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Abstract

In this paper, we consider an unconstrained optimization model where the objective is a
sum of a large number of possibly nonconvex functions, though overall the objective is
assumed to be smooth and convex. Our bid to solving such model uses the framework of
cubic regularization of Newton’s method. As well known, the crux in cubic regularization
is its utilization of the Hessian information, which may be computationally expensive for
large-scale problems. To tackle this, we resort to approximating the Hessian matrix via sub-
sampling. In particular, we propose to compute an approximated Hessian matrix by either
uniformly or non-uniformly sub-sampling the components of the objective. Based upon
such sampling strategy, we develop accelerated adaptive cubic regularization approaches
and provide theoretical guarantees on global iteration complexity of O(ε−1/3) with high
probability, which matches that of the original accelerated cubic regularization methods
Jiang et al. (2020) using the full Hessian information. Interestingly, we also show that in the
worst case scenario our algorithm still achieves an O(ε−5/6 log(ε−1)) iteration complexity
bound. The proof techniques are new to our knowledge and can be of independent interets.
Experimental results on the regularized logistic regression problems demonstrate a clear
effect of acceleration on several real data sets.
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1. Introduction

In this paper, we consider the following finite-sum convex optimization problem:

f∗ := min
x∈Rd

f(x) = min
x∈Rd

1

n

n∑
i=1

fi(x), (1)

where f : Rd → R is smooth and convex, while each component function fi : Rd → R is
smooth but possibly nonconvex. In addition, we assume f∗ > −∞. A variety of machine
learning and statistics applications can be cast into problem (1) where fi is interpreted as
the loss of the i-th observation, e.g., Friedman et al. (2001); Sra et al. (2012); Kulis (2013);
Bottou et al. (2018); Goodfellow et al. (2016). An important special case of problem (1) is

min
x∈Rd

f(x) := min
x∈Rd

[
1

n

n∑
i=1

fi(a
>
i x)

]
, (2)

where fi : R → R and ai is the i-th observation. The formulation in Eq. (2) finds a wide
range of applications. A typical example is the (regularized) maximum likelihood estima-
tion for generalized linear models, which includes regularized least squares and regularized
logistic regression. We refer the interested readers to Section 1.1 for more applications in
form of Eq. (1) and Eq. (2).

Up till now, much of the efforts devoted to solving problem (1) has been on developing
stochastic first-order approach (Shalev-Shwartz, 2016; Allen-Zhu and Yuan, 2016), due pri-
marily to its simplicity nature in both theoretical analysis and practical implementation.
However, stochastic gradient type algorithms are known to be sensitive to the condition-
ing of the problem and the parameters to be tuned in the algorithm (Xu et al., 2016).
On the contrary, second-order optimization methods (Luenberger and Ye, 1984) have been
shown to be generally robust (Roosta-Khorasani and Mahoney, 2019; Xu et al., 2016) and
less sensitive to the parameter choices (Berahas et al., 2020; Xu et al., 2020a). A down-
side, however, is that the second-order type algorithms are more likely to prone to higher
computational costs for large-scale problems, by nature of requiring the second-order in-
formation (viz. Hessian matrix). To alleviate this, one effective approach is the so-called
sub-sampled second-order methods that approximate Hessian matrix via random sampling
scheme (Drineas and Mahoney, 2018).

Recent trends in the optimization community tend to improve an existing method along
two possible directions. The first direction of improvement is acceleration. Nesterov (1983,
2004) pioneered the study of accelerated gradient-based algorithms for convex optimization.
For stochastic convex optimization, Lan (2012) developed an accelerated stochastic gradient-
based algorithm. Since then, various accelerated stochastic first-order methods have been
proposed (see, e.g., Shalev-Shwartz and Zhang (2013); Frostig et al. (2015); Ghadimi and
Lan (2016); Allen-Zhu (2017); Jain et al. (2018); Allen-Zhu (2018)). Despite its popularity
and simplicity, the stochastic first-order approach may perform poorly for ill-conditioned
instances (Roosta-Khorasani and Mahoney, 2019) and can be sensitive to certain algorithmic
parameters such as the choices of stepsizes (Berahas et al., 2020). In contrast, there are
limited results (Song and Liu, 2019; Ghadimi et al., 2017; Ye et al., 2020) on accelerated
stochastic second-order approaches. The second direction of improvement is to investigate
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adaptive optimization algorithms without ensuring the problem parameters such as the
first and the second order Lipschitz constants. In view of implementation, it is desirable to
design algorithms that adaptively adjust these parameters since they are usually unknown a
priori. A typical example is adaptive gradient method (e.g. AdaGrad (Duchi et al., 2011)),
which is popular in the machine learning community.

However, such improvements – though highly desirable due to their relevance in ma-
chine learning – are largely lacking in the context of stochastic or sub-sampling second-order
algorithms. When the objective function f is non-convex, sub-sampling adaptive cubic reg-
ularized Newton’s methods (Kohler and Lucchi, 2017; Xu et al., 2020b) are capable of
reaching a second-order critical point within an iteration bound of O(ε−3/2). However,
we are unaware of any existing accelerated sub-sampling second-order methods that are
fully independent of problem parameters while maintaining superior convergence rate. Re-
call that Nesterov (2008) proposed an accelerated cubic regularized Newton’s method with
provable overall iteration complexity of O(ε−1/3) for convex optimization.

Therefore, a natural question raises:

Can one develop an adaptive and accelerated sub-sampling cubic regularized
method with an iteration complexity of O(ε−1/3)?

In this paper, we provide an affirmative answer to the above question. In particular, by
modifying the algorithm in our previous work Jiang et al. (2020), we manage to develop
a novel sub-sampled cubic regularization method that is adaptive and accelerated. The
advantages of the proposed approach inherited from that in Jiang et al. (2020) include:
the algorithms are fully adaptive without requiring any problem parameters, and the cubic
regularized sub-problem in the algorithms is allowed to be solved inexactly (see Condition
3.1) with some easy-to-satisfy approximation conditions similar to that in Birgin et al. (2017)
and Jiang et al. (2020). In contrast with the algorithms in Jiang et al. (2020), we use the
sub-sampled Hessian rather than the full Hessian in the cubic sub-problem to reduce the
per-iteration computational cost, and the sub-sampled size gradually increases from a very
small initial set, leading to a significant computational savings at the beginning steps of the
algorithms. Moreover, we show that our proposed algorithm has the global convergence rate
ofO(ε−1/3) with high probability (Theorem 9), which matches its deterministic counterparts
(Jiang et al., 2020), requiring the availability of the full Hessian information. Although the
issue of inexact Hessian has also been discussed in Jiang et al. (2020), the proposed Hessian
approximation is based on the finite differences of the gradient, which is more expensive
when n and d are large as shown in the numerical result section. In terms of the worst-case
(i.e., when the error of the sub-sampled Hessian can not be controlled) performance of our
algorithm, we show that it has a guarantee of O(ε−5/6 log(ε−1)) iteration bound (Theorem
14). It is worth mentioning that the sub-sampled strategy is only adopted in approximating
the Hessian matrix, while the true gradient is counted exactly. The merit of our method
is particularly clear when both n and d are large (see Figure 2). Another advantage of
counting the full gradient is that our algorithm has a worst-case performance guarantee
(i.e., Theorem 14) in addition to the standard high probability result.
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1.1 Examples

In this subsection, we provide a few examples in the form of Eq. (1) and Eq. (2) arising
from applications of machine learning. Examples for convex component functions are well
known, e.g. the regularized least squares problem

min
x∈Rd

f(x) =
1

n

n∑
i=1

[(
a>i x−R(ai)

)2
+ λ‖x‖2

]
,

and the regularized logistic regression,

min
x∈Rd

f(x) =
1

n

n∑
i=1

[
ln
(

1 + exp
(
−R(ai) · a>i x

))
+ λ‖x‖2

]
,

where ai ∈ Rd and R(ai) denote the feature and response of the i-th data point respectively.
To be more specific, we have R(ai) ∈ R for the least squares loss, and R(ai) ∈ {−1,+1} for
logistic regression. The parameter λ > 0 is known as the regularization parameter.

Below we shall provide some examples where certain components in the finite sum may
be nonconvex. Consider for instance the nonconvex support vector machine (Mason et al.,
2000; Wang et al., 2017), where the objective function takes the form of

min
x∈Rd

f(x) :=
1

n

n∑
i=1

[
1− tanh

(
R(ai) · a>i x

)
+ λ ‖x‖2

]
,

which is an instance of (1) with

fi(x) = 1− tanh
(
R(ai) · a>i x

)
+ λ ‖x‖2 .

Indeed, for some choice of λ > 0, the objective is convex but a few component functions
may be nonconvex.

Another example comes from principal component analysis (PCA). Consider a set of
n data vectors a1, . . . ,an in Rd and the normalized co-variance matrix A = 1

n

∑n
j=1 aja

>
j ,

PCA aims to find the leading principal component. Garber and Hazan (2015) proposed a
new efficient optimization for PCA by reducing the problem to solving a small number of
convex optimization problems, where a critical subroutine in the method is to solve

min
x∈Rd

1

2
x> (µI−A) x + b>x = min

x∈Rd
1

n

n∑
j=1

[
1

2
x>
(
µI− aja

>
j

)
x + b>x

]
,

where µ is larger than or equal to the maximum eigenvalue of A. Although the above
formulation is convex optimization, component functions in the above optimization problem
may be nonconvex.

1.2 Related Works

The literature on the acceleration of second-order or higher-order methods for convex op-
timization is somewhat limited as compared to its first-order counterpart. Nesterov (2008)
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improved the overall iteration complexity for convex optimization from O(ε−1/2) to O(ε−1/3)
by means of the so-called cubic regularized Newton’s method, and further accelerated it to
O(ε−1/(p+1)) (Nesterov, 2019) by utilizing up to p-th order derivative information. Mon-
teiro and Svaiter (2012) and Monteiro and Svaiter (2013) proposed the Newton proximal
extragradient method (A-HPE) and its acceleration, which achieved an improved iteration
complexity of O(ε−2/7). Recently, Arjevani et al. (2019) showed that O(ε−2/7) is actually a
lower bound for the second-order methods to solve convex optimization, and thus A-HPE
method is an optimal second-order method. Motivated by Monteiro and Svaiter’s work,
three groups of researchers independently proposed and analyzed some optimal high-order
methods achieving the iteration complexity of O(ε−2/(3p+1)) (Gasnikov et al., 2019; Bubeck
et al., 2019; Jiang et al., 2021). However, a bisection search procedure is necessary in each
iteration of all these methods (Monteiro and Svaiter, 2013; Gasnikov et al., 2019; Bubeck
et al., 2019; Jiang et al., 2021), and the total number of subproblems solved at each bisec-
tion step is bounded by a logarithmic factor in the given precision. On the other hand, the
missing factor in the complexity estimate for the accelerated cubic regularized Newton’s
method is in the order of O(ε−1/21). As demonstrated by Nesterov (2019), the additional
logarithmic factors in the complexity bound of A-HPE method will definitely overshadow
its tiny superiority in the convergence rate. From the practical efficiency point of view, the
acceleration second-order scheme presented in Nesterov (2008) and Monteiro and Svaiter
(2013) are not easily implementable, since they assume the knowledge of some Lipschitz
constant of the Hessian. To alleviate this, Jiang et al. (2020) incorporated an adaptive
strategy (Cartis et al., 2011a,b) into Nesterov’s approach (Nesterov, 2008, 2019), and fur-
ther relaxed the criterion for solving each sub-problem while maintaining the same iteration
complexity for convex optimization. However, the deterministic second-order method, e.g.,
the one proposed by Jiang et al. (2020), may be computationally costly as it requires the
full second-order information.

The seminal work of Robbins and Monro (1951) triggered a burst of research inter-
est on developing stochastic first-order methods. Regarding the second-order methods (in
particular Newton’s method), there has been a recent intensive research attention in de-
signing their stochastic variants suitable for large-scale applications, e.g. stochastic quasi-
Newton methods (Byrd et al., 2016; Schraudolph et al., 2007), stochastic cubic regulariza-
tion method (Tripuraneni et al., 2018), randomized cubic regularization method (Doikov
and Richtárik, 2018), stochastic trust region method (Blanchet et al., 2019), stochastic
line search method (Paquette and Scheinberg, 2020), Hessian sketching (Pilanci and Wain-
wright, 2017; Cormode and Dickens, 2019) and sub-sampling methods (Agarwal et al., 2017;
Byrd et al., 2011; Bollapragada et al., 2019; Erdogdu and Montanari, 2015; Kylasa et al.,
2019; Liu et al., 2017; Yao et al., 2021; Li et al., 2020; Roosta-Khorasani and Mahoney,
2019; Xu et al., 2016). Note that all the works for finding the global minimizers on sub-
sampling methods assume that all the component functions are convex. In terms of cubic
regularized Newton’s method for non-convex optimization, the adaptive regularization algo-
rithms with inexact evaluation for both function and derivatives are considered in Bellavia
et al. (2019). Kohler and Lucchi (2017) proposed a uniform sub-sampling strategy to ap-
proximate the Hessian matrix and the gradient, however, in each step of the algorithm
the sample size for the approximation is unknown until the cubic subproblem in this itera-
tion is solved. Xu et al. (2020b) resolved this issue by conducting appropriate uniform and
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non-uniform sub-sampling strategies to construct Hessian approximations within the cubic
regularization scheme and Yao et al. (2021) further proposed inexact variants of trust region
and adaptive cubic regularization methods, which can be implemented in practice without
any knowledge of unknowable problem-related quantities. The adaptive cubic regulariza-
tion methods with dynamic inexact Hessian information for finite-sum minimization and
stochastic optimization are studied in Bellavia et al. (2021) and Bellavia and Gurioli (2022)
respectively. Zhang et al. (2021) managed to incoporate sub-sampling strategies into the
variance reduction techniques. Under the framework of more general probabilistic models,
some probabilistic convergence results for cubic regularization methods were established
in Cartis and Scheinberg (2018). For convex optimization, Ghadimi et al. (2017) proposed
an accelerated Newton’s method with cubic regularization using inexact second-order infor-
mation and such information could be obtained from a subsample strategy. However, their
algorithm fails to retain the the iteration bound of O(ε−1/3), although the acceleration is
indeed observed in the numerical experiments. Another recent work by Ye et al. (2020)
resorted to Nesterov’s acceleration to improve the convergence performance of second-order
methods (approximate Newton), including regularized sub-sampled Newton, and provided
nice empirical evaluation results. However, the acceleration is only achieved when the
objective function is strongly convex. After the first version of this paper was published
online, Song and Liu (2019) in the meanwhile studied an accelerated inexact proximal cubic
regularized Newton’s method that allows a composite objective: the sum of a smooth and
a nonsmooth convex function. Their algorithm still assumes the knowledge of the Lipschitz
constant, and has the iteration bound of O(ε−1/3) in the sense of expectation. It is worth
noting that both Ghadimi et al. (2017) and Song and Liu (2019) assume the approximated
Hessian is pre-given and satisfy certain nice properties that need be used in the analysis. In
that regard, our algorithm allows a dynamic adjustment of the sample size of the approx-
imated Hessian, which leads to a low per-iteration computational cost at certain stage of
the algorithm. The resulting computational benefits are evidently observed (and some of
which will be reported in this work) in the process of our numerical experiments.

1.3 Notations and Organization

Throughout the paper, we denote vectors by bold lower case letters, e.g., x, and matrices by
regular upper case letters, e.g., X. The transpose of a real vector x is denoted as x>. For a
vector x, and a matrix X, ‖x‖ and ‖X‖ denote the `2 norm and the matrix spectral norm,
respectively. ∇f(x) and ∇2f(x) are respectively the gradient and the Hessian of f at x,
and I denotes the identity matrix. For two symmetric matrices A and B, A � B indicates
that A − B is symmetric positive semi-definite. The subscript, e.g., xi, denotes iteration
counter. log(α) denotes the natural logarithm of a positive number α. 0

0 = 0 is imposed for
non-uniform setting. The inexact Hessian is denoted by H(x), but for notational simplicity,
we also use Hi to denote the inexact Hessian evaluated at the iterate xi in iteration i, i.e.,
Hi , H(xi). The calligraphic letter S denotes a collection of indices from {1, 2, . . . , n},
with potential repeated items and its cardinality is denoted by |S|.

The rest of the paper is organized as follows. In Section 2, we introduce the assump-
tions underlying this paper, and the tradeoff between the sample size and the accuracy of
the resulting approximated Hessian. Then the sub-sampling accelerated cubic regularized
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Newton’s method is presented in Section 3. The probabilistic and worst case iteration com-
plexity of the algorithm are analyzed in Section 4 and Section 5 respectively. In Section
6, we present some preliminary numerical results on solving regularized logistic regres-
sion, where the effect of acceleration together with low per-iteration computational cost are
clearly observed. The details of most proofs can be found in the appendix.

2. Preliminaries

In this section, we first introduce the main definitions and assumptions used in the paper,
and then present two lemmas on the construction of the inexact Hessian in random sampling.

2.1 Assumptions

Throughout this paper, we refer to the following definition of ε-optimality.

Definition 1 (ε-optimality) Given ε ∈ (0, 1), x ∈ Rd is said to be an ε-optimal solution to
problem (1), if

f(x)− f? ≤ ε, or ‖∇f(x)‖2 ≤ ε. (3)

To proceed, we make the following standard assumption regarding the gradient and
Hessian of the objective function f .

Assumption 2 The objective function f(x) in problem (1) is convex and twice differen-
tiable. Each of fj(x) is possibly nonconvex but twice differentiable with the gradient and the
Hessian being both Lipschitz continuous, i.e., there are 0 < Lj , ρj < ∞ such that for any
x,y ∈ Rd we have

‖∇fj(x)−∇fj(y)‖ ≤ Lj‖x− y‖, (4)

‖∇2fj(x)−∇2fj(y)‖ ≤ ρj‖x− y‖. (5)

In the rest of the paper, we define L = maxj Lj > 0 and L̄ = 1
n

∑n
j=1 Lj > 0, and

ρ̄ = 1
n

∑n
j=1 ρj . A consequence of (4) is that

‖∇2fj(x)‖ ≤ Lj and ‖∇2f(x)‖ ≤ L̄ ∀ x ∈ Rd. (6)

We consider the following approximation of f evaluated at xi with cubic regularization
(Cartis et al., 2011a,b) in our algorithm:

m(s; xi, σi) = f(xi) + s>∇f(xi) +
1

2
s>H(xi)s +

1

3
σi ‖s‖3 , (7)

where σi > 0 is a regularized parameter adjusted in the process as the algorithm progresses.
Let x0 be the starting point of our algorithm and x? be an optimal solution of problem (1).
Then sub-level set L(x0, σ0) := {x0 + s ∈ Rd | m(s; x0, σ0) ≤ m(0; x0, σ0) = f(x0)} at x0

with regularization parameter σ = σ0 is bounded as the function m(s; x0, σ0) is coercive.
Hence, there is some D ≥ 1 such that

max
x∈L(x0,σ0)

‖x− x?‖ ≤ D. (8)
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2.2 Random Sampling

When each fi in (1) is convex, random sampling has been proven to be a very effective
approach in reducing the computational cost; see Erdogdu and Montanari (2015); Roosta-
Khorasani and Mahoney (2019); Bollapragada et al. (2019); Xu et al. (2016). In this subsec-
tion, we show that such random sampling can indeed be employed for the setting considered
in this paper.

Suppose that the probability distribution of the sampling over the index set {1, 2, . . . , n}
is p = {pi}i=ni=1 with Prob(ξ = i) = pi ≥ 0 for i = 1, 2, . . . , n. Let S and |S| denote the
sample collection and its cardinality respectively, and define

H̃(x) =
1

n|S|
∑
j∈S

1

pj
∇2fj(x), (9)

to be the sub-sampled Hessian. When n is very large, such random sampling can signif-
icantly reduce the per-iteration computational cost as |S| � n. There are two sampling
strategies in the literature: uniform sampling and non-uniform sampling Xu et al. (2020b).
In the following, we review some technical result of each approach demonstrating how many
samples are required to get an approximated Hessian within a given accuracy. The first one
is to sample {1, 2, . . . , n} uniformly, i.e., pi = 1/n. The lemma below is a simple restatement
of Xu et al. (2020b, Lemma 16).

Lemma 3 Suppose Assumption 2 holds for problem (1). A uniform sampling with or with-
out replacement is performed to form the sub-sampled Hessian. That is for x ∈ Rd, the
matrix H̃(x) is constructed from (9) with pj = 1

n and sample size

|S| ≥ ΘU (ε̂, δ) :=
16L2

ε̂2
· log

(
2d

δ

)
for given 0 < ε̂, δ < 1, where L is defined as in Assumption 2. Then we have

Prob(‖H̃(x)−∇2f(x)‖ ≥ ε̂) < δ.

In case problem (1) is endowed with more structures, then some more “informative” distri-
bution may be constructed as opposed to simple uniform sampling. For instance, if it is in
the form of (2), then we can introduce a bias in the probability distribution and pick those
relevant fi’s carefully. As suggested in Xu et al. (2020b), we construct

pj =
|f ′′j (a>j x)|‖aj‖2∑n
k=1 |f ′′j (a>k x)|‖ak‖2

, (10)

where the absolute values are taken since fj is possibly nonconvex. Next we restate Xu
et al. (2020b, Lemma 17) below about the sampling complexity for the construction of
approximated Hessian of problem (2).

Lemma 4 Suppose Assumption 2 holds for problem (2). A non-uniform sampling is per-
formed to form the sub-sampled Hessian. That is for x ∈ Rd, the matrix H̃(x) is constructed
from (9) with p as defined in (10) and sample size

|S| ≥ ΘN (ε̂, δ) :=
4L̄2

ε̂2
· log

(
2d

δ

)
,
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for given 0 < ε̂, δ < 1, where L̄ is defined in Assumption 2. Then, we have

Prob(‖H̃(x)−∇2f(x)‖ ≥ ε̂) < δ.

Compared to Lemma 3, computing the sampling probability in Lemma 4 requires going
through all data points, whose computational effort amounts to evaluating the full gradient
once. However, the sampling complexity mainly comes from the sample size rather than the
sampling probability. This is because the computational cost of forming the approximated
Hessian matrix heavily depends on the sample size and such matrix is frequently sampled
in our algorithm (i.e., sampled in every step of our algorithm). Moreover, the sample size
provided by Lemma 4 could be smaller as L̄ ≤ L. In this case, the non-uniform sampling
is preferable where the distributions of Lj are skewed, i.e., some Lj are much larger than
the others and L̄ � L. This advantage has been demonstrated by the practical perfor-
mance of randomized coordinate descent method and sub-sampled Newton method (Qu
and Richtárik, 2016a,b; Xu et al., 2016). Therefore, in this case, the computational sav-
ings stems from the smaller sample size dominates the cost of computing the sampling
probability for the non-uniform sampling scheme.

Note that in the above two lemmas, the sample size is only proportional to the log of
the failure probability, and thus we can use a very small failure per-iteration probability to
guarantee the solution quality without increasing the sample size significantly. Although,
the sample sizes in Lemma 3 and 4 is dependent on the Lipschitz constant, its exact value
is not necessarily required and any of its upper bound would work. In addition, we pro-
vide worst-case analysis in Section 5, which guarantees the convergence of our algorithm
regardless of the estimation quality of the Lipschitz constant.

3. Accelerated Adaptive Cubic Regularization of Newton’s Method with
Uniform and Nonuniform Sub-Sampling

3.1 The Algorithm

Now we propose the accelerated sub-sampling adaptive cubic regularization method as pre-
sented in Algorithm 1. In particular, we adopt a two-phase scheme, where the acceleration
is implemented in Phase II. It is worth noting that a direct extension of the accelerated
cubic regularization method under inexact Hessian information fails to maintain the the-
oretical convergence property (Ghadimi et al., 2017). Therefore, the two-phase scheme is
necessary to establish the accelerated rate of convergence, where the first phase serves the
purpose of finding a good starting point for acceleration. Phase I and Phase II are re-
ferred to as simple sub-sampling adaptive subroutine (SSAS) and accelerated sub-sampling
adaptive subroutine (ASAS), respectively, and the details are described in Algorithm 2 and
Algorithm 3. In particular, note that there are two counters of iterations in Algorithm 3.
One is j that counts the generic iterations, and the other one is l for the successful itera-
tions. In each generic iteration j of Algorithm 3, an approximate minimizer of the cubic
model is computed. If the generic iteration is successful and early stopping is not activated,
the auxiliar model is adaptively minimized in an inner loop for acceleration, and then the
current approximation of the cubic model and the counter l for the successful iterations are
updated. Otherwise, the current approximation is left unchanged and the coefficient σ of
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Algorithm 1 Accelerated Subsampling Adaptive Cubic Regularized Newton’s Method

Input: x0 ∈ Rd, σ0 ≥ σmin > 0, τ0 > 0, γ2 > γ1 > 1, γ3 > 1, η > 0, δ0 ∈ (0, 1), κθ ∈
(0, 1), initial tolerance of Hessian approximation ε0 = min{1, ‖∇f(x0)‖

3 }, and tolerance of
the approximate solution ε.
Phase I (SSAS): [xI0, σ

I
0 , ε

I , T1] = SSAS(x0, σ0, ε0, ε, γ1, γ2, δ0, κθ).
if ‖∇f(xI0)‖2 ≤ ε then

terminate Algorithm 1 [early stop], and return xout = xASAS0 .
end if
Phase II (ASAS): [xout, T2, T3] = ASAS(xI0, σ

I
0 , σmin, ε

I , ε, ς0, γ1, γ2, γ3, η, δ0, κθ).
Let T = T1 + T2 + T3 [record the total iteration number].
Output: an ε-optimal solution xout and T .

the cubic regularization term is reduced. In the following, we elaborate on some key steps
of these algorithms.

Constructing the cubic model: Given the iteration point xi, cubic regularized pa-
rameter σi, tolerance of Hessian approximation εi, the accuracy of the optimal solution ε,
and overall failure probability δ0. We adopt the notation Cubic(xi, σi, εi, ε, δ0) to denote the
generator of the cubic model as follows:

Cubic(xi, σi, εi, ε, δ0)→ f(xi) + s>∇f(xi) +
1

2
s>H(xi)s +

1

3
σi ‖s‖3 , (11)

where H(xi) = H̃(xi) + εiI, and H̃(xi) is constructed according to (9) with sample size
|S| ≥ ΘU (εi, δ0ε

1/3) for uniform sampling (ΘN (εi, δ0ε
1/3) for non-uniform sampling) such

that
‖∇2f(xi)− H̃(xi)‖ ≤ εi

with probability at least 1−δ0ε
1/3. If the above inequality holds, the approximated Hessian

H(xi) in the cubic model is also a good estimation, i.e.,

‖∇2f(xi)−H(xi)‖ ≤ 2εi. (12)

In addition, the convexity of f implies that

H(xi) = H̃(xi) + εiI � ∇2f(xi)− εiI + εiI = ∇2f(xi) � 0. (13)

with probability at least 1− δ0ε
1/3.

Solving the cubic model: Recall that m(s; xi, σi) is the cubic σi-regularized function
at xi defined in (7). In each iteration, we approximately solve

si ≈ argmin
s∈Rd

m(s; xi, σi), (14)

where m(s; xi, σi) is defined in (7) and the symbol “≈” is quantified as follows:

Condition 3.1 We call si to be an approximate solution of the subproblem – denoted as
si ≈ argmins∈Rd m(s; xi, σi) – for mins∈Rd m(s; xi, σi), if m(si; xi, σi) ≤ m(0; xi, σi) =
f(xi) and

‖∇f(xi) +H(xi)si + σi‖si‖si‖ ≤ κθ min{‖si‖2, ‖∇f(xi)‖}, (15)

where 0 < κθ < 1 is a pre-specified constant.

10
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Algorithm 2 SSAS(x0, σ0, ε0, ε, γ1, γ2, δ0, κθ)

Initialization: Let the total iteration count i = 0.
Generate cubic model m(s; x0, σ0) with Cubic(x0, σ0, ε0, ε, δ0) according to (11).
Let θ0 = −1.
while θi ≤ 0 do

Compute si ∈ Rd such that si ≈ argmins∈Rd m(s; x0, σ0) according to Condition 3.1;
Compute θi = m(si; xi, σi)− f(xi + si).
if θi > 0 [successful iteration] then

Let xi+1 = xi + si, σi+1 = σi,

εi+1 = min

{
‖∇f(xi+1)‖

6
, ε0

}
[update tolerance of Hessian approximation].

Update i = i+ 1.
else

xi+1 = xi, σi+1 ∈ [γ1σi, γ2σi], εi+1 = εi, update i = i+ 1.
end if

end while
Let T1 = i [record the iteration number].
Return xi, σi, εi.

Solving the auxiliary model: The acceleration in Phase II is achieved by minimizing
an auxiliary model:

ψl(z) = ψl−1(z) +
l(l + 1)

2

(
f(x̄l−1) + (z− x̄l−1)>∇f(x̄l−1)

)
+

1

6
(ςl − ςl−1)‖z− x̄0‖3,

with ψ0(z) = f(x0) + 1
6 ς0‖z − x̄0‖3. To be specific, ψl(z) is used as a bridge to establish

the iteration bounds in Theorem 8 and Theorem 13. Moreover, the minimizer of auxiliary
model ψl(z) has a closed-form expression (see Nesterov (2008) and Jiang et al. (2020)):

x̄0 −
√

2
ςl‖∇`l(z)‖∇`l(z) with

`l(z) = `l−1(z) +
l(l + 1)

2

(
f(x̄l−1) + (z− x̄l−1)>∇f(x̄l−1)

)
and `0(z) = f(x0).

3.2 Overview of the Analysis

Recall in our algorithms that T1 is the total number of iterations in Phase I, T2 is the total
number of solving the cubic model in Phase II, and T3 is the total count of updating the
parameter ςl in the auxiliary model. Then the iteration complexity is established if we are
able to bound T1, T2 and T3. Before presenting the technical analysis, we sketch some major
steps as follows,

1. Upper bound T1 in Lemma 5 (Lemma 10 for worst case analysis) .

11
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Algorithm 3 ASAS(x0, σ0, σmin, ε0, ε, ς0, γ1, γ2, γ3, η, δ, κθ)

Initialization: Let the total iteration count i = 0, the successful iteration count l = 0,
the iteration count k = 0 of updating ςl, and x̄0 = x0.
Construct ψ0(z) = f(x̄0) + 1

6 ς0‖z− x̄0‖3, and compute z0 = argminz∈Rd ψ0(z).
Let y0 = 1

4 x̄0 + 3
4z0 [generate base point for the cubic model].

Generate cubic model m(s; y0, σ0) with Cubic(y0, σ0, ε0, ε, δ0) according to (11).
for j = 0, 1, 2, . . . , until convergence do

Compute sj ≈ argmins∈Rdm(s; yl, σj) using Condition 3.1, and ρj = − s>j ∇f(yl+sj)

‖sj‖3 .

if ρj ≥ η [successful iteration] then
x̄l+1 = xj+1 = yl + sj , σj+1 ∈ [σmin, σj ], and let

εj+1 = min

{
‖∇f(yl)‖

4
, ε0

}
. [update tolerance of Hessian approximation]

if ‖∇f(xj+1)‖2 ≤ ε then
terminate Algorithm 3 [early stop], and return xout = xj+1.

end if
Set l = l + 1, ςl = ςl−1, and compute zl = argminz∈Rd ψl(z).

while ψl(zl) <
l(l+1)(l+2)

6 f(x̄l) do
Set ςl = γ3ςl, and k = k + 1 [record the count of updating ςl].

Update ψl(z) = ψl−1(z) + l(l+1)
2 [f(x̄l) + (z− x̄l)

>∇f(x̄l)] + 1
6(ςl − ςl−1)‖z− x̄0‖3.

Compute zl = argminz∈Rd ψl(z).
end while
Compute yl = l

l+3 x̄l + 3
l+3zl [generate base point for the cubic model].

Generate cubic model m(s; yl, σj+1) with Cubic(yl, σj+1, εj+1, ε, δ0) according to (11).
else

Let xj+1 = xj , σj+1 ∈ [γ1σj , γ2σj ];
end if

end for
Let T2 = j + 1 [record the number of solving the cubic subproblem].
Let T3 = k [record the total number of updating ςl].
Return xout = x̄l, T2 and T3.

2. Prove T2 to be |SC| multiplied by some factors in Lemma 6 (Lemma 11 for worst
case analysis), where SC = {j ≤ T2 : j is a successful iteration} is the index set of all
successful iterations in Phase II.

3. Upper bound T3 in Lemma 7 (Lemma 12 for worst case analysis).

4. Upper bound |SC| in Theorem 8 (Theorem 13 for worst case analysis).

5. Put the pieces together, and prove the iteration bound in Theorem 9 (Theorem 14 for
worst case analysis).

12
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For probabilistic iteration complexity, the quantities in the bounds of T1, T2 and T3 (except
for |SC|) depend only on the problem parameters (see Lemmas 5–7) thus do not affect
the magnitude of the iteration bound. While for the worst-case iteration complexity, those
quantities in Lemmas 10–12 depend on ε, i.e., the solution accuracy. Such dependence will
eventually deteriorate the iteration complexity bound, such as the one presented in Theorem
14.

4. Probabilistic Iteration Complexity

Now we are in a position to provide iteration complexity analysis for Algorithm 1. We
shall show that Algorithm 1 retains the iteration complexity of O(ε−1/3), the same as that
of the non-adaptive version (Nesterov, 2008), even though the sub-problem is now only
solved approximately with sub-sampled Hessian. In the following, to highlight the flow of
our analysis, we shall present the contents of the key technical lemmas while relegating the
proofs to the appendix.

We first provide Lemma 5 and Lemma 6, which describe the relation between the total
iteration number in Algorithm 1 and the amount of successful iterations |SC| in Phase II.

Lemma 5 Suppose in each iteration i of Algorithm 2, the sub-sampled Hessian H̃(xi) sat-
isfies

‖∇2f(xi)− H̃(xi)‖ ≤ εi. (16)

Denoting σ̄P1 = max{σ0, 3γ2 + 0.5ρ̄γ2, γ2(L+ ε0 + κθ + ρ̄)}, it holds that

T1 ≤
⌈

1 +
1

log γ1
log

(
σ̄P1
σmin

)⌉
.

Lemma 6 Suppose in each iteration j of Algorithm 3, the sub-sampled Hessian H̃(xj)
satisfies ‖∇2f(xj)− H̃(xj)‖ ≤ εj. Denoting

σ̄P2 = max
{
σ̄P1 ,

γ2ρ̄

2
+ γ2κθ + γ2η + 2γ2, γ2L+ γ2ε0 + γ2ρ̄+ 3γ2κθ + 2γ2η

}
> 0,

and SC to be the set of successful iterations in Algorithm 3, it holds that

T2 ≤
⌈

1 +
2

log γ1
log

(
σ̄P2
σmin

)⌉
|SC|.

Then we estimate an upper bound on T3: the total counts updating ς > 0.

Lemma 7 Suppose in each iteration j of Algorithm 3, the sub-sampled Hessian H̃(xj)
satisfies ‖∇2f(xj)− H̃(xj)‖ ≤ εj. It holds that

ψl(zl) ≥
l(l + 1)(l + 2)

6
f(x̄l) (17)

when ςl ≥ ς̄P := 8η−2(ρ̄+ (2κθ + 2)L+ 2σ̄P2 + κθ + 1)3, which further implies

T3 ≤

⌈
1 +

1

log (γ3)
log

[
8
( ρ̄

2 + 2κθ + L+ 2σ̄P2 + 1
)3

η2 ς0

]⌉
.

13
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In the rest of this section, the total number of iterations of the two subroutines (i.e. Al-
gorithm 2 and Algorithm 3) is referred to as the iteration complexity of Algorithm 1. To
continue our analysis, we prove the following theorem to provide a bound on the number of
successful iterations in Algorithm 3.

Theorem 8 Suppose in each iteration i of Algorithm 1, the sub-sampled Hessian H̃(xi)
satisfies (16). Then the sequence {x̄l, l = 0, 1, . . .} generated by Algorithm 3 satisfies

l(l + 1)(l + 2)

6
f(x̄l) ≤ ψl(zl) ≤ ψl(z)

≤ l(l + 1)(l + 2)

6
f(z) + 8κθD

3 +
L̄+ ε0

2
‖z− x0‖2 +

σ̄P1
3
‖z− x0‖3 +

ςl
6
‖z− x̄0‖3.

Proof. The proof is based on mathematical induction. The base case l = 0 corresponds to
f(x̄0) = ψ0(z0), which follows from the definition of ψ0(z). It suffices to show the inequality
on the right hand side. Denote x0 ∈ Rd as the initial iterate in Algorithm 2, x̄0 is the output
returned by Algorithm 2 and s̄m0 as a global minimizer of m(s,x0, σ

ASAS
0 ) over Rd. We also

note that for each σi in Algorithm 2, σi ≥ σmin and thus L(x0, σi) ⊆ L(x0, σmin). Then,
noting x̄0 = x0 + s̄0, by (8) one has

‖x0 + s̄0 − x?‖ ≤ D and ‖x0 + s̄m0 − x?‖ ≤ D. (18)

Furthermore, by the criterion of successful iteration in Algorithm 2,

f(x̄0) ≤ m(s̄0,x0, σ
ASAS
0 ) = (m(s̄0,x0, σ

ASAS
0 )−m(s̄m0 ,x0, σ

ASAS
0 )) +m(s̄m0 ,x0, σ

ASAS
0 ).

Since ‖∇2f(xi)− H̃(xi)‖ ≤ εi for all i, and f is convex, we have (13) holds and H(xi) � 0.
Besides, we note that ∇2

(
‖s‖3

)
= 3

(
‖s‖ · I + ss>

)
� 0. Therefore, m(s,x0, σ

ASAS
0 ) is

convex and we have

m(s̄0,x0, σ
ASAS
0 )−m(s̄m0 ,x0, σ

ASAS
0 )

≤ (∇f(x0) +H(x0)s̄0 + σASAS0 ‖s̄0‖ · s̄0)>(s̄0 − s̄m0 )

≤ ‖∇f(x0) +H(x0)s̄0 + σASAS0 ‖s̄0‖ · s̄0‖ · ‖s̄0 − s̄m0 ‖
(15)
≤ κθ‖s̄0‖2‖s̄0 − s̄m0 ‖

≤ κθ‖s̄0 + x0 − x? − (x0 − x?)‖2‖s̄0 + x0 − x? − (s̄m0 + x0 − x?)‖
(18) (8)
≤ 8κθD

3.

On the other hand, we also have

m(s̄m0 ,x0, σ
ASAS
0 )

= f(x0) + (s̄m0 )>∇f(x0) +
1

2
(s̄m0 )>H(x0)s̄m0 +

1

3
σASAS0 ‖s̄m0 ‖3

≤ f(x0) + (z− x0)>∇f(x0) +
1

2
(z− x0)>∇2f(x0)(z− x0) +

ε0
2
‖z− x0‖2 +

σASAS0

3
‖z− x0‖3

≤ f(z) +
L̄

2
‖z− x0‖2 +

ε0
2
‖z− x0‖2 +

σASAS0

3
‖z− x0‖3

≤ f(z) +
L̄+ ε0

2
‖z− x0‖2 +

σ̄P1
3
‖z− x0‖3,

14
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where the second inequality is due to the convexity of f and (6). Therefore,

ψ0(z) = f(x̄0)+
1

6
ς0‖z−x̄0‖3 ≤ f(z)+8κθD

3+
L̄+ ε0

2
‖z−x0‖2+

σ̄P1
3
‖z−x0‖3+

1

6
ς0‖z−x̄0‖3.

Now suppose that the theorem is proven for some l ≥ 1. Let us consider the case of l + 1:

ψl+1(zl+1) ≤ ψl+1(z)

= ψl(z) +
(l + 1)(l + 2)

2
[f(x̄l) + (z− x̄l)

>∇f(x̄l)] +
1

6
(ςl+1 − ςl)‖z− x̄0t‖3

≤ l(l + 1)(l + 2)

6
f(z) + 8κθD

3 +
L̄+ ε0

2
‖z− x0‖2 +

σ̄P1
3
‖z− x0‖3 +

ςl
6
‖z− x̄0‖3

+
(l + 1)(l + 2)

2
[f(x̄l) + (z− x̄l)

>∇f(x̄l)] +
1

6
(ςl+1 − ςl)‖z− x̄0‖3

≤ (l + 1)(l + 2)(l + 3)

6
f(z) + 8κθD

3 +
L̄+ ε0

2
‖z− x0‖2 +

σ̄P1
3
‖z− x0‖3 +

ςl+1

6
‖z− x̄0‖3,

where the last inequality is due to convexity of f(z). On the other hand, noting the way

that ψl+1(z) is updated we have (l+1)(l+2)(l+3)
6 f(x̄l+1) ≤ ψl+1(zl+1). The theorem is thus

proven by induction. �

After establishing Theorem 8, the iteration complexity of Algorithm 1 readily follows.

Theorem 9 Let ε be the accuracy of optimality, εi be the tolerance of sub-sampled Hessian
approximation in (16) for iteration i, and δ0 be the probability that inequality (16) fails for
at least one iteration. When Algorithm 1 runs

T =

⌈
1 +

2

log(γ1)
log

(
σ̄P1
σmin

)⌉
+

⌈
1 +

2

log(γ1)
log

(
σ̄P2
σmin

)⌉⌈(
CP

ε

) 1
3

⌉

+

⌈
1

log (γ3)
log

[
8η−2(0.5ρ̄+ 2κθ + L+ ε0 + 2σ̄P2 + 2)3

η2 ς0

]
+ 1

⌉
= O(ε−1/3)

iterations (including the successful iterations to update ς), then with probability 1 − δ0 we
have f(xout)− f? ≤ ε, where CP = D3(48κθ + 2σ̄P1 + γ3ς̄

P ) + 3D2(L̄+ ε0).

Proof. Under the probability assumption of Theorem 8 and by taking z = x?, we have
that

l(l + 1)(l + 2)

6
f(x̄l)

≤ l(l + 1)(l + 2)

6
f(x?) + 8κθD

3 +
L̄+ ε0

2
‖x? − x0‖2 +

σ̄P1
3
‖x? − x0‖3 +

ςl
6
‖x? − x̄0‖3

≤ l(l + 1)(l + 2)

6
f? +

(
8κθ +

σ̄P1
3

+
γ3ς̄

P

6

)
D3 +

(
L̄+ ε0

2

)
D2.

Rearranging the terms yields that

f(x̄l)− f∗ ≤
CP

l(l + 1)(l + 2)
<
CP

l3
.
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Recall that l is the count of successful iterations and SC is the index set of all successful

iterations in Algorithm 3. Then |SC| = l <
(
CP

ε

)1/3
whenever f(x̄l) − f∗ ≥ ε. Therefore,

by choosing T2 =
⌈
1 + 2

log(γ1) log
(
σ̄P2
σmin

)⌉⌈(
CP

ε

)1/3
⌉

and by Lemma 6, we have l = |SC| ≥⌈(
CP

ε

)1/3
⌉

, which further implies f(x̄l) − f∗ < ε. Denote T̂ = T1 + T2 to be the total

number of iterations that generates sub-sampled Hessian in Algorithm 1. Then combining
the choice of T2 and Lemma 5 yields that

T̂ =

⌈
1 +

2

log(γ1)
log

(
σ̄P1
σmin

)⌉
+

⌈
1 +

2

log(γ1)
log

(
σ̄P2
σmin

)⌉⌈(
CP

ε

)1/3
⌉

= O(ε−1/3)

To ensure an overall accumulative success probability of 1 − δ0 for the entire T̂ iterations,
the per-iteration failure probability is set as 1 − T̂

√
1− δ0 = O(δ0/T̂ ) = O(δ0ε

1/3); see Xu
et al. (2020b) for more details. Therefore, by setting ε̂ = εi and δ = δ0ε

1/3 in Lemma 3 (or
Lemma 4) and we have that ‖∇2f(xi) − H̃(xi)‖ ≤ εi for all i ≤ T1 + T2 with probability
1− δ0. As a result, the probability assumption in Theorem 8 is satisfied, and the conclusion
follows from the choice of T̂ and Lemma 7.

�

5. Worst-Case Iteration Complexity

In this section, we consider the case where the accuracy requirement of the sub-sampled
Hessian is not satisfied, and assume that each component function fi in f of problem (1) is
convex. For any H(x) constructed in Algorithm 2 and Algorithm 3, noting that ε0 is the
upper bound of the tolerance of all Hessian approximations in the algorithms, it holds that

H(x) � 0 and ‖H(x)‖ ≤ 1

n|S|
∑
j∈S

1

pj
‖∇2fj(xi)‖+ ε0

(6)

≤ L+ ε0. (19)

In the following, to highlight the flow of our analysis, we shall present the lemmas key to
our analysis but relegate their proofs to the appendix.

Lemma 10 Suppose ‖∇f(xi)‖2 > ε in each iteration i of Algorithm 2. Denoting

σ̄W1 = max

{
σ0,

3γ2L(4L+ ε0)

(1− κθ)
√
ε

}
> 0,

we have

T1 ≤
⌈

1 +
2

log (γ1)
log

(
σ̄W1
σmin

)⌉
.

Lemma 11 Suppose ‖∇f(xj)‖2 > ε in each iteration j of Algorithm 3. Denoting

σ̄W2 = max

{
σ̄W1 , γ2

(3L+ 2ε0)(2L+ ε0) + 2
√
ε(1− κθ)(κθ + η) + (2L+ ε0)

√
(3L+ 2ε0)2 +

√
ε(1− κθ)(κθ + η)

2
√
ε(1− κθ)

}
.

(20)

16



Adaptively Accelerating Cubic Regularized Newton’s Methods via Random Sampling

we have

T2 ≤
⌈

1 +
2

log (γ1)
log

(
σ̄W2
σmin

)⌉
|SC|.

Now we are ready to estimate an upper bound of T3: the total counts of successfully
updating ς > 0.

Lemma 12 Suppose in each iteration j of Algorithm 3, we have ‖∇f(xj)‖2 > ε for all
0 ≤ j ≤ T2. Then inequality (17) holds if

ςl ≥ ς̄W :=
8

η2

(2L+ ε0) ·
(L+ ε0) +

√
(L+ ε0)2 + 4σ̄W2

√
ε(1− κθ)

2
√
ε(1− κθ)

+ σ̄W2 + κθ

3

, (21)

where σ̄W2 is defined in (20), and it further implies that

T3 ≤


1

log (γ3)
log

 8

η2ς0

(2L+ ε0) ·
(L+ ε0) +

√
(L+ ε0)2 + 4σ̄W2

√
ε(1− κθ)

2
√
ε(1− κθ)

+ σ̄W2 + κθ

3
+ 1


In the rest of this section, we refer the combined number of iterations of the two subroutines
(Algorithm 2 and Algorithm 3) as the iteration count for Algorithm 1.

Theorem 13 Suppose that every component function fi in f of problem (1) is convex and
in each iteration i of Algorithm 1, we have ‖∇f(xj)‖2 > ε for all j. Then the sequence
{x̄l, l = 0, 1, . . .} generated by Algorithm 3 satisfies

l(l + 1)(l + 2)

6
f(x̄l) ≤ ψl(zl) ≤ ψl(z)

≤ l(l + 1)(l + 2)

6
f(z) + 8κθD

3 +
L+ ε0

2
‖z− x0‖2 +

σ̄W1
3
‖z− x0‖3 +

ςl
6
‖z− x̄0‖3.

Proof. The proof is almost identical to that of Theorem 8 (which is based on mathemat-
ical induction) except the following estimation on m(s̄m0 ,x0, σ

ASAS
0 ), where s̄m0 is a global

minimizer of m(s,x0, σ
ASAS
0 ) over Rd:

m(s̄m0 ,x0, σ
ASAS
0 ) = f(x0) + (s̄m0 )>∇f(x0) +

1

2
(s̄m0 )>H(x0)s̄m0 +

1

3
σASAS0 ‖s̄m0 ‖3

(19)
≤ f(x0) + (z− x0)>∇f(x0) +

1

2
(L+ ε0) ‖z− x0‖2 +

σASAS0

3
‖z− x0‖3

≤ f(z) +
L+ ε0

2
‖z− x0‖2 +

σ̄W1
3
‖z− x0‖3,

where the second inequality is due to the convexity of f . Then, by replacing the estimation
of m(s̄m0 ,x0, σ

ASAS
0 ) with the inequality above, the conclusion readily follows. �

After establishing Theorem 13 and denoting

σ̄W := max

{
σ0,

3γ2L(4L+ ε0)

(1 − κθ)
, γ2

(3L+ 2ε0)(2L+ ε0) + 2(1 − κθ)(κθ + η) + (2L+ ε0)
√

(3L+ 2ε0)2 + (1 − κθ)(κθ + η)

2(1 − κθ)

}
,

(22)

the iteration complexity of Algorithm 1 readily follows.
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Theorem 14 Suppose every component function fi in f of problem (1) is convex, and let
0 < ε < 1 sufficiently small. The Algorithm 1 returns a solution xout such that either
‖∇f(xout)‖2 ≤ ε or f(xout)− f∗ ≤ ε, at an iteration no more than

T ≤
⌈

1 +
2

log(γW1 )
log

(
σ̄W

σmin
ε−

1
2

)⌉
+

⌈
1 +

2

log(γ1)
log

(
σ̄W

σmin
ε−

1
2

)⌉⌈
(CW )

1
3 · ε−

5
6

⌉
+

 1

log(γ3)
log

((2L+ ε0) · (L+ ε0) +
√

(L+ ε0)2 + 4σ̄W (1− κθ)
2(1− κθ)

+ σ̄W + κθ

)3
8D3

η2ς0
ε−

3
2

+ 1


= O(ε−5/6 log(ε−1)),

where

CW = 12κθD
3+3(L+ε0)D2+2σ̄WD3+

8D3

η2

(
(2L+ ε0) · (L+ ε0) +

√
(L+ ε0)2 + 4σ̄W (1− κθ)
2(1− κθ)

+ σ̄W + κθ

)3

(23)

and σ̄W is defined in (22).

Proof. Suppose Algorithm 1 does not stop early, i.e., we have ‖∇f(xj)‖2 > ε in every
iteration j. Recall that l = 0, 1, . . . is the count of successful iterations in Algorithm 3.
Applying the inequality in Theorem 13 with z = x? we have

l(l + 1)(l + 2)

6
(f(x̄l)− f(x?)) ≤ 8κθD

3 +

(
L+ ε0

2

)
D2 +

σ̄W1
3
D3 +

ςl
6
D3

Note that ςl ≤ γ3ς̄
W and ς̄W has the magnitude of ε−

3
2 in (21). In addition, σ̄W1 that is

defined in Lemma 10, is also dependent on ε. The above inequality implies that

f(x̄l)− f(x?) ≤ CW

l(l + 1)(l + 2)
· ε−

3
2 <

CW

l3
· ε−

3
2 (24)

with CW defined in (23). Recall that SC is the index set of all successful iterations in Algo-

rithm 3. Then |SC| = l <
(
CW

ε5/2

)1/3
whenever f(x̄l)− f∗ ≥ ε. Therefore, by choosing T2 =⌈

1 + 2
log(γ1) log

(
σ̄W2
σmin

)⌉⌈(
CW

ε5/2

)1/3
⌉

and Lemma 11, we must have l = |SC| ≥
⌈(

CW

ε5/2

)1/3
⌉

,

which further implies f(x̄l)− f∗ < ε. Finally, the upper bound on T follows by combining
this result with lemmas 10 and 12. �

To conclude this section, we remark that if we adopt a stronger early stop criterion of
‖∇f(xj+1)‖ ≤ ε in Algorithm 1, then the iteration bound in Theorem 14 will change to
O(ε−4/3 log(ε−1/2)). This is because in this case, the factor

√
ε in the bound of ς̄W from (21)

is replaced by ε. As a result, the quantity CW

l3
· ε−

3
2 in (24) is adapted to CW

l3
· ε−3. Then we

can let T2 =
⌈
1 + 2

log(γ1) log
(
σ̄W2
σmin

)⌉⌈(
CW

ε4

)1/3
⌉

and guarantee l ≥ d(CW )
1
3 ε−

4
3 e by Lemma

10, which further implies f(x̄l)− f∗ < ε. The iteration bound of O(ε−4/3 log(ε−1/2)) follows
from this result, lemmas 10 and 12.
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Table 1: The Statistics of Eight LIBSVM Datasets

Name Instances No. Features No. Processing

SUSY 5,000,000 18 Done by Baldi et al. (2014)
covtype 581,012 54 Transformed from multiclass by Collobert et al. (2002).
phishing 11,055 68 Binary encoding and length-normalized

w8a 49,749 300 Rescaled to a unit vector
gisette 7,000 5,000 Feature-wisely rescaled within [−1, 1]
rcv1 20,242 47,236 Only training data used

real-sim 72,309 20,958 Vikas Sindhwani for the SVMlin project

6. Numerical Experiments

We shall demonstrate the efficacy of the proposed method by presenting some computa-
tional results on different genres of real data. Experimental results on regularized logistic
regression confirm that our algorithm is suitable for solving large-scale statistical learning
problems and at least competitive with other algorithms. In addition, all eight data sets are
selected from the LIBSVM collection1 in which their statistics are summarized in Table 1,
and all algorithms are implemented using Python 3.5 on a MacBook Pro running with Mac
OS High Sierra 10.13.6 and 16GB memory.

Problem. Given a collection of data samples {(wi, yi)}ni=1 in which yi ∈ {−1, 1}, the
model of regularized logistic regression is given by

min
x∈Rd

1

n

n∑
i=1

log
(

1 + e−yiw
>
i x
)

+

(
λ

2

)
‖x‖2 . (25)

where the regularization term ‖·‖2 promotes smoothness and λ > 0 balances smoothness
with goodness-of-fit and generalization and is chosen by five-fold cross validation.

Experimental setting. We implement Algorithm 1 with η = 0.1, γ1 = γ2 = γ3 = 2,
σmin = 10−16, σ0 = 1 and κθ = 0.1, denoted as SACR, in a hybrid manner. Specifi-
cally, given that SACR contains two phases we implement SACR with these two phases at
the beginning and stop the second phase when the iterate is relatively close to the opti-
mal solution, and then switch to subsampled cubic regularization (SCR) method. This is
because that we observe that the first phase mainly contributes to the local convergence
of SACR while the second phase may hurt it. In fact, when the iterate is close enough
to an optimal solution, the first phase reduces to the Newton method, hence admitting
a local quadratic convergence rate. In our experiment, we stop the second phase when
|f(xi+1)− f(xi)|/|f(xi)| ≤ 10−1 and the final stopping criterion as ‖∇f(x)‖ ≤ 10−7.

Furthermore, since the accelerated convergence of our algorithm is global, to observe
the effect of acceleration, we need to set the initial solution far away from the local con-
vergence region. In this case, we randomly generate the starting point from a Gaussian
random variable with zero mean and a large variance. The sample size is chosen inversely
proportional to the square norm of the gradient (cf. Lemmas 3 and 4) with proportional

1. The LIBSVM collection is available at https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets
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Figure 1: Performance of our algorithm and four state-of-the-art algorithms without sub-
sampled Hessian information on eight datasets with the log-scale of the norm of gradient
vs. number of epochs.
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Figure 2: Performance of our algorithm and four state-of-the-art algorithms without sub-
sampled Hessian information on eight datasets with the log-scale of the norm of gradient
vs. time.
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ratio 0.2 log(100d) and are bounded both below and above by some constants. The lower
bound and the upper bound are tuned for different datasets. In addition, we require the
lower bound of the sample size decreases to a smaller value after we switching SACR to
SCR in the local region of the optimal solution.

Finally, we use the log-scale of norm of gradient as the function of number of epochs and
run time as the metric in our experiment. In particular, one epoch is counted when a full
batch size (i.e. n times) of the gradient or Hessian of the component functions is queried.
Since the sample size in sub-sampling algorithms is less than n, one epoch is likely to be
consumed by the queries from several iterations.

Subproblem solving. The generalized conjugate gradient method with Lanczos process
is applied to approximately solve the cubic regularized subproblem. More specifically, the
convex cubic polynomial in the subproblem is minimized over a Krylov subspace, which is
defined by the gradient and Hessian of f at xi and given by

K := Span
{
∇f(xi), ∇2f(xi)∇f(xi),

(
∇2f(xi)

)2∇f(xi), . . .
}
,

Note that the Krylov subspace K gradually swells with very cheap computational cost since
each orthogonal basis is created by performing a single matrix-vector product. Furthermore,
the minimization of cubic polynomial over the Krylov subspace only requires factorizing a
tri-diagonal matrix at the O(d) expense. Finally, we set the stopping criterion for subprob-
lem solving as (15) with κθ = 0.1.

6.1 Comparision with four state-of-the-art algorithms without sub-sampled
Hessian information

In the first experiment, we compare our algorithm to four baseline algorithms, including
the deterministic counterpart of our algorithm Jiang et al. (2020), denoted as ACR, the
limited memory BFGS method, denoted as LBFGS, the minibatch variant of LBFGS with
the batch size n/2, denoted as MLBFGS, and the minibatch variant of stochastic gradient
descent with the batch size n/10, denoted as SGD. Note that only the gradient is sampled
in MLBFGS and SGD, while the Hessian instead of the gradient is subsampled in our
algorithm. For LBFGS and MLBFGS implementations, we set an initial matrix as identity
matrix and the line search criterion with strong Wolfe condition. The ratio for measuring
the progress is set as 0.9, the maximum number of line search is set as 5 and the memory
size is set as 30. Additionally, we excluded the sub-sampled Newton method since its global
convergence is unknown in general and, when the iterate is close enough, our algorithm
turns out to be the same as the sub-sampled Newton method since the cubic regularization
term will become very small.

The results on eight datasets are presented in Figures 1-2. We observe that SACR
outperforms other algorithms in most of the datasets despite the competitive performance
of other algorithms at the initial stage. In particular, both SACR and ACR can attain the
solution with high accuracy while LBFGS, MLBFGS and SGD can not. We observe the
curve of LBFGS lies between that of SGD and ACR, and it behaves more like ACR for
low-dimensional dataset (i.e., SUSY and covtype). This is probably due to that LBFGS
can be viewed as an interplay between the first order and the second order method, and
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it exhibits superlinear convergence thanks to certain geometrical regularity (e.g., restricted
strongly convexity) that intuitively exists for low-dimensional problem with high probability
in real applications. Also, SACR is more efficient than ACR due to the usage of sub-
sampling techniques. When the dimension of the dataset becomes larger, standard second-
order methods suffer from the storing and computing the inverse of the Hessian as the
dimension increases, while our algorithm remains efficient in most of these datasets. This is
not surprising since the subproblem solving depends on the generalized conjugate gradient
method. For high-dimensional problems, storing the Hessian appears to be a critical issue
which requires further exploration. To this end, the competitive performance demonstrates
that our algorithm has a great potential to achieve practical performance on the large-scale
problems.

6.2 Comparision with three types of sub-sampled cubic regularized algorithms

In the second experiment, we compare our algorithm to three types of sub-sampled cubic
regularized algorithms including the non-accelerated sub-sampled cubic regularized (SCR)
algorithm that is used in the phase I of SACR, a variant of SCR in (Kohler and Lucchi, 2017)
denoted as SCR-KL, a dynamic inexact Hessian variant of SCR in (Bellavia et al., 2021)
denoted as SCR-BGM. In the implementation, the the sample size for the approximation
in SCR-KL is determined by the previous stepsize instead of the current stepsize used in
the theory (Kohler and Lucchi, 2017) with an adaptive rule1. While the parameters of
SCR-BGM strictly follows the setting for testing the real datasets in (Bellavia et al., 2021).
In addition, we impose a lower bound as well as an upper bound of the sample size for all
the algorithms, and these bounds are tuned for different datasets. In particular, the lower
bound is uniformly set to be 0.01 · n for all datasets, while the upper bound is set to be
0.2 · n for 7 datasets except the full batch size n is used for the dataset “gisette”.

We provide the corresponding numerical results on eight datasets in Figures 3, where the
log-scale of the norm of gradient vs. number of epochs is provided. We can see that SACR
outperforms other sub-sampled cubic regularized algorithms in all the datasets, while all
the tested algorithms have similar convergence behavior after the iteration points entering
the local region of the optimal solution. This indeed indicates that our technique really
accelerates the algorithm in finding such local region and yields a faster convergence rate.

7. Concluding Remarks

The theoretical properties of subsampled Hessian Newton-type methods have recently re-
ceived a lot of attention, but their acceleration has not been well studied in the literature. In
this paper, we focus on the sum-of-nonconvex problem and propose a novel way to accelerate
adaptive cubic regularization of Newton’s method with either uniform or non-uniform sub-
sampled Hessians. Our new algorithm achieves the global iteration complexity of O(ε−1/3)
with high probability, which matches that of the original accelerated cubic regularization
methods (Jiang et al., 2020) using the full Hessian information. In the worst case scenario,
we demonstrate that our algorithm still achieves an O(ε−5/6 log(ε−1)) iteration complexity
bound. The proof techniques are new to our knowledge and can be of independent interets.

1. https://github.com/dalab/subsampled cubic regularization
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Figure 3: Performance of our algorithm and three sub-sampled cubic regularized algorithms
on eight datasets with the log-scale of the norm of gradient vs. number of epochs.

Our empirical evaluation show that the new algorithm studied in this paper is generally
more efficient than its deterministic counterpart, LBFGS, mini-batch LBFGS, and SGD,
on regularized logistic regression problems for real datasets.
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Appendix A. Proofs in Section 4

We prove Lemma 5 and Lemma 6, which describe the relation between the total iteration
numbers in Algorithm 2 and the amount of successful iterations |SC| in Algorithm 3.

Proof of Lemma 5: First by invoking the fact

f(xi+ si) = f(xi) + s>i ∇f(xi) +
1

2
s>i ∇2f(xi)si+

∫ 1

0

(1− τ)s>i [∇2f(xi+ τsi)−∇2f(xi)]si dτ, (26)

we have that

f(xi + si)

= f(xi) + s>i ∇f(xi) +
1

2
s>i ∇2f(xi)si +

∫ 1

0
(1− τ)s>i [∇2f(xi + τsi)−∇2f(xi)]si dτ

(5)
≤ f(xi) + s>i ∇f(xi) +

1

2
s>i ∇2f(xi)si +

ρ̄

6
‖si‖3

= m(si; xi, σi) +
1

2
s>i
(
∇2f(xi)−H(xi)

)
si +

( ρ̄
6
− σi

3

)
‖si‖3

(12)
≤ m(si; xi, σi) + εi‖si‖2 +

( ρ̄
6
− σi

3

)
‖si‖3.

Next we argue that when σi exceeds a certain constant, then it holds that

f(xi + si) ≤ m(si; xi, σi).

The analysis is conducted according to the value of ‖si‖ in two cases.

1. When ‖si‖ ≥ 1, we have

f(xi + si) ≤ m(si; xi, σi) +
(
εi +

ρ̄

6
− σi

3

)
‖si‖3,

which in combination with the fact that εi ≤ ε0 ≤ 1 leads to

σi ≥
6 + ρ̄

2
=⇒ f(xi + si) ≤ m(si; xi, σi).

2. When ‖si‖ < 1, according to Condition 3.1, it holds that

κθ‖si‖ > κθ‖si‖2 ≥ ‖∇f(xi) +H(xi)si + σi‖si‖ · si‖
≥ ‖∇f(xi)‖ − ‖H(xi)‖‖si‖ − σi‖si‖2

≥ ‖∇f(xi)‖ − (L+ ε0 + σi)‖si‖,

where the last inequality holds true since ‖si‖ < 1 and

‖H(xi)‖ ≤
1

n|S|
∑
j∈S

1

pj
‖∇2fj(xi)‖+ εi‖I‖

(6)

≤ 1

n|S|
∑
j∈S

1

pj
L+ εi ≤ L+ ε0.

This can be further rewritten as

‖si‖ ≥
‖∇f(xi)‖

L+ ε0 + σi + κθ
. (27)
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Moreover, recall that

f(xi + si) ≤ m(si; xi, σi) +

(
εi
‖si‖

+
ρ̄

6
− σi

3

)
‖si‖3,

and combining the above two inequalities yields that

εi(L+ ε0 + σi + κθ)

‖∇f(xi)‖
+
ρ̄

6
− σi

3
≤ 0 =⇒ f(xi + si) ≤ m(si; xi, σi).

Recall in Algorithm 2 that

εi = min

{
‖∇f(xi)‖

6
, ε0

}
≤ ‖∇f(xi)‖

6
, (28)

then it suffices to show

L+ ε0 + σi + κθ
6

+
ρ̄

6
− σi

3
≤ 0.

That is:

σi ≥ L+ ε0 + κθ + ρ̄ =⇒ f(xi + si) ≤ m(si; xi, σi).

In summary, we have concluded that

σi ≥ max

{
6 + ρ̄

2
, L+ ε0 + κθ + ρ̄

}
=⇒ f(xi + si) ≤ m(si; xi, σi), (29)

which implies that σi < max{3 + 0.5ρ̄, L+ ε0 + κθ + ρ̄} for i ≤ T1 − 2. Moreover,

σT1 = σT1−1 ≤ γ2σT1−2 ≤ γ2 max {3 + 0.5ρ̄, L+ ε0 + κθ + ρ̄} .

Then it holds that σi ≤ σ̄P1 = max{σ0, 3γ2 + 0.5ρ̄γ2, γ2(L+ ε0 + κθ + ρ̄)} for any i ≤ T1.
On the other hand, it follows from the construction of Algorithm 2 that σmin ≤ σi for all
iterations, and γ1σi ≤ σi+1 for all unsuccessful iterations. Consequently, we have

σ̄P1
σmin

≥ σT1
σ0

=
σT1
σT1−1

·
T1−2∏
j=0

σj+1

σj
=

T1−2∏
j=0

σj+1

σj
≥ γT1−1

1 ,

where the second equality is due to σT1 = σT1−1 in Algorithm 2, and hence

T1 ≤
(

1 +
1

log γ1
log

(
σ̄P1
σmin

))
.

This completes the proof of Lemma 5. �
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Proof of Lemma 6: We have

s>j ∇f(yl + sj)

= s>j [∇f(yl + sj)−∇f(yl)−∇2f(yl)sj ] + s>j [∇f(yl) +∇2f(yl)sj ]

≤ ‖∇f(yl + sj)−∇f(yl)−∇2f(yl)sj‖‖sj‖+ s>j [∇f(yl) +H(yl)sj + σj‖sj‖sj ]
+s>j (∇2f(yl)−H(yl))sj − σj‖sj‖3

(15)
≤ ‖∇f(yl + sj)−∇f(yl)−∇2f(yl)sj‖‖sj‖+ (κθ − σj)‖sj‖3 + 2εj‖sj‖2

= ‖
∫ 1

0
[∇2f(yl + τ · sj)−∇2f(yl)]sj dτ‖‖sj‖+ (κθ − σj)‖sj‖3 + 2εj‖sj‖2

(5)
≤

( ρ̄
2

+ κθ − σj
)
‖sj‖3 + 2εj‖sj‖2.

Next we argue that when σi exceeds certain constant, it holds

−
s>j ∇f(yl + sj)

‖sj‖3
≥ η,

The analysis is conducted according to the value of ‖sj‖ in two cases.

1. When ‖sj‖ ≥ 1, we have

s>j ∇f(yl + sj) ≤
( ρ̄

2
+ κθ − σj + 2εj

)
‖sj‖3,

which combined with εj ≤ ε0 ≤ 1 implies that

σj ≥
ρ̄

2
+ κθ + η + 2 =⇒ −

s>j ∇f(yl + sj)

‖sj‖3
≥ η.

2. When ‖sj‖ < 1, similar argument of (27) implies that

‖sj‖ ≥
‖∇f(yl)‖

L+ ε0 + σi + κθ
. (30)

Moreover, recall that

s>j ∇f(yl + sj) ≤
(
ρ̄

2
+ κθ − σj +

2εj
‖sj‖

)
‖sj‖3.

Combining the above two inequalities yields that

2εj(L+ ε0 + σi + κθ)

‖∇f(yl)‖
+
ρ̄

2
+ κθ − σj + η ≤ 0 =⇒ −

s>j ∇f(yl + sj)

‖sj‖3
≥ η.

Recall in Algorithm 3 that

εj = min

{
‖∇f(yl)‖

4
, ε0

}
≤ ‖∇f(yl)‖

4
,
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then it suffices to show

L+ ε0 + σj + κθ
2

+
ρ̄

2
+ κθ − σj + η ≤ 0.

That is,

σj ≥ L+ ε0 + ρ̄+ 3κθ + 2η =⇒ −
s>j ∇f(yl + sj)

‖sj‖3
≥ η.

In summary, we have concluded that

σj ≥ max
{ ρ̄

2
+ κθ + η + 2, L+ ε0 + ρ̄+ 3κθ + 2η

}
=⇒ −

s>j ∇f(yl + sj)

‖sj‖3
≥ η,

which further implies that for any unsuccessful iteration j 6∈ SC, the following inequality
holds true,

σj < max
{ ρ̄

2
+ κθ + η + 2, L+ ε0 + ρ̄+ 3κθ + 2η

}
.

Therefore, for any successful iteration j ∈ SC, we have

σj+1 ≤ σj ≤ γ2 · σj−1 ≤ γ2 max
{ ρ̄

2
+ κθ + η + 2, L+ ε0 + ρ̄+ 3κθ + 2η

}
.

Consequently, for any 0 ≤ j ≤ T2, we have

σj ≤ σ̄P2 = max
{
σ̄P1 ,

γ2ρ̄

2
+ γ2κθ + γ2η + 2γ2, γ2L+ γ2ε0 + γ2ρ̄+ 3γ2κθ + 2γ2η

}
, (31)

where σ̄P1 is responsible for an upper bound of σ0. In addition, it follows from the construc-
tion of Algorithm 1 that σmin ≤ σj for all iterations, and γ1σj ≤ σj+1 for all unsuccessful
iterations. Therefore, we have

σ̄P2
σmin

≥ σT1+T2

σT1
=
∏
j∈SC

σj+1

σj
·
∏
j /∈SC

σj+1

σj
≥ γT2−|SC|1

(
σmin

σ̄P2

)|SC|
,

hence

|SC| ≤ T2 ≤ |SC|+
(|SC|+ 1)

log γ1
log

(
σ̄P2
σmin

)
≤
(

1 +
2

log γ1
log

(
σ̄P2
σmin

))
|SC|.

This completes the proof of Lemma 6. �

We present Jiang et al. (2020, Lemma 3.3 and 3.4), which are important to the subse-
quent analysis.

Lemma 15 For any s ∈ Rd and g ∈ Rd, it holds that

s>g +
1

3
σ‖s‖3 ≥ − 2

3
√
σ
‖g‖

3
2 .

Lemma 16 Letting zl = argminz∈Rd ψl(z), we have ψl(z)− ψl(zl) ≥ (ςl/12)‖z− zl‖3.
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The following lemma is useful to bound the total number of successfully updating ς > 0.

Lemma 17 Suppose in each iteration j of Algorithm 3, we have ‖∇2f(xj)−H(xj)‖ ≤ εj
for any 0 ≤ j ≤ T2. Then we have

‖∇f(xj+1)‖ ≤
(
0.5ρ̄+ 2κθ + L+ ε0 + 2σ̄P2 + 2

)
‖sj‖2,

where κθ ∈ (0, 1) is used in Condition 3.1.

Proof. Note that ∇sm(sj ; xj , σj) := ∇f(xj) +H(xj)sj + σj‖sj‖ · sj . Then we have

‖∇f(xj+1)‖
≤ ‖∇f(xj+1)−∇f(xj)−∇2f(xj)sj |+ ‖∇2f(xj)−H(xj)‖‖sj‖+ σj‖sj‖2 + ‖∇sm(sj ; xj , σj)‖

≤
∥∥∥∥∫ 1

0
(∇2f(xj + τsj)−∇2f(xj))sjdτ

∥∥∥∥+ 2εj‖sj‖+ σj‖sj‖2 + κθ‖sj‖2

≤ ρ̄

2
‖sj‖2 + 2εj‖sj‖+ σ̄2‖sj‖2 + κθ · ‖sj‖2,

where the second inequality holds true due to Condition 3.1, and the last inequality follows
from Assumption 2 and (31). The subsequent analysis is conducted according to the value
of ‖sj‖ in two cases.

1. When ‖sj‖ ≥ 1, we have

‖∇f(xj+1)‖ ≤
( ρ̄

2
+ 2εj + σ̄P2 + κθ

)
‖sj‖2,

which combined with εj ≤ ε0 ≤ 1 implies that

‖∇f(xj+1)‖ ≤
( ρ̄

2
+ σ̄P2 + κθ + 2

)
‖sj‖2.

2. When ‖sj‖ < 1, recall in Algorithm 3 that

εj = min

{
‖∇f(yl)‖

4
, ε0

}
≤ ‖∇f(yl)‖

4
,

which combined with the first inequality at the beginning of the proof implies that

‖∇f(xj+1)‖ ≤
( ρ̄

2
+ κθ + σ̄P2

)
‖sj‖2 +

‖∇f(yl)‖‖sj‖
2

≤
( ρ̄

2
+ κθ + σ̄P2

)
‖sj‖2 + (L+ ε0 + κθ + σj) ‖sj‖2

≤
( ρ̄

2
+ 2κθ + L+ ε0 + 2σ̄P2

)
‖sj‖2.

In summary, we have

‖∇f(xj+1)‖ ≤
( ρ̄

2
+ 2κθ + L+ ε0 + 2σ̄P2 + 2

)
‖sj‖2.

�
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Proof of Lemma 7: We are now ready to provide an upper bound of T3. When l = 0,
it trivially holds true that ψl(zl) ≥ (1/6)l(l+ 1)(l+ 2)f(x̄l) since ψ0(z) = f(x̄0). It suffices
to establish the general case when ςl ≥ 8η−2(0.5ρ̄ + 2κθ + L + 2σ̄P2 + 1)3 by mathematical
induction. Without loss of generality, we assume (17) holds true for some l − 1 ≥ 1. Then,
it follows from Lemma 16, and the construction of ψl(z) that

ψl−1(z) ≥ ψl−1(zl−1) +
1

12
ςl−1‖z− zl−1‖3 ≥

(l − 1)l(l + 1)

6
f(x̄l−1) +

1

12
ςl−1‖z− zl−1‖3.

As a result, we have

ψl(zl)

= min
z∈Rd

{
ψl−1(z) +

l(l + 1)

2
[f(x̄l) + (z− x̄l)

>∇f(x̄l)] +
1

6
(ςl − ςl−1)‖z− x̄0‖3

}
≥ min

z∈Rd

{
(l − 1)l(l + 1)

6
f(x̄l−1) +

ςl−1
12
‖z− zl−1‖3 +

l(l + 1)

2

[
f(x̄l) + (z− x̄l)

>∇f(x̄l)
]}

≥ min
z∈Rd

{
(l − 1)l(l + 1)

6
[f(x̄l) + (x̄l−1 − x̄l)

>∇f(x̄l)] +
ςl−1
12
‖z− zl−1‖3 +

l(l + 1)

2
[f(x̄l) + (z− x̄l)

>∇f(x̄l)]

}
=

l(l + 1)(l + 2)

6
f(x̄l) + min

z∈Rd

{
(l − 1)l(l + 1)

6
(x̄l−1 − x̄l)

>∇f(x̄l) +
ςl−1
12
‖z− zl−1‖3 +

l(l + 1)

2
(z− x̄l)

>∇f(x̄l)

}
,

where the first inequality follows from ςl ≥ ςl−1. By the construction of yl−1, we have

(l − 1)l(l + 1)

6
x̄l−1 =

l(l + 1)(l + 2)

6
· l − 1

l + 2
x̄l−1

=
l(l + 1)(l + 2)

6

(
yl−1 −

3

l + 2
zl−1

)
=

l(l + 1)(l + 2)

6
yl−1 −

l(l + 1)

2
zl−1.

Combining the above two formulas yields

ψl(zl) ≥
l(l + 1)(l + 2)

6
f(x̄l) + min

z∈Rd

{
l(l + 1)(l + 2)

6
(yl−1 − x̄l)

>∇f(x̄l)

+
ςl−1

12
‖z− zl−1‖3 +

l(l + 1)

2
(z− zl−1)>∇f(x̄l)

}
.

By the criterion of successful iteration in Algorithm 3 and Lemma 17, we have

(yl−1 − x̄l)
>∇f(x̄l) = −s>j ∇f(x̄l) ≥ η‖sj‖3 ≥ η

(
‖∇f(x̄l)‖

0.5ρ̄+ 2κθ + L+ ε0 + 2σ̄P2 + 2

) 3
2

,

where the l-th successful iteration count refers to the j-th iteration count. Hence, it suffices
to establish

l(l + 1)(l + 2)η

6

(
‖∇f(x̄l)‖

ρ̄
2 + 2κθ + L+ ε0 + 2σ̄P2 + 2

) 3
2

+
ςl−1

12
‖z−zl−1‖3+

l(l + 1)

2
(z−zl−1)>∇f(x̄l) ≥ 0.
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Using Lemma 15 and setting g = 0.5l(l + 1)∇f(x̄l), s = z− zl, and σ = ςl−1/4, the above
is implied by

l(l + 1)(l + 2)η

6

(
1

0.5ρ̄+ 2κθ + L+ ε0 + 2σ̄P2 + 2

) 3
2

≥ 4

3
√
ςl−1

(
l(l + 1)

2

) 3
2

. (32)

Therefore, the conclusion follows if

ςl−1 ≥ 8η−2(0.5ρ̄+ 2κθ + L+ ε0 + 2σ̄P2 + 2)3.

This completes the proof.

Appendix B. Proofs in Section 5

We prove Lemma 10 and Lemma 11, which describe the relation between the total iteration
numbers in Algorithm 2 and the amount of successful iterations |SC| in Algorithm 3.

Proof of Lemma 10: According to Condition 3.1, it holds that

κθ‖∇f(xi)‖ ≥ ‖∇m(si; xi, σi))‖ = ‖∇f(xi) +H(xi)si + σi‖si‖ · si‖
(19)
≥ ‖∇f(xi)‖ − (L+ ε0)‖si‖ − σi‖si‖2,

which implies that
σi‖si‖2 + (L+ ε0)‖si‖ − (1− κθ)

√
ε ≥ 0,

and hence

‖si‖ ≥
−(L+ ε0) +

√
(L+ ε0)2 + 4σi

√
ε(1− κθ)

2σi
. (33)

Moreover, we have that

f(xi + si) = f(xi) + s>i ∇f(xi) +

∫ 1

0
[∇f(xi + τsi)−∇f(xi)] si dτ

(4)
≤ f(xi) + s>i ∇f(xi) +

L

2
‖si‖2

= m(si; xi, σi)) +
L

2
‖si‖2 −

1

2
s>i H(xi)si −

σi
3
‖si‖3

(19)
≤ m(si; xi, σi)) +

(
L

‖si‖
− σi

3

)
‖si‖3. (34)

Combining (33) and (34) yields the following relation

2σiL

−(L+ ε0) +
√

(L+ ε0)2 + 4σi
√
ε(1− κθ)

− σi
3
≤ 0 =⇒ f(xi + si) ≤ m(si; xi, σi)).

Note that the left hand side inequality is equivalent to

(L+ ε0) +
√

(L+ ε0)2 + 4σi
√
ε(1− κθ)

2
√
ε(1− κθ)

− σi
3L
≤ 0,

which is implied by σi ≥ 3L(4L+ε0)
(1−κθ)

√
ε

. In summary, we have concluded that

σi ≥
3L(4L+ ε0)

(1− κθ)
√
ε

=⇒ f(xi + si) ≤ m(si; xi, σi)).

The remaining proof is similar to the argument below (29) in Lemma 5.
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Proof of Lemma 11: We have

s>j ∇f(yl + sj) = s>j [∇f(yl + sj)−∇f(yl)] + s>j [∇f(yl) +H(yl)sj ]−s>j H(yl)sj

≤ ‖∇f(yl + sj)−∇f(yl)‖‖sj‖+ s>j [∇m(yl, sj , σj)− σj‖sj‖sj ]+‖H(yl)‖‖sj‖2

(4)(15)(19)
≤ L‖sj‖2 + κθ‖sj‖3 − σj‖sj‖3 + (L+ ε0)‖sj‖2

=

(
2L+ ε0
‖sj‖

+ κθ − σj
)
‖sj‖3.

A similar argument of (33) implies that

‖sj‖ ≥
−(L+ ε0) +

√
(L+ ε0)2 + 4σj

√
ε(1− κθ)

2σj
.

Now combining the two inequalities above yields the following relation.

L+ ε0 +
√

(L+ ε0)2 + 4
√
εσj(1− κθ)

2
√
ε(1− κθ)

− σj − κθ − η
2L+ ε0

≤ 0 =⇒ −
s>j ∇f(yl + sj)

‖sj‖3
≥ η.

A straight forward calculation shows that the inequality on the left hand side is implied by

σj ≥
(3L+ 2ε0)(2L+ ε0) + 2

√
ε(1− κθ)(κθ + η) + (2L+ ε0)

√
(3L+ 2ε0)2 +

√
ε(1− κθ)(κθ + η)

2
√
ε(1− κθ)

.

The remaining proof is similar to the argument in Lemma 6.

Lemma 18 Suppose in each iteration j of Algorithm 3, we have ‖∇f(xj)‖2 > ε for any
0 ≤ j ≤ T2. Then we have

‖∇f(xj+1)‖ ≤

(2L+ ε0) ·
(L+ ε0) +

√
(L+ ε0)2 + 4σ̄W2

√
ε(1− κθ)

2
√
ε(1− κθ)

+ σ̄W2 + κθ

 ‖sj‖2
where κθ ∈ (0, 1) is used in Condition 3.1.

Proof. Recalling ∇sm(sj ; xj , σj) = ∇f(xj) +H(xj)sj + σj‖sj‖ · sj , we have

‖∇f(xj+1)‖ ≤ ‖∇f(xj + sj)−∇sm(sj ; xj , σj)‖+ ‖∇sm(sj ; xj , σj)‖
(15)
≤ ‖∇f(xj + sj)−∇sm(sj ; xj , σj)‖+ κθ‖sj‖2

≤ ‖∇f(xj + sj)−∇f(xj)‖+ ‖H(xj)‖‖sj‖+ σj‖sj‖2 + κθ‖sj‖2
(4)(19)
≤ L‖sj‖+ (L+ ε0)‖sj‖+ σj‖sj‖2 + κθ‖sj‖2

=

(
2L+ ε0
‖sj‖

+ σ̄W2 + κθ

)
‖sj‖2.

A similar argument of (33) implies that

‖sj‖ ≥
−(L+ ε0) +

√
(L+ ε0)2 + 4σj

√
ε(1− κθ)

2σj
.
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Therefore, we conclude that

‖∇f(xj+1)‖ ≤

(2L+ ε0) ·
(L+ ε0) +

√
(L+ ε0)2 + 4σ̄W2

√
ε(1− κθ)

2
√
ε(1− κθ)

+ σ̄W2 + κθ

 ‖sj‖2.
�

We are now ready to provide an upper bound of T3.

Proof of Lemma 12: The proof is almost the same as that of Lemma 7 by mathematical
induction. The only difference is the estimation of

(yl−1 − x̄l)
>∇f(x̄l)

≥ η

 2
√
ε(1− κθ)

(2L+ ε0)

(
(L+ ε0) +

√
(L+ ε0)2 + 4σ̄W2

√
ε(1− κθ)

)
+ 2
√
ε(1− κθ)

(
σ̄W2 + κθ

)


3
2

‖∇f(x̄l)‖
3
2 ,

which is due to Lemma 18. By adapting the proof of Lemma 7 with such estimation, we
achieve the desired result.
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