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Abstract
Given a nonparametric Hidden Markov Model (HMM) with two states, the question of construct-
ing efficient multiple testing procedures is considered, treating the states as unknown null and
alternative hypotheses. A procedure is introduced, based on nonparametric empirical Bayes ideas,
that controls the False Discovery Rate (FDR) at a user-specified level. Guarantees on power are
also provided, in the form of a control of the true positive rate. One of the key steps in the
construction requires supremum-norm convergence of preliminary estimators of the emission den-
sities of the HMM. We provide the existence of such estimators, with convergence at the optimal
minimax rate, for the case of a HMM with 𝐽 ≥ 2 states, which is of independent interest.
Keywords: efficient multiple testing, hidden Markov models, false discovery rate, true discovery
rate, minimax supremum norm estimation

1. Introduction
1.1 Aim of the Paper

We consider the problem of multiple testing in a hidden Markov model (HMM) setting. Given data
(𝑋𝑖 : 𝑖 ≤ 𝑁) whose distribution is governed by an unobserved categorical variable 𝜃 = (𝜃𝑖 : 𝑖 ≤ 𝑁) ∈
{0, 1}𝑁 drawn from a Markov chain with unknown parameters, for each 𝑖 ≤ 𝑁 one seeks to test the
null hypothesis 𝐻0,𝑖 : 𝜃𝑖 = 0 against the alternative 𝐻1,𝑖 : 𝜃𝑖 ̸= 0, where the number of tests 𝑁 is
“large”.

To make the problem concrete, we highlight an example given in Sun and Cai (2009). The index
𝑖 tracks the passage of time, and the variable 𝑋𝑖 denotes the recorded cases of an influenza-like
illness in some location. When 𝜃𝑖 = 0 one sees typical disease levels, and when 𝜃𝑖 = 1 there is an
atypical outbreak. Such outbreaks tend to cluster temporally, so that placing a Markov structure
on 𝜃 is natural. Procedures which ignore this dependence structure cannot be optimal: high levels
of recorded cases are more likely to be outliers if recorded only very briefly than if sustained for
a period, and independence-based methods do not account for this. Here, as is typical in multiple
testing settings, an optimal test is defined as one which maximises the True Discovery Rate (TDR)
while controlling the False Discovery Rate (FDR) at some specified level 𝑡; see Section 2.1 for
definitions.
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When the model parameters are known, classical decision theory arguments show that procedures
which threshold based on the probabilities of the 𝜃𝑖’s being zero conditional on the observations
𝑋1, . . . , 𝑋𝑁 are optimal (e.g. see Lemma 22). These conditional probabilities are simply posterior
probabilities in the Bayesian world, and smoothing probabilities in the latent variables vocabulary.
They will (mainly) be called ℓ-values in this work. Here we make the realistic assumption that the
model parameters are unknown, hence we replace such ‘oracle’ thresholding procedures (so called
because the ℓ-values depend on the model parameters), with procedures which plug in estimates
of the parameters in the chosen modelling: the ‘empirical’ Bayes method. The optimality of the
empirical Bayes method in the HMM setting with parametric modelling of the distributions of
𝑋𝑖 | 𝜃 = 𝑗, 𝑗 ∈ {0, 1} was addressed in Sun and Cai (2009).

Here we consider instead modelling these distributions nonparametrically. Parametric modelling
of HMMs can lead poor results in case of misspecification, as discussed for example in Yau et al.
(2011). We draw attention also to the extensive simulations conducted and discussed in Wang et al.
(2019) for real valued observations, and in Su and Wang (2020) for count data. These latter two
works demonstrate empirically that the FDR and TDR are badly impacted by parametric modelling
in case of misspecification, while nonparametric empirical Bayes methods appear to closely match
the optimal behaviour of oracle ℓ-value procedures.

The goal of this paper is to prove this last fact: that the discussed thresholding procedures still
(asymptotically) maintain multiple testing optimality properties when the parameters are estimated.
Note that the plug-in operation must be addressed more delicately in the current nonparametric
framework compared to the (well-specified) parametric framework considered in Sun and Cai (2009).
Our key theorems can be summarised as follows.

• Our first main results, Theorems 2 and 3, show theoretically that in the nonparametric HMM
setting an empirical Bayesian procedure attains the target FDR level and enjoys TDR optimal-
ity. The proofs of these two theorems are partly based on a result in De Castro et al. (2017),
which shows how control of plug-in estimators propagates to give control of ℓ-value errors. A
key step is to have good supremum-norm estimators, in contrast to the 𝐿2-norm estimators
previously found in the literature.

• Our second main results, which are both key to obtaining the first and also of independent
interest, concern supremum-norm estimation of emission densities in nonparametric HMMs.
We provide estimators, and prove in Theorems 4 and 5 that the supremum-norm risk of these
estimators achieves the parametric convergence rate 𝑁−1/2 for discrete observations (where the
set of possible values 𝑋1 can take is countable), and the convergence rate (𝑁/ log𝑁)−𝑠/(2𝑠+1),
familiar from the classical i.i.d. density estimation setting and also proved to be optimal in the
HMM context (see Proposition 6), for Hölder densities with regularity 𝑠.

Let us remark that a further advantage of modelling the HMM densities nonparametrically is that
it ensures our results allow for fairly arbitrary distributions under the null hypothesis. In contrast,
many common multiple testing procedures – including the original Benjamini–Hochberg procedure
– assume that the null distribution is known. One can of course adjust such procedures to use an
estimated null hypothesis, but there are so far only a few settings in which it has been proved that
this plug-in step has no negative effect on the desired properties of the procedures. We refer to the
recent work by Roquain and Verzelen (2020) for more discussion concerning this issue.

Finally, we note that as well as enabling the plug-in results which yield control of the FDR,
estimating the emission densities in terms of the supremum norm is useful in its own right. Indeed,
practically speaking, results of this type justify that plots of density estimators will be visually close
to the original density. Such estimators can also be helpful for identifying change points, estimating
level sets, and constructing confidence bands for uncertainty quantification.
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1.2 Context

Let us place these results in the broader multiple testing and HMM contexts. See also Section 1.3
where links to frequentist-Bayesian literature are given.

Multiple testing. The problem of identifying relevant variables among a large number of possible
candidates is ubiquitous with high dimensional data: indeed, multiple testing methods are very
popular in the analysis of genomic data, in astrostatistics, and in imaging, to name just a few
practical applications. Since the seminal work of Benjamini and Hochberg (1995), controlling the
FDR has been the goal of much of the extensive literature on the subject.

Early works tended to assume i.i.d. data. Efron (2007b) noted that ignoring dependence and using
methods designed for FDR control with independent data could result in either too conservative or
too liberal procedures, showing that dependence must carefully being taken into account. A number
of works, including those of Benjamini and Yekutieli (2001), Farcomeni (2007), Finner et al. (2007)
and Wu (2008), have shown that under certain assumptions on the dependence structure, some
multiple testing procedures designed for independent case (such as the step-up Benjamini–Hochberg
procedure) still control the FDR below a given target level. Such procedures, although having
guaranteed FDR even under dependence, may suffer from being too conservative. Another line of
work considers so-called knockoff methods, designed initially in the independent case in Candès et al.
(2018) and extended to the hidden Markov setting to be considered herein in Sesia et al. (2019).
Such methods again focus on controlling the FDR, saying little about the power.

The control of power in dependent data settings is less developed. Some works in this direction
include those of Xie et al. (2011) and of Heller and Rosset (2021) which consider the ‘general
two group model’, wherein the 𝜃𝑖’s are independent and identically distributed, but for each 𝑖 the
distribution of 𝑋𝑖 given 𝜃 may depend on the whole vector 𝜃 and not only on 𝜃𝑖. In some settings,
such as with genetic data, allowing for the 𝜃𝑖’s themselves to be dependent can however be more
natural, and the HMM model for 𝑋 considered here allows for a natural local structure of 𝜃 – while
still remaining tractable – by modelling it as a Markov chain. Let us note that other structures can
also lead to tractable modelling, for example the stochastic block model considered in Rebafka et al.
(2019).

Hidden Markov models. HMMs have been widely used for applications as varied as speech
modelling, computational finance and gene prediction since works of Baum, Petrie and coauthors
introduced practical algorithms and proved parametric estimation rates in a discrete data setting
(Petrie, 1967; Baum and Petrie, 1966; Baum et al., 1970). Later works, including those of Bickel
et al. (1998) and of Douc and Matias (2001), extended these proofs to allow parametric modelling
of the emission distributions.

Recently, Gassiat et al. (2016) opened the possibility that consistency holds also when the
emission densities are modelled nonparametrically by proving identifiability under mild conditions.
Anandkumar et al. (2012) introduced in the parametric case a spectral method which was then
generalised in De Castro et al. (2016) and Lehéricy (2018) to indeed give consistency at a usual
rate in the nonparametric setting. These nonparametric works however focus on 𝐿2-estimation, and
do not immediately generalise to give rate-optimal supremum norm estimation: indeed, attempting
to apply a typical wavelet method of estimating individual coefficients at a parametric rate and
aggregating, one runs into an alignment issue arising from the fact that the emission densities are
identifiable only up to a permutation. An insight of the current work is that returning to the spectral
method and making sure to simultaneously diagonalise matrices bypasses these issues; in particular
we do this for a kernel-based estimator.

Finally, note that recent works have considered HMM type settings with non-stationary data:
see Section 4.5 for some examples.
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1.3 Setting

Consider a hidden Markov model (HMM), in which the observations 𝑋 = (𝑋𝑛)𝑛≤𝑁 satisfy

𝑋𝑛 | 𝜃 ∼ 𝑓𝜃𝑛 , 1 ≤ 𝑛 ≤ 𝑁,

𝜃 = (𝜃𝑛)𝑛≤𝑁 ∼ Markov(𝜋,𝑄),
(1)

and, conditional on 𝜃, the entries of 𝑋 are independent. The vector 𝜃 of ‘hidden states’ takes values
in {0, 1}𝑁 (we will later also consider the case where 𝜃 takes values in {1, . . . , 𝐽}𝑁 for some 𝐽 ≥ 2)
and Markov(𝜋,𝑄) denotes a Markov chain of initial distribution 𝜋 = (𝜋0, 𝜋1), and 2 × 2 transition
matrix 𝑄. The ‘emission densities’ 𝑓0, 𝑓1 are probability densities with respect to some common
dominating measure 𝜇 on a measurable space 𝒳 . For simplicity we will assume that 𝜇 is either
Lebesgue measure on R or counting measure on Z ⊂ R; our results adapt straightforwardly to the
𝑑-dimensional setting, and in principle versions should hold for more general measure spaces (see
the discussion in Section 4.4). We use 𝐻 = {𝑄, 𝜋, 𝑓0, 𝑓1} to denote a generic set of parameters for
the HMM. We denote by Π𝐻 the law of (𝑋, 𝜃) in (1), and by extension also the marginal laws of 𝑋
and 𝜃. We write 𝐸𝐻 to denote the expectation operator associated to Π𝐻 . Let us underline that the
observations consist of a single sequence 𝑋1, . . . , 𝑋𝑁 of length 𝑁 and that in particular the sequence
𝜃1, . . . , 𝜃𝑁 is not observed; moreover, all parameters comprising 𝐻 are unknown.

The goal of multiple testing is to provide a procedure 𝜙 = 𝜙(𝑋) which identifies well for which 𝑖
we have signal (𝜃𝑖 ̸= 0). Testing errors in the multiple testing sense, to be defined next, are measured
collectively through all hypotheses 𝑖 = 1, . . . , 𝑁 simultaneously rather than by considering a fixed
single coordinate 𝑖. We will measure the performance of 𝜙 through the false discovery rate (FDR)
and the true discovery rate (TDR). Defining the false discovery proportion (FDP) at 𝜃 as

FDP𝜃(𝜙) :=
∑︀𝑁
𝑖=1 1{𝜃𝑖 = 0, 𝜙𝑖 = 1}

1 ∨
(︀∑︀𝑁

𝑖=1 𝜙𝑖
)︀ , (2)

the FDR at 𝜃 is given by
FDR𝜃(𝜙) := 𝐸𝐻 [FDP𝜃(𝜙(𝑋)) | 𝜃]. (3)

We consider the average false discovery rate for 𝜃 generated according to the “prior” law Π𝐻 :

FDR𝐻(𝜙) := 𝐸𝜃∼Π𝐻
FDR𝜃(𝜙) ≡ 𝐸𝐻 FDP𝜃(𝜙), (4)

and we define the ‘posterior FDR’ as the average FDP obtained when 𝜃 is drawn from its posterior,

postFDR𝐻(𝜙) = postFDR𝐻(𝜙;𝑋) := 𝐸𝐻 [FDP𝜃(𝜙) | 𝑋]. (5)
The true discovery rate is defined as the expected proportion of signals which are detected by a
procedure:

TDR𝐻(𝜙) = 𝐸𝐻

[︁∑︀𝑁
𝑖=1 1{𝜃𝑖 = 1, 𝜙𝑖 = 1}

1 ∨ (
∑︀𝑁
𝑖=1 𝜃𝑖)

]︁
. (6)

Bayesian formulation and latent variable formulation. Let 𝑃0 denote the “true” distribution of
the data𝑋 arising from model (1). If, in (1), the distribution of 𝜃 is interpreted as “prior” distribution
(it is of course an “oracle prior”, as 𝜋,𝑄 are components of the unknown “true” parameter 𝐻 =
(𝜋,𝑄, 𝑓0, 𝑓1)), the distribution of 𝑋 = (𝑋𝑛)𝑛≤𝑁 in the (oracle) Bayesian setting is simply the
true distribution 𝑃0. Of course, one may also avoid the Bayesian vocabulary and simply view
model (1) as a latent variable model: under such point of view, ℓ-values are known as smoothing
probabilities and 𝜃 |𝑋 is simply a conditional distribution. We find it convenient to nevertheless use
Bayesian terminology (in contrast to previous works such as Sun and Cai 2007, 2009). Partially this
is in accordance with classical decision theory, wherein Bayesian terminology is commonly used for
describing optimal classifiers; indeed, as Storey (2003) observed, “classical classification theory seems
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to be a bridge between Bayesian modeling and hypothesis testing”. It is also helpful preparation for
considering a setting where 𝜃 is fixed and non-random, as dicussed next.

Connection with frequentist analysis of Bayesian procedures. Recent years have seen notable
progress on providing frequentist validations of the use of posterior distributions for inference, with
most results concerning the estimation task, and more recently also uncertainty quantification and
confidence sets (see e.g. Ghosal and van der Vaart, 2017, for a summary). One can consider using the
HMM model (1) not because one believes 𝜃 is genuinely random with a Markov structure, but rather
as a way to model some block structure of a fixed true 𝜃, wherein neighbour coordinates of 𝑋 have
a higher chance of coming from the same distribution. The first results in this spirit in a multiple
testing setting were obtained recently for sparse sequences in Castillo and Roquain (2020), and in
Abraham et al. (2021) for the posterior-based procedure considered here, in both cases without
block structure. Investigating the Bayesian procedure studied in this paper for structured sequences
of fixed 𝜃 where the HMM modeling will then be a Bayesian prior seems to be a interesting (but
difficult) open problem.

We also note that the results we obtain below still constitute a (partial) frequentist Bayes valida-
tion, in the following sense. Consider a standard Bayesian approach where 𝜃 is viewed as parameter
and given a Markov prior, but not the other parameters (𝑓0, 𝑓1, 𝜋,𝑄), which are estimated sepa-
rately. Then Theorems 2 and 3 below prove that if the true (frequentist) data generating distribution
is some nonparametric HMM, then the empirical Bayes procedure derived from the posterior on 𝜃
behaves consistently from the multiple testing viewpoint: its FDR is controlled with optimality
guarantees on the TDR. It is a less strong frequentist analysis than under an arbitrary fixed 𝜃0, but
it validates the frequentist use of the procedure assuming that the data comes from some (fairly
arbitrary) non-parametric HMM: this still allows one to capture many typical signals with varied
latent densities.

1.4 Outline of the Paper

In Section 2 we introduce our multiple testing procedure and establish its asymptotic performance in
Theorems 2 and 3. Section 3 is devoted to the estimation of the emission densities, with asymptotic
supremum norm control established in Theorems 4 and 5. We also give in Proposition 6 a lower
bound for the estimation of Hölder emission densities with regularity 𝑠 in the HMM context. Finally,
Proposition 7 gives examples of conditions under which one can overcome the ‘label switching’ issue,
present in the HMM setting as for mixture models, in order to know which estimator corresponds
to the null state and which to the alternative. This allows us to avoid the assumption, common to
many multiple testing methods, that the distribution of the data under the null is known.

In Section 4, we provide a detailed discussion of our assumptions and comparisons of our results
with the literature. We also explain the extent to which the rates of convergence of our emission
densities estimators are uniform in the parameters.

Proofs of the main theorems are given in Section 5. Intermediate results useful for these proofs
are given in Appendices A and B. Appendix C gives a proof of a minimax lower bound. For the
reader’s convenience, the notation introduced throughout the paper is gathered in Appendix D.

2. The Empirical Bayesian Procedure
2.1 Definition

We analyse an empirical Bayesian approach to the multiple testing problem, based on thresholding
by the posterior (smoothing) probabilities, here called the ‘ℓ-values’ and also known in the literature
as the ‘local indices of significance’ (Efron et al., 2001; Efron, 2007a; Sun and Cai, 2009):

ℓ𝑖(𝑋) ≡ ℓ𝑖,𝐻(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋). (7)
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In the ‘oracle’ setting (where the parameter 𝐻 is known), it is well known that the optimal
(weighted) classification procedure is an ℓ-value thresholding procedure; that is, it is 𝜙𝜆,𝐻 for some
𝜆, where

𝜙𝜆,𝐻(𝑋) = (1{ℓ𝑖,𝐻(𝑋) < 𝜆})𝑖≤𝑁 . (8)

It has been shown in Sun and Cai (2009) that this class of procedures (possibly with data-driven
thresholds) is also optimal in a multiple testing sense, in that a procedure making false discoveries
at a pre-specified rate and maximising a suitable notion of the multiple testing power is necessarily
an ℓ-value thresholding procedure (see also Lemma 22).

The FDR is the expectation of the posterior FDR, so that using the latter (which is observable)
to choose the threshold is a natural approach. When the parameter 𝐻 is unobserved, we use an
estimator �̂� = (�̂�, �̂�, 𝑓0, 𝑓1) instead (to be constructed later), and so we are led to the procedure
𝜙�̂�,�̂� , where

�̂� = �̂�(�̂�, 𝑡) := sup{𝜆 : postFDR�̂�(𝜙𝜆,�̂�) ≤ 𝑡}. (9)

We also note an alternative characterisation of the threshold �̂�. In view of the definitions (5) and (7),
we have the following expression for the posterior FDR:

postFDR𝐻(𝜙) =
∑︀𝑁
𝑖=1 ℓ𝑖,𝐻𝜙𝑖

1 ∨ (
∑︀𝑛
𝑖=1 𝜙𝑖)

. (10)

That is, the posterior FDR of a procedure 𝜙 is the average of the selected ℓ-values. Consequently,
the procedure 𝜙�̂�,�̂� must threshold at one of the “empirical ℓ-values” (i.e. at some ℓ̂𝑖 = ℓ𝑖,�̂�), as
postFDR�̂�(𝜙𝜆,�̂�) only changes when 𝜆 crosses such a threshold. The threshold �̂� can therefore
equivalently be expressed, as in Sun and Cai (2009), as �̂� = ℓ̂(�̂�+1), with ℓ̂(𝑖) denoting the 𝑖th order
statistic1 of {ℓ𝑖,�̂� : 1 ≤ 𝑖 ≤ 𝑁}, where �̂� is defined by

1
�̂�

�̂�∑︁
𝑖=1

ℓ̂(𝑖) ≤ 𝑡 <
1

�̂� + 1

�̂�+1∑︁
𝑖=1

ℓ̂(𝑖). (11)

[By convention the left inequality automatically holds in the case �̂� = 0, and we define ℓ̂(𝑁+1) :=
∞ so that the right inequality automatically holds in the case �̂� = 𝑁 .] Note that �̂� is well defined
and unique, by monotonicity of the average of nondecreasing numbers. This monotonicity also makes
clear the following dichotomy:

postFDR�̂�(𝜙𝜆,�̂�) ≤ 𝑡 ⇐⇒ 𝜆 ≤ �̂�. (12)

If there are no ties, the procedure 𝜙�̂�,�̂� necessarily rejects �̂� of the null hypotheses. In the case
of ties, it may reject fewer, and to avoid potential conservativity, we therefore consider a slightly
adjusted procedure 𝜙.

Definition 1. Define 𝜙 = 𝜙(𝑡) to be a procedure rejecting exactly �̂� of the hypotheses with the
smallest ℓ̂𝑖 values, choosing arbitrarily in case of ties, where �̂� is defined by (11). We write 𝑆0 for
the rejection set

𝑆0 = {𝑖 ≤ 𝑁 : 𝜙𝑖 = 1},

and we note that by construction we have |𝑆0| = �̂� and

{𝑖 : ℓ̂𝑖(𝑋) < �̂�} ⊆ 𝑆0 ⊆ {𝑖 : ℓ̂𝑖(𝑋) ≤ �̂�}.
1. We define the order statistics so that repeats are allowed: the order statistics are defined by the fact that

{ℓ𝑖, 𝑖 ≤ 𝑁} = {ℓ(𝑗), 𝑗 ≤ 𝑁} as a multiset (∀𝑥 ∈ R, #{𝑖 : ℓ𝑖 = 𝑥} = #{𝑖 : ℓ(𝑖) = 𝑥}) and ℓ(1) ≤ ℓ(2) ≤ · · · ≤ ℓ(𝑁).
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We make the following assumptions on the parameters. The assumptions are not particularly
restrictive, and are discussed in detail in Section 4.1. The procedures we construct do not require
the quantities involved in these assumptions to be known.

Assumption A. There exists 𝑥* ∈ R ∪ {±∞} such that either

𝑓1(𝑥)/𝑓0(𝑥) → ∞, as 𝑥 ↑ 𝑥*, or
𝑓1(𝑥)/𝑓0(𝑥) → ∞, as 𝑥 ↓ 𝑥*,

where we take the conventions that 1/0 = ∞, 0/0 = 0. [In the case where 𝜇 is counting measure on
Z and 𝑥* ̸∈ {±∞}, the limits are interpreted to mean that 𝑓1(𝑥*) > 0 and 𝑓0(𝑥*) = 0.]

Assumption B. There exists a constant 𝜈 > 0 such that

max
𝑗=0,1

𝐸𝑋∼𝑓𝑗
(|𝑋|𝜈) < ∞.

Assumption C. 1. The matrix 𝑄 has full rank (i.e. its two rows are distinct), and

𝛿 := min
𝑖,𝑗

𝑄𝑖,𝑗 > 0.

2. The Markov chain is stationary: the initial distribution 𝜋 = (𝜋0, 𝜋1) is the invariant distribution
for 𝑄.

Throughout we will write
𝑓𝜋(𝑥) = 𝜋0𝑓0(𝑥) + 𝜋1𝑓1(𝑥) (13)

for the marginal distribution of each 𝑋𝑖, 𝑖 ≤ 𝑁 , under Assumption C; note that necessarily
min(𝜋0, 𝜋1) ≥ 𝛿 under the assumption. We note the following illustrative examples of pairs of
densities with respect to the Lebesgue measure 𝜇 = d𝑥 which satisfy both Assumption A and
Assumption B.
Examples. i. 𝑓𝑗(𝑥) = 𝜑(𝑥 − 𝜇𝑗), where 𝜑 is the density of a standard normal random variable

and 𝜇1 ̸= 𝜇2, with 𝜈 > 0 arbitrary and 𝑥* = ±∞.

ii. 𝑓0 is the density of any normal random variable, and 𝑓1 is the density of any Cauchy random
variable (or indeed any other distribution with polynomial tails, for 𝜈 adjusted appropriately),
with 0 < 𝜈 < 1 and 𝑥* = ±∞.

iii. 𝑓0, 𝑓1 are compactly supported densities, and the support of 𝑓1 is not a subset of the support
of 𝑓0, with any 𝜈 > 0 and any 𝑥* in the support of 𝑓1 but not of 𝑓0.

iv. 𝑓0, 𝑓1 are the densities of Beta random variables, 𝑓𝑗(𝑥) = 𝑐𝑗𝑥
𝛼𝑗−1(1 − 𝑥)𝛽𝑗−1

1{𝑥 ∈ [0, 1]} for
a normalising constant 𝑐𝑗 , and 𝛼0 > 𝛼1 or 𝛽0 > 𝛽1 (or both), with any 𝜈 > 0 and 𝑥* = 0 if
𝛼0 > 𝛼1 or 𝑥* = 1 if 𝛽0 > 𝛽1.

2.2 Theoretical guarantees

Our main result shows that for suitably chosen �̂� = (�̂�, �̂�, 𝑓0, 𝑓1), the procedure 𝜙 achieves an FDR
upper bounded by the level 𝑡 chosen by the user, at least asymptotically. The existence of estimators
with suitable consistency properties is shown in the next section under mild further assumptions.
Here ‖·‖ denotes the usual Euclidean norm for vectors (and later also the corresponding operator
norm for matrices), ‖·‖𝐹 denotes the Frobenius matrix norm ‖𝐴‖2

𝐹 =
∑︀
𝑖𝑗 𝐴

2
𝑖𝑗 , and ‖·‖∞ denotes

the 𝐿∞ (supremum) norm on functions taking values in R.
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Theorem 2. Grant Assumptions A to C. Suppose that for some 𝑢 > 1 + 𝜈−1 and some sequence
𝜀𝑁 such that 𝜀𝑁 (log𝑁)𝑢 → 0, the estimators �̂�, �̂� and 𝑓𝑗 , 𝑗 = 0, 1 satisfy

Π𝐻(max{‖�̂�−𝑄‖𝐹 , ‖�̂� − 𝜋‖, ‖𝑓0 − 𝑓0‖∞, ‖𝑓1 − 𝑓1‖∞} > 𝜀𝑁 ) → 0, as 𝑁 → ∞. (14)

Then for 𝜙 the multiple testing procedure of Definition 1 we have

FDR𝐻(𝜙) → min(𝑡, 𝜋0).

As alluded to, the construction of 𝜙 suggests it should have close to optimal power, and the follow-
ing result shows that this is indeed true under an extra condition on the distribution of (𝑓1/𝑓0)(𝑋1).
The extra condition cannot hold if 𝜇 is the counting measure, but is only used to prove a property
of the limiting ℓ-values, so that a version of Theorem 3 may also hold in the discrete setting – see
the discussion in Section 4.4. As is common in the literature (again see Section 4.4), the precise
notion of power is given by the marginal true discovery rate (mTDR), the average proportion of
true signals which a testing procedure discovers (note that the denominator is necessarily non-zero
under Assumption C):

mTDR𝐻(𝜙) = 𝐸𝐻#{𝑖 : 𝜃𝑖 = 1, 𝜙𝑖 = 1}
𝐸𝐻#{𝑖 : 𝜃𝑖 = 1}

. (15)

The marginal FDR is defined correspondingly:

mFDR𝐻(𝜙) = 𝐸𝐻#{𝑖 : 𝜃𝑖 = 0, 𝜙𝑖 = 1}
𝐸𝐻#{𝑖 : 𝜙𝑖 = 1}

, (16)

with the convention that 0/0 = 0. These ‘marginal’ quantities are, by concentration results, close
to the original quantities TDR𝐻(𝜙), FDR𝐻(𝜙) for many procedures, including 𝜙 (as is implied by
ideas in the proof of the following result; see also the discussion in Section 4.4).

Theorem 3. In the setting of Theorem 2, additionally grant that the distribution function of the
random variable (𝑓1/𝑓0)(𝑋1) (i.e. the function 𝑡 ↦→ Π𝐻

(︀
(𝑓1/𝑓0)(𝑋1) ≤ 𝑡

)︀
) is continuous and strictly

increasing. Then the procedure 𝜙 of Theorem 2 satisfies the following as 𝑁 → ∞:

mTDR𝐻(𝜙) = sup{mTDR𝐻(𝜓) : mFDR𝐻(𝜓) ≤ mFDR𝐻(𝜙)} + 𝑜(1)
= sup{mTDR𝐻(𝜓) : mFDR𝐻(𝜓) ≤ 𝑡} + 𝑜(1).

The suprema are over all multiple testing procedures 𝜓 satisfying the bound on their mFDR, including
oracle procedures allowed knowledge of the parameters 𝐻.

The essence of the proof of Theorem 2 is to show that ℓ̂𝑖 ≈ ℓ𝑖 for most 𝑖 ≤ 𝑁 (see Lemma 9, in
Section 5.1) and that consequently postFDR𝐻(𝜙) is close to postFDR�̂�(𝜙). The latter, thanks to
our definition of �̂�, is close 𝑡.

In proving Theorem 3, there is no a priori control of the power analogous to the bound postFDR�̂�(𝜙) ≤
𝑡, hence we cannot simply argue by symmetry. Instead, one shows that �̂� concentrates around some
𝜆* ∈ (0, 1]: see Lemma 10 in Section 5.1. Then, again using that ℓ̂𝑖 ≈ ℓ𝑖, it follows that mTDR𝐻(𝜙) ≈
mTDR𝐻(𝜙𝜆*,�̂�) ≈ mTDR𝐻(𝜙𝜆*,𝐻) and similarly that mFDR𝐻(𝜙) ≈ mFDR𝐻(𝜙𝜆*,𝐻) ≈ 𝑡. Known
optimality results for the class (𝜙𝜆,𝐻 : 𝜆 ≥ 0) mean that one is able to show that mTDR𝐻(𝜙𝜆*,𝐻)
is the largest of procedures with mFDR at most mFDR𝐻(𝜙𝜆*,𝐻) ≈ 𝑡 (see Lemma 22), so that the
same is approximately true of mTDR𝐻(𝜙).

See Section 5.1 for the proofs.
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3. Supremum Norm Estimation of Emission Densities
Of course, Theorems 2 and 3 are only useful if one can estimate 𝐻 at an appropriate rate in the
specified norms, and the results of this section ensure that this is indeed possible in a wide range of
nonparametric settings. Estimation is possible not only in the two-state setting, and since estimation
results are of independent interest we assume in this section that the data 𝑋 is drawn from model
(1) for 𝑄 a 𝐽 × 𝐽 matrix and 𝜋 a distribution on {1, . . . , 𝐽}, with the state vector 𝜃 taking values in
{1, . . . , 𝐽}𝑁 , for some known 𝐽 ≥ 2.

Assumptions A and C are designed with the particular FDR context in mind. In the 𝐽-state
estimation setting we instead use the following conditions, designed to ensure a spectral estimation
method works. We will still require the moment condition Assumption B for some results.

Assumption C’. The matrix 𝑄 is full rank, the 𝐽-state Markov chain (𝜃𝑛)𝑛∈N is irreducible and
aperiodic, and 𝜃1 follows the invariant distribution. [This is weaker than Assumption C in general,
but equivalent in the two-state setting.]

Assumption D. The density functions 𝑓1, . . . 𝑓𝐽 are linearly independent. [In the two-state setting
it suffices to assume 𝑓0 ̸= 𝑓1, which is implied by Assumption A.]

Under these assumptions, in a parametric setting a variant of a typical regularity condition
suffices to show that estimation is possible at a parametric rate, so that our theorems offer a new
proof of the results of Sun and Cai (2009): see Section 4.2. Of greater interest here, though, is that
Theorem 2 also allows for a nonparametric setting. As noted already, this is a major improvement
for applications – see for instance Yau et al. (2011), Wang et al. (2019) and Su and Wang (2020).
Estimating the Markov parameters 𝑄 and 𝜋 consistently up to a permutation at a polynomial rate
has already been proved possible (see De Castro et al., 2017, Appendix C), and we therefore focus
on estimation, in the supremum norm, of the emissions densities themselves. Note first of all that
in a discrete setting estimation is possible at a parametric rate.

Theorem 4. Assume that the dominating measure 𝜇 is the counting measure on Z. Let 𝑀𝑁 be a
sequence tending to infinity, arbitrarily slowly. Under Assumptions C’ and D, there exist estimators
𝑓1, . . . , 𝑓𝐽 and a permutation 𝜏 such that

Π𝐻(‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ ≥ 𝑀𝑁𝑁
−1/2) → 0.

The proof is a simplification of that of Theorem 5 (to follow) and so is sketched only: see
Appendix B.4.

For the remainder of this section we assume that the functions 𝑓1, . . . , 𝑓𝐽 are densities with
respect to the Lebesgue measure on R, 𝜇 = d𝑥. We demonstrate that consistent estimation of these
densities in the supremum norm is indeed possible at a near-minimax rate in the nonparametric
setting, under the following typical smoothness condition.

Assumption E. 𝑓1, . . . 𝑓𝐽 belong to 𝐶𝑠(R) for some 𝑠 > 0, where for 𝐶0(R) denoting all bounded
continuous functions from R to itself (equipped with the usual supremum norm ‖·‖∞) and writing
𝑗 = ⌊𝑠⌋ for the integer part of 𝑠, 𝐶𝑠(R) denotes the usual space of (locally) Hölder-continuous
functions

𝐶𝑠(R) = {𝑓 : 𝑓 (𝑗) ∈ 𝐶𝑠−𝑗(R)}, 𝑠 ≥ 1

𝐶𝑠(R) = {𝑓 ∈ 𝐶0(R) : sup
0<|𝑥−𝑦|≤1

(︁ |𝑓(𝑥) − 𝑓(𝑦)|
|𝑥− 𝑦|𝑠

)︁
< ∞} 𝑠 ∈ (0, 1),

9
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equipped with the usual norm

‖𝑓‖𝐶𝑠 = ‖𝑓 (⌊𝑠⌋)‖𝐶𝑠−⌊𝑠⌋ +
∑︁

0≤𝑖<⌊𝑠⌋

‖𝑓 (𝑖)‖∞, 𝑠 ≥ 1

‖𝑓‖𝐶𝑠 = ‖𝑓‖∞ + sup
0<|𝑥−𝑦|≤1

|𝑓(𝑦) − 𝑓(𝑥)|
|𝑦 − 𝑥|𝑠

, 0 < 𝑠 < 1.

The results also extend in the usual way to Besov spaces, e.g. using results from Giné and Nickl
(2016, Chapter 4).

Theorem 5. Grant Assumptions B, C’, D and E. Suppose 𝐿0 → ∞ as 𝑁 → ∞, and 𝐿max(5,(𝐽+3)/2)
0 𝑟𝑁 →

0, where 𝑟𝑁 = (𝑁/ log𝑁)−𝑠/(1+2𝑠). Then there exist estimators 𝑓𝑗 , 1 ≤ 𝑗 ≤ 𝐽 (continuous so that
the supremum below is measurable) and a permutation 𝜏 such that, for some 𝐶 > 0,

Π𝐻

(︁
‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ ≥ 𝐶𝐿5

0𝑟𝑁

)︁
→ 0. (17)

Convergence in expectation also holds: for some 𝐶 ′ > 0,

𝐸𝐻‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ ≤ 𝐶 ′𝐿5
0𝑟𝑛. (18)

The proof is given in Section 5.2. The parameter 𝐿0 has the interpretation of the dimension
of a matrix used in the contruction of the estimators and it can be chosen to diverge arbitrarily
slowly (or even, under slightly strengthened versions of the assumptions, to take the fixed value
𝐽 – see Algorithm 1 and the remarks thereafter), so that the upper bound is arbitrarily close to
the following lower bound. Such a lower bound is familiar from the i.i.d. setting, but does not
automatically apply in the current setting. Indeed, the mixture components in a nonparametric
mixture model are not identifiable, so that our assumptions necessarily exclude the i.i.d. subcase
of a HMM. The content of the following proposition is that these assumptions do not, however,
make estimation easier than having i.i.d. samples from each of the emission densities. We refer
to Appendix C for a formal statement and proof. Let us just mention that the idea consists of
identifying a broad class of parameters over which the upper bound results hold uniformly – some
details on this can already be found in Section 4.3 below – and proving the corresponding lower
bound over this class of parameters.

Proposition 6 (informal statement). The rate 𝑟𝑁 = (𝑁/ log𝑁)−𝑠/(1+2𝑠) is a lower bound for the
minimax supremum-norm estimation rate for the emission densities in a 𝐽-state nonparametric
HMM.

The algorithm solving Theorem 5 uses a ‘spectral’ method similar to those of Anandkumar
et al. (2012) De Castro et al. (2017) and Lehéricy (2018). However, De Castro et al. (2017) and
Lehéricy (2018) expand in terms of orthonormal basis functions, and use particular properties of
𝐿2-projections which do not straightforwardly adapt to the 𝐿∞ setting. In developing herein a
spectral kernel density estimator we are forced to bypass the need for these projection properties
(note though that one could apply similar ideas to basis function based estimators). See Algorithm 1
for a description of the estimating procedure.

Finally, note that Theorems 4 and 5 only show that one may estimate the parameters consistently
up to a permutation. While this is generally sufficient for estimation purposes, since the labelling of
the states is usually of no relevance, any multiple testing procedure targeting FDR control necessarily
treats the null and the alternative differently, so it is essential that we can identify which of our
estimators corresponds to the null state. We will therefore also require the following condition.

Condition F. There exist estimators 𝑓1, . . . , 𝑓𝐽 in Theorem 5 (or Theorem 4) for which the per-
mutation 𝜏 is the identity.
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It suffices that there exist {𝑓1, . . . , 𝑓𝐽 , 𝜏} as in Theorem 5 for which the permutation 𝜏 can
be estimated consistently by some 𝜏 , since we can define 𝑓𝑗 = 𝑓𝜏(𝑗). We give two illustrative
assumptions, each plausible in the original two-state FDR setting, under which Condition F holds.
A version of the following proposition also holds under such assumptions in the discrete setting using
Theorem 4 in place of Theorem 5 in the proof, which can be found at the end of Section 5.2.

Proposition 7. In the setting of Theorem 2 grant also Assumption E (and recall that Assump-
tion D automatically holds). Then Condition F is verified, and there exist estimators �̂�, �̂�, 𝑓0, 𝑓1
satisfying (14) for any rate 𝜀𝑁 slower than 𝑟𝑁 = (𝑁/ log𝑁)−𝑠/(1+2𝑠), under either of the following
assumptions:

1. For some known 𝑥* ∈ R ∪ {+∞}, 𝑓1(𝑥)/𝑓0(𝑥) → ∞ as 𝑥 ↑ 𝑥*.

2. 𝜋0 is known to be greater than 𝜋1.

4. Discussion
4.1 Applicability of the Results

Generality of the assumptions. Assumptions A to E and Condition F are not restrictive, so that
Theorems 2, 4 and 5 hold in typical nonparametric settings (we discuss the extra assumption of
Theorem 3 in Section 4.4).

Assumption A is a signal strength assumption, without which the proofs (in particular the proof
of Lemma 14) remain valid only for large enough values of 𝑡. It is known that weak signals are a
case requiring special attention for multiple testing, discussed for example in a different setting in
Heller and Rosset (2021).

The moment condition Assumption B is used for Lemmas 12 and 31. A different proof of
Theorem 5 might bypass the need for this condition since kernel methods have been known to work
in density estimation in the absence of tail conditions.

The full rank assumption on 𝑄 in Assumption C’ is necessary even for identifiability up to
a permutation in the two-state case (with nonparametric emission densities) since otherwise the
HMM reduces to an i.i.d. nonparametric mixture model, whose non-identifiability is easily seen. For
𝐽 > 2 states it is not known whether identifiability holds without this assumption, and full rank is
assumed in all papers know to the authors concerning nonparametric inference of HMM parameters.
Irreducibility is essential to ensure all hidden states genuinely influence the data. Aperiodicity
is assumed to allow typical Markov chain convergence and concentration results to apply, but in
principle it should be possible to avoid this assumption at the expense of requiring specially tailored
proofs, since the proofs use empirical averages as a building block.

Consistent estimation of the HMM parameters is possible upon replacing Assumption D by the
weaker assumption that the emission densities are all distinct, see Alexandrovich et al. (2016) and
Lehéricy (2018). Proving rates under this weaker assumption is much harder and no results exist
yet.

Implementing the method. Our proposed method for estimating the emission densities can be
implemented through Algorithm 1. Then, given estimators of the parameters, efficient computations
of ℓ-values is easily done using the forward-backward algorithm for HMMs. Indeed the empirical
Bayes multiple testing procedure is implemented in Sun and Cai (2009), Wang et al. (2019) and
Su and Wang (2020). [These works use mixture models with unknown number of components
to estimate the emission densities, either via fully Bayesian methods or via some model selection
method.]
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4.2 The Parametric Setting

Bickel et al. (1998) prove a central limit theorem for the maximum likelihood estimator of the
model parameter (which we denote, say, by ℎ) under standard regularity conditions, so that it may
be estimated at a parametric rate up to label switching. To these, adding the condition that the
parametrisation map ℎ ↦→ (𝑓1,ℎ, . . . 𝑓𝐽,ℎ) is Lipschitz continuous with respect to the Euclidean norm
and the supremum norm (at least on a neighbourhood of the true parameter), we arrive at the
following.

Proposition 8. In a parametric model satisfying mild regularity conditions, Assumptions C’ and D
are enough to ensure that there exist estimators �̂�, �̂�, 𝑓1, . . . , 𝑓𝐽 such that for some permutation 𝜏
and any 𝑀𝑁 → ∞,

max
(︀
‖�̂�−𝑄‖𝐹 , ‖�̂� − 𝜋‖, ‖𝑓1 − 𝑓𝜏(1)‖∞, . . . , ‖𝑓𝐽 − 𝑓𝜏(𝐽)‖∞

)︀
< 𝑀𝑁𝑁

−1/2,

with probability tending to 1.

We note that many common parametric families, including Gaussian models, exponential models
and Poisson models, satisfy a suitable regularity condition (this can be seen by using standard for-
mulae for exponential families to calculate the derivative of the parametrisation map and bounding).

Under an assumption akin to those of Proposition 7 to ensure that a version of Condition F
holds, we see that Theorems 2 and 3 apply in a parametric setting. Except perhaps for the regularity
condition, our assumptions are weaker than those of Sun and Cai (2009) (after adapting Theorem 3
slightly – see Section 4.4), so that we slightly generalise their main results even in the parametric
setting.

4.3 Uniformity in the Parameters

The constants of Theorem 5 depend only on quantitative measures (as listed below) of the degree
to which Assumptions B, C’, D and E hold, so that a uniform version of (18),

sup
𝐻∈ℋ

𝐸𝐻‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ ≤ 𝐶 ′𝐿5
0𝑟𝑛,

holds if the following bounds are satisfied on the set ℋ (and similarly for (17)). The estimators
𝑓1, . . . 𝑓𝐽 do not depend on knowledge of the bound 𝑀 < ∞, so the result is adaptive in these
quantities (though recall that the smoothness 𝑠 is assumed known – see also the discussion of
adaptation in Section 4.4).

• sup𝐻∈ℋ(max𝑗 𝐸𝑋∼𝑓𝑗
|𝑋|1/𝑀 ) ≤ 𝑀 .

• sup𝐻∈ℋ(𝜅(𝑄)) ≤ 𝑀 , where 𝜅(𝑄) = ‖𝑄‖‖𝑄−1‖, the condition number, measures how far 𝑄 is
from having less than full rank.

• inf𝐻∈ℋ 𝛾ps ≥ 𝑀−1 where 𝛾ps denotes the pseudo spectral gap of the matrix 𝑄 as defined in
Paulin (2015). This bound quantitatively measures how far the chain 𝜃 is from being reducible
or periodic, and is only used to control the mixing time of the chain 𝜃. It can therefore be
replaced by any assumption ensuring a uniform bound on the mixing time; in particular, in
the two-state case of Section 2, the chain 𝜃 is necessarily reversible and it suffices to assume a
uniform lower bound on the absolute spectral gap 𝛾*, defined by

𝛾* =
{︃

1 − sup{|𝜆| : 𝜆 an eigenvalue of 𝑄, 𝜆 ̸= 1} the eigenvalue 1 of 𝑄 has multiplicity 1,
0 otherwise.

• inf𝐻∈ℋ min𝑗(𝜋𝑗) > 𝑀−1. This too measures how far the chain is from being reducible.
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• sup𝐻∈ℋ max𝑗‖𝑓𝑗‖𝐶𝑠 ≤ 𝑀 .

• sup𝐻∈ℋ max(𝐿, 1/𝐶) ≤ 𝑀 , where (𝐶,𝐿) are the constants, depending on 𝐻, from Lemma 24
in Appendix B. Denoting by 𝜎𝐽(𝐴) the 𝐽th largest singular value of a matrix 𝐴, these constants
control 𝜎𝐽(𝑂𝐿0) where 𝑂𝐿0 = (𝐸[ℎ𝑙(𝑋1) | 𝜃1 = 𝑗])𝑙≤𝐿0,𝑗≤𝐽 for some suitably chosen functions
ℎ𝑙, 𝑙 ≤ 𝐿0. The lemma shows that ℎ1, . . . , ℎ𝐿0 can be chosen in a universal way such that
max(𝐿, 1/𝐶) < ∞ whenever 𝑓1, . . . 𝑓𝐽 are linearly independent, so these constants quantitively
measure the linear independence of these functions. In the case 𝐽 = 2, a sufficient (but not
necessary) condition for such a uniform bound to hold is that inf𝐻 |𝑃𝑋∼𝑓0(𝑋 ∈ 𝐴)−𝑃𝑋∼𝑓1(𝑋 ∈
𝐴)| > 0 for some known set 𝐴: one then constructs the estimators 𝑓0, 𝑓1 using, in Algorithm 1,
𝐿0 = 2, ℎ1 = 1, ℎ2 = 1𝐴.

• inf𝐻∈ℋ 𝑐 ≥ 𝑀−1 where 𝑐 = 𝑐(𝐻) is the constant of Lemma 26 in Appendix B. The lemma
shows that this constant is positive whenever 𝑓1, . . . , 𝑓𝐽 are distinct and so it provides a
quantitative measure of the degree of distinctness of these functions. In view of the proof, a
sufficient (but not necessary) condition for such a uniform bound to hold is that 𝑓1, . . . 𝑓𝐽 can
uniformly be separated at a point, i.e. that the set ℋ is such that

inf
𝐻∈ℋ

sup
𝑥∈R

min
𝑗 ̸=𝑗′

|𝑓𝑗(𝑥) − 𝑓𝑗′(𝑥)| > 𝑀−1.

In what follows, we use for example 𝐶 = 𝐶(ℋ) to denote any constant which depends only on the
above bounds (i.e. on 𝑀 < ∞). We will also allow such a constant to depend on the kernel 𝐾,
the functions ℎ1, . . . , ℎ𝐿0 and the sets D𝑁 of Algorithm 1 since these can be chosen independently
of the parameter 𝐻 ∈ ℋ. We note that the set ℋ over which the upper bound is uniform (under
the sufficient conditions of the last two items, with 𝐴 = [−1, 1]) includes the set over which the
lower bound Proposition 6 is proved in Appendix C, so that the estimation result Theorem 5 can
genuinely be viewed as a minimax result.

The FDR result Theorem 2 is uniform over a large subset ℐ ⊂ ℋ. In particular, in addition to
the above constraints, one needs to add the following conditions.

• inf𝐻∈ℐ Π𝐻((𝑓1/𝑓0)(𝑋1) > 𝑢) > 0 for each 𝑢 > 0.

• Condition F holds in a uniform way for 𝐻 ∈ ℐ.

• inf𝐻∈ℐ min𝑖,𝑗 𝑄𝑖𝑗 > 0. [This is in fact implied already by the bounds on the 𝜋𝑗 and on the
pseudo-spectral gap, since for Theorem 2 we are in the two-state setting.]

We write 𝐶 = 𝐶(ℐ) to denote any constant which depends only on ℋ and these quantities.

4.4 Extensions of the Theorems

Weakening the assumption of Theorem 3. Theorem 3 remains true if we replace the assumption on
(𝑓1/𝑓0)(𝑋1) with the following; see Lemma 17 for a proof that this new condition holds under the
assumptions of Theorem 3.

Condition G. Viewing the sample (𝑋𝑛 : 1 ≤ 𝑛 ≤ 𝑁) as coming from a bi-infinite HMM (𝑋𝑛 : 𝑛 ∈
Z), grant that the distribution function of

ℓ∞
𝑖 (𝑋) := Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛)𝑛∈Z) (19)

is continuous and strictly increasing on [0, 1].
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This condition is weaker than the ‘monotone ratio condition’ assumed in Sun and Cai (2009), since
the latter implicitly assumes that the distribution function of ℓ∞

𝑖 has a strictly positive derivative. In
the discrete context (that is, when the𝑋𝑖’s take discrete values), understanding when the distribution
of the variables ℓ∞

𝑖 has a density with respect to Lebesgue measure is known to be hard, since it is
mostly still an open problem for the closely related stationary filter Φ∞

𝑖 (𝑋) := Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛)𝑛≤𝑖),
see Blackwell (1957), Bárány and Kolossváry (2015) and references therein.

Of particular interest, though, is the fact that this new condition is only about the continuity
of the distribution function, not about its absolute continuity. Continuity is a weaker property that
could be easier to understand and could hold in much more generality, so that Condition G opens
up the possiblity that a version of Theorem 3 may hold even in certain discrete settings. Indeed,
simulations in Su and Wang (2020) are suggestive that the conclusions of the theorem hold. They
compare various multiple testing procedures and provide empirical evidence that the TDR of the
empirical Bayes multiple testing method using nonparametric modeling of HMMs roughly matches
that of an oracle thresholding procedure and is the best among the multiple testing procedures they
compare.

Use of marginal FDR and TDR in Theorem 3. The proof of Theorem 3 in fact shows, after some
minor adjustments, that

TDR𝐻(𝜙) ≥ TDR𝐻(𝜙𝜆max,𝐻) − 𝑜(1),

where 𝜆max = 𝜆max(𝑡,𝐻) is chosen maximal such that FDR𝐻(𝜙𝜆max,𝐻) ≤ 𝑡, so that 𝜙 is (asymp-
totically) optimal for the TDR when restricting to the class of procedures whose TDR and FDR
asymptotically coincide with their marginal equivalents. Heller and Rosset (2021) show in a non-
Markovian setting that the procedure maximising the TDR among all procedures with controlled
FDR is not in this class, but their results leave open the possiblity that Theorem 3 remains true
with the full FDR and TDR. Indeed, a main conclusion of their work is that the class (𝜙𝜆,𝐻 : 𝜆 ≥ 0)
(or rather, the equivalent of this class for their setting) is optimal for the problem of maximing TDR
with controlled FDR provided one allows data-driven thresholds – such as �̂� – whereas the current
proof of Theorem 3 uses that for mTDR optimality with mFDR control it suffices to consider the
class for non-random thresholds. Furthermore, the difference between the FDR and TDR of the
optimal procedure and their marginal versions in the setting of Heller and Rosset (2021) manifests
itself for weak signals, so that our signal strength assumption may suffice to rule out any such
difference.

Adaptation. The estimator we construct for Theorem 5 uses knowledge of the smoothness 𝑠. One
can adjust the arguments of Lehéricy (2018) to show that a careful application of Lepskii’s method
allows adaptation up to a maximum smoothness 𝑠max < ∞, and indeed state-by-state adaptation,
wherein each state is estimated at a rate adapting to its smoothness parameter 𝑠𝑗 , rather than
requiring 𝑠𝑗 = 𝑠 for all 𝑗. As usual, the rough idea is to construct estimators 𝑓𝐿𝑗 , 𝑗 ≤ 𝐽 for each
𝐿 ≤ 𝐿max and use ‖𝑓𝐿𝑗 − 𝑓𝐿max

𝑗 ‖∞ as a proxy for the bias, so that one can make a suitable bias-
variance tradeoff. In the HMM setting, as noted in Lehéricy (2018), one must also use 𝑓𝐿max

𝑗 to
“align” the estimators 𝑓𝐿𝑗 up to a single permutation 𝜏 rather than needing a different permutation
𝜏𝐿 for each level 𝐿; one can show using the triangle inequality that this alignment is successful for
all large enough 𝐿 ≤ 𝐿max with probability tending to 1.

General measure spaces. The proofs of Theorems 2 and 3 essentially only use the assumption
that 𝜇 is Lebesgue measure on R or counting measure on Z in showing Lemma 12, so that versions
of these theorems continue to hold on general (metric) measure spaces after adjusting Assumption B
appropriately. Theorem 4 readily generalises to 𝜇 being any discrete measure of known support. The
proof of Theorem 5 uses kernel density estimation techniques, and in principle it should be possible
to prove a version of this result in any setting where kernel-type estimators with suitable properties
exist – for example, using results from Cleanthous et al. (2020), on manifolds.
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4.5 Other HMM settings

Wei et al. (2009) adapt HMM methods to more realistically model non-homogeneities of genetic
data. More generally, the methodology of empirical Bayes multiple testing could be applied to other
hidden Markov settings, such as seasonal hidden Markov models where nonparametric identifiability
is proved in Touron (2019), or hidden Markov models with covariates as described in Zucchini
et al. (2016, Chapter 10) (see also the references therein for applications). In such extensions,
theoretical grounding would rely on a good control of the estimators, and on the propagation of
errors in the posterior probabilities when plugging estimates of the transition probabilities and of
the emission densities. Note also that the same posterior-based procedure as described herein has
been investigated through simulations for hidden Markov random fields in Shu et al. (2015), showing
better performances than usual multiple testing procedures.

5. Proofs
5.1 Proofs: FDR Control and TDR Optimality

The following lemma isolates part of the proof of Theorems 2 and 3, showing that ℓ̂𝑖(𝑋) converges
to ℓ𝑖(𝑋) at a rate slightly slower than the convergence rate 𝜀𝑁 of the estimators �̂�. Recalling the
sketch proofs in Section 2.2, this lemma will be essential in obtaining bounds on the FDR and TDR.

Lemma 9. In the setting of Theorem 2 define 𝜀′
𝑁 = 𝜀𝑁 (log𝑁)𝑢, and recall that by definition

𝑢 > 1 + 𝜈−1 and by assumption 𝜀′
𝑁 → 0, where 𝜈 is the parameter of Assumption B. Then

max
𝑖≤𝑁

Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′
𝑁 ) → 0, as 𝑁 → ∞. (20)

Consequently, there exists 𝛿𝑁 → 0 such that

Π𝐻(#{𝑖 ≤ 𝑁 : |ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′
𝑁} > 𝑁𝛿𝑁 ) → 0.

Proof We begin by showing that Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝑀𝜀′
𝑁 ) → 0 for each fixed 𝑖, for some

constant𝑀 = 𝑀(ℐ). [Recall that a constant𝑀(ℐ) depends only on certain bounds for the parameter
𝐻 = (𝑄, 𝜋, 𝑓0, 𝑓1) as described in Section 4.3.]

Let (𝐸𝑁 )𝑁 be a sequence of events with probability tending 1 on which

max
(︁

‖�̂�−𝑄‖𝐹 , ‖�̂� − 𝜋‖, max
𝑗∈{0,1}

‖𝑓𝑗 − 𝑓𝑗‖∞

)︁
≤ 𝜀𝑁 ,

and define

𝛿 = min
𝑖,𝑗

𝑄𝑖,𝑗 , 𝜌 = (1 − 2𝛿)/(1 − 𝛿),

𝛿 = min
𝑖,𝑗

�̂�𝑖,𝑗 , 𝜌 = (1 − 2𝛿)/(1 − 𝛿).

Then Proposition 2.2 of De Castro et al. (2017) yields that for some 𝐶 depending only on a lower
bound for 𝛿,

|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| ≤ 𝐶
{︁
𝜌𝑖−1‖�̂� − 𝜋‖ +

[︀
(1 − 𝜌)−1 + (1 − 𝜌)−1]︀

‖�̂�−𝑄‖𝐹+
𝑁∑︁
𝑛=1

((𝜌 ∨ 𝜌)|𝑛−𝑖|/𝑓𝜋(𝑋𝑛)) max
𝑗=0,1

|𝑓𝑗(𝑋𝑛) − 𝑓𝑗(𝑋𝑛)|
}︁
.

(21)

[The proposition there is stated with 𝑐*(𝑥) := min𝑗=0,1
∑︀
𝑘𝑄𝑗𝑘𝑓𝑘(𝑥) in place of 𝑓𝜋(𝑥), but we

note 𝑐*(𝑥) so defined is lower bounded by 𝛿𝑓𝜋(𝑥). Also note that the authors assume that 𝑓0, 𝑓1
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are densities with respect to Lebesgue measure, but this assumption is not used in the proof of
Proposition 2.2 therein.] Recalling we assumed that 𝛿 was (strictly) positive, we see that on 𝐸𝑁 ,
for 𝑁 large enough we have 𝛿 > 𝛿 = 𝛿/2, 𝜌 < 𝜌 = (1 + 𝜌)/2, and we replace 𝜌, 𝜌 and 𝛿, 𝛿 in (21) by
𝜌 < 1 and 𝛿 > 0. On the event 𝐸𝑁 , choosing the constant 𝑀 = 𝑀(𝛿, 𝜌, 𝐶) = 𝑀(ℐ) large enough
we see by a union bound that

Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝑀𝜀′
𝑁 ) ≤ Π𝐻(𝐸𝑐𝑁 ) + Π𝐻

(︂
𝜀𝑁

𝑁∑︁
𝑛=1

𝜌|𝑛−𝑖|

𝑓𝜋(𝑋𝑛) > 𝜀′
𝑁

)︂
.

For 𝜅 > 0 to be chosen, define 𝑆𝜅,𝑖 = {𝑛 ≤ 𝑁 : |𝑛 − 𝑖| ≤ 𝜅 log𝑁}. We can split the terms in 𝑆𝜅,𝑖
from those in 𝑆𝑐𝜅,𝑖 to see, for 𝐶 ′ = 2

∑︀∞
𝑛=0 𝜌

𝑛 < ∞, that

∑︁
𝑛≤𝑁

𝜌|𝑛−𝑖|

𝑓𝜋(𝑋𝑛) ≤ 𝐶 ′
[︁

max
𝑛∈𝑆𝜅,𝑖

(︁ 1
𝑓𝜋(𝑋𝑛)

)︁
+ 𝜌𝜅 log𝑁 max

𝑛≤𝑁

(︁ 1
𝑓𝜋(𝑋𝑛)

)︁]︁
,

so that again appealing to a union bound, it suffices to show

Π𝐻

(︂
max
𝑛∈𝑆𝜅,𝑖

(︁ 1
𝑓𝜋(𝑋𝑛)

)︁
>

1
2𝐶 ′ (𝜀′

𝑁/𝜀𝑁 )
)︂

→ 0, and (22)

Π𝐻

(︂
𝜌𝜅 log𝑁 max

𝑛≤𝑁

(︁ 1
𝑓𝜋(𝑋𝑛)

)︁
>

1
2𝐶 ′ (𝜀′

𝑁/𝜀𝑁 )
)︂

→ 0. (23)

Lemma 12 (in Appendix A.1) tells us that for any 𝑎 > 1+𝜈−1, with 𝜈 the constant of Assumption B,
we have Π𝐻(max𝑖≤𝑅 1/𝑓𝜋(𝑋𝑖) > 𝑅𝑎) → 0 as 𝑅 → ∞. By stationarity of the process 𝑋, taking
𝑅 = |𝑆𝜅,𝑖| ≤ (2𝜅 log𝑁 + 1) we deduce that

Π𝐻

(︁
max
𝑛∈𝑆𝜅,𝑖

1
𝑓𝜋(𝑋𝑛) > (2𝜅 log𝑁 + 1)𝑎

)︁
→ 0.

Recalling that 𝜀′
𝑁/𝜀𝑁 > (log𝑁)𝑢, we see that (22) holds for all 𝜅 if 𝑢 > 𝑎. Next we apply Lemma 12

with 𝑅 = 𝑁 to see
Π𝐻

(︂
max
𝑛≤𝑁

(︁ 1
𝑓𝜋(𝑋𝑛)

)︁
> 𝑁𝑎

)︂
→ 0.

Noting that 𝜌−𝜅 log𝑁 = 𝑁𝜅 log(1/𝜌) and choosing 𝜅 > 𝑎(log 1/𝜌)−1 yields (23). This concludes the
proof that for some constant 𝑀 and each 𝑖 ≤ 𝑁 , Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝑀𝜀′

𝑁 ) → 0.
To see that max𝑖 Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′

𝑁 ) → 0, we note that by initially considering 𝜀′
𝑛 defined

for some 𝑢′ < 𝑢 we can remove the constant 𝑀 . Thanks to stationarity of the HMM 𝑋, we further
note that

max
𝑖≤𝑁

Π𝐻

(︁
max
𝑛∈𝑆𝜅,𝑖

1
𝑓𝜋(𝑋𝑛) > (2𝜅 log𝑁 + 1)𝑎

)︁
→ 0;

then, since the other terms in the calculations above do not depend on 𝑖, we deduce (20).
Finally, defining

𝛿𝑁 =
(︁

max
𝑖≤𝑁

Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′
𝑁 )

)︁1/2
,

we appeal to Markov’s inequality to see that

Π𝐻(#{𝑖 ≤ 𝑁 : |ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′
𝑁} > 𝑁𝛿𝑁 ) ≤ 1

𝑁𝛿𝑁

𝑁∑︁
𝑖=1

Π𝐻

(︀
|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′

𝑁

)︀
≤ 𝛿−1

𝑁 max
𝑖≤𝑁

Π𝐻(|ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′
𝑁 ) = 𝛿𝑁 ,
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which tends to zero, concluding the proof.

Proof [Proof of Theorem 2] Write 𝑡 = postFDR�̂� 𝜙 and recall we write 𝑆0 for the rejection set of
𝜙. We have, for any sequences of positive numbers 𝜀′

𝑁 and of events 𝐹𝑁 ,

|FDR𝐻(𝜙) − 𝐸𝐻𝑡| =
⃒⃒
𝐸𝑋∼Π𝐻

[postFDR𝐻(𝜙) − postFDR�̂�(𝜙)]
⃒⃒

≤ 𝐸𝐻

[︂∑︀𝑁
𝑖=1|ℓ𝑖(𝑋) − ℓ̂𝑖(𝑋)|1{𝑖 ∈ 𝑆0}

1 ∨ |𝑆0|

]︂
≤ 𝜀′

𝑁 + Π𝐻(𝐹 𝑐𝑁 ) + 𝐸𝐻

[︁
1𝐹𝑁

∑︀𝑁
𝑖=1 1{|ℓ𝑖(𝑋) − ℓ̂𝑖(𝑋)| > 𝜀′

𝑁}
1 ∨ |𝑆0|

]︁
,

where we have used that |ℓ𝑖(𝑋) − ℓ̂𝑖(𝑋)| ≤ 1 for all 𝑖. Lemma 13 in Appendix A.1 shows that
𝐸𝐻 [𝑡] → min(𝑡, 𝜋0), so that it is enough to show the right side tends to zero for suitable 𝜀′

𝑁 and 𝐹𝑁 .
Lemma 14 tells us that Π𝐻(|𝑆0| > 𝑎𝑁) → 1 for some 𝑎 > 0. Combining with Lemma 9 by a

union bound, we deduce that for suitably chosen 𝜀′
𝑁 → 0, 𝛿𝑁 → 0 and 𝑎 > 0, we have Π𝐻(𝐹 𝑐𝑁 ) → 0

if we define
𝐹𝑁 =

{︀
#{𝑖 ≤ 𝑁 : |ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′

𝑁} ≤ 𝑁𝛿𝑁
}︀

∩
{︀

|𝑆0| > 𝑎𝑁
}︀
.

Then
𝐸𝐻

[︁
1𝐹𝑁

∑︀𝑁
𝑖=1 1{|ℓ𝑖(𝑋) − ℓ̂𝑖(𝑋)| > 𝜀′

𝑁}
1 ∨ |𝑆0|

]︁
≤ 𝑁𝛿𝑁

𝑎𝑁
→ 0,

yielding the result.

The following lemma, mentioned already in the sketch proof in Section 2.2, will help us in proving
Theorem 3.

Lemma 10. Under the assumptions of Theorem 3, define 𝜆* ∈ (𝑡, 1] implicitly by

𝐸𝐻 [ℓ∞
𝑖 (𝑋) | ℓ∞

𝑖 (𝑋) < 𝜆*] = min(𝑡, 𝜋0),

where ℓ∞
𝑖 is as in (19) (by stationarity the conditional expectation does not depend on 𝑖).

Such a 𝜆* exists; it satisfies, for 𝜀 > 0,

𝐸𝐻 [ℓ∞
𝑖 (𝑋) | ℓ∞

𝑖 (𝑋) < 𝜆* − 𝜀] < min(𝑡, 𝜋0),
𝐸𝐻 [ℓ∞

𝑖 (𝑋) | ℓ∞
𝑖 (𝑋) < 𝜆* + 𝜀] > 𝑡 if 𝑡 < 𝜋0;

and we have
�̂� → 𝜆* in probability as 𝑁 → ∞. (24)

Proof Lemma 17 (in Appendix A.2) tells us that under the assumptions of Theorem 3, the dis-
tribution function of ℓ∞

𝑖 is continuous and strictly increasing. Lemma 18 then tells us that the
same is true of the map 𝜆 ↦→ 𝐸𝐻 [ℓ∞

𝑖 | ℓ∞
𝑖 < 𝜆], and that 𝐸𝐻 [ℓ∞

𝑖 | ℓ∞
𝑖 < 𝑡] < 𝑡. Noting also that

𝐸𝐻 [ℓ∞
𝑖 | ℓ∞

𝑖 < 1] = 𝐸𝐻 [ℓ∞
𝑖 ] = 𝜋0 (since ℓ∞

𝑖 < 1 with probability 1), we deduce the existence of a
unique solution 𝜆* ∈ (𝑡, 1] by the intermediate value theorem. Strict monotonicity of the conditional
expectation implies the claimed inequalities when conditioning on ℓ∞

𝑖 < 𝜆* − 𝜀 and on ℓ∞
𝑖 < 𝜆* + 𝜀.

For the convergence in probability, we show for 𝜀 > 0 arbitrary that with probability tending to
1 we have postFDR�̂�(𝜙𝜆*−𝜀,�̂�) < 𝑡. We omit the almost identical proof that for 𝑡 < 𝜋0 we have
postFDR�̂�(𝜙𝜆*+𝜀,�̂�) > 𝑡. From these two bounds one deduces that �̂� ∈ (𝜆* − 𝜀, 𝜆* + 𝜀), implying
(24).
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By Lemma 19, there exist 𝜉𝑁 , 𝛿𝑁 → 0, such that with probability tending to 1

#{𝑖 : 1 ≤ 𝑖 ≤ 𝑁, |ℓ̂𝑖(𝑋) − ℓ∞
𝑖 (𝑋)| > 𝜉𝑁} ≤ 𝑁𝛿𝑁 ,

and we observe that

postFDR�̂�(𝜙𝜆*−𝜀,�̂�) =
∑︀
ℓ̂𝑖1{ℓ̂𝑖 < 𝜆* − 𝜀}

1 ∨ (
∑︀

1{ℓ̂𝑖 < 𝜆* − 𝜀})

≤
∑︀
ℓ̂𝑖1{ℓ̂𝑖 < 𝜆* − 𝜀, |ℓ̂𝑖 − ℓ∞

𝑖 | ≤ 𝜉𝑁}
1 ∨ (

∑︀
1{ℓ̂𝑖 < 𝜆* − 𝜀, |ℓ̂𝑖 − ℓ∞

𝑖 | ≤ 𝜉𝑁})
+ #{𝑖 : |ℓ̂𝑖 − ℓ∞

𝑖 | > 𝜉𝑁}
#{𝑖 : ℓ̂𝑖 < 𝜆* − 𝜀}

≤
∑︀
ℓ∞
𝑖 1{ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉𝑁}
1 ∨ (

∑︀
1{ℓ∞

𝑖 < 𝜆* − 𝜀− 𝜉𝑁 , |ℓ̂𝑖 − ℓ∞
𝑖 | ≤ 𝜉𝑁}

+ 𝜉𝑁 + #{𝑖 : |ℓ̂𝑖 − ℓ∞
𝑖 | > 𝜉𝑁}

#{𝑖 : ℓ̂𝑖 < 𝜆* − 𝜀}
.

Since 𝜆* > 𝑡 (the proof of) Lemma 14 implies that for some 𝑐 > 0 and for 𝜀 > 0 small enough,
#{𝑖 : ℓ̂𝑖 < 𝜆* − 𝜀} > 𝑐𝑁 with probability tending to 1. We also lower bound the denominator in the
first term of the final line by #{𝑖 : ℓ∞

𝑖 < 𝜆*−𝜀−𝜉𝑁}−#{𝑖 : |ℓ̂𝑖−ℓ∞
𝑖 | > 𝜉𝑁}; for 𝜀, 𝜉𝑁 , 𝑐′ small enough

note that #{𝑖 : ℓ∞
𝑖 < 𝜆* − 𝜀− 𝜉𝑁} > 𝑐′𝑁 with probability tending to 1 by ergodicity (i.e. applying

Lemma 20 with 𝑔(𝑥) = 1{𝑥 < 𝜆* − 𝜀− 𝜉} for some 𝜉 > 𝜉𝑁 ), using that Π𝐻(ℓ∞
𝑖 < 𝜆* − 𝜀− 𝜉𝑁 ) > 0.

It follows that for an event 𝐶𝑁 of probability tending to 1, postFDR�̂�(𝜙𝜆*−𝜀,�̂�) is upper bounded
by

1𝐶𝑐
𝑁

+
∑︀
ℓ∞
𝑖 1{ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉𝑁}∑︀
1{ℓ∞

𝑖 < 𝜆* − 𝜀− 𝜉𝑁}

(︁
1 +𝑂

(︁ #{𝑖 : |ℓ̂𝑖 − ℓ∞
𝑖 | > 𝜉𝑁}

#{𝑖 : ℓ∞
𝑖 < 𝜆* − 𝜀− 𝜉𝑁}

)︁)︁
+ 𝜉𝑁 + 𝛿𝑁/𝑐

≤
∑︀
ℓ∞
𝑖 1{ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉𝑁}∑︀
1{ℓ∞

𝑖 < 𝜆* − 𝜀− 𝜉𝑁}
+ 𝑜𝑝(1).

Again using the ergodicity result Lemma 20, we have that, for fixed 𝜉 > 0,

1
𝑁

𝑁∑︁
𝑖=1

ℓ∞
𝑖 1{ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉} → 𝐸𝐻 [ℓ∞
𝑖 1{ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉}] in probability,

1
𝑁

𝑁∑︁
𝑖=1

1{ℓ∞
𝑖 < 𝜆* − 𝜀− 𝜉} → Π𝐻(ℓ∞

𝑖 < 𝜆* − 𝜀− 𝜉) > 0 in probability,

so that we may apply Slutsky’s lemma (e.g. van der Vaart, 1998, Lemma 2.8) to deduce that for 𝑁
large enough ∑︀𝑁

𝑖=1 ℓ
∞
𝑖 1{ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉𝑁}∑︀𝑁
𝑖=1 1{ℓ∞

𝑖 < 𝜆* − 𝜀− 𝜉𝑁}
≤

∑︀𝑁
𝑖=1 ℓ

∞
𝑖 1{ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉}∑︀𝑁
𝑖=1 1{ℓ∞

𝑖 < 𝜆* − 𝜀− 𝜉}

≤ 𝐸𝐻 [ℓ∞
𝑖 1{ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉}]
Π𝐻(ℓ∞

𝑖 < 𝜆* − 𝜀− 𝜉) + 𝑜𝑝(1).

Finally we note that

𝐸𝐻 [ℓ∞
𝑖 1{ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉}]
Π𝐻(ℓ∞

𝑖 < 𝜆* − 𝜀− 𝜉) = 𝐸𝐻
[︀
ℓ∞
𝑖 | ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉
]︀Π𝐻(ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉)
Π𝐻(ℓ∞

𝑖 < 𝜆* − 𝜀− 𝜉) .

Uniformly in 𝜉 satisfying 0 < 𝜉 < 𝜀/2, we have by monotonicity

𝐸𝐻 [ℓ∞
𝑖 | ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉] ≤ 𝐸𝐻 [ℓ∞
𝑖 | ℓ∞

𝑖 < 𝜆* − 𝜀/2] < min(𝑡, 𝜋0).
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Observe also that Π𝐻(𝜆* −𝜀−𝜉 ≤ ℓ∞
𝑖 < 𝜆* −𝜀+𝜉) → 0 as 𝜉 → 0 by the continuity of the distribution

function of ℓ∞
𝑖 , while Π𝐻(ℓ∞

𝑖 < 𝜆* − 𝜀− 𝜉) is bounded away from zero for 𝜆* − 𝜀− 𝜉 bounded away
from zero. It follows that by choosing 𝜉 = 𝜉(𝜀) small enough we may ensure that

𝐸𝐻 [ℓ∞
𝑖 | ℓ∞

𝑖 < 𝜆* − 𝜀+ 𝜉]Π𝐻(ℓ∞
𝑖 < 𝜆* − 𝜀+ 𝜉)

Π𝐻(ℓ∞
𝑖 < 𝜆* − 𝜀− 𝜉) < min(𝑡, 𝜋0).

We conclude, as claimed, that postFDR�̂�(𝜙𝜆*−𝜀,�̂�) < min(𝑡, 𝜋0) with probability tending to 1.

Proof [Proof of Theorem 3] Define 𝜆* as in Lemma 10. In the case 𝜆* = 1, one shows that 𝜙 rejects
all but 𝑜𝑝(𝑁) of the hypotheses. It follows that, asymptotically, its mTDR is close to that of the
procedure which rejects all null hypotheses, which trivially has the best mTDR of any procedure.
We omit the proof details in this case and henceforth assume that 𝜆* < 1, or equivalently (in view
of Lemma 10) that 𝑡 < 𝜋0.

We compare 𝜙 to the ‘oracle’ procedure 𝜙𝜆*,𝐻 , which we will argue has optimal multiple testing
properties. For 𝜀𝑁 > 0 we may decompose

1{ℓ𝑖 < 𝜆*} ≤ 1{𝜆* − 𝜀𝑁 ≤ ℓ𝑖 < 𝜆*} + 1{ℓ̂𝑖 < �̂�} + 1{�̂� < 𝜆* − 𝜀𝑁/2} + 1{ℓ̂𝑖 − ℓ𝑖 > 𝜀𝑁/2}.

Lemma 10 tells us that �̂� tends to 𝜆* in probability, so that Π𝐻(�̂� < 𝜆* − 𝜀𝑁/2) → 0 for 𝜀𝑁 tending
to zero slowly enough, and Lemma 9 tells us that #{𝑖 : |ℓ̂𝑖 − ℓ𝑖| > 𝜀𝑁/2}/𝑁 → 0 in probability,
again for 𝜀𝑁 tending to zero slowly enough. Lemma 19 tells us that there exist 𝜉𝑁 → 0 such that
#{𝑖 : |ℓ𝑖 − ℓ∞

𝑖 | > 𝜉𝑁}/𝑁 → 0 in probability, and Lemma 17 tells us that under the conditions of
Theorem 3 the distribution function of ℓ∞

𝑖 is continuous, so that as 𝑁 → ∞

𝐸𝐻#{𝑖 : 𝜆* − 𝜀𝑁 ≤ ℓ𝑖 < 𝜆*}/𝑁 ≤ 𝐸𝐻#{𝑖 : |ℓ𝑖 − ℓ∞
𝑖 | > 𝜉𝑁}/𝑁 + Π𝐻(𝜆* − 𝜀𝑁 − 𝜉𝑁 ≤ ℓ∞

𝑖 < 𝜆* + 𝜉𝑁 )
→ 0.

We deduce that

𝐸𝐻 [#{𝑖 : 𝜃𝑖 = 1, ℓ̂𝑖 < �̂�}] ≥ 𝐸𝐻 [#{𝑖 : 𝜃𝑖 = 1, ℓ𝑖 < 𝜆*}] − 𝑜(𝑁),

so that, dividing each side by 𝐸𝐻#{𝑖 : 𝜃𝑖 = 1} = 𝑁𝜋1,

mTDR𝐻(𝜙) ≥ mTDR𝐻(𝜙𝜆*,𝐻) − 𝑜(1).

Next we consider the mFDR. A similar decomposition to those above yields that

𝐸𝐻 [#{𝑖 : 𝜃𝑖 = 0, ℓ̂𝑖 < �̂�}] ≤ 𝐸𝐻 [#{𝑖 : 𝜃𝑖 = 0, ℓ𝑖 < 𝜆*}] + 𝑜(𝑁),
𝐸𝐻 [#{𝑖 : ℓ̂𝑖 < �̂�}] ≥ 𝐸𝐻 [#{𝑖 : ℓ𝑖 < 𝜆*}] − 𝑜(𝑁).

One also has (by comparison to ℓ∞
𝑖 as above, or by adapting the proof of Lemma 14) that 𝐸𝐻#{𝑖 :

ℓ𝑖 < 𝜆* + 𝜀𝑁} ≥ 𝑐𝑁 for some 𝑐 > 0, so that a Taylor expansion yields

mFDR𝐻(𝜙) ≤ 𝐸𝐻#{𝑖 : 𝜃𝑖 = 0, ℓ𝑖 < 𝜆*} + 𝑜(𝑁)
𝐸𝐻#{𝑖 : ℓ𝑖 < 𝜆*} − 𝑜(𝑁) ≤ mFDR𝐻(𝜙𝜆*,𝐻) + 𝑜(1).

Define 𝑔(𝑥) = sup{mTDR𝐻(𝜓) : mFDR𝐻(𝜓) ≤ 𝑥}. Trivially mTDR𝐻(𝜙) ≤ 𝑔(mFDR𝐻(𝜙)),
and hence the following chain of equalities (justified below) proves the first claim of the theorem:

mTDR𝐻(𝜙) ≥ mTDR𝐻(𝜙𝜆*,𝐻) − 𝑜(1)
≥ 𝑔

(︀
mFDR𝐻(𝜙𝜆*,𝐻)

)︀
− 𝑜(1)

≥ 𝑔
(︀
mFDR𝐻(𝜙) − 𝑜(1)

)︀
− 𝑜(1)

≥ 𝑔
(︀
mFDR𝐻(𝜙)

)︀
− 𝑜(1).
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The first line was proved above. The second is a consequence of an optimality property for the class
(𝜙𝜆,𝐻 : 𝜆 ∈ [0, 1]) given by Lemma 22 in Appendix A.2. The third line then follows from what was
proved above, and the final line follows by a continuity-type result for 𝑔 given by Lemma 23.

It remains to prove the second claim of the theorem. This will follow, with the same arguments
as above, from proving that mFDR𝐻(𝜙𝜆*,𝐻) ≥ 𝑡 − 𝑜(1). Observe that, using Lemma 19 as above,
one can show

𝐸𝐻 [
∑︁
𝑖≤𝑁

ℓ𝑖1{ℓ𝑖 < 𝜆*}] = 𝐸𝐻
∑︁
𝑖≤𝑁

[ℓ∞
𝑖 1{ℓ∞

𝑖 < 𝜆*}] + 𝑜(𝑁)

𝐸𝐻 [
∑︁
𝑖≤𝑁

1{ℓ𝑖 < 𝜆*}] = 𝐸𝐻 [
∑︁
𝑖≤𝑁

1{ℓ∞
𝑖 < 𝜆*}] + 𝑜(𝑁).

Stationarity of the HMM implies that

𝐸𝐻 [
∑︁
𝑖≤𝑁

ℓ∞
𝑖 1{ℓ∞

𝑖 < 𝜆*}] = 𝑁𝐸𝐻 [ℓ∞
1 | ℓ1 <

∞ 𝜆*]Π𝐻(ℓ∞
1 < 𝜆*),

𝐸𝐻 [
∑︁
𝑖≤𝑁

1{ℓ∞
𝑖 < 𝜆}] = 𝑁Π𝐻(ℓ∞

1 < 𝜆*),

and hence by definition of 𝜆* (recall we have assumed 𝑡 < 𝜋0)

𝐸𝐻
∑︁
𝑖≤𝑁

(ℓ∞
𝑖 − 𝑡)1{ℓ∞

𝑖 < 𝜆*} = 0.

Returning to the ℓ-values themselves and using also Lemma 17 to see that Π𝐻(ℓ∞
1 < 𝜆*) > 0, we

deduce that

𝑁−1𝐸𝐻 [
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑡)1{ℓ𝑖 < 𝜆*}] → 0,

𝑁−1𝐸𝐻
∑︁
𝑖≤𝑁

1{ℓ𝑖 < 𝜆*} → Π𝐻(ℓ∞
1 < 𝜆*) > 0,

and we may rearrange to see that mFDR𝐻(𝜙𝜆*,𝐻) ≥ 𝑡− 𝑜(1).

5.2 Proofs: Supremum Norm Estimation of HMM Parameters

We construct the estimators of Theorem 5 using a spectral kernel density estimation method. As
usual, this involves approximating 𝑓 by its convolution with a ‘mollifier’ 𝐾𝐿 and estimating this
convolution; the level 𝐿 = 𝐿𝑛 governs how close the kernel 𝐾𝐿 is to a Dirac mass and hence the
tradeoff between the bias and the variance.

Let 𝐾 be a bounded Lipschitz-continuous function, supported in [−1, 1], such that if we define

𝐾𝐿(𝑥, 𝑦) = 2𝐿𝐾(2𝐿(𝑥− 𝑦)),

𝐾𝐿[𝑓 ](𝑥) =
∫︁
𝐾𝐿(𝑥, 𝑦)𝑓(𝑦) d𝑦,

(25)

then we have, for any 𝑓 ∈ 𝐶𝑠(R),

‖𝑓 −𝐾𝐿[𝑓 ]‖∞ ≤ 𝐶‖𝑓‖𝐶𝑠2−𝐿𝑠. (26)

Note that such a function, a ‘bounded convolution kernel of order 𝑠’, exists, see Tsybakov (2009) (in
particular, to ensure 𝐾 is Lipschitz, one builds the kernel using a Gegenbauer basis with parameter
𝛼 > 1 as in Section 1.2.2 thereof). We also note here that for some 𝐶 = 𝐶(ℋ),

max
𝑗

‖𝐾𝐿[𝑓𝑗 ]‖∞ ≤ 2‖𝐾‖∞ max
𝑗

‖𝑓𝑗‖∞ ≤ 𝐶 (27)
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since
∫︀ 1

−1|𝐾(𝑥)| d𝑥 ≤ 2‖𝐾‖∞. [Recall that a constant 𝐶 = 𝐶(ℋ) depends only on certain bounds
for the parameter 𝐻 = (𝑄, 𝜋, 𝑓1, . . . , 𝑓𝐽) as described in Section 4.3. Recall also that, as with the
above, we allow such a constant to also depend on the kernel 𝐾 since this kernel can be chosen
independent of 𝐻, and similarly it may depend on the choice of functions ℎ1, . . . , ℎ𝐿0 and of sets
D𝑁 in Algorithm 1 below.]

To fix ideas, consider the case 𝐽 = 2, suppose 𝑠 = 1, and for simplicity of exposition imagine that
we do not require 𝐾 to be Lipschitz. Then it is straightforward to show that 𝐾(𝑥) = (1/2)1{−1 ≤
𝑥 ≤ 1} defines a suitable kernel, satisfying (26) with 𝐶 = 1, for which 𝐾𝐿[𝑓 ](𝑥) =

∫︀ 1
−1(1/2)𝑓(𝑥 +

2−𝐿𝑧) d𝑧 is a local average of 𝑓 . For kernel density estimation with data 𝑋𝑖
𝑖𝑖𝑑∼ 𝑓 , 𝑖 ≤ 𝑁 we would

now estimate 𝐾𝐿[𝑓 ](𝑥), and hence 𝑓(𝑥) itself, by (1/2𝑁)
∑︀𝑁
𝑖=1 1{𝑥−2−𝐿 ≤ 𝑋𝑖 ≤ 𝑥+2−𝐿}. Here we

instead adapt the spectral method from Anandkumar et al. (2012) and Lehéricy (2018) to perform
this final estimation step.

Again to fix ideas, suppose that 𝑃𝑋∼𝑓0(𝑋 ∈ [−1, 1]) ̸= 𝑃𝑋∼𝑓1(𝑋 ∈ [−1, 1]). We may straightfor-
wardly estimate empirically the joint distributions, starting from stationarity, of 𝑋1, 𝑋2, 𝑋3. Since
𝑋1 and 𝑋3 are independent conditional on 𝑋2, it is convenient to focus on the distribution of 𝑋2.
Define 2 × 2 matrices 𝑀𝑥, 𝑥 ∈ R and 𝑃 as follows.

𝑀𝑥 = 𝐸𝐻

(︂
𝐾𝐿(𝑥,𝑋2) 𝐾𝐿(𝑥,𝑋2)1{𝑋3 ∈ [−1, 1]}

𝐾𝐿(𝑥,𝑋2)1{𝑋1 ∈ [−1, 1]} 𝐾𝐿(𝑥,𝑋2)1{𝑋1 ∈ [−1, 1], 𝑋3 ∈ [−1, 1]}

)︂
,

𝑃 = 𝐸𝐻

(︂
1 1{𝑋3 ∈ [−1, 1]}

1{𝑋1 ∈ [−1, 1]} 1{𝑋1 ∈ [−1, 1], 𝑋3 ∈ [−1, 1]}

)︂
.

It is clear that 𝑀𝑥, 𝑃 can be estimated by empirical averages. Since 𝑃𝑋∼𝑓0(𝑋 ∈ [−1, 1]) ̸=
𝑃𝑋∼𝑓1(𝑋 ∈ [−1, 1]) one can show that the events 𝑋1 ∈ [−1, 1], 𝑋3 ∈ [−1, 1] are not indepen-
dent, hence that 𝑃 is invertible, so that one may define the matrix 𝐵𝑥 = 𝑃−1𝑀𝑥. Ideas found in
Anandkumar et al. (2012) and Lehéricy (2018) (see also the coming lemma) then reveal that the
𝐵𝑥, 𝑥 ∈ R are simultaneously diagonalisable, with eigenvalues 𝐾𝐿[𝑓𝑗 ](𝑥), 𝑗 = 0, 1. The pairs of
function values {𝑓0(𝑥), 𝑓1(𝑥)} can therefore be estimated by eigenvalues of an empirical version of
𝐵𝑥 up to bias terms |𝑓𝑗(𝑥) −

∫︀ 1
−1(1/2)𝑓𝑗(𝑥 + 2−𝐿)| d𝑧 ≤ 2−𝐿‖𝑓𝑗‖𝐶1 which are small if 𝐿 = 𝐿𝑁 is

large, and variance terms whose magnitude depends on the errors in the empirical approximation
of 𝑃,𝑀𝑥 and how those propagate to the eigenvalues; these variance terms vanish as 𝑁 tends to
infinity provided 𝐿 = 𝐿𝑁 does not grow too fast. Finally, choosing a single matrix to simultane-
ously approximately diagonalise all 𝐵𝑥 allows us to avoid any identifiability issues: if we instead
diagonalised each empirical version of 𝐵𝑥 individually, we would arrive at a uncountable collection
{{𝜆1(𝑥), 𝜆2(𝑥)} : 𝑥 ∈ R} of pairs of eigenvalues which we would not necessarily know how to group
into a single pair of estimators 𝑓0, 𝑓1 consistent up to a permutation, but using a single matrix to
approximately diagonalise bypasses this issue.

The following lemma, which adapts ideas found in Anandkumar et al. (2012) and Lehéricy (2018),
proves the simultaneous diagonalisability underpinning this spectral method. We write in a more
general setting than the description above, allowing once more for 𝐽 ≥ 2. For 𝑃 to be invertible it
then becomes essential to consider multiple functions ℎ1, . . . , ℎ𝐿0 in place of the two functions 𝑥 ↦→ 1
and 𝑥 ↦→ 1{−1 ≤ 𝑥 ≤ 1} used in the description above: in principle 𝐿0 = 𝐽 is sufficient (see the
remarks after Algorithm 1), but we allow for 𝐿0 > 𝐽 , which requires the introduction of a matrix 𝑉
to reduce the dimensions of 𝑀𝑥 and 𝑃 to 𝐽 × 𝐽 .
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Lemma 11. For 𝐿0 ∈ N, let ℎ1, . . . ℎ𝐿0 be arbitrary functions. Define, for data 𝑋 from the HMM
(1),

𝑀𝑥 ≡ 𝑀𝑥,𝐿0,𝐿 := (𝐸𝐻 [ℎ𝑙(𝑋1)𝐾𝐿(𝑥,𝑋2)ℎ𝑚(𝑋3)]𝑙,𝑚≤𝐿0) ∈ R𝐿0×𝐿0 , (28)
𝑃 ≡ 𝑃𝐿0 := (𝐸𝐻 [ℎ𝑙(𝑋1)ℎ𝑚(𝑋3)]𝑙,𝑚≤𝐿0) ∈ R𝐿0×𝐿0 , (29)
𝐷𝑥 ≡ 𝐷𝑥,𝐿 := diag

(︀
𝐾𝐿[𝑓𝑗 ](𝑥)𝑗≤𝐽

)︀
∈ R𝐽×𝐽 , (30)

𝑂 ≡ 𝑂𝐿0 := (𝐸𝐻 [ℎ𝑙(𝑋1) | 𝜃1 = 𝑗]𝑙≤𝐿0,𝑗≤𝐽) ∈ R𝐿0×𝐽 . (31)

Then

𝑀𝑥 = 𝑂 diag(𝜋)𝑄𝐷𝑥𝑄𝑂ᵀ, and
𝑃 = 𝑂 diag(𝜋)𝑄2𝑂ᵀ.

If 𝑉 ∈ R𝐿0×𝐽 is such that 𝑉 ᵀ𝑃𝑉 is invertible (it suffices to assume 𝑃𝑉 has rank 𝐽 , which holds
under the assumption that 𝑃 has rank 𝐽 if the columns of 𝑉 consist of orthonormal right singular
vectors of 𝑃 , or any other orthonormal basis of the column space of 𝑃 ) then the matrix

𝐵𝑥 ≡ 𝐵𝑥,𝐿0,𝐿 := (𝑉 ᵀ𝑃𝑉 )−1𝑉 ᵀ𝑀𝑥𝑉 (32)

satisfies
𝐵𝑥 = (𝑄𝑂ᵀ𝑉 )−1𝐷𝑥(𝑄𝑂ᵀ𝑉 ), (33)

so that the matrices (𝐵𝑥 : 𝑥 ∈ R) are diagonalisable simultaneously, with 𝐵𝑥 having eigenvalues
(𝐷𝑥

𝑗 : 𝑗 ≤ 𝐽) = (𝐾𝐿[𝑓𝑗 ](𝑥) : 𝑗 ≤ 𝐽).

Proof Conditioning on (𝜃1, 𝜃2, 𝜃3), we see

𝑀𝑥
𝑙,𝑚 =

∑︁
𝑎,𝑏,𝑐

Π𝐻(𝜃1 = 𝑎, 𝜃2 = 𝑏, 𝜃3 = 𝑐)𝐸𝐻 [ℎ𝑙(𝑋1)𝐾𝐿(𝑥,𝑋2)ℎ𝑚(𝑋3) | 𝜃1 = 𝑎, 𝜃2 = 𝑏, 𝜃3 = 𝑐]

=
∑︁
𝑎,𝑏,𝑐

𝜋𝑎𝑄𝑎,𝑏𝑄𝑏,𝑐𝑂𝑙,𝑎𝑂𝑚,𝑐𝐸𝑋∼𝑓𝑏
[𝐾𝐿(𝑥,𝑋)]

= (𝑂 diag(𝜋)𝑄𝐷𝑥𝑄𝑂ᵀ)𝑙,𝑚,

and similarly we have

𝑃 = (
∑︁
𝑎,𝑏,𝑐

𝜋𝑎𝑄𝑎,𝑏𝑄𝑏,𝑐𝑂𝑙,𝑎𝑂𝑚,𝑐)𝑙,𝑚 = 𝑂 diag(𝜋)𝑄2𝑂ᵀ.

Next, note that if 𝑉 ᵀ𝑃𝑉 is invertible then so is 𝑄𝑂ᵀ𝑉 (since 𝑉 ᵀ𝑃𝑉 = 𝑉 ᵀ𝑂 diag(𝜋)𝑄(𝑄𝑂ᵀ𝑉 ),
and a product 𝐴𝐵 of square matrices is invertible if and only if each of 𝐴 and 𝐵 are). The result
(33) then follows from the expressions for 𝑃 and 𝑀𝑥.
As discussed prior to the lemma, this result suggests that one estimates the eigenvalues (𝐾𝐿[𝑓𝑗 ](𝑥) :
𝑗 ≤ 𝐽) of 𝐵𝑥 (and hence, using (26), the function values 𝑓𝑗(𝑥), 𝑗 ≤ 𝐽 themselves) by using empirical
versions of 𝑉 , 𝑃 and 𝑀𝑥, an idea which is implemented in the following algorithm. The algorithm
requires as inputs functions ℎ1, . . . ℎ𝐿0 and sets D𝑁 with certain properties; the existence of suitable
inputs is discussed in the remarks thereafter. We introduce notation for the “eigen-separation” of a
diagonalisable matrix 𝐵 ∈ R𝐽×𝐽 with eigenvalues 𝜆1, . . . , 𝜆𝐽 :

sep(𝐵) = min
𝑖 ̸=𝑗

|𝜆𝑖 − 𝜆𝑗 |. (34)

Recall that 𝜎𝐽(𝐵) denotes the 𝐽th largest singular value of 𝐵.
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Algorithm 1 Kernel density estimator
input

• Data (𝑋𝑛 : 𝑛 ≤ 𝑁 + 2) drawn from the HMM (1).
• Functions ℎ1, . . . ℎ𝐿0 , uniformly bounded, such that
𝑂 = (𝐸𝐻 [ℎ𝑙(𝑋1) | 𝜃1 = 𝑗]𝑙≤𝐿0,𝑗≤𝐽) is of rank 𝐽 , with 𝜎𝐽(𝑂) bounded
away from 0 uniformly in 𝑁 , at least for 𝑁 large enough.

• Finite sets D𝑁 ⊆ {(𝑎, 𝑢) ∈ R𝐽(𝐽−1)/2 × R𝐽(𝐽−1)/2 :
∑︀

|𝑎𝑖| ≤ 1} such that
max(𝑎,𝑢)∈D𝑁

sep(𝐵𝑎,𝑢) is bounded away from 0 uniformly in 𝑁 , at least
for 𝑁 large enough, where 𝐵𝑎,𝑢 =

∑︀
𝑎𝑖𝐵

𝑢𝑖 for 𝐵𝑥 as in Lemma 11 for
some 𝑉 .

estimate the matrices 𝑃, (𝑀𝑥, 𝑥 ∈ R) of Lemma 11 by taking empirical averages: for
𝐿 such that 2𝐿 ≍ (𝑁/ log𝑁)1/(1+2𝑠), define

𝑃 = 𝑃𝐿0 = (𝑁−1
∑︁

𝑛≤𝑁
ℎ𝑙(𝑋𝑛)ℎ𝑚(𝑋𝑛+2))𝑙,𝑚≤𝐿0 ,

�̂�𝑥 = �̂�𝑥,𝐿0,𝐿 = (𝑁−1
∑︁

𝑛≤𝑁
ℎ𝑙(𝑋𝑛)𝐾𝐿(𝑥,𝑋𝑛+1)ℎ𝑚(𝑋𝑛+2))𝑙,𝑚≤𝐿0 .

Let 𝑉 = 𝑉 𝐿0 ∈ R𝐿0×𝐽 be a matrix of orthonormal right singular vectors of 𝑃
(fail if 𝑃 is of rank less than 𝐽).

set, for 𝑥 ∈ R and for 𝑎, 𝑢 ∈ R𝐽(𝐽−1)/2

�̂�𝑥 = �̂�𝑥,𝐿0,𝐿 := (𝑉 ᵀ𝑃𝑉 )−1𝑉 ᵀ�̂�𝑥𝑉 , �̂�𝑎,𝑢 :=
∑︁

𝑎𝑖�̂�
𝑢𝑖 .

choose �̂� of normalised columns diagonalising �̂��̂�,�̂�, where (�̂�, �̂�) ∈ argmaxD𝑁
sep(�̂�𝑎,𝑢) (fail if

�̂��̂�,�̂� is not diagonalisable).
output (𝑓𝑗 : 𝑗 ≤ 𝐽), where, defining

𝑓𝐿𝑗 (𝑥) = (�̂�−1�̂�𝑥�̂�)𝑗𝑗 ,

we set

𝑓𝑗(𝑥) =
{︃
𝑓𝐿𝑗 (𝑥) |𝑓𝐿𝑗 (𝑥)| ≤ 𝑁𝛼

𝑁𝛼 sign(𝑓𝐿𝑗 (𝑥)) otherwise,

for 𝛼 > 0 arbitrary. [The in-probability result (17) also holds for 𝑓𝐿𝑗 .]

Remarks. i. For notational convenience, we have considered observing𝑁+2 data points𝑋1, . . . , 𝑋𝑁+2
so that we can form 𝑁 triples of consecutive observations; the proofs go through for the original
𝑁 data points by adjusting constants.

ii. Under Assumption D, ℎ1, . . . ℎ𝐿0 can be chosen without knowledge of the parameters, for
example by letting 𝐿0 tend to infinity arbitrarily slowly and taking the ℎ𝑙 to be indicator
functions of the first 𝐿0 of a countable collection of sets generating the Borel 𝜎-algebra (see
Lemma 24, in Appendix B.1). In principle, 𝐿0 = 𝐽 is sufficient to achieve 𝑂 of rank 𝐽 , but
without further assumptions, the appropriate functions ℎ1, . . . ℎ𝐽 will necessarily depend on
the unknown parameters. In the case 𝐽 = 2, it suffices to assume in addition to the other
conditions of Theorem 5 that 𝑃𝑋∼𝑓1(𝑋 ∈ 𝐴) ̸= 𝑃𝑋∼𝑓2(𝑋 ∈ 𝐴) for some known 𝐴, by taking
ℎ1 = 1, ℎ2 = 1𝐴 (as in the example given before Lemma 11, where we took 𝐴 = [−1, 1]).

iii. Lemma 11 implies that the condition on D𝑁 is independent of 𝑉 provided 𝑉 is such that
𝑉 ᵀ𝑃𝑉 is invertible. Lemma 26, the proof of which uses only that 𝑓1, . . . , 𝑓𝐽 are distinct,
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shows that the choice 𝑉 = 𝑉 is suitable with probability tending to 1 and that D𝑁 can be
chosen independent of the parameters, for example by taking a cartesian product of increasing
dyadic sets of rationals. In the case 𝐽 = 2, the description of the algorithm simplifies, in that
necessarily �̂� = 1 ∈ R1. A corresponding simplification also works in the general 𝐽 state case
if one is willing to assume that there exists 𝑥0 ∈ R for which the values 𝑓𝑗(𝑥0), 𝑗 ≤ 𝐽 are all
distinct, in that one may define �̂� as diagonalising �̂��̂� where �̂� maximises sep(�̂�𝑥) over 𝑥 in
(some finite increasing sieve in) R.

iv. Lemmas 25 and 27 prove that, with probability tending to 1, 𝑃 has rank 𝐽 and �̂��̂�,�̂� is
diagonalisable, so that the outputs 𝑓𝑗 are well-defined.

v. Note that the truncation step in defining 𝑓𝑗 is not needed for bounds in probability. For bounds
in expectation, if we have an a priori bound ‖𝑓𝑗‖∞ ≤ 𝐶𝑗 , then we may define 𝑓𝑗 by truncating
𝑓𝑗 at ±𝐶𝑗 rather than at 𝑁𝛼. The choice to truncate at 𝑁𝛼 (with 𝛼 arbitrary) avoids poor
performance in expectation which could result from the errors being excessively large on an
event of small probability. Since the bounds in probability hold without this truncation, we
think in practice not truncating at all would be fine.

vi. Since the 𝑓𝑗 are assumed Hölder continuous, and satisfy tail bounds, one could in fact calculate
𝑓𝑗(𝑥) only for 𝑥 in some finite set, then construct estimators 𝑓𝑗 via interpolation, in order to
ease computation.

Proof [Proof of Theorem 5] Define 𝑀𝑥, 𝑃,𝐷𝑥, 𝑂 as in Lemma 11 and construct 𝑓𝑗 , 𝑓𝐿𝑗 using Algo-
rithm 1. Continuity of the 𝑓𝑗 , 𝑓𝑗 follows from continuity of the map 𝑥 ↦→ �̂�𝑥, which in turn follows
from that of the map 𝑥 ↦→ �̂�𝑥, proved in Lemma 25. Observe also that ‖𝑓𝑗‖∞ < ∞ for all 𝑗 ≤ 𝐽 ,
so that for any 𝜏 , for 𝑁 large enough that ‖𝑓𝑗‖∞ ≤ 𝑁𝑎 we have

‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ ≤ ‖𝑓𝐿𝑗 − 𝑓𝜏(𝑗)‖∞,

hence for the in-probability result it suffices to prove (17) with 𝑓𝑗 = 𝑓𝐿𝑗 in place of 𝑓𝑗 .
Lemma 25 tells us that 𝑃 , �̂�𝑋 estimate 𝑃,𝑀𝑥 at the rate 𝑟𝑁 and consequently both that the

choice 𝑉 = 𝑉 is suitable in (32), and that the 𝐵 so constructed is close to �̂�. Matrix perturbation
arguments then yield the result.

Precisely, for a constant 𝑐 > 0, define the event

𝒜 = {‖𝑃 − 𝑃‖ ≤ 𝑐𝐿0𝑟𝑁 , ‖�̂�𝑥 −𝑀𝑥‖ ≤ 𝑐𝐿2
0𝑟𝑁 ∀𝑥 ∈ R}. (35)

This is indeed a measurable event, and for suitable 𝑐 = 𝑐(𝜅,ℋ) it has probability at least 1 −𝑁−𝜅,
by Lemma 25, which also tells us that 𝑉 ᵀ𝑃𝑉 is invertible on 𝒜 and that, defining

�̃�𝑥 := (𝑉 ᵀ𝑃𝑉 )−1𝑉 ᵀ𝑀𝑥𝑉 ,

we have, for some 𝐶 depending on ℋ and on the constant 𝑐 of event 𝒜,

1𝒜 sup
𝑥∈R

‖�̃�𝑥 − �̂�𝑥‖ ≤ 𝐶𝐿2
0𝑟𝑁 .

Lemma 11 tells us (on 𝒜) that �̃�𝑥 = (𝑄𝑂ᵀ𝑉 )−1𝐷𝑥𝑄𝑂ᵀ𝑉 , and we write �̃� for a matrix whose
columns are those of 𝑄𝑂ᵀ𝑉 but scaled to have unit Euclidean norm, which thus diagonalises �̃�𝑥 for
all 𝑥. By Lemma 32 (and the remark thereafter), we may assume there exists a permutation 𝜏 such
that ‖�̂�− �̃�𝜏‖ ≤ 𝐶𝐿

7/2
0 𝑟𝑁 on 𝒜, where �̃�𝜏 is obtained by permuting the columns of �̃� according to

𝜏 . Next we apply Lemma 33 with 𝒯 = R, 𝐴𝑥 = �̃�𝑥, 𝐴𝑥 = �̂�𝑥, 𝑅 = �̃�. Noting that ‖�̃�−1‖ ≤ 𝐶 ′𝐿
1/2
0

and 𝜅(�̃�) := ‖�̃�‖‖�̃�−1‖ ≤ 𝐶 ′𝐿0 for some constant 𝐶 ′ = 𝐶 ′(ℋ) (see Lemma 35b), and that the
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constant 𝜆max of the lemma is bounded by a constant depending only on ℋ (see (27)), we deduce
that

sup
𝑥

max
𝑗

|𝑓𝐿𝑗 (𝑥) −𝐾𝐿[𝑓𝜏(𝑗)](𝑥)| ≤ 𝑐′𝐿0[𝐿2
0𝑟𝑁 + 𝐿

1/2
0 𝐿

7/2
0 𝑟𝑁 ] ≤ 𝑐′′𝐿5

0𝑟𝑁 ,

for some constants 𝑐′, 𝑐′′. The in-probability result (17) follows, since the choice of 𝐿 ensures by (26)
that ‖𝑓𝜏(𝑗) −𝐾𝐿[𝑓𝜏(𝑗)]‖∞ ≤ 𝐶 ′′𝑟𝑁 for some 𝐶 ′′, so that for a suitable constant 𝐶,

Π𝐻(‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ > 𝐶𝐿5
0𝑟𝑁 ) ≤ Π𝐻(𝒜𝑐) ≤ 𝑁−𝜅 → 0.

For the in-expectation result (18), observe that by truncating at ±𝑁𝛼 we have ensured that

𝐸𝐻‖𝑓𝑗 − 𝑓𝜏(𝑗)‖∞ ≤ 𝐶𝐿5
0𝑟𝑁 + 2𝑁𝛼Π𝐻(𝒜𝑐).

Choosing 𝑐 = 𝑐(𝜅,ℋ) in the definition of the event 𝒜 corresponding to some 𝜅 ≥ 𝑠/(1 + 2𝑠) + 𝛼
concludes the proof.

Proof [Proof of Proposition 7] Let 𝑓0, 𝑓1, �̂�, �̂� be estimators which satisfy

Π𝐻(‖𝑓0 − 𝑓𝜏(0)‖ + ‖𝑓1 − 𝑓𝜏(1)‖ + ‖�̂�−𝑄𝜎,𝜎‖𝐹 + ‖�̂� − 𝜋𝜎‖ > 𝐶𝜀𝑁 ) → 0 (36)

for some permutations 𝜏, 𝜎 and a constant 𝐶 > 0, with 𝑄𝜎,𝜎 defined by permuting the rows and
columns of 𝑄, and 𝜋𝜎 defined similarly. The existence of suitable 𝑓0, 𝑓1 is given by Theorem 5,
and the existence of suitable �̂�, �̂� is proved by results in De Castro et al. (2017, Appendix C) (and
by arguments as in De Castro et al. 2016, Section 8.6 to accelerate the possibly slow rate to a
near-parametric rate). Moreover, the estimators of De Castro et al. (2017) are constructed using a
spectral method, so that one may in fact assume 𝜎 = 𝜏 . [One could also “align” 𝜎 and 𝜏 by hand, by
noting that by ergodicity the invariant density 𝑓𝜋 can be estimated at the rate 𝑟𝑁 using a standard
kernel density estimator, and permuting rows and columns of �̂� and �̂� so that

∑︀
�̂�𝑖𝑓𝑖 is close to this

kernel density estimator; linear independence of the 𝑓𝑖 ensures that this alignment method works.]
Next, under the assumption 𝜋0 > 𝜋1, define 𝑓𝑗 = 𝑓𝜏(𝑗), �̌� = �̂�𝜏,𝜏 and �̌� = �̂�𝜏 , where 𝜏(0) =

1 − 𝜏(1) = 1{�̂�1 > �̂�0}. Consistency of �̂� implies that 𝜏 consistently estimates the permutation
𝜏 = 𝜎 of (36), hence

Π𝐻(‖𝑓0 − 𝑓0‖ + ‖𝑓1 − 𝑓1‖ + ‖�̌�−𝑄‖𝐹 + ‖�̌� − 𝜋‖) > 𝐶𝜀𝑁 )
≤ Π𝐻(𝜏 ̸= 𝜏) + Π𝐻(‖𝑓0 − 𝑓𝜏(0)‖ + ‖𝑓1 − 𝑓𝜏(1)‖ + ‖�̂�−𝑄𝜏,𝜏‖𝐹 + ‖�̂� − 𝜋𝜏‖ > 𝐶𝜀𝑁 ) → 0.

For the other case, we want to define 𝜏(0) = 1{lim sup𝑥↑𝑥*(𝑓0/𝑓1)(𝑥) > 1} and proceed similarly,
but the compact support of 𝐾 means that 𝑓1(𝑥) = 𝑓0(𝑥) = 0 for 𝑥 > 2−𝐿 + max𝑘𝑋𝑘, and the
right side may be strictly smaller than 𝑥*. Instead, noting that necessarily Π𝐻(𝑋1 ≤ 𝑥*) > 0 and
assuming without loss of generality that 𝑥* > 0, we set �̃�𝑛 = 𝑋𝑛1{𝑋𝑛 ≤ 𝑥*} and define

𝜏(0) = 1 − 𝜏(1) = 1{𝑓0(𝑀𝑁 ) > 𝑓1(𝑀𝑁 )},
𝑀𝑁 = max

𝑖≤log𝑁
(�̃�𝑖);

note that by construction we have 𝑓𝜏(1)(𝑀𝑁 ) ≥ 𝑓𝜏(0)(𝑀𝑁 ). We show that ‖𝑓𝜏(1) − 𝑓0‖∞ > 𝐶𝜀𝑁 on
an event 𝐴𝑁 of probability tending to 1; it will follow from (36) that 𝜏 ≡ 𝜏−1 = 𝜏 on 𝐴𝑁 , and the
result will follow.

The variables �̃�𝑖, 𝑖 ≤ 𝑁 have a density with respect to the measure 𝜇 defined by adding an
atom at 0 to Lebesgue measure. Let 𝑢 be as in Theorem 2, so that 𝑢 > 1 +𝜈−1 and 𝜀𝑁 (log𝑁)𝑢 → 0
for 𝜈 as in Assumption B. The proof of Lemma 12 shows that with probability tending to 1 we have
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𝑓1(𝑀𝑁 ) ≥ min𝑖≤log𝑁 (𝑓(�̃�𝑖)) ≥ (log𝑁)−𝑢, hence 𝑓1(𝑀𝑁 ) > 3𝐶𝜀𝑁 . We also note that 𝑀𝑁 ↑ 𝑥*

almost surely, so that 𝑓1(𝑀𝑁 ) > 3𝑓0(𝑀𝑁 ) for all 𝑁 large enough.
Let 𝐴𝑁 be an event of probability tending to 1 on which

𝑓1(𝑀𝑁 ) > 3𝐶𝜀𝑁 , 𝑓1(𝑀𝑁 ) > 3𝑓0(𝑀𝑁 ), ‖𝑓0 − 𝑓𝜏(0)‖∞ ≤ 𝐶𝜀𝑁 , ‖𝑓1 − 𝑓𝜏(1)‖∞ ≤ 𝐶𝜀𝑁 ,

whose existence we have just demonstrated. On 𝐴𝑁 we have both 𝑓1(𝑀𝑁 ) ≥ 𝑓𝜏(1)(𝑀𝑁 ) −𝐶𝜀𝑁 and
𝑓0(𝑀𝑁 ) ≥ 𝑓𝜏(0)(𝑀𝑁 ) − 𝐶𝜀𝑁 hence (for 𝑁 large enough)

𝑓𝜏(1)(𝑀𝑁 ) = max(𝑓0(𝑀𝑁 ), 𝑓1(𝑀𝑁 )) ≥ max
𝑗

(𝑓𝑗(𝑀𝑁 ) − 𝐶𝜀𝑁 ) = 𝑓1(𝑀𝑁 ) − 𝐶𝜀𝑁 > 1
3𝑓1(𝑀𝑁 ) + 𝐶𝜀𝑁

> 𝑓0(𝑀𝑁 ) + 𝐶𝜀𝑁 ,

so that ‖𝑓𝜏(1) − 𝑓0‖∞ > 𝐶𝜀𝑁 on 𝐴𝑁 as claimed.
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Appendix A. Auxiliary Results for Section 2
A.1 Lemmas for Theorem 2

Recall 𝑓𝜋 = 𝜋0𝑓0 + 𝜋1𝑓1 is the density of each 𝑋𝑖, 𝑖 ≤ 𝑁 , in the HMM model (1).

Lemma 12. Under Assumption B we have, for any 𝑎 > 1 + 𝜈−1,

Π𝐻(max
𝑖≤𝑅

1/𝑓𝜋(𝑋𝑖) > 𝑅𝑎) → 0 as 𝑅 → ∞.

Proof For 𝐴 = 𝑅𝑎, 𝐵 = 𝑅𝑏 with 𝑎, 𝑏 > 0 to be chosen, we have by a union bound and stationarity

Π𝐻

(︁
max
𝑖≤𝑅

1
𝑓𝜋(𝑋𝑖)

> 𝐴
)︁

≤ 𝑅Π𝐻

(︀
𝑓𝜋(𝑋1) < 𝐴−1)︀

≤ 𝑅

∫︁ 𝐵

−𝐵
1

{︀
𝑓𝜋(𝑥) < 𝐴−1}︀

𝑓𝜋(𝑥) d𝜇(𝑥) +𝑅Π𝐻

(︀
|𝑋1| > 𝐵

)︀
≤ 𝑅𝜇([−𝐵,𝐵])/𝐴+𝑅Π𝐻

(︀
|𝑋1| > 𝐵

)︀
.

Since 𝑓𝜋 is a mixture of the densities 𝑓0, 𝑓1, an application of Markov’s inequality yields

Π𝐻

(︀
|𝑋1| > 𝐵

)︀
≤ max

𝑗
𝑃𝑋∼𝑓𝑗

(︀
|𝑋| > 𝐵

)︀
≤ 𝐵−𝜈 max

𝑗
𝐸𝑋∼𝑓𝑗

|𝑋|𝜈 ,

which is at most a constant times 𝐵−𝜈 by the assumption. Choosing 𝑏 > 1/𝜈, we have 𝑅Π𝐻(|𝑋1| ≥
𝐵) → 0.
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Since 𝐵 = 𝑅𝑏 ≥ 1 and 𝜇 is equal to either to Lebesgue or counting measure, 𝜇([−𝐵,𝐵]) ≤
2𝐵 + 1 ≤ 3𝐵. Then

𝑅𝜇([−𝐵,𝐵])/𝐴 ≤ 3𝑅1+𝑏−𝑎,

which tends to zero for 𝑎 > 1 + 𝑏, so that any 𝑎 > 1 + 𝜈−1 is permissible.

For the following two lemmas recall the definition 𝑆0 = 𝑆0(𝑡) = {𝑖 : 𝜙𝑖 = 1}, where 𝜙 is as in
Definition 1, so that �̂� = |𝑆0| is characterised by

1
�̂�

�̂�∑︁
𝑖=1

ℓ̂(𝑖) ≤ 𝑡 <
1

�̂� + 1

�̂�+1∑︁
𝑖=1

ℓ̂(𝑖).

where, by convention, the left inequality holds if �̂� = 0, and ℓ̂(𝑁+1) = ∞ so that the right inequality
holds if �̂� = 𝑁 . Recall the definition

𝑡 := postFDR�̂�(𝜙) = 1
�̂�

�̂�∑︁
𝑖=1

ℓ̂(𝑖).

Lemma 13. In the setting of Theorem 2, 𝐸𝐻𝑡 → min(𝑡, 𝜋0).

Proof Since 0 ≤ 𝑡 ≤ 1, it’s enough to show that 𝑡 → min(𝑡, 𝜋0) in probability. By Lemma 15, we
have

1
𝑁

𝑁∑︁
𝑖=1

ℓ̂𝑖(𝑋) → 𝜋0 in probability. (37)

By monotonicity of the average of increasing numbers, we have

𝑡 ≤ 1
𝑁

𝑁∑︁
𝑖=1

ℓ̂(𝑖) = 1
𝑁

𝑁∑︁
𝑖=1

ℓ̂𝑖,

and by construction we note also that 𝑡 ≤ 𝑡, hence 𝑡 ≤ min(𝑡, 𝜋0) + 𝑜𝑝(1).
If 𝑡 = 0 we trivially have the matching lower bound 𝑡 ≥ min(𝑡, 𝜋0)−𝑜𝑝(1). If 𝑡 > 0, we decompose

relative to the event 𝒞 = {�̂� = 𝑁}. Observe, using (37), that

𝑡1𝒞 = 1𝒞
1
𝑁

𝑁∑︁
𝑖=1

ℓ̂𝑖 ≥ 1𝒞𝜋0 − 𝑜𝑝(1).

By definition of �̂� we also have

𝑡1𝒞𝑐 <
1

�̂� + 1

�̂�+1∑︁
𝑖=1

ℓ̂(𝑖)1𝒞𝑐 = �̂�

�̂� + 1
𝑡1𝒞𝑐 +

ℓ̂(�̂�+1)

�̂� + 1
1𝒞𝑐 ,

hence, since ℓ̂(�̂�+1) ≤ 1 on 𝒞𝑐,

𝑡1𝒞𝑐 >
�̂� + 1
�̂�

𝑡1𝒞𝑐 −
ℓ̂(�̂�+1)

�̂�
1𝒞𝑐 ≥ 𝑡1𝒞𝑐 − 1

�̂�
.

By Lemma 14, �̂� → ∞ in probability for any 𝑡 > 0, so that the above display implies 𝑡1𝒞𝑐 >
𝑡1𝒞𝑐 − 𝑜𝑝(1) and hence

𝑡 > 𝑡1𝒞𝑐 + 𝜋01𝒞 − 𝑜𝑝(1) ≥ min(𝑡, 𝜋0) − 𝑜𝑝(1),
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proving the lower bound.

The next lemma shows that 𝜙 makes, with probability tending to 1, a number of discoveries of
order 𝑁 . The proof goes via comparing ℓ̂𝑖 to some ℓ′

𝑖, which closely approximates ℓ𝑖 and allows for
the use of ergodicity arguments. Note that one could alternatively compare to ℓ∞

𝑖 as is done in the
proof of Theorem 3 (see also Appendix A.2); by using ℓ′

𝑖 instead we avoid the need for Condition G
when proving Theorem 2.

Recall the definition of constants 𝐶 = 𝐶(ℐ) from Section 4.3.

Lemma 14. In the setting of Theorem 2, for all 𝑡 > 0, there exists 𝑎 = 𝑎(𝑡, ℐ) > 0 such that

Π𝐻(|𝑆0| > 𝑎𝑁) → 1.

Proof The definition of �̂� trivially implies �̂� ≥ 𝑡, so that

{𝑖 : ℓ̂𝑖 < 𝑡} ⊆ {𝑖 : ℓ̂𝑖 < �̂�} ⊆ 𝑆0.

For 𝐴 ∈ N write
ℓ′
𝑖(𝑋) := Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴), 𝐴 < 𝑖 ≤ 𝑁 −𝐴.

By Lemma 16, there exist 𝐴 = 𝐴(𝑡) and events 𝐺𝑁 of probability tending to 1 such that{︁
#

{︀
𝑖 : 𝐴 < 𝑖 ≤ 𝑁 −𝐴, |ℓ̂𝑖(𝑋) − ℓ′

𝑖(𝑋)| > 𝑡/2
}︀

≤ 𝑁𝛿𝑁

}︁
,

for some 𝛿𝑁 → 0. On 𝐺𝑁 , we observe that

#{𝑖 ≤ 𝑁 : ℓ̂𝑖 < 𝑡} ≥ #{𝑖 : 𝐴 < 𝑖 ≤ 𝑁 −𝐴, ℓ′
𝑖 < 𝑡/2} −𝑁𝛿𝑁 ,

hence it suffices to show that there exists 𝑐 > 0 such that #{𝑖 : 𝐴 < 𝑖 ≤ 𝑁 − 𝐴 : ℓ′
𝑖 < 𝑡/2} > 𝑐𝑁

with probability tending to 1.
By ergodicity (i.e. applying Lemma 20 with 𝑔(𝑥) = 1{𝑥 < 𝑡/2}) we have for any 𝜀 > 0

Π𝐻

(︁
#

{︀
𝑖 : 𝐴 < 𝑖 ≤ 𝑁 −𝐴 : ℓ′

𝑖 < 𝑡/2
}︀
>

(︀
𝑁 − 2𝐴

)︀(︀
Π𝐻(ℓ′

𝑖 < 𝑡/2) − 𝜀
)︀)︁

→ 1,

hence it suffices to show that Π𝐻(ℓ′
𝑖 < 𝑡/2) ̸= 0.

Fix 𝑖 satisfying 𝐴 < 𝑖 ≤ 𝑁 −𝐴. For 𝛼, 𝛽 ∈ {0, 1}𝐴 write

𝜂𝛼,𝛽 = 𝜋𝛼1

∏︁
𝑎<𝐴

𝑄𝛼𝑎,𝛼𝑎+1𝑄𝛽𝑎,𝛽𝑎+1 .

Introducing the notation 𝜃𝑏𝑎 = (𝜃𝑎, 𝜃𝑎+1, . . . , 𝜃𝑏) ∈ R𝑏+1−𝑎, we note that

Π𝐻(𝜃𝑖+𝐴𝑖−𝐴 = (𝛼, 0, 𝛽)) = 𝜂𝛼,𝛽𝑄𝛼𝐴,0𝑄0,𝛽1 , Π𝐻(𝜃𝑖+𝐴𝑖−𝐴 = (𝛼, 1, 𝛽)) = 𝜂𝛼,𝛽𝑄𝛼𝐴,1𝑄1,𝛽1 .

Define

𝑝0 =
∑︁

𝛼,𝛽∈{0,1}𝐴

𝑄𝛼𝐴,0𝑓0(𝑋𝑖)𝑄0,𝛽1𝜂𝛼,𝛽
∏︁
𝑎≤𝐴

𝑓𝛼𝑎(𝑋𝑖−𝐴+𝑎−1)𝑓𝛽𝑎(𝑋𝑖+𝑎)

𝑝1 =
∑︁

𝛼,𝛽∈{0,1}𝐴

𝑄𝛼𝐴,1𝑓1(𝑋𝑖)𝑄1,𝛽1𝜂𝛼,𝛽
∏︁
𝑎≤𝐴

𝑓𝛼𝑎(𝑋𝑖−𝐴+𝑎−1)𝑓𝛽𝑎(𝑋𝑖+𝑎),

and observe that
ℓ′
𝑖(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖+𝐴

𝑖−𝐴 ) = 𝑝0
𝑝0 + 𝑝1

.
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Note that each term in the sum defining 𝑝1 is at least 𝛿2𝑓1(𝑋𝑖)/𝑓0(𝑋𝑖) times the corresponding term
in the sum defining 𝑝0, with 𝛿 > 0 as in Assumption C, hence

𝑝1 ≥ 𝑝0𝛿
2 𝑓1(𝑋𝑖)
𝑓0(𝑋𝑖)

, so that ℓ′
𝑖(𝑋) ≤ 1

1 + 𝛿2(𝑓1(𝑋)/𝑓0(𝑋)) .

In view of Assumption A, assume without loss of generality that there exists 𝑥* ∈ R ∪ {±∞} such
that 𝑓1(𝑥)/𝑓0(𝑥) → ∞ as 𝑥 ↑ 𝑥*. Then we deduce that for some 𝑢 = 𝑢(𝑡, 𝛿) > 0,

Π𝐻(ℓ′
𝑖 < 𝑡/2) ≥ Π𝐻

(︁𝑓1(𝑋𝑖)
𝑓0(𝑋𝑖)

>
2 − 𝑡

𝑡𝛿2

)︁
≥ 𝜋1𝑃𝑋∼𝑓1(𝑥* − 𝑢 ≤ 𝑋 ≤ 𝑥*) > 0,

as required.

Lemma 15. In the setting of Theorem 2,

1
𝑁

𝑁∑︁
𝑖=1

ℓ̂𝑖(𝑋) → 𝜋0

in probability as 𝑁 → ∞.

Proof It is required to prove, for 𝜀 > 0 arbitrary, that

Π𝐻

(︁⃒⃒⃒ 1
𝑁

𝑁∑︁
𝑖=1

ℓ̂𝑖(𝑋) − 𝜋0

⃒⃒⃒
> 𝜀

)︁
→ 0.

By Lemma 16, defining

ℓ′
𝑖(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴), 𝐴 < 𝑖 ≤ 𝑁 −𝐴,

there exists 𝐴 = 𝐴(𝜀) for which, with probability tending to 1,

#{𝑖 : 𝐴 < 𝑖 ≤ 𝑁 −𝐴, |ℓ̂𝑖(𝑋) − ℓ′
𝑖(𝑋)| > 𝜀/2} ≤ 𝑁𝛿𝑁 .

On the event on which the last line holds we can decompose:

⃒⃒⃒ 1
𝑁

𝑁∑︁
𝑖=1

ℓ̂𝑖(𝑋) − 𝜋0

⃒⃒⃒
≤ 2𝐴

𝑁
+ 𝜀/2 + 𝛿𝑁 + 1

𝑁

⃒⃒⃒ 𝑁−𝐴∑︁
𝑖=𝐴+1

(ℓ′
𝑖(𝑋) − 𝜋0)

⃒⃒⃒
.

Finally, by ergodicity of ℓ′
𝑖(𝑋) (see Lemma 20) we have

Π𝐻

(︁ 1
𝑁

⃒⃒⃒ 𝑁−𝐴∑︁
𝑖=𝐴+1

(ℓ′
𝑖(𝑋) − 𝜋0)

⃒⃒⃒
> 𝜀/4

)︁
≤ Π𝐻

(︁ 1
𝑁 − 2𝐴

⃒⃒⃒ 𝑁−𝐴∑︁
𝑖=𝐴+1

(ℓ′
𝑖(𝑋) − 𝐸𝐻 [ℓ′

𝑖(𝑋)])
⃒⃒⃒
> 𝜀/4

)︁
→ 0,

where we have used that

𝐸𝐻 [ℓ′
𝑖(𝑋)] = 𝐸𝐻Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴) = Π𝐻(𝜃𝑖 = 0) = 𝜋0.

The result follows.
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Lemma 16. For 𝐴 ∈ N, define

ℓ′
𝑖(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴), 𝐴 < 𝑖 ≤ 𝑁 −𝐴.

For any fixed 𝜀 > 0, there exists 𝐴 = 𝐴(𝜀) and 𝛿𝑁 → 0 such that

#{𝑖 : 𝐴 < 𝑖 ≤ 𝑁 −𝐴, |ℓ̂𝑖(𝑋) − ℓ′
𝑖(𝑋)| > 𝜀} ≤ 𝑁𝛿𝑁 , with probability tending to 1.

A similar result holds in the limit 𝐴 → ∞, see Lemma 19 below.

Proof Essentially, this is a consequence of Lemma 9 and exponential mixing – hence forgetfulness –
of the Markov chain 𝜃, the former telling us that ℓ̂𝑖 ≈ ℓ𝑖 and the latter that ℓ𝑖 is nearly independent
of 𝑋𝑗 if |𝑗 − 𝑖| is large so that ℓ′

𝑖 ≈ ℓ𝑖. Precisely, Lemma 9 tells us that there exist events 𝐺𝑁 of
probability tending to 1 on which{︁

#
{︀
𝑖 ≤ 𝑁 : |ℓ̂𝑖(𝑋) − ℓ𝑖(𝑋)| > 𝜀′

𝑁

}︀
≤ 𝑁𝛿𝑁

}︁
,

for some 𝜀′
𝑁 → 0; in particular note 𝜀′

𝑁 < 𝜀/2 for 𝑁 large. Next, we apply Proposition 4.3.23iii
of Cappé et al. (2005). Our Assumption C implies that Assumption 4.3.24 therein holds, so by
the consequent Lemma 4.3.25 one sees that the 𝜌0(𝑦) in the proposition can be replaced by 𝜌 =
(1 − 2𝛿)/(1 − 𝛿). Applying the proposition with 𝑗 = 𝑘 −𝐴 yields

|Π𝐻(𝜃𝑘 = 0 | 𝑋1, . . . , 𝑋𝑛) − Π𝐻(𝜃𝑘 = 0 | 𝑋𝑘−𝐴, . . . , 𝑋𝑛)| < 2𝜌𝐴, 𝑘 > 𝐴.

Any two-state Markov chain is reversible, hence by time-reversal we similarly obtain

|Π𝐻(𝜃𝑘 = 0 | 𝑋𝑘−𝐴, . . . , 𝑋𝑛) − Π𝐻(𝜃𝑘 = 0 | 𝑋𝑘−𝐴, . . . , 𝑋𝑘+𝐴)| < 2𝜌𝐴,

and hence
|ℓ𝑘(𝑋) − ℓ′

𝑘(𝑋)| < 4𝜌𝐴, 𝐴 < 𝑘 ≤ 𝑁 −𝐴.

Choose 𝐴 = 𝐴(𝜀) so that 4𝜌𝐴 < 𝜀/2; then, on 𝐺𝑁 and for 𝑁 large, an application of the triangle
inequality yields

#{𝑖 : 𝐴 < 𝑖 ≤ 𝑁 −𝐴, |ℓ̂𝑖(𝑋) − ℓ′
𝑖(𝑋)| > 𝜀} ≤ 𝑁𝛿𝑁 ,

and the result follows.

A.2 Lemmas for Theorem 3

We may concretely define ℓ∞
𝑖 as the almost sure limit

ℓ∞
𝑖 (𝑋) = lim

𝐾→∞
Π𝐻(𝜃𝑖 = 0 | 𝑋−𝐾 , . . . , 𝑋𝐾); (38)

this limit is well defined by a standard martingale convergence theorem.

Lemma 17. In the setting of Theorem 2, assume that the distribution function of the variable
𝑓1(𝑋1)/𝑓0(𝑋1) is continuous and strictly increasing on (0,∞). Then the distribution function of
ℓ∞
𝑖 (𝑋) is continuous and strictly increasing on [0, 1].

Note that atomicity of ℓ𝑖(𝑋) relates to that of 𝑓1(𝑋𝑖)/𝑓0(𝑋𝑖), rather than that of 𝑋𝑖 itself, since
for example the distribution of ℓ1 is atomic when 𝑁 = 1 if Π𝐻(𝑓1(𝑋1)/𝑓0(𝑋1) = 𝑐) > 0 for some
constant 𝑐. It is therefore unsurprising that the key properties of the distribution of ℓ∞

𝑖 (𝑋) depend
on the distribution of the ratio 𝑓1(𝑋𝑖)/𝑓0(𝑋𝑖).
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Proof Let 𝐺0 denote the distribution function of (𝑓1/𝑓0)(𝑋1) when 𝑋1 ∼ 𝑓0𝜇 and 𝐺1 the distri-
bution function of (𝑓1/𝑓0)(𝑋1) when 𝑋1 ∼ 𝑓1𝜇.
Define the stationary filter sequence (Φ∞

𝑖 (𝑋))𝑖∈Z by

Φ∞
𝑖 (𝑋) := Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛 : 𝑛 ∈ Z, 𝑛 ≤ 𝑖)). (39)

Using the usual forward-backward equations, see Baum et al. (1970), and taking almost-sure limits
one obtains the following forward equation: for each 𝑖,

Φ∞
𝑖 (𝑋) =

[(1 − 𝑝)Φ∞
𝑖−1(𝑋) + 𝑞(1 − Φ∞

𝑖−1(𝑋))]𝑓0(𝑋𝑖)
((1 − 𝑝)𝑓0(𝑋𝑖) + 𝑝𝑓1(𝑋𝑖))Φ∞

𝑖−1(𝑋) + (𝑞𝑓0(𝑋𝑖) + (1 − 𝑞)𝑓1(𝑋𝑖))(1 − Φ∞
𝑖−1(𝑋))

where 𝑝 = 𝑄01 and 𝑞 = 𝑄10, leading to

Φ∞
𝑖 (𝑋) =

(1 − 𝑝)Φ∞
𝑖−1(𝑋) + 𝑞(1 − Φ∞

𝑖−1(𝑋))
(1 − 𝑝+ 𝑝(𝑓1/𝑓0)(𝑋𝑖))Φ∞

𝑖−1(𝑋) + (𝑞 + (1 − 𝑞)(𝑓1/𝑓0)(𝑋𝑖))(1 − Φ∞
𝑖−1(𝑋)) . (40)

That is, if we define 𝐴(Φ) = (1 − 𝑝)Φ + 𝑞(1 − Φ), then

Φ∞
𝑖 (𝑋) =

𝐴(Φ∞
𝑖−1(𝑋))

𝐴(Φ∞
𝑖−1(𝑋)) + (𝑓1/𝑓0)(𝑋𝑖)(1 −𝐴(Φ∞

𝑖−1(𝑋))) . (41)

Since conditional on Φ∞
𝑖−1(𝑋), 𝑋𝑖 has distribution

[︀
𝐴(Φ∞

𝑖−1(𝑋))𝑓0(𝑥) + (1 −𝐴(Φ∞
𝑖−1(𝑋))𝑓1(𝑥)

]︀
𝜇, we

deduce that (Φ∞
𝑖 (𝑋))𝑖∈Z is a stationary Markov chain (with state space [0, 1] and) with transition

kernel 𝐾(Φ, 𝑑Φ′) given by

𝐾(Φ, 𝑑Φ′) =
∫︁
𝛿𝑔(Φ,𝑥)(𝑑Φ′) [(Φ(1 − 𝑝) + (1 − Φ)𝑞)𝑓0(𝑥) + (Φ𝑝+ (1 − Φ)(1 − 𝑞))𝑓1(𝑥)] 𝑑𝜇(𝑥)

=
∫︁
𝛿𝑔(Φ,𝑥)(𝑑Φ′) [𝐴(Φ)𝑓0(𝑥) + (1 −𝐴(Φ))𝑓1(𝑥)] 𝑑𝜇(𝑥),

where
𝑔(Φ, 𝑥) = 𝐴(Φ)

𝐴(Φ) + (𝑓1/𝑓0)(𝑥)(1 −𝐴(Φ)) .

Then, for each 𝑡 ∈ (0, 1), we have

Π𝐻

(︀
Φ∞
𝑖 (𝑋) ≤ 𝑡|Φ∞

𝑖−1(𝑋)
)︀

= Π𝐻

(︂
(𝑓1/𝑓0)(𝑋𝑖) ≥

𝐴(Φ∞
𝑖−1(𝑋))

1 −𝐴(Φ∞
𝑖−1(𝑋)) (1/𝑡− 1) | Φ∞

𝑖−1(𝑋)
)︂
.

Recall that 𝜋0𝐺0 + 𝜋1𝐺1 is assumed to be continuous and strictly increasing on (0,+∞), and that
𝜋0 > 0 and 𝜋1 > 0, so that 𝐺0 and 𝐺1 are both continuous, and on the set where 𝐺0 is not strictly
increasing, 𝐺1 is strictly increasing and vice versa. We deduce that

Π𝐻

(︀
Φ∞
𝑖 (𝑋) ≤ 𝑡 | Φ∞

𝑖−1(𝑋)
)︀

= 𝐴(Φ∞
𝑖−1(𝑋))

[︂
1 −𝐺0

(︂
𝐴(Φ∞

𝑖−1(𝑋))
1 −𝐴(Φ∞

𝑖−1(𝑋))

(︂
1
𝑡

− 1
)︂)︂]︂

+
(︀
1 −𝐴(Φ∞

𝑖−1(𝑋))
)︀ [︂

1 −𝐺1

(︂
𝐴(Φ∞

𝑖−1(𝑋))
1 −𝐴(Φ∞

𝑖−1(𝑋))

(︂
1
𝑡

− 1
)︂)︂]︂

.

Then Φ∞
𝑖 (𝑋) has, conditionally on Φ∞

𝑖−1(𝑋), a continuous and strictly increasing distribution func-
tion on (0, 1). The same holds for Φ∞

𝑖 (𝑋) since for all 𝑡,

Π𝐻 (Φ∞
𝑖 (𝑋) ≤ 𝑡) = 𝐸𝐻 [Π𝐻

(︀
Φ∞
𝑖 (𝑋) ≤ 𝑡 | Φ∞

𝑖−1(𝑋)
)︀
].
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That is, Φ∞
𝑖 (𝑋) has (conditionally on Φ∞

𝑖−1(𝑋) and unconditionally) no atoms and support (0, 1).
The same ideas used to derive (40) and (41) allow us to show that for all 𝑖,

ℓ∞
𝑖 (𝑋) =

(1 − 𝑝)Φ∞
𝑖 (𝑋)ℓ∞

𝑖+1(𝑋)
𝐴(Φ∞

𝑖 (𝑋)) +
𝑝Φ∞

𝑖 (𝑋)(1 − ℓ∞
𝑖+1(𝑋))

1 −𝐴(Φ∞
𝑖 (𝑋)) . (42)

Let 𝐶(Φ) = Φ(1−Φ)
𝐴(Φ)(1−𝐴(Φ)) and notice that for any 𝑝, 𝑞 ∈ (0, 1) there exists 𝑎 = 𝑎(𝑝, 𝑞) < 1 such that

for all Φ ∈ (0, 1), |1 − 𝑝− 𝑞|𝐶(Φ) ≤ 𝑎. Then an easy recursion yields

ℓ∞
𝑖 (𝑋) = 𝑝Φ∞

𝑖 (𝑋)
1 −𝐴(Φ∞

𝑖 (𝑋)) +
∑︁
𝑘≥1

(1−𝑝−𝑞)𝑘𝐶(Φ∞
𝑖 (𝑋))𝐶(Φ∞

𝑖+1(𝑋)) · · ·𝐶(Φ∞
𝑖+𝑘−1(𝑋))

𝑝Φ∞
𝑖+𝑘(𝑋)

1 −𝐴(Φ∞
𝑖+𝑘(𝑋)) .

Indeed, since for any Φ ∈ (0, 1), |1 − 𝑝 − 𝑞|𝐶(Φ) ≤ 𝑎(𝑝, 𝑞) < 1, the series converges almost surely.
We see that for each 𝑖, ℓ∞

𝑖 (𝑋) is a function of (Φ∞
𝑘 (𝑋))𝑘≥𝑖, and we have

ℓ∞
𝑖 (𝑋) = 𝑝Φ∞

𝑖 (𝑋)
1 −𝐴(Φ∞

𝑖 (𝑋)) + (1 − 𝑝− 𝑞)𝐶(Φ∞
𝑖 (𝑋))ℓ∞

𝑖+1(𝑋).

It follows that for all 𝑡,

Π𝐻(ℓ∞
𝑖 (𝑋) ≤ 𝑡|Φ∞

𝑖−1(𝑋))

=𝐸𝐻
[︁
Π𝐻

(︁
(1 − 𝑝− 𝑞)𝐶(Φ∞

𝑖 (𝑋))ℓ∞
𝑖+1(𝑋) ≤ 𝑡− 𝑝Φ∞

𝑖 (𝑋)
1 −𝐴(Φ∞

𝑖 (𝑋)) | Φ∞
𝑖 (𝑋)

)︁
| Φ∞

𝑖−1(𝑋)
]︁
.

(43)

Define the function 𝐹ℓ by

𝐹ℓ(𝑡; Φ∞
𝑖−1(𝑋)) = Π𝐻

(︀
ℓ∞
𝑖 (𝑋) ≤ 𝑡|Φ∞

𝑖−1(𝑋)
)︀

;

note that by stationarity 𝐹ℓ does not depend on 𝑖. Then by (43), if (1 − 𝑝− 𝑞) > 0, we have

𝐹ℓ(𝑡; Φ∞
𝑖−1(𝑋)) = 𝐸𝐻

[︂
𝐹ℓ

(︂
1

(1 − 𝑝− 𝑞)𝐶(Φ∞
𝑖 (𝑋))

(︁
𝑡− 𝑝Φ∞

𝑖 (𝑋)
1 −𝐴(Φ∞

𝑖 (𝑋))

)︁
; Φ∞

𝑖 (𝑋)
)︂

| Φ∞
𝑖−1(𝑋)

]︂
;

that is, for any 𝑡 and any Φ ∈ (0, 1),

𝐹ℓ(𝑡; Φ) =
∫︁
𝐹ℓ

(︂
1

(1 − 𝑝− 𝑞)𝐶(𝑥)

(︂
𝑡− 𝑝𝑥

1 −𝐴(𝑥)

)︂
;𝑥

)︂
𝐾(Φ, 𝑑𝑥). (44)

Similarly, if (1 − 𝑝− 𝑞) < 0, defining the function 𝐹ℓ by 𝐹ℓ(𝑡,Φ) = lim𝑠→𝑡,𝑠<𝑡 𝐹ℓ(𝑡; Φ),

𝐹ℓ(𝑡; Φ) =
∫︁ [︂

1 − 𝐹ℓ

(︂
1

(1 − 𝑝− 𝑞)𝐶(𝑥)

(︂
𝑡− 𝑝𝑥

1 −𝐴(𝑥)

)︂
;𝑥

)︂]︂
𝐾(Φ, 𝑑𝑥). (45)

Note that under Assumption C, (1 − 𝑝− 𝑞) ̸= 0.
Finally, the fact that Φ∞

𝑖 (𝑋) has no atoms and support (0, 1) (both conditionally on Φ∞
𝑖−1(𝑋) and

unconditionally) implies, together with equations (44) and (45), that whatever the sign of (1−𝑝−𝑞),
the function 𝑡 ↦→ 𝐸𝐻 [𝐹ℓ(𝑡; Φ∞

𝑖−1(𝑋))] is continuous and strictly increasing, which is to say that the
distribution function of ℓ∞

𝑖 (𝑋) is continuous and strictly increasing.

Lemma 18. Under the conditions of Theorem 3, writing ℓ∞
𝑖 (𝑋) = Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛)𝑛∈Z), the

function 𝑚 defined by
𝑚(𝜆) = 𝐸𝐻 [ℓ∞

𝑖 (𝑋) | ℓ∞
𝑖 (𝑋) < 𝜆]

is continuous and strictly increasing on (0, 1), and 𝑚(𝜆) < 𝜆 for all 𝜆 ∈ (0, 1).
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Proof For any bounded random variable 𝑈 and any 𝑎 < 𝑏 such that 𝑃 (𝑈 < 𝑎) > 0, we have

𝐸[𝑈 | 𝑈 < 𝑏] = 𝐸[𝑈 | 𝑈 < 𝑎]𝑃 (𝑈 < 𝑎 | 𝑈 < 𝑏) + 𝐸[𝑈 | 𝑎 ≤ 𝑈 < 𝑏]𝑃 (𝑈 ≥ 𝑎 | 𝑈 < 𝑏)
= 𝐸[𝑈 | 𝑈 < 𝑎](1 − 𝑃 (𝑈 ≥ 𝑎 | 𝑈 < 𝑏)) + 𝐸[𝑈 | 𝑎 ≤ 𝑈 < 𝑏]𝑃 (𝑈 ≥ 𝑎 | 𝑈 < 𝑏),

hence

𝐸[𝑈 | 𝑈 < 𝑏] − 𝐸[𝑈 | 𝑈 < 𝑎] = 𝑃 (𝑎 ≤ 𝑈 < 𝑏)
𝑃 (𝑈 < 𝑏)

(︁
𝐸[𝑈 | 𝑎 ≤ 𝑈 < 𝑏] − 𝐸[𝑈 | 𝑈 < 𝑎]

)︁
. (46)

Note now that 𝐸[𝑈 | 𝑈 < 𝑎] < 𝑎: indeed, if

𝑉
𝑑= (𝑈 − 𝑎) | {𝑈 < 𝑎},

then 𝑉 ≤ 0 and 𝑉 is strictly negative with positive probability, hence 𝐸[𝑉 ] < 0. Taking 𝑈 = ℓ∞
𝑖

yields that 𝑚(𝜆) < 𝜆 as claimed. Continuing with the proof of continuity and monotonicity, we
similarly note that 𝑎 ≤ 𝐸[𝑈 | 𝑎 ≤ 𝑈 < 𝑏] < 𝑏. Using also that 𝑈 is bounded, so that 𝐸[𝑈 | 𝑈 <
𝑎] ≥ −𝑐 for some 𝑐 < ∞, we deduce that

0 < 𝐸[𝑈 | 𝑎 ≤ 𝑈 < 𝑏] − 𝐸[𝑈 | 𝑈 < 𝑎] < 𝑏+ 𝑐.

Returning to (46) we see for a general bounded random variable 𝑈 that 𝑥 ↦→ 𝐸[𝑈 | 𝑈 < 𝑥] is
strictly increasing on {𝑥 : 𝑃 (𝑈 < 𝑥) > 0} if 𝑃 (𝑎 ≤ 𝑈 < 𝑏) > 0 for all 𝑎, 𝑏, and continuous
if 𝑃 (𝑎 ≤ 𝑈 < 𝑏) → 0 as 𝑏 − 𝑎 → 0. Taking 𝑈 = ℓ∞

𝑖 , we conclude by Lemma 17, which tells
us that the distribution function of ℓ∞

𝑖 is continuous and strictly increasing and also implies that
Π𝐻(ℓ∞

𝑖 < 𝜆) > 0 for all 𝜆 > 0.

Lemma 19. Recall the definition

ℓ∞
𝑖 (𝑋) = Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛 : 𝑛 ∈ Z)).

There exist 𝛿𝑁 , 𝜉𝑁 , 𝜉′
𝑁 → 0 such that with probability tending to 1,

#{𝑖 : 1 ≤ 𝑖 ≤ 𝑁, |ℓ𝑖(𝑋) − ℓ∞
𝑖 (𝑋)| > 𝜉𝑁} ≤ 𝑁𝛿𝑁

#{𝑖 : 1 ≤ 𝑖 ≤ 𝑁, |ℓ̂𝑖(𝑋) − ℓ∞
𝑖 (𝑋)| > 𝜉′

𝑁} ≤ 𝑁𝛿𝑁 .

Proof Define ℓ′
𝑖(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴𝑁

, . . . , 𝑋𝑖+𝐴𝑁
). As in Lemma 16, we may argue using

Proposition 4.3.23iii of Cappé et al. (2005) that for a suitable sequence 𝐴𝑁 → ∞ satisfying 𝐴𝑁/𝑁 →
0, that

#{𝑖 ≤ 𝑁 : |ℓ𝑖(𝑋) − ℓ′
𝑖(𝑋)| > 4𝜌𝐴𝑁 } ≤ 2𝐴𝑁 .

Recalling from (38) that ℓ∞
𝑖 (𝑋) is formally defined as an almost sure limit of ℓ′

𝑖(𝑋) as 𝐴𝑁 → ∞, so
that ℓ′

𝑖 → ℓ∞
𝑖 in probability also, this proves the first bound. The second bound then follows after

an appeal to Lemma 9.

Lemma 20 (Ergodic theorems). The sequences ℓ′
𝑖 and ℓ∞

𝑖 , defined for 𝐴 ∈ N by

ℓ′
𝑖(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴), 𝐴 < 𝑖 ≤ 𝑁 −𝐴,

ℓ∞
𝑖 (𝑋) = Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛 : 𝑛 ∈ Z)),

are ergodic, so that for any bounded function 𝑔,

1
𝑁

𝑁∑︁
𝑖=1

𝑔(ℓ′
𝑖) → 𝐸𝜋[𝑔(ℓ′

1)], a.s. (hence also in probability),

and similarly for ℓ∞
𝑖 .
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Proof These are standard ergodicity results for functions of Markov chains (see for example Durrett,
2019, Chapter 6). In the case of ℓ′

𝑖 one can also note that 𝑔(ℓ′
𝑖(𝑋)) is a function of the Markov chain

(𝜃𝑖−𝐴, . . . , 𝜃𝑖+𝐴, 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴) to reduce to the ergodic theorem for Markov chains themselves.

We gather some results for the mFDR, defined as in (16).

Lemma 21. a. For any multiple testing procedure 𝜓,

mFDR𝐻(𝜓) ≤ 𝑎 if and only if 𝐸𝐻
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑎)𝜓𝑖 ≤ 0, (47)

with equality in one implying equality in the other.

b. Define the class (𝜙𝜆,𝐻 : 𝜆 ∈ [0, 1]) as in (8). For 𝜆 ∈ [0, 1], we have

mFDR𝐻(𝜙𝜆,𝐻) ≤ 𝜆, with equality iff 𝜆 = 0. (48)

c. The map 𝜆 ↦→ mFDR𝐻(𝜙𝜆,𝐻) is non-decreasing on [0, 1]. In the setting of Theorem 2, for
each 𝜆 < 𝜆′ there exists 𝑐 = 𝑐(𝜆, 𝜆′) > 0 such that for all 𝑁 large enough we have

mFDR𝐻(𝜙𝜆′,𝐻) ≥ mFDR𝐻(𝜙𝜆,𝐻) + 𝑐. (49)

Proof Recalling the convention 0/0 = 0 for defining the mFDR, the first part holds trivially
when 𝐸𝐻

∑︀
𝜓𝑖 = 0, and from rearranging the definition when 𝐸𝐻

∑︀
𝜓𝑖 > 0 (note that 𝐸𝐻1{𝜃𝑖 =

0} = 𝐸𝐻𝐸𝐻 [1{𝜃𝑖 = 0} | 𝑋] = 𝐸𝐻ℓ𝑖(𝑋)). Part (b) similarly is trivial for 𝜆 such that 𝜙𝜆,𝐻 = 0
with probability 1. If instead 𝜙𝜆,𝐻 is not almost surely the zero vector, there exists 𝑘 such that
with positive probability 𝜙𝑘 = 1 (and hence ℓ𝑘 < 𝜆); then 𝑈 = (ℓ𝑘 − 𝜆)𝜙𝑘 satisfies 𝑈 ≤ 0 and
Π𝐻(𝑈 < 0) > 0, which together imply that 𝐸𝐻 [𝑈 ] < 0, so that

𝐸𝐻
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝜆)𝜙𝑖 < 0,

implying (48) by part (a). For part (c), writing 𝑎 = mFDR𝐻(𝜙𝜆,𝐻) ≤ 𝜆 we have, using part (a) to
obtain the second line,

𝐸𝐻
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑎)1{ℓ𝑖 < 𝜆′} = 𝐸𝐻 [
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑎)1{ℓ𝑖 < 𝜆}] + 𝐸𝐻 [
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑎)1{𝜆 ≤ ℓ𝑖 < 𝜆′}].

= 𝐸𝐻 [
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑎)1{𝜆 ≤ ℓ𝑖 < 𝜆′}]

≥ (𝜆− 𝑎)𝐸𝐻 [#{𝑖 ≤ 𝑁 : 𝜆 ≤ ℓ𝑖 < 𝜆′}].

This last expression is non-negative, and the fact that the map 𝜆 ↦→ mFDR𝐻(𝜙𝜆,𝐻) is non-decreasing
follows by part (a). For (49), we may assume without loss of generality that 𝜆 > 0, and hence that
𝜆− 𝑎 > 0. By Lemma 19 there exists a sequence 𝜉𝑁 → 0 such that 𝐸𝐻#{𝑖 : |ℓ𝑖 − ℓ∞

𝑖 | > 𝜉𝑁}/𝑁 → 0
as 𝑁 → ∞, and we decompose

𝐸𝐻 [#{𝑖 : 𝜆 ≤ ℓ𝑖 < 𝜆′}] ≥ 𝐸𝐻#{𝑖 : 𝜆+ 𝜉𝑁 ≤ ℓ∞
𝑖 < 𝜆′ − 𝜉𝑁} − 𝐸𝐻#{𝑖 : |ℓ𝑖 − ℓ∞

𝑖 | > 𝜉𝑁}.

Lemma 17 tells us that under the assumptions of Theorem 3 the distribution function of ℓ∞
𝑖 is strictly

increasing, so that for 𝑁 large enough that 𝜆+ 𝜉𝑁 < 𝜆′ − 𝜉𝑁 the first term on the right in the latest
display is of order 𝑁 and the second is of smaller order. We deduce that, for 𝑐 = 𝑐(𝜆, 𝜆′) > 0 small
enough, and for all 𝑁 large enough,

𝐸𝐻 [
∑︁
𝑖≤𝑁

(ℓ𝑖 − (𝑎+ 𝑐))1{ℓ𝑖 < 𝜆′}] ≥ 𝑐𝑁 − 𝑐𝐸𝐻 [
∑︁
𝑖≤𝑁

1{ℓ𝑖 < 𝜆′}] ≥ 0,
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so that mFDR𝐻(𝜙𝜆′,𝐻) ≥ 𝑎+ 𝑐, implying (49).

Lemma 22. In the setting of Theorem 2, define the class (𝜙𝜆,𝐻 : 𝜆 ∈ [0, 1]) as in (8), and define
the mTDR and mFDR as in (15) and (16). Then for each 𝜆 ∈ (0, 1) we have

mTDR𝐻(𝜙𝜆,𝐻) = sup{mTDR𝐻(𝜓) : mFDR𝐻(𝜓) ≤ mFDR𝐻(𝜙𝜆,𝐻)}.

Remarks. i. A version of this result in the HMM setting originates in Sun and Cai (2009), but
to avoid a monotonicity property needed therein we instead adapt the proof Lemma 9.2 of
Rebafka et al. (2019) (see also the proof of Cai et al. 2019, Theorem 1). The proof is valid for
ℓ-value procedures in any (correctly specified) model, not just the hidden Markov model (1).

ii. The result need not in general hold for 𝜆 = 0, since mFDR𝐻(𝜓) = 0 whenever 𝐸𝐻 [ℓ𝑖(𝑋)𝜓𝑖(𝑋)] =
0 for all 𝑖, so that if Π𝐻(ℓ𝑖(𝑋) = 0) > 0, the test 𝜓 defined by 𝜓𝑖(𝑋) = 1{ℓ𝑖(𝑋) = 0} has
positive probability of making at least one true discovery, so that mTDR𝐻(𝜓) > 0, while
mFDR𝐻(𝜓) = 0.

iii. In general, {mFDR𝐻(𝜙𝜆,𝐻) : 𝜆 ∈ [0, 1]} is a proper subset of [0, 1], and consequently the
class 𝜙𝜆,𝐻 need not be optimal for every threshold. In particular, the supremum of the set
is generally strictly smaller than one, and – especially in discrete data settings – there may
be jump discontinuities in the function 𝜆 ↦→ mFDR𝐻(𝜙𝜆,𝐻). The first of these does not
cause any issues, since mTDR𝐻(𝜙1,𝐻) = 1 = sup𝜓 mTDR𝐻(𝜓) (provided 𝜃𝑖 = 1 with positive
probability, which is true in the current setting by Assumption C), while Lemma 23 overcomes
the issues raised in the second case in the setting of Theorem 3.

Proof Fix 𝜆 ∈ (0, 1) and write 𝜙 for 𝜙𝜆,𝐻 . Lemma 21 tells us that 𝑎 = mFDR𝐻(𝜙) satisfies 𝑎 < 𝜆,
and implies that if mFDR𝐻(𝜓) ≤ 𝑎 then

𝐸𝐻
∑︁
𝑖≤𝑁

(ℓ𝑖 − 𝑎)(𝜙− 𝜓) ≥ 0. (50)

We show that, for all 𝑖,

(ℓ𝑖 − 𝑎)(𝜙𝑖 − 𝜓𝑖) ≤ 𝜆− 𝑎

1 − 𝜆
(1 − ℓ𝑖)(𝜙𝑖 − 𝜓𝑖). (51)

Indeed, if 𝜙𝑖 = 1, then ℓ𝑖 < 𝜆, so that

ℓ𝑖 − 𝑎 <
1 − ℓ𝑖
1 − 𝜆

(𝜆− 𝑎),

and multiplying by 𝜙𝑖 − 𝜓𝑖 ≥ 0 yields the inequality, while if 𝜙𝑖 = 0, then ℓ𝑖 ≥ 𝜆 > 𝑎, so that

ℓ𝑖 − 𝑎 ≥ 1 − ℓ𝑖
1 − 𝜆

(𝜆− 𝑎),

and multiplying by 𝜙𝑖 − 𝜓𝑖 ≤ 0 yields the inequality.
Now, since 𝑎 < 𝜆 < 1, so that (1 − 𝜆)/(𝜆− 𝑎) > 0, we deduce from (50) and (51) that

𝐸𝐻
∑︁
𝑖≤𝑁

(1 − ℓ𝑖)(𝜙𝑖 − 𝜓𝑖) ≥ 0.

Finally, by definition,

mTDR𝐻(𝜙) =
𝐸𝐻 [

∑︀
𝑖≤𝑁 (1 − ℓ𝑖)𝜙𝑖]
𝑁𝜋1

, mTDR𝐻(𝜓) =
𝐸𝐻 [

∑︀
𝑖≤𝑁 (1 − ℓ𝑖)𝜓𝑖]
𝑁𝜋1

,

hence mTDR𝐻(𝜙) ≥ mTDR𝐻(𝜓) as claimed.
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Lemma 23. In the setting of Theorem 3, define the map

𝑔 : 𝑥 ↦→ sup{mTDR𝐻(𝜓) : mFDR𝐻(𝜓) ≤ 𝑥},

where the supremum is defined over multiple testing procedures 𝜓. Then for sequences 𝑥𝑁 , 𝑦𝑁 such
that |𝑥𝑁 − 𝑦𝑁 | → 0, we have

|𝑔(𝑥𝑁 ) − 𝑔(𝑦𝑁 )| → 0 as 𝑁 → ∞.

[Note that 𝑔 depends implicitly on 𝑁 , so that this does not simply say that 𝑔 is continuous.]

Proof Prompted by Lemma 22, we focus on tests 𝜓 of the form 𝜙𝜆,𝐻 , 𝜆 ∈ [0, 1] and define, for
𝑁 ≥ 1,

𝜆𝑁 = sup{𝜆 : mFDR𝐻(𝜙𝜆,𝐻) ≤ 𝑥𝑁},
𝜇𝑁 = sup{𝜆 : mFDR𝐻(𝜙𝜆,𝐻) ≤ 𝑦𝑁}.

One has the following dichotomies, as for the postFDR (recall (12)), implied by the fact that the
map 𝜆 ↦→ mFDR𝐻(𝜙𝜆,𝐻) is non-decreasing (by Lemma 21) and left continuous (by the definition of
𝜙𝜆,𝐻):

mFDR𝐻(𝜙𝜆,𝐻) ≤ 𝑥𝑁 ⇐⇒ 𝜆 ≤ 𝜆𝑁 ,

mFDR𝐻(𝜙𝜆,𝐻) ≤ 𝑦𝑁 ⇐⇒ 𝜆 ≤ 𝜇𝑁 .
(52)

Suppose (for a contradiction) that |𝜆𝑁−𝜇𝑁 | ̸→ 0. Without loss of generality we may assume that
for some 𝛿 > 0 and some subsequence 𝑁𝑗 we have 𝜆𝑁𝑗

−𝜇𝑁𝑗
> 𝛿 for all 𝑗 ∈ N. Then 𝜆𝑁𝑗

−�̃�𝑁𝑗
> 𝛿/2

for large 𝑗, and by restricting to a further subsequence if necessary we may assume that for some
𝜆 > 𝜇 we have 𝜆𝑁𝑗 ≥ 𝜆 > 𝜇 > 𝜇𝑁𝑗 for all 𝑗. Now Lemma 21 tells us that there exists a constant
= 𝑐(𝜆, 𝜇) > 0 such that for 𝑁 large enough

mFDR𝐻(𝜙𝜆,𝐻) − mFDR𝐻(𝜙𝜇,𝐻) > 𝑐.

Using (52) we deduce

𝑥𝑁𝑗
≥ mFDR𝐻(𝜙𝜆,𝐻) > mFDR𝐻(𝜙𝜇,𝐻) + 𝑐 > 𝑦𝑁𝑗

+ 𝑐,

so that 𝑥𝑁𝑗
−𝑦𝑁𝑗

> 𝑐, contradicting that |𝑥𝑁 −𝑦𝑁 | → 0. We deduce that necessarily |𝜆𝑁 −𝜇𝑁 | → 0.
Now set �̃�𝑁 = min(𝜆𝑁+1/𝑁, 1) and �̃�𝑁 = min(𝜇𝑁+1/𝑁, 1). Then (52), together with Lemma 22

(and Remark iii thereafter for the cases �̃�𝑁 = 1, �̃�𝑁 = 1) implies that

mTDR𝐻(𝜙𝜆𝑁 ,𝐻) ≤ 𝑔(𝑥𝑁 ) ≤ mTDR𝐻(𝜙�̃�𝑁 ,𝐻
)

mTDR𝐻(𝜙𝜇𝑁 ,𝐻) ≤ 𝑔(𝑦𝑁 ) ≤ mTDR𝐻(𝜙�̃�𝑁 ,𝐻).

We prove that |mTDR𝐻(𝜙𝜆𝑁 ,𝐻) − mTDR𝐻(𝜙𝜇𝑁 ,𝐻)| → 0 as a consequence of the fact that
|𝜆𝑁 − 𝜇𝑁 | → 0. Since also |�̃�𝑁 − 𝜆𝑁 | → 0, |�̃�𝑁 − 𝜇𝑁 | → 0, the same proof will imply that each of
mTDR𝐻(𝜙𝜆𝑁 ,𝐻), mTDR𝐻(𝜙�̃�𝑁 ,𝐻

), mTDR𝐻(𝜙𝜇𝑁 ,𝐻) and mTDR𝐻(𝜙�̃�𝑁 ,𝐻) differ by at most 𝑜(1),
allowing us to conclude.

Assume for notational convenience that 𝜆𝑁 ≥ 𝜇𝑁 . The denominator in the expressions defining
each of the mTDR’s is 𝐸𝐻#{𝑖 : 𝜃𝑖 = 1} = 𝑁𝜋1, and we see that

mTDR𝐻(𝜙𝜆𝑁 ,𝐻) = mTDR𝐻(𝜙𝜇𝑁 ,𝐻) + 𝐸𝐻#{𝑖 : 𝜃𝑖 = 1, 𝜇𝑁 ≤ ℓ𝑖 < 𝜆𝑁}
𝑁𝜋1

.
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By Lemma 19 there exists a sequence 𝜉𝑁 → 0 such that 𝐸𝐻#{𝑖 : |ℓ𝑖 − ℓ∞
𝑖 | > 𝜉𝑁}/𝑁 → 0 as

𝑁 → ∞. Lemma 17 tells us that the distribution function of ℓ∞
𝑖 is continuous – and hence uniformly

continuous – and we see that

𝑁−1𝐸𝐻#{𝑖 : 𝜃𝑖 = 1, 𝜇𝑁 ≤ ℓ𝑖 < 𝜆𝑁}
≤Π𝐻(𝜇𝑁 − 𝜉𝑁 ≤ ℓ∞

1 < 𝜆𝑁 + 𝜉𝑁 ) +𝑁−1𝐸𝐻#{𝑖 : |ℓ𝑖 − ℓ∞
𝑖 | > 𝜉𝑁} → 0,

as 𝑁 → ∞, proving the claim.

Appendix B. Auxiliary Results for the upper bounds of Section 3
B.1 Well-definedness of the Estimators

Lemma 24. In the setting of Theorem 5, there exist (ℎ𝑙)𝑙∈N (not depending on 𝐻) uniformly
supremum-norm bounded such that 𝑂𝐿0 = (𝐸𝐻 [ℎ𝑙(𝑋1) | 𝜃1 = 𝑗]𝑙≤𝐿0,𝑗≤𝐽) ∈ R𝐿0×𝐽 satisfies

𝜎𝐽(𝑂𝐿0) ≥ 𝐶,

uniformly in 𝐿0 ≥ 𝐿, for some 𝐶,𝐿 depending on the parameters 𝑓𝑗 , 𝑗 ≤ 𝐽 .

Proof For 𝐿 > 𝐿′, 𝜎𝐽(𝑂𝐿) > 𝜎𝐽(𝑂𝐿′) because 𝑂𝐿′ is a submatrix of 𝑂𝐿 (see for example Stewart
and Sun, 1990, Chapter 1, Theorem 4.4). So it suffices to show that 𝜎𝐽(𝑂𝐿) > 0 for some 𝐿.

Choose a countable family of sets 𝒜 = {𝐴1, . . .} generating the Borel 𝜎-algebra on R, for example
𝒜 = {(−∞, 𝑞) : 𝑞 ∈ Q}, and let ℎ𝑙 = 1𝐴𝑙

. Suppose for a contradiction that 𝜎𝐽(𝑂𝐿) = 0 for all
𝐿 ∈ N, or, put another way, that the 𝐽 vectors (⟨ℎ𝑙, 𝑓𝑗⟩𝑙≤𝐿) ∈ R𝐿, 𝑗 ≤ 𝐽 are linearly dependent
for all 𝐿 ∈ N, so that there exist 𝑎𝐿1 , . . . , 𝑎𝐿𝐽 ∈ [−1, 1] for which

∑︀
𝑗 |𝑎𝐿𝑗 | = 1 and

∑︀
𝑗 𝑎

𝐿
𝑗 ⟨ℎ𝑙, 𝑓𝑗⟩ = 0

for all 𝑙 ≤ 𝐿. By Bolzano–Weierstrass, there is a sequence 𝐿𝑛 → ∞ such that for each 𝑗 ≤ 𝐽 , 𝑎𝐿𝑛
𝑗

converges to some 𝑎∞
𝑗 , and note that necessarily (𝑎∞

𝑗 )𝑗≤𝐽 is not the zero vector. For each 𝑙 ∈ N, we
have that

⟨ℎ𝑙,
∑︁
𝑗≤𝐽

𝑎∞
𝑗 𝑓𝑗⟩ =

∑︁
𝑗≤𝐽

𝑎∞
𝑗 ⟨ℎ𝑙, 𝑓𝑗⟩ = lim

𝑛→∞

∑︁
𝑗≤𝐽

𝑎𝐿𝑛
𝑗 ⟨ℎ𝑙, 𝑓𝑗⟩ = 0.

Since span{ℎ𝑙 : 𝑙 ∈ N} corresponds to the simple functions, which are dense in 𝐿2, and since
∑︀
𝑗 𝑎

∞
𝑗 𝑓𝑗

is a continuous function, the latter is the zero function, contradicting that the functions 𝑓𝑗 , 𝑗 ≤ 𝐽
are linearly independent.

Lemma 25. Under the assumptions of Theorem 5, define 𝑃 and (�̂�𝑥, �̂�𝑥, 𝑥 ∈ R) as in Algorithm 1.
Then

a. The map 𝑥 ↦→ �̂�𝑥 is continuous. For any 𝜅 > 0, there exists 𝑐 = 𝑐(𝜅,ℋ) such that the event

𝒜 = {‖𝑃 − 𝑃‖ ≤ 𝑐𝐿0𝑟𝑁 , sup
𝑥∈R

‖�̂�𝑥 −𝑀𝑥‖ ≤ 𝑐𝐿2
0𝑟𝑁}

(is measurable and) has probability at least 1 −𝑁−𝜅 for 𝑁 large.

b. On 𝒜, for 𝑁 large enough 𝑃 has rank 𝐽 , and the matrices

�̃�𝑥 = (𝑉 ᵀ𝑃𝑉 )−1𝑉 ᵀ𝑀𝑥𝑉 , 𝑥 ∈ R, (53)

are well defined.
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c. On 𝒜, for some 𝐶 > 0 depending on both the constant 𝑐 of 𝒜 and on ℋ, we have for 𝑁 large
enough

sup
𝑥∈R

max(‖�̂�𝑥‖, ‖�̃�𝑥‖) ≤ 𝐶𝐿
1/2
0 , (54)

sup
𝑥∈R

‖�̃�𝑥 − �̂�𝑥‖ ≤ 𝐶𝐿2
0𝑟𝑁 . (55)

Proof Lemma 29 and Lemma 30 together imply that for suitable 𝑐 = 𝑐(𝜅,ℋ),

Π𝐻(‖𝑃 − 𝑃‖ ≤ 𝑐𝐿0𝑟𝑁 , sup
𝑥∈Q

‖�̂�𝑥 −𝑀𝑥‖ ≤ 𝑐𝐿2
0𝑟𝑁 ) ≥ 1 −𝑁−𝜅.

[In fact a union bound yields this with 2𝑁−𝜅 in place of 𝑁−𝜅, but the factor 2 can be removed by
initially considering some 𝜅′ > 𝜅.] We prove the claimed continuity of the map 𝑥 ↦→ �̂�𝑥; it will
follow that

{sup
𝑥∈Q

‖�̂�𝑥 −𝑀𝑥‖ ≤ 𝑐𝐿2
0𝑟𝑁} = {sup

𝑥∈R
‖�̂�𝑥 −𝑀𝑥‖ ≤ 𝑐𝐿2

0𝑟𝑁},

which implies measurability and the probability bound for 𝒜. This continuity results from the
assumed Lipschitz continuity of 𝐾. Indeed, if Λ is the Lipschitz constant for 𝐾, observe that if
|𝑥− 𝑦| < 𝛿 then for any 𝑛

|𝐾𝐿(𝑥,𝑋𝑛+1) −𝐾𝐿(𝑦,𝑋𝑛+1)| ≤ sup
𝑡∈R

|𝐾𝐿(𝑥, 𝑡) −𝐾𝐿(𝑦, 𝑡)| ≤ sup
|𝑢−𝑣|<2𝐿𝛿

2𝐿|𝐾(𝑢) −𝐾(𝑣)| ≤ 22𝐿Λ𝛿,

hence, for some 𝐶 = 𝐶(ℋ),

‖�̂�𝑥 − �̂�𝑦‖ ≤ 𝐿0
𝑁1/2 max

𝑙
‖ℎ𝑙‖2

∞ max
𝑛≤𝑁

|𝐾𝐿(𝑥,𝑋𝑛+1) −𝐾𝐿(𝑦,𝑋𝑛+1)| ≤ 𝐶
𝐿022𝐿

𝑁1/2 |𝑥− 𝑦|.

Next, in view of the assumption on 𝑂 made in the algorithm, Lemma 34 implies that 𝜎𝐽(𝑃 ) is
bounded away from zero for large 𝑁 and consequently by Lemma 35a, on 𝒜 and for 𝑁 large we
have that 𝑃 is of rank 𝐽 and that 𝑉 ᵀ𝑃𝑉 is invertible (recall that 𝐿5

0𝑟𝑁 → 0 by assumption, so that
the condition of Lemma 35 – that ‖𝑃 − 𝑃‖ < 𝜎𝐽(𝑃 )/3 – holds eventually). Then Lemma 11 tells
us that �̃�𝑥 is well defined for each 𝑥 ∈ R and can be expressed as (𝑄𝑂ᵀ𝑉 )−1𝐷𝑥𝑄𝑂ᵀ𝑉 . It follows,
using Lemma 35b and eq. (27), that on 𝒜, for a constant 𝑐 = 𝑐(ℋ) and any 𝑥 ∈ R we have

‖�̃�𝑥‖ ≤ 𝜅(𝑄𝑂ᵀ𝑉 ) max
𝑗

|𝐾𝐿[𝑓𝑗 ](𝑥)| ≤ 𝑐𝐿
1/2
0

for 𝑁 large (recall 𝜅(𝐴) := ‖𝐴‖‖𝐴−1‖ is the condition number of a matrix).
Finally, Lemma 35c tells us that on 𝒜, for 𝑁 large enough that 𝑐𝐿0𝑟𝑁 < 𝜎𝐽(𝑃 )/3,

‖�̃�𝑥 − �̂�𝑥‖ ≤ 3.2
[︁‖�̂�𝑥 −𝑀𝑥‖

𝜎𝐽(𝑃 ) + ‖𝑀𝑥‖‖𝑃 − 𝑃‖
𝜎𝐽(𝑃 )2

]︁
, ∀𝑥 ∈ R.

Noting that ‖𝑀𝑥‖ ≤ 𝑐𝐿0 for some 𝑐 = 𝑐(ℋ) by Lemma 34, we deduce (55). The bound for ‖�̂�𝑥‖
then follows from the bound for ‖�̃�𝑥‖ by the triangle inequality.

Lemma 26. Recall sep(𝐵) denotes the eigen-separation of a matrix 𝐵, in that if 𝐵 has eigenvalues
𝜆1, . . . , 𝜆𝐽 then sep(𝐵) = min𝑗 ̸=𝑗′ |𝜆𝑗 −𝜆𝑗′ |. On the event 𝒜 of Lemma 25, define 𝐵𝑎,𝑢 ≡ �̃�𝑎,𝑢 as in
Algorithm 1 for 𝑉 = 𝑉 :

�̃�𝑎,𝑢 =
∑︁

𝑎𝑖�̃�
𝑢𝑖 , �̃�𝑥 = (𝑉 ᵀ𝑃𝑉 )−1𝑉 ᵀ𝑀𝑥𝑉 .
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Define

𝒟𝑁 =
{︁ 𝑗

2𝑁 : 𝑗 ∈ Z
}︁

∩ [−𝑁,𝑁 ],

D𝑁 = {(𝑎, 𝑢) ∈ 𝒟𝐽(𝐽−1)/2
𝑁 × 𝒟𝐽(𝐽−1)/2

𝑁 :
∑︁
𝑖

|𝑎𝑖| ≤ 1}.

Then there exists a constant 𝑐 depending only on 𝑓1, . . . , 𝑓𝐽 and (strictly) positive when they are all
distinct such that, on 𝒜,

max{sep(�̃�𝑎,𝑢) : (𝑎, 𝑢) ∈ D𝑁} ≥ 𝑐,

for all 𝑁 large.

Remark. Recall, as remarked after Algorithm 1, that proving this result for 𝑉 = 𝑉 implies it holds
for any 𝑉 such that 𝐵𝑥 = (𝑉 ᵀ𝑃𝑉 )−1(𝑉 ᵀ𝑀𝑥𝑉 ) is well-defined.
Proof In view of Lemma 11, �̃�𝑎,𝑢, being a linear combination of simultaneously diagonalisable
matrices, is diagonalisable for any 𝑎, 𝑢, with eigenvalues

(
∑︁
𝑖

𝑎𝑖𝐾𝐿[𝑓𝑗 ](𝑢𝑖))𝑗≤𝐽 .

Recall that ‖𝐾𝐿[𝑓𝑗 ] − 𝑓𝑗‖∞ → 0 as 𝐿 = 𝐿(𝑁) → ∞ by (26). It follows by the triangle inequality
that

max
D𝑁

|
∑︁
𝑖

𝑎𝑖(𝐾𝐿[𝑓𝑗 ](𝑢𝑖) − 𝑓𝑗(𝑢𝑖))| → 0,

hence

max
D𝑁

sep(�̃�𝑎,𝑢) = max
D𝑁

min
𝑗 ̸=𝑗′

⃒⃒⃒∑︁
𝑖

𝑎𝑖𝐾𝐿[𝑓𝑗 − 𝑓𝑗′ ](𝑢𝑖)
⃒⃒⃒
> 1

2 max
D𝑁

min
𝑗 ̸=𝑗′

⃒⃒⃒∑︁
𝑖

𝑎𝑖
(︀
𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖)

)︀⃒⃒⃒
, (56)

for 𝑁 large, provided this latter quantity is strictly positive.
Next, let 𝑈𝑁 denote [−𝑁,𝑁 ]𝐽(𝐽−1)/2. Observe that, since 𝑓𝑗 ∈ 𝐶𝑠(R) for each 𝑗 ≤ 𝐽 ,

(𝑎, 𝑢) ↦→ min
𝑗 ̸=𝑗′

|
∑︁
𝑖

𝑎𝑖(𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖))|

is uniformly continuous on R𝐽(𝐽−1)/2 × R𝐽(𝐽−1)/2, so that

1
2 max

(𝑎,𝑢)∈D𝑁

min
𝑗 ̸=𝑗′

⃒⃒⃒∑︁
𝑖

𝑎𝑖
(︀
𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖)

)︀⃒⃒⃒
> 1

4 sup
𝑎

sup
𝑢∈𝑈𝑁

min
𝑗 ̸=𝑗′

⃒⃒⃒∑︁
𝑖

𝑎𝑖
(︀
𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖)

)︀⃒⃒⃒
(57)

for 𝑁 large, provided this latter quantity is strictly positive. The supremum on the right can be
extended: while at first we must take the supremum over (𝑎 such that

∑︀
|𝑎𝑖| ≤ 1 and) 𝑢 ∈ 𝑈𝑁 , the

result remains true taking the supremum instead over all 𝑢 ∈ R𝐽(𝐽−1)/2, at least for 𝑁 large, using
that 𝑓𝑗(𝑢) → 0 as 𝑢 → ∞. [That is, when the right side of (57) is strictly positive, the supremum
over 𝑢 ∈ R𝐽(𝐽−1)/2 is attained on 𝑈𝑁 for 𝑁 large.] We now prove that

sup
𝑎,𝑢

min
𝑗 ̸=𝑗′

⃒⃒⃒∑︁
𝑖

𝑎𝑖
(︀
𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖)

)︀⃒⃒⃒
> 0.

Choose for each pair 𝑗 ̸= 𝑗′ some 𝑥 ∈ R such that 𝑓𝑗(𝑥) ̸= 𝑓𝑗′(𝑥), and collect these 𝑥 into the
vector 𝑢. For each 𝑗 ̸= 𝑗′, writing 𝑖 for an index such that 𝑓𝑗(𝑢𝑖) ̸= 𝑓𝑗′(𝑢𝑖), the set {𝑣 ∈ R𝐽(𝐽−1)/2 :
⟨𝑣, 𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖)⟩ = 0} is a proper subspace of R𝐽(𝐽−1)/2, so the union over these 𝐽(𝐽 − 1)/2
spaces is not equal to R𝐽(𝐽−1)/2 (for example it has Lebesgue measure zero) and we may choose 𝑎
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in the complement of the union. Scale invariance means that moreover we may assume 𝑎 satisfies∑︀
𝑖|𝑎𝑖| = 1. Then |

∑︀
𝑖 𝑎𝑖(𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖))| > 0 for each 𝑗 ̸= 𝑗′, as required.

Finally, combining also with (56) and (57) we deduce that

max(sep(�̃�𝑎,𝑢) : (𝑎, 𝑢) ∈ D𝑁 ) > 1
4 sup
𝑎,𝑢

min
𝑗 ̸=𝑗′

⃒⃒⃒∑︁
𝑖

𝑎𝑖(𝑓𝑗(𝑢𝑖) − 𝑓𝑗′(𝑢𝑖))
⃒⃒⃒
> 0,

concluding the proof.

Lemma 27. In the setting of Theorem 5, let 𝒜 be the event of Lemma 25. Define �̂�𝑥 = �̂�𝑥,𝐿0,𝐿

as in Algorithm 1 and �̃�𝑥 = �̃�𝑥,𝐿0,𝐿 as in (53). For 𝑎, 𝑢 ∈ R𝐽(𝐽−1)/2 define �̂�𝑎,𝑢 =
∑︀
𝑎𝑖�̂�

𝑢𝑖 ,
�̃�𝑎,𝑢 =

∑︀
𝑎𝑖�̃�

𝑢𝑖 . Then there exists a constant 𝑐 = 𝑐(ℋ) > 0 such that, for �̂�, �̂� as in Algorithm 1,
on the event 𝒜 we have

sep(�̂��̂�,�̂�) > 𝑐, (58)
sep(�̃��̂�,�̂�) > 𝑐, (59)

for 𝑁 large. Note that (58) implies in particular that �̂��̂�,�̂� has 𝐽 distinct eigenvalues and so is
diagonalisable.

Proof By Lemma 25, on 𝒜 the matrices �̂�𝑥, �̃�𝑥 are well-defined and satisfy for some 𝐶 = 𝐶(ℋ)

sup
𝑥

‖�̃�𝑥 − �̂�𝑥‖ ≤ 𝐶𝐿2
0𝑟𝑁 , sup

𝑥
max(‖�̃�𝑥‖, ‖�̂�𝑥‖) ≤ 𝐶𝐿

1/2
0 .

By the triangle inequality, we deduce that

‖�̂�𝑎,𝑢‖ ≤
∑︁

|𝑎𝑖|‖�̂�𝑢𝑖‖ ≤ sup
𝑥

‖�̂�𝑥‖ ≤ 𝐶𝐿
1/2
0 ,

and similarly ‖�̃�𝑎,𝑢‖ ≤ 𝐶𝐿
1/2
0 . Let (𝑎𝑁 , 𝑢𝑁 ) ∈ argmaxD𝑁

(sep(�̃�𝑎,𝑢)) and recall by assumption that

sep(�̃�𝑎𝑁 ,𝑢𝑁 ) > 𝑐 uniformly in 𝑁 large enough, for some 𝑐 > 0.

[As noted in the remark after Lemma 26, choosing 𝑉 = 𝑉 in Algorithm 1, and hence replacing 𝐵𝑥
defined therein with �̃�𝑥, is valid on 𝒜.] We apply the Ostrowski–Elsner theorem (Theorem 36) to
𝐴 = �̂�𝑎,𝑢, 𝐵 = �̃�𝑎,𝑢 to see for a constant 𝐶 = 𝐶(ℋ) that for any 𝑎, 𝑢 we have

min
𝜏

max
𝑗

|𝜆𝜏(𝑗)(�̃�𝑎,𝑢) − 𝜆𝑗(�̂�𝑎,𝑢)| ≤ 𝐶𝐿
(𝐽−1)/(2𝐽)
0 (𝐿2

0𝑟𝑁 )1/𝐽 ,

where 𝜆𝑗 , 𝑗 ≤ 𝐽 are maps taking matrices to their eigenvalues. This last expression tends to zero as
𝑁 → ∞ (since by assumption 𝐿

(𝐽+3)/2
0 𝑟𝑁 → 0) and in particular it is smaller than sep(�̃�𝑎𝑁 ,𝑢𝑁 )/5

for 𝑁 large.
By the triangle inequality we deduce that on 𝒜,

sep(�̂�𝑎𝑁 ,𝑢𝑁 ) ≥ sep(�̃�𝑎𝑁 ,𝑢𝑁 ) − 2 sup
𝑎,𝑢

min
𝜏

max
𝑗

|𝜆𝜏(𝑗)(�̃�𝑎,𝑢) − 𝜆𝑗(�̂�𝑎,𝑢)| ≥ (3/5) sep(�̃�𝑎𝑁 ,𝑢𝑁 ).

It follows by definition of �̂�, �̂� that

sep(�̂��̂�,�̂�) ≥ sep(�̂�𝑎𝑁 ,𝑢𝑁 ) ≥ (3/5) sep(�̃�𝑎𝑁 ,𝑢𝑁 ),

proving (58). Applying the triangle inequality again we conclude that

sep(�̃��̂�,�̂�) ≥ (1/5) sep(�̃�𝑎𝑁 ,𝑢𝑁 ),

proving (59).
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B.2 Concentration of Empirical Estimators

We note the following concentration results for Markov chains, adapted as in Proposition 13 of
De Castro et al. (2016) from results of Paulin (2015), which will allow us to control the errors of
the empirical estimators 𝑃 and �̂�𝑥. The pseudo-spectral gap of a chain is defined in Paulin (2015),
wherein it is noted that its reciprocal is equivalent to the mixing time. The bracketing numbers
𝑁[](𝒯 , ‖·‖𝐿2(𝑃 ), 𝜀) are defined as the smallest number of pairs of functions (𝑓, 𝑓) such that every
𝑔 ∈ 𝒯 is bracketed by one of the pairs, where (𝑓, 𝑓) brackets 𝑔 if 𝑓 ≤ 𝑔 ≤ 𝑓 pointwise.

Lemma 28. Let 𝑌 be a stationary Markov chain taking values in 𝒴 with pseudo-spectral gap 𝛾ps > 0,
with law denoted 𝑃 . Let 𝒯 be some countable class of real valued and measurable functions on 𝒴.
Assume there exist 𝜎, 𝑏 > 0 such that for all 𝑡 ∈ 𝒯 , ‖𝑡‖𝐿2(𝑃 ) ≤ 𝜎 and ‖𝑡‖∞ ≤ 𝑏. Suppose that the
𝐿2(𝑃 ) bracketing entropy

𝐻[](𝒯 , ‖·‖𝐿2(𝑃 ), 𝜀) := log𝑁[](𝒯 , ‖·‖𝐿2(𝑃 ), 𝜀),

is upper bounded by some �̄�(𝜀), achievable using brackets of 𝐿∞-diameter at most 𝑏. Then for fixed
𝑡 ∈ 𝒯 we have

𝑃 (|
∑︁

(ℎ(𝑌𝑖) − 𝐸ℎ(𝑌1))| ≥ 𝑥) ≤ 2 exp
(︁

− 𝑥2𝛾ps
8(𝑁 + 1/𝛾ps)𝜎2 + 20𝑏𝑥

)︁
, (60)

and there exists 𝐶 > 0 depending only on a lower bound for 𝛾ps such that

𝑃
(︁

sup
𝑡∈𝒯

𝑁∑︁
𝑛=1

(𝑡(𝑌𝑛) − 𝐸𝑡) ≥ 𝐶[𝐴+ 𝜎
√
𝑁𝑥+ 𝑏𝑥]

)︁
≤ exp(−𝑥), (61)

where
𝐴 =

√
𝑁

∫︁ 𝜎

0

√︁
�̄�(𝑢) ∧𝑁 d𝑢+ (𝑏+ 𝜎)�̄�(𝜎).

Proof The first claim is proved by Paulin (2015, Theorem 3.4) (but note there is an updated
version of the paper on arXiv). For the second, observe that the proof of the same theorem gives
the following bound for the Laplace transform of 𝑆 =

∑︀
(𝑡(𝑌𝑛) − 𝐸𝑡)/𝑏:

𝐸 exp(𝜆𝑆) ≤ exp
(︁2(𝑁 + 1/𝛾ps)(𝜎2/𝑏2)

𝛾ps
𝜆2

(︁
1 − 10𝜆

𝛾ps

)︁−1)︁
. (62)

One now appeals to Theorem 6.8 of Massart (2007) and the consequent Corollary 6.9. While the
theorem is stated for independent random variables, the proof uses this condition only when applying
Lemma 6.6 of the same reference, a version of which holds also in the current setting thanks to (62).

Lemma 29. In the setting of Theorem 5 and defining 𝑃, 𝑃 as in Algorithm 1, for any 𝜅 > 0 there
exists 𝐶 = 𝐶(𝜅,ℋ) such that

Π𝐻

(︁
‖𝑃 − 𝑃‖ > 𝐶𝐿0(𝑁/ log𝑁)−1/2

)︁
≤ 𝑁−𝜅.

Proof Noting that 𝑌𝑛 = (𝑋𝑛, 𝑋𝑛+1, 𝑋𝑛+2, 𝜃𝑛, 𝜃𝑛+1, 𝜃𝑛+2) defines a stationary Markov chain and
upper bounding the 𝐿2-norm by the supremum norm, we apply (60) to deduce that

Π𝐻

(︁⃒⃒⃒ 1
𝑁

𝑁∑︁
𝑖=1

ℎ𝑖𝑗(𝑌𝑛) − 𝐸𝐻 [ℎ𝑖𝑗 ]
⃒⃒⃒
> 𝐶

(︁ log𝑁
𝑁

)︁1/2)︁
≤2 exp

(︁
− 𝐶2𝛾ps𝑁 log𝑁

8(𝑁 + 1/𝛾ps)‖ℎ𝑖𝑗‖2
∞ + 20𝐶(𝑁 log𝑁)1/2‖ℎ𝑖𝑗‖∞

)︁
,
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where ℎ𝑖𝑗(𝑌𝑛) = ℎ𝑖(𝑌𝑛,1)ℎ𝑗(𝑌𝑛,3) and where 𝛾ps is the pseudo-spectral gap of the chain 𝑌𝑛. We note
that ‖ℎ𝑖𝑗‖2

∞ ≤ ‖ℎ𝑖‖2
∞‖ℎ𝑗‖2

∞ is bounded by assumption. The pseudo spectral gap is also bounded:
by Proposition 3.4 of Paulin (2015) its reciprocal is controlled up to a constant by the mixing time
of the Markov chain 𝑌𝑛, which is equal to the mixing time of the chain (𝜃𝑛, 𝜃𝑛+1, 𝜃𝑛+2)𝑛. This latter
quantity is bounded since the assumption that 𝑄 is irreducible and aperiodic on a finite state space
implies that 𝜃 mixes exponentially, at a rate governed (again, in view of Paulin 2015, Proposition
3.4) by the pseudo spectral gap of 𝑄 itself and min𝑗 𝜋𝑗 .

We deduce that for a constant 𝑐 = 𝑐(ℋ) we have

Π𝐻

(︁⃒⃒⃒ 1
𝑁

∑︁
ℎ𝑖𝑗(𝑌𝑛) − 𝐸𝐻 [ℎ𝑖𝑗 ]

⃒⃒⃒
> 𝐶

(︁ log𝑁
𝑁

)︁1/2)︁
≤ 2 exp(−𝐶2𝑐 log(𝑁)).

For any 𝜅 > 0, choosing 𝐶 = 𝐶(𝜅, 𝑐) large enough, this last probability is smaller than 𝑁−𝜅 as
claimed.

Lemma 30. In the setting of Theorem 5, define 𝑀𝑥 = 𝑀𝑥,𝐿0,𝐿, �̂�𝑥 = �̂�𝑥,𝐿0,𝐿 as in Algorithm 1,
and recall that we chose 𝐿 such that 2𝐿 ≍ (𝑁/ log𝑁)1/(1+2𝑠) and assumed that 𝐿5

0𝑟𝑁 → 0. For any
𝜅 > 0 there exists 𝐶 = 𝐶(𝜅,ℋ) such that

Π𝐻

(︁
sup
𝑥∈Q

‖�̂�𝑥 −𝑀𝑥‖ ≥ 𝐶𝐿2
0(𝑁/ log𝑁)−𝑠/(1+2𝑠)

)︁
≤ 𝑁−𝜅.

Proof As in Lemma 29 we note that the pseudo-spectral gap of the chain

𝑌𝑛 = (𝑋𝑛, 𝑋𝑛+1, 𝑋𝑛+2, 𝜃𝑛, 𝜃𝑛+1, 𝜃𝑛+2)

is bounded away from zero provided the same is true of min𝑗 𝜋𝑗 and the pseudo-spectral gap of
𝑄 itself, which holds by Assumption C’ (see also Section 4.3). We apply Lemma 28 to the family
𝒯 = {±ℎ𝑖⊗𝐾𝐿(𝑥, ·)⊗ℎ𝑗 : 𝑖, 𝑗 ≤ 𝐿0, 𝑥 ∈ Q}. Recall we assume that max(‖ℎ𝑙‖∞ : 𝑙 ≤ 𝐿0) is bounded
independently of 𝐿0. Lemma 31 implies, for some 𝐶 = 𝐶(ℋ), the bracketing entropy bound

𝐻[](𝒯 , ‖·‖𝐿2(Π𝐻 ), 𝜀) ≤ �̄�(𝜀) = 𝐶 log(𝐿02𝐿𝜀−1), 𝜀 ≤ 𝜎,

where we may take
𝑏 = 𝜎2 = 𝐶2𝐿,

with the bound on 𝜎2 following from the calculations

sup
𝑥∈Q,𝑖,𝑗≤𝐿0

‖ℎ𝑖 ⊗𝐾𝐿(𝑥, ·) ⊗ ℎ𝑗‖2
𝐿2(Π𝐻 ) ≤ max

𝑖≤𝐿0
‖ℎ𝑖‖4

∞‖𝑓𝜋‖∞ sup
𝑥∈Q

∫︁
𝐾𝐿(𝑥, 𝑦)2 d𝑦,∫︁

𝐾𝐿(𝑥, 𝑦)2 d𝑦 = 22𝐿
∫︁
𝐾(2𝐿(𝑥− 𝑦))2 d𝑦 = 2𝐿

∫︁
𝐾(𝑧)2 d𝑧 ≤ 2𝐿+1‖𝐾‖2

∞.

An application of Jensen’s inequality yields the standard bound∫︁ 𝑥

0

√︀
log(1/𝑢) d𝑢 ≤ 𝑥

√︀
1 + log(1/𝑥) ≤ 𝑥

(︁
1 +

√︀
log(1/𝑥)

)︁
. (63)

Performing suitable substitutions we deduce that∫︁ 𝜎

0

√︁
log(𝐿1/4

0 2𝐿/𝑢) d𝑢 = 𝐿
1/4
0 2𝐿

∫︁ 𝜎/(2𝐿𝐿
1/4
0 )

0

√︀
log(1/𝑣)d𝑣 ≤ 𝜎

(︁
1 +

√︁
log(𝐿1/4

0 2𝐿/𝜎)
)︁

≤ 𝐶
√
𝐿2𝐿,
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for some constant 𝐶, since by assumption 𝐿5
0𝑟𝑁 → 0, which implies that log(𝐿0) ≤ log𝑁 ≍ 𝐿.

Noting that (𝑏+ 𝜎)�̄�(𝜎) ≤ 𝐶𝐿2𝐿 for some 𝐶, we deduce that

Π𝐻

(︁
sup
𝑡∈𝒯

𝑁∑︁
𝑛=1

(︀
𝑡(𝑌𝑛) − 𝐸𝐻𝑡

)︀
≥ 𝐶[

√
𝑁2𝐿(

√
𝐿+

√︀
𝜅 log𝑁) + 2𝐿(𝐿+ 𝜅 log𝑁)]

)︁
≤ exp(−𝜅 log𝑁).

Since 2𝐿 ≍ (𝑁/ log𝑁)1/(1+2𝑠) we find, bounding the operator norm by the 𝐿2
0 times the maximum

of the entries, that as claimed, for some 𝐶 ′ = 𝐶 ′(𝜅) we have

Π𝐻

(︁
sup
𝑥∈Q

‖�̂�𝑥 −𝑀𝑥‖ ≥ 𝐶 ′𝐿2
0(𝑁/ log𝑁)−𝑠/(1+2𝑠)

)︁
≤ 𝑁−𝜅. (64)

Recall from Assumption B that 𝑓𝜋 has a bounded 𝜈th absolute moment. Recall from Section 4.3
the definition of a constant 𝐶 = 𝐶(ℋ).

Lemma 31. Let 𝐾𝐿 be as in (25), let (ℎ𝑙 : 𝑙 ≤ 𝐿0) be as in Algorithm 1, and define 𝒯 = {ℎ𝑖 ⊗
𝐾𝐿(𝑡, ·) ⊗ℎ𝑗 : 𝑖, 𝑗 ≤ 𝐿0, 𝑡 ∈ R}. Then there exists a constant 𝐶 = 𝐶(ℋ) > 0 such that, with brackets
whose 𝐿∞-diameter is at most 𝐶2𝐿, one achieves the following bound for the bracketing numbers
for 𝜀 ≤ 𝐶2𝐿:

𝑁[](𝒯 , ‖·‖𝐿2(Π𝐻 ), 𝜀) ≤ 𝐶𝐿2
0 max(22𝐿(1+1/𝜈)𝜀−(1+2/𝜈), 1). (65)

Proof The kernel 𝐾 (from which 𝐾𝐿 is constructed) is assumed to be bounded, continuous,
Lipschitz, and supported in [−1, 1], see before (25).

Let 𝒰 = {𝐾𝐿(𝑡, ·) : 𝑡 ∈ R}. Then writing ℎ = max𝑙‖ℎ𝑙‖∞,

𝑁[](𝒯 , ‖·‖𝐿2(Π𝐻 ), 4𝜀ℎ2) ≤ 𝐿2
0𝑁[](𝒰 , ‖·‖𝐿2(Π𝐻 ), 𝜀) (66)

since given brackets [𝑣𝑘, 𝑣𝑘], 𝑘 ≤ 𝑁𝒰 of 𝐿2(Π𝐻)-diameter at most 𝜀 for 𝒰 , we can define

𝑡𝑖𝑘𝑗 = ℎ𝑖 ⊗ 𝑣𝑘 ⊗ ℎ𝑗1ℎ𝑖⊗1⊗ℎ𝑗≥0 + ℎ𝑖 ⊗ 𝑣𝑘 ⊗ ℎ𝑗1ℎ𝑖⊗1⊗ℎ𝑗<0,

𝑡𝑖𝑘𝑗 = ℎ𝑖 ⊗ 𝑣𝑘 ⊗ ℎ𝑗1ℎ𝑖⊗1⊗ℎ𝑗≥0 + ℎ𝑖 ⊗ 𝑣𝑘 ⊗ ℎ𝑗1ℎ𝑖⊗1⊗ℎ𝑗<0

to obtain brackets [𝑡𝑖𝑘𝑗 , 𝑡𝑖𝑘𝑗 ], 𝑖, 𝑗 ≤ 𝐿0, 𝑘 ≤ 𝑁𝒰 for 𝒯 whose 𝐿2(Π𝐻)-diameter is at most 4ℎ2𝜀 and
whose 𝐿∞-diameter is at most ℎ2 times that of the brackets for 𝒰 .

Under Assumption B, there exists a constant 𝐶 = 𝐶(ℋ) > 0 such that for 𝑇𝜀 = 𝐶2(2𝐿+2)/𝜈𝜀−2/𝜈

we have Π𝐻(|𝑋1| > 𝑇𝜀) ≤ (‖𝐾‖∞2𝐿+1)−2𝜀2. Observe that for any 𝑡 such that |𝑡| > 𝑇𝜀 + 1, the
support of 𝐾𝐿(𝑡, ·) does not intersect [−𝑇𝜀, 𝑇𝜀]. It follows for any such 𝑡 that 𝑣 = −‖𝐾‖∞2𝐿1[−𝑇𝜀,𝑇𝜀]𝑐

and 𝑣 = ‖𝐾‖∞2𝐿1[−𝑇𝜀,𝑇𝜀]𝑐 bracket 𝐾𝐿(𝑡, ·); the 𝐿2(Π𝐻)-diameter of this bracket is at most 𝜀 and
the 𝐿∞-diameter at most 2𝐿+1‖𝐾‖∞. Writing 𝒰𝜀 = {𝐾𝐿(𝑡, ·) : |𝑡| ≤ 𝑇𝜀 + 1}, we deduce that

𝑁[](𝒰 , ‖·‖𝐿2(Π𝐻 ), 𝜀) ≤ 𝑁[](𝒰𝜀, ‖·‖𝐿2(Π𝐻 ), 𝜀) + 1. (67)

To bound the right side, observe that |𝐾𝐿(𝑡, 𝑥) −𝐾𝐿(𝑠, 𝑥)| ≤ 22𝐿Λ|𝑠− 𝑡| for each 𝑠, 𝑡, 𝑥 ∈ R, where
Λ denotes the Lipschitz constant of 𝐾. Since the set [−𝑇𝜀 − 1, 𝑇𝜀 + 1] is compact, we deduce that
for a constant 𝐶 = 𝐶(ℋ)

𝑁[](𝒰𝜀, ‖·‖𝐿2(Π𝐻 ), 𝜀) ≤ 𝐶 max
(︀
22𝐿(1+1/𝜈)𝜀−(1+2/𝜈), 1

)︀
,

see for example Theorem 2.7.11 in van der Vaart and Wellner (1996) (applied with 22𝐿+1Λ𝜀 in place
of 𝜀, and in view of the proof of which the brackets can be taken to have 𝐿∞-diameter at most
𝜀 ≤ 𝐶2𝐿). Together with (66) and (67), this yields the result.
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B.3 Matrix Approximation Theory Arguments

Lemma 32. Define 𝒜 as in Lemma 25. In the setting of Theorem 5, define �̂� as in Algorithm 1 for
2𝐿 ≍ (𝑁/ log𝑁)1/(1+2𝑠), and define �̃� to have columns equal to the normalised columns of 𝑄𝑂ᵀ𝑉 .
Then, on 𝒜, �̂� is well-defined and

‖�̂�− �̃�𝜏‖ ≤ ‖�̂�− �̃�𝜏‖𝐹 ≤ 𝐶𝐿
7/2
0 𝑟𝑁 ,

for some 𝐶 = 𝐶(ℋ) and some permutation 𝜏 , where �̃�𝜏 is obtained by permuting the columns of �̃�
according to 𝜏 .

Remark. Strictly speaking the columns of �̂�, as eigenvectors of �̂��̂�,�̂�, are defined only up to signs, and
this result holds only for one set of choices of signs. However, the estimators 𝑓𝐿𝑗 (𝑥) = (�̂�−1�̂�𝑥�̂�)𝑗𝑗
are unaffected by the choices of signs, hence we may assume without loss of generality that these
signs are chosen appropriately for the lemma to hold.
Proof Lemma 27 tells us on 𝒜 that �̂��̂�,�̂� is diagonalisable, so that �̂� is well defined, and moreover
that

min
(︀
sep(�̂��̂�,�̂�), sep(�̃��̂�,�̂�)

)︀
> 𝑐,

for some constant 𝑐 = 𝑐(ℋ) > 0. Now we apply Lemma C.3 from Anandkumar et al. (2012), which
says, as a consequence of the Bauer–Fike theorem, that if

𝜀 = 𝜅(�̃�) sep(�̃��̂�,�̂�)−1‖�̂��̂�,�̂� − �̃��̂�,�̂�‖

is smaller than 1/2, then there exists a permutation 𝜏 such that

‖�̂�− �̃�𝜏‖ ≤ ‖�̂�− �̃�𝜏‖𝐹 ≤ 4𝐽1/2(𝐽 − 1)‖�̃�−1‖𝜀.

By construction
∑︀

|�̂�𝑖| ≤ 1, hence by the triangle inequality and Lemma 25, on 𝒜 we have

‖�̂��̂�,�̂� − �̃��̂�,�̂�‖ ≤
∑︁
𝑖

|�̂�𝑖|‖�̂��̂�𝑖 − �̃��̂�𝑖‖ ≤ sup
𝑥

‖�̂�𝑥 − �̃�𝑥‖ ≤ 𝐶𝐿2
0𝑟𝑁 ,

for some 𝐶 = 𝐶(ℋ). By Lemma 35b, we have 𝜅(�̃�) ≤ 𝐶𝐿0 and ‖�̃�−1‖ ≤ 𝐶𝐿
1/2
0 . We deduce that

𝜀 → 0 on 𝒜, hence is smaller than 1/2 for large 𝑁 , and the result follows.

One could directly use the Ostrowski–Elsner theorem (Theorem 36) to obtain a version of Theo-
rem 5 with a suboptimal estimation rate. We here go through the slightly circuitous route of using
Theorem 36 to prove an eigen-separation condition (i.e. Lemma 27) and deducing Lemma 32 because
we may then apply the following lemma, adapted from Lemma C.4 of Anandkumar et al. (2012), to
obtain a near-minimax rate instead.

Lemma 33. Suppose (𝐴𝑡 : 𝑡 ∈ 𝒯 ) are 𝐽 × 𝐽 matrices simultaneously diagonalised by a matrix 𝑅
with unit norm columns:

𝑅−1𝐴𝑡𝑅 = diag(𝜆𝑡,1, . . . , 𝜆𝑡,𝐽), 𝑡 ∈ 𝒯 .

Let �̂� be a matrix such that for some permutation 𝜏 of {1, . . . , 𝐽} we have

‖�̂�−𝑅𝜏‖ := 𝜀𝑅 ≤ (1/2)‖𝑅−1‖−1,

where 𝑅𝜏 has is obtained by permuting the columns of 𝑅 according to 𝜏 . Assume

𝜆max := sup
𝑡

max
𝑗

|𝜆𝑡,𝑗 | < ∞.
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For matrices (𝐴𝑡 : 𝑡 ∈ 𝒯 ), write
𝜀𝐴 := sup

𝑡
‖𝐴𝑡 −𝐴𝑡‖,

and define
�̂�𝑡,𝑗 = 𝑒ᵀ𝑗 �̂�

−1𝐴𝑡�̂�𝑒𝑗 .

Then
sup
𝑡

max
𝑗

|�̂�𝑡,𝑗 − 𝜆𝑡,𝜏(𝑗)| ≤ 4𝜅(𝑅)[𝜀𝐴 + 𝜆max‖𝑅−1‖𝜀𝑅].

Proof Let 𝜁ᵀ𝑗 be the 𝑗th row of �̂�−1, let 𝜉𝑗 be the 𝑗th column of �̂�, and define 𝜁𝑗 , 𝜉𝑗 correspondingly
with respect to the matrix 𝑅𝜏 obtained by permuting the columns of 𝑅 according to 𝜏 . Then
𝜆𝑡,𝜏(𝑗) = 𝜁ᵀ𝑗 𝐴𝑡𝜉𝑗 , �̂�𝑡,𝑗 = 𝜁ᵀ𝑗 𝐴𝑡𝜉𝑗 , and we have

|�̂�𝑡,𝑗 − 𝜆𝑡,𝜏(𝑗)| = |𝜁ᵀ𝑗 𝐴𝑡𝜉𝑗 − 𝜁ᵀ𝑗 𝐴𝑡𝜉𝑗 |

= |𝜁ᵀ𝑗 𝐴𝑡(𝜉𝑗 − 𝜉𝑗) + 𝜁ᵀ𝑗 (𝐴𝑡 −𝐴𝑡)𝜉𝑗 + (𝜁ᵀ𝑗 − 𝜁ᵀ𝑗 )𝐴𝑡𝜉𝑗 |
≤ ‖𝜁ᵀ𝑗 ‖‖𝐴𝑡‖‖𝜉𝑗 − 𝜉𝑗‖ + ‖𝜁ᵀ𝑗 ‖‖𝜉𝑗‖𝜀𝐴 + ‖𝐴𝑡𝜉𝑗‖‖𝜁𝑗 − 𝜁𝑗‖

Using Lemma 37, we have that

‖�̂�−1 −𝑅−1
𝜏 ‖ ≤ ‖𝑅−1‖2𝜀𝑅/(1 − ‖𝑅−1‖𝜀𝑅),

and we further note the following:

• ‖𝜁ᵀ𝑗 ‖ = ‖𝑒ᵀ𝜏(𝑗)𝑅
−1‖ ≤ ‖𝑅−1‖, and ‖𝜁ᵀ𝑗 − 𝜁ᵀ𝑗 ‖ ≤ ‖�̂�−1 − 𝑅−1

𝜏 ‖ ≤ ‖𝑅−1‖2𝜀𝑅/(1 − ‖𝑅−1‖𝜀𝑅), so
that also ‖𝜁ᵀ𝑗 ‖ ≤ ‖𝜁ᵀ𝜏(𝑗)‖ + ‖𝜁𝑗 − 𝜁𝜏(𝑗)‖ ≤ ‖𝑅−1‖/(1 − ‖𝑅−1‖𝜀𝑅) .

• ‖𝜉𝑗‖ ≤ ‖𝑅‖, and ‖𝜉𝑗 − 𝜉𝑗‖ ≤ ‖�̂�−𝑅𝜏‖ = 𝜀𝑅.

• ‖𝐴𝑡‖ = ‖𝑅 diag(𝜆𝑡,·)𝑅−1‖ ≤ 𝜅(𝑅)𝜆max, and ‖𝐴𝑡‖ ≤ ‖𝐴𝑡‖ + 𝜀𝐴 ≤ 𝜅(𝑅)𝜆max + 𝜀𝐴.

• ‖𝐴𝑡𝜉𝑗‖ = |𝜆𝑡,𝜏(𝑗)|‖𝜉𝑗‖ ≤ 𝜆max‖𝑅‖.

Then, continuing the inequalities from the display, we have

|�̂�𝑡,𝑗 − 𝜆𝑡,𝜏(𝑗)| ≤ ‖𝑅−1‖
1 − ‖𝑅−1‖𝜀𝑅

[︁
(𝜅(𝑅)𝜆max + 𝜀𝐴)𝜀𝑅 + ‖𝑅‖𝜀𝐴

]︁
+ 𝜆max‖𝑅‖‖𝑅−1‖2 𝜀𝑅

1 − ‖𝑅−1‖𝜀𝑅

≤ 𝜅(𝑅) + ‖𝑅−1‖𝜀𝑅
1 − ‖𝑅−1‖𝜀𝑅

𝜀𝐴 + 2𝜆max𝜅(𝑅) ‖𝑅−1‖𝜀𝑅
1 − ‖𝑅−1‖𝜀𝑅

≤ (1 + 2𝜅(𝑅))𝜀𝐴 + 4𝜆max‖𝑅−1‖𝜅(𝑅)𝜀𝑅,

where for the last line we have used that ‖𝑅−1‖𝜀𝑅 ≤ 1/2 by assumption. Taking the supremum
over 𝑡 ∈ 𝒯 concludes the result since necessarily 1 + 2𝜅(𝑅) ≤ 3𝜅(𝑅) < 4𝜅(𝑅).

Lemma 34. Define 𝑂 = 𝑂𝐿0 , 𝑃 = 𝑃𝐿0 , (𝑀𝑥 = 𝑀𝑥,𝐿,𝐿0 : 𝑥 ∈ R) as in Lemma 11 for functions
(ℎ𝑙)𝑙≤𝐿0 satisfying a sup-norm bound uniformly in 𝐿0 and assume that 𝜎𝐽(𝑂) ≥ 𝑐 > 0 uniformly in
𝐿0 ≥ 𝐿 for some 𝐿 = 𝐿(ℋ) (for example, by choosing (ℎ𝑙 : 𝑙 ≤ 𝐿0) as in Lemma 24). Then

𝜅(𝑂) ≤ 𝐶𝐿
1/2
0 , 𝜎𝐽(𝑃 ) ≥ 𝑐′, and ‖𝑀𝑥‖ ≤ 𝐶 ′𝐿0,

for some constants 𝑐′, 𝐶, 𝐶 ′ > 0, uniformly in 𝐿0 ≥ 𝐿 and all 𝐿.
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Proof Given the assumed bound on 𝜎𝐽(𝑂), to control 𝜅(𝑂) it remains to bound ‖𝑂‖, since one
has the standard expression 𝜅(𝑂) := ‖𝑂‖‖𝑂−1‖ ≡ ‖𝑂‖/𝜎𝐽(𝑂). Then it suffices to note, using
Cauchy–Schwarz and the fact that |⟨𝑓𝑗 , ℎ𝑙⟩| = |

∫︀
ℎ𝑙(𝑥)𝑓𝑗(𝑥) d𝑥| ≤ ‖ℎ𝑙‖∞, that

‖𝑂‖2 = sup
‖𝑣‖=1

∑︁
𝑗

(
∑︁
𝑙

𝑣𝑙⟨𝑓𝑗 , ℎ𝑙⟩)2 ≤ max
𝑙

‖ℎ𝑙‖2
∞𝐽𝐿0. (68)

Next, Assumption C’ implies 𝜎𝐽(𝑄) > 0 and 𝜎𝐽(diag(𝜋)) = min𝑗 𝜋𝑗 > 0. Using submultiplica-
tivity of 𝜎𝐽 (see Lemma 37) and the expression 𝑃 = 𝑂 diag(𝜋)𝑄2𝑂ᵀ (from Lemma 11), we have

𝜎𝐽(𝑃 ) = 𝜎𝐽(𝑂 diag(𝜋)𝑄2𝑂ᵀ) ≥ 𝜎𝐽(𝑂)𝜎𝐽(diag(𝜋))𝜎𝐽(𝑄)2𝜎𝐽(𝑂ᵀ) ≥ 𝑐′(𝐻) > 0.

For 𝑀𝑥, the expression 𝑀𝑥 = 𝑂 diag(𝜋)𝑄𝐷𝑥𝑄𝑂ᵀ from Lemma 11 similarly yields

‖𝑀𝑥‖ ≤ ‖𝑂‖2‖𝑄‖2 max
𝑗

|𝐾𝐿[𝑓𝑗 ](𝑥)|.

Recalling that ‖𝐾𝐿[𝑓𝑗 ]‖∞ is bounded (see (27)) we deduce the result.

The following collects several useful results from De Castro et al. (2017) and Anandkumar et al.
(2012).

Lemma 35. Define 𝑂, �̂�, 𝑃, 𝑃 and 𝑀𝑥, �̂�𝑥, �̃�𝑥, �̂�𝑥, 𝑥 ∈ R as in Lemma 11, Algorithm 1, and (53).
Assume 𝜎𝐽(𝑂) ≥ 𝑐 > 0 uniformly in 𝐿0 ≥ 𝐿, so that by Lemma 34 we also have 𝜎𝐽(𝑃 ) > 0 and
𝜅(𝑂) ≤ 𝐶𝐿

1/2
0 for some 𝐶. On the event ℬ = {‖𝑃 − 𝑃‖ < 𝜎𝐽(𝑃 )/3}, for 𝐿0 ≥ 𝐿 and 𝑁 large

enough we have the following.

a. 𝜎𝐽(𝑃 ) > 𝑐/2. Writing 𝑉 and 𝑉 for matrices of orthonormal right singular vectors of 𝑃 and
𝑃 respectively we have 𝜎𝐽(𝑉 ᵀ𝑉 )2 ≥ 3/4, and consequently 𝑉 ᵀ𝑃𝑉 is invertible.

b. 𝜅(𝑄𝑂ᵀ𝑉 ) ≤ 𝐶𝐿
1/2
0 , ‖�̃�−1‖ ≤ 𝐶 ′𝐿

1/2
0 and 𝜅(�̃�) ≤ 𝐶 ′′𝐿0, where �̃� is the matrix whose columns

are those of 𝑄𝑂ᵀ𝑉 but rescaled to have unit norm.

c. For any 𝑥 ∈ R,

‖�̃�𝑥 − �̂�𝑥‖ ≤ 3.2
[︁‖�̂�𝑥 −𝑀𝑥‖

𝜎𝐽(𝑃 ) + ‖𝑀𝑥‖‖𝑃 − 𝑃‖
𝜎𝐽(𝑃 )2

]︁
.

Proof We throughout use various basic properties of 𝜎𝐽 , 𝜅, which are summarised in Lemma 37
below.

a. By Lemma 34, 𝜎𝐽(𝑃 ) > 0. The result then follows from standard approximation theory. In
particular Lemma C.1 part 2 of Anandkumar et al. (2012) tells us that 𝜎𝐽(𝑃 ) > 𝜎𝐽(𝑃 )/3 >
0. That 𝜎𝐽(𝑉 ᵀ𝑉 )2 ≥ 3/4 on ℬ is given by Lemma C.1 part 3 of the same reference and
submultiplicativity of 𝜎𝐽 yields

𝜎𝐽(𝑉 ᵀ𝑃𝑉 ) = 𝜎𝐽(𝑉 ᵀ(𝑉 𝑉 ᵀ)𝑃 (𝑉 𝑉 ᵀ)𝑉 ) ≥ 𝜎𝐽(𝑉 ᵀ𝑉 )2𝜎𝐽(𝑉 ᵀ𝑃𝑉 ) ≥ (3/4)𝜎𝐽(𝑃 ) > 0,

which implies invertibility of 𝑉 ᵀ𝑃𝑉 .

b. Observe that
𝜅(𝑄𝑂ᵀ𝑉 ) = ‖𝑄𝑂ᵀ𝑉 ‖

𝜎𝐽(𝑄𝑂ᵀ𝑉 )
≤ ‖𝑄𝑂ᵀ‖
𝜎𝐽(𝑄𝑂ᵀ𝑉 )𝜎𝐽(𝑉 ᵀ𝑉 )

.

We have 𝜎𝐽(𝑄𝑂ᵀ𝑉 ) = 𝜎𝐽(𝑄𝑂ᵀ) and we deduce that 𝜅(𝑄𝑂ᵀ𝑉 ) ≤ (4/3)1/2𝜅(𝑄𝑂ᵀ) ≤ 2𝜅(𝑄)𝜅(𝑂)
by part a. Assumption C’ implies 𝜅(𝑄) < ∞. For 𝑅, see Lemma C.5 of Anandkumar et al.
(2012), which tells us that ‖�̃�−1‖ ≤ 𝜅(𝑄𝑂ᵀ𝑉 ) and 𝜅(�̃�) ≤ 𝜅(𝑄𝑂ᵀ𝑉 )2.
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c. One adapts the proof of Lemma F.4 in De Castro et al. (2017), decomposing

‖�̃�𝑥 − �̂�𝑥‖ ≤ ‖(𝑉 ᵀ𝑃𝑉 )−1‖‖𝑉 ᵀ(𝑀𝑥 − �̂�𝑥)𝑉 ‖ + ‖𝑉 ᵀ𝑀𝑥𝑉 ‖‖(𝑉 ᵀ𝑃𝑉 )−1 − (𝑉 ᵀ𝑃𝑉 )−1‖,

then using Lemma 37 with 𝐴 = 𝑉 ᵀ�̂�𝑥𝑉 , 𝐴 = 𝑉 ᵀ�̃�𝑥𝑉 , noting that in part a we showed
‖(𝑉 ᵀ𝑃𝑉 )−1‖ ≡ 𝜎𝐽(𝑉 ᵀ𝑃𝑉 )−1 ≤ (4/3)𝜎𝐽(𝑃 )−1.

Theorem 36 (Ostrowski–Elsner, e.g. Stewart and Sun 1990, Chapter IV, Theorem 1.4). For a
matrix 𝑈 ∈ R𝐽×𝐽 , write (𝜆𝑖(𝑈) : 𝑖 ≤ 𝐽) for the eigenvalues of 𝑈 . Then for matrices 𝐴,𝐵 ∈ R𝐽×𝐽

we have
min
𝜏

max
𝑗

|𝜆𝜏(𝑗)(𝐴) − 𝜆𝑗(𝐵)| ≤ (2𝐽 − 1)(‖𝐴‖ + ‖𝐵‖)(𝐽−1)/𝐽‖𝐴−𝐵‖1/𝐽 , (69)

where the minimum is over permutations 𝜏 .

Lemma 37. Let 𝐴 and 𝐴 be matrices such that 𝐴 is invertible and ‖𝐴− 𝐴‖ < ‖𝐴−1‖−1. Then 𝐴
is invertible and

‖𝐴−1 −𝐴−1‖ ≤ ‖𝐴−1‖2‖𝐴−𝐴‖
1 − ‖𝐴−1‖‖𝐴−𝐴‖

.

We also have the following: 𝜅(𝐴) = 𝜅(𝐴ᵀ); 𝜎𝐽(𝐴) = 𝜎𝐽(𝐴ᵀ); 𝜎𝐽(𝐴) = 𝜎𝐽(𝐴𝑊 ᵀ) for any matrix 𝑊
whose columns are orthonormal and whose domain is R𝐽 ; 𝜎𝐽(𝐴𝐵) ≥ 𝜎𝐽(𝐴)𝜎𝐽(𝐵), and 𝜅(𝐴𝐵) ≤
𝜅(𝐴)𝜅(𝐵) for matrices 𝐴,𝐵.

Proof For the first see Theorem 2.5 in Chapter III of Stewart and Sun (1990) The other results
can be found in Chapter I.4 of the same reference.

B.4 Sketch Proof of Theorem 4

The arguments used to prove Theorem 5 work also in this discrete setting, given the following
observations and slight adaptations. To ease notation we assume that 𝑓𝑗(𝑥) = 0 for all 𝑥 ≤ 0 and
𝑗 ≤ 𝐽 . We make the following definitions, which correspond to taking ℎ𝑙 = 1𝑙, i.e. ℎ𝑙(𝑥) = 1{𝑥 = 𝑙},
and replacing 𝐾𝐿(𝑥, 𝑦) by 1{𝑥 = 𝑦}:

𝑀𝑥 = 𝑀𝑥,𝐿0 = Π𝐻(𝑋1 = 𝑙,𝑋2 = 𝑥,𝑋3 = 𝑚)𝑙,𝑚≤𝐿0 , 𝑥 ∈ N
𝑃 = 𝑃𝐿0 = Π𝐻(𝑋1 = 𝑙,𝑋3 = 𝑚)𝑙,𝑚≤𝐿0 ,

𝑂 = 𝑂𝐿0 = Π𝐻(𝑋1 = 𝑙 | 𝜃1 = 𝑗)𝑙≤𝐿0,𝑗≤𝐽 ,

𝐷𝑥 = (diag Π𝐻(𝑋2 = 𝑥 | 𝜃2 = 𝑗)𝑗≤𝐽) ≡ diag((𝑂𝑥𝑗)𝑗).

The proof of Lemma 11 is unchanged with these adjusted definitions, and we adapt the definitions
in Algorithm 1 correspondingly:

�̂�𝑥 =
(︁ 1
𝑁

∑︁
𝑛≤𝑁

1𝑙(𝑋𝑛)1𝑥(𝑋𝑛+1)1𝑚(𝑋𝑛+2)
)︁
𝑙,𝑚≤𝐿0

,

𝑃 =
(︁ 1
𝑁

∑︁
𝑛≤𝑁

1𝑙(𝑋𝑛)1𝑚(𝑋𝑛+2)
)︁
𝑙,𝑚≤𝐿0

,

�̂�𝑥 = (𝑉 ᵀ𝑃𝑉 )−1𝑉 ᵀ�̂�𝑥𝑉 ,

with 𝑉 comprising right singular vectors of 𝑃 .
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Observe that the proofs of Lemmas 24 and 34 work in the current setting for the current choice
of the ℎ𝑙 [indeed, thanks to the disjoint support of ℎ𝑙, ℎ𝑚 for 𝑙 ̸= 𝑚 one can improve the bound in
eq. (68) to ‖𝑂𝐿0‖ ≤ 𝐽 ], and similarly a version of Lemma 26 holds by choosing D𝑁 = 𝒜𝑁 × 𝒰𝑁 for
sequences of finite sets 𝒜𝑁 ⊂ R, 𝒰𝑁 ⊂ N such that ∪𝑁𝒰𝑁 = N and ∪𝑁𝒜𝑁 is dense in {𝑎 ∈ R :∑︀
𝑖|𝑎𝑖| ≤ 1}.
Next note that a version of the Glivenko–Cantelli theorem gives control over sup𝑥∈N‖�̂�𝑥 −𝑀𝑥‖

for our new definitions of �̂�𝑥,𝑀𝑥; we give here a slightly indirect proof of this fact by reusing
the machinery of Lemma 30. Indeed, inspecting the proof of Lemma 31, one deduces that for
𝒰 = {1{𝑡} : 𝑡 ∈ R},

𝑁[](𝒯 , ‖·‖𝐿2(Π𝐻 ), 𝜀) ≤ 𝐿2
0𝑁[](𝒰 , ‖·‖𝐿2(Π𝐻 ), 𝜀/(4ℎ2)).

Mimicking the proof of Glivenko–Cantelli, to bound the latter quantity one choose 𝑀 of order 𝜀−2

and −∞ = 𝑡0 < 𝑡1 < · · · < 𝑡𝑀 = +∞ such that Π𝐻(𝑋1 ∈ [𝑡𝑚, 𝑡𝑚+1)) is roughly 𝜀2. Then the
functions 𝑢𝑘 = 0, 𝑢𝑘 = 1[𝑡𝑘,𝑡𝑘+1) bracket 𝒰 , with 𝐿2(Π𝐻)-diameter of order 𝜀 and 𝐿∞-diameter 1,
yielding for a constant 𝐶 that

𝐻[](𝒯 , ‖·‖𝐿2(Π𝐻 ), 𝜀) ≤ 𝐶 log(𝐿0𝜀
−1).

In view of the standard bound (see (63))∫︁ 𝑥

0

√︀
log(1/𝑢) d𝑢 ≤ 𝑥(1 +

√︀
log(1/𝑥)),

and recalling as in Lemma 29 that the chain

𝑌𝑛 = (𝑋𝑛, 𝑋𝑛+1, 𝑋𝑛+2, 𝜃𝑛, 𝜃𝑛+1, 𝜃𝑛+2)

has pseudo-spectral gap bounded away from zero by Assumption C’, it follows that Lemma 28,
applied with 𝑏 = 𝜎 = 1, yields

Π𝐻

(︀
sup
𝑥∈N

|�̂�𝑥
𝑖𝑗 −𝑀𝑥

𝑖𝑗 | > 𝐶(𝑁−1/2 +𝑁−1/2√
𝑢+𝑁−1𝑢)

)︀
≤ exp(−𝑢).

We note that ‖�̂�𝑥 − 𝑀𝑥‖ ≤ 𝐿0 max𝑖𝑗 |�̂�𝑥
𝑖𝑗 − 𝑀𝑥

𝑖𝑗 |. Combining with (the proof of) Lemma 29, for
any 𝑐𝑁 → ∞, we may choose suitable 𝐿0 → ∞ and 𝑢 → ∞ to deduce

Π𝐻(‖𝑃 − 𝑃‖ ≤ 𝑐𝑁𝑁
−1/2, sup

𝑥∈N
‖�̂�𝑥 −𝑀𝑥‖ ≤ 𝑐𝑁𝑁

−1/2) → 1.

The rest of the proof exactly mirrors that of Theorem 5 (note that, in only seeking a rate in
probability, we avoid the need for a log factor which would appear in this proof if seeking a rate in
expectation).

Appendix C. Proof of the Lower Bound
For the lower bound for simplicity we consider in details the (in view of the multiple testing applica-
tion) most relevant case 𝐽 = 2. The case of 𝐽 ≥ 3 is broadly similar in spirit and is briefly discussed
at the end of this section.

Let S2 denote the set of all permutations of {0, 1}. Define, for 𝑠,𝑅 > 0 and for the Hölder space
𝐶𝑠 defined in Assumption E,

𝒞𝑠(𝑅) =
{︁
𝑓 ∈ 𝐶𝑠 : 𝑓 ≥ 0,

∫︁
R
𝑓 = 1, ‖𝑓‖𝐶𝑠 ≤ 𝑅

}︁
. (70)
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Parameters. The unknown parameters are 𝐻 = (𝑄, 𝜋, f), where f = (𝑓0, 𝑓1) denotes the vector
of emission densities. Denoting by 𝑃𝑓𝑖 the distribution of density 𝑓𝑖 on R, 𝑖 = 0, 1, the distribution
of the observations 𝑋 = (𝑋1, . . . , 𝑋𝑁 ) is

Π𝐻 = Π(𝑁)
𝐻 =

∑︁
v∈{0,1}𝑁

𝑤v

𝑁⨂︁
𝑗=1

𝑃f𝑣𝑗
,

where 𝑤v denotes the probability under the Markov chain to observe the successive sequence of
states (𝑣1, . . . , 𝑣𝑁 ) ∈ {0, 1}𝑁 ; that is, 𝑤(𝑣1,...,𝑣𝑁 ) = 𝜋𝑣1𝑄𝑣1,𝑣2 · · ·𝑄𝑣𝑁−1,𝑣𝑁

.

Class ℋ𝑠𝑒𝑝 of well-separated parameters. Let ℱ𝑠𝑒𝑝 be a class of pairs f = (𝑓0, 𝑓1) that are
well-separated in the following sense, for a (small) 𝑑 > 0 to be chosen:

ℱ𝑠𝑒𝑝 =
{︀

f = (𝑓0, 𝑓1) ∈ 𝒞𝑠(𝑅)2 : |(𝑓1 − 𝑓0)(0)| ≥ 𝑑, |𝑃𝑓1([−1, 1]) − 𝑃𝑓0([−1, 1])| ≥ 𝑑
}︀
. (71)

We define, for given 𝑄, 𝜋,

ℋ𝑠𝑒𝑝 = ℋ𝑠𝑒𝑝(𝑄, 𝜋,𝑅, 𝑑, 𝑠) = {𝐻 = (𝑄, 𝜋, f) : f ∈ ℱ𝑠𝑒𝑝} . (72)

Minimax risk. For f = (𝑓0, 𝑓1) and g = (𝑔0, 𝑔1) two pairs of real functions, denote

𝜌(f ,g) = min
𝜙∈S2

(︀
‖𝑔𝜙(0) − 𝑓0‖∞ + ‖𝑔𝜙(1) − 𝑓1‖∞

)︀
. (73)

The loss 𝜌 is a pseudo-metric, verifying the axioms of a distance except that one can have 𝜌(f ,g) = 0
for f ̸= g. We note that one could also consider the equivalent loss obtained by replacing the sum
in (73) with a maximum.

Let us consider the minimax risk

𝑅𝑛 = 𝑅𝑛(ℋ𝑠𝑒𝑝) = inf
T=(𝑇0,𝑇1)

sup
𝐻∈ℋ𝑠𝑒𝑝

𝐸𝐻 [𝜌 (T, f)] . (74)

Since 𝐸[min(𝑋,𝑌 )] ≤ min(𝐸𝑋,𝐸𝑌 ), one notes that

𝑅𝑛 ≤ inf
T=(𝑇1,𝑇2)

sup
𝐻∈𝐻𝑠𝑒𝑝

[︂
min
𝜙∈S2

(︀
𝐸𝐻‖𝑇𝜙(1) − 𝑓1‖∞ + 𝐸𝐻‖𝑇𝜙(2) − 𝑓2‖∞

)︀]︂
. (75)

In view of Section 4.3 (and constructing 𝑓0, 𝑓1 using 𝐿0 = 2, ℎ1 = 1, ℎ2 = 1l[−1,1] in Algorithm 1),
Theorem 5 provides a procedure for which the last quantity is bounded from above by a multiple of
𝑟𝑁 = (𝑁/ log𝑁)−𝑠/(2𝑠+1). The next result provides the corresponding minimax lower bound. Note
that the lower bound in Proposition 38 is pointwise in 𝑄 and 𝜋, and thus continues to hold if 𝜋,𝑄
are allowed to vary in some set.
Proposition 38. Consider 𝐽 = 2 classes, and fix both 𝜋 = (𝜋0, 𝜋1) ∈ [0, 1]2 and 𝑄 a 2×2 transition
matrix. Given 𝑠,𝑅 > 0, let ℋ𝑠𝑒𝑝 be as in (72) for a small enough 𝑑 = 𝑑(𝑠,𝑅), and let 𝑅𝑛 = 𝑅𝑛(ℋ𝑠𝑒𝑝)
be as in (74). Then there exists 𝐶 = 𝐶(𝑠,𝑅) > 0 such that, for 𝑁 large enough,

𝑅𝑛(ℋ𝑠𝑒𝑝) ≥ 𝐶

(︂
log𝑁
𝑁

)︂ 𝑠
2𝑠+1

.

Proof We reduce the estimation problem to a classification problem in a standard way. Suppose
the two sets of densities {𝑓 (𝑚)

0 , 0 ≤ 𝑚 ≤ 𝑀} and {𝑓 (𝑚)
1 , 0 ≤ 𝑚 ≤ 𝑀} are such that for some

0 < 𝑠0, 𝑠1 < 𝐶0,

min{‖𝑓 (𝑖)
1 − 𝑓

(𝑗)
0 ‖∞, 0 ≤ 𝑖, 𝑗 ≤ 𝑀} ≥ 𝐶0, (76)

min{‖𝑓 (𝑖)
0 − 𝑓

(𝑗)
0 ‖∞ : 0 ≤ 𝑖, 𝑗 ≤ 𝑀, 𝑖 ̸= 𝑗} ≥ 2𝑠0, (77)

min{‖𝑓 (𝑖)
1 − 𝑓

(𝑗)
1 ‖∞ : 0 ≤ 𝑖, 𝑗 ≤ 𝑀, 𝑖 ̸= 𝑗} ≥ 2𝑠1. (78)
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It follows that the family of functions f (𝑚) = (𝑓 (𝑚)
0 , 𝑓

(𝑚)
1 ) is 2(𝑠0 + 𝑠1)-separated in terms of 𝜌, since

for 𝑚 ̸= 𝑚′,

𝜌(f (𝑚), f (𝑚′)) ≥ min
(︁

‖𝑓 (𝑚)
0 − 𝑓

(𝑚′)
0 ‖∞ + ‖𝑓 (𝑚)

1 − 𝑓
(𝑚′)
1 ‖∞, ‖𝑓 (𝑚)

1 − 𝑓
(𝑚′)
0 ‖∞ + ‖𝑓 (𝑚)

0 − 𝑓
(𝑚′)
1 ‖∞

)︁
≥ min(2(𝑠0 + 𝑠1), 2𝐶0) = 2(𝑠0 + 𝑠1) =: 2𝑆.

For a given estimator T of f ∈ {f (0), . . . , f (𝑀)}, let 𝑗*(T) be the index 𝑗 such that f (𝑗) is the
closest to T in the 𝜌 pseudo-distance. Since the family (f (𝑚), 𝑚 ∈ {0, . . . ,𝑀}) is 2𝑆-separated, we
have 𝜌(T, f (𝑚)) ≥ 𝑆1l{𝑗*(T) ̸= 𝑚}. Writing 𝐻𝑚 = (𝑄, 𝜋, f (𝑚)), we have

sup
𝐻∈ℋ𝑠𝑒𝑝

𝐸𝐻 [𝜌 (T, f)] ≥ max
0≤𝑚≤𝑀

𝐸𝐻𝑚

[︁
𝜌

(︁
T, f (𝑚)

)︁]︁
≥ 𝑆 max

0≤𝑚≤𝑀
Π𝐻𝑚 [𝑗*(T) ̸= 𝑚] ≥ 𝑆𝑝𝑒,𝑀 , (79)

where 𝑝𝑒,𝑀 = inf𝜓 max0≤𝑚≤𝑀 Π𝐻𝑚
[𝜓 ̸= 𝑚], with the infimum being over all classifiers 𝜓. Taking

the infimum with respect to T in (79), one obtains 𝑅𝑛(ℋ𝑠𝑒𝑝) ≥ 𝑆𝑝𝑒,𝑀 .
Lemma 40 shows that in order to bound 𝑝𝑒,𝑀 from below it suffices to bound KL(Π𝐻𝑚 ,Π𝐻0)

from above, where KL(𝑃,𝑄) denotes the Kullback-Leibler divergence between distributions 𝑃 and
𝑄 with densities 𝑝, 𝑞,

KL(𝑃,𝑄) = 𝐸𝑃

[︁
log

(︁𝑝
𝑞

)︁]︁
. (80)

By convexity of the map (𝑥, 𝑦) → 𝑥 log(𝑥/𝑦), writing v = (𝑣𝑗) ∈ {0, 1}𝑁 , one obtains

KL(Π𝐻𝑚 ,Π𝐻0) ≤
∑︁

v∈{0,1}𝑁

𝑤v KL

⎛⎝ 𝑁⨂︁
𝑗=1

𝑃
𝑓

(𝑚)
𝑣𝑗

,

𝑁⨂︁
𝑗=1

𝑃
𝑓

(0)
𝑣𝑗

⎞⎠ .

For a given v ∈ {0, 1}𝑁 , let 𝑛𝑖(v), 𝑖 = 0, 1, denote the number of elements of v equal to 𝑖. The
tensorisation property of the KL divergence implies

KL

⎛⎝ 𝑁⨂︁
𝑗=1

𝑃
𝑓

(𝑚)
𝑣𝑗

,

𝑁⨂︁
𝑗=1

𝑃
𝑓

(0)
𝑣𝑗

⎞⎠ = 𝑛0(v) KL(𝑃
𝑓

(𝑚)
0

, 𝑃
𝑓

(0)
0

) + 𝑛1(v) KL(𝑃
𝑓

(𝑚)
1

, 𝑃
𝑓

(0)
1

),

where 𝑛0(v), 𝑛1(v) are both at most 𝑁 .
Let us now choose functions 𝑓 (𝑚)

0 , 𝑓
(𝑚)
1 , satisfying eqs. (76) to (78) for which we have good control

over KL(𝑓 (𝑚)
𝑗 , 𝑓

(0)
𝑗 ), 𝑗 = 0, 1 and 1 ≤ 𝑚 ≤ 𝑀 . For 𝜑 the standard normal density and 𝑔𝑚,𝐴 defined

as in Lemma 39 to follow, set

𝑓
(𝑚)
0 (𝑥) = 𝑔𝑚,𝐴(𝑥), 𝑚 ≥ 1, 𝑓

(0)
0 (𝑥) = 𝑟𝜑(𝑟𝑥),

𝑓
(𝑚)
1 (𝑥) = 𝑔𝑚,𝐴(𝑥− 2/𝑟), 𝑚 ≥ 1, 𝑓

(0)
1 (𝑥) = 𝑟𝜑(𝑟(𝑥− 2/𝑟)),

where we choose

𝐴 = 𝑐0

(︂
log𝑁
𝑁

)︂ 𝑠
2𝑠+1

, 𝑀 =
⌈︁(︁ 𝑁

log𝑁

)︁ 1
2𝑠+1

⌉︁
, (81)

with 𝑟, 𝑐0 small, but fixed, positive constants. Note firstly that for 𝑟, 𝑐0 small enough (and 𝑁 large
enough) each pair (𝑓 (𝑚)

0 , 𝑓
(𝑚)
1 ) is in ℱ𝑠𝑒𝑝 for given 𝑅 > 0 and a small enough constant 𝑑 > 0. Indeed,

examining the definition of 𝑔𝑚,𝐴 from Lemma 39, we see for all 0 ≤ 𝑚 ≤ 𝑀 that we have

|𝑓 (𝑚)
1 (0) − 𝑓

(𝑚)
0 (0)| = 𝑟(𝜑(0) − 𝜑(2));
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that 𝑃
𝑓

(𝑚)
0

[−1, 1] =
∫︀ 𝑟

−𝑟 𝜑 and 𝑃
𝑓

(𝑚)
1

[−1, 1] =
∫︀ 𝑟−2

−𝑟−2 𝜑. So, for 𝑟 < 1/2,

|𝑃
𝑓

(𝑚)
0

[−1, 1] − 𝑃
𝑓

(𝑚)
1

[−1, 1]| ≥ 2𝑟(𝜑(1/2) − 𝜑(3/2)),

so that the last two constraints in (71) are fulfilled for small enough 𝑑 = 𝑑(𝑟). We further note by
Lemma 39 that for suitably small 𝑐0, 𝑟, we have both that (77) and (78) hold for 𝑠0 = 𝑠1 = 𝐴/2,
and

KL
(︁
𝑃
𝑓

(𝑚)
0

, 𝑃
𝑓

(0)
0

)︁
≤ 𝐶

𝐴2

𝑀
≤ 𝐶

𝑐2
0 log𝑁
𝑁

, KL
(︁
𝑃
𝑓

(𝑚)
1

, 𝑃
𝑓

(𝑚)
1

)︁
≤ 𝐶

𝐴2

𝑀
≤ 𝐶

𝑐2
0 log𝑁
𝑁

.

Putting the previous bounds together leads to

KL(Π𝐻𝑚 ,Π𝐻0) ≤ 𝑁 · KL
(︁
𝑃
𝑓

(𝑚)
0

, 𝑃
𝑓

(0)
0

)︁
+𝑁 · KL

(︁
𝑃
𝑓

(𝑚)
1

, 𝑃
𝑓

(0)
1

)︁
≤ 𝐶𝑐2

0 log𝑁.

In particular, one can bound from above

1
𝑀

𝑀∑︁
𝑚=1

KL(Π𝐻𝑚 ,Π𝐻0) ≤ 𝐶𝑐2
0 log𝑁 ≤ (log𝑀)/10,

provided that 𝑐0 is a small enough constant, and we deduce by Lemma 40 that 𝑝𝑒,𝑀 := inf𝜓 max0≤𝑚≤𝑀 Π𝐻𝑚 [𝜓 ̸=
𝑚] is greater than a positive constant. Finally, recalling (79), we have

𝑅𝑛(ℋ𝑠𝑒𝑝) ≥ 𝑆𝑝𝑒,𝑀 ,

with 𝑆 = 2(𝑠0 + 𝑠1) = 2𝐴. The proposition follows from the choice of 𝐴 in (81).

Recall the definition (70) of 𝒞𝑠(𝑅).

Lemma 39. Let 𝜓 be a 𝐶∞ function with support in (−1/2, 1/2) such that ‖𝜓‖∞ = 1 and
∫︀
R 𝜓 = 0.

Let 𝜑(·) denote the standard normal density and for 𝑚 ∈ {1, . . . ,𝑀} and some 𝐴, 𝑟 > 0 and integer
𝑀 ≥ 2, set 𝑔0(𝑥) = 𝑟𝜑(𝑟𝑥) and

𝑔𝑚,𝐴(𝑥) = 𝑟𝜑(𝑟𝑥) +𝐴𝜓(𝑀𝑥−𝑚+ 1/2).

Then for 𝑠,𝑅 > 0, the functions 𝑔0 and 𝑔𝑚,𝐴 are densities belonging to 𝒞𝑠(𝑅) provided 𝐴𝑀𝑠 ≤ 𝑅/2
and 𝑟,𝐴 are small enough,

‖𝑔0 − 𝑔𝑚,𝐴‖∞ = ‖𝑔𝑚,𝐴 − 𝑔𝑝,𝐴‖∞ = 𝐴, (for all 𝑚 ̸= 𝑝),

and, for 𝑃𝑔 the distribution with density 𝑔 on R, and some 𝐶 = 𝐶(𝑟) > 0, any 𝑚 ∈ {1, . . . ,𝑀},

KL(𝑃𝑔𝑚,𝐴
, 𝑃𝑔0) ≤ 𝐶𝐴2/𝑀.

Proof For the statement on supremum norms, it suffices to note that the maps 𝑥 → 𝜓(𝑀𝑥 − 𝑚)
have disjoint support for different 𝑚’s. For the KL bounds, one expands the logarithm at the order
2 in a neighbourhood of 0.

Lemma 40. For a family of points (𝐻𝑚)0≤𝑚≤𝑀 in ℋ𝑠𝑒𝑝 with 𝑀 ≥ 2, let

𝑝𝑒,𝑀 = inf
𝜓

max
0≤𝑚≤𝑀

Π𝐻𝑚
[𝜓 ̸= 𝑚], (82)
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where the infimum is over all possible measurable 𝜓 taking values in {1, . . . ,𝑀}. Suppose, for
𝛼 < 1/8,

1
𝑀

𝑀∑︁
𝑚=1

KL(Π𝐻𝑚 ,Π𝐻0) ≤ 𝛼 log𝑀.

Then
𝑝𝑒,𝑀 ≥

√
𝑀

1 +
√
𝑀

(︂
1 − 2𝛼−

√︂
2𝛼

log𝑀

)︂
.

Proof This follows from combining Proposition 2.3 and (the proof of) Theorem 2.5 in Tsybakov
(2009).

Lower bound in the case of 𝐽 ≥ 3. One first updates the risk by setting, with S𝐽 denoting the
set of permutations of {0, . . . , 𝐽 − 1},

𝜌(f ,g) = min
𝜙∈S𝐽

(︀
‖𝑔𝜙(1) − 𝑓1‖∞ + · · · + ‖𝑔𝜙(𝐽) − 𝑓𝐽‖∞

)︀
.

The main change concerns the definition of the class of separated functions ℱ𝑠𝑒𝑝. When 𝐽 > 2, the
spectral argument used in the proof of the upper bound requires a control on a singular value as
in Lemma 24. Let us consider, as in (the proof of) Lemma 24, a fixed collection of functions ℎ𝑙,
for instance a given countable collection of functions bounded in supremum norm and generating
the Borel 𝜎-algebra (e.g. a countable number of interval indicators). Recall from Lemma 11 the
definition of the matrix, for 𝐿 ≥ 1 an integer, for given 𝑄 and 𝜋 and for 𝑓 = (𝑓1, . . . , 𝑓𝐽) the vector
of emission densities,

𝑂𝐿 = 𝑂𝐿(𝑓) = (𝐸𝑄,𝜋,𝑓 [ℎ𝑙(𝑋1) | 𝜃1 = 𝑗])𝑙≤𝐿,𝑗≤𝐽 .

Let us further write 𝜎𝐿𝐽 (𝑓1, . . . , 𝑓𝐽) = 𝜎𝐽(𝑂𝐿(𝑓1, . . . , 𝑓𝐽)) as a shorthand for the 𝐽th largest singular
value of the matrix 𝑂𝐿. In particular, note that if the conclusion of Lemma 24 holds for some
emission densities 𝑓1, . . . , 𝑓𝐽 , then 𝜎𝐿𝐽 (𝑓1, . . . , 𝑓𝐽) is bounded away from 0 for some suitable integer
𝐿 ≥ 1.

The class we consider for 𝐽 ≥ 3 is then defined as, for given 𝑠,𝑅 > 0,

ℱ𝑠𝑒𝑝 =
{︂

f = (𝑓1, . . . , 𝑓𝐽) ∈ 𝒞𝑠(𝑅)𝐽 : min
𝑖 ̸=𝑗

|(𝑓𝑖 − 𝑓𝑗)(0)| ≥ 𝑑, 𝜎𝐿𝐽 (𝑓1, . . . , 𝑓𝐽) ≥ 𝑑

}︂
, (83)

for 𝑑 > 0 a small enough constant and 𝐿 a large enough integer. One further defines, for given 𝑄, 𝜋,

ℋ𝑠𝑒𝑝 = ℋ𝑠𝑒𝑝(𝑄, 𝜋,𝑅, 𝑠, 𝑑, 𝐿) = {𝐻 = (𝑄, 𝜋, f) : f ∈ ℱ𝑠𝑒𝑝} .

One can then state a proposition analogous to that of Proposition 38 with the obvious modifications
of the notation to correspond to 𝐽 ≥ 3 states and the updated definition of ℱ𝑠𝑒𝑝 as in (83). For
brevity we omit the statement, just noting that the corresponding uniform upper bound result holds,
as noted in Section 4.3. We now give a brief sketch of the proof of the lower bound, the arguments
being broadly similar to the case of 𝐽 = 2 states.

One defines perturbations using the same idea as for 𝐽 = 2, just adding further translated
functions for new states: for 𝑗 = 1, . . . , 𝐽 and 𝑚 = 1, . . . ,𝑀 ,

𝑓
(𝑚)
𝑗 (𝑥) = 𝑔𝑚,𝐴(𝑥− 2(𝑗 − 1)/𝑟) , 𝑓

(0)
𝑗 (𝑥) = 𝑟𝜑(𝑟(𝑥− 2(𝑗 − 1)/𝑟)),

where the function 𝑔𝑚,𝐴 is still defined as in Lemma 39 and the choice of 𝐴,𝑀 is as in the case
𝐽 = 2. The proof is then nearly identical to the one in the case 𝐽 = 2. One difference is in
checking that the functions 𝑓 (𝑚)

1 , . . . , 𝑓
(𝑚)
𝐽 for 𝑚 = 0, 1, . . . ,𝑀 are in ℱ𝑠𝑒𝑝. In order to verify that
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𝜎𝐿𝐽 (𝑓 (𝑚)
1 , . . . , 𝑓

(𝑚)
𝐽 ) ≥ 𝑑 for a small 𝑑 > 0 and large enough 𝐿 ≥ 1, it suffices to note that this

holds true for 𝜎𝐿𝐽 (𝑓 (0)
1 , . . . , 𝑓

(0)
𝐽 ), which follows by applying Lemma 24, noticing that the functions

𝑓
(0)
1 , . . . , 𝑓

(0)
𝐽 are linearly independent (as Gaussian densities with different tail behaviours). Next it

suffices to notice, by using standard matrix perturbation theory, that for any given integer 𝐿 ≥ 1,
the quantity |𝜎𝐽(𝑂𝐿(𝑓 (𝑚)

1 , . . . , 𝑓
(𝑚)
𝐽 )) − 𝜎𝐽(𝑂𝐿(𝑓 (0)

1 , . . . , 𝑓
(0)
𝐽 ))| scales with the constant 𝐴 in the

definition of the perturbations; in particular, the difference vanishes as 𝑁 → ∞, which implies that
the last condition in the definition of ℱ𝑠𝑒𝑝 is met. The verification of the other conditions in the
definition of ℱ𝑠𝑒𝑝 and the rest of the proof are nearly identical (using the updated definition of the
perturbations in the last display) to the arguments in the case 𝐽 = 2 and are omitted.

Appendix D. Notation
We give notation assuming, as in Section 3, that there are a (known) number 𝐽 of hidden states
{1, . . . , 𝐽} (recall that 𝐽 = 2 for Section 2 and the proofs of results therein, with hidden states
labelled 0 and 1, and the notation is adapted accordingly).
HMM parameters.
𝑋 = (𝑋𝑛)𝑛≤𝑁 (or (𝑋𝑛)𝑛≤𝑁+2 for convenience, or (𝑋𝑛)𝑛∈N for some of the proofs and lemmas) the data,

drawn from the HMM (1).
𝜃 = (𝜃𝑛)𝑛≤𝑁 the vector of hidden states, taking values in {1, . . . , 𝐽}𝑁 .
𝑄, 𝜋 the transition matrix of 𝜃 and its stationary (and initial) distribution.
𝜇 a dominating measure on the space 𝒳 = R (equipped with the usual Borel 𝜎-algebra) in which 𝑋1 takes

values. Throughout we take 𝜇 to equal Lebesgue measure on R or counting measure on Z ⊂ R.
𝑓1, . . . , 𝑓𝐽 the emission densities, i.e. 𝑓𝑗 is the density of 𝑋1 conditional on 𝜃1 = 𝑗.
𝑓𝜋 the density of 𝑋1; this is only used in the two-state case so 𝑓𝜋 = 𝜋0𝑓0 + 𝜋1𝑓1.
𝐻 = (𝑄, 𝜋, 𝑓1, . . . , 𝑓𝐽 ), �̂� = (�̂�, �̂�, 𝑓1, . . . , 𝑓𝐽 ).
Π𝐻 , 𝐸𝐻 the law of 𝑋 for parameter 𝐻 and the associated expecation operator.
ℋ, ℐ: see Section 4.3. [Also note that 𝐶 = 𝐶(ℋ) is allowed to depend on the kernel 𝐾 and the functions

(ℎ𝑙)𝑙∈N and sets D𝑁 of Algorithm 1 since these can be chosen universally.]
𝜈, 𝑥* constants as in Assumptions A and B.
𝛿 a lower bound for min𝑖,𝑗 𝑄𝑖𝑗 .

Multiple testing.
FDP, FDR, TDR, postFDR, mFDR, mTDR, see eqs. (2) to (5), (15) and (16) (also (10) for an alternative

characterisation of postFDR).
ℓ𝑖 ≡ ℓ𝑖(𝑋) ≡ ℓ𝑖,𝐻(𝑋) = Π𝐻(𝜃𝑖 = 0 | 𝑋); ℓ̂𝑖 = ℓ𝑖,�̂� ; ℓ′

𝑖 = Π𝐻(𝜃𝑖 = 0 | 𝑋𝑖−𝐴, . . . , 𝑋𝑖+𝐴) for some 𝐴;
ℓ∞

𝑖 = Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛)𝑛∈Z).
Φ∞

𝑖 = Π𝐻(𝜃𝑖 = 0 | (𝑋𝑛 : 𝑛 ∈ Z, 𝑛 ≤ 𝑖)).
𝜙𝜆,𝐻 = (1{ℓ𝑖,𝐻 < 𝜆})𝑖≤𝑁

�̂� = sup{𝜆 : postFDR�̂�(𝜙𝜆,�̂�) ≤ 𝑡}. 𝜆* the solution to 𝐸[ℓ∞
𝑖 | ℓ∞

𝑖 < 𝜆*] = min(𝑡, 𝜋0).

𝜙 ≡ 𝜙(𝑡) = 𝜙�̂�,�̂� when there are no ties in ℓ-values, or given by Definition 1 when there may be ties.

𝑆0 = {𝑖 : 𝜙𝑖 = 1}, �̂� = |𝑆0|.
𝜀𝑁 some rate of consistency of estimators in (14).
Estimation.
𝑟𝑁 = (𝑁/ log 𝑁)−𝑠/(1+2𝑠).
ℎ1, . . . , ℎ𝐿0 , where 𝐿0 is either constant or diverges slowly to infinity; bounded functions such that “witness”

the linear independence of 𝑓1, . . . , 𝑓𝐽 (see Algorithm 1 and Lemma 24).
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𝐾, 𝐾𝐿, a convolution kernel, see (25).
𝑀𝑥 ≡ 𝑀𝑥,𝐿0,𝐿 = (𝐸𝐻 [ℎ𝑖(𝑋1)𝐾𝐿(𝑥, 𝑋2)ℎ𝑗(𝑋3)]𝑖,𝑗≤𝐿0 ) ∈ R𝐿0×𝐿0 .
𝑃 ≡ 𝑃 𝐿0 = (𝐸𝐻 [ℎ𝑖(𝑋1)ℎ𝑗(𝑋3)]𝑖,𝑗≤𝐿0 ) ∈ R𝐿0×𝐿0

𝑂 = 𝑂𝐿0 = (𝐸𝐻 [ℎ𝑖(𝑋1) | 𝜃1 = 𝑎]𝑖≤𝐿0,𝑎≤𝐽 ) ∈ R𝐿0×𝐽

𝐷 = 𝐷𝑥 = diag((𝐾𝐿[𝑓𝑗 ](𝑥))𝑗≤𝐽 ), i.e. the diagonal matrix whose diagonal entries are 𝐷𝑗𝑗 = 𝐾𝐿[𝑓𝑗 ](𝑥).
𝑉 = 𝑉 𝐿0 ∈ R𝐿0×𝐽 a matrix such that 𝑉 ᵀ𝑃 𝑉 is invertible. Specifically, we either take 𝑉 to equal a matrix of

orthonormal right singular vectors of 𝑃 (so that 𝜎𝐽 (𝑉 ᵀ𝑃 𝑉 ) = 𝜎𝐽 (𝑃 )) or, on the event of Lemma 25,
to equal 𝑉 (defined in Algorithm 1).

𝐵𝑥 = 𝐵𝑥,𝐿0 = [𝑉 ᵀ𝑃 𝑉 ]−1𝑉 ᵀ𝑀𝑥𝑉 ≡ [𝑄𝑂ᵀ𝑉 ]−1𝐷𝑥𝑄𝑂ᵀ𝑉 .
�̂�𝑥, 𝑃 , �̂�, 𝑉 empirical versions of 𝑀𝑥, 𝑃, 𝑂, 𝑉, 𝐵𝑥 (see Algorithm 1, p23).
�̂�𝑥 = [𝑉 ᵀ𝑃 𝑉 ]−1𝑉 ᵀ�̂�𝑥𝑉 , �̃�𝑥 = [𝑉 ᵀ𝑃 𝑉 ]−1𝑉 ᵀ𝑀𝑥𝑉 , �̂�𝑎,𝑢 =

∑︀
𝑎𝑖�̂�

𝑢𝑖 and �̃�𝑎,𝑢 =
∑︀

𝑎𝑖�̃�
𝑢𝑖 for 𝑎, 𝑢 ∈

R𝐽(𝐽−1)/2 such that
∑︀

|𝑎𝑖| ≤ 1.
sep(𝐵) = min𝑖 ̸=𝑗 |𝜆𝑖 − 𝜆𝑗 | the “eigen-separation” of a matrix 𝐵 ∈ R𝐽×𝐽 , with eigenvalues 𝜆1, . . . , 𝜆𝐽 .
�̂�, �̂�,D𝑁 See Algorithm 1, p23.
�̂� a matrix of normalised columns diagonalising �̂��̂�,�̂�, �̃� a matrix whose columns are those of 𝑄𝑂ᵀ𝑉 but

scaled to have unit Euclidean norm (which therefore diagonalises �̃�𝑎,𝑢 for any 𝑎, 𝑢).
𝒜 = {‖𝑃 − 𝑃 ‖ ≤ 𝑐𝐿0𝑟𝑁 , ‖�̂�𝑥 − 𝑀𝑥‖ ≤ 𝑐𝐿2

0𝑟𝑁 ∀𝑥 ∈ R} the event of Lemma 25.
𝐶𝑠 the usual space of locally Hölder smooth functions, equipped with the usual Hölder norm ‖·‖𝐶𝑠(R) (see

Assumption E). Note that since we consider density functions, we could equivalently use the space of
globally Hölder smooth functions.

𝒞𝑠(𝑅) the subspace of 𝐶𝑠 consisting of probability density functions with Hölder norm bounded by 𝑅.
S2 the set of all permutations on {0, 1}.
𝜌(f , g) = min𝜙∈𝜎2

(︀
‖𝑔𝜙(0) − 𝑓0‖∞ + ‖𝑔𝜙(1) − 𝑓1‖∞

)︀
, for f = (𝑓0, 𝑓1), g = (𝑔0, 𝑔1).

ℱ𝑠𝑒𝑝 =
{︀

f = (𝑓0, 𝑓1) ∈ 𝒞𝑠(𝑅) : |(𝑓1 − 𝑓0)(0)| ≥ 𝑑, |𝑃𝑓1 ([−1, 1]) − 𝑃𝑓0 ([−1, 1])| ≥ 𝑑
}︀

.
ℋ𝑠𝑒𝑝 = {𝐻 = (𝑄, 𝜋, f) : f ∈ ℱ𝑠𝑒𝑝} , for some arbitrary (fixed) 𝑄, 𝜋. [Taking the union over certain 𝑄, 𝜋,

this can be viewed as a subset of ℋ defined in Section 4.3.]
Miscellaneous.
‖·‖, ‖·‖𝐹 , ‖·‖∞ the Euclidean norm on vectors or the corresponding operator norm on matrices, the Frobenius

norm on matrices, and the 𝐿∞ (supremum) norm on functions taking values in R.
𝜎𝑗(𝐴) the 𝑗th largest singular value of a matrix 𝐴.
𝜅(𝐴) = 𝜎1(𝐴)/𝜎𝐽 (𝐴) = ‖𝐴‖‖𝐴−1‖ for a matrix with smaller dimension 𝐽 , the condition number of the

matrix 𝐴.
𝑜(1), 𝑜𝑝(1) The usual little-oh notation: 𝑎𝑁 = 𝑜(1) if 𝑎𝑁 → 0 as 𝑁 → ∞, 𝑎𝑁 = 𝑜𝑝(1) if 𝑎𝑁 → 0 in

probability as 𝑁 → ∞.
𝑁[], 𝐻[]: The bracketing numbers/entropy, wherein 𝑁[](𝒯 , ‖·‖𝐿2(𝑃 ), 𝜀) is the smallest number of pairs of

functions (𝑓, 𝑓) such that every 𝑔 ∈ 𝒯 is bracketed by one of the pairs, where (𝑓, 𝑓) brackets 𝑔 if
𝑓 ≤ 𝑔 ≤ 𝑓 pointwise, and 𝐻[](𝒯 , ‖·‖𝐿2(𝑃 ), 𝜀) := log 𝑁[](𝒯 , ‖·‖𝐿2(𝑃 ), 𝜀).
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