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Abstract
In scientific applications, multivariate observations often come in tandem with temporal or spa-
tial covariates, with which the underlying signals vary smoothly. The standard approaches such
as principal component analysis and factor analysis neglect the smoothness of the data, while
multivariate linear or nonparametric regression fails to leverage the correlation information
among multivariate response variables. We propose a novel approach named nonparametric
principal subspace regression to overcome these issues. By decoupling the model discrepancy,
a simple two-step estimation procedure is introduced, which takes advantage of the low-rank
approximation while keeping smooth dynamics. The theoretical property of the proposed pro-
cedure is established under an increasing-dimension framework. We demonstrate the favorable
performance of our method in comparison with its counterpart, the conventional nonparametric
regression, from both theoretical and numerical perspectives.
Keywords: factor analysis, local polynomial smoothing, low-rank approximation, singular
value decomposition, smoothness

1. Introduction

In scientific applications, one is often interested in predicting a multivariate response using one
or a few predictor variables. The multivariate response linear regression is a conventional way
to model this type of data. The usual procedure is the ordinary least squares, equivalent to per-
forming an individual linear regression of each response variable on predictor variables, which
fails to use the correlation information among the response variables. To incorporate the corre-
lation information, Breiman and Friedman (1997) proposed a multivariate shrinkage method to
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Figure 1: Left: EEG signals detected from 64 electrodes of the scalp at 256 Hz per second for
a randomly selected subject; Right: fMRI of 68 Regions of Interest (ROIs, divided
according to “Desikan-Killany” atlas) over 205 seconds including 284 frames for a
randomly selected subject.

leverage information from the correlation structure, which helps to improve the predictive accu-
racy compared to the ordinary least squares. Although multivariate response linear regression
is a useful tool, it may not work properly in some applications. For example, in the real data
examples presented in Section 5, we are interested in modeling the dynamic changes of the elec-
troencephalogram (EEG) signals and functional Magnetic Resonance Imaging (fMRI), shown
in Figure 1, where both curves show nonlinear patterns. This indicates that the multivariate re-
sponse linear regression model may not be adequate to characterize the relationship between the
common predictor time and the multivariate signals. A natural rescue is to use nonparametric
regression of the multivariate response variables on the common predictors, that is nonparamet-
rically fit model (1) in Section 2.2. However, this solution is unsatisfactory as it is equivalent
to performing curve-by-curve individual nonparametric regression for each component of the
response, and thus does not capture correlations among the response variables.

Motivated by these applications, we propose a new nonparametric principal subspace regres-
sion model in which the essence is that the nonparametric function admits a singular value type
decomposition with smooth dynamics. The new model allows flexible nonlinear structures of
the regression functions, while takes into account the correlation among response variables at
the same time.

Our proposal is related to the factor models, which have been frequently used to characterize
the correlation structure in multivariate data (Gary and Rothschild, 1983; Fan et al., 2013). In
factor models, the signal of interest is expressed as a linear combination of a few latent vari-
ables, and does not concern additional covariate information that may play a role in estimation
or prediction. For instance, factor models are often employed in contexts such as multiple time
series or correlated functional data (Engle and Watson, 1981; Huang et al., 2009), where useful
information may be hidden in the form of smoothness with respect to some additional covariates,
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for example, temporal or spatial variable. Neglecting such information in recovery and predic-
tion potentially hinders the quality and performance of the resulting estimators. This has been
noticed by Durante et al. (2014), which further proposed a locally adaptive factor process under
the Bayesian framework for characterizing multivariate mean-covariance changes in continuous
time, allowing locally varying smoothness in both the mean and covariance matrix of multivari-
ate time series. However, theoretical guarantees are lacking for the approach, which may leave
practitioners uncertain about the quality of resulting estimates.

In this work, we approach the problem from a different perspective that is intuitive and
broadly applicable. The contributions are summarized as follows. First, we propose a new non-
parametric principal subspace regression model with a diverging model dimension. This not
only incorporates the correlation structure among multivariate responses, but also accounts for
the nonlinear smooth trend of the data with respect to the covariates. Second, we introduce a
simple two-step estimation framework, where the first step is to obtain the left singular vec-
tors of the data matrix and the second step is to estimate the nonparametric functions by local
polynomial regression. Third, we provide theoretical guarantees. Specifically, we show that
the space spanned by the estimated singular vectors can consistently estimate their underlying
space, and obtain a uniform error bound for a diverging number of function estimates, which
together ensure the convergence of the nonparametric principal subspace estimate. Lastly, we
show that our method outperforms its counterpart, the conventional nonparametric regression,
from both theoretical and numerical perspectives. This is not surprising because our approach
significantly reduces the model complexity and risk of overfitting compared to individual non-
parametric regressions.

The rest of the paper is organized as follows. In Section 2, we propose the nonparametric
principal subspace regression methodology with a fitting procedure, and the main theoretical
results are presented in Section 3. Favorable finite-sample performance is illustrated through
simulated and real data examples in Section 4 and 5, respectively. Proofs of main results and
technical lemmas are contained in the Appendix.

2. Proposed Methodology

In this section, we first introduce some notation used throughout the whole paper. Then we pro-
pose the nonparametric principal subspace regression methodology. By the end of this section,
we describe the two-step fitting procedure and parameters tuning.

2.1 Notation

We begin by listing some notation used throughout the paper. For two vectors a, b ∈ Rm,
denote the inner product by 〈a, b〉 = a>b =

∑m
i=1 aibi and the corresponding norm ‖ · ‖.

Define the rescaled inner product 〈a, b〉m = 1
m〈a, b〉 and the induced norm ‖ · ‖m. For two

functions f, g ∈ L2, the inner product and corresponding norm bear the subscript L2, that is
〈f, g〉L2 =

∫
T f(x)g(x)dx and ‖f‖2L2

=
∫
T f

2(x)dx, where T is the domain of x. Let ‖ · ‖∞
denote the sup norm of vector or function. For a matrix M ∈ Rp×n, write the singular value
decomposition as M = UΣV >, where Σ = diag{σ1(M), σ2(M), . . .} with singular values
σ1(M) ≥ σ2(M) ≥ · · · ≥ 0. In particular, we use σmin(M) = σmin(p,n)(M), σmax(M) =
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σ1(M) as the smallest and largest nontrivial singular values of M . Denote ‖M‖ = σ1(M) the

spectral norm and ‖M‖F =
√∑

j σ
2
j (M) =

√∑
k,lM

2
kl the Frobenius norm, respectively.

Let PM = M(M>M)†M> be the projection matrix onto the column space of M , where (·)†
represents the Moore-Penrose pseudo-inverse. For two p × q matrices A1 and A2 with p ≥ q
and the singular values σ1 ≥ σ2 ≥ · · · ≥ σq ≥ 0 of A>1 A2, define their principal angles as
Θ(A1, A2) = diag(cos−1(σ1), . . . , cos−1(σq)). A measure of distance between A1 and A2 is
given by ‖ sin Θ(A1, A2)‖ or ‖ sin Θ(A1, A2)‖F . For any a, b ∈ R, let a ∧ b = min(a, b) and
a ∨ b = max(a, b). We use c and C to denote generic positive constants that may vary in the
sequel. For two positive sequences an and bn, an . bn means an ≤ Cbn for large n, an � bn if
an . bn and bn . an, and an � bn if lim supn→∞ an/bn = 0.

2.2 Nonparametric Principal Subspace Regression

Let {(xi, yi)}ni=1 be independent and identically distributed observations, where xi ∈ [0, 1]d and
yi ∈ Rp. We consider the following nonparametric model

yi = F (xi) + zi, (1)

where zi = (zi1, . . . , zip)
> ∈ Rp is independent and identically distributed with mean 0 and

covariance Σ, and F : [0, 1]d → Rp so that E(yi|xi) = F (xi). The data dimension p is allowed
to grow with the sample size n, and our goal is to estimate the function F , which characterizes
the relationship between xi and yi, under mild smoothness assumption on the components of F .

Motivated by factor analysis and the singular value decomposition as methods of accounting
for correlation among variables in yi, as we show in Proposition 1, F can be written as

F (x) =

q∑
k=1

ukfk(x), q ≤ p, (2)

where uk ∈ Rp (1 ≤ k ≤ q) are orthonormal vectors and {fk, 1 ≤ k ≤ q} are smooth functions
which are orthogonal in L2[0, 1]d. We refer to q as the (underlying) model dimension and allow
q to grow with n, reflecting its nonparametric nature. If one takes q = p, every function F :
[0, 1]d → Rp with components in L2[0, 1]d has such a representation; hence the model has the
simple interpretation of reducing dimension with smoothness on covariates. Thus, in addition to
capturing correlations via factor type analysis, this model also nonparametrically incorporates
smoothness information into the covariates. We refer to our model as “nonparametric principal
subspace regression”.

With the model in place, we aim to find an appropriate approximation to F from an r-
dimensional function-valued vector subspace defined as

Gr :=

{
G(x)

∣∣G(x) =

r∑
k=1

vkgk(x), v>k vl = δkl, x ∈ [0, 1]d, 1 ≤ k, l ≤ r

}
,

where vk ∈ Rp are orthonormal vectors, gk ∈ L2[0, 1]d are smooth functions and δkl is the Kro-
necker delta function. Note that the elimination of orthogonality of gk’s facilitates our algorithm
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(see Step 2 below), but does not affect the orthogonality of minimizers in Gr approximating to
F . The approximation dimension r serves as a tuning parameter that may vary with q and n,
depending on the balance between the approximation and estimation errors. Given G ∈ Gr, we
use the sample discrepancy

Rn(G) =
1

n

n∑
i=1

‖F (xi)−G(xi)‖2 (3)

as a reasonable approximation to R(G) =
∫

[0,1]d ‖F (x) − G(x)‖2dx to measure the error be-
tweenG and F . Thus we can estimate gk and vk (1 ≤ k ≤ r) from the sample pairs {(xi, yi)}ni=1

by optimizing the following problem

min
G∈Gr

RDn (G), where RDn (G) =
1

n

n∑
i=1

‖yi −G(xi)‖2.

Let V = (v1, . . . , vr) ∈ Rp×r and g(xi) = (g1(xi), . . . , gr(xi))
> ∈ Rr. Then for a given i,

by orthogonal projection, we have

‖yi − V g(xi)‖2 = ‖(Ip − PV )yi + PV
(
yi − V g(xi)

)
‖2

= ‖(Ip − PV )yi‖2 + ‖PV
(
yi − V g(xi)

)
‖2,

where Ip − PV is the orthogonal complement of the projection matrix PV . Setting c(Y, V ) =
1
n

∑n
i=1 ‖(Ip − PV )yi‖2, which contains no information of g, and observing that

‖PV (yi − V g(xi)) ‖2 = ‖V >yi − g(xi)‖2 =
r∑

k=1

(
v>k yi − gk(xi)

)2
,

we may decompose the objective RDn (G) as

RDn (G) = c(Y, V ) +

r∑
k=1

RDn (vk, gk) where RDn (vk, gk) =
1

n

n∑
i=1

(
v>k yi − gk(xi)

)2
.

This decouples the optimization problem of minimizing RDn (G) over Gr into two separate prob-
lems: finding a sequence of orthonormal vectors vk’s, and then estimating gk by considering
individual optimization of the RDn (vk, gk) along the direction vk.

According to model (2), a reasonable choice of vk’s is to find the empirical counterpart of the
singular vectors uk for 1 ≤ k ≤ r. Let Y = (y1, . . . , yn) ∈ Rp×n be the response data matrix. A
natural estimator of U[r] = (u1, . . . , ur) is the top r left singular vectors of Y . For the estimation
of gk’s, there exist many standard nonparametric smoothing methods. For simplicity, we adopt
the local polynomial regression in the sequel for implementation and theoretical development.
This suggests a two-step fitting procedure.

Step 1. For a given r ≤ q, let Û[r] = (û1, . . . , ûr) be the top r left singular vectors of data
Y = (y1, . . . , yn) ∈ Rp×n from model (1);
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Step 2. Plug in Û[r] into RDn (G) and find the corresponding minimizers of the RDn (ûk, gk) by
applying local polynomial smoothing for k = 1, . . . , r separately, denoted by f̂1, . . . , f̂r.

Then the estimate F̂ is given by

F̂ =

r∑
k=1

ûkf̂k. (4)

There are two tuning parameters involved in our estimation procedure, the retained dimen-
sion r in Step 1 and the bandwidth hk (1 ≤ k ≤ r) in Step 2. To select these parameters, for
each r, we choose hk by the standard five-fold cross-validation for each function estimate in-
dividually. Let F̂ (r) be the corresponding estimator of F using the retained dimension r with
selected bandwidths ĥk,r. In view of the nonparametric approximation nature of F̂ (r), a reason-
able choice for selecting r is to minimize

AIC(r) = log
{
V (r, F̂ (r))

}
+

2r

n
,

where V (r, F̂ (r)) = (2n)−1
∑n

i=1 ‖yi − F̂ (r)(xi)‖2.

3. Theoretical Guarantees

We shall present the main theoretical result, followed by an explicit rate of convergence when
the proposed method is coupled with local polynomial smoothing, while the proofs are deferred
to Appendix. We first present a proposition that ensures that a reasonable F : [0, 1]d → Rp has
a singular value type representation and supports the form of function proposed in this paper.

Proposition 1 Suppose that F : [0, 1]d → Rp, which can be written as F = (F1, . . . , Fp)
>,

satisfies Fj ∈ L2[0, 1]d for 1 ≤ j ≤ p. Then F has a singular value type decomposition

F (·) =

q∑
k=1

σkukvk(·) =

q∑
k=1

ukfk(·), q ≤ p,

where vk’s are orthonormal in L2[0, 1]d, uk’s orthonormal in Rp and σ1 ≥ σ2 ≥ · · · ≥ σq > 0.

It is noted that Proposition 1 holds under a rather weak condition Fj ∈ L2[0, 1]d that is
mostly satisfied in practice. To make model (2) feasible, we need an additional assumption for
F ,

‖fk‖2L2
= σ2

k � k−α, α > 1, 1 ≤ k ≤ q. (5)

This type of polynomial decay condition on singular values is widely used in the field of high-
dimensional statistics (Wainwright, 2019; Vershynin, 2019).

For simplicity, we assume the design points xi’s are independent and identically distributed
with xi following uniform distribution on [0, 1]d, that is xi ∼ U [0, 1]d. This assumption can be
relaxed with more technicality, see Remark 3. We also assume zi = (zi1, . . . , zip)

> ∈ Rp are
independent and identically distributed asN (0, σ2Ip), which puts us in the regime of p repeated
nonparametric experiments. The assumption of uncorrelated Gaussian noise is commonly used

6



NONPARAMETRIC PRINCIPAL SUBSPACE REGRESSION

to facilitate model exploration and theoretical development (Cai, 2012; Donoho and Johnstone,
1994; Tsybakov, 2009; Johnstone, 2017) in the study of nonparametric experiments. This is in
accordance to a common practice in nonparametric regression which incorporates the structural
information into the underlying function F contaminated by independent noise.

Given the estimate Û[r] of U[r] in Step 1, we define the estimated rotated response as ŷ∗ik =

û>k yi and the oracle rotated data {(xi, yoik)} as

yoik = u>k yi = fk(xi) + εik, for 1 ≤ k ≤ r, 1 ≤ i ≤ n,

where εik = u>k zi are independent and identically distributed from N (0, σ2) by the model
assumptions. Denote the linear smoother by L and let f̂ok be the nonparametric estimates by
applying L to the oracle rotated data {(xi, yoik)}. Note that f̂ok ’s are not present in the estimation
procedure, but serve as an intermediate quantity in theoretical analysis.

Therefore, in order to obtain the main result (7) in Theorem 2 below, we need to bound the
rotation error between the estimated principal subspace Û[r] and its true counterpart U[r] as (6)
states. This bound is of interest in its own rights given broad applicability in singular value type
problems. It is also required to quantify the smoothing error for estimating fk, where 1 ≤ k ≤ r,
where the difference between f̂ok and the actual estimates f̂k is quantified via the rotation error
(6). It is important to note that r is not fixed but may (slowly) diverge with n, which makes the
classical theory on nonparametric regression for a fixed number of function estimates invalid.
For the flow of exposition, we present here the needed condition and rate from the smoothing
step and show their fulfillment afterward.

Theorem 2 Assume that fk’s are uniformly bounded so that max1≤k≤q ‖fk‖∞ ≤ B and ‖fk‖2L2
’s

satisfy a polynominal decay condition (5). Let Û[r] be the estimate of U[r] in Step 1. If r �
(n/q2 log n)1/(2α+2), q � √p and p� n, then

E‖ sin Θ(Û[r], U[r])‖4 .
p2r4α+4 log2 n

n2
. (6)

In addition, assume that the linear smootherL satisfies ‖L‖ ≤ C and E‖f̂ok−fk‖2n . kτ/nρ
uniformly for 1 ≤ k ≤ q, where τ and ρ are constants associated with the smoothness of fk.
Then the estimator F̂ =

∑r
k=1 ûkf̂k in (4) satisfies

E[Rn(F̂ )] . r−α+1 +
pr2α+3 log n

n
+
rτ+1

nρ
, (7)

where Rn(F̂ ) = n−1
∑n

i=1 ‖Fi(xi)− F̂ (xi)‖2 is the sample discrepancy defined in (3).

Note that the assumption r � (n/q2 log n)1/(2α+2) is to bound the gap between the esti-
mated singular values, and the approximation error

∑q
k=r+1 σ

2
k is bounded by r−α+1 regardless

of the underlying model dimension q due to the decaying structure (5). The condition q � √p
is reasonable since q is usually much smaller than p in a low-rank approximation problem given
the decay rate of singular values. Based on such observations, we see that the first term arises
from the approximation error, while the second and third terms are due to estimation errors for
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the principal subspace U[r] and the smoothing of fk (1 ≤ k ≤ r), respectively. The proposed
estimator is consistent, provided that

r �
(

n

p log n

) 1
2α+3

∧ n
ρ
τ+1 ,

which reflects the essence of dimension reduction achieved by the proposed method. By com-
paring the order of each error term in (7), one may obtain the optimal convergence rate by
choosing r appropriately. Specifically, if pnρ−1 log n . rτ−2α−2 and r � nρ/(α+τ), the optimal
rate is n−ρ(α−1)/(α+τ); if rτ−2α−2 . pnρ−1 log n and r � (n/p log n)1/(3α+2), the optimal rate
changes to (p log n/n)(α−1)/(3α+2).

Remark 3 If xi are on a grid, saying {0, 1/m, . . . , (m − 1)/m, 1}. By defining Ef2(xi) =
m−1

∑m
i=1 f

2(i/m) as a Riemann integral approximation to ‖f‖2L2
, the result in this section

remains valid by considering the additional integral approximation error. If xi is sampled from
some distribution π, we consider the transformation yi = F (π−1(wi)) + zi = H(wi) + zi,
where wi follows a uniform distribution on [0, 1]d. Let π̂ be the empirical distribution based
on xi, then one can perform the proposed method to estimate H based on the sample pairs
{(ŵi, yi)}, where ŵi = π̂−1(xi). Consequently, the estimation of F is F̂ (x) = Ĥ(π̂(x)). For
the fact that π̂ enjoys a standard nonparametric rate only depending on n and d, the impact of
transformation is negligible when d� p, thus the result also holds.

We next turn to demonstrate that the requirements on a diverging number r of smoothing
estimates of fk (1 ≤ k ≤ r) are fulfilled. For conciseness, we focus on the common local poly-
nomial regression (Fan and Gijbels, 1996; Tsybakov, 2009) that is implemented for numerical
studies, while other smoothing methods can also be investigated with more technicality.

To bound the errors of a diverging number of nonparametric function estimators, the key is
to extend and combine the smoothness classes to which such q functions belong. Recall that
the smoothness class of primary concern in standard nonparametric regression is the Hölder
class H(β, L), consisting of l = bβc times differentiable functions f , where bβc represents the
largest integer strictly less than β, with the l-th derivative f (l) satisfying |f (l)(x) − f (l)(y)| ≤
L|x− y|β−l for x, y in the domain of interest. The idea arises from the fact that, for a sequence
of orthonormal basis functions {vk}∞k=1, the smoothness of vk deteriorates as index k increases.
Thus we assume that the orthonormal functions vk’s in Proposition 1, hence fk’s, belong to
different Hölder classesH(β, Lk) for 1 ≤ k ≤ q. The Hölder constants Lk depict the amplitude
of its derivatives which characterizes the function’s frequency increment. Here are the examples
of explicit forms of Lk for some commonly used basis functions with a given β.

Exp.1 Fourier Series: ψ0 = 1, ψ2k−1 = sin(kπt) and ψ2k = cos(kπt), then Lk � kbβc.

Exp.2 B-splines: {Njk}Jj=−k−1, where Njk is defined in (6.20) in Hsing and Eubank (2015)
and k is the order, then Lk � k!/(k − bβc)! . kbβc.

Exp.3 Wavelets: ψj,k = 2j/2ψ(2jt− k) with a mother wavelet function ψ, then Lk � kbβc.
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We adopt a similar argument as in Cai and Brown (1999) for the random design under
consideration, and derive the minimax rate for the oracle functional estimates f̂ok (1 ≤ k ≤ q) in
the metric Ef‖ · ‖2n.

Theorem 4 Suppose that vk ∈ H(β, Llk) with l > 1 and L1k = ‖v′k‖∞, and the kernel K
satisfies the conditions outlined in Tsybakov (2009). Then the local polynomial smoother L is
bounded and the resulting estimator f̂ok of fk = σkvk satisfies

Efk‖f̂
o
k − fk‖2n .

(
1 ∨ (σ2

kL
2
1k)

2β
2β+1

) (
σ2
kL

2
lk

) 1
2β+1 n

− 2β
2β+1 ,

uniformly for 1 ≤ k ≤ q, by choosing optimal bandwidth h �
((

1 ∨ σ2
kL

2
1k

)
/nσ2

kL
2
lk

)1/(2β+1).
Moreover, if Llk � kl and L1k � k, then

Efk‖f̂
o
k − fk‖2n .

kτ

nρ
with τ =

2(2− α)β ∨ 0 + 2l − α
2β + 1

, ρ =
2β

2β + 1
. (8)

We conclude this section by comparing with the curve-by-curve estimator of F without
extracting the subspace. By Proposition 1 and Theorem 4, it is seen that Fj ∈ H(β,Mlj),
where Mlj =

∑q
k=1 ukjσkLlk and M1j =

∑q
k=1 ukjσkL1k. By Cauchy-Schwartz inequality,

M2
lj ≤ q2l−α+1

∑q
k=1 u

2
kj and M2

1j ≤ q3−α∑q
k=1 u

2
kj . Following the same argument as in

proof of Theorem 4, we have

EFj‖F̂j − Fj‖2n .
(

1 ∨M
4β

2β+1

1j

)
M

2
2β+1

lj n
− 2β

2β+1 ,

where F̂j is the local polynomial estimator of Fj for j = 1, . . . , p. Then the convergence rate of
the curve-by-curve estimator F̂cbc =

(
F̂1, . . . , F̂p

)
is

E[Rn(F̂cbc)] .
(
q

2l−α+2
2β+1 p

2β
2β+1 ∨ q

8β−2αβ+2l−α+2
2β+1

)
n
− 2β

2β+1 .

Note that β ≥ l, α > 1 and if p & q4−α, it holds that

E[Rn(F̂cbc)] . q
( p
n

) 2β
2β+1

.

In comparison with the proposed method, plugging (8) into (7),

E[Rn(F̂ )] . r−α+1 +
p log n

n
r2α+3 + r3n

− 2β
2β+1 .

The essence of the proposed method is dimension reduction based on low-rank approxima-
tion, that is, the reduced dimension r is often much smaller than q and p, which implies that
E[Rn(F̂ )]� E[Rn(F̂cbc)].
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4. Simulation Study

In this section, we perform simulation study to evaluate the performance of the proposed method.
The U = (u1, . . . , uq) is generated by orthonormalizing a p× q matrix with all elements being
independent and identically distributed standard normal. The xi’s are independently generated
from uniform distribution on [0, 1]. The functions fk’s are independently generated from a zero
mean Gaussian process with compactly supported covariance function

Ca,b(s, t) = bmax{0, (1− ha)5}(8h2
a + 5ha + 1),

where ha(s, t) = |s− t|/a, see Rasmussen and Williams (2006) for details. We set a = 0.5 and
b = 15. We orthogonalize and scale fk’s by

‖fk‖2L2
= σ2

k = 5k−2, 1 ≤ k ≤ 6 and σ2
k = k−2, 6 < k ≤ q.

The error zij are independent and identically distributed standard normalN (0, σ2) for 1 ≤ i ≤ n
and 1 ≤ j ≤ p. The response yi is obtained by yi =

∑q
k=1 ukfk(xi) + zi.

A natural comparison would be conducted against individual nonparametric regression of Y
on x in a curve-by-curve manner. In particular, we compare with the method that fits the jth
component of Y on x nonparametrically for each 1 ≤ j ≤ p. We also use the local polynomial
regression with a Gaussian kernel for curve-by-curve nonparametric recovery. For the tuning
parameters, we use the selection method described in Section 2. For nonparametric principal
subspace regression, we report the average values of selected r̂ by AIC and the average estimation
errors based on 100 Monte Carlo runs. For curve-by-curve nonparametric recovery, we only
report the average estimation errors since the procedure fits each curve individually. We consider
different combinations of (n, p, q) at two noise levels σ = 0.5 and σ = 1.

We first check the performance of two approaches under the typical low-rank scenario that
p is much larger than q. The results in Table 1 suggest that our method outperforms the curve-
by-curve nonparametric regression for all cases. Given the sample size n, the recovery results
from nonparametric principal subspace regression tend to improve at a faster rate as p increases
or q decreases. We then conduct the simulation when q increases to the extent close to p and
the results are reported in Table 2. We see that our method still outperforms. In particular, the
estimation error and the selected r̂ become to level off even as q increases substantially.

The selection of r plays an important role in our method. As seen from Tables 1 and 2, the
AIC is capable of extracting most of the important signals. Moreover, the selected r̂ becomes
smaller with a higher noise level that tends to blind small signals. To demonstrate the effective-
ness of AIC, we plot the average estimation errors with increasing r and labeled the averages of
selected r̂ in Figure 2. It is observed that the AIC criterion indeed selects models comparable
with those of minimal prediction error.

5. Real Data Applications

In this section, we apply our methodology to two data examples introduced in Section 1, which
shows a favorable performance in comparison with the conventional nonparametric regression.

10
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σ = 0.5 σ = 1
n p q r̂ NPSR CBC r̂ NPSR CBC

300

50
2 2.14 0.171(0.003) 0.546(0.017) 2.14 0.634(0.013) 1.728(0.024)
4 4.09 0.312(0.003) 0.587(0.011) 4.09 1.269(0.013) 1.827(0.019)
6 6.13 0.471(0.004) 0.611(0.011) 6.34 2.100(0.018) 1.877(0.019)

100
3 3.01 0.372(0.003) 0.972(0.009) 3.01 1.539(0.012) 3.258(0.034)
6 6.01 0.755(0.004) 1.053(0.010) 5.49 3.446(0.024) 3.452(0.033)
9 6 0.798(0.004) 1.066(0.010) 5.48 3.482(0.019) 3.456(0.029)

150
4 4 0.668(0.004) 1.422(0.014) 4 2.936(0.018) 4.780(0.048)
8 6 1.077(0.005) 1.486(0.014) 4.72 4.589(0.021) 4.938(0.046)
12 6.01 1.115(0.005) 1.488(0.012) 4.62 4.624(0.022) 4.932(0.045)

500

100
3 3.02 0.239(0.002) 0.718(0.007) 3.02 0.978(0.007) 2.472(0.025)
6 6.02 0.491(0.003) 0.768(0.007) 6.05 2.316(0.014) 2.630(0.024)
9 6.05 0.537(0.003) 0.768(0.007) 6.04 2.374(0.015) 2.625(0.025)

200
4 4 0.531(0.002) 1.361(0.013) 4 2.377(0.012) 4.678(0.046)
8 6 0.871(0.003) 1.420(0.013) 5.12 3.875(0.014) 4.851(0.044)
12 6 0.909(0.003) 1.428(0.012) 5.03 3.921(0.017) 4.854(0.044)

300
5 5 0.955(0.004) 1.984(0.018) 4.22 4.313(0.016) 6.790(0.063)
10 6 1.229(0.004) 2.039(0.018) 4.18 5.088(0.018) 6.970(0.064)
15 6 1.262(0.004) 2.052(0.019) 4.27 5.106(0.017) 6.992(0.066)

Table 1: The average estimation errors for our nonparametric principal subspace regression
(NPSR) and the curve-by-curve nonparametric regression (CBC) with their associated
standard errors in the parentheses, and the average values of selected r̂ by AIC in 100
Monte Carlo runs are reported.

σ = 0.5 σ = 1
(n, p) q r̂ NPSR CBC r̂ NPSR CBC

(300,150)

4 4 0.668(0.004) 1.422(0.014) 4 2.936(0.018) 4.780(0.048)
40 6 1.168(0.005) 1.525(0.011) 4.77 4.660(0.020) 5.003(0.046)
80 6 1.174(0.005) 1.537(0.012) 4.8 4.670(0.021) 5.010(0.049)

120 6.01 1.191(0.005) 1.545(0.013) 4.77 4.735(0.023) 5.033(0.047)

(500,300)

5 5 0.955(0.004) 1.984(0.018) 4.22 4.313(0.016) 6.790(0.063)
50 6 1.307(0.004) 2.078(0.019) 4.25 5.141(0.016) 7.005(0.066)

100 6 1.312(0.004) 2.081(0.019) 4.25 5.138(0.019) 6.981(0.065)
200 6 1.315(0.004) 2.086(0.018) 4.19 5.145(0.017) 6.993(0.063)

Table 2: The average estimation errors for our nonparametric principal subspace regression
(NPSR) and the curve-by-curve nonparametric regression (CBC) with their associated
standard errors in the parentheses, and the average values of selected r̂ by AIC in 100
Monte Carlo runs are reported.
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Figure 2: The average estimation errors R̂n for our nonparametric principal subspace regression
with different r under two noise levels. The average values of selected r̂ by AIC in
100 Monte Carlo runs are depicted (vertical dotted lines), suggesting the effectiveness
of AIC.

5.1 Application to an EEG Study

We apply the proposed method to an EEG data set, which is available at https://archive.
ics.uci.edu/ml/datasets/EEG+Database. The data were collected by the Neuro-
dynamics Laboratory and contain 122 subjects, where researchers measured the voltage val-
ues from 64 electrodes placed on each subject’s scalps sampled at 256 Hz for 1 second. As
EEG data are notoriously noisy while there are known to be strong relations between different
electrodes, we model the data from each subject by the nonparametric framework (1). Thus,
for each subject, we fit the nonparametric principal subspace regression to the data matrix
Y = (y1, . . . , yn) ∈ Rp×n with p = 64 and n = 256. The average retained dimension se-
lected by the proposed AIC among these 122 subjects is 7.270 with a standard error 0.112.

To compare the prediction performance, we also fit curve-by-curve nonparametric regression
to the signals obtained from each of the 64 electrodes. For each subject, we randomly reserve
10% of data as the test set: Stest ⊆ {1, . . . , 256} such that |Stest|/256 ≈ 10%, while using the
rest as the training set, and report the prediction errors |Stest|−1

∑
i∈Stest ‖Yi − F̂ (xi)‖2/64 for

both approaches. The average prediction error for nonparametric principal subspace regression
over the 122 subjects is 1.153 with a standard error 0.072, while that obtained by the curve-by-
curve nonparametric regression is 1.288 with a standard error 0.075.

5.2 Application to an fMRI Study

For another data application, we analyze the motor task-related fMRI data from the Human Con-
nectome Project (HCP) Data https://www.humanconnectome.org/ which includes
behavioral and 3 Tesla magnetic resonance imaging data from 970 healthy adult participants
collected from 2012 to spring 2015. The block-design motor task used in this study is adapted
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from experiments by Buckner et al. (2011) and Yeo et al. (2011). The details on the HCP im-
plementation can be referred to Barch et al. (2013). In the motor task, participants are presented
with visual cues that ask them to either tap their left or right fingers, or squeeze their left or right
toes, or move their tongue to map motor areas. For each subject, there are two runs of phase
encoding scans (right-to-left and left-to-right), and we use the left-to-right phase encoding scan
in this study. Each run of the motor task lasted for about 205 seconds including 284 frames, and
we use the “Desikan-Killiany” atlas (Desikan et al., 2006) to divide the brain into 68 ROIs.

We use 869 subjects which had the motor task-related fMRI data. For each subject, we obtain
the data matrix Y ∈ Rp×n with p = 68 and n = 284. By fitting the nonparametric principal
subspace regression, the average selected retained dimension among these 869 subjects is 8.353
with standard error 0.049. Same as the above example, we randomly select 10% of data as
the test set and the rest of the data as the training set for each subject. The average prediction
error for the proposed method over 869 subjects is 2.629 with a standard error 0.100, while that
obtained by the curve-by-curve nonparametric regression is 2.727 with a standard error 0.103.
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Appendix A. Notations

We first introduce the notation used in the appendix. Recall we have proposed a nonpara-
metric model yi =

∑q
k=1 ukfk(xi) + zi ∈ Rp, where zi = (zi1, . . . , zip)

> follows inde-
pendent and identically distributed N (0, σ2Ip). The design points xi’s are independent and
identically distributed U [0, 1]d. Let Y = (y1, . . . , yn) ∈ Rp×n be the response data matrix,
F̃ =

(
F (x1), . . . , F (xn)

)
∈ Rp×n and Z = (z1, . . . , zn) ∈ Rp×n, one can write Y = F̃ + Z.

Let U[r] = (u1, . . . , ur) ∈ Rp×r, and Û[r] = (û1, . . . , ûr) ∈ Rp×r the estimate of U[r]. Define

f̃k =
(
fk(x1), . . . , fk(xn)

)> ∈ Rn and f̃ = (f̃1, . . . , f̃q)
> ∈ Rq×n so that F̃ = Uf̃ . We further

define ˜̂
fk =

(
f̂k(x1), . . . , f̂k(xn)

)> ∈ Rn and ˜̂
f[r] = (

˜̂
f1, . . . ,

˜̂
fr)
> ∈ Rr×n so that we may

write ˜̂
F =

(
F̂ (x1), . . . , F̂ (xn)

)
∈ Rp×n as ˜̂

F = Û[r]
˜̂
f[r].

13



ZHOU, KOUDSTAAL, YU, KONG AND YAO

Appendix B. Proofs of the Proposition and Main Theorems

Proof. [Proposition 1] Given F : [0, 1]d → Rp, we can define an operatorF : L2[0, 1]d → Rp
mapping h ∈ L2[0, 1]d to

Fh = 〈F, h〉L2 := (〈F1, h〉L2 , . . . , 〈Fp, h〉L2)> ∈ Rp.

In this case we can represent the operator F as

F =

p∑
j=1

ej ⊗ Fj and F∗Fh =

p∑
j=1

〈Fj , h〉L2Fj .

where ⊗ is the Kronecker product. Thus F∗F is of finite rank and hence compact. As it is also
symmetric, it has an eigendecomposition

F∗F =

∞∑
k=1

σ2
kvk ⊗ vk

with at most p of the σk 6= 0 and vk’s forming an orthonormal basis of L2[0, 1]d. We order the
nonzero σk decreasingly by σ1 ≥ σ2 ≥ · · · ≥ σq > 0 with q ≤ p. Note that we may write

h =

∞∑
k=1

〈h, vk〉L2vk.

Setting wk = Fvk we have that 〈wk, wl〉 = 〈vk,F∗Fvl〉L2 = σ2
l 〈vk, vl〉L2 = σ2

l δkl. Hence, the
wk’s are orthogonal vectors for 1 ≤ k ≤ q. Letting uk = σ−1

k wk, we may write

Fh =
∞∑
k=1

〈h, vk〉L2Fvk =

q∑
k=1

σk〈h, vk〉L2uk =

( q∑
k=1

σkuk ⊗ vk
)
h.

Since Fj =
∑∞

k=1〈Fj , vk〉L2vk, we have

F =
∞∑
k=1

〈F, vk〉L2vk =
∞∑
k=1

(Fvk) vk =

q∑
k=1

σkukvk,

which completes the proof. �

Proof. [Theorem 2] As the f̃k’s are not necessarily orthogonal in Rn, we need to consider that
the singular value decomposition of F̃ is of the form F̃ = PΛQ>, with P possibly spanning a
different subspace from U . Let Y admit the singular value decomposition Y = Û Λ̂V̂ >. Recall
that Y = F̃ + Z = Uf̃ + Z = PΛQ> + Z and note that

‖ sin Θ(Û[r], U[r])‖4 ≤ C
[
‖ sin Θ(Û[r], P[r])‖4 + ‖ sin Θ(P[r], U[r])‖4

]
,

we shall bound E‖ sin Θ(Û[r], P[r])‖4 and E‖ sin Θ(P[r], U[r])‖4 separately below.

14
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Define the event E as

E =

{
max

1≤k,l≤q
|〈fk, fl〉n − 〈fk, fl〉L2 | ≤ 4B2

√
log n

n

}
.

By Lemma 7, it holds that P
(
Ec
)
≤ q(q+ 1)/n2. Denote E(·|D) the expectation conditional on

the design {x1, . . . , xn}. As ‖ sin Θ(Û[r], P[r])‖ ≤ 1, we decompose E‖ sin Θ(Û[r], P[r])‖4 as

E‖ sin Θ(Û[r], P[r])‖4 = E
[
E
(
‖ sin Θ(Û[r], P[r])‖4

∣∣D)]
≤ P(Ec) + E

[
E
(
‖ sin Θ(Û[r], P[r])‖4

∣∣D)∣∣1E].
On the event E , Lemma 8 ensures (12) holds. Since q � √p and p � n there exists a constant
Cmax such that

σ2
max(F̃ ) ≤ nσ2

max + 4B2
√
q2n log n ≤ Cmaxn.

Under the assumption that r � (n/q2 log n)1/(2α+2), it holds that

4B2

√
q2 log n

n
≤ 1

3
(σ2
r − σ2

r+1).

Combing this with Lemma 10 we get

E
(
‖ sin Θ(Û[r], P[r])‖4

∣∣D) ≤ Cp2(σ2
r (F̃ ) + n)2(

σ2
r (F̃ )− σ2

r+1(F̃ )
)4 ≤ Cp2(2nσ2

r + n)2

n4(σ2
r − σ2

r+1)4
≤ Cp2r4α+4

n2
.

As a result, we obtain that

E‖ sin Θ(Û[r], P[r])‖4 ≤
Cq2

n2
+
Cp2r4α+4

n2
.
p2r4α+4

n2
.

Using Proposition 1 in Cai and Zhang (2018), it holds that

‖ sin Θ(P[r], U[r])‖ ≤
σr(F̃

>U[r])‖P(F̃>U[r])
F̃>U⊥[r]‖

σ2
r (F̃

>U[r])− σ2
r+1(F̃>)

.

Note that σ2
r (F̃

>U[r]) = σ2
r (f̃[r]), σ2

r+1(F̃>) = σ2
r+1(f̃) and

‖P(F̃>U[r])
F̃>U⊥[r]‖ = ‖f̃>[r](f̃[r]f̃

>
[r])
−1f̃[r](f̃

⊥
[r])
>‖ ≤ σ−1

min(f̃>[r])‖f̃[r](f̃
⊥
[r])
>‖

where we use (8.18) in Cai and Zhang (2018) in the inequality. Hence,

‖ sin Θ(P[r], U[r])‖4 ≤
Cσ4

r (f̃[r])σ
−4
min(f̃>[r])‖f̃[r](f̃

⊥
[r])
>‖4(

σ2
r (f̃[r])− σ2

r+1(f̃)
)4 =

C‖f̃[r](f̃
⊥
[r])
>‖4(

σ2
r (f̃[r])− σ2

r+1(f̃)
)4 .

On the event E , following the proof of Lemma 8, it is easily seen that

‖f̃[r](f̃
⊥
[r])
>‖4 ≤ ‖f̃[r](f̃

⊥
[r])
>‖4F ≤ Cq2r2n2 log2 n . p2n2 log2 n
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which deduces that

E‖ sin Θ(P[r], U[r])‖4 ≤
Cq2

n2
+
Cp2r4α+4 log2 n

n2
.
p2r4α+4 log2 n

n2
.

Piecing together what has been shown finishes the proof of (6).
To prove (7), we divide the error E[Rn(F̂ )] into two parts

E
[
Rn(F̂ )

]
≤ 2E

[
1

n

n∑
i=1

‖F (xi)− F[r](xi)‖2
]

+ 2E

[
1

n

n∑
i=1

‖F[r](xi)− F̂ (xi)‖2
]

where F[r] =
∑r

k=1 ukfk is the first r truncation of F . The first part is the approximation error
and the second part is the estimation error.

For the approximation error, By the assumption (5) it is easily seen that

E

[
1

n

n∑
i=1

‖F (xi)− F[r](xi)‖2
]

= E

 1

n

n∑
i=1

∥∥∥∥∥
q∑

k=r+1

ukfk(xi)

∥∥∥∥∥
2


=
1

n

n∑
i=1

q∑
k=r+1

Ef2
k (xi) =

q∑
k=r+1

σ2
k . r

−α+1,

(9)

where Ef2
k (xi) = ‖fk‖2L2

= σ2
k since xi ∼ U [0, 1]d.

Now we consider the estimation error. Given the definitions in the paper and at the outset
of the appendix, the estimation error can be rewritten as 1

nE‖F̃[r] −
˜̂
F‖2F where F̃[r] = U[r]f̃[r]

and ˜̂
F = Û[r]

˜̂
f[r]. Recall that Y o

·k = Y >uk and Ŷ ∗·k = Y >ûk and for a linear smoother L,

the estimates are f̂ok = LY o
·k and f̂k = LŶ ∗·k, respectively. Consequently ˜̂

f[r] = Û>[r]Y L
> and

˜̂
F = Û[r]Û

>
[r]Y L

>. With this notation, we have

E‖F̃[r] −
˜̂
F‖2F ≤ 2E‖U[r]f̃[r] − U[r]

˜̂
fo[r]‖

2
F + 2E‖U[r]

˜̂
fo[r] − Û[r]

˜̂
f[r]‖2F .

By the assumption that E‖f̂ok − fk‖2n ≤ Ckτ/nρ, we have

1

n
E‖U[r]f̃[r] − U[r]

˜̂
fo[r]‖

2
F =

1

n
E‖f̃[r] −

˜̂
fo[r]‖

2
F = E

r∑
k=1

‖fk − f̂ok‖2n

≤ C
r∑

k=1

kτ

nρ
.
rτ+1

nρ
.

(10)

Also notice that

1

n
E‖U[r]

˜̂
fo[r] − Û[r]

˜̂
f[r]‖2F =

1

n
E‖(U[r]U

>
[r] − Û[r]Û

>
[r])Y L

>‖2F

≤ 1

n
E
[
‖U[r]U

>
[r] − Û[r]Û

>
[r]‖

2
F ‖Y ‖2‖L‖2

]
≤ C

n

√
E‖U[r]U

>
[r] − Û[r]Û

>
[r]‖

4
F

√
E‖Y ‖4,
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where in the last inequality we use ‖L‖ ≤ C. Using (6), Lemma 6 and together with the fact
that ‖U[r]U

>
[r] − Û[r]Û

>
[r]‖F ≤ 2

√
r‖ sin Θ(Û[r], U[r])‖ give that

1

n
E‖U[r]

˜̂
fo[r] − Û[r]

˜̂
f[r]‖2F ≤

Cpr2α+3 log n

n
max

(
1,

q√
n
,
p

n

)
.
pr2α+3 log n

n
, (11)

since q � √p and p� n. Combing (9), (10) and (11), we obtain (7) and conclude the proof. �

Proof. [Theorem 4] It is well known that in the fixed design case, where xi = i/n, the
local polynomial estimator enjoys the minimax optimal rate Ef‖f̂ − f‖2n . n−2β/(1+2β); see
Proposition 1.13 and Theorem 1.6 in Tsybakov (2009). However, in the random design case,
there seem no results on convergence in the metric Ef‖ · ‖2n. One remedy is to adopt a similar
approach in Cai and Brown (1999), and slightly modify the local polynomial regression strategy.

Represent the estimated rotated data {(xi, ŷ∗ik)} as {(x(i), ŷ
∗
(i)k)}, where x(i) is the ith or-

der statistic of xi’s and ŷ∗(i)k is the corresponding response. In the recovery procedure, we
perform local polynomial regression on the equispaced data {(δi, ŷ∗(i)k)} for i = 1, . . . , n,

where δi = Ex(i) = i/(n + 1). Then for a given x, f̂k(x) can be represented as f̂k(x) =∑n
i=1Wn,i(x)ŷ∗(i)k = LŶ ∗ where the Wn,i(x) are defined in (1.67) in Tsybakov (2009) and

completely deterministic, satisfying all of the properties derived therein. Similarly, for the ora-
cle equispaced data {(δi, ŷo(i)k)}, we denote the oracle estimate function by f̂ok = LŶ o. Next we
turn to the main proof of the theorem.

Let b(x) = Efk,Df̂ok (x) − fk(x) denote the bias, conditioned on design, of the estimator
f̂ok (x) at x. Then we find that

b(x) =

n∑
i=1

fk(x(i))Wn,i(x)− fk(x) =

n∑
i=1

{
fk(x(i))− fk(x)

}
Wn,i(x)

=

n∑
i=1

{
fk(x(i))− fk(δi)

}
Wn,i(x) +

n∑
i=1

{fk(δi)− fk(x)}Wn,i(x)

and hence

|b(x)| ≤

∣∣∣∣∣
n∑
i=1

{
fk(x(i))− fk(δi)

}
Wn,i(x)

∣∣∣∣∣︸ ︷︷ ︸
I(x)

+

∣∣∣∣∣
n∑
i=1

{fk(δi)− fk(x)}Wn,i(x)

∣∣∣∣∣︸ ︷︷ ︸
II(x)

.

Starting from the fact that for xi we have

Efk{f̂
o
k (xi)− fk(xi)}2 = EfkEfk,D{f̂

o
k (xi)− fk(xi)}2

= EfkEfk,D{f̂
o
k (xi)− Efk,Df̂

o
k (xi) + Efk,Df̂

o
k (xi)− fk(xi)}2

= Efk
[
varfk,D{f̂

o
k (xi)}+ b2(xi)

]
.

Conditioned on design D, as the same as the proof in Tsybakov (2009) we can show that

II2(xi) ≤
(
CσkLlk

l!

)2

h2β and varfk,D{f̂
o
k (xi)} ≤

Cσ2

nh
,
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which together give that

Efk{f̂
o
k (xi)− fk(xi)}2 ≤

(
CσkLlk

l!

)2

h2β +
Cσ2

nh
+ 2Efk I2(xi).

Since vk ∈ H(β, Llk) and l > 1, by Theorem 1.34 in Adams and Fournier (2003), we have
L1k <∞. For each xi, it holds that

I(xi) ≤ σkL1k

n∑
i=1

|δi − x(i)||Wn,i(xi)|.

Applying Cauchy-Schwarz to the right hand side and using the properties of Wn,i(x) from Tsy-
bakov (2009) gives

I2(xi) ≤ σ2
kL

2
1k

n∑
i=1

|δi − x(i)|2
n∑
i=1

|Wn,i(xi)|2 ≤
Cσ2

kL
2
1k

nh

n∑
i=1

|δi − x(i)|2.

Thus

Efk I2(xi) ≤
Cσ2

kL
2
1k

nh

n∑
i=1

var{x(i)} ≤
Cσ2

kL
2
1k

nh

n∑
i=1

i

n2
≤
Cσ2

kL
2
1k

nh
.

Together with these we show that

Efk‖f̂
o
k − fk‖2n =

1

n

n∑
i=1

Efk{f̂
o
k (xi)− fk(xi)}2

≤
Cσ2

kL
2
lk

(l!)2
h2β +

Cσ2

nh
+
Cσ2

kL
2
1k

nh

. max{1, (σ2
kL

2
1k)

2β
2β+1 }(σ2

kL
2
lk)

1
2β+1n

− 2β
2β+1

by choosing optimal bandwidth h �
(

max{1, σ2
kL

2
1k}/(nσ2

kL
2
lk)
)1/(2β+1).

Now we verify the boundness of L. This follows from a result for bounds of eigenvalues of
matrices. Let A = (akl)

n
k,l=1 be an n× n matrix and set

Rk =
∑
l

|akl| and Cl =
∑
k

|akl|.

Then one can show that the eigenvalues of A, µ(A), are bounded by

µ(A) ≤ min

(
max
k

Rk,max
l
Cl

)
≤ max

k
Rk.

Note that the L satisfies Lij = Wn,j(xi) and from Tsybakov (2009) we know that

Ri =
∑
j

|Lij | =
∑
j

|Wn,j(xi)| ≤ C.

Thus we have that µ(L) ≤ C and hence ‖L‖ ≤ C. �
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Appendix C. Auxiliary Lemmas for Main Theorems

In the Appendix 5.2, we introduce the auxiliary lemmas for main theorems. Lemma 6 bounds
fourth moments of ‖Y ‖ in which the proof needs Lemma 5. Lemma 7 quantifies the discrepancy
between 〈·, ·〉n and 〈·, ·〉L2 , which is crucial to the proof of Lemma 8. Lemma 8 shows that the
scaled singular values of F̃ are close to the true counterparts of F . Lemma 9 is crucial to the
proofs of Lemma 10, which in turn is crucial to the proofs of the main theorems of the paper.
Lemma 10 extends the results of Theorem 3 in Cai and Zhang (2018) by considering fourth
moment perturbation bounds for the top r singular vectors.

Lemma 5 If X ≥ 0 is a positive random variable and for a, b > 0 we have P(X > a + bt) ≤
2 exp(−t2) for all t ≥ 0, then it follows that E(X4) ≤ C max(a4, b4).

Proof. Separating on the value of a we find that

E(X4) = E{X41(X≤a)}+ E{X41(X>a)} ≤ a4 + E{X41(X>a)}.

Now notice that

E{X41(X>a)} =

∫
Ω
X4(ω)1{X(ω)>a}dP (ω)

=

∫
Ω

(
a4 + 4

∫ X(ω)

a
s3ds

)
dP (ω)

=

∫
Ω

(
a4 + 4

∫ ∞
a

s31{s<X(ω)}ds

)
dP (ω)

= a4 + 4

∫ ∞
a

s3P(X > s)ds

= a4 + 4b

∫ ∞
0

(a+ bt)3P(X > a+ bt)dt

≤ a4 + 8bmax(a3, b3)

∫ ∞
0

(1 + t)3 exp(−t2)dt

≤ C max(a4, b4),

which concludes the proof of the lemma. �

Lemma 6 With Y = F̃ + Z ∈ Rp×n denoting the data matrix and ‖Y ‖ = maxi σi(Y ) the
operator norm, or maximum singular value of Y , we have that

E‖Y ‖4 ≤ C max(nq2, p2, n2)

holds when maxk ‖fk‖∞ ≤ B.
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Proof. Since F̃ = Uf̃ as defined above, we have

‖F̃‖2 ≤ ‖F̃‖2F = tr(f̃>U>Uf̃) = tr(f̃>f̃) =
n∑
i=1

q∑
k=1

f2
k (xi).

Note that Ef2
k (xi) = ‖fk‖2 = σ2

k and
∑q

k=1 f
2
k (xi) ≤ qB2 by the assumption, one has

E‖F̃‖4 ≤ E

[
n∑
i=1

q∑
k=1

f2
k (xi)

]2

= n(n− 1)

(
q∑

k=1

E
[
f2
k (xi)

])2

+ nE

[
q∑

k=1

f2
k (xi)

]2

≤ Cn(n− 1) +B4nq2.

Now, if Z ∈ Rp×n is composed of independent and identically distributedN (0, σ2) entries,
then according to Theorem 4.4.5 in Vershynin (2019) there is a constant C so that for all t > 0,

P
{
‖Z‖ > Cσ(p1/2 + n1/2 + t)

}
≤ 2e−t

2
.

By Lemma 5, this implies that E‖Z‖4 ≤ C max(p2, n2) which completes the proof by

E‖Y ‖4 ≤ C(E‖F̃‖4 + E‖Z‖4) ≤ C max(nq2, p2, n2).

�

Lemma 7 Suppose that fk’s are bounded and orthogonal inL2[0, 1]d, satisfying maxk ‖fk‖∞ ≤
B. Then

P
{

max
k,l
|〈fk, fl〉n − 〈fk, fl〉L2 | > 2δB2

}
≤ q(q + 1)exp

(
−nδ2/2

)
and so with the probability at least 1− q(q + 1)/n2,

max
k,l
|〈fk, fl〉n − 〈fk, fl〉L2 | ≤ 4B2

√
log n

n
.

Proof. Noting that for any 1 ≤ k, l ≤ q we have

〈fk, fl〉n − 〈fk, fl〉L2 =
1

n

n∑
i=1

{fk(xi)fl(xi)− 〈fk, fl〉L2}

guarantees that 〈fk, fl〉n − 〈fk, fl〉L2 is expressible as the sum of n independent and identically
distributed mean 0 random variables, each bounded by 2B2/n. Hoeffding then gives that

P
{
|〈fk, fl〉n − 〈fk, fl〉L2 | > 2δB2

}
≤ 2 exp

(
−nδ

2

2

)
.

Symmetry of inner product guarantees that there are q(q + 1)/2 distinct sums |〈fk, fl〉n −
〈fk, fl〉L2 | as we vary k, l over 1, . . . , q and so the first inequality of the theorem follows from a
union bound. �
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Lemma 8 Let F̃ be the sampled version of F admitting a singular value type decomposition

F =

q∑
k=1

σkukvk =

q∑
k=1

ukfk.

Under the conditions of Lemma 7, the k-th singular value of F̃ satisfies

max
k

∣∣∣∣ 1√
n
σk(F̃ )− σk

∣∣∣∣ ≤ 2B

(
q2 log n

n

)1/4

(12)

with probability at least 1− q(q + 1)/n2.

Proof. Recall that the matrix f̃ ∈ Rq×n collects the sampled values of the fk in its rows. Note
that the matrix f̃ f̃> = (akl)q×q with akl =

∑n
i=1 fk(xi)fl(xi) = n〈fk, fl〉n. Furthermore, we

may write

f̃ f̃> =

q∑
k=1

n〈fk, fk〉L2eke
>
k + ∆ = n

q∑
k=1

σ2
keke

>
k + ∆,

where the matrix ∆ is composed of elements ∆kl = n(〈fk, fl〉n − 〈fk, fl〉L2). Thus we have

F̃ F̃> = Uf̃ f̃>U> = n

q∑
k=1

σ2
kuku

>
k + U∆U>

and F̃ F̃>, ∆, and thus U∆U>, are both real and symmetric. Therefore a well known perturba-
tion result for matrices (Weyl, 1912) implies that

max
k
|σ2
k(F̃ )− nσ2

k| ≤ ‖U∆U>‖.

Since ‖U∆U>‖2 = ‖∆‖2 ≤ ‖∆‖2F =
∑q

k,l ∆
2
k,l, by Lemma 7 it implies that, with probability

at least 1− q(q + 1)/n2,
‖U∆U>‖2 ≤ 16B4q2n log n,

which completes the proof by collecting the above results. �

Lemma 9 Suppose that the design D = {x1, . . . , xn} is fixed. Let Y = F̃ + Z ∈ Rp×n denote
the data matrix and F̃ admits a singular value decomposition F̃ = PΛQ>. Then it holds that

P
{
σ2
r (Y

>P[r]) ≤ (σ2
r (F̃ ) + n)(1− t)

}
≤ Cexp

(
Cr − c(σ2

r (F̃ ) + n)t ∧ t2
)
,

P
{
σ2
r+1(Y >) ≥ (σ2

r+1(F̃ ) + n)(1 + t)
}
≤ Cexp

(
Cp− c(σ2

p(F̃ ) + n)t ∧ t2
)
.

Moreover, there exists C0 only depending on C and c, such that whenever σ2
r (F̃ ) ≥ C0p, for

any t > 0 we have

P
{
‖P(Y >P[r])

Y >P⊥[r]‖ ≥ t
}
≤ Cexp

(
Cp− ct2 ∧

√
σ2
r (F̃ ) + nt

)
+Cexp

(
−c(σ2

r (F̃ ) + n)
)
.
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Proof. The proof mainly uses random matrix theory and follows the lines of proof of Lemma
4 in Cai and Zhang (2018).
(A1) Low bounds for σ2

r (Y
>P[r])

Note that E(Y Y >) = F̃ F̃> + nIp = PΛ2P> + nIp, we have

E(P>[r]Y Y
>P[r]) = P>[r]PΛ2P>P[r] + nP>[r]IpP[r] = Λ2

[r] + nIr,

where Λ[r] is a diagonal matrix consisting the first r diagonal elements of Λ. Let M[r] = (Λ2
[r] +

nIr)
−1/2 and then E(M>[r]P

>
[r]Y Y

>P[r]M[r]) = Ir. Since σ2
r (Y

>P[r]M[r]) ≤ σ2
r (Y

>P[r])σ
2
max(M[r]),

σ2
r (Y

>P[r]M[r]) = σr(M
>
[r]P

>
[r]Y Y

>P[r]M[r]) and

1− σ2
r (Y

>P[r]M[r]) = σr(Ir −M>[r]P
>
[r]Y Y

>P[r]M[r]) ≤ ‖Ir −M>[r]P
>
[r]Y Y

>P[r]M[r]‖,

we have
σ2
r (Y

>P[r]) ≥ (σ2
r (F̃ ) + n)

[
1− ‖Ir −M>[r]P

>
[r]Y Y

>P[r]M[r]‖
]
. (13)

In the following we need an upper bound for ‖Ir −M>[r]P
>
[r]Y Y

>P[r]M[r]‖. For any unit
vector u ∈ Rr,

u>
(
M>[r]P

>
[r]Y Y

>P[r]M[r] − Ir
)
u = u>M>[r]P

>
[r]F̃ F̃

>P[r]M[r]u− E
(
u>M>[r]P

>
[r]F̃ F̃

>P[r]M[r]u
)

+ 2
[
u>M>[r]P

>
[r]F̃Z

>P[r]M[r]u− E
(
u>M>[r]P

>
[r]F̃Z

>P[r]M[r]u
)]

+ u>M>[r]P
>
[r]ZZ

>P[r]M[r]u− E
(
u>M>[r]P

>
[r]ZZ

>P[r]M[r]u
)

= 0 + 2u>M>[r]P
>
[r]F̃Z

>P[r]M[r]u

+ u>M>[r]P
>
[r]

[
ZZ> − E(ZZ>)

]
P[r]M[r]u.

Due to u>M>[r]P
>
[r]F̃Z

>P[r]M[r]u = tr
[
Z>P[r]M[r]u

(
F̃>P[r]M[r]u

)>], using general Hoeffd-
ing inequality (see Theorem 2.6.3 in Vershynin, 2019), it holds that

P
{∣∣tr[Z>P[r]M[r]u

(
F̃>P[r]M[r]u

)>]∣∣ ≥ t} ≤ 2exp

(
− ct2

‖P[r]M[r]u
(
F̃>P[r]M[r]u

)>‖2F
)

≤ 2exp

(
− ct2

‖M[r]‖2‖Λ[r]M[r]‖2

)
≤ 2exp

(
− ct2(σ2

r (F̃ ) + n)
)
.

On the other hand, using Hanson-Wright inequality (see Theorem 6.2.1 in Vershynin, 2019), it
holds that

P
{∣∣u>M>[r]P>[r][ZZ> − E(ZZ>)

]
P[r]M[r]u

∣∣ ≥ t} ≤ 2exp

(
−c t2

‖P[r]M[r]u‖4n
∧ t

‖P[r]M[r]u‖2

)
≤ 2exp

(
−ct

2(σ2
r (F̃ ) + n)2

n
∧ t(σ2

r (F̃ ) + n)

)
.
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Together with these we obtain that

P
{∣∣∣u> (M>[r]P>[r]Y Y >P[r]M[r] − Ir

)
u
∣∣∣ ≥ t} ≤ Cexp

(
−c(σ2

r (F̃ ) + n)t ∧ t2
)
.

The ε-net argument in Lemma 5 in Cai and Zhang (2018) leads to

P
{
‖M>[r]P

>
[r]Y Y

>P[r]M[r] − Ir‖ ≥ t
}
≤ Cexp

(
Cr − c(σ2

r (F̃ ) + n)t ∧ t2
)
. (14)

which together with (13) deduces that

P
{
σ2
r (Y

>P[r]) ≥ (σ2
r (F̃ ) + n)(1− t)

}
≥ 1− Cexp

(
Cr − c(σ2

r (F̃ ) + n)t ∧ t2
)
.

(A2) Upper bounds for σ2
r+1(Y >)

Using the best rank-r approximation of Y > (see Eckart-Young-Mirsky Theorem on page 73 in
Vershynin, 2019),

σr+1(Y >) = min
rank(A)≤r

‖Y > −A‖ ≤ ‖Y > − Y >P[r]P
>
[r]‖ = ‖Y >P⊥[r](P

⊥
[r])
>‖ = ‖Y >P⊥[r]‖,

which switch our focus from σr+1(Y >) to σmax(Y >P⊥[r]).
Since E

[
(P⊥[r])

>Y Y >P⊥[r]
]

= (Λ⊥[r])
2 + nIp−r where Λ⊥[r] denotes the diagonal matrix with

eliminating the first r diagonal elements of Λ, let M⊥[r] =
(
(Λ⊥[r])

2 + nIp−r
)−1/2 and then

σ2
max(Y >P⊥[r]) ≤

∥∥∥(P⊥[r]M
⊥
[r])
>Y Y >P⊥[r]M

⊥
[r]

∥∥∥(σ2
r+1(F̃ ) + n

)
≤
(∥∥(P⊥[r]M

⊥
[r])
>Y Y >P⊥[r]M

⊥
[r] − Ip−r

∥∥+ 1
)(
σ2
r+1(F̃ ) + n

)
.

Following the same arguments for the proof of (14), we have

P
{∥∥∥(P⊥[r]M

⊥
[r])
>Y Y >P⊥[r]M

⊥
[r] − Ip−r

∥∥∥ ≥ t} ≤ Cexp
(
C(p− r)− c(σ2

p(F̃ ) + n)t ∧ t2
)
,

which deduces that

P
{
σ2
r+1(Y >) ≤ (σ2

r+1(F̃ ) + n)(1 + t)
}
≥ 1− Cexp

(
Cp− c(σ2

p(F̃ ) + n)t ∧ t2
)
.

(A3) Upper bounds for ‖P(Y >P[r])
Y >P⊥[r]‖

Since

‖P(Y >P[r])
Y >P⊥[r]‖ = ‖P(Y >P[r]M[r])

Y >P⊥[r]‖

= ‖(Y >P[r]M[r])
(

(Y >P[r]M[r])
>(Y >P[r]M[r])

)−1
(Y >P[r]M[r])

>Y >P⊥[r]‖

≤ σ−1
min(Y >P[r]M[r])‖M>[r]P

>
[r]Y Y

>P⊥[r]‖,

we shall analyze σmin(Y >P[r]M[r]) and ‖M>[r]P
>
[r]Y Y

>P⊥[r]‖ separately below. Similar to (13),

σ2
min(Y >P[r]M[r]) ≥ 1− ‖Ir −M>[r]P

>
[r]Y Y

>P[r]M[r]‖
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and by (14) it implies that

P
{
σ2

min(Y >P[r]M[r]) ≥ 1− t
}
≥ 1− Cexp

(
Cr − c(σ2

r (F̃ ) + n)t ∧ t2
)
.

Setting t = 1/2 and choosing C0 large enough such that σ2
r (F̃ ) ≥ C0p ≥ C0r, we have

Cr − c(σ2
r (F̃ ) + n)t ∧ t2 ≤ −c(σ2

r (F̃ ) + n)/8, leading to that

P
{
σ2

min(Y >P[r]M[r]) ≥ 1/2
}
≥ 1− Cexp

(
−c(σ2

r (F̃ ) + n)
)
. (15)

For ‖M>[r]P
>
[r]Y Y

>P⊥[r]‖, since P>[r]F̃ F̃
>P⊥[r] = 0, we have the decomposition

u>M>[r]P
>
[r]Y Y

>P⊥[r]v = u>
(
M>[r]P

>
[r]F̃Z

>P⊥[r] +M>[r]P
>
[r]ZF̃

>P⊥[r] +M>[r]P
>
[r]ZZ

>P⊥[r]

)
v.

Following the same proof of (14) again, we can show that

P
{
‖M>[r]P

>
[r]Y Y

>P⊥[r]‖ ≥ t
}
≤ Cexp

(
C(p− r)− ct2 ∧

√
σ2
r (F̃ ) + nt

)
. (16)

Combing (15) and (16), we obtain

P
{
‖P(Y >P[r])

Y >P⊥[r]‖ ≥ t
}
≤ Cexp

(
Cp− ct2 ∧

√
σ2
r (F̃ ) + nt

)
+Cexp

(
−c(σ2

r (F̃ ) + n)
)
.

Then the proof is complete. �

Lemma 10 Denote the design D = {x1, . . . , xn}. Assume that there exists a constant Cmax

large enough such that σ2
max(F̃ ) ≤ Cmaxn, then it holds that

E
(
‖ sin Θ(Û[r], P[r])‖4

∣∣D) . p2(σ2
r (F̃ ) + n)2(

σ2
r (F̃ )− σ2

r+1(F̃ )
)4 ∧ 1.

Proof. Since the left singular vectors of Y are just the right singular vectors of Y >, we can
apply the same arguments for the right singular vectors of Y > to get bounds for estimation of
the left singular vectors of Y . Thus, by Proposition 1 in Cai and Zhang (2018),

‖ sin Θ(Û[r], P[r])‖ ≤
σr(Y

>P[r])‖P(Y >P[r])
Y >P⊥[r]‖

σ2
r (Y

>P[r])− σ2
r+1(Y >)

.

Since || sin Θ(Û[r], P[r])|| ≤ 1, to complete the proof we only need focus on the case that(
σ2
r (F̃ ) − σ2

r+1(F̃ )
)2 ≥ C0p

(
n + σ2

r (F̃ )
)

for large C0 only depending on Cmax, C, c. Note
that in this case it holds that σ2

r (F̃ ) ≥ C0p, then by Lemma 9 we have

P

{
σ2
r (Y

>P[r]) ≤
2σ2

r (F̃ )

3
+
σ2
r+1(F̃ )

3
+ n

}
≤ Cexp

Cr − c
(
σ2
r (F̃ )− σ2

r+1(F̃ )
)2

σ2
r (F̃ ) + n

 ,

P

{
σ2
r+1(Y >) ≥

2σ2
r+1(F̃ )

3
+
σ2
r (F̃ )

3
+ n

}
≤ Cexp

Cp− c
(
σ2
p(F̃ ) + n

)(
σ2
r (F̃ )− σ2

r+1(F̃ )
)2

(
σ2
r (F̃ ) + n

)2

 ,

P
{
‖P(Y >P[r])

Y >P⊥[r]‖ ≥ t
}
≤ Cexp

(
Cp− ct2 ∧

√
σ2
r (F̃ ) + nt

)
+ Cexp

(
−c(σ2

r (F̃ ) + n)
)
.
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Furthermore,

P
{
‖P(Y >P[r])

Y >P⊥[r]‖ ≥
√
σ2
r (F̃ ) + n

}
≤ Cexp

(
Cp− c(σ2

r (F̃ ) + n)
)
.

Denote the event Q as

Q =

{
σ2
r (Y

>P[r]) ≥
2σ2

r (F̃ )

3
+
σ2
r+1(F̃ )

3
+ n, σ2

r+1(Y >) ≤
2σ2

r+1(F̃ )

3
+
σ2
r (F̃ )

3
+ n,

‖P(Y >P[r])
Y >P⊥[r]‖ ≤

√
σ2
r (F̃ ) + n

}
.

Now, under the event Q, it holds that

‖ sin Θ(Û[r], P[r])‖4 ≤
σ4
r (Y

>P[r])‖P(Y >P[r])
Y >P⊥[r]‖

4(
σ2
r (Y

>P[r])− σ2
r+1(Y >)

)4 ≤
C(σ2

r (F̃ ) + n)2‖P(Y >P[r])
Y >P⊥[r]‖

4(
σ2
r (F̃ )− σ2

r+1(F̃ )
)4 ,

where we use the fact that u2/(u2 − v2)2 is a decreasing function of u and increasing function
of v when u > v > 0. Thus for fixed D, it gives that

E‖ sin Θ(Û[r], P[r])‖4 = E
[
‖ sin Θ(Û[r], P[r])‖41Q

]
+ E

[
‖ sin Θ(Û[r], P[r])‖41Qc

]
≤ C(σ2

r (F̃ ) + n)2(
σ2
r (F̃ )− σ2

r+1(F̃ )
)4E[‖P(Y >P[r])

Y >P⊥[r]‖
41Q

]
+ P

(
Qc
)
.

For large C0, it holds that

Cr ≤ Cp ≤ cC0p

2Cmax
≤ c

2Cmax

(
σ2
r (F̃ )− σ2

r+1(F̃ )
)2

σ2
r (F̃ ) + n

.

By the condition σ2
r (F̃ ) ≤ Cmaxn, note that

σ2
p(F̃ ) + n

σ2
r (F̃ ) + n

≥ n

σ2
r (F̃ ) + n

≥ 1

Cmax + 1
> 0.

Together with these we can show that

Cr − c
(
σ2
r (F̃ )− σ2

r+1(F̃ )
)2

σ2
r (F̃ ) + n

≤ −c0

(
σ2
r (F̃ )− σ2

r+1(F̃ )
)2

σ2
r (F̃ ) + n

,

Cp− c
(σ2
p(F̃ ) + n)

(
σ2
r (F̃ )− σ2

r+1(F̃ )
)2

(σ2
r (F̃ ) + n)2

≤ −c0

(
σ2
r (F̃ )− σ2

r+1(F̃ )
)2

σ2
r (F̃ ) + n

,

Cp− c(σ2
r (F̃ ) + n) ≤ Cp− c

(
σ2
r (F̃ )− σ2

r+1(F̃ )
)2

σ2
r (F̃ ) + n

≤ −c0

(
σ2
r (F̃ )− σ2

r+1(F̃ )
)2

σ2
r (F̃ ) + n

,
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where c0 > 0 only depends on C0, Cmax, C, c. Using the basic property of exponential function,
one can see that

P (Qc) ≤ Cexp

(
− c0

(
σ2
r (F̃ )− σ2

r+1(F̃ )
)2

σ2
r (F̃ ) + n

)
≤ Cp2(σ2

r (F̃ ) + n)2(
σ2
r (F̃ )− σ2

r+1(F̃ )
)4 .

Thus for the desired extension, it remains to show that E
[
‖P(Y >P[r])

Y >P⊥[r]‖
41Q

]
≤ Cp2.

As in the proof, we let T = ‖P(Y >P[r])
Y >P⊥[r]‖ and apply Lemma 9 again,

ET 41Q ≤ ET 41{T 2≤σ2
r(F̃ )+n} =

∫ ∞
0

P
(
T 41{T 2≤σ2

r(F̃ )+n} ≥ t
)
dt

≤ δ2p2 +

∫ (σ2
r(F̃ )+n)2

δ2p2
P
(
T ≥ t1/4

)
dt

≤ δ2p2 +

∫ (σ2
r(F̃ )+n)2

δ2p2
C
(
eCp−c

√
t + e−c(σ

2
r(F̃ )+n)

)
dt

≤ δ2p2 + C(σ2
r (F̃ ) + n)2e−c(σ

2
r(F̃ )+n) +

2C(1 + cδp)

c2
e(C−cδ)p

≤ δ2p2 + C +
2C(1 + cδp)

c2
e(C−cδ)p.

It is seen that as long as we choose δ large enough, but only depending on C and c, it is guaran-
teed that ET 41Q ≤ δ2p2. �
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