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Abstract
Motivated by analyzing long-term physiological time series, we design a robust and scalable spectral
embedding algorithm that we refer to as RObust and Scalable Embedding via LANdmark Diffusion
( Roseland). The key is designing a diffusion process on the dataset where the diffusion is done via
a small subset called the landmark set. Roseland is theoretically justified under the manifold model,
and its computational complexity is comparable with commonly applied subsampling scheme such
as the Nyström extension. Specifically, when there are n data points in Rq and nβ points in the
landmark set, where β ∈ (0,1), the computational complexity of Roseland is O(n1+2β + qn1+β),
while that of Nystrom isO(n2.81β+qn1+2β). To demonstrate the potential of Roseland, we apply it to
three datasets and compare it with several other existing algorithms. First, we apply Roseland to the
task of spectral clustering using the MNIST dataset (70,000 images), achieving 85% accuracy when
the dataset is clean and 78% accuracy when the dataset is noisy. Compared with other subsampling
schemes, overall Roseland achieves a better performance. Second, we apply Roseland to the task
of image segmentation using images from COCO. Finally, we demonstrate how to apply Roseland
to explore long-term arterial blood pressure waveform dynamics during a liver transplant operation
lasting for 12 hours. In conclusion, Roseland is scalable and robust, and it has a potential for
analyzing large datasets.

1. Introduction

Learning from data has been an intriguing topic in many scientific fields, particularly the biomedical
field. While there are many different types of datasets in the biomedical field, in this paper we focus
on the biomedical waveforms (or time series, signals); for example, the electrocardiogram (Barrett
et al. (2014)), the arterial blood pressure signal (Vlachopoulos et al. (2011)), etc. It has been
well known that rich information is available in these signals, particularly the nonlinear dynamics.
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However, to our knowledge, how to extract useful information from biomedical waveforms for
clinical usage is relatively less discussed compared with other types of datasets, and most of existing
literature on the biomedical signal processing focus on simplifying the waveform information into
scalars for clinical purposes (Chen et al. (1997); O’Rourke and Nichols (2004); Avolio et al. (2009);
Rudnick et al. (2015); Teboul et al. (2016)). While this has been successfully applied to clinical
medicine, we may lose information encoded in the original waveform via the simplification steps.
One solution to depict intrinsic dynamics directly from the original waveform is obtaining as many
features as possible, and selecting suitable parameters for the learning purpose (Hatib et al. (2018)).
Another solution is applying manifold learning algorithms to the original physiological waveforms
(Lin et al. (2021a); Wang et al. (2020)). The basic idea in (Lin et al. (2021a); Wang et al. (2020))
is truncating the physiological waveform into pieces according to some rules, and then apply the
spectral embedding algorithm, like the diffusion maps (DM) (Coifman and Lafon (2006)), to embed
those pieces into a finite dimensional Euclidean space, which represents the intrinsic dynamics. If the
physiological waveform is embedded into the three dimensional Euclidean space, the physiological
waveform is converted into a three dimensional image so that users can visualize the waveform from
a different perspective.

We hypothesize that if the technique shown in Lin et al. (2021a); Wang et al. (2020) could be
efficiently applied to analyze long-term physiological waveforms of length on the order of days or
weeks, it would be beneficial to help recognize fine structures/patterns that are undetectable even to
the human eyes. Note that while the idea in Lin et al. (2021a); Wang et al. (2020) is natural and
potential, unfortunately, it is not possible to further explore its clinical applicability and apply it to
time series of lengths actually encountered in real clinical data sets due to its poor computational
scalability. Specifically, due to the prohibiting computational complexity inherited in most spectral
decomposition based machine learning algorithms, like DM applied in Lin et al. (2021a); Wang
et al. (2020), we are not able to efficiently apply these algorithms to study an ABP waveform lasting
for 12 hours or longer.

1.1 Challenges and related work – scalability and robustness

Spectral based nonlinear dimension reduction algorithms are challenged by the scalability issue,
for example, the diffusion map (DM) (Coifman and Lafon (2006)). Take electrocardiogram (ECG)
into account. Suppose we are interested in studying the dynamics of the electrophysiology of each
heartbeat. Note that there are 103 ∼ 104 heartbeats in 1 hour long ECG, and hence roughly 106

heartbeats in 14 days. Therefore, the amount of data points cannot be handled efficiently by naive
spectral based algorithms. In practice, it is natural to consider subsampling the dataset. However, we
may lose information by the subsampling scheme. As a result, although DMworks well and provides
useful clinical information, for example, a visualization of fine details hidden in the time series that
are undetectable to the human eye (Wang et al. (2020)), since it depends on the eigendecomposition,
it is limited to analyzing signals of length about one hour that is sampled at high frequency, like
500Hz.

There have been several solutions toward this scalability challenge. One usual technique is the
k-nearest neighbor (kNN) scheme. See Czaja et al. (2017) for a summary and a recently proposed
randomized kNN approach (Jaffe et al. (2020)). While the kNN scheme has been widely applied, in
general it is not robust to noise. Specifically, it is challenging to estimate pairwise distance robustly,
unless we have extra structure to design a robust metric, for example, in the image analysis (Cheng
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et al. (2009)). If the tangent plane is known, it can help us determine neighbors (Wang et al. (2005));
however, when the dataset is noisy, the local principle component analysis approach to estimate the
tangent space is biased (Johnstone (2007)). In short, the kNN scheme is useful when we have a clean
dataset, or when neighbors can be correctly determined. Otherwise, erroneous nearest neighbors
due to noises could hurt the algorithm performance.

Another practical solution is directly subsampling the dataset, and then recovering the infor-
mation of interest by the Nyström extension (Czaja et al. (2017)). This approach is also called the
Nyström low-rank approximation (Chang et al. (2013)), the kernel extension method (Fowlkes et al.
(2004)), or in general the interpolative decomposition (Martinsson et al. (2011)). There have been
several theoretical justifications for this approach, for example Chang et al. (2013), and has been
widely applied. While it works well for some tasks, this approach is limited by the information loss
during the subsampling process.

Yet another approach is to speed up the matrix decomposition. For example, we can approximate
the kernel decomposition by classical iteration-based algorithms (Halko et al. (2011)). We can also
evaluate the matrix decomposition by designing a randomized algorithm (Rokhlin et al. (2009);
Martinsson et al. (2011)). While this approach has been widely applied, to the best of our knowledge,
there is limited work investigating how this can help spectral embedding algorithms, and how robust
it is to the inevitable noise.

For the robustness issue, one naive idea is “denoising” the dataset before applying any algorithms.
However, it is in general an independent challenging problem. Under the manifold setup, researchers
have proposed several algorithms to denoise the dataset. For example, the “reverse diffusion” scheme
(Hein and Maier (2007)) and the manifold fitting scheme (Fefferman et al. (2018)). We mention
that the algorithm is not scalable, as is mentioned in the paper that it is hard to choose the number
of iterations if the data and noise are of high dimensional. Also, one needs some prior knowledge.
Another approach is to modify the random walk scheme to a non-lazy random walk via diffusion
to obtain a self-consistency Markov chain. But it is under the assumption that the edge information
is known (Steinerberger (2016)), which is not possible in some applications. To our knowledge,
the general theory for the robustness of kernel methods was first studied in El Karoui (2010), and
the analysis was extended to the large noise setup (El Karoui and Wu (2016)). The authors proved
that the spectral embedding methods can be efficiently stabilized by forcing the random walk to
be a non-lazy one on the complete graph; that is, removing the diagonal entries from the affinity
matrix before constructing the transition matrix. Unfortunately, while it could help stabilize the
noise impact, the algorithm is not scalable since we still need to handle a dense transition matrix
associated with a complete graph.

1.2 Our contribution

Unlike the above, in this paper we propose a novel algorithm that simultaneously resolves two
common challenges when we apply spectral embedding algorithms—robustness and scalability.
The algorithm is intuitive and can be summarized in three steps. First, we find a “small” subset of
points from the whole dataset, either randomly or by design, or collect a separate clean point cloud
of small size, which we call a landmark set. Second, we construct an affinity matrix recording the
affinities between points in the whole dataset and the landmark set, and normalize it properly. This
normalized affinity matrix is thin; that is, there are fewer columns than rows. Third, evaluate the
singular vectors and singular values of the normalized affinity matrix, and embed the dataset using
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the singular vectors and singular values. As wewill make clear soon, this algorithm is directly related
to the diffusion process, so we coin the proposed algorithm the RObust and Scalable Embedding
via LANdmark Diffusion (Roseland). We will show that the proposed Roseland algorithm can be
applied to efficiently and robustly handle large datasets that cannot be efficiently handled by the
traditional algorithm like DM. We emphasize that the solution is generic and is not limited to
analyzing physiological waveforms.

In addition to comparing Roseland with other algorithms in the spectral clustering and image
segmentation problems, we demonstrate how to apply Roseland to explore the long-term arterial
blood pressure waveform dynamics during a liver transplant operation lasting longer than 12 hours.
For the sake of self-containedness, we also summarize and explain the theoretical results shown in
Shen and Wu (2022), particularly the spectral convergence and robustness of Roseland under the
manifold setup.

2. The proposed Roseland algorithm

Before introducing the proposed Roseland algorithm, we start with some well developed algorithms
that are closely related to Roseland from different angles, including DM, Nyström extension, and
locally linear landmarks (LLL). In this section, we assume that we have a dataset X = {xi}ni=1 ⊆

(M,d), whereM is a metric space with the metric d. Also, take a set Y = {yk}mk=1 ⊆ (M,d), which
might or might not be a subset of X. In Roseland and LLL, we callY the landmark set. In Nyström
extension, Y ⊂ X.

2.1 Related methods

2.1.1 Diffusion Maps

We start with the well-known DM (Coifman and Lafon (2006)), which we shall see to be closely
related to Roseland. First, pre-fix a non-negative kernel function K and a bandwidth parameter
ε > 0; for example, a Gaussian kernel. Then, compute the affinity matrix W ∈ Rn×n by

Wi j := K
(
d(xi, xj)
√
ε

)
(1)

and the corresponding degree matrix D ∈ Rn×n, which is a diagonal matrix defined as Dii :=∑n
j=1 Wi j . For a fixed α ∈ [0,1], the α-normalized affinity matrix W (α) ∈ Rn×n (Coifman and Lafon

(2006)) is defined as W (α)i j := Wi j

Dα
iiD

α
j j
, where W (α)i j is called the α-normalized affinity between xi and

xj . Note that W (0) = W defined in (1). In some applications when we want to remove the density
effect caused by data sampling, we set α = 1. With the α-normalized affinity matrix W (α), one can
analogously define the associated degree matrix D(α) ∈ Rn×n by D(α)ii :=

∑n
j=1 W (α)i j . D(α)ii is called

the degree of the i-th data point xi. Intuitively, it represents how strong xi is attached to the dataset.
The graph Laplacian (GL) is defined as L(α) := I − A(α), where

A(α) := (D(α))−1W (α) (2)

is the associated transition matrix. Clearly, A(α) is row stochastic, and it defines a random walk
on the dataset X. Now let Ũ(α) ∈ Rn×n be eigenvectors of A(α) with corresponding eigenvalues
1 = λ1 > λ2 ≥ . . . ≥ λn.
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With the spectral decomposition of the GL, the chosen normalization α, embedding dimension
q′ and diffusion time t, DM embeds X via the map

Φt : xi 7→ e>i Ũ(α)q′ (Λ
(α)
q′ )

t ∈ Rq
′

, (3)

where Ũ(α)q′ ∈ R
n×q′ to be a matrix consisting of the second to the (q′ + 1)-th columns of Ũ(α) and

Λ
(α)
q′ := diag(λ2, . . . , λq′+1). The diffusion distance (DD) with the diffusion time t > 0 is defined as

Dt (xi, xj) := ‖Φt (xi) − Φt (xj)‖Rq′ . (4)

Note that in DM, we do not consider any subset Y.
As it is expensive to perform eigen-decomposition of dense matrices, one common practice of

DM or general spectral embedding methods is to use the kNN scheme to construct a rather sparse
affinity matrix; that is, set Wi j = 0 when xj is not within the first k nearest neighbors of xi, where k
is chosen by the user. Another way is to use a compactly supported kernel K . For example, K(t) is
1 when t ∈ [0,1] and 0 when t > 1.

2.1.2 Nyström Extension

Subsampling is a common approach to handle a large dataset. A typical and widely applied
algorithm in this direction is the Nyström extension (Belabbas and Wolfe (2009); Fowlkes et al.
(2004); Williams and Seeger (2001)). The basic idea is running the eigen-decompostion on a small
subset Y of the whole dataset X, and then extending the eigenvectors to X before embedding the
dataset. In this work, for the sake of a fair comparison, we apply the Nyström extension (Lafon et al.
(2006); Singer and Wu (2012); Shen and Wu (2022)) that respects the diffusion property considered
in DM but not the vanilla Nyström extension. For the sake of self-containedness, we provide details
about this Nyström extension algorithm. First, apply DM toY and obtain eigenvectors Ũ(α)

Y
∈ Rm×m

with corresponding eigenvalues 1 = l1 > l2 ≥ . . . ≥ lm. Set Λ(α)
Y
= diag

[
l1 . . . lm

]
∈ Rm×m.

Next, calculate E ∈ R(n−m)×m, where Ei j is the similarity between the point xi ∈ X \ Y and the
point yj ∈ Y. Let Dn−m be the degree matrix of E . With E and Dn−m, extend Ũ(α)

Y
to the rest n−m

points in X \ Y by:
Ũ(α)
X\Y
= D−1

n−mEŨ(α)
Y
(Λ
(α)
Y
)−1 ∈ R(n−m)×m . (5)

The column vectors in the matrix

Ũ(α)nys =


Ũ(α)
Y

− − −

Ũ(α)
X\Y

 ∈ R
n×m (6)

are used to embed thewhole dataset in the followingway. SetΛ(α)nys = diag
[
l1 . . . lm 0 . . . 0

]
∈

Rn×n. For q′ < m, the associated Nyström embedding is then defined by

Φ
(Nyström)
t : xi 7→ e>i Ũ(α)nys,q′(Λ

(α)
nys,q′)

t , (7)

where t > 0 is the chosen diffusion time, Ũ(α)nys,q′ ∈ R
n×q′ comes from the second to the (q′ + 1)-th

columns of Ũ(α)
Y

, and Λ(α)nys,q′ = diag
[
l2 . . . lq′+1

]
∈ Rq

′×q′. Note that Ũ(α)
Y

and Λ(α)nys,q′ are
in parallel of the top q′ non-trivial eigen-pairs used in DM. In short, in this Nyström extension
algorithm, a point x ∈ X \ Y is embedded by averaging all of the embeddings in Y with a weight
determined by the similarity between x and Y.
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2.1.3 Locally Linear Landmarks

Working with a subset of the whole database, called a landmark or a reference set, is another common
approach when the dataset is large. We consider the Locally Linear Landmarks (LLL) (Vladymyrov
and Carreira-Perpinán (2013)) as an example for comparison in this work. In this case,M = Rq and
d(xi, xj) = ‖xi − xj ‖Rq ; that is, the dataset and the landmark set are both in the Euclidean space. The
main idea of LLL is approximating the dataset by a globally nonlinear but locally linear geometric
structure, which is assumed to be a manifold in Vladymyrov and Carreira-Perpinán (2013), around
the chosen landmark set, and then constraining the solution to follow this locally linear structure as
a linear combination of some points in the chosen landmark set. Explicitly, solve

arg min
Z∈Rn×m ,Z1=1

‖ZY − X ‖2 ,

where X ∈ Rn×q is the data matrix formed from X, Y ∈ Rm×q is the landmark data matrix formed
fromY, and Z consists of the weights of linear combination, which is suggested to be sparse so that
only the closestKZ ∈ N points in the landmark set is chosen. HereKZ is usually assumed to be smaller
than the size of Y. Z can be determined by solving the linear system

∑m
k=1(xn − yi)

>(xn − yj)znk ,
and then normalize to have sum 1.

Next, preprocess the dataset and find the affinity matrix W ∈ Rn×n defined in (1) and its
corresponding degree matrix D ∈ Rn×n. Note that while a more general setup is possible (See
Equation 1 in Vladymyrov and Carreira-Perpinán (2013)), we focus on this commonly applied
framework. Unlike performing the eigen-decomposition of D−1W in DM, instead, one runs the
eigen-decomposition of the matrx D̂−1Ŵ in LLL, where Ŵ = Z>W Z ∈ Rm×m and D̂ = Z>DZ ∈
Rm×m. Let Û ∈ Rm×m be the solution to this smaller problem, where the eigenvectors in Û
are ordered by the corresponding eigenvalues. One can then extend it to the whole set by setting
U = ZÛ ∈ Rn×m. For any downstream tasks, one can use Ûd which consists of the d ≤ m trailing
eigenvectors in Û associated with the smallest eigenvalues. We have some remarks. First, since
Ŵ1 = Z>W Z1 = Z>W1 = Z>D , D̂, in LLL, D̂−1Ŵ is not a transition matrix. Second, LLL
uses eigenvalues to select eigenvectors, but the eigenvectors are not re-scaled by their corresponding
eigenvalues. So the eigenvalues in LLL are used in a different way compared with DM and Nyström
extension we considered in this paper. Third, the calculation of the affinity matrix W and the degree
matrix D is similar to DM. While it is possible to apply a kNN scheme to speed up the algorithm,
this approach is limited, particularly when the metric is not Euclidean.

2.2 The proposed Roseland algorithm

Fix a non-negative kernel function K : R≥0 → R+ with proper decay and regularity; for example, a
Gaussian function. First, construct a landmark-set affinity matrix W (r) ∈ Rn×m, which is defined as

W (r)
ik
= Kε (xi, yk) := K

(
d(xi, yk)
√
ε

)
. (8)

That is, the (i, k)-th entry of W (r) is the similarity between the i-th data point and k-th landmark,
and clearly the larger the distance between two points, the smaller the similarity. Next compute a
diagonal matrix D(R) as

D(R)ii := e>i W (r)(W (r))>1 , (9)
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where 1 is a n × 1 vector with all entries 1, and ei is the unit vector with 1 in the i-th entry. Note
that the superscripts (r) and (R) are purely symbolic indicating that they are not the usual affinity or
degree matrices considered in DM. With W (r) and D(R), we evaluate the SVD of (D(R))−1/2W (r):

(D(R))−1/2W (r) = UΛV>, (10)

where the singular values σ1 ≥ σ2 ≥ . . . ≥ σm ≥ 0 are on the diagonal of the diagonal matrix
Λ, which is a parallel step of the eigen-decomposition of A(0) in DM. Set Ū := (D(R))−1/2U. Take
q′ ∈ N so that q′ ≤ m. Let Ūq′ ∈ R

n×q′ to be a matrix consisting of the second to the (q′ + 1)-th
columns of Ū and Lq′ := diag(σ2

2 , . . . ,σ
2
q′+1). Finally we define the Roseland embedding as

Φ
(R)
t : xi 7→ e>i Ūq′(Lq′)

t , (11)

where t > 0 is the chosen diffusion time, in other words, the i-th data point xi is embedded using
the i-th row of Ūq′ entry-wisly rescaled by [σ2t

2 , · · · , σ
2t
q′+1]. See Algorithm 1 for a summarization

of the Roseland algorithm. We thus define the associated Roseland diffusion distance (RDD) by

D(R)t (xi, xj) := ‖Φ(R)t (xi) − Φ
(R)
t (xj)‖Rq′ . (12)

Figure 1: Main idea of Roseland: to measure the similarity between x1 to x2, instead of diffuse from
x1 to x2 directly, we take a detour and first diffuse x1 to the landmarks y1, y2, y3, and then
diffuse from the landmarks back to x2.

Note that Roseland induces a new affinity matrix on the dataset X via

W (R) := W (r)(W (r))> ∈ Rn×n , (13)

where W (r) is the landmark-set affinity matrix (8). We call W (R) the landmark-affinity matrix, which
is positive and positive-definite. We remark that traditional affinity matrices between data points
are often constructed from one global pre-fixed kernel K , while in Roseland we cannot find a global
fixed kernel K̄ and a bandwidth ε̄ > 0 so that W (R)i j = K̄(d(xi, xj)/

√
ε̄) for all i, j in general. Also
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Algorithm 1 The pseudo-code of Roseland.
1: procedure Input(dataset X = {xi}ni=1 ⊂ (M,d), landmark set Y = {yi}mi=1 ⊂ (M,d), kernel K ,

bandwidth ε > 0, embedding dimension q′ ∈ N, and diffusion time t > 0)
2: Construct the affinity matrix W (r) w.r.t. the landmark set.
3: Construct the degree matrix D(R).
4: Run SVD (D(R))−1/2W (r) = UΛV>, where U is an n × n orthonormal matrix and V is an

m × m orthonormal matrix. Denote singular values as σ1 ≥ σ2 ≥ . . . ≥ 0.
5: Set Ū = (D(R))−1/2U.
6: Let Ūq′ ∈ R

n×q′ be the second to the (q′ + 1)-th columns of Ū. Set Lq′ :=
diag(σ2

2 , σ
2
3 , . . . ,σ

2
q′+1).

7: Embed X via Φ(R)t : xi 7→ e>i Ūq′Lt
q′ ∈ R

q′

8: Output {Φ(R)t (xi)}
n
i=1.

9: end procedure

note that A(R) := (D(R))−1W (R) is a transition matrix on X. Hence, the Roseland algorithm can be
viewed as an alternative way of constructing a Markov process on the dataset X.

In practice, we would suggest to use Roseland when DM cannot be efficiently carried out, and
choose m = nβ for some β < 1/2; for example, β = 0.45. The landmark set Y could be chosen
uniformly from the dataset X or collected separately. In cases that we may not be able to acquire
additional data points as landmark set but have to select the landmark set from the available dataset,
note thatY is independent of X \Y. Thus, we apply Roseland on X \Y usingY as landmarks, and
extend the embedding to Y by the Nyström extension. When |Y| � |X|, the discrepancy of this
approach and the independence setup with original Roseland is negligible, and will asymptotically
vanish.

2.3 Computational complexity

Let n be the size of the dataset, q be the dimension of the ambient space, and [nβ] the size
of the landmark set used in both Roseland and LLL or the subset used in Nyström extension,
where 0 < β < 1 and [x] means the largest integer not exceeding x > 0. The computational
complexity can be divided into three parts. First, construct the affinity matrix and its corresponding
degree matrix (DM, LLL, Roseland, Nyström) or the coordinate matrix (LLL); second, apply the
eigen-decomposition to the transition matrix or the coordinate matrix; third, extend the eigen-
decomposition to the whole database in Nyström and LLL for the purpose of embedding the whole
dataset. Below, we calculate the computational complexity by assuming that the metric is the
ordinary Euclidean distance.

For the first part, in DM and LLL, the construction of the full affinity matrix is O(qn2), where
the dependence on q comes from the calculation of pairwise distance, and the construction of the
degree matrix is O(n2). In practice, computing the full n × n affinity matrix is inefficient from the
perspective of both memory and speed. One can construct a sparse affinity matrix by using the kNN
scheme to save memory, where a sparse affinity matrix with k = nγ, where γ ∈ (0,1), and hence the
degree matrix, is constructed in O(qn1+γ) on average. In LLL, the extra step of calculating Z takes
O(nqK2

Z + nK3
Z ), where nqK2

Z is needed to calculate the Gram matrix and nK3
Z is solving the linear

system, and the extra step of calculating Ŵ and D̂ takes O(KZn2) if the affinity matrix is full, or
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O(KZn1+γ) if the kNN scheme is applied. Since KZ ≤ nβ is suggested to be small, it can be ignored
in the following calculation. In the Nyström extension, the construction of the affinity matrix is
O(qn2β) and the construction of the degree matrix is O(n2β). In Roseland, the construction of the
landmark-set affinity matrix and its associated degree matrix is O(qn1+β).

For the second part, recall that the eigen-decomposition complexity for a full symmetric kernel
matrix M ∈ RN×N can practically achieveO(N2.81) if the Strassen algorithm is chosen for the matrix
multiplication (Demmel et al. (2007)). When M is k-sparse, where k is much smaller than N , the
complexity can be improved to O(N2+η) for an arbitrary η > 0 when k ≤ N0.14 (Yuster and Zwick
(2004)). The SVD complexity for a matrix of size N ×N ′, where N ≥ N ′ is O(NN ′2). We thus have
the complexity of this part for all algorithms.

For the Nyström and LLL, we need the third part. This extension takes O(qn1+2β) for Nyström,
where the dependence on q comes from the calculation of pairwise distances between points in the
landmark set and those in the remaining dataset, and O(n1+2β) for LLL.

With the above calculation, the overall computational complexity isO(qn2+n2.81) forDMwith the
full affinity matrix andO(qn1+γ+n2+η) if the kNN scheme is applied; O(n2.81β+qn1+2β) for Nyström
extension; O(qn2+n2.81β +n1+2β) for LLL with the full affinity matrix and O(qn1+γ+n2.81β +n1+2β)

with the kNN scheme; O(qn1+β + n1+2β) for Roseland.
To see the relationship among different algorithms, suppose γ = β and q is a fixed small

constant. We see that the Nyström extension, LLL and Roseland are faster than DM, and Nyström
runs the fastest in practice. On the other hand, although LLL with the kNN scheme is of the
same computational complexity order as Roseland, due to more intermediate steps, like solving the
linear system for weights, LLL runs more slowly compared with Roseland in practice. In the high
dimensional setup; that is, when q = q(n) so that q/n → γ ∈ (0,∞) when n → ∞, the impact of q
is not negligible. In this case, we can see clearly the benefit of Roseland.

Finally, see Table 1 for a comparison of different algorithms, and see Section 4 for more details
on runtime comparisons in different tasks.

Sparse
affinity?

Sparse matrix for
EVD or SVD?

Subset &
extension?

Use Eigenvalue
in Embedding?

Diffusion
Process?

Space
Complexity

Time
Complexity

DM Full Full EVD No Yes Yes O(qn + n2) O(qn2 + n2.81)

kNN Sparse EVD O(qn + n1+β) O(qn1+β + n2+η), η > 0
Nystrom Full Full EVD Yes Yes Yes O(qn + n1+β) O(n2.81β + qn1+2β)

LLL Full Full EVD Yes Yes No O(qn + n2) O(qn2 + n2.81β + n1+2β)

kNN Full EVD O(qn + n1+β) O(qn1+β + n2.81β + n1+2β)

Roseland Full Full SVD No Yes Yes O(qn + n1+β) O(qn1+β + n1+2β)

Table 1: Comparison between the algorithms. We assume the number of landmarks is m = nβ , for
0 < β < 1 and the number of kNN is k = nβ in this table.

3. Theoretical support

In this section, we summarize two theoretical results shown in the accompanying paper (Shen and
Wu (2022)) that describe the asymptotic behavior and the robustness of Roseland. The first one is
the spectral convergence and the second one is the robustness of Roseland; both results are under
the manifold setup. We refer readers with interest in details to Shen and Wu (2022).
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3.1 Manifold model

Denote the dataset by X = {xi}ni=1 ⊆ R
q. Assume that the observed dataset X is independently

and identically (i.i.d.) sampled from a random vector X : (Ω,F ,P) → Rq, where the range of X is
assumed to be supported on a d-dimensional compact smooth Riemannian manifold (Md,g)without
boundary and isometrically embedded in Rq via ι : Md ↪→ Rq. Suppose the density function of X
on M is pX . Similarly, denote the landmark set by Y = {yi}mi=1 ⊆ R

q. Assume Y is i.i.d. sampled
from a random vector Y : (Ω,F ,P) → Rq, where the range of Y is assumed to be (Md,g) as well.
Suppose the density function of Y on M is pY . Furthermore, assume that X and Y are independent.
Assume m = nβ , where β ∈ (0,1). When we run Roseland, assume the kernel in (8) is Gaussian in
the theoretical analysis; that is, Kε (x, y) = e−‖x−y ‖

2/ε .
For the analysis, consider the following discretization of a function defined on M . Take f ∈ C(M)

and let f ∈ Rn be the discretization of f over X; in other words, we have f i = f (xi). Denote by
∆ the Laplace-Beltrami operator on (M,g). Let (λi,ui) be the i-th eigenpair of −∆, where the
eigenvalues λi ≥ 0 are in the ascending order and ‖ui ‖2 = 1. Under our manifold setup and by the
well known elliptic theory, the spectrum of −∆ is discrete with∞ as the only accumulation point, the
eigenfunctions ui are smooth, and each eigenspace is of finite dimension. To simplify the discussion,
we assume that λi is simple, which holds for generic smooth manifolds. Here is a practical issue
regarding this model that deserves a comment. Note that in practice we are not sure if the dataset
fulfills the assumption, like if the manifold assumption holds or if the density functions are regular.
To our knowledge, if we do not have sufficient prior knowledge, it is an open problem to check if
such assumptions are correct for the dataset we want to analyze. Solving this problem is out of the
scope of this paper. In practice, when we cannot directly verify the assumptions, the method can
be applied directly and compared to other approaches to see which gives the best performance for a
given task, and the algorithm performs well for several real datasets.

3.2 Spectral convergence

Let {vl}nl=1 be the set of eigenvectors of the matrix (D(R))−1W (R) evaluated from the dataset X and
the landmarkY. We now summarize the result that the eigenvectors {vl}nl=1 asymptotically converge
to the eigenfunctions of the Laplace-Beltrami operator of (M,g) as n→∞, and in what sense.

First, note that the eigenvectors vl are in difference Euclidean spaces for different n, hence they
cannot be compared directly with the eigenfunctions of the Laplace-Beltrami operator ∆, which are
smooth functions on M . To make sense of the comparison, the main idea of the proof is introducing
quantities summarized in Table 2 that bridge the discrete and continuous setups. For example, the
quantity K̂ref,ε ,n(x, y) could be viewed as an extrapolation of the similarity W (R)i j between xi and xj
to any two points x and y via the kernel function. The other terms follow the same extrapolation
scheme.

Based on this extrapolation, we could find a function fl ∈ C(M), such that the restriction of fl
on the data X is vl; that is, fl(xi) = vl(i), for i = 1, . . . ,n, and study the convergence of fl as n→∞.
It turns out that there is an one-to-one correspondence between the spectrum of the graph Laplacian
I − (D(R))−1W (R) and its continuous counterpart I − T̂ref,ε ,n. Hence, to study and make sense of the
spectral convergence of I−(D(R))−1W (R)

ε → ∆, we study the spectral convergence of I−T̂ref,ε ,n
ε → ∆.

Let (λε ,n,i,uε ,n,i) be the i-th eigenpair of I−T̂ref,ε ,n
ε , where the eigenvalues λε ,n,i are in the ascending

order, and assume ‖uε ,n,i ‖2 = 1. Fix q′ ∈ N, where q′ is the embedding dimension. If we further
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Discrete Continuous counterpart

Similarity between two points W (R)i j =
∑m

k=1 Kε (xi, yk)Kε (yk, xj) K̂ref,ε ,n(x, y) =
1
m

m∑
j=1

Kε (x, yj)Kε (yj, y)

Degree of xi D(R)ii =
∑

j W (R)i j d̂ref,ε ,n(x) =
1
n

n∑
i=1

K̂ref,ε ,n(x, xi)

Transition operator
[
(D(R))−1W (R)f

]
(i) =

∑n
j=1 W (R)i j f j∑n
j=1 W (R)i j

T̂ref,ε ,n f (x) =
1
n

n∑
i=1

K̂ref,ε ,n(x, xi)

d̂ref,ε ,n(x)
f (xi)

Table 2: Commonly used notations

take ε = ε(m) = ( log(m)
m )1/(4d+11/2), and assume a technical bound that ε ≤ C(q′), where C(q′) is a

constant depends on q′, then, with another technical assumption that 2∇pX (x)
pX (x)

+
∇pY (x)
pY (x)

= 0, there
exists a sequence of signs {an} with an ∈ {1,−1} such that with probability 1 − O(m−2), for all
i < q′, we have 

anuε ,n,i − ui




L∞
= O(ε1/2) ,

��λε ,n,i − λi �� = O(ε3/4) ,

where the implied constants depend on the kernel, the curvature of M , pX and pY . We comment that
the result only guarantees the spectral convergence, while the convergence rate is not optimal. We
mention that when λi is not simple, this result still holds, but we need to use the eigenprojection to
describe the eigenvector convergence statement. Hence, by the well established spectral geometry
theory (Bérard et al. (1994); Portegies (2016)), the Roseland embedding recovers the underlying
manifold, and the embedding can be close to an isometric one when m is sufficiently large (Portegies
(2016)).

3.3 Robustness

In real applications, the dataset is often corrupted by noise, or the dataset is not located precisely on
a manifold. In this case, we shall worry that spectral embedding algorithms might lead us to low
quality, or even misleading results. The robustness issue for DMwas studied in El Karoui (2010); El
Karoui and Wu (2016) and some solutions are proposed. It is suggested in El Karoui and Wu (2016)
to work with the complete graph or a graph with a large number of kNN, and force the random
walk non-lazy; that is, set the diagonal entries of the affinity matrix to 0. While this solution works,
however, it is not scalable. Roseland, on the other hand, automatically enjoys the desired robustness
property (Shen and Wu (2022)), so that it can handle the case when the dataset is contaminated by
noise, or if the dataset is not precisely located on the manifold. We now summarize this robustness
result. Note that we measure similarities between data points by diffusing through all landmarks in
Roseland. This seemingly simple step has a significant consequence. It can be viewed as a surrogate
of knowing true neighbors in the kNN scheme, and it explains the robustness of Roseland. To
appreciate this significance, recall that when the neighboring information is not provided and if the
kNN approach is considered, we need to estimate the neighbors. However, estimating neighbors
from noisy data is error-prone and wrong neighboring information corrupts the DM.

To show the robustness of Roseland, on top of the manifold model in Section 3.1, we assume
that the dataset and the landmark set are corrupted by additive ambient space noise that could be
colored and heterogeneous. That is, we observe X̃ = { x̃i}ni=1 and Ỹ = { ỹj}

m
j=1 :

x̃i = xi + ξi, ỹj = yj + ηj ,

11
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where ξi and ηj are Gaussian noise. We assume that ξi ∼ N(0,Σi) with mean 0 and covariance
Σi and the noise contaminating the landmark set is ηj ∼ N(0,Σ j) with mean 0 and covariance Σ j .
Suppose ‖Σi ‖2 ≤ σ2

q and ‖Σj ‖2 ≤ σ
2
q for i = 1, . . . ,n and j = 1, . . . ,m, where σq ≥ 0 and σq ≥ 0.

Assume xi, yj , ξi and ηj are independent. For more practically challenging purposes, we consider
the large q large n setup; that is, the ambient space dimension grows asymptotically as the dataset
size n grows. Mathematically, assume p = p(n) and p/n→ γ > 0 when n→∞. We further assume
that

δq :=
√

log nm
√
σ2
q + σ

2
q

[√
q(σ2

q + σ
2
q) + log nm +K

]
→ 0 , (14)

where K := maxx,y∈M ‖ι(x) − ι(y)‖Rq .

Remark 1 To have a closer look at the condition (14), we consider the following simplified case.
Suppose Σi = Σ j = σ

2
q I for i = 1, . . . ,n and j = 1, . . . ,m, σq = σq, and m = nβ . Then, when n is

sufficiently large, we have

δq =
√

2(1 + β)
√

log nσq

[√
2p/n
√

nσq + (1 + β) log n +K
]
= O(

√
log nσq[

√
nσq + log(n)])

sinceK is finite by the compactness assumption of M . The assumption δq → 0 says that the dominant
term σ2

q

√
n log n must go to zero. In other words, the noise level σq could be slightly smaller than

(n log(n))−1/4 as long as σ2
q

√
n log n → 0; for example, it holds when σq = n−1/4 log(n)−1. Thus,

while the entrywise variance of the noise goes to 0, the total noise energy, defined as the sum of
variances in all axes, is σ2

qq = γn1/2/log(n)2 →∞ when n→∞. An interpretation of the condition
(14) is that the algorithm is robust to noise even when the total noise energy blows up.

Denote the Roseland embedding with diffusion time t > 0 and the embedding dimension q′ ∈ N
from the clean data and the noisy data by ΦLt ⊂ Rn×q

′ and Φ̃L̃t ⊂ Rn×q
′ respectively. By the

spectral convergence results, we can pick ε = ε(q′) > 0 so that the first q′ non-trivial singular
values are sufficiently away from zero when n is sufficiently large. Denote W (r) and W̃ (r) to be the
landmark-set affinity matrices from clean and noisy datasets respectively. Denote ΦLt ∈ Rn×q

′ and
Φ̃L̃t ∈ Rn×q

′ to be Roseland embeddings from W (r). Then, we have


ΦOLt − Φ̃L̃t




F
= OP

(
δq
√

m

q′ts2t−2
2 +

√
q′s2t

2
ε2d+1

)
for some orthogonal matrix O ∈ Rq′×q′, and s2 are the largest non-trivial singular value of Roseland
from the clean dataset. The rotation O here deserves a discussion. Note that when the eigenvalue
is simple, the associated eigenvector is free up to a positive and negative sign. When the eigenvalue
is not simple, the associated eigenvectors are non-identifiable up to a rotation inside the eigenspace.
In practice, this rotation is not possible to recover unless more information is available. Since the
purpose is measuring how accurate the embedding is when the dataset is noisy, we introduce the
rotationO to eliminate this freedom. Note that this rotation is different from the non-identifiability of
the global embedding up to a translation and rotation, which is caused by the nature of the nonlinear
algorithm that only takes local relationship into account.

This result says that the bandwidth ε should chose “large” enough so that the noise impact on
the embedding is alleviated. This fulfills the intuition that we can tame the noise by aggregating
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more independent noise, since a larger bandwidth indicates including more noisy data locally. Note
that while δq → 0 when n→ ∞, it does not mean that the noise impact is small when n→ ∞. We
shall quantify the noise impact by q(σ2

q + σ
2
q) in δq, which can be viewed as the total noise energy

in the data. From this perspective, we mention that Roseland can tolerate large noise, with the noise
level up to σq = q−(1/4+a) for arbitrary constant a > 0. In this setup, the total noise energy blows
up since σ2

qq→∞.
Moreover, when the landmark set is noise free or σq = 0, we could achieve a better convergence.

This condition is related to the situation that we are able to collect a small clean dataset as the
landmark set in addition to the large but noisy dataset. This situation is commonly encountered
in real life. For example, in the medical field, collecting a clean dataset of high quality is usually
labor-intensive and expensive. However, it is relatively easy to collect a large dataset from a rather
cheap equipment, in exchange of the data quality.

4. Numerical Results

In this section, we show how to apply Roseland to speed up spectral clustering and image segmenta-
tion when the dataset size is large. For a fair comparison between Nyström extension and Roseland,
both algorithms use the same landmark set. All of the simulations were done on a Linux machine
with 4-core 3.5Ghz i5 CPUs and 16GBmemory. TheMatlab code for the reproducibility purpose can
be found in https://github.com/shenchaojerry/Roseland_numerical, where the Matlab
code for LLL is downloaded from https://eng.ucmerced.edu/people/vladymyrov.

4.1 Spectral clustering

MNIST is a dataset consisting of labelled handwritten digits from 0 to 9, in the form of 28 × 28
gray-scale images (LeCun and Cortes (2010)). There are 60,000 training images and 10,000 testing
images. For the spectral clustering purpose, we include all 70,000 data points. We set the landmark
set to have size m, where m = [nβ] for some β ∈ (0,1) and [x] means the largest integer not
exceeding x > 0.

A spectral clustering algorithm consists of two steps: the first step is performing a chosen
spectral embedding, and the second step is applying the K-mean clustering. In this work, we set
K = 10 since we know there are ten digits. Below, we compare the performance of the spectral
clustering based on different spectral embedding algorithms, including DM, Nyström extension,
LLL, and Roseland. In DM, in order the fit our 16G memory, we use kNN with k = 200 to construct
a sparse affinity matrix. The kernel used in DM, Nyström and Roseland is Gaussian, the metric
d is the ordinary Euclidean distance, and the bandwidth ε is chosen to be the square root of the
median of all pairwise distances. We follow the traditional spectral clustering approach and only
use eigenvectors; that is, the diffusion time t is chosen to be 0. The chosen parameters for LLL is
different from those used in the original LLL paper (Vladymyrov and Carreira-Perpinán (2013)),
where the task was different from ours. Indeed, the authors examined the relative error between
the LLL embedding of 60,000 MNIST data points and the exact embedding by eigenmap. Thus,
the reported parameters in Vladymyrov and Carreira-Perpinán (2013) may not be optimal for our
purpose. So we run a grid search to optimize the performance of LLL for our spectral clustering
task. Since one do not know the optimal embedding dimension beforehand, for each β, we select the
parameters of LLL such that they maximize the median accuracy across all considered embedding
dimensions and report the results. We also consider the widely used linear dimension reduction
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algorithm, principal component analysis (PCA), as an extra baseline. In addition to comparing the
above algorithms on the cleanMNIST dataset, we also compare them on a noisyMNIST dataset with
additive Gaussian noise. Specifically, we first normalized all pixel values, then entry-wisely add
Gaussian noise with mean 0 and standard deviation 0.2. We plot 3 dimensional spectral embeddings
for a visual comparison in Figure 2. While it is not easy to identify ten digits from the embedding,
we can see that when the data is noisy, the embedding quality of LLL is not ideal.

We consider the following metric to quantitatively evaluate the performance of different algo-
rithms. Suppose {Ĉk}

10
k=1 are the clusters obtained by a chosen spectral clustering. Denote the

dataset by X, so X =
⊔10

k=1 Ĉk , where
⊔

indicates disjoint union. Let f : X → {0,1, . . . ,9} be the
true predictor function and f̂ : X → {0,1, . . . ,9} be the estimated predictor function that is constant
on Ĉk for ∀k. Here, f̂ is defined in the following way:

f̂ |Ĉk
= arg max

y∈{0,1,...,9}

∑
x∈Ĉk

I{ f (x) = y} ,

for k = 1, · · · ,10, where I is the indicator function. In other words, for each cluster, we take a vote
to decide the label it is associated with. As MNIST is almost balanced, we compute the accuracy as
follows:

Acc( f̂ ) =
1
10

10∑
k=1

1��Ĉk

�� ∑
x∈Ĉk

I{ f̂ (x) = f (x)} ,

where |·| is the size of the cluster.
The accuracies using different algorithms with different embedding dimensions are plotted in

Figure 3. In this experiment, we focus on small landmark sets when β ≤ 0.5 that is suitable for
large datasets. Note that in Vladymyrov and Carreira-Perpinán (2013), the number of eigenvectors
is suggested to be 50, which cannot be achieved when β = 0.3 since 70,0000.3 ∼ 28. Thus, when
β = 0.3, we only report the results up to dimension 28 for all algorithms. We note that when the
embedding dimension is low by using only the top few eigenvectors, LLL has better performance than
Roseland and Nyström s, and when β = 0.4,0.5, LLL even outperforms DM and almost achieve 74%
accuracy when β = 0.5 and the embedding dimension is less than 8. As the dimension increases,
however, Roseland and Nyström surpass LLL and Roseland has the best performance among the
three. When β = 0.5, that is, the number of landmarks is 264, Roseland achieves a comparable
performance as DM, while Roseland runs nearly 100× faster than DM. See Table 3 for detailed
runtime reports, which contains a comparison of different algorithms with different landmark sets of
different sizes by reporting the overall runtime measured in the unit of second. It is clear that while
Roseland is slower than Nyström, the difference is acceptable even when β = 0.5. While LLL is
significantly faster than DM, it is slower than Roseland, which mainly comes from the construction
of the affinity matrix. As expected, Roseland is slower than the Nyström extension.

The performance of LLL deserves more discussion. Note that the weights of all eigenvectors in
LLL are equal. While there is no theoretical support, we conjecture that the eigenvector “quality”
in LLL decreases when the associated eigenvalues increases. Suppose this conjecture is true, the
equally weighted eigenvectors explain why the more eigenvectors we use, the worse the accuracy
is, particularly when the landmark set is small. While LLL performs well when the embedding
dimension is all, exploring LLL and its theoretical property is of potential interest. However, this
topic is out of the scope of this paper, so we leave this conjecture to future work.
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We also investigate the effect of the landmark number and the results are shown in Figure 4. We
notice that the performance of Roseland benefits if we have access to clean landmarks. We remark
that this setup is realistic in real world. In practice, one may collect a large amount of noisy data by
a cheap device, and collect some clean data by an expensive device.

We mention that other than LLL (Vladymyrov and Carreira-Perpinán (2013)), the two largest
experiments we are aware of with the MNIST dataset are Günter et al. (2007) and Li et al. (2016).
In Günter et al. (2007), the authors improved the convergence of the kernel Hebbian algorithm
to accelerate the kernel PCA, and the total run time is more than 50 hours on 60,000 images.
No accuracy was reported. The experiments were performed on an AMD Athlon 2.4 GHz CPU
with 2 GB main memory and 512 kB cache. In Li et al. (2016), the authors applied a similar
idea to Roseland, but with a different normalization. Similar to Yan et al. (2009), the algorithm
output clusters rather than embeddings. The algorithm took about 100 seconds on 70,000 MNIST
images, and the overall accuracy achieved 70%. In Ouimet and Bengio (2005), the authors adapted
the Nyström idea and proposed a greedy algorithm to build the subset via projection. In their
experiments, they restricted the run time to be less than 14 seconds, and computed the embeddings
of 1,300 MNIST images consisting of only 0’s and 1’s with image sizes scaled down from 28 × 28
to 14 × 14.

4.2 Image segmentation

Next, we apply the spectral clustering algorithm to the image segmentation problem (Shi and Malik
(2000)). We consider two grey-level images, one is the well-known 256 × 256 cameraman and
one is a 481 × 321 hawks image taken from the Berkeley Segmentation Dataset and Benchmark
(Martin et al. (2001)). To make the task more challenging, we corrupt the images with additive
noise. Specifically, we first normalized all pixel values, then entry-wise add Gaussian noise with
mean 0 and standard deviation 0.2. See Figure 5 for two example images.

We slightly modified the algorithm proposed in Shi and Malik (2000). Specifically, for each
pixel, we attach a 5 × 5 patch surrounding the pixel. Thus, for a gray-level image of size 480 × 640,
we have about 305,000 points in R25. Since DM is not efficient for a dataset of this size even with a
kNN scheme, we only compare LLL, Nyström extension and Roseland. For Nyström and Roseland,
the landmark set is sampled from the “edge points” in the image; in other words, we sample those
pixel values that have high contrast to the neighbors. For LLL, we use the reported parameters to
construct the affinity matrix in the paper (Vladymyrov and Carreira-Perpinán (2017)). See Figures
6, 7, 8 and 9 for the image segmentation results of clean and noisy images for a visual inspection.

A comparison of different algorithms with landmark sets of different sizes in the sense of runtime
per second is evaluated on the COCO dataset (Lin et al. (2014)). For RGB images, we take the
mean of 3 channels and we reshape the images to have size 480 × 640 when necessary. The result
is reported in Table 3. We see that while Roseland is slower than Nyström extension, they are on
the same order. Also, it is faster than LLL. This result suggests that Roseland is efficient and can be
applied to the image segmentation task. A systematic exploration of this application is out of the
scope of this paper and will be studied in our future work.

5. Liver transplant analysis

The last example is a case study of a long-term and high-frequency biomedical signal collected from
the whole liver transplant procedure. Since liver transplant usually takes several hours, the collected
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Figure 2: First row: Examples of clean digits. Second row: embeddings of clean MNIST, from left
to right: the DM embedding, the Nyström extension embedding, the LLL embedding and
the Roseland embedding. Third row: Examples of noisy digits. Fourth row: embeddings
of noisyMNIST, from left to right: theDMembedding, theNyström extension embedding,
the LLL embedding and the Roseland embedding. In this figure, β = 0.5, so the number
of landmarks is 264 for Nyström, LLL and Roseland.

signal is long and it is challenging to analyze it without a numerically efficient algorithm. In this
example, we demonstrate how to apply Roseland to study such a long biomedical signal.

5.1 Background

Liver transplant surgery is the only life-saving treatment for patients in certain medical conditions. It
is a challenging surgical procedure, and significant medical resource, experience and dedication are
needed. During the surgery, the clamping of major vessels and the subsequent vascular anastomosis
bring huge impacts on the recipient’s circulation system (Rudnick et al. (2015)). As a better under-
standing of the cardiovascular dynamics during the procedure may help optimize the intraoperative
management, commercial monitoring instruments based on real-time arterial blood pressure (ABP)
waveform analysis has been introduced. However, they have been questioned subsequently for
their performance in liver transplant surgery (Biancofiore et al. (2011); Tsai et al. (2012); Shih et al.
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Figure 3: Accuracies of spectral clustering in MNIST, where data size n = 70,000. First row, clean
MNIST, from left to right we let β = 0.3, β = 0.4 and β = 0.5, so the number of landmarks
used is m = [nβ] = 28,87,264 respectively. Second row, noisy MNIST, from left to right
we let β = 0.3, β = 0.4 and β = 0.5.
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Figure 4: Accuracies of spectral clustering inMNIST, where data size n = 70,000 and the number of
landmarks ranging from 25 to 264, that is, 0.25 < β < 0.5. Left: use top 20 eigenvectors.
Right: use top 50 eigenvectors.

(2016)). Thus, obtaining useful information from the ABP waveform in liver transplant is still a
challenging problem.

Traditionally, various extracted features, either landmark measurements in the time domain
(Mitchell et al. (2010)) or quantities in the frequency domain (Wang et al. (2010)), serve as the
input for the subsequent pulse waveform analysis. These designated features are supposed to
reflect underlying physiological information, or those parameters driving the network interaction.
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Figure 5: We run spectral based image segmentation on two images and their noisy versions. Left
two: the 256× 256 cameraman image. Right two: the 481× 321 hawks image taken from
the Berkeley Segmentation Dataset and Benchmark.

Figure 6: Clean cameraman. Top row, LLL: first image is the image segmentation result using top
4 eigenvectors, the second to the fifth images are top 1 to 4 eigenvectors. Second row is
from Nyström and the last row is from Roseland.

However, it is reasonable to suspect that information hidden in the finer scale might be ignored via
the above approach, and hence finer structure of network dynamics is overlooked, particularly when
the physiology is disturbed. It is thus reasonable to hypothesize that taking the whole waveform into
accountmight providemore complimentary information comparedwith those traditional parameters.
On the other hand, due to the complicated features/patterns caused by the nonstationarity, it is
challenging to visualize and directly utilize the dynamics encoded in the ABP waveform on the
large scale. Motivated by handling the above challenges, including finding finer information on the
short scale, and exploring the dynamics on the large scale, in our previous research, we reported a
solution under the manifold learning framework, and showed that DM can extract rich information
directly from the raw cardiovascular waveform (Wang et al. (2020)). The novelty in Wang et al.
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Figure 7: Noisy cameraman. Top row, LLL: first image is the image segmentation result using top
4 eigenvectors, the second to the fifth images are top 1 to 4 eigenvectors. Second row is
from Nyström and the last row is from Roseland.

Figure 8: Clean hawks. Top row, LLL: first image is the image segmentation result using top 3
eigenvectors, the second to the forth images are top 1 to 3 eigenvectors. Second row is
from Nyström and the last row is from Roseland.

(2020) is capturing subtle morphological changes that might be overlooked by the designed features.
However, due to the computational barrier intrinsic to the DM, the approach is limited to relatively
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Figure 9: Noisy hawks. Top row, LLL: first image is the image segmentation result using top 3
eigenvectors, the second to the forth images are top 1 to 3 eigenvectors. Second row is
from Nyström and the last row is from Roseland.

MNIST Image segmentation
PCA 4.27±0.04 N/A
DM 1468.4±5.05 N/A

β=0.3 β=0.4 β=0.5 β=0.2 β=0.3 β=0.4
LLL 317.75±0.59 328.28±0.80 332.68±0.41 33.19±0.43 46.92±0.55 57.45±0.76

Nyström 0.60±0.04 1.57±0.02 4.78±0.41 0.44±0.03 0.63±0.01 1.52±0.05
Roseland 1.09±0.04 4.14±0.06 15.24±0.85 0.95±0.11 2.29±0.02 6.82±0.09

Table 3: Runtime in seconds. MNIST consists of 70,000 images, each of size 28 × 28; images used
in image segmentation are of size 480 × 640.

small dataset, and applying it to study ABP waveforms during liver transplant surgery is difficult.
Note that the whole period of a typical surgery yields more than 105 consecutive pulses associated
with associated heart beats, and we view each of these pulses as a data point in a high dimensional
Euclidean space. As a result, we have more than 105 points in a high dimensional Euclidean space,
where the dimension depends on the data that is detailed before, for a pulse-to-pulse waveform
analysis.

In this study, we hypothesize that with the help of Roseland, the manifold learning approach
shown in Wang et al. (2020) can be applied to study the ABP waveform during the liver transplant
procedure, and provide hemodynamic information on both the small and large scales.

5.2 Material

The data was collected from an observational study per institutional ethic regulation. We collected
physiological signals via the data collection software, S5 collect (GE Healthcare, Chicago, Illinois,
United States) from the standard patient monitor instrument, GE CARESCAPE™B850 (GE Health-
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care, Chicago, Illinois, United States). The collected ABP signal recorded during the whole surgery
was analyzed offline after the surgery finished. The recorded ABP signal was uniformly sampled
at 300 Hz in the instrument and resampled at 500 Hz via the cubic spline interpolation for off-line
processing. The upsampling is carried out to enhance the peak detection performance (Laguna and
Sörnmo (2000)). The signal is of 78,350s long spanning the whole surgical procedure and contains
120,725 pulses. While the liver transplant surgery is a complicated one, we consider three major
phase transitions, including

1. vascular clamp; that is, the occlusion of blood inflow to the “old” liver (to be replaced),
performed by the cross-clamp of the inferior vena cava, the largest vein of the human body;

2. reperfusion; that is, the start of the circulatory connection from the graft (the new liver organ)
to the circulation system as the blood flow starts in the portal vein;

3. artery anastomosis; that is, the start of the circulatory connection between hepatic artery and
the graft.

All these transitions drastically affect the cardiovascular system via the changes of fluid volume and
electrolyte composition. To better observe the dynamics, we consider the phases before and after
each phase transition. Thus, we focus on the following main steps during the surgery procedure:
dissection phase before vascular clamp; vascular clamp; anhepatic phase after vascular clamp;
anhepatic phase before reperfusion; reperfusion; neohepatic phase after reperfusion; before artery
anastomosis; artery anastomosis; after artery anastomosis.

5.3 Data analysis

Denote the ABP waveform as xA ∈ RN , where N is the length of the ABP time series. We
used the maximum of the first derivative during the ascent of each ABP pulse waveform as a
fiducial point. A legitimate ABP pulse is determined by a two-pass algorithm using the following
measurements automatically: the peak maximum, the trough minimum, the minimum of difference
between the maximum and minimum within the pulse, the pulse width, and the duration to the
previous pulse. The thresholds for those measurements are automatically adjusted by a feedback
mechanism. Suppose there are L legitimate cycles in xA. Denote the i-th fiducial point as ni.
Break xA into L − 1 segments so that the i-th segment is the i-th ABP pulse containing one
waveform cycle. Denote the i-th segment as x̄A

i := [xA(ni), xA(ni + 1), . . . , xA(ni+1)]
T . Since the

duration of each pulse is not constant, we followed the common procedure (Cerutti et al. (1986);
Wang et al. (2020)) and truncated them to be of an uniform size according to their minimal length
q = min{ni+1−ni +1} ∈ N, and get x̂A

i := [xA(ni), xA(ni +1), . . . , xA(ni + q−1)]T . Next, normalize
x̂A
i by removing the mean and setting the variance to 1 to separate the blood pressure information
from the normalized ABP pulse, and denote the normalized ABP pulse as xA

i ∈ R
q and its derivative

as xdAi = 500 × [xA
i (2) − xA

i (1), . . . , x
A
i (q) − xA

i (q − 1)]T ∈ Rq−1. Derived from the ABP signal,
we get the dataset XA = {[(xA

i )
T (xA

i−1)
T (xA

i−2)
T (xdAi )

T (xdA
i−1)

T (xdA
i−2)

T ]T }L
i=3 ⊆ R

6q−3 to capture
the temporal relationship in the ABP signal. Note that this concatenation is related to the Takens’
embedding map that recovers the underlying phase space hosting the intrinsic dynamics (Takens
(1981)). We assume that XA can be well approximated by a low dimensional manifold, referred
to as the wave-shape manifold (Lin et al. (2021a)). Since n is roughly 1.2 × 105 in a typical liver
transplant surgery, if we choose β = 0.45, m ∼ 193 and n/m ∼ 621. To apply Roseland, we thus

21



Shen, Lin and Wu

construct the landmark set by uniformly sampling points from the whole database by picking one
every 600 beats, which is about choosing one landmark every 10 minutes. Specifically, the landmark
set YA = {yA

k
}m
k=1 comes from setting yA

k
= xA

600k .

Figure 10: The 3D embedding (panel A) of pulse-to-pulse pressure waveforms collected from a
78,350s ABP signal (120,725 pulses) during the liver transplantation procedure. The
embedded pulses are labeled by colors encoding the time. The color helps visualize the
ever-changing trajectory formed from successive pulse waveforms. The embedding is
clustered and different clusters are related to different stages. During transition phases of
inferior vena cava cross clamping (panel B, C), the ABP tracings provide little clues with
respect to the subtlewaveform information and its long-term evolving, while theRoseland
algorithm reveals the fast paced movements (panel D). To signify the physiological
dynamics associated with the vascular clamp (panel D) and reperfusion (panel E) events,
pulses in transition phases are labeled with colored linked dots while the rest pulses are
not colored. In panels A, D, and E, the grids are drawn to enhance the 3D visualization,
and an online supplementary video is provided for more details. See https://www.
youtube.com/watch?v=XDisVP1twRA for details.
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5.4 Results

The dataset consists of L = 120,725 legitimate cycles of length q = 334, and hence 120,723 data
points in XA. Thus, m = 201 and note that 201 = 120,7230.453. The total computation time of the
Roseland algorithm is less than 40s on an ordinary personal computer (CPU: Intel Core i5-7500,
operation system: Microsoft Windows 10 64-bit home edition, programming platform and language:
Microsoft Visual Studio Community version 2019, .NET framework 4.8, and C#, LAPACK software
library: Intel Math Kernel Library 2020 Initial Release), while the estimated computational time
using traditional DM algorithm based on eigendecomposition would be more than one day.

The embedding result is shown in Figure 10. The successive pulses evolve with time and
constitute a trajectory on the manifold presented as a 3D embedding (Fig.10, panel A). The trajectory
visits different locations during different steps of the liver transplant procedure. This is reasonable
since a subject’s hemodynamic status differ from one surgery step to another. Moreover, there is
a “clustering” effect in the embedding, which is enhanced by the imposed color that encodes the
temporal information. We can thus visualize the relationship among different hemodynamic status
during different surgery steps. This relationship provides physiological dynamics on the large scale.
We emphasize that while we can easily read the waveform, it is not easy to perceive the long term
dynamics and organize them with only human eyes and brain (Fig.10, panel B and C).

We further quantify the trajectory in different surgical phases as well as the phase transition
periods in which the trajectory moves in fast pace. Specifically, we consider different hemodynamic
phases during the liver transplant procedure, particularly those that phase transition happens with
violent physiological changes take place, including vascular clamp, reperfusion, and artery anasto-
mosis. The quantification consists of the following steps. First, for each hemodynamic phase, the
geometric center of all embeddedABPwaveforms in the 10-dimEuclidean space byRoseland is eval-
uated. Second, we define the distance between two hemodynamic phases by measuring the Roseland
diffusion distance (RDD) (12) between their geometric centers. The quantitative measurement is
expressed as mean and 95 % confidence interval after a bootstrap resampling without replacement in
100,000 samples. Third, we evaluate two quantities in light of the Newtonian mechanics, including
the two-point velocity and the trajectory speed. The two-point velocity is defined as the ratio of the
RDD between two points and the time difference between the two points. The two-point velocity
measures the dynamics on the large scale (macroscopically). The trajectory speed is defined as the
ratio of the path length of the trajectory and the time different between the beginning and ending
of the trajectory. The trajectory speed measures the dynamics on the small scale (microscopically).
In other words, the two-point velocity cares how fast the hemodynamic phase shifts from one to
the other without caring about its local dynamics, while the trajectory speed cares about its local
dynamics.

The quantitative result is shown in Table 4. We see that during each phase transition, the
trajectorymoves faster on the large scale when quantified by the two-point velocity, particularly when
compared with that within each surgical phase. However, the trajectory speeds, which represents
hemodynamics on the small scale, are similar during the phase transition and within each surgical
phase. The numeric results are consistent with the visualization of the 3D embedding (Figures 10
and 11). This quantitative result suggests that while the exterior force drives the hemodynamic status
from one to another, “locally” the variation is less impacted. This interesting finding needs to be
further validated from both clinical and physiological perspectives. We shall also correlate it with
the clinical outcomes so that we could determine its clinical application scenario.
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Table 4: Quantitative results of phases and phase transitions from liver transplantation data
Surgical phases two point ve-

locity
trajectory
speed

RDD to previous phase

dissection phase before clamp 0.59 32.77 na
vascular clamp (transition) 5.34 32.32 na
anhepatic phase after clamp 0.84 36.58 2152.6 (2127.9, 2177.2)
anhepatic phase before reperfusion 0.74 17.53 409.8 (386.1, 434.0)
reperfusion (transition) 6.27 41.41 na
neohepatic phase after reperfusion 0.64 13.26 984.8 (976.4, 993.3)
before artery anastomosis 0.21 16.65 439.3 (422.5, 456.3)
artery anastomosis (transition) 2.47 22.23 na
after artery anastomosis 0.34 11.87 1818.9 (1802.8, 1834.9)

All numbers expressed by 10−5; speed and velocity unit: s−1

The liver-transplant example shows the benefit and potential of the Roseland algorithm. As more
(longer) data leads to a richer knowledge base, we now have an unprecedented signal processing
tool for a long-period signal with complex underlying physiology. In the liver transplant example,
the 3D embedding reflects the complex relationship among different surgical phases without ad
hoc pulse waveform knowledge. This suggests the practicability of handling data governed by
complex physiological mechanism. There are at least two potential clinical application scenarios.
First, as there is room to be improved in monitoring the hemodynamic status in liver transplant
surgery (Biancofiore et al. (2011); Tsai et al. (2012); Shih et al. (2016)), we expect that the proposed
waveform analysis would lead to more insights into the hemodynamic status of liver transplant
surgery, and hence improve the patient’s outcome. Second, the visualization of the ultra-long term
waveform could help healthcare givers better depict the long term dynamics of the patient with
fine structure, either for the liver transplant surgery or others, so that the health status could be
better quantified from a different perspective. The user environment, user experience and other
clinical needs of the proposed algorithm are all under exploration. See Lin et al. (2021b) for some
preliminary results. Certainly, the source of knowledge base is not limited to the ABP waveform.
Different physiological waveforms can be considered to further enrich the knowledge base. How
to simultaneously utilize multimodal physiological waveforms, particularly when the recording is
long, is a relatively white area, and we expect that the proposed waveform analysis would form a
base toward this goal. We also expect that the similar principal could be applied to study other
medical datasets for different medical problems, for example, the long-term outcome of the patient
underwent organ transplantation with respect to the immune function, or the genetic predisposition
and environment factors with respect to the cancer occurrence. Last but not the least, it would be
interesting to consider analyzing the waveform during the surgery in the real-time manner and obtain
useful information to, for example, guide the surgery. How to re-fit continuously when we obtain
new data to obtain real-time information, and its clinical application, will be explored in the future
work.
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Figure 11: The 3D embedding highlights the locations of transition phases (in linked dot) in relation
to the whole period of ABP waveforms (smaller dot) in a liver transplant surgery. The
color labels the time sequence. Panel B is the horizontally rotated Panel A by 60
degrees for a better visualization of the artery anastomosis transition. These views show
geographic relationship between surgical stages and transition phases. Zoom-in views of
the 3D embedding of pulse-to-pulse ABP waveform include transition phases of major
vascular cross-clamping (panel A), new liver graft reperfusion (panel B), and hepatic
artery anastomosis (panel C), which shows fast paced movement in transition phases
(enlarged colored dots with line-link). On the other hand, in the statuses immediate
before and after transition (colored dots without line-link), we see less movement and
the embeddings are clustered. The rest pulses (uncolored small dots) appears in the
background.

6. Discussion and conclusion

Motivated by analyzing long-term, high-frequency and nonstationary physiological time series, we
propose a landmark diffusion based algorithm, Roseland, that is numerically efficient and robust to
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various types of noises with theoretical support under themanifoldmodel. The key idea is controlling
a diffusion process on the dataset so that the diffusion is forced to go through a small subset called
the landmark set. Compared with the commonly applied speed-up approaches like kNN, Nystrom
or recently proposed LLL, Roseland is balanced from the perspectives of computational efficiency
and robustness. Specifically, while Roseland is slightly slower compared with Nystrom, it is more
efficient compared with kNN and LLL. On the other hand, Roseland is robust to noise while kNN
is not and we do not have theoretical support for Nystrom or LLL. These claims are confirmed by
applying Roseland to various datasets, including the MNIST database, images and ABP waveforms
recorded from a liver transplant surgery. We conclude that Roseland has potential in handling big
and noisy real-world databases.

6.1 Application of the Roseland

The idea of landmark set have several applications. Here we mention two of them. The vector
diffusion map (VDM) (Singer and Wu (2012)) is a generalization of DM that aims to encode the
group structure when comparing objects. The VDM suffers from the expensive computational cost
more than the DM, since the group structure is usually represented as a matrix, which inflates the
matrix size. Specifically, if the group structure is represented as a q×q matrix and we have n objects
to compare, then we need to eigendecompose a nq × nq kernel matrix in the VDM. We expect the
landmark idea can be generalized to accelerate the VDM. We will explore this possibility in our
future work.

Spectral clustering methods are known to perform well when the classical clustering methods
such as k-means and linkage fail (Alzate and Suykens (2008)). It is well known that the more
clusters we need to determine, the more eigenvectors we need (Alzate and Suykens (2008); Lee et al.
(2014)). As is shown in the numerical section, Roseland has the ability to recover more and better
eigenvectors, at least compared with the Nystöm extension. This shows the potential of applying
Roseland for the multiway spectral clustering purpose.
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