
Journal of Machine Learning Research 23 (2022) 1-42 Submitted 3/20; Revised 2/22; Published 5/22

On the Efficiency of Entropic Regularized Algorithms for
Optimal Transport

Tianyi Lin darren lin@berkeley.edu
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720-1776, USA

Nhat Ho minhnhat@utexas.edu
Department of Statistics and Data Sciences
University of Texas, Austin
Texas, 78712-1823, USA

Michael I. Jordan jordan@cs.berkeley.edu

Department of Electrical Engineering and Computer Science and Department of Statistics

University of California, Berkeley

Berkeley, CA 94720-1776, USA

Editor: Suvrit Sra

Abstract

We present several new complexity results for the entropic regularized algorithms that ap-
proximately solve the optimal transport (OT) problem between two discrete probability
measures with at most n atoms. First, we improve the complexity bound of a greedy vari-
ant of Sinkhorn, known as Greenkhorn, from Õ(n2ε−3) to Õ(n2ε−2). Notably, our result
can match the best known complexity bound of Sinkhorn and help clarify why Greenkhorn
significantly outperforms Sinkhorn in practice in terms of row/column updates as observed
by Altschuler et al. (2017). Second, we propose a new algorithm, which we refer to as
APDAMD and which generalizes an adaptive primal-dual accelerated gradient descent
(APDAGD) algorithm (Dvurechensky et al., 2018) with a prespecified mirror mapping φ.

We prove that APDAMD achieves the complexity bound of Õ(n2
√
δε−1) in which δ > 0

stands for the regularity of φ. In addition, we show by a counterexample that the com-
plexity bound of Õ(min{n9/4ε−1, n2ε−2}) proved for APDAGD before is invalid and give a

refined complexity bound of Õ(n5/2ε−1). Further, we develop a deterministic accelerated
variant of Sinkhorn via appeal to estimated sequence and prove the complexity bound of
Õ(n7/3ε−4/3). As such, we see that accelerated variant of Sinkhorn outperforms Sinkhorn
and Greenkhorn in terms of 1/ε and APDAGD and accelerated alternating minimization
(AAM) (Guminov et al., 2021) in terms of n. Finally, we conduct the experiments on syn-
thetic and real data and the numerical results show the efficiency of Greenkhorn, APDAMD
and accelerated Sinkhorn in practice.
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1. Introduction

From its origins in the seminal works by Monge (1781) and Kantorovich (1942) respectively
in the eighteenth and twentieth centuries, and through to present day, the optimal transport
(OT) problem has played a determinative role in the theory of mathematics (Villani, 2009).
It also has found a wide range of applications in problem domains beyond the original setting
in logistics. In the current era, the strong and increasing linkage between optimization and
machine learning has brought new applications of OT to the fore; (see, e.g., Nguyen, 2013;
Cuturi and Doucet, 2014; Srivastava et al., 2015; Rolet et al., 2016; Peyré et al., 2016;
Nguyen, 2016; Carrière et al., 2017; Arjovsky et al., 2017; Gulrajani et al., 2017; Courty
et al., 2017; Srivastava et al., 2018; Dvurechenskii et al., 2018; Tolstikhin et al., 2018;
Sommerfeld et al., 2019; Lin et al., 2019b; Ho et al., 2019). In these data-driven applications,
the focus is on the probability distributions underlying the OT formulation; indeed, these
distributions are either empirical distributions which are obtained by placing unit masses
at data points, or are probability models of a putative underlying data-generating process.
The OT problem accordingly often has a direct inferential meaning — as the definition of
an estimator (Dudley, 1969; Fournier and Guillin, 2015; Weed and Bach, 2019; Lei, 2020),
the definition of a likelihood (Sommerfeld and Munk, 2018; Bernton et al., 2019; Blanchet
and Murthy, 2019), or as the robust variant of an estimator (Blanchet et al., 2019; Paty and
Cuturi, 2019; Balaji et al., 2020). The key challenge is computational (Peyré and Cuturi,
2019). Indeed, the underlying distributions generally involve high-dimensional data and
complex models in machine learning (ML) applications.

We study the OT problem in a discrete setting where we assume that the target and
source probability distributions each have at most n atoms. In this setting, the OT problem
can be solved exactly using linear programming (LP) solver based on specialized interior-
point methods (Pele and Werman, 2009; Lee and Sidford, 2014; van den Brand et al.,
2021), reflecting the LP formulation of the OT problem. In this context, van den Brand
et al. (2021) have provided a bunch of randomized interior-point algorithms with improved
runtimes for solving linear programs with two-sided constraints, leading to a new OT al-
gorithm based on the Laplacian system solvers that achieved the best known complexity
bounds of Õ(n2). However, it does not provide an effective solution to large-scale machine
learning problems in practice since efficient implementations of Laplacian approach are yet
unknown. Furthermore, many combinatorial techniques give exact algorithms for the OT
problem. Indeed, the Hungarian algorithm (Kuhn, 1955, 1956; Munkres, 1957) solves the
assignment problem in O(n3) time while there are several combinatorial algorithms that can
solve the OT problem exactly in Õ(n2.5) time (Gabow and Tarjan, 1991; Orlin and Ahuja,
1992). Combined with the scaling technique, the network simplex algorithms (Orlin et al.,
1993; Orlin, 1997) can be used to solve the OT problem exactly in Õ(n3) time and Lahn
et al. (2019) have recently developed a faster approximation algorithm for the OT problem
via appeal to the modification of the algorithm developed in Gabow and Tarjan (1991).
However, computing the OT problem exactly results in an output that is not differentiable
with respect to measures’ locations or weights (Bertsimas and Tsitsiklis, 1997). Moreover,
OT suffers from the curse of dimensionality (Dudley, 1969; Fournier and Guillin, 2015) and
is thus likely to be meaningless when used on samples from high-dimensional densities.
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An alternative to solve the OT problem is a class of approximation algorithms based on
the entropy regularization which has been investigated in optimization and transportation
science long before (Sinkhorn, 1974; Schneider and Zenios, 1990; Kalantari and Khachiyan,
1996; Knight, 2008; Kalantari et al., 2008; Chakrabarty and Khanna, 2018). It was Cuturi
(2013) that popularized the use of entropy regularization for OT in the machine learning
community and then initiated a productive line of research where an entropic regularization
was imposed to approximate the non-negative constraints in the original OT problem. The
resulting problem is referred to as entropic regularized OT and the corresponding class of
approximation algorithms are called entropic regularized algorithms. It is worth mentioning
that the entropic regularized OT has many favorable properties that the OT does not enjoy,
motivating us to study the computational efficiency of entropic regularized algorithms in
this paper. More specifically, from a statistical point of view, the entropic regularized OT
enjoys significantly better sample complexity that is polynomial in the dimension (Genevay
et al., 2019; Mena and Niles-Weed, 2019; Chizat et al., 2020), demonstrating that adding an
entropy regularization will reduce the curse of dimensionality. Even from a computational
point of view, such regularization in OT leads to Sinkhorn which attains a first near-linear
time guarantee for the OT problem (Cuturi, 2013; Altschuler et al., 2017; Dvurechensky
et al., 2018), and also makes the problem differentiable with regards to distributions (Feydy
et al., 2019); hence, the entropic regularized algorithms are more easily applicable to deep
learning applications (Courty et al., 2017; Cuturi et al., 2019; Balaji et al., 2020) as opposed
to combinatorial algorithms. This point was highlighted in Dong et al. (2020) and further
necessitated the development of faster entropic regularized algorithms. In this regard, the
greedy variant of Sinkhorn – Greenkhorn – was proposed and shown to outperform Sinkhorn
empirically (Altschuler et al., 2017). However, a sizable gap exists here since the best known
complexity bound of Õ(n2ε−3) for Greenkhorn (Altschuler et al., 2017) is worse than that
of Õ(n2ε−2) for Sinkhorn (Dvurechensky et al., 2018).

Further progress has been made by adapting first-order optimization algorithms for the
OT problem (Cuturi and Peyré, 2016; Genevay et al., 2016; Blondel et al., 2018; Dvurechen-
sky et al., 2018; Altschuler et al., 2019; Guo et al., 2020; Guminov et al., 2021). Among
these approaches, two of representatives are an adaptive primal-dual accelerated gradient
descent (APDAGD) algorithm (Dvurechensky et al., 2018) with the claimed complexity
bound of Õ(min{n9/4ε−1, n2ε−2}) and an accelerated alternating minimization (AAM) al-
gorithm (Guminov et al., 2021) with the complexity bound of Õ(n5/2ε−1). Moreover, there
are several second-order optimization algorithms (Allen-Zhu et al., 2017; Cohen et al., 2017)
which are adapted for the OT problem (Blanchet et al., 2018; Quanrud, 2019) and guaran-
teed to achieve the improved complexity bound of Õ(n2ε−1). However, the aforementioned
second-order algorithms do not provide effective solutions to large-scale machine learning
problems due to the lack of efficient implementations in practice.

Contributions. Given the advantages of entropic regularization in OT, we focus in his
paper the computational efficiency of a class of entropic regularized algorithms for the OT
problem and our theoretical analysis lead to several improvements over the state-of-the-art
algorithms in the literature. We summarize the contributions as follows:

1. We improve the complexity bound of Greenkhorn from Õ(n2ε−3) to Õ(n2ε−2), which
matches the best existing bound of Sinkhorn. The proof techniques are new and differ-
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ent from that used in Dvurechensky et al. (2018) for analyzing Sinkhorn. In particular,
Greenkhorn only updates a single row or column at each iteration and quantifying
the per-iteration progress is more difficult than the measurement in Sinkhorn.

2. We propose an adaptive primal-dual accelerated mirror descent (APDAMD) algorithm
which generalizes APDAGD with a prespecified mirror mapping φ and prove that
APDAMD achieves the complexity bound of Õ(n2

√
δε−1) where δ > 0 refers to the

regularity of φ w.r.t. `∞ norm. We show by a counterexample that the complexity
bound of Õ(min{n9/4ε−1, n2ε−2}) proved for APDAGD (Dvurechensky et al., 2018)
is invalid and give a refined complexity bound of Õ(n5/2ε−1) which is worse than the
claimed bound in terms of n.

3. We propose a deterministic accelerated variant of Sinkhorn via appeal to an estimated
sequence and prove the complexity bound of Õ(n7/3ε−4/3). In particular, accelerated
Sinkhorn consists in an exact minimization for main iterates accompanied by another
sequence of iterates based on coordinate gradient updates and monotone search. Our
results show that accelerated Sinkhorn outperforms Sinkhorn and Greenkhorn in terms
of 1/ε and APDAGD and AAM in terms of n.

We note that a preliminary version with only the analysis for Greenkhorn and APDAMD
has been accepted by ICML (Lin et al., 2019a). After our conference paper was published,
some new algorithms were developed for solving the OT problem (Jambulapati et al., 2019;
Lahn et al., 2019). In particular, Jambulapati et al. (2019) developed a dual extrapolation
algorithm with the complexity bound Õ

(
n2ε−1

)
using an area-convex mapping (Sherman,

2017). Despite the theoretically sound complexity bound, the lack of simplicity and ease-of-
implementation make this algorithm less competitive with Sinkhorn and Greenkhorn which
remain the baseline solution methods in practice (Flamary and Courty, 2017).

Different from the algorithm in Jambulapati et al. (2019), the combinatorial algorithm
in Lahn et al. (2019) is a practical solution method for the OT problem. It is worth
mentioning that the algorithm in Lahn et al. (2019) and other combinatorial algorithms, e.g.,
the Hungarian algorithm, outperform our algorithms in practice. This is in consistence with
the observation in Dong et al. (2020) who pointed out that combinatorial algorithms can
outperform entropic regularized algorithms in speed even the latter ones are asymptotically
faster for OT (i.e., the case of large n). However, we believe our results are still valuable
due to the importance of entropic regularized algorithms as mentioned before.

Organization. The remainder is organized as follows. In Section 2, we present the basic
setup for the primal and dual form of the entropic regularized OT problem. In Section 3,
we provide the complexity analysis for Greenkhorn. In Section 4, we propose APDAMD
for solving entropic regularized OT and provide several results on the complexity bound
of APDAGD and APDAMD. In Section 5, we propose and analyze an accelerated variant
of Sinkhorn. In Section 6, we conduct the experiments on synthetic and real data and the
numerical results show the efficiency of our algorithms. We conclude this paper in Section 7.

Notation. For n ≥ 2, we let [n] be the set {1, 2, . . . , n} and Rn+ be the set of all vectors
in Rn with non-negative coordinates. The notation ∆n = {v ∈ Rn+ :

∑n
i=1 vi = 1} stands

for a probability simplex in n−1 dimensions. For a vector x ∈ Rn and let 1 ≤ p < +∞, the
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notation ‖x‖p stands for the `p-norm and ‖x‖ indicates an `2-norm. diag(x) is a diagonal
matrix which has the vector x on its diagonal. 1n and 0n are n-dimensional vector with all
components being 1 and 0. For a matrix A ∈ Rn×n, we denote vec(A) as the vector in Rn2

obtained from concatenating the rows and columns of A. The notation ‖A‖1→1 stands for
sup‖x‖1=1 ‖Ax‖1 and the notations r(A) = A1n and c(A) = A>1n stand for the row and
column sums respectively. For a function f , the notation ∇xf denotes a partial derivative
with respect to x. For the dimension n and tolerance ε > 0, the notations a = O(b(n, ε)) and
a = Ω(b(n, ε)) indicate that a ≤ C1 ·b(n, ε) and a ≥ C2 ·b(n, ε) respectively where C1 and C2

are independent of n and ε. We also denote a = Θ(b(n, ε)) iff a = O(b(n, ε)) = Ω(b(n, ε)).
Similarly, we denote a = Õ(b(n, ε)) to indicate the previous inequality where C1 depends
on some logarithmic function of n and ε.

2. Problem Setup

In this section, we first present the linear programming (LP) representation of the optimal
transport (OT) problem as well as a specification of an approximate transportation plan.
We also present an entropic regularized variant of the OT problem and derive the dual form
where the objective function is in the form of the logarithm of sum of exponents. Finally, we
establish several properties of that dual form which are useful for the subsequent analysis.

2.1 Linear programming representation

According to Kantorovich (1942), the problem of approximating the OT distance is equiv-
alent to solving the following linear programming (LP) problem:

min
X∈Rn×n

〈C,X〉 s.t. X1n = r,X>1n = c,X ≥ 0. (1)

In the above formulation, X refers to the transportation plan, C = (Cij) ∈ Rn×n+ stands for
a cost matrix with non-negative components, and r ∈ Rn and c ∈ Rn are two probability
distributions in the simplex ∆n.

We see from Eq. (1), that the OT problem is a LP with 2n equality constraints and n2

variables and can be solved by the interior-point method; however, this method performs
poorly on large-scale problems due to its high per-iteration computational cost. In general,
the solution that the algorithms aim at achieving is an ε-approximate transportation plan
X̂ ∈ Rn×n+ satisfying the marginal distribution constraints X̂1n = r and X̂>1n = c and the
inequality given by

〈C, X̂〉 ≤ 〈C,X?〉+ ε.

Here X? is defined as an optimal transportation plan for the OT problem. For simplicity, we
respectively denote 〈C, X̂〉 an ε-approximate transportation cost and X̂ an ε-approximate
transportation plan for the original problem. Formally, we have the following definition of
ε-approximate transportation plan.

Definition 1. The matrix X̂ ∈ Rn×n+ is called an ε-approximate transportation plan if

X̂1n = r and X̂>1n = c and the following inequality holds true,

〈C, X̂〉 ≤ 〈C,X?〉+ ε.
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where X? is defined as an optimal transportation plan for the OT problem.

With this definition in mind, the goal of this paper is to study the OT problem from
a computational point of view. Indeed, we hope to derive an improved complexity bound
of the current state-of-the-art algorithms and seek new practical algorithms whose running
time required to obtain an ε-approximate transportation plan has better dependence on 1/ε
than the benchmark algorithms in the literature. The aforementioned new algorithms are
favorable in the machine learning applications where high precision (ε is small) is necessary.

2.2 Entropic regularized OT and its dual form

Seeking another formulation for OT distance that is more amenable to computationally
efficient algorithms, Cuturi (2013) proposed to solve an entropic regularized version of the
OT problem in Eq. (1), which is given by

min
X∈Rn×n

〈C,X〉 − ηH(X), s.t. X1n = r,X>1n = c, (2)

where η > 0 denotes the regularization parameter and H(X) denotes the entropic regular-
ization term, which is given by:

H(X) := −〈X, log(X)− 1n×n〉.

Note that, the optimal solution of the entropic regularized OT problem exists since the
objective function 〈C,X〉 − ηH(X) is continuous and the feasible region {X ∈ Rn×n : X ≥
0, X1n = r,X>1n = c} is compact. Furthermore, that optimal solution is also unique since
the objective function 〈C,X〉−ηH(X) is strongly convex over the feasible region with respect
to `1-norm. However, the optimal value of the entropic regularized OT problem (cf. Eq (2))
yields a poor approximation to the unregularized OT problem if η is large. An additional
issue of entropic regularization is that the sparsity of the solution is lost. Even though an
ε-approximate transportation plan can be found efficiently, it is not clear how different the
sparsity pattern of this solution is with respect to the solution of the actual OT problem.
In contrast, the actual OT distance suffers from the curse of dimensionality (Dudley, 1969;
Fournier and Guillin, 2015; Weed and Bach, 2019) and is significantly worse than its entropic
regularized version in terms of the sample complexity (Genevay et al., 2019; Mena and Niles-
Weed, 2019; Chizat et al., 2020).

While there is an ongoing debate in the literature on the merits of solving the OT
problem v.s. its entropic regularized version, we adopt here the viewpoint that reaching an
additive approximation of the actual OT cost matters and therefore propose to scale η as
a function of the desired accuracy of the approximation. Then, we proceed to derive the
dual form of the entropic regularized OT problem in Eq. (2) and show that it remains an
unconstrained smooth optimization problem. By introducing the dual variables α, β ∈ Rn,
we define the Lagrangian function of the entropic regularized OT problem as follows:

L(X,λ1, . . . , λm) = 〈C,X〉 − ηH(X)− α>(X1n − r)− β>(X>1n − c). (3)

In order to derive the smooth dual objective function, we consider the following minimization
problem:

min
X:‖X‖1=1

〈C,X〉 − ηH(X)− α>(X1n − r)− β>(X>1n − c).
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The above objective function is strongly convex over the domain {X ∈ Rn×n+ | ‖X‖1 = 1}.
Thus, the optimal solution is unique. After the simple calculations, the optimal solution
X̄ = X(α, β) has the following form:

X̄ij =
eη
−1(αi+βj−Cij)∑

1≤i,j≤n e
η−1(αi+βj−Cij)

. (4)

Plugging Eq. (4) into Eq. (3) yields that the dual form is:

max
α,β

−η log

 ∑
1≤i,j≤n

eη
−1(αi+βj−Cij)

+ α>r + β>c

 .

In order to streamline our presentation, we perform a change of variables, u = η−1α and
v = η−1β, and reformulate the above problem as

min
α,β

ϕ(α, β) := log

 ∑
1≤i,j≤n

e
ui+vj−

Cij
η

− u>r − v>c.
To further simplify the notation, we define B(u, v) := (Bij)1≤i,j≤n ∈ Rn×n by

Bij = e
ui+vj−

Cij
η .

To this end, we obtain the dual entropic regularized OT problem defined by

min
u,v

ϕ(u, v) := log(‖B(u, v)‖1)− u>r − v>c. (5)

Remark 2. The first part of the objective function ϕ is in the form of the logarithm of sum
of exponents while the second part is a linear function. This is different from the objective
function used in previous dual entropic regularized OT problem (Cuturi, 2013; Altschuler
et al., 2017; Dvurechensky et al., 2018; Lin et al., 2019a). Notably, Eq. (5) is a special
instance of a softmax minimization problem, and the objective function ϕ is known to be
smooth (Nesterov, 2005). Finally, we point out that the same formulation has been derived
in Guminov et al. (2021) for analyzing AAM.

In the remainder of the paper, we also denote (u?, v?) ∈ R2n as an optimal solution of
the dual entropic regularized OT problem in Eq. (5).

2.3 Properties of dual entropic regularized OT

We present several useful properties of the dual entropic regularized OT in Eq. (5). In
particular, we show that there exists an optimal solution (u?, v?) ∈ R2n such that it has an
upper bound in terms of the `∞-norm.

Lemma 3. For the dual entropic regularized OT problem in Eq. (5), there exists an optimal
solution (u?, v?) such that

‖u?‖∞ ≤ R, ‖v?‖∞ ≤ R,

where R := η−1‖C‖∞ + log(n)− log(min1≤i,j≤n{ri, cj}) depends on C, r and c.
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Proof First, we claim that there exists an optimal solution (u?, v?) such that

max
1≤i≤n

u?i ≥ 0 ≥ min
1≤i≤n

u?i , max
1≤i≤n

v?i ≥ 0 ≥ min
1≤i≤n

v?i . (6)

Indeed, letting (û?, v̂?) be an optimal solution to Eq. (5), the claim holds true if (û?, v̂?)
satisfies Eq. (6). Otherwise, we define the shift term given by

∆̂u =
max1≤i≤n û

?
i + min1≤i≤n û

?
i

2
,

∆̂v =
max1≤i≤n v̂

?
i + min1≤i≤n v̂

?
i

2
,

and define (u?, v?) by

u? = û? − ∆̂u1n, v? = v̂? − ∆̂v1n.

By definition, we have (u?, v?) satisfies Eq. (6). Since 1>n r = 1>n c = 1, we have (u?)>r =
(û?)>r−∆̂u and (v?)>c = (v̂?)>c−∆̂v. In addition, log(‖B(u?, v?)‖1) = log(‖B(û?, v̂?)‖1)+
∆̂u + ∆̂v. Putting these pieces together yields ϕ(u?, v?) = ϕ(û?, v̂?). Therefore, (u?, v?) is
an optimal solution of the dual entropic regularized OT that satisfies Eq. (6).

Then, we show that

max
1≤i≤n

u?i − min
1≤i≤n

u?i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, cj}

)
, (7)

max
1≤i≤n

v?i − min
1≤i≤n

v?i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, cj}

)
. (8)

Indeed, for any 1 ≤ i ≤ n, we derive from the optimality condition of (u?, v?) that

eu
?
i (
∑n

j=1 e
v?j−η−1Cij )

‖B(u?, v?)‖1
= ri, for all i ∈ [n].

Since Cij ≥ 0 for all 1 ≤ i, j ≤ n and ri ≥ min1≤i,j≤n{ri, cj} for all 1 ≤ i ≤ n, we have

u?i ≥ log

(
min

1≤i,j≤n
{ri, cj}

)
− log

 n∑
j=1

ev
?
j

+ log(‖B(u?, v?)‖1), for all i ∈ [n].

Since 0 < ri ≤ 1 and Cij ≤ ‖C‖∞, we have

u?i ≤
‖C‖∞
η
− log

 n∑
j=1

ev
?
j

+ log(‖B(u?, v?)‖1), for all i ∈ [n].

Putting these pieces together yields Eq. (7). By the similar argument, we can prove Eq. (8).

Finally, we prove our main results. Indeed, Eq. (6) and Eq. (7) imply that

−‖C‖∞
η

+ log

(
min

1≤i,j≤n
{ri, cj}

)
≤ min

1≤i≤n
u?i ≤ 0,

8
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and

0 ≤ max
1≤i≤n

u?i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, cj}

)
.

Combining the above two inequalities with the definition of R implies that ‖u?‖∞ ≤ R.
By the similar argument, we can prove that ‖v?‖∞ ≤ R. As a consequence, we obtain the
conclusion of the lemma.

The upper bound for the `∞-norm of an optimal solution of dual entropic regularized OT
in Lemma 3 directly leads to the following direct bound for the `2-norm.

Corollary 4. For the dual entropic regularized OT problem in Eq. (5), there exists an
optimal solution (u?, v?) such that

‖u?‖ ≤
√
nR, ‖v?‖ ≤

√
nR,

where R > 0 is defined in Lemma 3.

Since the function −H(X) is strongly convex with respect to the `1-norm on the prob-
ability simplex Q ⊆ Rn×n, the entropic regularized OT problem in Eq. (2) is a special case
of the following linearly constrained convex optimization problem:

min
x∈Q

f(x), s.t. Ax = b,

where f is strongly convex with respect to the `1-norm on the set Q:

f(x′)− f(x)− (x′ − x)>∇f(x) ≥ η

2
‖x′ − x‖21 for any x′, x ∈ Q.

By Nesterov (2005, Theorem 1) with the `2-norm for the dual space of the Lagrange mul-
tipliers, the dual objective function ϕ̃ satisfies the following inequality:

ϕ̃(α′, β′)−ϕ̃(α, β)−
(
α′ − α
β′ − β

)>
∇ϕ̃(α, β) ≤ ‖A‖

2
1→2

2η

∥∥∥∥(α′ − αβ′ − β

)∥∥∥∥2

for any (α′, β′), (α, β) ∈ R2n.

Recall that the function ϕ̃ is given by

ϕ̃(α, β) = −η log

 ∑
1≤i,j≤n

eη
−1(αi+βj−Cij)

+ α>r + β>c. (9)

We notice that the function ϕ in Eq. (5) satisfies that ϕ(u, v) = −η−1ϕ̃(ηu, ηv). After some
simple calculations, we have

ϕ(u′, v′)− ϕ(u, v)−
(
u′ − u
v′ − v

)>
∇ϕ(u, v) ≤

(
‖A‖21→2

2

)∥∥∥∥(u′ − uv′ − v

)∥∥∥∥2

. (10)

In the entropic regularized OT problem, each column of the matrix A contains no more
than two nonzero elements which are equal to one. Since ‖A‖1→2 is equal to maximum
`2-norm of the column of this matrix, we have ‖A‖1→2 =

√
2. Thus, the dual objective

function ϕ is 2-gradient Lipschitz with respect to the `2-norm.

9
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Algorithm 1 Greenkhorn(C, η, r, c, ε′)

Input: t = 0 and u0 = v0 = 0n.
while Et > ε′ do

Compute I = argmax1≤i≤n ρ(ri, ri(B(ut, vt))) where ρ(a, b) = b − a + a log(a/b) and

(B(ut, vt))i′j′ = eu
t
i′+v

t
j′−

C
i′j′
η for all (i′, j′).

Compute J = argmax1≤j≤n ρ(cj , cj(B(ut, vt))).
if ρ(ri, ri(B(ut, vt))) > ρ(cj , cj(B(ut, vt))) then
ut+1
I = utI + log(rI)− log(rI(B(ut, vt))).

else
vt+1
J = vtJ + log(cJ)− log(cJ(B(ut, vt))).

end if
Increment by t = t+ 1.

end while
Output: B(ut, vt).

3. Greenkhorn

In this section, we present a complexity analysis for Greenkhorn. In particular, we improve
the existing best known complexity bound O(n2‖C‖3∞ log(n)ε−3) (Altschuler et al., 2017)
to O(n2‖C‖2∞ log(n)ε−2), which matches the current state-of-the-art complexity bound for
Sinkhorn (Dvurechensky et al., 2018).

To facilitate the subsequent discussion, we present the pseudocode of Greenkhorn in
Algorithm 1 and its application to regularized OT in Algorithm 2. The function for quan-
tifying the progress in the dual objective value between two consecutive iterates is given
by ρ(a, b) = b − a + a log(a/b) and we recall that (u, v) is an optimal solution of the dual
entropic regularized OT problem in Eq. (5) if r(B(u, v))− r = 0n and c(B(u, v))− c = 0n.
This leads to the quantity which measures the error of the t-th iterate in Algorithm 1:

Et := ‖r(B(ut, vt))− r‖1 + ‖c(B(ut, vt))− c‖1.

Both Sinkhorn and Greenkhorn can be interpreted as coordinate descent for minimizing the
following convex function (Cuturi, 2013; Altschuler et al., 2017; Dvurechensky et al., 2018;
Lin et al., 2019a):

f(u, v) := ‖B(u, v)‖1 − u>r − v>c. (11)

Comparing to the scheme of Sinkhorn that consists in the updates of all rows and columns,
Algorithm 1 updates only one row or column at each step. As such, Algorithm 1 updates
only O(n) entries per iteration rather than O(n2) in Sinkhorn. It is also worth mentioning
that Algorithm 1 can be implemented such that each iteration runs in only O(n) arithmetic
operations (Altschuler et al., 2017).

Despite cheap per-iteration computational cost, it is difficult to quantify the per-iteration
progress of Algorithm 1 and the proof techniques for Sinkhorn in Dvurechensky et al. (2018)
are not applicable here. This motivates us to investigate another proof strategy which will
be elaborated in the sequel.

10
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Algorithm 2 Approximating OT by Algorithm 1

Input: η = ε
4 log(n) and ε′ = ε

8‖C‖∞ .

Step 1: Let r̃ ∈ ∆n and c̃ ∈ ∆n be defined by (r̃, c̃) = (1− ε′

8 )(r, c) + ε′

8n (1n,1n).

Step 2: Compute X̃ = Greenkhorn(C, η, r̃, c̃, ε
′

2 ).

Step 3: Round X̃ to X̂ using Altschuler et al. (2017, Algorithm 2) such that X̂1n = r and
X̂>1n = c.
Output: X̂.

3.1 Complexity analysis—bounding dual objective values

Given the definition of Et, we first prove the following lemma which yields an upper bound
for the objective values of the iterates.

Lemma 5. Letting {(ut, vt)}t≥0 be the iterates generated by Algorithm 1, we have

f(ut, vt)− f(u?, v?) ≤ 2Et(‖u?‖∞ + ‖v?‖∞),

where (u∗, v∗) is a point that minimizes f(u, v) = ‖B(u, v)‖1 − u>r − v>c.

Proof By the definition, we have

f(u, v) =
∑

1≤i,j≤n
e
ui+vj−

Cij
η −

n∑
i=1

uiri −
n∑
j=1

vjcj .

By definition, we have ∇uf(ut, vt) = B(ut, vt)1n − r and ∇vf(ut, vt) = B(ut, vt)>1n − c.
Thus, we have Et = ‖∇uf(ut, vt)‖1 + ‖∇vf(ut, vt)‖1. Since f is convex and minimized at
(u?, v?), we have

f(ut, vt)− f(u?, v?) ≤ (ut − u?)>∇uf(ut, vt) + (vt − v?)>∇vf(ut, vt).

Combining Hölder’s inequality and the definition of Et yields

f(ut, vt)− f(u?, v?) ≤ Et(‖ut − u?‖∞ + ‖vt − v?‖∞). (12)

Thus, it suffices to show that

‖ut − u?‖∞ + ‖vt − v?‖∞ ≤ 2‖u?‖∞ + 2‖v?‖∞.

The next result is the key observation that makes our analysis work for Greenkhorn. We
use an induction argument to establish the following bound:

max{‖ut − u?‖∞, ‖vt − v?‖∞} ≤ max{‖u0 − u?‖∞, ‖v0 − v?‖∞}. (13)

It is clear that Eq. (13) holds true when t = 0. Suppose that the inequality holds true for
t ≤ k0, we show that it also holds true for t = k0 + 1. Without loss of generality, let I be
the index chosen at the (k0 + 1)-th iteration. Then

‖uk0+1 − u?‖∞ ≤ max{‖uk0 − u?‖∞, |uk0+1
I − u?I |}, (14)

‖vk0+1 − v?‖∞ = ‖vk0 − v?‖∞. (15)

11
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By the updating formula for uk0+1
I and the optimality condition for u?I , we have

eu
k0+1
I =

rI∑n
j=1 e

−
Cij
η

+v
k0
j

, eu
?
I =

rI∑n
j=1 e

−
Cij
η

+v?j

.

Putting these pieces together with the inequality that
∑n
i=1 ai∑n
i=1 bi

≤ max1≤j≤n
ai
bi

for all ai, bi > 0

yields

|uk0+1
I − u?I | =

∣∣∣∣∣∣log

∑n
j=1 e

−η−1CIj+v
k0
j∑n

j=1 e
−η−1CIj+v

?
j

∣∣∣∣∣∣ ≤ ‖vk0 − v?‖∞. (16)

Combining Eq. (14) and Eq. (16) yields

‖uk0+1 − u?‖∞ ≤ max{‖uk0 − u?‖∞, ‖vk0 − v?‖∞}. (17)

Combining Eq. (15) and Eq. (17) further implies Eq. (13). This together with u0 = v0 = 0n
implies

‖ut − u?‖∞ + ‖vt − v?‖∞ ≤ 2(‖u0 − u?‖∞ + ‖v0 − v?‖∞) = 2‖u?‖∞ + 2‖v?‖∞. (18)

Putting Eq. (12) and Eq. (18) together yields the desired result.

Our second lemma shows that at least one optimal solution (u?, v?) of f has an upper
bound of η−1‖C‖∞ + log(n)− 2 log(min1≤i,j≤n{ri, cj}) in `∞-norm. This result is stronger
than Dvurechensky et al. (2018, Lemma 1) and generalizes Blanchet et al. (2018, Lemma 10).

Lemma 6. There exists an optimal solution (u?, v?) of the function f defined in Eq. (11)
such that the following inequality holds true,

‖u?‖∞ ≤ R, ‖v?‖∞ ≤ R,

where R := η−1‖C‖∞ + log(n)− 2 log(min1≤i,j≤n{ri, cj}) depends on C, r and c.

Proof By using the similar argument as in Lemma 3, we can first show that there exists
an optimal solution pair (u?, v?) such that (but not for v? simultaneously)

max
1≤i≤n

u?i ≥ 0 ≥ min
1≤i≤n

u?i . (19)

Then, we proceed to establish the bounds that are analogous to Eq. (7) and (8):

max
1≤i≤n

u?i − min
1≤i≤n

u?i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, cj}

)
, (20)

max
1≤i≤n

v?i − min
1≤i≤n

v?i ≤
‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, cj}

)
. (21)

Indeed, for each 1 ≤ i ≤ n, we have

e−η
−1‖C‖∞+u?i

 n∑
j=1

ev
?
j

 ≤ n∑
j=1

e−η
−1Cij+u

?
i+v?j = [B(u?, v?)1n]i = ri ≤ 1,

12
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which implies u?i ≤ η−1‖C‖∞ − log(
∑n

j=1 e
v?j ). Furthermore, we have

eu
?
i

 n∑
j=1

ev
?
j

 ≥ n∑
j=1

e−η
−1Cij+u

?
i+v?j = [B(u?, v?)1n]i = ri ≥ min

1≤i,j≤n
{ri, cj},

which implies u?i ≥ log(min1≤i,j≤n{ri, cj}) − log(
∑n

j=1 e
v?j ). Putting these pieces together

yields Eq. (20). Using the similar argument, we can prove Eq. (21) holds true.
Finally, we prove our main results. Since max1≤i≤n u

?
i ≥ 0 ≥ min1≤i≤n u

?
i , we derive

from Eq. (20) that

−‖C‖∞
η

+ log

(
min

1≤i,j≤n
{ri, cj}

)
≤ min

1≤i≤n
u?i ≤ max

1≤i≤n
u?i ≤

‖C‖∞
η
− log

(
min

1≤i,j≤n
{ri, cj}

)
.

This implies that ‖u?‖∞ ≤ R. Then, we bound ‖v?‖∞ by considering two different cases.
For the former case, we assume that max1≤i≤n v

?
i ≥ 0. Note that the optimality condi-

tion is
∑n

i,j=1 e
−η−1Cij+u

?
i+v?j = 1 and further implies that

max
1≤i≤n

u?i + max
1≤i≤n

v?i ≤ log

(
max

1≤i,j≤n
eη
−1Cij

)
=
‖C‖∞
η

.

Since max1≤i≤n u
∗
i ≥ 0 and max1≤i≤n v

∗
i ≥ 0, we have 0 ≤ max1≤i≤n v

?
i ≤

‖C‖∞
η . Combining

max1≤i≤n v
∗
i ≥ 0 with Eq. (21) yields that

min
1≤i≤n

v?i ≥ −
‖C‖∞
η

+ log

(
min

1≤i,j≤n
{ri, cj}

)
.

which implies that ‖v?‖∞ ≤ R.
For the latter case, we assume that max1≤i≤n v

?
i ≤ 0. Then, we have

min
1≤i≤n

v?i ≥ log

(
min

1≤i,j≤n
{ri, cj}

)
− log

(
n∑
i=1

eu
?
i

)
.

This together with ‖u?‖∞ ≤ ‖C‖∞η − log(min1≤i,j≤n{ri, cj}) yields that ‖v?‖∞ ≤ R.

Putting Lemma 5 and 6 together, we have the following straightforward consequence:

Corollary 7. Letting {(ut, vt)}t≥0 be the iterates generated by Algorithm 1, we have

f(ut, vt)− f(u?, v?) ≤ 4REt.

Remark 8. The notation R is also used in Dvurechensky et al. (2018) and has the same
order as ours since R in our paper only involves an term log(n)− log(min1≤i,j≤n{ri, cj}).

Remark 9. We further comment on the proof techniques in this paper and Dvurechen-
sky et al. (2018). Indeed, the proof for Dvurechensky et al. (2018, Lemma 2) depends on
taking full advantage of the shift property of Sinkhorn; namely, either B(ut, vt)1n = r or
B(ut, vt)>1n = c where (ut, vt) stands for the iterate generated by Sinkhorn. Unfortunately,
Greenkhorn does not enjoy such a shift property. We have thus proposed a different approach
for bounding f(ut, vt)− f(u?, v?) via appeal to the `∞-norm of the solution (u?, v?).
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3.2 Complexity analysis—bounding the number of iterations

We proceed to provide an upper bound for the iteration number to achieve a desired tol-
erance ε′ in Algorithm 1. First, we start with a lower bound for the difference of function
values between two consecutive iterates of Algorithm 1:

Lemma 10. Letting {(ut, vt)}t≥0 be the iterates generated by Algorithm 1, we have

f(ut, vt)− f(ut+1, vt+1) ≥ (Et)
2

28n
.

Proof Combining Altschuler et al. (2017, Lemma 5) and the fact that the row or column
update is chosen in a greedy manner, we have

f(ut, vt)− f(ut+1, vt+1) ≥ 1

2n

(
ρ(r, r(B(ut, vt)) + ρ(c, c(B(ut, vt))

)
.

Furthermore, Altschuler et al. (2017, Lemma 6) implies that

ρ(r, r(B(ut, vt)) + ρ(c, c(B(ut, vt)) ≥ 1

7

(
‖r − r(B(ut, vt))‖21 + ‖c− c(B(ut, vt))‖21

)
.

Putting these pieces together yields that

f(ut, vt)− f(ut+1, vt+1) ≥ 1

14n

(
‖r − r(B(ut, vt))‖21 + ‖c− c(B(ut, vt))‖21

)
.

Combining the above inequality with the definition of Et implies the desired result.

We are now able to derive the iteration complexity of Algorithm 1.

Theorem 11. Letting {(ut, vt)}t≥0 be the iterates generated by Algorithm 1, the number
of iterations required to satisfy Et ≤ ε′ is upper bounded by t ≤ 2 + 112nR

ε′ where R > 0 is
defined in Lemma 6.

Proof Letting δt = f(ut, vt)− f(u?, v?), we derive from Corollary 7 and Lemma 10 that

δt − δt+1 ≥ max

{
δ2
t

448nR2
,
(ε′)2

28n

}
,

where Et ≥ ε′ as soon as the stopping criterion is not fulfilled. In the following step we
apply a switching strategy introduced by Dvurechensky et al. (2018). Given any t ≥ 1, we
have two estimates:

(i) Considering the process from the first iteration and the t-th iteration, we have

δt+1

448nR2
≤ 1

t+ 448nR2δ−2
1

=⇒ t ≤ 1 +
448nR2

δt
− 448nR2

δ1
.

(ii) Considering the process from the (t + 1)-th iteration to the (t + m)-th iteration for
any m ≥ 1, we have

δt+m ≤ δt −
(ε′)2m

28n
=⇒ m ≤ 28n(δt − δt+m)

(ε′)2
.

14
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We then minimize the sum of two estimates by an optimal choice of s ∈ (0, δ1]:

t ≤ min
0<s≤δ1

(
2 +

448nR2

s
− 448nR2

δ1
+

28ns

(ε′)2

)
=

{
2 + 224nR

ε′ −
448nR2

δ1
, δ1 ≥ 4Rε′,

2 + 28nδ1
(ε′)2 , δ1 ≤ 4Rε′.

This implies that t ≤ 2 + 112nR
ε′ in both cases and completes the proof.

Equipped with the result of Theorem 11 and the scheme of Algorithm 2, we are able to
establish the following result for the complexity of Algorithm 2:

Theorem 12. The Greenkhorn scheme for approximating optimal transport (Algorithm 2)
returns an ε-approximate transportation plan (cf. Definition 1) in

O

(
n2 ‖C‖2∞ log(n)

ε2

)

arithmetic operations.

Proof We follow the proof steps in (Altschuler et al., 2017, Theorem 1) and obtain that
the transportation plan X̂ returned by Algorithm 2 satisfies that

〈C, X̂〉 − 〈C,X?〉 ≤ 2η log(n) + 4(‖X̃1n − r‖1 + ‖X̃>1n − c‖1)‖C‖∞
≤ ε

2
+ 4(‖X̃1n − r‖1 + ‖X̃>1n − c‖1)‖C‖∞,

where X? is an optimal solution to the OT problem and X̃ = Greenkhorn(C, η, r̃, c̃, ε
′

2 ).
The last inequality in the above display holds true since η = ε

4 log(n) . Furthermore,

‖X̃1n − r‖1 + ‖X̃>1n − c‖1 ≤ ‖X̃1n − r̃‖1 + ‖X̃>1n − c̃‖1 + ‖r − r̃‖1 + ‖c− c̃‖1

≤ ε′

2
+
ε′

4
+
ε′

4
= ε′.

Putting these pieces together with ε′ = ε
8‖C‖∞ yields that 〈C, X̂〉 − 〈C,X?〉 ≤ ε.

The remaining step is to analyze the complexity bound. It follows from Theorem 11
and the definition of r̃ and c̃ in Algorithm 2 that

t ≤ 2 +
112nR

ε′
≤ 2 +

96n‖C‖∞
ε

(
‖C‖∞
η

+ log(n)− 2 log

(
min

1≤i,j≤n
{ri, cj}

))
≤ 2 +

96n‖C‖∞
ε

(
4‖C‖∞ log(n)

ε
+ log(n)− 2 log

(
ε

64n‖C‖∞

))
= O

(
n‖C‖2∞ log(n)

ε2

)
.

The total iteration complexity in Step 2 of Algorithm 2 is bounded by O(n‖C‖2∞ log(n)ε−2).
Each iteration of Algorithm 1 requires O(n) arithmetic operations. Thus, the total number
of arithmetic operations isO(n2‖C‖2∞ log(n)ε−2). Moreover, r̃ and c̃ in Step 1 of Algorithm 2
can be found inO(n) arithmetic operations and Altschuler et al. (2017, Algorithm 2) requires
O(n2) arithmetic operations. Therefore, we conclude that the total number of arithmetic
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Algorithm 3 Apdamd(ϕ,A, b, ε′)

Input: t = 0.
Initialization: ᾱ0 = α0 = 0, z0 = µ0 = λ0 = 02n and L0 = 1.
repeat

Set M t = Lt

2 .
repeat

Set M t = 2M t.
Compute the stepsize: αt+1 = 1+

√
1+4δMtᾱt

2δMt .
Compute the average coefficient: ᾱt+1 = ᾱt + αt+1.

Compute the first average step: µt+1 = αt+1zt+ᾱtλt

ᾱt+1 .

Compute the mirror descent: zt+1 = argmin
z∈Rn

{(z − µt+1)>∇ϕ(µt+1) +
Bφ(z,zt)
αt+1 }.

Compute the second average step: λt+1 = αt+1zt+1+ᾱtλt

ᾱt+1 .

until ϕ(λt+1)− ϕ(µt+1)− (λt+1 − µt+1)>∇ϕ(µt+1) ≤ Mt

2 ‖λ
t+1 − µt+1‖2∞.

Compute the main average step: xt+1 = αt+1x(µt+1)+ᾱtxt

ᾱt+1 .

Set Lt+1 = Mt

2 .
Set t = t+ 1.

until ‖Axt − b‖1 ≤ ε′.
Output: Xt where xt = vec(Xt).

operations is O(n2‖C‖2∞ log(n)ε−2).

The complexity results presented in Theorem 12 improve the best known complexity bound
Õ(n2ε−3) of Greenkhorn (Altschuler et al., 2017; Abid and Gower, 2018), Notably, it matches
the best known complexity bound of Sinkhorn (Dvurechensky et al., 2018). The key feature
of our analysis is that the per-iteration progress of Greenkhorn can be lower bounded by
a new quantity (cf. Lemmas 5 and 6). It allows us to apply the switching strategy in
Theorem 11 to improve the complexity upper bound of Greenkhorn.

In practice, Greenkhorn has been reported to outperform Sinkhorn (Altschuler et al.,
2017) in terms of row/column updates and our improved complexity bound can provide the
theoretical justification for this phenomenon.

4. Adaptive Primal-Dual Accelerated Mirror Descent

In this section, we propose an adaptive primal-dual accelerated mirror descent (APDAMD)
for solving the entropic regularized OT problem in Eq. (2). APDAMD and its application
to the OT problem are presented in Algorithm 3 and 4. We prove the complexity bound of
O(n2

√
δ‖C‖∞ log(n)ε−1) where δ > 0 stands for the regularity of the mirror mapping φ.

4.1 General setup

We follow the setup in Section 2 and consider the following generalization of the entropic
regularized OT problem in Eq. (2):

min
x∈Q

f(x), s.t. Ax = b, (22)
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where f is strongly convex with respect to the `1-norm on the set Q:

f(x′)− f(x)− (x′ − x)>∇f(x) ≥ η

2
‖x′ − x‖21 for any x′, x ∈ Q.

Note that, in the specific setting of the entropic regularized OT problem, the function
f(x) =

∑
i,j Cijxj+n(i−1) + η · xj+n(i−1) log(xj+n(i−1)) where xj+n(i−1) = Xij for any i, j

where X is the transportation plan in equation (2), and the vector b ∈ R2n×1 is defined
as: bi = ri as 1 ≤ i ≤ n and bi = ci−n when n + 1 ≤ i ≤ 2n. Furthermore, the matrix
A = (Aij) ∈ R2n×n2

is defined as: When 1 ≤ i ≤ n, we denote Aij = 1 if 1+n(i−1) ≤ j ≤ n·i
and 0 otherwise; When n+1 ≤ i ≤ 2n, we define Aij = 1 if j ∈ {i−n+n(l−1) : 1 ≤ l ≤ n}
and 0 otherwise. To be consistent with the notations in Algorithms 4 and 5, we specifically
denote Aot as the matrix A corresponding to the entropic regularized OT problem.

After some calculations with the general problem (22), we obtain that the dual problem
is as follows:

min
λ∈R2n

ϕ̃(λ) := {〈λ, b〉+ max
x∈Rn2

{−f(x)− 〈A>λ, x〉}}, (23)

and ∇ϕ̃(λ) = b−Ax(λ) where x(λ) = argmaxx∈Rn{−f(x)−〈A>λ, x〉}; see the explicit form
in Eq. (9) with λ = (α, β). By Nesterov (2005, Theorem 1) with `1-norm for the dual space
of the Lagrange multipliers, the dual objective function ϕ̃ satisfies the following inequality:

ϕ̃(λ′)− ϕ̃(λ)− (λ′ − λ)>∇ϕ̃(λ) ≤ ‖A‖
2
1→1

2η
‖λ′ − λ‖2∞. (24)

In the entropic regularized OT problem, each column of the matrix Aot contains no more
than two nonzero elements which are equal to one. Since ‖Aot‖1→1 is equal to maximum
`1-norm of the column of this matrix, we have ‖Aot‖1→1 = 2. Thus, the dual objective
function ϕ̃ is 4

η -gradient Lipschitz with respect to the `∞-norm.

In addition, we define the Bregman divergence Bφ : R2n × R2n 7→ [0,+∞) by

Bφ(λ′, λ) := φ(λ′)− φ(λ)− (λ′ − λ)>∇φ(λ),

where the mirror mapping φ is 1
δ -strongly convex and 1-smooth on R2n with respect to

`∞-norm; that is,

1

2δ
‖λ′ − λ‖2∞ ≤ φ(λ′)− φ(λ)− (λ′ − λ)>∇φ(λ) ≤ 1

2
‖λ′ − λ‖2∞.

For example, we can choose φ(λ) = 1
2n‖λ‖

2 and Bφ(λ′, λ) = 1
2n‖λ

′−λ‖2 in APDAMD where
δ = n. As such, δ > 0 is a function of n in general and it will appear in the complexity
bound of APDAMD for approximating the OT problem (cf. Theorem 17). It is worth
noting that our algorithm uses a regularizer that acts only in the dual and our complexity
bound is the best existing one among this group of algorithms (Dvurechensky et al., 2018;
Guo et al., 2020; Guminov et al., 2021). A very recent work of Jambulapati et al. (2019)
showed that the complexity bound can be improved to Õ(n2ε−1) using a more advanced
area-convex mirror mapping (Sherman, 2017).
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Algorithm 4 Approximating OT by Algorithm 3

Input: η = ε
4 log(n) and ε′ = ε

8‖C‖∞ .

Step 1: Let r̃ ∈ ∆n and c̃ ∈ ∆n be defined by (r̃, c̃) = (1− ε′

8 )(r, c) + ε′

8n (1n,1n).

Step 2: Let Aot ∈ R2n×n2

and b ∈ R2n be defined by Aotvec(X) =

(
X1n
X>1n

)
and b =

(
r̃
c̃

)
.

Step 3: Compute X̃ = Apdamd(ϕ̃, Aot, b,
ε′

2 ) where ϕ̃ is defined by Eq. (23).

Step 4: Round X̃ to X̂ using Altschuler et al. (2017, Algorithm 2) such that X̂1n = r and
X̂>1n = c.
Output: X̂.

4.2 Properties of APDAMD

We present several important properties of Algorithm 3 that can be used later for entropic
regularized OT problems. First, we prove the following result regarding the number of line
search iterations in Algorithm 3 for solving the entropic regularized OT problem:

Lemma 13. The number of line search iterations in Algorithm 3 for solving the entropic
OT problem is finite. Furthermore, the total number of gradient oracle calls after the t-th
iteration is bounded as

Nt ≤ 4t+ 4 +
2 log( 8

η )− 2 log(L0)

log 2
.

Proof First, we observe that multiplying M t by two will not stop until the line search
stopping criterion is satisfied. Then, Eq. (24) implies that the number of line search it-

erations in the line search strategy is finite and M t ≤ 2‖Aot‖21→1
η holds true for all t ≥ 0.

Otherwise, the line search stopping criterion is satisfied with Mt

2 since Mt

2 ≥
‖Aot‖21→1

η .

Letting ij denote the total number of multiplication at the j-th iteration, we have

i0 ≤ 1 +
log(M

0

L0 )

log 2
, ij ≤ 2 +

log( Mj

Mj−1 )

log 2
.

Then, the total number of line search iterations is bounded by

t∑
j=0

ij ≤ 1 +
log(M

0

L0 )

log 2
+

t∑
j=1

(
2 +

log( Mj

Mj−1 )

log 2

)
≤ 2t+ 1 +

log(
2‖Aot‖21→1

η )− log(L0)

log 2
.

Since each line search contains two gradient oracle calls and ‖Aot‖1→1 = 2, we conclude the
desired upper bound for the total number of gradient oracle calls after the t-th iteration.

The next lemma presents a property of the function ϕ̃ in Algorithm 3.

Lemma 14. For each iteration t of Algorithm 3 and any z ∈ R2n, we have

ᾱtϕ̃(λt) ≤
t∑

j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj))) + ‖z‖2∞.
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Proof First, we claim that it holds for any z ∈ Rn:

αt+1(zt − z)>∇ϕ̃(µt+1) ≤ ᾱt+1(ϕ̃(µt+1)− ϕ̃(λt+1)) +Bφ(z, zt)−Bφ(z, zt+1). (25)

Indeed, the optimality condition in mirror descent implies that, for any z ∈ R2n, we have

(z − zt+1)>
(
∇ϕ̃(µt+1) + ∇φ(zt+1)−∇φ(zt)

αt+1

)
≥ 0.

By definition, we haveBφ(z, zt)−Bφ(z, zt+1)−Bφ(zt+1, zt) = (z−zt+1)>(∇φ(zt+1)−∇φ(zt))
and Bφ(zt+1, zt) ≥ 1

2δ‖z
t+1 − zt‖2∞. Putting these pieces together yields that

αt+1(zt − z)>∇ϕ̃(µt+1) = αt+1(zt − zt+1)>∇ϕ̃(µt+1) + αt+1(zt+1 − z)>∇ϕ̃(µt+1)

≤ αt+1(zt − zt+1)>∇ϕ̃(µt+1) + (z − zt+1)>(∇φ(zt+1)−∇φ(zt))

= αt+1(zt − zt+1)>∇ϕ̃(µt+1) +Bφ(z, zt)−Bφ(z, zt+1)−Bφ(zt+1, zt)

≤ αt+1(zt − zt+1)>∇ϕ̃(µt+1) +Bφ(z, zt)−Bφ(z, zt+1)− ‖z
t+1−zt‖2∞

2δ . (26)

The update formulas of µt+1, λt+1, αt+1 and ᾱt+1 imply that

λt+1 − µt+1 =
αt+1

ᾱt+1
(zt+1 − zt), δM t(αt+1)2 = ᾱt+1.

Therefore, we have

αt+1(zt − zt+1)>∇ϕ̃(µt+1) = ᾱt+1(µt+1 − λt+1)>∇ϕ̃(µt+1),

and

‖zt+1 − zt‖2∞ = ( ᾱ
t+1

αt+1 )2‖µt+1 − λt+1‖2∞ = δM tᾱt+1‖µt+1 − λt+1‖2∞.

Putting these pieces together with Eq. (26) yields that

αt+1(zt − z)>∇ϕ̃(µt+1)

≤ ᾱt+1(µt+1 − λt+1)>∇ϕ̃(µt+1) +Bφ(z, zt)−Bφ(z, zt+1)− ᾱt+1Mt

2 ‖µt+1 − λt+1‖2∞
= ᾱt+1

(
(µt+1 − λt+1)>∇ϕ̃(µt+1)− Mt

2 ‖µ
t+1 − λt+1‖2∞

)
+Bφ(z, zt)−Bφ(z, zt+1)

≤ ᾱt+1(ϕ̃(µt+1)− ϕ̃(λt+1)) +Bφ(z, zt)−Bφ(z, zt+1),

where the last inequality comes from the stopping criterion in the line search. This implies
that Eq. (25) holds true.

The next step is to bound the iterative objective gap given by

ᾱt+1ϕ̃(λt+1)− ᾱtϕ̃(λt) (27)

≤ αt+1(ϕ̃(µt+1) + (z − µt+1)>∇ϕ̃(µt+1)) +Bφ(z, zt)−Bφ(z, zt+1).

Indeed, by combining ᾱt+1 = ᾱt + αt+1 and the update formula of µt+1, we have

αt+1(µt+1−zt) = (ᾱt+1−ᾱt)µt+1−αt+1zt = αt+1zt+ᾱtλt−ᾱtµt+1−αt+1zt = ᾱt(λt−µt+1).
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This together with the convexity of ϕ̃ implies that

αt+1(µt+1 − z)>∇ϕ̃(µt+1)

= αt+1(µt+1 − zt)>∇ϕ̃(µt+1) + αt+1(zt − z)>∇ϕ̃(µt+1)

= ᾱt(λt − µt+1)>∇ϕ̃(µt+1) + αt+1(zt − z)>∇ϕ̃(µt+1)

≤ ᾱt(ϕ̃(λt)− ϕ̃(µt+1)) + αt+1(zt − z)>∇ϕ̃(µt+1).

Furthermore, we derive from Eq. (25) and ᾱt+1 = ᾱt + αt+1 that

ᾱt(ϕ̃(λt)− ϕ̃(µt+1)) + αt+1(zt − z)>∇ϕ̃(µt+1)

≤ ᾱt(ϕ̃(λt)− ϕ̃(µt+1)) + ᾱt+1(ϕ̃(µt+1)− ϕ̃(λt+1)) +Bφ(z, zt)−Bφ(z, zt+1)

= ᾱtϕ̃(λt)− ᾱt+1ϕ̃(λt+1) + αt+1ϕ̃(µt+1) +Bφ(z, zt)−Bφ(z, zt+1).

Putting these pieces together yields that Eq. (27) holds true.
Finally, we prove our main results. By changing the index t to j in Eq. (27) and summing

up the resulting inequality over j = 0, 1, . . . , t− 1, we have

ᾱtϕ̃(λt)− ᾱ0ϕ̃(λ0) ≤
t−1∑
j=0

(αj+1(ϕ̃(µj+1) + (z − µj+1)>∇ϕ̃(µj+1))) +Bφ(z, z0)−Bφ(z, zt).

Since α0 = ᾱ0 = 0, Bφ(z, zt) ≥ 0 and φ is 1-smooth with respect to `∞-norm, we have

ᾱtϕ̃(λt) ≤
t∑

j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj))) +Bφ(z, z0)

≤
t∑

j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj))) + ‖z − z0‖2∞

z0=0
=

t∑
j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj))) + ‖z‖2∞.

This completes the proof.

The final lemma provides us with a key lower bound for the accumulating parameter.

Lemma 15. For each iteration t of Algorithm 3, we have ᾱt ≥ η(t+1)2

32δ .

Proof For t = 1, we have ᾱ1 = α1 = 1
δM1 ≥ η

8δ since M1 ≤ 8
η was proven in Lemma 13.

Thus, the desired result holds true when t = 1. Then we proceed to prove that it holds true
for t ≥ 1 using the induction. Indeed, we have

ᾱt+1 = ᾱt + αt+1 = ᾱt +
1 +
√

1 + 4δM tᾱt

2δM t

= ᾱt +
1

2δM t
+

√
1

4(δM t)2
+

ᾱt

δM t

≥ ᾱt +
1

2δM t
+

√
ᾱt

δM t

≥ ᾱt +
η

16δ
+

√
ηᾱt

8δ
,
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where the last inequality comes from M t ≤ 8
η as shown in Lemma 13. Suppose that the

desired result holds true for t = k0, we have

ᾱk0+1 ≥ η(k0 + 1)2

32δ
+

η

16δ
+

√
η2(k0 + 1)2

256δ2
=
η((k0 + 1)2 + 2 + 2(k0 + 1))

32δ
≥ η(k0 + 2)2

32δ
.

This completes the proof.

4.3 Complexity analysis for APDAMD

We are now ready to establish the complexity bound of APDAMD for solving the entropic
regularized OT problem. Indeed, we recall that ϕ̃(λ) is defined with λ = (α, β) by

ϕ̃(α, β) = −η log

 ∑
1≤i,j≤n

eη
−1(αi+βj−Cij)

+ α>r + β>c.

Since (α, β) can be obtain by αi = ηui and βj = ηvj , we derive from Lemma 3 that

‖α?‖∞ ≤ ηR, ‖β?‖∞ ≤ ηR.

where R is defined accordingly. Then, we proceed to the following key result determining
an upper bound for the number of iterations for Algorithm 3 to reach a desired accuracy ε′:

Theorem 16. Letting {Xt}t≥0 be the iterates generated by Algorithm 3, the number of
iterations required to satisfy ‖Aotvec(Xt)− b‖1 ≤ ε′ is upper bounded by

t ≤ 1 +

√
128δR

ε′
,

where R > 0 is defined in Lemma 3.

Proof From Lemma 14, we have

ᾱtϕ̃(λt) ≤ min
z∈B∞(2ηR)


t∑

j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj))) + ‖z‖2∞

 ,

where B∞(r) := {λ ∈ Rn | ‖λ‖∞ ≤ r}. This implies that

ᾱtϕ̃(λt) ≤ min
z∈B∞(2ηR)


t∑

j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj)))

+ 4η2R2.

Since ϕ̃ is the objective function of dual entropic regularized OT problem, we have

ϕ̃(µj) + (z − µj)>∇ϕ̃(µj) = −f(x(µj)) + z>(b−Aotx(µj)).

21



Lin, Ho and Jordan

Therefore, we conclude that

ᾱtϕ̃(λt) ≤ min
z∈B∞(2ηR)


t∑

j=0

(αj(ϕ̃(µj) + (z − µj)>∇ϕ̃(µj)))

+ 4η2R2

≤ 4η2R2 − ᾱtf(xt) + min
z∈B∞(2ηR)

{ᾱtz>(b−Aotx
t)}

= 4η2R2 − ᾱtf(xt)− 2ᾱtηR‖Aotx
t − b‖1,

where the second inequality comes from the convexity of f and the last equality comes from
the fact that `1-norm is the dual norm of `∞-norm. That is to say,

f(xt) + ϕ̃(λt) + 2ηR‖Aotx
t − b‖1 ≤

4η2R2

ᾱt
.

Suppose that λ? is an optimal solution to dual entropic regularized OT problem satisfying
‖λ?‖∞ ≤ ηR, we have

f(xt) + ϕ̃(λt) ≥ f(xt) + ϕ̃(λ?) = f(xt) + b>λ? + max
x∈Rn2

{
−f(x)− (λ?)>Aotx

}
≥ f(xt) + b>λ? − f(xt)− (λ?)>Aotx

t = (b−Aotx
t)λ?

≥ −ηR‖Aotx
t − b‖1,

Therefore, we conclude that

‖Aotx
t − b‖1 ≤

4ηR

ᾱt
≤ 128δR

(t+ 1)2
.

This completes the proof.

Now, we are ready to present the complexity bound of Algorithm 4 for approximating the
OT problem.

Theorem 17. The APDAMD scheme for approximating optimal transport (Algorithm 4)
returns an ε-approximate transportation plan (cf. Definition 1) in

O

(
n2
√
δ‖C‖∞ log(n)

ε

)

arithmetic operations.

Proof Using the same argument as in Theorem 12, we have

〈C, X̂〉 − 〈C,X?〉 ≤ ε

2
+ 4(‖X̃1n − r‖1 + ‖X̃>1n − c‖1)‖C‖∞,

where X̂ is returned by Algorithm 4, X∗ is a solution to the OT problem and X̃ =
Apdamd(ϕ̃, Aot, b,

ε′

2 ). Since ‖X̃1n − r‖1 + ‖X̃>1n − c‖1 ≤ ε′ and ε′ = ε
8‖C‖∞ , we have

〈C, X̂〉 − 〈C,X?〉 ≤ ε
2 + ε

2 = ε.
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The remaining step is to analyze the complexity bound. If follows from Lemma 13 and
Theorem 16 that

Nt ≤ 4t+ 4 +
2 log( 8

η )− 2 log(L0)

log 2

≤ 8 +

√
2048δR

ε′
+

2 log( 8
η )− 2 log(L0)

log 2

= 8 + 256

√
δR‖C‖∞ log(n)

ε
+

2 log(32 log(n)
ε )− 2 log(L0)

log 2
.

Combining the definition of R in Lemma 3 with the definition of η, r̃ and c̃ in Algorithm 4,
we have

R ≤ 4‖C‖∞ log(n)

ε
+ log(n)− 2 log

(
ε

64n‖C‖∞

)
.

Therefore, we conclude that

Nt ≤ 256

√
δ‖C‖∞ log(n)

ε

√
4‖C‖∞ log(n)

ε
+ log(n)− 2 log

(
ε

64n‖C‖∞

)

+
2 log(32 log(n)

ε )− 2 log(L0)

log 2
+ 8 = O

(√
δ ‖C‖∞ log(n)

ε

)
.

The total iteration complexity in Step 3 of Algorithm 4 is bounded byO(
√
δ‖C‖∞ log(n)ε−1).

Each iteration of Algorithm 3 requires O(n2) arithmetic operations. Therefore, the total
number of arithmetic operations is O(n2

√
δ‖C‖∞ log(n)ε−1). Moreover, r̃ and c̃ in Step

1 of Algorithm 4 can be found in O(n) arithmetic operations and Altschuler et al. (2017,
Algorithm 2) requires O(n2) arithmetic operations. Therefore, we conclude that the total
number of arithmetic operations is O(n2

√
δ‖C‖∞ log(n)ε−1).

The complexity results in Theorem 17 suggests an interesting feature of the (regularized)
OT problem. Indeed, the dependence of that bound on δ manifests the necessity of `∞-norm
in the understanding of the complexity of the entropic regularized OT problem. This view
is also in harmony with the proof technique of running time for Greenkhorn in Section 3,
where we rely on `∞-norm of optimal solutions of the dual entropic regularized OT problem
to measure the progress in the objective value among the successive iterates.

4.4 Revisiting APDAGD

We revisit APDAGD (Dvurechensky et al., 2018) for the entropic regularized OT prob-
lem. First, we point out that the current complexity bound of Õ(min{n9/4ε−1, n2ε−2})
is not valid by a simple counterexample. Then, we establish a new complexity bound of
APDAGD using our techniques in Section 4.3. Despite the issue with entropic regularized
OT, we wish to emphasize that APDAGD is still an interesting and efficient accelerated
algorithm for general linearly constrained convex optimization problem with solid theoret-
ical guarantee. More precisely, Dvurechensky et al. (2018, Theorem 3) is not applicable to
entropic regularized OT since no dual solution exists with a constant bound in `2-norm.
However, it can be used for analyzing other problems with bounded optimal dual solution.
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Algorithm 5 Approximating OT by Dvurechensky et al. (2018, Algorithm 3)

Input: η = ε
4 log(n) and ε′ = ε

8‖C‖∞ .

Step 1: Let r̃ ∈ ∆n and c̃ ∈ ∆n be defined by (r̃, c̃) = (1− ε′

8 )(r, c) + ε′

8n (1n,1n).

Step 2: Let Aot ∈ R2n×n2

and b ∈ R2n be defined by Aotvec(X) =

(
X1n
X>1n

)
and b =

(
r̃
c̃

)
.

Step 3: Compute X̃ = Apdagd(ϕ̃, Aot, b,
ε′

2 ) where ϕ̃ is defined by Eq. (23).

Step 4: Round X̃ to X̂ using Altschuler et al. (2017, Algorithm 2) such that X̂1n = r and
X̂>1n = c.

To facilitate the ensuing discussion, we first present the complexity bound for entropic
regularized OT in Dvurechensky et al. (2018) using our notation. Indeed, we recall that
APDAGD is developed for solving the optimization problem with the objective function ϕ̂
defined as follows,

min
α,β∈Rn

ϕ̂(α, β) := η

 n∑
i,j=1

e
−
Cij−αi−βj

η
−1

− α>r − β>c. (28)

Theorem 18 (Theorem 4 in Dvurechensky et al. (2018)). Let R > 0 be defined such that
there exists an optimal solution to the dual entropic regularized OT problem in Eq. (23), de-
noted by (u?, v?), satisfying ‖(u?, v?)‖ ≤ R, the APDAGD scheme for approximating optimal
transport (cf. Algorithm 5) returns an ε-approximate transportation plan (cf. Definition 1)
in

O

min

n
9/4
√
R‖C‖∞ log(n)

ε
,
n2R‖C‖∞ log(n)

ε2


 ,

arithmetic operations.

From the above theorem, Dvurechensky et al. (2018) claims that the complexity bound
for APDAGD is Õ(min{n9/4ε−1, n2ε−2}). However, there are two issues:

1. The upper bound R is assumed to be independent of n, which is not correct; see our
counterexample in Proposition 19.

2. The known upper bound R for the optimal solution depends on min1≤i,j≤n{ri, cj}
(cf. Dvurechensky et al. (2018, Lemma 1) or Lemma 3 in our paper). This implies
that the valid algorithm needs to take the rounding error with r and c into account.

Corrected upper bound R. Corollary 4 and Lemma 6 imply that a straightforward
upper bound for R is Õ(

√
n). Given a tolerance ε ∈ (0, 1), we further show that R is indeed

Ω(
√
n) by using a specific entropic regularized OT problem as follows.

Proposition 19. Suppose that C = 1n1
>
n and r = c = 1

n1n. Given a tolerance ε ∈
(0, 1) and the regularization term η = ε

4 log(n) , all the optimal solutions of the dual entropic

regularized OT problem in Eq. (28) satisfy that ‖(α∗, β∗)‖ &
√
n.
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Proof By the definition r, c and η, we rewrite the dual function ϕ̂(α, β) as follows:

ϕ̂(α, β) =
ε

4e log(n)

∑
1≤i,j≤n

e−
4 log(n)(1−αi−βj)

ε − α>1n
n
− β>1n

n
.

Since (α?, β?) is an optimal solution of dual entropic regularized OT problem, we have

e
4 log(n)α?i

ε

n∑
j=1

e−
4 log(n)(1−β?j )

ε = e
4 log(n)β?i

ε

n∑
j=1

e−
4 log(n)(1−α?j )

ε =
e

n
for all i ∈ [n]. (29)

This implies α?i = α?j and β?i = β?j for all i, j ∈ [n], and α?i + β?i are the same for all i ∈ [n].
Without loss of generality, we can let α?i = 0 in Eq. (29) and obtain that

β?i = 1 +
ε

4 log(n)
(1− 2 log(n)) = 1 +

ε

4 log(n)
− ε

2
.

which implies that α?i + β?i = 1 + ε
4 log(n) −

ε
2 ≥

1
2 for all i ∈ [n]. Thus, we have

‖(α?, β?)‖ ≥
√∑n

i=1(α?i + β?i )2

2
=

1

2

√
n

2
&
√
n.

As a consequence, we achieve the conclusion of the proposition.

Approximation algorithm for OT by APDAGD. It is worth noting that the round-
ing procedure is missing in Dvurechensky et al. (2018, Algorithm 4) and we improve it to
Algorithm 5. In particular, Dvurechensky et al. (2018, Algorithm 3) is used in Step 3 of
Algorithm 5 for another function ϕ̃ defined in Eq. (9). Given the corrected upper bound R
and Algorithm 5 for approximating OT, we provide a new complexity bound of Algorithm 5
in the following proposition.

Proposition 20. The APDAGD scheme for approximating optimal transport (Algorithm 5)
returns an ε-approximate transportation plan (cf. Definition 1) in

O

(
n5/2‖C‖∞

√
log(n)

ε

)
arithmetic operations.

Proof The proof is a simple modification of the proof for Dvurechensky et al. (2018,
Theorem 4) and we only give a proof sketch here. In particular, we can obtain that the
number of iterations for Algorithm 5 required to reach the tolerance ε is

t ≤ O

max

min

n
1/4
√
R‖C‖∞ log(n)

ε
,
R‖C‖∞ log(n)

ε2

 ,
R
√

log n

ε


 . (30)

Moreover, we have R ≤
√
nηR where R = η−1‖C‖∞ + log(n) − 2 log(min1≤i,j≤n{ri, cj}).

Therefore, the total iteration complexity in Step 3 of Algorithm 5 is O(
√
n log(n)‖C‖∞ε−1).
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Each iteration of APDAGD requires O(n2) arithmetic operations. Therefore, the total num-
ber of arithmetic operations is O(n5/2‖C‖∞

√
log(n)ε−1). Note that r̃ and c̃ in Step 1 of

Algorithm 5 can be found in O(n) arithmetic operations and Altschuler et al. (2017, Al-
gorithm 2) requires O(n2) arithmetic operations. Therefore, we conclude that the total
number of arithmetic operations is O(n5/2‖C‖∞

√
log(n)ε−1).

Remark 21. As indicated in Proposition 20, the corrected complexity bound of APDAGD
for the entropic regularized OT is similar to that of APDAMD when we choose φ(·) = 1

2n‖·‖
2

and have δ = n. From this perspective, our algorithm can be viewed as a generalization of
APDAGD. Since our algorithm utilizes `∞-norm in the line search criterion, it is more
robust than APDAGD in practice; see Section 6 for the details.

5. Accelerating Sinkhorn

In this section, we present an accelerated variant of Sinkhorn for solving the entropic reg-
ularized OT problem in Eq. (2). Combined with a rounding scheme, our algorithm can be
used for solving the OT problem in Eq. (1) and achieves a complexity bound of Õ(n7/3ε−4/3),
which improves that of Sinkhorn in terms of 1/ε and APDAGD and AAM (Guminov et al.,
2021) in terms of n. The idea comes from a novel combination of Nesterov’s estimated
sequence and the techniques for analyzing Sinkhorn.

5.1 Algorithmic procedure

We present the pseudocode of accelerated Sinkhorn in Algorithm 6. This algorithm achieves
the acceleration by using Nesterov’s estimate sequences (Nesterov, 2018). While our algo-
rithm can be interpreted as an accelerated block coordinate descent algorithm, it is worth
mentioning that our algorithm is purely deterministic and thus differs from other acceler-
ated randomized algorithms (Lin et al., 2015; Fercoq and Richtárik, 2015; Lu et al., 2018)
in the optimization literature.

Algorithm 6 is a novel combination of Nesterov’s estimate sequences, a monotone search
step, the choice of greedy coordinate and two coordinate updates. It is applied to solve the
dual entropic regularized OT problem in Eq. (5):

min
u,v

ϕ(u, v) := log(‖B(u, v)‖1)− u>r − v>c.

More specifically, Nesterov’s estimate sequences are responsible for optimizing a dual objec-
tive function ϕ in a fast rate. The coordinate update guarantees that ϕ(ût, v̂t) ≤ ϕ(ùt, v̀t)
and ‖B(ût, v̂t)‖1 = 1. The monotone search step guarantees that ϕ(ut, vt) ≤ ϕ(ût, v̂t). The
greedy coordinate update guarantees that ϕ(ǔt+1, v̌t+1) ≤ ϕ(ut, vt) with sufficient progress.

Furthermore, we also use the same quantity as that in Greekhorn to measure the per-
iteration residue of Algorithm 6:

Et = ‖r(B(ut, vt))− r‖1 + ‖c(B(ut, vt))− c‖1. (31)

The computationally expensive step is to compute r(B(ūt,v̄t))
‖B(ūt,v̄t)‖1 and c(B(ūt,v̄t))

‖B(ūt,v̄t)‖1 . Since B(ūt, v̄t)
does not have any special property, it is difficult to design some implementation trick to
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Algorithm 6 Accelerated Sinkhorn(C, η, r, c, ε′)

Input: t = 0, θ0 = 1 and ǔ0 = ũ0 = v̌0 = ṽ0 = 0n.
while Et > ε′ do

Compute

(
ūt

v̄t

)
= (1− θt)

(
ǔt

v̌t

)
+ θt

(
ũt

ṽt

)
.

Compute ũt+1 and ṽt+1 by

ũt+1 = ũt − 1

2θt

(
r(B(ūt, v̄t))

‖B(ūt, v̄t)‖1
− r
)
, ṽt+1 = ṽt − 1

2θt

(
c(B(ūt, v̄t))

‖B(ūt, v̄t)‖1
− c
)
.

Compute

(
ùt

v̀t

)
=

(
ūt

v̄t

)
+ θt

((
ũt+1

ṽt+1

)
−
(
ũt

ṽt

))
.

if t is even then
ût = ùt + log(r)− log(r(B(ùt, v̀t))) and v̂t = v̀t.

else
ût = ùt and v̂t = v̀t + log(c)− log(c(B(ùt, v̀t))).

end if

Compute

(
ut

vt

)
= argmin

{
ϕ(u, v)

∣∣∣ (u
v

)
∈
{(

ǔt

v̌t

)
,

(
ût

v̂t

)}}
.

if t is even then
ǔt+1 = ut + log(r)− log(r(B(ut, vt))) and v̌t+1 = vt.

else
ǔt+1 = ut and v̌t+1 = vt + log(c)− log(c(B(ut, vt))).

end if

Compute θt+1 =
θt(
√
θ2t+4−θt)

2 .
Set t = t+ 1.

end while
Output: B(ut, vt).

Algorithm 7 Approximating OT by Algorithm 6

Input: η = ε
4 log(n) and ε′ = ε

8‖C‖∞ .

Step 1: Let r̃ ∈ ∆n and c̃ ∈ ∆n be defined by (r̃, c̃) = (1− ε′

8 )(r, c) + ε′

8n (1n,1n).

Step 2: Compute X̃ = Accelerated Sinkhorn(C, η, r̃, c̃, ε
′

2 ).

Step 3: Round X̃ to X̂ using Altschuler et al. (2017, Algorithm 2) such that X̂1n = r and
X̂>1n = c.
Output: X̂.

reduce the order of n. As such, the arithmetic operations for each iteration is O(n2) and
is exactly the same as Sinkhorn (Cuturi, 2013), APDAGD (Dvurechensky et al., 2018)
and AAM (Guminov et al., 2021). Combining Algorithm 6 and Altschuler et al. (2017,
Algorithm 2), we are ready to present the pseudocode of our main algorithm in Algorithm 7.
The regularization parameter η is set as before, and Step 1 is necessary since accelerated
Sinkhorn is not well behaved if the marginal distributions have sparse support.
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5.2 Technical lemmas

We first present two technical lemmas which are essential in the analysis of Algorithm 6.
The first lemma provides an inductive relationship on the quantity

δt = ϕ(ǔt, v̌t)− ϕ(u?, v?), (32)

where (u?, v?) is an optimal solution of the dual entropic regularized OT problem in Eq. (5)
that satisfies Lemma 4. To facilitate the discussion, we recall Eq. (10) with ‖A‖1→2 =

√
2

as follows,

ϕ(u′, v′)− ϕ(u, v)−
(
u′ − u
v′ − v

)>
∇ϕ(u, v) ≤

∥∥∥∥(u′ − uv′ − v

)∥∥∥∥2

, (33)

which will be used in the proof of the first lemma.

Lemma 22. Let {(ǔt, v̌t)}t≥0 be the iterates generated by Algorithm 6 and (u?, v?) be an
optimal solution of the dual entropic regularized OT problem. Then, we have

δt+1 ≤ (1− θt)δt + θ2
t

(∥∥∥∥(u? − ũtv? − ṽt
)∥∥∥∥2

−
∥∥∥∥(u? − ũt+1

v? − ṽt+1

)∥∥∥∥2
)
.

Proof Using Eq. (33) with (u′, v′) = (ùt, v̀t) and (u, v) = (ūt, v̄t), we have

ϕ(ùt, v̀t) ≤ ϕ(ūt, v̄t) + θt

(
ũt+1 − ũt
ṽt+1 − ṽt

)>
∇ϕ(ūt, v̄t) + θ2

t

∥∥∥∥(ũt+1 − ũt
ṽt+1 − ṽt

)∥∥∥∥2

.

After simple calculations, we find that

ϕ(ūt, v̄t) = (1− θt)ϕ(ūt, v̄t) + θtϕ(ūt, v̄t),(
ũt+1 − ũt
ṽt+1 − ṽt

)>
∇ϕ(ūt, v̄t) = −

(
ũt − ūt
ṽt − v̄t

)>
∇ϕ(ūt, v̄t) +

(
ũt+1 − ūt
ṽt+1 − v̄t

)>
∇ϕ(ūt, v̄t).

Putting these pieces together yields that

ϕ(ùt, v̀t) ≤ θt

ϕ(ūt, v̄t) +

(
ũt+1 − ūt
ṽt+1 − v̄t

)>
∇ϕ(ūt, v̄t) + θt

∥∥∥∥(ũt+1 − ũt
ṽt+1 − ṽt

)∥∥∥∥2

︸ ︷︷ ︸
I

 (34)

+ (1− θt)ϕ(ūt, v̄t)− θt
(
ũt − ūt
ṽt − v̄t

)>
∇ϕ(ūt, v̄t)︸ ︷︷ ︸

II

.

We first bound the term I. Indeed, by the update formula for (ũt+1, ṽt+1) and the definition
of ∇ϕ, we have(

u− ũt+1

v − ṽt+1

)>(
∇ϕ(ūt, v̄t) + 2θt

(
ũt+1 − ũt
ṽt+1 − ṽt

))
= 0 for all (u, v) ∈ R2n.
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Letting (u, v) = (u?, v?) and rearranging the resulting equation yields that(
ũt+1 − ūt
ṽt+1 − v̄t

)>
∇ϕ(ūt, v̄t) =

(
u? − ūt
v? − v̄t

)>
∇ϕ(ūt, v̄t)

+θt

(∥∥∥∥(u? − ũtv? − ṽt
)∥∥∥∥2

−
∥∥∥∥(u? − ũt+1

v? − ṽt+1

)∥∥∥∥2

−
∥∥∥∥(ũt+1 − ũt

ṽt+1 − ṽt
)∥∥∥∥2

)
.

Using the convexity of ϕ, we have(
u? − ūt
v? − v̄t

)>
∇ϕ(ūt, v̄t) ≤ ϕ(u?, v?)− ϕ(ūt, v̄t).

Putting these pieces together yields that

I ≤ ϕ(u?, v?) + θt

(∥∥∥∥(u? − ũtv? − ṽt
)∥∥∥∥2

−
∥∥∥∥(u? − ũt+1

v? − ṽt+1

)∥∥∥∥2
)
. (35)

We then bound the term II. Indeed, we see from the definition of (ūt, v̄t) that

−θt
(
ũt − ūt
ṽt − v̄t

)
= θt

(
ūt

v̄t

)
+ (1− θt)

(
ǔt

v̌t

)
−
(
ūt

v̄t

)
= (1− θt)

(
ǔt − ūt
v̌t − v̄t

)
.

Combining the above equation with the convexity of ϕ, we have

II = (1− θt)

(
ϕ(ūt, v̄t) +

(
ǔt − ūt
v̌t − v̄t

)>
∇ϕ(ūt, v̄t)

)
≤ (1− θt)ϕ(ǔt, v̌t). (36)

Plugging Eq. (35) and Eq. (36) into Eq. (34) yields that

ϕ(ùt, v̀t) ≤ (1− θt)ϕ(ǔt, v̌t) + θtϕ(u?, v?) + θ2
t

(∥∥∥∥(u? − ũtv? − ṽt
)∥∥∥∥2

−
∥∥∥∥(u? − ũt+1

v? − ṽt+1

)∥∥∥∥2
)
.

Since (ǔt+1, v̌t+1) is obtained by a coordinate update from (ut, vt), we have ϕ(ut, vt) ≥
ϕ(ǔt+1, v̌t+1). By the definition of (ut, vt), we have ϕ(ût, v̂t) ≥ ϕ(ut, vt). Since (ût, v̂t) is
obtained by a coordinate update from (ùt, v̀t), we have ϕ(ùt, v̀t) ≥ ϕ(ût, v̂t). Collecting all
of these results leads to

ϕ(ǔt+1, v̌t+1)− ϕ(u?, v?) ≤ (1− θt)(ϕ(ǔt, v̌t)− ϕ(u?, v?))

+θ2
t

(∥∥∥∥(u? − ũtv? − ṽt
)∥∥∥∥2

−
∥∥∥∥(u? − ũt+1

v? − ṽt+1

)∥∥∥∥2
)
.

This completes the proof.

The second lemma provides an upper bound for δt defined by Eq. (32) where {(ǔt, v̌t)}t≥0

are generated by Algorithm 6 and (u?, v?) is an optimal solution defined by Corollary 4.
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Lemma 23. Let {(ǔt, v̌t)}t≥0 be the iterates generated by Algorithm 6 and (u?, v?) be an
optimal solution of the dual entropic regularized OT problem satisfying that ‖(u?, v?)‖ ≤√

2nR where R is defined in Corollary 4. Then, we have

δt ≤
8nR2

(t+ 1)2
.

Proof By simple calculations, we derive from the definition of θt that θt+1

θt
=
√

1− θt+1.
Therefore, we conclude from Lemma 22 that(

1− θt+1

θ2
t+1

)
δt+1 −

(
1− θt
θ2
t

)
δt ≤

∥∥∥∥(u? − ũtv? − ṽt
)∥∥∥∥2

−
∥∥∥∥(u? − ũt+1

v? − ṽt+1

)∥∥∥∥2

.

Equivalently, we have(
1− θt
θ2
t

)
δt +

∥∥∥∥(u? − ũtv? − ṽt
)∥∥∥∥2

≤
(

1− θ0

θ2
0

)
δ0 +

∥∥∥∥(u? − ũ0

v? − ṽ0

)∥∥∥∥2

.

Since θ0 = 1 and ũ0 = ṽ0 = 0n, we have δt ≤ θ2
t−1‖(u?, v?)‖2 ≤ 2nR2θ2

t−1.
The remaining step is to show that 0 < θt ≤ 2

t+2 . Indeed, the claim holds when t = 0

as we have θ0 = 1. Assume that the claim holds for t ≤ t0, i.e., θt0 ≤ 2
t0+2 , we have

θt0+1 =
2

1 +
√

1 + 4
θ2t0

≤ 2

t0 + 3
.

Putting these pieces together yields the desired inequality for δt.

5.3 Main results

We present an upper bound for the number of iterations required by Algorithm 6. Note that
the per-iteration progress of Algorithm 6 is measured by the function ρ : Rn+ × Rn+ → R+

given by: ρ(a, b) := 1>n (b− a) +
∑n

i=1 ai log(aibi ).

Theorem 24. Let {(ut, vt)}t≥0 be the iterates generated by Algorithm 6. The number of
iterations required to reach the stopping criterion Et ≤ ε′ satisfies

t ≤ 1 +

(
16
√
nR

ε′

)2/3

,

where R > 0 is defined in Lemma 3.

Proof We first claim that

ϕ(ut, vt)− ϕ(ǔt+1, v̌t+1) ≥ 1

2

(
‖r(B(ut, vt))− r‖21 + ‖c(B(ut, vt))− c‖21

)
. (37)

By the definition of ϕ, we have

ϕ(ut, vt)− ϕ(ǔt+1, v̌t+1) = log(‖B(ut, vt)‖1) (38)

− log(‖B(ǔt+1, v̌t+1)‖1)− (ut − ǔt+1)>r − (vt − v̌t+1)>c.
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From the update formula for (ût, v̂t) and (ǔt+1, v̌t+1), it is clear that ‖B(ût, v̂t)‖1 = 1 and
‖B(ǔt+1, v̌t+1)‖1 = 1 for all t ≥ 0. Then, we derive from the update formula for (ut, vt)
that ‖B(ut, vt)‖1 = 1 for all t ≥ 1. Therefore, we have

ϕ(ut, vt)− ϕ(ǔt+1, v̌t+1) = −(ut − ǔt+1)>r − (vt − v̌t+1)>c

= (log(r)− log(r(B(ut, vt))))>r + (log(c)− log(c(B(ut, vt))))>c.

Since 1>n r = 1>n r(B(ut, vt)) = 1>n c = 1>n c(B(ut, vt)) = 1, we have

ϕ(ut, vt)− ϕ(ǔt+1, v̌t+1) = ρ(r, r(B(ut, vt))) + ρ(c, c(B(ut, vt))).

Using Altschuler et al. (2017, Lemma 4), we derive Eq. (37) as desired.
By the definition of (ut, vt), we have ϕ(ǔt, v̌t) ≥ ϕ(ut, vt). Plugging this inequality into

Eq. (37) together with the Cauchy-Schwarz inequality yields

ϕ(ǔt, v̌t)− ϕ(ǔt+1, v̌t+1) ≥ 1

4
E2
t .

Therefore, we conclude that

ϕ(ǔt, v̌t)− ϕ(ǔt+1, v̌t+1) ≥ 1

4

 t∑
i=j

E2
i

 for any j ∈ {1, 2, . . . , t}.

Since ϕ(ǔt+1, v̌t+1) ≥ ϕ(u?, v?) for all t ≥ 1, we have ϕ(ǔj , v̌j)− ϕ(ǔt+1, v̌t+1) ≤ δj . Then,
it follows from Lemma 23 that

t∑
i=j

E2
i ≤

32nR2

(j + 1)2
.

Putting these pieces together with the fact that Et ≥ ε′ as soon as the stopping criterion is
not fulfilled yields

32nR2

(j + 1)2(t− j + 1)
≥ (ε′)2.

Since this inequality holds true for all j ∈ {1, 2, . . . , t}, we assume without loss of generality
that t is even and let j = t/2. Then, we obtain that

t ≤ 1 +

(
16
√
nR

ε′

)2/3

.

This completes the proof of the theorem.

We are ready to present the complexity bound of Algorithm 7 for solving the OT problem
in Eq. (1). Note that ε′ = ε

8‖C‖∞ is defined using the desired accuracy ε > 0.

Theorem 25. The accelerated Sinkhorn scheme for approximating optimal transport (Al-
gorithm 7) returns an ε-approximate transportation plan (cf. Definition 1) in

O

(
n7/3‖C‖4/3∞ (log(n))1/3

ε4/3

)
arithmetic operations.
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Proof Applying the same argument which is used in Theorem 12, we obtain that 〈C, X̂〉−
〈C,X?〉 ≤ ε where X̃ = Accelerated Sinkhorn(C, η, r̃, c̃, ε

′

2 ) in Step 2 of Algorithm 7.

It remains to bound the number of iterations required by Algorithm 6 to reach the
stopping criterion Et ≤ ε′

2 . Using Theorem 24, we have

t ≤ 1 +

(
32
√
nR

ε′

)2/3

.

By the definition of R (cf. Lemma 3), η = ε
4 log(n) and ε′ = ε

8‖C‖∞ , we have

t ≤ 1 +

(
32
√
nR

ε′

)2/3

≤ 1 +

(
256
√
n‖C‖∞
ε

(
‖C‖∞
η

+ log(n)− log

(
min

1≤i,j≤n
{ri, cj}

)))2/3

≤ 1 +

(
256
√
n‖C‖∞
ε

(
4 log(n)‖C‖∞

ε
+ log(n)− log

(
ε

64n‖C‖∞

)))2/3

= O

(
n1/3‖C‖4/3∞ (log(n))1/3

ε4/3

)
.

Since each iteration of Algorithm 6 requires O(n2) arithmetic operations, the total number

of arithmetic operations required by Step 2 of Algorithm 7 is O(n7/3‖C‖4/3∞ (log(n))1/3ε−4/3).
Computing two vectors r̃ and c̃ in Step 1 of Algorithm 7 requires O(n) arithmetic operations
and Altschuler et al. (2017, Algorithm 2) requires O(n2) arithmetic operations. Therefore,

the complexity bound of Algorithm 7 is O(n7/3‖C‖4/3∞ (log(n))1/3ε−4/3).

Remark 26. Theorem 25 shows that the complexity bound of accelerated Sinkhorn is better
than that of Sinkhorn and Greenkhorn in terms of 1/ε but appears not to be near-linear
in n2. Thus, our algorithm is recommended when n � 1/ε. This occurs if the desired
solution accuracy is relatively small, saying 10−4, and the examples include the application
problems from economics and operations research. In contrast, Sinkhorn and Greenkhorn
are recommended when n � 1/ε. This occurs if the desired solution accuracy is relatively
large, saying 10−2, and the examples include the application problems from image processing.

6. Experiments

In this section, we conduct the experiments to evaluate Greenkhorn, accelerated Sinkhorn
and APDAMD on synthetic data and real images from the MNIST Digits dataset1. We use
Sinkhorn (Cuturi, 2013), APDAGD (Dvurechensky et al., 2018) and GCPB2 (Genevay et al.,
2016) as the baseline approaches. Since the focus of this paper is the entropic regularized

1. http://yann.lecun.com/exdb/mnist/
2. GCPB is simply an application of stochastic averaged gradient (Schmidt et al., 2017) for solving the dual

entropic regularized OT problem.
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Figure 1: Comparative performance of Sinkhorn v.s. Greenkhorn, APDAGD v.s. AP-
DAMD and Sinkhorn v.s. accelerated Sinkhorn on synthetic images.

algorithms, we exclude the combinatorial algorithms from our experiment and refer to Dong
et al. (2020) for an excellent comparative study.

In the literature, Greenkhorn and APDAGD were shown to outperform the Sinkhorn
algorithm in terms of row/column updates (Altschuler et al., 2017; Dvurechensky et al.,
2018) and we repeat the comparisons for the sake of completeness. For parameter tuning in
the implementation of Greenkhorn, accelerated Sinkhorn and APDAMD, we follow most of
the setups as shown in Algorithm 1, 3 and 6 but employ more aggressive choice of stepsize
for the coordinate gradient updates in Algorithm 6. To obtain an optimal value of the OT
problem, we employ the default LP solver in MATLAB.

6.1 Synthetic images

To generate the synthetic images, we adopt the process from Altschuler et al. (2017) and
evaluate the performance of different algorithms on these synthetic images. The trans-
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portation distance is defined between two synthetic images while the cost matrix is defined
based on the `1 distances among locations of pixel in the images. Each image is of size 20
by 20 pixels and generated by means of randomly placing a foreground square in a black
background. Furthermore, a uniform distribution on [0, 1] is used for the intensities of the
pixels in the background while a uniform distribution on [0, 50] is employed for the pixels
in the foreground. We fix the proportion of the size of the foreground square as 10% of the
whole images and implement all candidate algorithms.

We use the standard metrics to assess the performance of all the candidate algorithms.
The first metric d(.) is an `1 distance between the row, column outputs of some algorithm A
and the corresponding transportation polytope of the probability measures, which is given
by:

d(A) := ‖r(A)− r‖1 + ‖c(A)− c‖1

where r(A) and c(A) are the row and column obtained from the output of the algorithm
A and r and c are row and column vectors of the original probability measures. The sec-
ond metric is defined as competitive ratio log(d(A1)/d(A2)) where d(A1) and d(A2) are
the distances between the row, column outputs of algorithms A1 and A2 and the trans-
portation polytope. We perform three pairwise comparative experiments on 10 randomly
generated data: Sinkhorn v.s. Greekhorn, APDAGD v.s. APDAMD and Sinkhorn v.s.
accelerated Sinkhorn. To further evaluate these algorithms, we compare their performance
with respect to different choices of regularization parameter η ∈ {1, 1

5 ,
1
9} while using the

value of the OT problem as the baseline approach. The maximum number of iterations is
T = 5. Figure 1 summarizes the experimental results. The images in the first row show the
comparative performance of Sinkhorn and Greenkhorn in terms of the row/column updates.
In the leftmost image, the comparison uses distance to transportation polytope d(A) where
A is either Sinkhorn or Greenkhorn. In the middle image, the maximum, median and min-
imum values of the competitive ratios log(d(A1)/d(A2)) on 10 images are utilized for the
comparison where A1 is Sinkhorn and A2 is Greenkhorn. In the rightmost image, we vary
the regularization parameter η ∈ {1, 1

5 ,
1
9} with these algorithms and using the value of the

unregularized OT problem as the baseline. The other rows of images present comparative
results for APDAGD v.s. APDAMD and Sinkhorn v.s. accelerated Sinkhorn. We find that
(i) Greenkhorn outperforms Sinkhorn in terms of row/column updates, illustrating the im-
provement from greedy coordinate descent ; (ii) APDAMD with δ = n and φ = (1/2n)‖ · ‖2
is more robust than APDAGD, illustrating the advantage of using mirror descent and line
search with ‖ · ‖∞; (iii) accelerated Sinkhorn outperforms Sinkhorn in terms of row/column
updates, illustrating the improvement from estimated sequence and monotone search.

6.2 MNIST images

We proceed to the comparison between different algorithms on real images, using essentially
the same evaluation metrics as in the synthetic images. The MNIST dataset consists of
60,000 images of handwritten digits of size 28 by 28 pixels. To ensure that the masses of
probability measures are dense, which leads to a tight dependence on n for our algorithms,
we add a very small noise term (10−6) to all zero elements in the measures and then
normalize them so that their sum is 1. The maximum number of iterations is T = 5.
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Figure 2: Comparative performance of Sinkhorn v.s. Greenkhorn, APDAGD v.s. AP-
DAMD and Sinkhorn v.s. accelerated Sinkhorn on the MNIST real images.

Figures 2 and 3 summarize the experimental results on MNIST. In the first row of Fig-
ure 2, we compare Sinkhorn and Greenkhorn in terms of row/column updates. The leftmost
image specifies the distances d(A) to the transportation polytope for the algorithm A, which
is either Sinkhorn or Greenkhorn; the middle image specifies the maximum, median and
minimum of competitive ratios log(d(A1)/d(A2)) on ten random pairs of MNIST images,
where A1 and A2 respectively correspond to Sinkhorn and Greenkhorn; the rightmost im-
age specifies the values of the entropic regularized OT problem with varying regularization
parameters η ∈ {1, 1

5 ,
1
9}. The remaining rows present comparative results for APDAGD

v.s.APDAMD and Sinkhorn v.s.accelerated Sinkhorn. We observe that (i) the comparative
performances of Sinkhorn v.s.Greenkhorn and APDAGD v.s.APDAMD are consistent with
those on synthetic images; (ii) accelerated Sinkhorn deteriorates but remains better than
Sinkhorn; (iii) APDAMD is more robust than APDAGD and GCPB.
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Figure 3: Performance of GCPB, APDAGD and APDAMD in term of time on the MNIST
real images. These images specify the values of entropic regularized OT with
varying regularization parameter η ∈ {1, 1

5 ,
1
9}, demonstrating the robustness of

APDAMD.

7. Conclusion

We first show that the complexity bound of Greenkhorn can be improved to Õ(n2ε−2), which
matches the best known bound of Sinkhorn. Then, we propose APDAMD by generalizing
APDAGD with a prespecified mirror mapping φ and show that it achieves the complex-
ity bound of Õ(n2

√
δε−1) where δ > 0 refers to the regularity of φ. We prove that the

complexity bound of Õ(min{n9/4ε−1, n2ε−2}) proved for APDAGD is invalid and prove a
refined complexity bound of Õ(n5/2ε−1). Moreover, we propose a deterministic accelerated
variant of Sinkhorn via appeal to estimate sequence techniques and prove the complexity
bound of Õ(n7/3ε−4/3). As such, we see that accelerated Sinkhorn outperforms Sinkhorn
and Greenkhorn in terms of 1/ε and APDAGD and AAM in terms of n. Experiments on
synthetic data and real images demonstrate the efficiency of our algorithms.

There are a few promising future directions arising from this work. First, it is important
to develop fast algorithms to compute dimension-reduced versions of OT. Indeed, the OT
suffers from the curse of dimensionality (Dudley, 1969; Fournier and Guillin, 2015), which
means that a large amount of samples from two continuous measures is necessary to approx-
imate the true OT between them. This can be mitigated when data lie on low-dimensional
manifolds (Weed and Bach, 2019; Paty and Cuturi, 2019) but the sample complexity still
remain pessimistic even in that case. This motivates recent works on efficient dimension-
reduced OT, e.g., the sliced OT (Bonneel et al., 2015), generalized sliced OT (Kolouri
et al., 2019), distributional sliced OT (Nguyen et al., 2021), further inspiring us to explore
the application of our algorithms to these settings and eventually automatic differentiation
schemes. Second, there have been several application problems arising from the interplay
between OT and adversarial ML; see Bhagoji et al. (2019) and Pydi and Jog (2020) for
example. However, it is known that OT has robustness issues when there are outliers in
the supports of probability measures. Robust OT had been introduced to deal with these
robustness issues (Balaji et al., 2020) where the idea is to relax the marginal constraints via
certain probability divergences, such as KL divergence. It is to limit the amount of masses
that the transportation plan will assign for the outliers in the supports of measures. Similar
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to OT, a key practical question with robust OT is computational. As such, we manage to
develop efficient algorithms for the robust OT problem in the future work.
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