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Abstract

This paper examines a novel gradient boosting framework for regression. We regularize
gradient boosted trees by introducing subsampling and employ a modified shrinkage algo-
rithm so that at every boosting stage the estimate is given by an average of trees. The
resulting algorithm, titled “Boulevard”, is shown to converge as the number of trees grows.
This construction allows us to demonstrate a central limit theorem for this limit, provid-
ing a characterization of uncertainty for predictions. A simulation study and real world
examples provide support for both the predictive accuracy of the model and its limiting
behavior.
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1. Introduction

This paper presents a theoretical study deriving inferential results for regularized gradient
boosted decision trees (GBM, GBDT or GBT: Friedman, 2001). Machine learning methods
for prediction have generally been thought of as trading off both intelligibility and statistical
uncertainty quantification in favor of accuracy. Recent results have started to provide a
statistical understanding of methods based on ensembles of decision trees (Breiman et al.,
1984). In particular, the consistency of methods related to random forests (RF: Breiman,
2001) has been demonstrated in Biau (2012); Scornet et al. (2015) while Wager et al.
(2014); Mentch and Hooker (2016); Wager and Athey (2017) and Athey et al. (2016) prove
central limit theorems for RF predictions. These have then been used for tests of variable
importance and nonparametric interactions in Mentch and Hooker (2017).

In this paper, we extend this analysis to GBDT. Analyses of RF have relied on a sub-
sampling structure to express the estimator in the form of a U-statistic from which central
limit theorems can be derived. By contrast, GBDT produces trees sequentially with the
current tree depending on the values in those built previously, requiring a different analyti-
cal approach. While the algorithm proposed in Friedman (2001) is intended to be generally
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applicable to any loss function, in this paper we focus specifically on squared-error regres-
sion (Stone, 1977, 1982). Given a sample of n observations (x1, y1), . . . , (xn, yn) ∈ [0, 1]d×R,
assume they follow the relation

X ∼ µ, Y = f(X) + ε

which satisfies the following:

(M1) The density, µ, is bounded from above and below, i.e. ∃0 < c1 < c2 s.t. c1 ≤ µ ≤ c2.

(M2) f is bounded Lipschitz, i.e. ∃Mf > 0 s.t. |f(x)| ≤ Mf < ∞, and ∃α > 0 s.t.
|f(x1)− f(x2)| ≤ α ‖x1 − x2‖ , ∀x1, x2 ∈ [0, 1]d.

(M3) ε is sub-Gaussian error with E[ε] = 0, E[ε2] = σ2
ε , E[ε4] <∞.

To fit this sample, GBDT builds correlated trees sequentially to perform gradient descent
in functional space (Friedman et al., 2000). With L2 loss, the process resembles the Robbins-
Monro algorithm (Robbins and Monro, 1951), applying trees to iteratively fit residuals. The
procedure is given as follows.

• Start with the initial estimate f̂0 = 0.

• For b ≥ 1, given the current functional estimate f̂b, calculate the negative gradient

zi , −
∂

∂ui

n∑
j=1

1

2
(uj − yj)2

∣∣∣
uj=f̂b(xj)

= yi − f̂b(xi).

• Construct a tree regressor tb(·) on (x1, z1), . . . , (xn, zn).

• Update by a small learning rate λ > 0,

f̂b+1 = f̂b + λtb.

Gradient boosting is initially developed from attempts to understand Adaboost (Freund
et al., 1999) in Friedman et al. (2000). Mallat and Zhang (1993) studied the Robbins-Monro
algorithm and demonstrated convergence when the regressors are taken from a Hilbert
space. Their result was extended by Bühlmann (2002) to show the consistency of decision
tree boosting under the settings of L2 norm and early stopping. From a broader point of
view, discussions of consistency and convergence of general L2 boosting framework can be
found in Bühlmann and Yu (2003), Zhang et al. (2005) and Bühlmann and Hothorn (2007).

Besides the original implementation, there are a number of variations on the algorithm
presented above. Friedman (2002) incorporated subsampling in each iteration and empiri-
cally showed significant improvement in predictive accuracy. Rashmi and Gilad-Bachrach
(2015) argued that GBDT is sensitive towards the initial trees, requiring lots of subsequent
trees to make an impact. Their solution incorporates the idea of dropout (Wager et al., 2013;
Srivastava et al., 2014) to train each new iteration with a subset of the existing ensemble.
Further, Rogozhnikov and Likhomanenko (2017) suggested to downscale the learning rate
and studied the convergence of the boosting path when the learning rate is small enough
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to guarantee contraction. We note that these analyzes differ from the analysis of the con-
vergence of Adaboost (e.g. Bartlett et al., 1998; Rudin et al., 2004; Mukherjee et al., 2013)
which focus on examining a classification margin.

In this paper we intend to provide a universal framework combining the factors men-
tioned above into GBDT to study its asymptotic behavior. Our method is particularly
inspired by the recent development of the RF inferential framework (Mentch and Hooker,
2016; Wager and Athey, 2017; Mentch and Hooker, 2017), in which the averaging structure
of random forests contributes to asymptotic normality based on theories of U-statistics.
Similarly, among classic stochastic gradient methods, Ruppert-Polyak (Polyak and Judit-
sky, 1992; Ruppert, 1988) averaging implies asymptotic normality for model parameter
estimators by averaging the gradient descent history. We therefore regularize the boosting
scheme towards this averaging structure, naming this algorithm Boulevard boosting and
summarizing it in the following Algorithm 1.

Algorithm 1 (Boulevard)

• Start with the initial estimate f̂0 = 0.

• Given the current functional estimate f̂b, calculate the current residuals1

zi = yi − f̂b(xi). (1)

• If needed, generate a subsample w ⊆ {1, 2, . . . , n} (otherwise let w = {1, 2, . . . , n}).

• Construct a tree regressor tb(·) on {(xi, zi), i ∈ w}.

• Update by learning rate 1 > λ > 0, presumably closer to 1, that

f̂b+1 =
b− 1

b
f̂b +

λ

b
tb =

λ

b

b∑
i=1

ti. (2)

• When boosting ends after the b∗-th iteration with f̂b∗, rescale it by 1+λ
λ to obtain the

final prediction 1+λ
λ f̂b∗.

The name Boulevard re-imagines the random forest stretched out along a row, with
the averaging structure diminishing the influence of early trees as the algorithm proceeds.
Boulevard is designed to leverage some of the advantages of GBDT while still allowing us to
derive the inferential results that enable statistical inference. As indicated by the last two
steps, they differ in how they update the ensemble, and Boulevard regularizes the boosting
path by de-emphasizing any single tree in the ensemble. Introducing the (b − 1)/b term
not only makes the ensemble less sensitive to its early members, but more importantly also
guarantees there is always signal in the gradients. As a result, the final form of the predictor
sits between an ordinary GBDT and a RF doing averaging.

We will show in the rest of the paper that, following such designs, Boulevard provides us
with theoretical guarantees regarding its limiting behavior. Writing f̂b,n to be the functional
estimate after b iterations for a sample of size n, we obtain the following results in their
simplified forms.

1. These can be generalized to the negative gradient of the loss zi , − ∂
∂u

∑n
j=1

1
2
(u− yj)

2
∣∣∣
u=f̂b(xj)

.

3



Y. Zhou and G. Hooker

1. Finite sample convergence. Conditioned on any finite sample of size n, should we keep
boosting using Boulevard, the boosting path converges almost surely. In other words,
∃f̂∞,n : Rd → R relying on the sample such that for a.s. x,

f̂b,n(x)→ f̂∞,n(x), b→∞.

2. Consistency. Under several conditions regarding the construction of regression trees,
this limit aligns with the truth after rescaling by 1+λ

λ . For a.s. x,

f̂∞,n(x)
P−→ λ

1 + λ
f(x), n→∞,

where the convergence in probability is with respect to sample variability.

3. Asymptotical normality. Under the same conditions as for consistency, we can prove
that the prediction is asymptotically normal. For a.s. x,

f̂∞,n(x)− λ
1+λf(x)

sd
(
f̂∞,n(x)

) d−→ N(0, 1), n→∞.

We will demonstrate in detail these results along with their required conditions in later
sections. So far as we are aware, these represent the first results on a distributional limit for
GBDT and hence the potential for inference using this framework; we hope that they inspire
further refinements. It is worth noticing that Bayesian Additive Regression Trees (BART)
Chipman et al. (2010) were also motivated by GBDT and allow the development of Bayesian
credible intervals. However, the training procedure for BART resembles backfitting a finite
number of trees, resulting in a somewhat different model class.

The remainder of the paper is organized as follows: In Section 2, we introduce a coun-
terpart of honesty for boosted trees named structure-value isolation and non-adaptivity to
regularizes the boosted tree behavior. In Section 3, we show finite sample Boulevard conver-
gence to a fixed point. In Section 4, we further prove the limiting distribution. In Section 5,
we focus on non-adaptivity and discuss how to achieve it either manually or spontaneously.
In Section 6, we present our empirical study.

2. Non-adaptivity

The sequential process employed in constructing decision trees renders them challenging
to describe mathematically and more tractable variants of the original implementation in
Breiman et al. (1984) are often employed. In particular, separating the structure of the
tree from the observed responses – which may still be used to determine leaf values – has
been particularly useful. Early analyses employed completely randomized trees in which
the structure was determined independently of observed responses: see Bühlmann et al.
(2002); Breiman (2004); Biau et al. (2008); Biau (2012); Arlot and Genuer (2014) that, in
particular, generate a connection to kernel methods observed in Davies and Ghahramani
(2014) and Scornet (2016). See Section 3.1 of Biau and Scornet (2016) for an overview of
these developments.

4



Boulevard: Regularized Stochastic Gradient Boosted Trees

More recent results in Wager and Athey (2017) employ sample splitting so that the
structure of a tree is determined by part of the data while the values in the leaves are
decided by an independent set to create a property that is termed honesty – independence
between tree structure and leaf values. Wager and Athey (2017) provide some evidence for
the practical, as well as theoretical, utility of this construction.

In this paper, we rely on two restrictions on the tree building process: an extension
of honesty that we call structure-value isolation to require the structure of trees indepen-
dent of leaf values for the whole ensemble rather than individual trees, and non-adaptivity
that requires the distribution of tree structures (conditional on the sample) to be constant
over boosting iterations. Non-adaptivity allows us to demonstrate the convergence of the
Boulevard algorithm for a fixed sample and to show that its limit has the form of kernel
ridge regression. Structure-value isolation then allows us to provide distributional results
by separating the form of the kernel from the response.

We recognize that these place restrictive conditions on the tree building process and
note parallels between these and the early developments in the theory of random forests
referenced above. Completely randomized trees satisfy both conditions but are not strictly
necessary. Non-adaptivity can be replaced by an asymptotic version which we argue may
arise spontaneously or can be enforced in various ways. Structure-value isolation can be
achieved, for example, by global subsample splitting – replacing the leaf values of trees
by a held-out subset as Boulevard progresses, although note that our results do not cover
uncertainty in the resulting kernel structure. Further details of these conditions are pursued
below; we speculate in Section 4.6 that our distributional results may also be obtained via
alternative representations, but developing these is beyond the scope of this paper.

2.1 Structure-Value Isolation

A decision tree (Breiman et al., 1984) predicts by iteratively segmenting the covariate space
into disjoint subsets (leaves) within each of which a terminal leaf value is chosen for making
predictions. Therefore we can separate the construction of a decision tree into two stages:
deciding the tree structure, and deciding the values in the terminal nodes. Traditional
greedy tree building algorithms use the same sample points for both of these two steps. One
drawback of these algorithms is the difficulty of providing mathematical guarantees about
isolating sample points with large observation errors, i.e. outliers, thereby de-stabilizing
the resulting predicted values. We think of this behavior as “chasing order statistics”. As a
result, a plethora of conclusions about trees and tree ensembles rely on randomization, for
example, using completely randomized trees or applying honesty as noted above.

In the context of Boulevard, the sequential dependence of trees requires us to employ a
stronger condition. We define structure-value isolation as the requirement that leaf values
are independent of tree structures across the entire ensemble, rather than on a tree-by-tree
basis. To make this precise, here we introduce our decision tree notations. A regression
tree tn(·) segments the covariate space of our interest [0, 1]d into disjoint hyper-rectangular
leaves [0, 1]d =

⊔m
j=1Aj . Its prediction can be explicitly expressed as

tn(x) =
n∑
i=1

sn,i(x)yi,
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where, given x ∈ Aj for some j,

sn,k(x) =
I(xk ∈ Aj)∑n
i=1 I(xi ∈ Aj)

,

describing the influence of xk on predicting the value at x with I(·) the indicator function;
when used without parentheses I will denote the identity matrix. Slight changes are required
when a subsample is used instead of the full sample to calculate the leaf values. For a
subsample w ⊂ {1, . . . , n}, we write

tn(x;w) =

n∑
i=1

sn,i(x;w)yi.

In this case, for any x ∈ Aj ,

sn,k(x) = sn,k(x;w) =
I(xk ∈ Aj)I(k ∈ w)∑n
i=1 I(xi ∈ Aj)I(i ∈ w)

=
I(xk ∈ Aj)I(k ∈ w)∑

xi∈Aj
I(i ∈ w)

.

We define sn(x) = (sn,1(x), . . . , sn,n(x)) the (row) structure vector of x, and

Sn =

sn,1(x1) . . . sn,n(x1)
...

. . .

sn,1(xn) . . . sn,n(xn)

 =

sn(x1)
...

sn(xn)


the structure matrix as the stacked structure vectors of the full sample. With this notation,
structure-value isolation can also be viewed as the separation between the tree structure
matrix and the response vector. Formally, we have

Definition 1 An ensemble of trees

f̂b,n(x) =

b∑
j=1

tjn(x;w) =

b∑
j=1

n∑
i=1

sjn,i(x;w)yi

exhibits structure-value isolation if sjn,i(x;w) is independent of the vector Y = (y1, . . . , yn)T

for all 1 ≤ j ≤ b and x, where we use the superscript j to represent the j-th tree.

For example, random forests utilizing completely randomized trees achieve structure-
value isolation, while standard boosting and standard random forests do not.

2.2 Non-adaptivity

In addition to structure-value isolation, in order to demonstrate that Boulevard converges
for a fixed sample, we also impose a condition which ensures that the distribution of tree
structures stabilizes as Boulevard progresses. We describe this in two senses: a strong sense
in which the distribution, conditional on the sample, is fixed for the whole sample, and a
weak sense in which this occurs eventually.
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Definition 2 Given the sample (x1, y1), . . . , (xn, yn) of size n, denote (Qn,b,Qn,b) the prob-
ability space of b-th tree’s structures after b trees have been built. Here Qn,b consists of
all possible tree structures and Qn,b the probability measure on Qn,b. A tree ensemble is
non-adaptive if (Qn,b,Qn,b) = (Qn,Qn) identical for all b. A tree ensemble is eventually
non-adaptive if (Qn,b,Qn,b) = (Qn,Qn) identical for sufficiently large b.

Following this definition, both standard random forests and random forests utilizing
completely randomized trees are non-adaptive. In terms of boosting, eventual non-adaptivity
is a desirable condition should a GBDT ensemble become stationary after enough itera-
tions, while the following algorithm provides a straightforward example to guarantee non-
adaptivity.

Algorithm 2 (Trees for Non-adaptive Boosting)

• Start with (x1, z1), . . . , (xn, zn), where z1, . . . , zn are current residuals.

• Obtain the tree structure q = {Aj}mj=1 independently of z1, . . . , zn.

• If needed, uniformly subsample an index set w ⊆ {1, . . . , n} of size θn, 0 < θ < 1
(otherwise let w = {1, 2, . . . , n}).

• Decide the leaf values, hence tn(·), merely with respect to w as for x ∈ Aj,

tn(x) =
∑
xi∈Aj

I(i ∈ w)∑
xl∈Aj

I(l ∈ w)
· zi,

with 0/0 defined to be 0.

Algorithm 2 is not specific about how to decide the tree structures. One can use com-
pletely randomized trees in which the gradients only influence the leaf values. Another
strategy is to acquire another independent sample (x′1, y

′
1), . . . , (x′n, y

′
n) and implement a

random forest on this sample solely for extracting tree structures.

Eventual non-adaptivity is helpful when the early trees are adaptive but have their in-
fluence diminishing gradually, ending up with no impact on the boosting limiting behavior.
To fulfill eventual non-adaptivity, we may consider a strategy which uses a parallel adaptive
boosting procedure on another independent sample to produce tree structures. Eventual
non-adaptivity allows the use of any tree building strategy for a finite number of trees. This
assumption turns out to be sufficient for our theoretical development as long as the ensemble
does not stop too early. Meanwhile it is compatible with any pragmatic tree building algo-
rithms for the beginning part where most signals get explored, which potentially accelerates
the learning process. We will delay the discussion of fulfilling eventual non-adaptivity either
spontaneously or manually to Section 5, and will focus on the Boulevard algorithm equipped
with non-adaptivity mechanism as non-adaptive Boulevard unless otherwise stated.
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2.3 Trees as Kernel Method

Another motivation for isolating tree structures and leaf values comes from the fact that it
relates decision trees to a kernel method. To clarify, recall the definition of the tree structure
matrix and denote by (Qn,Qn) the probability space of all possible tree structures given
sample (x1, y1), . . . , (xn, yn) of size n and, when necessary, a subsampling framework w,
where q = {Ai}

mq

i=1 ∈ Qn is the structure of a single possible tree. When we have structure-
value isolation, we can write the expected decision tree prediction on this sample as

Ŷ = EqEw[Sn] · Y = Eq,w[Sn] · Y, (3)

where Y = (y1, . . . , yn)T , Ew the expectation with respect to subsample indices and Eq the
expectation with respect to the probability measure Qn.

Theorem 3 Denote by Eq,w the expectation over all possible tree structures and subsample
index sets, then

(i) Eq,w[Sn] is symmetric, element-wise nonnegative.

(ii) Eq,w[Sn] is positive semidefinite.

(iii) ‖Eq,w[Sn]‖1 ≤ 1, ‖Eq,w[Sn]‖∞ ≤ 1, ‖Eq,w[Sn]‖ ≤ 1. Here the last ‖·‖ stands for the
spectral norm.

This Eq,w[Sn] in (3) is similar to the random forest kernel (Scornet et al., 2015) defined by the
corresponding tree structure space, subsampling strategy and tree structure randomization
approach. In terms of a single tree, honesty contributes to its symmetry and positive
semidefiniteness, while subsampling decides the concentration level of the kernel. While for
an ensemble, non-adaptivity guarantees that Eq,w[Sn] applies to all its tree components,
making it possible to use Ŷb = Eq,w[Sn] ·Yb, to describe the prediction from any tree, where
Yb is the target negative gradients and Ŷb the fitted values after b-th iteration.

It is also worth noticing that in part (iii) of Theorem 3 we only guarantee inequality
rather than setting the norm exactly to 1. This is a side effect of structure-value isolation:
for instance, when applying subsample splitting, it is possible that a leaf node decided by the
first subsample contains no points of the second subsample. For such cases we can predict
0 for expediency: we demonstrate in Section 4.2 that this choice has an asymptotically
negligible effect below.

3. Convergence

As stated in Zhang et al. (2005), a first theoretical challenge in analyzing boosting methods
is the difficulty of attaining convergence. As a starting point we will show that Boulevard
guarantees point-wise convergence under finite sample settings.

3.1 Stochastic Contraction and Boulevard Convergence

To study Boulevard convergence, we start by informally postulating a convergent point Y ∗

for any boosting algorithm, such that the boosting path should remain ideally “stationary”
at and after Y ∗. For standard boosting with L2 loss, supposing Y ∗ happens at the (b−1)-th
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iteration, the next update is Y ∗+λbSb · (Y −Y ∗) with Sb the tree structure matrix decided
by the gradient vector. Y ∗ being the convergent point implies that λbSb · (Y − Y ∗)=0.
Either we can implement a diminishing sequence of learning rates λb → 0, or we must
guarantee that we stop boosting with Sb · (Y − Y ∗)→ 0. The latter condition depends on
both the properties of the gradient vector Y − Y ∗ and the tree building algorithm deciding
Sb, making it challenging to study either the existence of such point Y ∗ or the convergence
of the boosting path to Y ∗.

For Boulevard, the update will be b−1
b Y

∗ + λ
bSb(Y − Y ∗), implying convergence at

Y ∗ = λE[Sb](Y −Y ∗) when Sb is random. For trees with non-adaptivity and structure-value
isolation, we can solve this relation for Y ∗ to prove its existence. Furthermore, Theorem 14
can be used to study the convergence of the boosting path to such Y ∗. We formalize our
discussion as the following theorem.

Theorem 4 Given sample (x1, y1), . . . , (xn, yn). If we construct gradient boosted trees with
structure-value isolation and non-adaptivity using tree structure space (Qn,Qn), by choosing
M � max{Mf , y1, . . . , yn} and defining ΓM (x) = sign(x)(|x|∧M) as a truncation function,
let the Boulevard iteration take the form

f̂b(x) =
b− 1

b
f̂b−1(x) +

λ

b
sb(x)(Y − ΓM (Ŷb−1)),

where Y = (y1, . . . , yn)T is the observed response vector, Ŷb = (f̂b(x1), . . . , f̂b(xn))T is the
predicted response vector by the first b trees, and sb is the random tree structure vector. For
a.s. x,

Ŷb −→
[

1

λ
I + E[Sb]

]−1

E[Sb]Y, b→∞,

where E[·] = Eq,w[·], Sb the random tree structure matrix defined above.

The proof of this theorem relies on a stochastic contraction theorem introduced by
Almudevar (2022) regarding a special class of stochastic processes. We refer the readers
to the original manuscript, but the theorem and its key points of the proof are briefly
reproduced in Appendix A.2 and extended to cover a Kolmogorov inequality. Theorem 4
guarantees the convergence of Boulevard paths under finite sample setting once we threshold
by a large M . As a corollary we can express the prediction at any point of interest x, which
coincides with a regularized kernel regression with ridge penalty using the random forest
kernel.

Corollary 5 By defining f̂ = limb→∞ f̂b,

f̂(x) = E[sn(x)]

[
1

λ
I + E[Sn]

]−1

Y. (4)

The shrinkage form of Corollary 5 indicates that Boulevard does not recover the full sig-
nal. We will see in later proofs that Boulevard can be made to converge to λ

1+λf(x) under
proper rate assumptions. In fact, Boulevard down-weighs the boosting history, thereby en-
suring that each tree in the finite ensemble must predict some partial signal during training.
It thus avoids being dominated by the first few trees then repeatedly fitting on noise. In
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practice, since we will show that the prediction from Boulevard is consistent with respect to
λ

1+λf(x), we simply rescale it by 1+λ
λ to retrieve the full signal if needed. This convergence

can be further bounded loosely when we choose λ <
√

2− 1.

Theorem 6 For given 0 < λ <
√

2− 1,

E
[∥∥∥Ŷb − Y ∗∥∥∥2

]
= O

(
1

b+ λ

)
. (5)

The convergence rate proportional to the square root of the ensemble size comes at the cost
that we cannot credit a single decision tree beyond the given threshold.

3.2 Beyond L2 Loss

Besides regression, other tasks may require alternative loss functions for boosting. For
instance, the exponential loss L(w, y) = exp(−wy) in adaboost (Freund and Schapire,
1995). Analogous to the proof for L2 loss, we can write the counterparts for any general
loss L(u) =

∑
i L(ui, yi) whose non-adaptive Boulevard iteration takes the form of

Ŷb =
b− 1

b
Ŷb−1 −

λ

b
Sb∇wL(w)

∣∣∣
w=Ŷb−1

.

Suppose the existence of the fix point Ŷ ∗ = −λE[Sb]∇wL(w)
∣∣∣
w=Ŷ ∗

, then

E[Ŷb − Ŷ ∗|Fb−1] =
b− 1

b
(Ŷb−1 − Ŷ ∗)−

λ

b
E[Sb]

(
∇wL(w)

∣∣∣
w=Ŷb−1

−∇wL(w)
∣∣∣
w=Ŷ ∗

)
.

If the gradient term is bounded and Lipschitz (which could be enforced by truncation), i.e.∥∥∥∥∇wL(w)
∣∣∣
w=w1

−∇wL(w)
∣∣∣
w=w2

∥∥∥∥ ≤M ‖w1 − w2‖ ,

we can similarly show such Boulevard iteration converges by choosing λ ≤M−1. However,
the closed form of Ŷ ∗ can be intractable to obtain and potentially non-unique. For example
for AdaBoost, Ŷ ∗ is the solution to Ŷ ∗ = −λE[Sn](exp(−Ŷ ∗1 y1), . . . , exp(−Ŷ ∗n yn))T .

4. Limiting Distribution

Inspired by recent results demonstrating the asymptotic normality of random forest pre-
dictions, in this section we prove the asymptotic normality of predictions from Boulevard.
Before detailing these results, we need some prerequisite discussion on the rates used for
decision tree construction in order to ensure asymptotic local behavior. In general, the
variability of model predictions comes from three sources: the sample variability, response
errors, and the systematic variability of boosting caused by its subsampling and stopping
rule. As shown in the last section, Boulevard convergence relieves the need for considering
the stopping rule and the systematic variability. Therefore the strategy for our proof is as
follows: we first consider the boosting process conditioned on the sample X so only the
response errors contribute to the variability. We then establish the uniformity over almost
all random samples to extend the limiting distribution to the unconditional cases, showing
that it is still the response errors that dominate the prediction variability.
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4.1 Building Deeper Trees

Decision trees can be thought as k-nearest-neighbor (k-NN: Altman, 1992) models where k is
the leaf size and the distance metric is given by whether two points are in the same leaf. This
adapts the metric to the local geometry of the response function. As the conclusions on k-
NN predictions require growing-in-size and shrinking-in-radius neighborhoods (Gordon and
Olshen, 1984), so are the counterparts of building deeper trees. Assuming non-adaptivity,
the following assumptions are sufficient for our analysis.

(L1) Asymptotic locality. We introduce a sequence {dn}, dn > 0, dn → 0 by which the
diameter of any leaf is bounded from above. Writing diam(A) = supx,y∈A|x − y|, we
require,

sup
A∈q∈Qn

diam(A) = O(dn).

(L2) Minimal leaf size. We introduce another sequence {vn}, vn > 0, vn → 0 by which the
volume of any leaf is bounded from below. Writing V (·) as the volume function by
Lebesgue measure, we require that

inf
A∈q∈Qn

V (A) = Ω (vn) .

Recall the notation that f = Ω (g) ⇐⇒ g = O (f). These place requirements on all the
leaves of a tree; we specify the rates we require for dn and vn below.

These assumptions together bound the space occupied by any leaf of any possible tree
from being either too extensive or too small. Along with the Lipschitz condition, this
geometrically shrinking neighborhood not only indicates that each tree is asymptotically
guaranteed to gather points with close response values together, but also helps to control
the impact of one point on another across multiple consecutive iterations. To be specific,
because boosting fits gradients instead of responses, a pair of distant points with divergent
values might still influence each other’s fitted values through a bridge created by other
points linked by being in the same leaf nodes across multiple iterations. Here (L1) provides
a theoretical upper bound for such influence.

Notice that randomized honest tree building strategies can be compatible with (L1) if
we force it, whereas the standard CART algorithm does not imply (L1). However, since
the intuition of (L1) is to put points with similar responses together, we anticipate that
CART, tuned to a proper depth, will satisfy (L1), at least in practice. If so, we can still
exercise Boulevard boosting using trees built with greedy algorithms without compromising
its theoretical guarantees in practice.

4.2 Conditioned on the Sample

We first consider a sample triangular array, i.e. for each n, the sample (xn,1, yn,1), . . . , (xn,n, yn,n)
is given. The first subscript n will be dropped when there is no ambiguity. We specify the
rates for the size of leaf nodes as:

11
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(R1) For some ε1 > 0,

dn = O
(
n−

1
d+2
−ε1
)
.

(R2) For some ε2 > ε1 > 0,

inf
A∈q∈Qn

n∑
i=1

I(xi ∈ A) = Ω
(
n

2
d+2
−dε2

)
.

One compatible realization is

dn = O
(
n−

1
d+1

)
, inf

A∈q∈Qn

n∑
i=1

I(xi ∈ A) = Ω
(
n

1
d+2

)
.

For simplicity all our proofs are under this setting. However, any other rates satisfying
these conditions are also sufficient.

Starting here we use the abbreviations

kTn = E[sn(x)], Kn = E[Sn], rTn = kTn

[
1

λ
I +Kn

]−1

.

to cover the components of (4). The rates of kn and rn determine Boulevard asymptotics.
Recall that the structure-value isolation paired with subsampling may lead to the con-

sequence of predicting 0 in some leaves, so that we only guarantee ‖kn‖1 ≤ 1. Working with
the tree construction rates as above, the subsample rate θ determines how far away ‖kn‖1 is
from 1. We show in Appendix A.7 for any x, 1−‖kn‖1 = O

(
1
n

)
if we use subsample size at

least of n
d+1
d+2 log n. This requires the subsample to be relatively large, which is compatible

with both θ being constant, or θ = (log n)−1.

4.3 Exponential Decay of Influence and Asymptotic Normality

The prediction that Boulevard makes at a point is a linear combination of responses
y1, . . . , yn whose coefficients are given by rn. Therefore the asymptotical normality of Boule-
vard predictions will rely on whether rn can comply with the Lindeberg-Feller condition.
Since rn only differs from kn by a ridge regression style matrix multiplication, we can expect
rn to have analogous properties to kn. Further, by examining rn we can show that distant
points are less influential on the prediction, and this decay of influence is exponential in our
case.

Given any n-vector v and an index set D, denote

v
∣∣
D

=

v1 · I(1 ∈ D)
...

vn · I(n ∈ D)

 .
This notation implies the decomposition that v = v

∣∣
D

+ v
∣∣
Dc .

12



Boulevard: Regularized Stochastic Gradient Boosted Trees

Lemma 7 Given sample (x1, y1), . . . , (xn, yn), a point of interest x, set ln = logn
− log λ =

c1 log n, and define index set Dn = {i : |xi − x| ≤ ln · dn}, then

(i) Globally, ∣∣∣∣∣
n∑
i=1

rn,i −
λ

1 + λ

∣∣∣∣∣ = O

(
1

n

)
.

(ii) If we only look nearby, ∥∥∥rn∣∣Dc
n

∥∥∥
1

= O

(
1

n

)
.

Lemma 7 indicates that Boulevard trees will asymptotically rely on a log n shrinking
neighborhood around the point of interest. Given sample size n and a point of interest
x, we can therefore define two neighborhoods of different radii Bn =

{
i
∣∣|xi − x| ≤ dn} and

Dn =
{
i
∣∣|xi − x| ≤ ln · dn}. Bn contains all points that have direct influence on x in a single

tree, and Dn contains the points that dominate the prediction at x. Their cardinalities |Bn|
and |Dn| follow Binomial distributions with parameters depending on the local covariate
density.

To show the limiting distribution of the sequence of predictions f̂n(x), the key point is
to verify that, by writing the prediction at any point x as a linear combination of sample
responses, all these coefficients are diminishing at a rate allowed by the Lindeberg-Feller
condition. Therefore we take a look at the coefficient vectors kn and rn.

Lemma 8 Given the triangular array with sample (xn,1, yn,1), . . . (xn,n, yn,n) at size n, as-
sume

• The smaller neighborhood is growing fast enough: |Bn| = Ω
(
n · ddn

)
.

• We have enough points in each leaf:

inf
A∈q∈Qn

n∑
i=1

I(xn,i ∈ A) = Ω
(
n

1
d+2

)
.

Then
Ω
(
n−

1
2

1
d+1

)
= ‖kn‖ , ‖rn‖ = O

(
n−

1
2

1
d+2

)
.

We note that these rates correspond to very slowly-growing trees with practical implementa-
tions of boosting generally fixing the depth of individual trees between 2 and 4. Combining
all our discussions above, the following theorem stating the asymptotic normality condi-
tioned on a given sample sequence follows. Lemma 8 is used here to estimate the order of
the variance term.

Theorem 9 (Conditional Asymptotic Normality for Boulevard Predictions) For
any x ∈ [0, 1]d, suppose the conditions in Lemma 8 hold. Write f(Xn) = (f(x1), . . . , f(xn))T ,
then under non-adaptivity and structure-value isolation,

f̂n(x)− rTn f(Xn)

‖rn‖
d−−→ N(0, σ2

ε ).

13
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4.4 Sample Variability

To extend the scope of the conditional limiting distribution to consider the sample variabil-
ity, we require that all the assumptions we made leading to Theorem 9 also hold true for
almost surely all random sample sequence. In order to do so, we would like to review the
sample variability in a well-defined probability space regarding the triangular array con-
structed from a random sample sequence. This can be done by the Kolmogorov’s extension
theorem; see details in Appendix A.11. We also have to make (R2) slightly more strict.

(R2’) We increase the minimal leaf geometric volume by any small ν > 0 s.t. vn follows

vn =
n

1
d+2

+ν

n
= n−

d+1
d+2

+ν < n−
d

d+1 = O
(
ddn

)
.

With this assumption, the following lemma proves that Theorem 9 holds in probability for
possible random samples.

Lemma 10 For given x ∈ [0, 1]d, suppose we have random sample (x1, y1), . . . , (xn, yn) for
each n. If we restrict the cardinality of tree space Qn using any small α > 0 s.t.

|Qn| = O

(
1

n
exp

(
1

2
n

1
d+2
−ν − nα

))
,

then
f̂n(x)− rTn f(Xn)

‖rn‖
d−−→ N(0, σ2

ε ).

By further showing that the difference between rTn f(Xn) and λ
1+λf(x) is negligible, we

obtain the main theorem of this paper that the limiting distribution of the random design
non-adaptive Boulevard predictions is normal.

Theorem 11 (Asymptotic Normality for Boulevard Predictions) Under the condi-
tions of Lemmas 8 and 10 as well as non-adaptivity and structure-value isolation, for given
x ∈ [0, 1]d,

f̂n(x)− λ
1+λf(x)

‖rn‖
d−−→ N(0, σ2

ε ).

Theorem 11 employs a deterministic mean term to center the estimate but scales by
a stochastic variance term. From results on kernel ridge regression, we would expect that
this stochastic variance converges in probability if the random forest kernel behaves as a
generic kernel with a shrinking bandwidth. From a theoretical perspective, the optimal rate

of ‖rn‖ is bounded from below by n−
1
2

1
d+1 , which corresponds to the optimal nonparametric

regression rate using 1
2 -Hölder continuous functions as base learners (Stone, 1982). In

practice, ‖rn‖ relies on the specific method of growing the boosted trees, and therefore may
vary from case to case.

Furthermore, Theorem 11 demonstrates that with carefully structured trees Boulevard
predictions are consistent after scaling and the response errors dominate the prediction
variability. It acts as an undersmoothed local smoother whose bias term shrinks faster than
the variance term.

14
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4.5 Subsampling and Tree Space Capacity

We have a strict requirement that the tree terminal node size grows at a rate between

n
1

d+1 and n
1

d+2 to guarantee undersmoothing. Any log term is allowed to be added to
the existing polynomial result without changing the behavior. We notice that different
subsample rates (i.e. θ = (log n)−d in Wager et al. (2014), θ = n−1/2 in Mentch and Hooker
(2016), although see relaxations in Peng et al. (2019)) have been applied for measuring
uncertainty. In comparison, the Boulevard algorithm requires a relatively restricted rate
between these. In addition, although Boulevard training implements subsampling at each
iteration, this does not influence the asymptotic distribution. The impact of subsampling is
on the possible variance from the mean process therefore the convergence speed especially
if we assume non-adaptivity.

We have required the size of tree space to scale at a rate close to O
(

1
n exp

(
1
2n

1
d+2

))
. In

comparison, Wager and Walther (2015) have shown that, in fixed dimension, any tree can
be well approximated by a collection of O(exp

(
(log n)2

)
) hyper-rectangles. One feasible

way to compare these two rates is to consider a tree space satisfying Boulevard rates in
which each tree has several leaves that constitute one hyper-rectangle in the collection
for approximation. Therefore a tree space of cardinality O(exp

(
(log n)2

)
) is enough for

approximating any tree ensemble. In this sense, the capacity of our designated tree space
is large enough from a practical perspective.

4.6 Alternative Analyses

The distributional results above are based on an analysis of a kernel representation of the
Boulevard process in which structure-value isolation plays a key role in both consistency
and asymptotic normality results. By contrast, Mentch and Hooker (2016) and Wager
and Athey (2017) employed results derived from U-statistics to demonstrate asymptotic
normality when random forest trees are obtained using subsamples. This analysis uses the
subsample structure to bypass the kernel representation and allows the trees to be built
adaptively. In a similar manner, when Boulevard employs subsampling we may represent
its fixed point as a U statistic. However, as in our discussion in Section 3.2, U -statistic
kernel is then defined implicitly with respect to a non-smooth tree-building process and
further analysis is beyond the scope of this paper.

Wager and Athey (2017) also uses regularity to constrain leaf sizes in order to demon-
strate consistency outside of the U -statistic framework. We expect that a similar weakening
of these conditions is possible in Boulevard.

5. Eventual Non-adaptivity

All the results discussed above have assumed the non-adaptivity of the boosting procedure
of Boulevard, which is unconventional in contrast to how boosted trees pragmatically decide
both their structures and values using the same batch of negative gradients. Such procedures
are known for their tendency to overfit, behavior which can be relieved by subsampling.
However, when seeking to extend our results to this case we lose the easy identifiability of
a Boulevard convergence point as the tree structure distribution changes at each iteration.
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To extend our convergence results to a more practical Boulevard algorithm that allows
the current gradient to determine tree structure, a first approach is to relax non-adaptivity
to eventual non-adaptivity, both of which have the same limiting distributional behavior.
We postulate a convergent sequence of predictions, indicating that the underlying tree
spaces will be stabilized after boosting for a sufficiently long time. If this is the case,
eventual non-adaptivity is spontaneous. Here we introduce the notation E[Sn(Y, Ŷ )] where
Y = (y1, . . . , yn)T and Ŷ = (f̂(x1), . . . , f̂(xn))T indicating the expected tree structure given
the gradient of the loss between observed responses and current predictions. In regression
this is Y − Ŷ , and we will take this form into the following discussion instead of a generic
gradient expression.

5.1 Local Homogeneity and Contraction Regions

We start with trees whose splits are based on the optimal L2 gain (Breiman et al., 1984).
For (x1, z1), . . . , (xn, zn), the chosen split minimizes the impurity in the form of

inf
L,R

∑
i∈L

(zi − z̄L)2 +
∑
i∈R

(zi − z̄R)2, (6)

where L ⊂ {1, . . . , n}, R = Lc. Once the optimal split is unique, i.e. the optimum has
a positive margin over the rest, we could allow a small change of all y’s values without
changing the split decision. This also holds true if the split is decided by a subsample. In
terms of adaptive boosting, this observation demonstrates local homogeneity that, except
on a set Ω0 ⊂ Rn with Lebesgue measure 0 where (z1, . . . , zn)T = Y − Ŷ ∈ Ω0 has multiple
optima for (6), we can segment Rn, the space of possible vectors Y − Ŷ , into subsets⊔α
i=1Ci = Rn\Ω0 s.t. E[Sn(Y, Ŷ )] = E[Sn(Y, Ŷ ′)] for Y − Ŷ , Y − Ŷ ′ ∈ Ci the same subset.

Notice that Gini gain is insensitive to multiplying (y1, . . . , yn) by a nonzero factor.
Therefore all Ci’s are open double cones in Rn.

Definition 12 (Contraction Region) Given the sample (x1, y1), . . . (xn, yn). Write Y =
(y1, . . . , yn) and current prediction Ŷ = (ŷ1, . . . , ŷn). Following the above segmentation⊔α
i=1Ci = Rn\Ω0. We call Ci a contraction region if Y ∗ ∈ Ci for the following Y ∗

Y ∗ = λE[Sn(Y, Ŷ )](Y − Y ∗), i.e. Y ∗ =

[
1

λ
I + E[Sn(Y, Ŷ )]

]−1

E[Sn(Y, Ŷ )]Y,

for any Y − Ŷ ∈ Ci, where E[Sn(Y, Ŷ )] is the unique structural matrix in this region.

The intuition behind this definition is that, as long as a Boulevard process stays inside a
contraction region, the subsequent tree structures will be conditionally independent of the
predicted values. Therefore the process becomes non-adaptive, collapsing to Y ∗. To achieve
this eventual non-adaptivity, we would like to know when a Boulevard path is permanently
contained in a contraction region.

We should point out here that we have not shown the existence and the uniqueness of
such contraction regions. Such an analysis would rely on the method of choosing splits, the
training sample and the choice of λ.
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5.2 Escaping the Contraction Region

In this section we explore possible approaches to restrict a Boulevard process inside a
contraction region. Assuming the existence of contraction regions, we recall Theorem 14
which indicates that the Boulevard process has positive probability of not moving far from
the fixed point.

Theorem 13 Denote B(x, r) the open ball of radius r centered at x in Rn. Suppose C ⊂ R
a contraction region, Y ∗ ∈ C the contraction point and B(Y, 2r) ⊂ C for some r > 0. Write
(Ŷb)b≥1 the Boulevard process. For sufficiently large t,

P
(
Ŷb ∈ C,∀b ≥ t

∣∣Ŷt ∈ B(Y ∗, r)
)
−→ 1, t→∞.

Theorem 13 states that the longer we boost, the more likely the boosting path is trapped
in a contraction region forever, resulting in spontaneous eventual non-adaptivity and justi-
fying all our theory assuming non-adaptivity. However, it guarantees neither the existence
or the uniqueness of the contraction region.

5.3 Forcing Eventual Non-Adaptivity

If we alternatively consider manually forcing eventual non-adaptivity, a possible ad hoc
solution to the existence is to apply a tail snapshot which uses the tree space of certain
iteration b∗ for the rest of the boosting run. This b∗ can be either pre-specified or decided
on the fly when the Boulevard path becomes stationary. Ideally, as long as b∗ is in a
contraction region, its forced non-adaptivity is indistinguishable from spontaneous eventual
non-adaptivity. An example of Boulevard regression implementing the tail snapshot strategy
is detailed in Algorithm 3, in which we decide b∗ by examining the training loss reduction.

Algorithm 3 (Tail Snapshot Boulevard)

• Start with f̂0 = 0 and b∗ to be chosen.

• For b = 0, . . ., given f̂b, calculate the gradient

zi , −
∂

∂ui

n∑
i=1

1

2
(ui − yi)2

∣∣∣
ui=ΓM (f̂b(xi))

= yi − ΓM (f̂b(xi));

• If b∗ has not been chosen, update by 1 > λ > 0 and the tree structure space Qb decided
by current gradients,

f̂b+1(x) =
b

b+ 1
f̂b(x) +

λ

b+ 1
sb(x;Qb)(z1, . . . , zn)T ,

where sb(x;Q) denotes the random tree structure vector based on tree space Q. If b∗

has been chosen, update by Qb∗ instead, i.e.

f̂b+1(x) =
b

b+ 1
f̂b(x) +

λ

b+ 1
sb(x;Q∗b)(z1, . . . , zn)T .
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• When b∗ has not been chosen, check the empirical training loss as a measure of the
distance to the fixed point.

Lb+1 =
1

2n

n∑
i=1

(
λ

1 + λ
yi − f̂b+1(xi)

)2

.

If Lb+1 < L∗ a preset threshold, we claim Boulevard is close enough to a fixed point
and choose b∗ to be current b+ 1. This step is then skipped for the rest of the boosting
run.

Another plausible solution is to collectively build the tree space up based on the following
intuition. For the first trees we prefer to construct them using the gradients to capture the
signal. However when the boosting process keeps going on, we may consider reusing the
tree structures or the tree spaces of previous iterations as to avoid overfitting the data or
fitting the errors. Therefore the tree space Qn,b for a large b should be the tree structures
created by current gradients, plus all tree spaces Qn,i for i < b. This accumulation scheme
changes as we boost, however asymptotically it leads to a common tree space and thus
eventual non-adaptivity.

6. Empirical Study

We have conducted an empirical study2 to demonstrate the performance of Boulevard.
Despite the fact that our purpose in developing Boulevard lies in statistical inference, we
require its accuracy to be on a par with other state-of-the-art tree ensembles, which is
assessed on both simulated and real world data. In addition, we inspect the empirical
limiting behavior of non-adaptive Boulevard to show its agreement with our theory. We
summarize the result of the empirical study in this section, while additional details can be
found in Appendix B.

6.1 Predictive Accuracy

We first compare Boulevard predictive accuracy with the following tree ensembles: Ran-
dom Forest (RF), gradient boosted trees without subsampling (GBT), stochastic gradient
boosted trees (SGBT), non-adaptive Boulevard achieved by completely randomized trees
(rBLV), adaptive Boulevard whose tree structures are influenced by gradient values (BLV).
All the tree ensembles build same depth of trees (see Appendix B.1 for details) throughout
the experiment.

Results on simulated data are shown in Figure 1 and 2. We choose sample size of 5000
and use the following two settings as underlying response functions: (1) y = x1 +3x2 +x3x4

(top), and (2) y = x1 + 3x2 + (1 − x3)2 + x4x5 + (1 − x6)6 + x7 (bottom). Error terms
are Unif[-1,1] (left) and equal point mass on {−1, 1} (right). Training errors are evaluated
on the training set with noisy responses, while test errors are evaluated by error from the
underlying signal on a separate test set. For each setup we have two plots covering the
behavior of the first 50 trees and the following 250 trees respectively. BLV and rBLV are
comparable with RF, while all the three equal-weight tree ensembles are slightly inferior to

2. The empirical study code is provided at: https://github.com/siriuz42/boulevard.git
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Figure 1: Training and testing error curves of tree ensembles on simulated data generated
by function (1). Training errors: left Unif[-1,1], right Unif{-1,1}. Testing errors
are smaller because they are calculated on test sets with no errors.
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Figure 2: Training and testing error curves of tree ensembles on simulated data generated
by function (2). Training errors are: Unif[-1,1] on the left, Unif{-1,1} on the
right. Testing errors are smaller because they are calculated on test sets with no
errors.

GBT and SGBT. In particular, test errors are smaller as they are calculated on test sets
with no errors.

In addition, we have used the same settings and applied different λ values 0.2, 0.5 and
0.8 on two simulated data sets to investigate the impact of λ on Boulevard accuracy for
finite sample cases. Results are summarized in Figure 3. BLV outperforms rBLV while
λ = 0.8 appears to be the best choice. Though this observation aligns with our intuition to
choose a large λ, we consider the discrepancy between different λ values to be small.

Results on four real world data sets selected from UCI Machine Learning Repository
(Dheeru and Karra Taniskidou, 2017; Tüfekci, 2014; Kaya et al., 2012) are shown in Figure
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Figure 3: Boulevard accuracy with different choices of λ values. Training errors are: Unif[-
1,1] on the left, Unif{-1,1} on the right. Test errors are marked by dots and are
smaller as they are calculated on test sets with no errors.

4. All curves are averages after 5-fold cross validation. Different parameters are used for
different data sets, see Appendix B.1. Rankings of the five methods in comparison do not
show consistency, nevertheless rBLV and BLV manage to achieve similar performance to
the other methods on test sets.

6.2 Convergence and Kernel Ridge Regression

Theorem 4 and Corollary 5 claim that any Boulevard prediction should converge to a kernel
ridge regression (KRR) form. Although the matrix inverse involved in the expression is too
time consuming to compute for large n, it is possible to estimate it using Monte Carlo when
n and d are small. We take advantage of this setup to compare Boulevard and KRR in
order to empirically support the theorem.

We choose d = 5 and n = 200. We use the following model

y = x1 + 3x2 + x2
3 + 2x4x5 + ε, ε ∼ Unif[−1, 1]. (7)

to generate training data. For 4 test points (see Appendix B.1), we predict their values using
non-adaptive Boulevard with 100 trees, subsampling rate 0.8 and λ = 0.8. We also make
KRR predictions based on the expected tree structure matrix E[S] estimated by Monte
Carlo using the same 100 trees. This procedure is repeated 20 times with a new training
sample each time. Our results are summarized in Figure 5.

The plot on the left shows the interim predictions made by one Boulevard run. The
shaped dots are Boulevard predictions, while the horizontal lines are the predictions made
by KRR. We see that Boulevard iterations converge, while the convergent points agree with
KRR predictions. On the right we plot the predictions made by Boulevard against the
ones made by KRR for each of the 20 repetitions, with the horizontal and vertical lines
marking the true responses. All dots are close to the diagonal x = y, indicating these two
methods always produce almost identical results. It also shows that the sample variability
is influencing the two methods in the same way. Their MSEs, as labeled in the plots, also
appear to be indistinguishable.
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Figure 4: Training and testing error curves of tree ensembles on real world data sets. Data
sets are: Boston Housing (top left), Combined Cycle Power Plant (top right),
Protein Tertiary Structure (bottom left) and Airfoil (bottom right).
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Figure 5: Left: Boulevard iterations on 4 test points converge to the theoretical convergent
points given by the KRR form. The shaped dots are interim Boulevard predictions
at different iterations, while horizontal lines are KRR results. Right: Boulevard
predictions v.s. KRR predictions after 20 repetitions. Two methods generate in-
distinguishable predictions along the diagonal with similar MSEs. True responses
are marked by the horizontal and vertical lines.
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Figure 6: Distributions of predictions of test points with different error terms. The er-
rors are N(0,1), Unif[-1,1], Unif{−1, 1}, and half chance -1 half chance Unif[0,2],
respectively.

6.3 Limiting Distribution

To examine the limiting behavior of non-adaptive Boulevard, we again use the generative
model

y = x1 + 3x2 + x2
3 + 2x4x5 + ε.

A set of 10 fixed test points (see Appendix B.1) are used along the experiments. We set
a sample size of 1000, add different sub-Gaussian error terms to this signal and build non-
adaptive Boulevard until ensemble size reaches 2000. This is repeated 1000 times with a
new sample each time and we plot the distribution of the predictions in Figure 6. All these
curves are undistinguishable from normal distribution by Kolmogorov-Smirnov test.

6.4 Reproduction Interval

Similar to prediction intervals which quantify the uncertainty of future predictions, we
introduce the reproduction interval as the uncertainty measure for where the prediction
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Figure 7: Reproduction intervals. Boxplots show distributions of predictions; red intervals
are reproduction intervals; blue dots are truths. Sample sizes are 1000 (top row)
and 5000 (bottom row), error terms Unif[-1,1] (left column) and Unif[-2, 2] (right
column). Coverage is shown by numbers next to interval centers.

would be if it were made on another independent sample. Theorem 11 is used to create
reproduction intervals for Boulevard. kn in the stochastic variance is empirically estimated
directly using the ensemble, while [ 1

λI + Kn]−1 is conservatively simplified to its largest
possible norm λ. We then scale the variance estimate by 2 to account for having separate
independent samples: with two independent samples, we expect the prediction on the same
point x to be f̂1(x) ∼ N(f(x), σ2

x) and f̂2(x) ∼ N(f(x), σ2
x) respectively, implying f̂1(x) −

f̂2(x) ∼ N(0, 2σ2
x).

We use the training sample to create reproduction intervals for the test points, then re-
peatedly train and predict each test point for another 100 times with a different sample each
time. Figure 7 shows the 95% reproduction intervals we capture under different settings.
We anticipate more accurate results with larger sample size.

Furthermore, we notice the uniform pattern of biases in those plots. This bias comes
from two known causes. One is that we are using small samples which are far from guar-
anteeing the consistency. The other is because of the edge effects; the distance of the ten
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Figure 8: Reproduction intervals for real world datasets. Boxplots show distributions of
predictions; red intervals are reproduction intervals. Coverage is shown by num-
bers next to interval centers.

chosen test points to the center of the hypercube is respectively 0.000, 0.671, 0.894, 0.894,
0.894, 0.693, 0.520, 0.436, 0.510 and 0.469. We in general expect biased prediction when
the point is near the boundary.

Figure 8 shows the result when we generate the 90% reproduction intervals for two real
world datasets from UCI, namely CCPP and CASP. For each dataset, we take the first
10 examples as test examples, and split the rest of the dataset into 11 folds. The first
fold is used to create the reproduction intervals while the rest ten folds are used to create
out-sample predictions. That ends up with 850 (CCPP) and 2700 (CASP) examples per
fold respectively.

7. Discussion

This work is among the earliest attempts we know to have established a limiting distribution
for gradient boosted trees. The roadmap consists of the following key components. We
implemented the honest tree construction to reduce the chance of chasing order statistics,
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applied downweighting towards averaging to achieve convergence, and carefully selected
tree construction rate to obtain asymptotic normality. With the uncertainty measure of
Boulevard predictions, we are looking forward to exploring the use of regularized gradient
boosting within inference, making the model more interpretable and analyzable.

The sequential correlation induced by GBDT is the major issue complicating our anal-
ysis, while the resistance of decision trees to mathematical quantification adds further chal-
lenges. Much of our effort is spent on seeking reasonable conditions from which to account
for these features. Structure-value isolation, non-adaptivity and down-weighing all con-
tribute to making sequential trees less correlated.

As briefly discussed above, there are two remaining questions in our paper. The first
question regards the stochastic variance. To allow a richer collection of decision tree con-
struction strategies, it is essential to discover the weakest tree condition under which the
variance term converges in probability. The second question is the convergence of adaptive
Boulevard which appears to hold in practice. In spite of the ad hoc tail snapshot we pro-
posed, the existence and uniqueness of the contraction region of generic Boulevard requires
more mathematical formulation of decision trees or some variation of decision trees.
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Appendix A. Proofs

A.1 Proof of Theorem 3

Proof We will prove the theorem with respect to Ew[·]. The Ew,q[·] conclusion is an instant
corollary as the three properties are additive. To prove (1), element-wise non-negativity is
trivial. To show symmetry, consider any given i 6= j and assume xi ∈ A and xj ∈ A′ under
the assumption of subsample uniformity,

Ew[Sn]i,j = Ew[sn,j(xi)] =
1(
n
θn

)∑
w

I(xj ∈ A)I(j ∈ w)∑
xl∈A I(l ∈ w)

Ew[Sn]j,i = Ew[sn,i(xj)] =
1(
n
θn

)∑
w

I(xi ∈ A′)I(i ∈ w)∑
xl∈A′ I(l ∈ w)

.

Therefore Ew[Sn]i,j = Ew[Sn]j,i = 0 if A 6= A′.
In the cases of A = A′, I(xj ∈ A) = I(xi ∈ A′) = 1. We consider the following

possibilities of w.
(a) For i /∈ w, j /∈ w,

I(j ∈ w)∑
xl∈A I(l ∈ w)

=
I(i ∈ w)∑
xl∈A I(l ∈ w)

= 0.

(b) For i ∈ w, j ∈ w,

I(j ∈ w)∑
xl∈A I(l ∈ w)

=
I(i ∈ w)∑
xl∈A I(l ∈ w)

=
1∑

xl∈A I(l ∈ w)
.
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(c) For i ∈ w, j /∈ w, consider w′ = w\{i} ∪ {j} s.t.
∑

xl∈A I(l ∈ w) =
∑

xl∈A I(l ∈ w′),

I(j ∈ w′)∑
xl∈A I(l ∈ w′)

=
I(i ∈ w)∑
xl∈A I(l ∈ w)

=
1∑

xl∈A I(l ∈ w)
.

(d) Similarly, for i /∈ w, j ∈ w, consider w′ = w\{j} ∪ {i},

I(j ∈ w)∑
xl∈A I(l ∈ w)

=
I(i ∈ w′)∑
xl∈A I(l ∈ w′)

=
1∑

xl∈A I(l ∈ w)
.

Since all w’s are equally likely, we conclude by symmetry that Ew[Sn]i,j = Ew[Sn]j,i, hence
Ew[Sn] is symmetric.

To prove (2), notice ∀xi, xj , xk ∈ A,

Ew[Sn]k,i =
1(
n
θn

)∑
w

I(i ∈ w)∑
xl∈A I(l ∈ w)

= Ew[Sn]j,i.

Therefore Ew[Sn], after proper permutation to gather points in same leaves together, is
diagonally blocked with equal non-negative entries in each diagonal block and 0 elsewhere,
thus positive semi-definite.

To show (3), notice that Sn has column sums of ≤ 1 (not = 1 due to chances of having
no subsample points in the leaf), so does Ew[Sn]. Thus ‖Ew[Sn]‖1 ≤ 1. Similarly, Ew[Sn]
has rows sums of ≤ 1 due to its symmetry therefore ‖Ew[Sn]‖∞ ≤ 1. Therefore,

ρ(Ew[Sn]) = ‖Ew[Sn]‖ ≤
√

sup
‖u‖=1

Ew[Sn]TEw[Sn]u

≤
√

sup
‖u‖=1

‖Ew[Sn]T ‖∞ ‖Ew[Sn]‖∞ ‖u‖∞

≤
√

sup
‖u‖=1

‖Ew[Sn]‖1 ‖Ew[Sn]‖∞ · 1

≤ 1.

A.2 Stochastic Contraction

We first state the stochastic contraction theorem and its extension to Kolmogorov inequality.
The proof follows afterwards.

Theorem 14 (Stochastic Contraction) Given Rd-valued stochastic process {Zt}t∈N, a
sequence of 0 < λt ≤ 1, define

F0 = ∅,Ft = σ(Z1, . . . , Zt) the generated σ field,

εt = Zt − E[Zt|Ft−1].

We call Zt a stochastic contraction if the following properties hold
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(C1) Vanishing coefficients

∞∑
t=1

(1− λt) =∞, i.e.
∞∏
t=1

λt = 0.

(C2) Mean contraction
||E[Zt|Ft−1]|| ≤ λt ‖Zt−1‖ , a.s..

(C3) Bounded deviation

sup ‖εt‖ → 0,

∞∑
t=1

E[‖εt‖2] <∞.

In particular, a multidimensional stochastic contraction exhibits the following behavior

(i) Contraction
Zt

a.s.−−→ 0.

(ii) Kolmogorov inequality

P

(
sup
t≥T
‖Zt‖ ≤ ‖ZT ‖+ δ

)
≥ 1−

4
√
d
∑∞

t=T+1 E[ε2t ]

min{δ2, β2}
(8)

holds for all T, δ > 0 s.t. β = ‖ZT ‖+ δ −
√
d supt>T ‖εt‖ > 0.

Definition 15 (Stochastic Contraction) Given real-valued stochastic process {Xt}t∈N,
a sequence of 0 < λt ≤ 1, define

F0 = ∅,Ft = σ(X1, . . . , Xt),

εt = Xt − E[Xt|Ft−1].

We call Xt a stochastic contraction if the following is satisfied

• Vanishing coefficients

∞∑
t=1

(1− λt) =∞, i.e.

∞∏
t=1

λt = 0.

• Mean contraction

λtXt−1I(Xt−1 ≤ 0) ≤ E[Xt|Ft−1] ≤ λtXt−1I(Xt−1 ≥ 0), a.s..

• Bounded deviation

sup |εt| → 0,
∞∑
t=1

E[ε2t ] ≤ ∞.

Lemma 16 If {Xt}t∈N is a stochastic contraction.

28



Boulevard: Regularized Stochastic Gradient Boosted Trees

• Almost sure convergence

Xt
a.s.−−→ 0.

• Kolmogorov maximal inequality. For any T, δ > 0 s.t. β = |XT |+ δ− supt>T |εt| > 0,

P

(
sup
t≥T
|Xt| ≤ |XT |+ δ

)
≥ 1−

4
∑∞

t=T+1 E[ε2t ]

min{δ2, β2}
.

Proof Define the stopping time of sign changes

T0 = 0, Tk = inf{t > Tk−1|Xt−1 ≤ 0, Xt > 0 or Xt−1 ≥ 0, Xt < 0}.

We now look at every realized path and examine the segment of the process holding the
same sign. W.o.l.g., suppose Xt ≥ 0 for Tk < t < Tk+1. Easy to check

Xt = E[Xt|Ft−1] + εt ≤ λtXt−1 + εt ≤ Xt−1 + εt ≤ XTk +
t∑

s=Tk+1

εs. (9)

Therefore |Xt| ≤ |XTk |+
∣∣∣∑t

s=Tk+1 εs

∣∣∣ , same for the negative case. Since εt’s are independent

and
∑∞

t=1 E[ε2t ] < ∞,
∑∞

t=1 εt exists a.s.. Write N = supk{Tk ≤ ∞} the number of sign
changes.

If there are infinitely many sign changes, i.e. N =∞, by sending k →∞, |XTk |
a.s.−−→ 0

and
∣∣∣∑Tk+n

s=Tk+1 εs

∣∣∣ a.s.−−→ 0,∀n > 0. Hence Xt
a.s.−−→ 0.

If there are finitely many sign changes, we assume w.l.o.g. that for some k, Xt ≥ 0, ∀t ≥
Tk. (9) can be written as Xt − εt ≤ Xt−1 which indicates Xt −

∑t
s=Tk+1 εs is decreasing,

therefore has a limit (−∞). Since
∑∞

s=Tk+1 εs exists a.s., Xt
a.s.−−→ c ≥ 0. Assume c > 0,

∞∑
s=Tk+1

εs ≥
∞∑

s=Tk+1

Xs − λsXs−1 = −λTk+1XTk +

∞∑
s=Tk+2

(1− λs)Xs−1 =∞,

which is a contradiction. Therefore Xt
a.s.−−→ 0.

To show the maximum inequality, we take the same notations above, and also look at
segmentations by sign changes. For any t in the same segment as T ,

|Xt| ≤ |XT |+

∣∣∣∣∣
t∑

s=T+1

εt

∣∣∣∣∣ ≤ |XT |+ sup
T ′>T

∣∣∣∣∣
T ′∑

s=T+1

εs

∣∣∣∣∣ .
For any t in a different segment starting at T ′,

|Xt| ≤
∣∣X ′T ∣∣+

∣∣∣∣∣
t∑

s=T ′+1

εt

∣∣∣∣∣ ≤ ∣∣X ′T ∣∣+ sup
S>T ′

∣∣∣∣∣
S∑

s=T ′+1

εs

∣∣∣∣∣ ≤ sup
s>T
|εs|+

∣∣∣∣∣
S∑

s=T ′+1

εs

∣∣∣∣∣ .
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Now we consider any possible sequence of {εt, t > T} and allow T ′, S to change. Kolmogorov
maximal inequality implies

P

(
sup
i,j>T

∣∣∣∣∣
j∑
s=i

εs

∣∣∣∣∣ ≤ x
)
≥ P

(
sup
i>T

∣∣∣∣∣
i∑

s=T

εs

∣∣∣∣∣ ≤ x

2

)
≥ 1−

4
∑∞

s=T E[ε2s]

x2
.

The conclusion is obtained by noticing that |Xt| ≤ |XT |+ δ for any {εt}t>T satisfying

sup
i,j>T

∣∣∣∣∣
j∑
s=i

εs

∣∣∣∣∣ ≤ min{δ, β}.

A.3 Proof of Theorem 14

Proof The idea is to define a sequence of adaptive orthonormal rotations Rt ∈ Ft−1 to align
the expected update with the previous step so that we can apply the R result component-
wise. Define RtE[Zt|Ft−1] = γt−1Zt−1, for some γt−1 > 0, γt−1 ∈ Ft−1. The contraction
assumption also implies that γt−1 ≤ λt−1. Define a new process Z∗i satisfying

1. Z∗1 = Z1, R1 = I,

2. writing R∗t =
∏n
i=1Ri ∈ Ft−1 s.t. Z∗t = R∗tZt = R∗t εt +R∗tE[Zt|Ft−1].

Above implies ‖Zt‖ = ‖Z∗t ‖, thus we need to prove the equivalence that Z∗t
a.s.−−→ 0. Notice

that
∑n

i=1R
∗
i εi is component-wise a martingale with

∞∑
i=1

E[‖R∗i εi‖
2] =

∞∑
i=1

E[‖εi‖2] <∞,

hence
∑n

i=1R
∗
i εi exists a.s.. Since the construction aligns Z∗t with E[Z∗t |Ft−1] we apply

Lemma 16 to obtain almost sure convergence to 0 component-wisely, thus ‖Z∗t ‖
a.s.−−→ 0.

A.4 Proof of Theorem 4

Proof Due to non-adaptivity Sn is independent of Ŷb for any b. Notice that Y ∗ =
λE[Sn](Y − Y ∗) for Y ∗ =

[
1
λI + E[Sn]

]−1 E[Sn]Y . Notice we write b here in place of t

used by the stochastic contraction. Define the filtration Fb = σ(Ŷ0, . . . , Ŷb) and consider
the sequence Zb = Ŷb − Y ∗. This sequence satisfies the stochastic contraction condition.
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First, ‖Z0‖ = ‖Y ∗‖ ≤ ∞. Notice

‖E[Zb|Fb−1]‖ =

∥∥∥∥E [b− 1

b
Ŷb−1 +

λ

b
Sn(Y − ΓM (Ŷb−1))− Y ∗

∣∣∣Fb−1

]∥∥∥∥
=

∥∥∥∥b− 1

b
(Ŷb−1 − Y ∗) +

λ

b
E[Sn](Y − ΓM (Ŷb−1))− 1

b
Y ∗
∥∥∥∥

≤ b− 1

b

∥∥∥Ŷb−1 − Y ∗
∥∥∥+

∥∥∥∥λbE[Sn](Y − ΓM (Ŷb−1))− λ

b
E[Sn](Y − Y ∗)

∥∥∥∥
≤ b− 1 + λ

b

∥∥∥Ŷb−1 − Y ∗
∥∥∥ , kb ‖Zb−1‖ ,

where
∑∞

b=1(1− kb) =∞. Since entries and row sums of are both ≤ 1,

‖Sn‖ ≤
√
‖Sn‖∞ ‖Sn‖1 ≤

√
1× n =

√
n.

Therefore

‖εb‖ = ‖Zb − E[Zb|Fb−1]‖ =

∥∥∥∥λb (E[Sn]− Sn)(Y − ΓM (Ŷb−1))

∥∥∥∥ ≤ λ

b
(1 +

√
n)2
√
nM.

Hence
∞∑
b=1

E[‖εb‖2] ≤

( ∞∑
b=1

1

b2

)
· λ2(1 +

√
n)24nM <∞.

We conclude that Zb
a.s.−−→ 0, i.e. Ŷb

a.s.−−→ Y ∗.

A.5 Proof of Corollary 5

Proof Expanding f̂(x) gives

f̂(x) = lim
B→∞

1

B

B∑
b=1

sb(x)(Y − Ŷb)

= lim
B→∞

1

B

B∑
b=1

sb(x)(Y − Y ∗ + Y ∗ − Ŷb)

= lim
B→∞

1

B

B∑
b=1

sb(x)(Y − Y ∗) + lim
B→∞

1

B

B∑
b=1

sb(x)(Y ∗ − Ŷb)

= E[sb(x)](Y − Y ∗) + 0

= E[sn(x)]

[
1

λ
I + E[Sn]

]−1

Y.
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A.6 Proof of Theorem 6

Proof Recall the notations in the proof of Theorem 4 that

Zb = Ŷb − Y ∗, εb = Zb − E[Zb|Fb−1], kb =
b− 1 + λ

b
.

We therefore have, for C1 = (1 +
√
n)2
√
nM that

E[‖Zb‖2] = E[‖εb‖2] + E[‖E[Zb|Fb−1]‖2]

≤ C1λ
2

b2
+

(
b− 1 + λ

b

)2

E[‖Zb−1‖2].

Proceeding by induction, for any C2 ≥ C1 s.t.

E[‖Zb−1‖2] ≤ C2

b− 1 + λ
,

we have

E[‖Zb‖2] ≤ C2λ
2

b2
+ C2

(
b− 1 + λ

b

)2 1

b− 1 + λ

= C2

(
b− 1 + λ2 + λ

b2

)
≤ C2

b+ λ
,

for λ <
√

2 − 1 and sufficiently large b∗ = b∗(λ). We take C2 = max(E[‖Zb∗‖2]/λ,C1) to
complete the proof.

A.7 Subsample Rate

For Algorithm 2, without loss of generality, suppose we obtain a tree structure where each

leaf contains no fewer than n
1

d+2 sample points before applying subsampling to decide the

fitted values. If the subsample size is θn = n
d+1
d+2 log n, i.e. θ = n−

1
d+2 log n, the chance of

missing all sample points in one leaf is

p(n, θ) =

(
n−n

1
d+2

θn

)(
n
θn

) =
(n− θn)(n− θn− 1) · · · (n− θn− n

1
d+2 + 1)

n(n− 1) · · · (n− n
1

d+2 + 1)

≤

(
n− θn
n− n

1
d+2

)n 1
d+2

=

(
1− n−

1
d+2 log n

1− n−
d+1
d+2

)n 1
d+2

≤ e ·
(

1− n−
1

d+2 log n
)n 1

d+2

= O

(
1

n

)
.
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A.8 Proof of Lemma 7

Proof To prove (i), given kn, we focus on the matrix multiplication. Consider the expansion

[
1

λ
I +Kn

]−1

= λ

∞∑
i=0

(
(λ)2iK2i

n − (λ)2i+1K2i+1
n

)
.

We examine the column sums of each of the matrix powers. Start with K2
n,

∑
i=1

(K2
n)i,1 =

n∑
i=1

n∑
j=1

(Kn)i,j(Kn)j,1 =
n∑
j=1

(Kn)j,1

n∑
i=1

(Kn)i,j .

Since Kn consists of structure vectors of sample points, for some c > 0,

1− c

n
≤

n∑
j=1

(Kn)i,j =
n∑
j=1

(Kn)i,j ≤ 1, i = 1, . . . , n.

Given Kn is nonnegative,

(
1− c

n

)2
≤
∑
i=1

(K2
n)i,1 =

n∑
j=1

(Kn)j,1

n∑
i=1

(Kn)i,j ≤ 1.

Repeating the same discussion yields(
1− c

n

)m
≤
∑
i=1

(Km
n )i,1 ≤ 1.

Therefore,

λ

(
1

1− λ2(1− c
n)2
− λ

1− λ2

)
≤

n∑
j=1

[
1

λ
I +Kn

]−1

j,1

= λ

( ∞∑
i=0

(λ)2i(K2i
n )j,1 − (λ)2i+1(K2i+1

n )j,1

)

≤ λ
(

1

1− λ2
− λ

1− λ2(1− c
n)2

)
,

where both the LHS and RHS reduce to λ
1+λ + O

(
1
n

)
. So is true for any column sum of[

1
λI +Kn

]−1
. Now given kn is nonnegative and 1− ‖kn‖1 = O

(
1
n

)
we reach the assertion.

To show (ii), under locality, knj = 0 if |xi − xj | > dn, while [Kn]i,j = 0 if |xi − xj | > dn.
Recursively, if |xi−xj | > ln ·dn then [K l

n]i,j = 0 for l ≤ ln. As kn and Kn are element-wisely
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nonnegative, we again expand the matrix inverse

∥∥∥rn∣∣Dc
n

∥∥∥
1

=
∑

|x−xi|>ln·dn

|rni| =
∑

|x−xi|>ln·dn

∣∣∣∣∣∣
∑
j

knj

[
1

λ
I +Kn

]−1

j,i

∣∣∣∣∣∣
=

∑
|x−xi|>ln·dn

∣∣∣∣∣∣
∑

|x−xj |≤dn

knj

[
1

λ
I +Kn

]−1

j,i

∣∣∣∣∣∣
≤

∑
|x−xj |≤dn

knj
∑

|x−xi|>ln·dn

∣∣∣∣∣
[

1

λ
I +Kn

]−1

j,i

∣∣∣∣∣
≤

∑
|x−xj |≤dn

knj
∑

|xi−xj |>(ln−1)·dn

∣∣∣∣∣
[

1

λ
I +Kn

]−1

j,i

∣∣∣∣∣
≤

∑
|x−xj |≤dn

knj
∑

|xi−xj |>(ln−1)·dn

λ

∞∑
l=ln

λl[K l
n]j,i

≤
∑

|x−xj |≤dn

knj

∞∑
l=ln

λl+1

≤
∞∑
l=ln

λl+1 =
λ

1− λ
1

n
.

A.9 Proof of Lemma 8

Proof The idea is to bound knj from both above and below. The condition

inf
A∈q∈Qn

n∑
i=1

I(xi ∈ A) = Ω
(
n

1
d+2

)
implies that knj = O

(
n−

1
d+2

)
. Given ‖kn‖1 ≤ 1,

‖kn‖ ≤
√
‖kn‖1 ‖kn‖∞ = O

(
n−

1
2

1
d+2

)
.

On the other hand, given |Bn| = Ω
(
n · ddn

)
, there are at most

Ω
(
n · ddn

)
= Ω

(
n

1
d+1

)
knj ’s that are positive. Since ‖kn‖1 = 1−O(n−1),

‖kn‖ = Ω

(√(
n−

1
d+1

)2
· n

1
d+1

)
= Ω

(
n−

1
2

1
d+1

)
.
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Those bounds also work for ‖rn‖ given

λ

1 + λ
≤ eigen

([
1

λ
I +Kn

]−1
)
≤ λ.

A.10 Proof of Theorem 9

We first introduce a lemma regarding |Bn| and |Dn|. They follow Binomial distributions
with parameters depending on the local covariate density.

Lemma 17 Assume X1, X2, . . . independent binomial random variables s.t. Xn ∼ Binom(n, pn)
and npn →∞.

Xn − npn√
npn(1− pn)

d−−→ N(0, 1).

The proof of Theorem 9 follows.
Proof Notice that

f̂n(x)− rTn f(Xn) = rTn~εn.

To obtain a central limit theorem we check the Lindeberg-Feller condition of rTn~εn, i.e. for
any δ > 0,

lim
n

1

‖rn‖2 σ2
ε

n∑
i=1

E
[
(rniεi)

2I(|rniεi| > δ ‖rn‖σε)
]

= 0.

Since ‖kn‖∞ = O
(
n−

1
d+2

)
and

[
1
λI +Kn

]−1
having row sums of λ

1+λ +O
(
n−1

)
, we have

‖rn‖∞ ≤ ‖kn‖∞ ·

∥∥∥∥∥
[

1

λ
I +Kn

]−1
∥∥∥∥∥

1

= O
(
n−

1
d+2

)
.

Furthermore, since ‖rn‖ = Ω
(
n−

1
2

1
d+1

)
, we get

‖rn‖∞
‖rn‖

= O
(
n−

1
d+2

+ 1
2

1
d+1

)
,

which justifies the Lindeberg-Feller condition when ε is sub-Gaussian by

n∑
i=1

E
[
(rniεi)

2I(|rniεi| > δ ‖rn‖σε)
]
≤

n∑
i=1

r2
ni

√
E[ε4i ] · E[I(|rniεi| > δ ‖rn‖σε)2]

≤
n∑
i=1

r2
ni

√
E[ε4i ] ·

√
P

(
|εi| ≥

δ‖rn‖σε
rni

)

≤
n∑
i=1

r2
ni

√
E[ε4i ]

√√√√2 exp

(
− 1

2σ2
ε

·
(
δ‖rn‖σε
rni

)2
)

≤ ‖rn‖2 exp
(
−O

(
n

2
d+2
− 1

d+1

))
−→ 0,
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since

P (ε > t) ≤ exp

(
− t2

2σ2
ε

)
for sub-Gaussian ε.

A.11 Kolmogorov’s Extension Theorem

Define (x1, . . . ) = X ∈ [0, 1]d×N and ε = (ε1, . . . ) ∈ RN, where the probability measures
on [0, 1]d×N and RN are uniquely decided by the product measures on the cylinder spaces
reflecting i.i.d. sampling i.e. yi = f(xi) + εi for i ∈ N. Write πi the cumulative coordinate
projection, i.e. πi(a1, . . . , an, . . . ) = (a1, . . . , ai). We can calculate kn and Kn with respect
to Πn = (πn(X), πn(ε)). Thus

ρn(X, ε) =
f̂n(x; Πn)− kTn (x; Πn)[ 1

λI +Kn(Πn)]−1f(Πn)∥∥kn(x; Πn)T [ 1
λI +Kn(Πn)]−1

∥∥
reflects the prediction after using a random sample of size n. Using Lemma 18, CLT of ρn
requests an almost surely claim of Theorem 9 where the sequence of (x1, y1), . . . , (xn, yn)
comes from (πn(X), πn(ε)).

We also benefit from the following lemma.

Lemma 18 Assume X : Ω1 → S, independent of ε : Ω2 → S, {fn : S × S → R} sequence
of measurable functions. Assuming for a.s. x ∈ Ω1,

fn(x, ε)
d−→ N(0, 1).

Then

fn(X, ε)
d−→ N(0, 1).

Proof Probabilistic DCT guarantees that

lim
n
P (fn(X, ε) ≤ t) = lim

n

∫ ∫
1{fn(x,ε)≤t}dµxdµε

= lim
n

∫
P (fn(x, ε) ≤ t)dµx

=

∫
lim
n
P (fn(x, ε) ≤ t)dµx

=

∫
Φ(t)dµx = Φ(t).
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A.12 Proof of Lemma 10

Proof In order to prove the lemma, we combine Lemma 8, Theorem 9 and Lemma 18
and show that all assumptions are met from a point-wise perspective on [0, 1]d×N, i.e. fixed
sample sequence are given by πnX, n ≥ 1.

i) We show for a.s. X, |Bn| = |Bn(πnX)| = Ω
(
n · ddn

)
. Consider random X. Since µ(x)

is bounded away from 0, the expected amount of sample points in Bn should be at least
proportional to its volume ddn. Define an s.t. nan = E[|Bn|] = Ω

(
nddn

)
. Considering the

multiplicative Chernoff Bound applied to binomial random variables. For fixed 0 < c < 1,

P (|Bn| ≤ c · nan) ≤ exp

(
−(1− c)2nan

2

)
.

Further, since nan = Ω
(
nddn

)
= Ω

(
n

1
d+1

)
, there exists some M > 0 s.t.

∞∑
n=1

exp

(
−(1− c)2nan

2

)
≤
∫ ∞
n=0

exp

(
−(1− c)2M

2
· n

1
d+1

)
dn

≤
∫ ∞
u=0

exp

(
−(1− c)2M

2
· u
)

(d+ 1)uddu

<∞.

As per Borel-Contelli, since

∞∑
n=1

P (|Bn(πnX)| ≤ c · nan) <∞,

then for a.s. X, events of |Bn(πnX)| ≤ c · nan happens finite times, which leads to our
conclusion.

ii) To show

inf
A∈q∈Qn

n∑
i=1

I(xi ∈ A) = Ω
(
n

1
d+2

)
for a.s. X, apply the concentration bound again to get:

P

(
∃A ∈ q ∈ Qn s.t.

n∑
i=1

I(xi ∈ A) ≤ n
1

d+2

)
≤ |Qn| · n

d+1
d+2 · P

(
n∑
i=1

I(xi ∈ A) ≤ n
1

d+2

)

≤ |Qn| · n
d+1
d+2 · exp

(
−n

1
d+2

+ν · n−2ν

2

)

≤ 1

n
exp

(
1

2
n

1
d+2
−ν − nα

)
· n · exp

(
−1

2
n

1
d+2
−ν
)

≤ exp (−nα) .
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Therefore, noticing that for α > 0,

∞∑
n=1

exp (−nα) <∞,

the Borel-Cantelli theorem indicates our assertion. Hence, for a.s. X, the triangular array
πnX satisfies the assumptions in Theorem 9.

A.13 Proof of Theorem 11 (Main Theorem)

Proof We first show that for given x ∈ [0, 1]d,

rTn f(Xn)− λ
1+λf(x)

‖rn‖
p−−→ 0.

Recall the index set Dn = {i : |xi − x| ≤ ln · dn}. Denote ∆ = λ
1+λ −

∑n
i=1 rn,i = O

(
n−1

)
and f̃(x) = (f(x), . . . , f(x))T an n-vector. We split

rTn f(Xn)− λ
1+λf(x)

‖rn‖
=
rTn [f(Xn)− f̃(x)]

‖rn‖
− ∆ · f(x)

‖rn‖

=− ∆ · f(x)

‖rn‖
+

(
rn
∣∣
Dn

)T
[f(Xn)− f̃(x)]

∣∣
Dn

‖rn‖
+

(
rn
∣∣
Dc

n

)T
[f(Xn)− f̃(x)]

∣∣
Dc

n

‖rn‖
.

By replacing O (·) in the fixed case by Op (·) in the random design case, recall that

Ωp

(
n−

1
2

1
d+1

)
= ‖kn‖ , ‖rn‖ = Op

(
n−

1
2

1
d+2

)
.

On one hand, we notice that∣∣∣∣(rn∣∣Dc
n

)T
[f(Xn)− f̃(x)]

∣∣
Dc

n

∣∣∣∣ ≤ ∥∥∥rn∣∣Dc
n

∥∥∥
1
·
∥∥∥[f(Xn)− f̃(x)]

∣∣
Dc

n

∥∥∥
∞

= Op

(
1

n
· 2Mf

)
= Op

(
n−1

)
.

Therefore (
rn
∣∣
Dc

n

)T
[f(Xn)− f̃(x)]

∣∣
Dc

n

‖rn‖
p−−→ 0.

And similarly since |∆| = O
(
n−1

)
,

∆ · f(x)

‖rn‖
p−−→ 0.
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On the other hand, we can show similarly as |Bn| that |Dn| = Ωp

(
n · (ln · dn)d)

)
a.s. and

therefore ∣∣∣∣(rn∣∣Dn

)T
[f(Xn)− f̃(x)]

∣∣
Dn

∣∣∣∣
‖rn‖

≤

∥∥∥rn∣∣Dn

∥∥∥ · ∥∥∥[f(Xn)− f̃(x)]
∣∣
Dn

∥∥∥
‖rn‖

≤
∥∥∥[f(Xn)− f̃(x)]

∣∣
Dn

∥∥∥
= Op

(√
n · (lndn)d · (lndn · α)2

)
= Op

(√
n · logd+2

n ·dd+2
n

)
= Op

(√
n · logd+2

n ·n−
d+2
d+1

)
= Op

(
(log n)

d+2
2 n−

1
2

1
d+1

)
.

Therefore (
rn
∣∣
Dn

)T
[f(Xn)− f̃(x)]

∣∣
Dn

‖rn‖
p−−→ 0.

Combining the above calculations gives the result that

rTn f(Xn)− λ
1+λf(x)

‖rn‖
p−−→ 0.

Therefore by Slutsky’s Theorem,

f̂n(x)− λ
1+λf(x)

‖rn‖
=
f̂n(x)− rTn f(Xn)

‖rn‖
+
rTn f(Xn)− λ

1+λf(x)

‖rn‖
d−−→ N(0, σ2

ε ).

A.14 Proof of Theorem 13

Proof We refer to Theorem 14. Choose δ = r, and choose T s.t. ∀t > T,

λ

t
(1 +

√
n)2
√
nM ≤ r√

d
, i.e. sup ‖εt‖ ≤

r√
d
,

In this case, β =
∥∥∥Ŷt∥∥∥+ δ−

√
d supt≥T ‖εt‖ ≥ δ = r. By the conditional independence of Ŷt

and εb, b > t in the contraction region,

P
(
Ŷb ∈ C,∀b ≥ t

∣∣Ŷt ∈ B(Y ∗, r)
)
≥ P

(
sup
b>t

∥∥∥Ŷb − Y ∗∥∥∥ ≤ ∥∥∥Ŷt − Y ∗∥∥∥+ δ
∣∣∣Ŷt ∈ B(Y ∗, r)

)
= P

(
sup
b>t

∥∥∥Ŷb − Y ∗∥∥∥ ≤ ∥∥∥Ŷt − Y ∗∥∥∥+ δ

)
≥ 1−

4
√
d
∑∞

b=t+1 E[ε2b ]

r2
−→ 1.
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Appendix B. On Empirical Study

B.1 Empirical Study Details

• Figure 9 shows the distribution of true responses for our simulated training set.

• The 4 test points used for comparing Boulevard and kernel ridge regression are: (0.1,
0.1, 0.1, 0.1, 0.1), (0.6, 0.9, 0.8, 0.9, 0.7), (0.1, 0.1, 0.9, 0.9, 0.9), (0.9, 0.1, 0.1, 0.1,
0.9).

• The 10 test points used for showing limiting distributions and generating reproduction
intervals are: (0.5, 0.5, 0.5, 0.5, 0.5), (0.2, 0.2, 0.2, 0.2, 0.2), (0.1, 0.9, 0.1, 0.9, 0.1),
(0.1, 0.1, 0.9, 0.9, 0.9), (0.9, 0.1, 0.1, 0.1, 0.9), (0.5, 0.1, 0.9, 0.1, 0.5), (0.3, 0.2, 0.7,
0.8, 0.6), (0.4, 0.2, 0.3, 0.6, 0.7), (0.2, 0.7, 0.8, 0.3, 0.5), (0.3, 0.6, 0.4, 0.9, 0.5).

• Table 1 shows the settings we use in studies. The labels are: MSE for Figure 1 and
2, MSE-DatasetName for Figure 4, Limiting for Figure 6, Variance for Table 2 and
RI for Figure 7. Abbreviations: n for sample size, θ for subsample rate, ntree for
ensemble size, k for terminal leave size after subsample (which has to be corrected
when no subsample is involved, i.e. GBDT), λ as in Boulevard iterations.

Distribution of Truth
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n
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y

0 1 2 3 4 5 6

0
.0

0
0
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0

0
.2

0
0

.3
0

Figure 9: Distribution of truth used when assessing limiting distribution and reproduction
interval.
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Table 1: Parameters used in empirical study.

label n θ ntree k λ

MSE-(1-4) 5000 0.3 1000 20 0.8
MSE-Boston 506 0.8 1000 5 0.8
MSE-CCPP 9568 0.5 1000 50 0.8
MSE-CASP 20000 0.5 1000 50 0.8
MSE-Airfoil 1503 0.8 1000 40 0.8

Limiting-(1-4) 1000 0.8 2000 10 0.5
Variance-(1-4) 5000 0.8 3000 20 0.5

RI-(1-2) 1000 0.8 2000 10 0.5
RI-(3-4) 5000 0.8 2000 10 0.5

Table 2: Prediction standard deviations scale with error standard deviations.

Error\Fixed Point 1 2 3 4 5 6 7 8 9 10

0 0.030 0.044 0.044 0.049 0.050 0.037 0.038 0.033 0.032 0.040
Unif[-1,1] 0.067 0.089 0.096 0.087 0.096 0.083 0.081 0.074 0.071 0.082
Unif[-2,2] 0.119 0.154 0.172 0.158 0.162 0.152 0.122 0.139 0.137 0.145
Unif[-4,4] 0.243 0.271 0.278 0.278 0.288 0.317 0.284 0.289 0.318 0.254

B.2 Scaling of Prediction Error with Response Error

Table 2 shows the experiment in which we apply symmetric uniform errors and observe the
scaling of prediction standard deviation along with the increase of error standard deviation.
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Peter Bühlmann and Bin Yu. Boosting with the l 2 loss: regression and classification.
Journal of the American Statistical Association, 98(462):324–339, 2003.
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Stéphane G Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries.
IEEE Transactions on signal processing, 41(12):3397–3415, 1993.

Lucas Mentch and Giles Hooker. Quantifying uncertainty in random forests via confidence
intervals and hypothesis tests. The Journal of Machine Learning Research, 17(1):841–881,
2016.

Lucas Mentch and Giles Hooker. Formal hypothesis tests for additive structure in
random forests. Journal of Computational and Graphical Statistics, 26(3):589–597,
2017. doi: 10.1080/10618600.2016.1256817. URL https://doi.org/10.1080/10618600.

2016.1256817.

Indraneel Mukherjee, Cynthia Rudin, and Robert E Schapire. The rate of convergence of
adaboost. Journal of Machine Learning Research, 14:2315–2347, 2013.

Wei Peng, Tim Coleman, and Lucas Mentch. Asymptotic distributions and rates of con-
vergence for random forests and other resampled ensemble learners. arXiv preprint
arXiv:1905.10651, 2019.

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by aver-
aging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

KV Rashmi and Ran Gilad-Bachrach. Dart: Dropouts meet multiple additive regression
trees. arXiv preprint arXiv:1505.01866, 2015.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of
mathematical statistics, pages 400–407, 1951.

Alex Rogozhnikov and Tatiana Likhomanenko. Infiniteboost: building infinite ensembles
with gradient descent. arXiv preprint arXiv:1706.01109, 2017.

Cynthia Rudin, Ingrid Daubechies, Robert E Schapire, and Dana Ron. The dynamics of
adaboost: cyclic behavior and convergence of margins. Journal of Machine Learning
Research, 5(10), 2004.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process.
Technical report, Cornell University Operations Research and Industrial Engineering,
1988.

43

https://doi.org/10.1080/10618600.2016.1256817
https://doi.org/10.1080/10618600.2016.1256817


Y. Zhou and G. Hooker

Erwan Scornet. Random forests and kernel methods. IEEE Transactions on Information
Theory, 62(3):1485–1500, 2016.

Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. Consistency of random forests. Ann.
Statist., 43(4):1716–1741, 08 2015. doi: 10.1214/15-AOS1321. URL https://doi.org/

10.1214/15-AOS1321.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A simple way to prevent neural networks from overfitting. The Journal
of Machine Learning Research, 15(1):1929–1958, 2014.

Charles J Stone. Consistent nonparametric regression. The annals of statistics, pages 595–
620, 1977.

Charles J Stone. Optimal global rates of convergence for nonparametric regression. The
annals of statistics, pages 1040–1053, 1982.
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