. Thus, ‖g‖ =

(∑
m≥1 λmξ

2
m

)1/2
and ‖g‖2k =

(∑
m≥1 λmξ

2
m

)k
.

By Jensen’s inequality, we have

‖g‖2k =

∑
m≥1

λm

k

·

(∑
m≥1 λmξ

2
m∑

m≥1 λm

)k

≤

∑
m≥1

λm

k

·
∑

m≥1 λmξ
2k
m∑

m≥1 λm
=

∑
m≥1

λm

k−1

·

∑
m≥1

λmξ
2k
m

 .

Thus,

E
[
‖g‖2k

]
≤

∑
m≥1

λm

k−1

·

∑
m≥1

λmE
[
ξ2k
m

] =

∑
m≥1

λm

k

E
[
ξ2k

1

]

=

∑
m≥1

λm

k

· π−1/2 · 2k · Γ(k + 1/2) ≤

∑
m≥1

λm

k

· 2k · k! = (2λ0)kk!,

which completes the proof.

Lemma 42 For any δ > 0 and any j = 1, . . . , p, we have

P

(∥∥∥∥∥ 1

n

n∑
i=1

[gij(t)gij(s)−Kjj(s, t)]

∥∥∥∥∥
HS

> δ

)
≤ 2 exp

(
− nδ2

64λ2
0,max + 8λ0,maxδ

)
.
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Proof Since gij(t) =
∑

m≥1 λ
1/2
jm ξijmφjm(t) and ξijm ∼ N(0, 1), we have

gij(s)gij(t) =
∑

m,m′≥1

λ
1/2
jmλ

1/2
jm′ξijmξijm′φjm(s)φjm′(t),

and
Kjj(s, t) = E[gij(s)gij(t)] =

∑
m,m′≥1

λ
1/2
jmλ

1/2
jm′φjm(s)φjm′(t)1mm′ ,

where 1mm′ = 1(m = m′) = 1 if m = m′ and 0 if m 6= m′. Thus,

‖gij(s)gij(t)−Kjj(s, t)‖2HS =
∑

m,m′≥1

λjmλjm′(ξijmξijm′ − 1mm′)2,

and, for any k ≥ 2, we have

E
[
‖gij(s)gij(t)−Kjj(s, t)‖kHS

]
= E


 ∑
m,m′≥1

λjmλjm′(ξijmξijm′ − 1mm′)2


k/2


(i)

≤

 ∑
m,m′≥1

λjmλjm′

k/2−1 ∑
m,m′≥1

λjmλjm′E
[(
ξijmξijm′ − 1mm′

)k]
,

where (i) follows from Jensen’s inequality. Since

E
[(
ξijmξijm′ − 1mm′

)k] ≤ 2k−1
(
E
[
(ξijmξijm′)

k
]

+ 1
)

≤ 2k−1
(
E[ξ2k

ij1] + 1
)
≤ 2k−1(2kk! + 1) ≤ 4kk!,

we have E
[
‖gij(s)gij(t)−Kjj(s, t)‖kHS

]
≤ (4λj0)kk! ≤ (4λ0,max)kk!. The result follows from

Lemma 39.
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