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Abstract

Regularized kernel-based methods such as support vector machines (SVMs) typically de-
pend on the underlying probability measure P (respectively an empirical measure Dn in
applications) as well as on the regularization parameter λ and the kernel k. Whereas
classical statistical robustness only considers the effect of small perturbations in P, the
present paper investigates the influence of simultaneous slight variations in the whole triple
(P, λ, k), respectively (Dn, λn, k), on the resulting predictor. Existing results from the liter-
ature are considerably generalized and improved. In order to also make them applicable to
big data, where regular SVMs suffer from their super-linear computational requirements,
we show how our results can be transferred to the context of localized learning. Here, the
effect of slight variations in the applied regionalization, which might for example stem from
changes in P respectively Dn, is considered as well.
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1. Introduction

Let X ×Y be a set and let P be the distribution of a pair of random variables (X,Y ) with
values in X × Y, where X is the input variable and Y is the real-valued output variable.
The goal of statistical machine learning is to find a function f : X → Y which relates
X to Y , that is, which can be used to predict the unknown output variable based on a
given input variable, with (almost) no prior knowledge about P. One way to approach such
prediction problems, both for regression and classification purposes, is employing support
vector machines (SVMs) which perform regularized empirical risk minimization on special
Hilbert spaces of functions, so-called reproducing kernel Hilbert spaces (RKHSs), and which
have been the focus of extensive theoretical investigations (cf. Vapnik, 1995, 1998; Schölkopf
and Smola, 2002; Cucker and Zhou, 2007; Steinwart and Christmann, 2008, among others).

To be more specific, an SVM is based on a loss function L : X ×Y ×R→ [0,∞) which
quantifies the quality of a prediction f(x) by L(x, y, f(x)) if the observed output variable
belonging to x is y. The loss function specifies the exact goal of the prediction. For example,
typical loss functions for classification tasks include the hinge loss, the least squares loss
and the logistic loss. For regression tasks, the least squares loss is often used to estimate
the conditional mean function, whereas the pinball loss is suited to quantile regression.
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Based on the loss function of choice, one can define the L-risk (or just risk) RL,P as the
expectation of said loss function, that is,

RL,P(f) := EP [L(X,Y, f(X))] .

Since the loss measures the quality of a specific prediction f(x), the risk quantifies the quality
of the whole predictor f and we aim at finding a predictor whose risk is small. However,
because the true underlying distribution P is unknown in machine learning problems, it is
impossible to minimize RL,P directly. Instead, one uses an available data set consisting of
observations from P to calculate the empirical risk as an approximation of the theoretical
risk. Since minimizing the empirical risk almost certainly leads to some extent of overfitting,
a regularization term has to be added, which also makes the resulting minimization problem
well-posed in Hadamard’s sense (cf. Hable and Christmann, 2011). An SVM fL,P,λ,k is then
defined as the solution of the minimization problem

fL,P,λ,k := arg inf
f∈H
RL,P(f) + λ ||f ||2H . (1)

Here, λ > 0 is a regularization parameter which controls the amount of regularization and
H is the RKHS of a measurable kernel on X , that is, a symmetric and positive semidefinite
function k : X × X → R (cf. Aronszajn, 1950; Schölkopf and Smola, 2002; Berlinet and
Thomas-Agnan, 2004; Cucker and Zhou, 2007). We will often be interested in bounded
kernels for which we define ||k||∞ := supx∈X

√
k(x, x). Furthermore, we need the so-called

canonical feature map Φ : X → H defined by Φ(x) := k(·, x) for x ∈ X . This canonical
feature map satisfies the reproducing property

〈f,Φ(x)〉H = f(x) ∀x ∈ X , f ∈ H , (2)

from which one can easily deduce

〈Φ(x1),Φ(x2)〉H = k(x1, x2) ∀x1, x2 ∈ X , (3)

cf. Schölkopf and Smola (2002, Definition 2.9). Lastly, we will usually assume X to be a
complete and separable metric space equipped with the Borel σ-algebra BX and Y to be
a closed subset of R equipped with BY , and therefore also assume that P ∈ M1(X × Y)
with M1(X × Y) denoting the set of all Borel probability measures on X × Y. For brevity
of notation, we will from now on often omit explicitly stating the σ-algebras and instead
always assume sets to be equipped with their respective Borel σ-algebra when not explicitly
stated otherwise.

It can be shown that suitable choices of kernel, loss function and regularization parame-
ter (with the last one depending on the size of the given data set) lead to desirable properties
of SVMs under rather mild assumptions. These include existence, uniqueness and universal
consistency as well as specific learning rates, with the last one typically requiring some
more conditions on P than the former properties for which (almost) no such conditions are
needed. In addition to the books mentioned at the beginning of this article, which include
extensive introductions to SVMs as well as many results on the aforementioned properties,
some more specific results on learning rates can, for example, be found in Caponnetto and
De Vito (2007); Smale and Zhou (2007); Xiang and Zhou (2009); Steinwart et al. (2009);
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Eberts and Steinwart (2011, 2013); Farooq and Steinwart (2019). We refer to Christmann
and Hable (2012); Christmann and Zhou (2016a) for results on SVMs for additive mod-
els and to Christmann and Zhou (2016b); Gensler and Christmann (2020) for results on
kernel-based pairwise learning.

In this article, we will mainly concern ourselves with the stability of SVMs, that is, how
much influence simultaneous slight changes in the probability measure P (or in the data set
in the empirical case), the regularization parameter λ and the kernel k have on the resulting
SVM. Because of this special interest in the effect of varying (P, λ, k), we will usually just
write fP,λ,k instead of fL,P,λ,k to shorten the notation whenever L is clear from the context
or does not need to be specified. Since L has to be chosen by the user depending on the
problem at hand (for example, least squares loss for regression or pinball loss for quantile
regression), deviations stemming from changes in the loss function are indeed desired and we
are not interested in bounding them—in contrast to deviations produced by slight changes
in λ or k which can, for example, stem from slight changes in the underlying data since λ
and the hyperparameter(s) of k are often chosen in a data-dependent way.

There are several already existing results on different notions of classical statistical
robustness of SVMs, that is, on the influence of small changes in P (or in the data set) on
the predictor, cf. Bousquet and Elisseeff (2002); Christmann and Steinwart (2004, 2007);
Christmann and Van Messem (2008); Hable and Christmann (2011) among others. We will,
however, base many of our considerations on Christmann et al. (2018), where the authors
investigated the effect of simultaneous slight changes in the whole triple (P, λ, k) instead of
only in P and obtained results like

||fP1,λ1,k1 − fP2,λ2,k2 ||∞ = O (||P1 − P2||tv) +O (|λ1 − λ2|) +O (||k1 − k2||∞) (4)

with known constants, and with ||ν||tv denoting the norm of total variation of a signed
measure ν.

We will first modify one such result (Theorem 2.7 from Christmann et al., 2018) slightly
in Section 2 in order to generalize it and make it applicable to a larger class of loss functions
and to arbitrary positive regularization parameters. We will additionally derive an anal-
ogous statement concerning the Lp(P

X
i )-norm, i = 1, 2, p ∈ [1,∞), of fP1,λ1,k1 − fP2,λ2,k2

instead of its supremum norm, with QX denoting the marginal distribution on X associated
with Q, for all probability measures Q on X × Y. Afterwards, we will investigate localized
SVMs in Section 3.

The principal idea behind localized SVMs is to not calculate one SVM on the whole input
space X but instead split X into different (not necessarily disjoint) subsets, calculate SVMs
on these subsets and then join them together (combined with some weight functions in the
case of overlapping subsets) in order to obtain a global predictor. There are three main
advantages to this approach: Firstly, the calculation of SVMs is known to have super-linear
(in the number of training samples) computational requirements (in time as well as in storage
space), cf. Platt (1998); Joachims (1998) among others. For large data sets, it is therefore
faster and more computationally feasible to calculate several small SVMs instead of a single
large one. Secondly, localization allows the algorithm to deal with different structures
in different regions of the input space in different ways. For global learning approaches,
it can be difficult to accurately predict a function whose complexity and volatility vary
among different areas of the input space because the complexity of a predictor is usually
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controlled globally by some hyperparameters. For the very same reason, large differences
between the conditional distributions P(Y |X = x) in different areas of X can cause similar
difficulties. A good regionalization can separate such different areas and can therefore lead
to better predictions based on a given training data set. Thirdly, the use of a bounded and
continuous kernel k, which is popular in practice (with, for example, the Gaussian RBF
kernel satisfying both properties) and yields some useful theoretical properties, leads to
all functions from the RKHS H, and thus also the SVM, being continuous and bounded
as well (cf. Steinwart and Christmann, 2008, Lemma 4.28). Hence, it can be difficult for
such SVMs to accurately model discontinuities in the true function, and large oscillations
and overshooting can occur near these discontinuities, similar to the well-known Gibbs
phenomenon occurring for Fourier series (cf. Hewitt and Hewitt, 1979, and the references
cited therein). By dividing the input space into separate regions at these discontinuities, a
good regionalization can eliminate this hindrance.

Hence, localized approaches—not only for SVMs but also for other machine learning
methods which often face similar challenges—have been of interest for many years. For
this reason, we will in the following give a short overview of literature on this topic—with
a similar overview also being found in Meister and Steinwart (2016). Early theoretical
investigations can be found in Bottou and Vapnik (1992); Vapnik and Bottou (1993), and
nowadays various approaches for splitting the data into local subsets before applying SVMs
exist. For example, Bennett and Blue (1998); Wu et al. (1999); Tibshirani and Hastie
(2007) as well as Chang et al. (2010) all employ decision trees. The methods proposed in
these articles however differ in how the tree is generated: In the former three, an SVM
is also used for each decision in the tree, whereas Chang et al. (2010) split the data in
an axis-parallel way and only apply SVMs to the final regions. That is, the goal of the
former articles is only to improve the accuracy of the predictor whereas the latter one is
also concerned with reducing training time. Another popular approach is to combine SVMs
with k-nearest neighbor (kNN) methods. This has, for example, been done by Zhang et al.
(2006); Hable (2013) and by Blanzieri and Bryl (2007); Blanzieri and Melgani (2008); Segata
and Blanzieri (2010), with the former two measuring distances (for selecting the k nearest
neighbors) in the input space X and the rest measuring them in the feature space H. Segata
and Blanzieri (2010) constitutes a special case among these, since the authors modified the
procedure somewhat in order to speed up the process of classifying new data points: kNN
methods usually suffer from a computationally intensive and slow prediction phase due to
their construction. That is, they have to calculate a new SVM on the k-neighborhood
of each test point whose output they have to predict. Even though these SVMs are not
based on the whole training set and thus relatively faster to train, this still significantly
slows down the prediction step if many predictions have to be made. To circumvent this
problem, Segata and Blanzieri (2010) proposed to train an SVM on the k-neighborhood of
each point from the training set during the training phase and then use the SVM belonging
to the closest training point when having to predict the output belonging to a test point.
Slightly different approaches have been proposed by Cheng et al. (2007, 2010); Gu and Han
(2013), where the training data is being split into clusters by some variants of k-means and
then an SVM is trained on each cluster. Similarly, Rida et al. (1999) combined SVMs with
density-based clustering for the case of having a multimodal input. Zakai and Ritov (2009)
showed that any consistent learning method has to be localizable because it has to behave
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in a local manner in order to be consistent. However, they also only investigated a special
localization technique where only training samples within a ball of some fixed radius around
a test point are considered when the associated output has to be predicted.

Additionally, there are several articles that provide theoretical results about localized
SVMs (whereas many of the aforementioned articles focused on experimental analyses,
notable exceptions being Zakai and Ritov, 2009; Gu and Han, 2013; Hable, 2013, among
others) and that do often not demand special localization techniques but instead only require
the resulting regionalization to satisfy some (rather mild) conditions. These include Meister
and Steinwart (2016); Thomann et al. (2017); Blaschzyk (2020), where the Gaussian RBF
kernel in combination with the hinge or the least squares loss function is used to derive
learning rates for such localized SVMs under some assumptions regarding the underlying
distribution P, which are always needed in order to obtain learning rates because of the no-
free-lunch theorem, cf. Devroye (1982); Devroye et al. (1996, Section 7.2). Lastly, Dumpert
and Christmann (2018); Dumpert (2020) allow even more general regionalizations as well
as more general kernels and loss functions, based on which they show localized SVMs’
consistency as well as their statistical robustness with respect to the maxbias and the
influence function without any restrictive assumptions about P.

Other approaches for reducing the computational requirements of SVMs (or similar
methods) include, for example, distributed learning (see Christmann et al., 2007; Zhang
et al., 2015; Lin et al., 2017; Guo et al., 2017a; Lin et al., 2020, among others) and online
learning (see Ying and Zhou, 2006; Smale and Yao, 2006; Guo et al., 2017b, among others).

We will, however, focus on a localized approach and proceed similarly to Dumpert and
Christmann (2018); Dumpert (2020) in Section 3—that is, impose only very mild assump-
tions on regionalization, kernel, loss function and the underlying distribution—and then
transfer the stability results from Section 2 to our localized SVMs. Notably, we will not
make any assumptions regarding the heaviness of the tails of the conditional distributions
P(Y |X = x), x ∈ X , and especially not require Y to be bounded (which is, for example,
needed in the aforementioned results on learning rates). Lastly, we will look at the effect
of not only probability measure, regularization parameters and kernels but also the region-
alization varying. That is, we will investigate the stability of localized SVMs with respect
to slight changes in the whole quadruple consisting of probability measure, regularization
parameters, kernels and regionalization.

As this is a theoretical investigation, we will focus on such theoretical results, and
numerical experiments will be published elsewhere.

2. Total Stability of SVMs

In this section, we will show stability of SVMs with respect to slight changes in the triple
(P, λ, k) consisting of probability measure, regularization parameter and kernel. Our notion
of stability will be similar to that of (4), with the slight difference that we additionally
need to consider

√
||k1 − k2||∞ as an exchange for the result considerably generalizing the

referenced theorem by Christmann et al. (2018), that is, the result being applicable to
arbitrary positive regularization parameters and a larger class of loss functions. Thus, it
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will be of the type

||fP1,λ1,k1 − fP2,λ2,k2 ||∞ = O (||P1 − P2||tv) +O (|λ1 − λ2|)

+O (||k1 − k2||∞) +O
(√
||k1 − k2||∞

)
. (5)

Afterwards, we will derive a similar stability result which bounds the Lp(P
X
i )-norm, i = 1, 2,

of fP1,λ1,k1 − fP2,λ2,k2 . This will be of the type

||fP1,λ1,k1 − fP2,λ2,k2 ||Lp(PX
i ) = O (||P1 − P2||tv) +O (|λ1 − λ2|)

+O
(
||k1 − k2||Lp(PX

i ⊗PX
i )

)
+O

(√
||k1 − k2||Lp(PX

i ⊗PX
i )

)
(6)

and will require the same mild conditions as the one concerning the supremum norm.

As mentioned in the introduction, ||ν||tv denotes the norm of total variation of a signed
measure ν on a measurable space (Ω,A) (in our case usually (X × Y,BX×Y)), that is

||ν||tv := |ν|(Ω) := sup

{
n∑
i=1

|ν(Ai)|

∣∣∣∣∣ A1, . . . , An is a measurable partition of Ω

}
.

This is equivalent to

||ν||tv = 2 · sup
A∈A
|P1(A)− P2(A)|

in the case ν = P1 − P2 occurring in our results, which can be seen from the fact that
(P1 − P2)(Ω) = 0.

In the following, we will see two examples of when two distributions are similar with
regards to the norm of total variation and we therefore obtain a rather small bound on the
difference between fP1,λ1,k1 and fP2,λ2,k2 by applying our stability results:

Example 1 Let n ∈ N and let D1 and D2 be the empirical distributions belonging to data
sets D1 and D2 with D1 := ((x1, y1), . . . , (xn, yn)).

If D2 := ((x̃1, ỹ1), . . . , (x̃n, ỹn)) is of the same size as D1 but differs from D1 in at most
` ∈ N data points, which means that we have (after potentially reordering the data sets)
((x1, y1), . . . , (xn−`, yn−`)) = ((x̃1, ỹ1), . . . , (x̃n−`, ỹn−`)), then

||D1 −D2||tv ≤
2`

n
.

Similarly, if D2 was obtained by adding m ∈ N new data points to D1, such that now
D2 := ((x1, y1), . . . , (xn, yn), (xn+1, yn+1), . . . , (xn+m, yn+m)), then

||D1 −D2||tv ≤
2m

n+m
.
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Example 2 Suppose that Pn, n ∈ N, and P are probability measures with densities fn,
n ∈ N, and f with respect to some measure µ on the measurable space (X × Y,A). If
the densities satisfy fn → f µ-almost everywhere as n → ∞, then Scheffé’s Theorem (cf.
Billingsley, 1995, Theorem 16.12) yields

||Pn − P||tv = 2 · sup
A∈A
|P1(A)− P2(A)| ≤ 2 ·

∫
X×Y

|fn − f | dµ→ 0 , n→∞ .

On the other hand, the following example shows a case in which the norm of total
variation is not close to zero:

Example 3 Suppose that P is a continuous distribution with Lebesgue density and that Dn

is the empirical distribution belonging to a data set Dn := ((x1, y1), . . . , (xn, yn)) ∈ (X ×Y)n

drawn from P. Then, we have

||P−Dn||tv = 2 · |P(supp(Dn))−Dn(supp(Dn))| = 2 · |0− 1| = 2

because of the finiteness of the support supp(Dn) of Dn and the Lebesgue continuity of P.
As this holds true regardless of the size n of the data set, ||P−Dn||tv does not converge to
0 as n→∞ in such cases.

Remark 1 We saw in Example 3 that our stability results, which take the form (5) re-
spectively (6), will not yield meaningful results for comparing an empirical SVM with a
theoretical SVM that is based on a continuous distribution P with Lebesgue density. To
tackle such comparisons, one would require different quantities in the bounds than the norm
of total variation, for example the bounded Lipschitz metric, but as far as we know, no such
result exists. Note that this problem does not occur if P is a discrete distribution, which is
the case in many important applications of machine learning, with text mining as a leading
example.

However, the principal goal of this paper is not such a comparison between an empirical
and a theoretical SVM, and the associated investigation of consistency, anyway. Instead,
we aim at deriving results regarding the stability of empirical SVMs with respect to slight
changes in the data set (for example stemming from chance variation in sampling or from
observing additional data) respectively the stability of theoretical SVMs with respect to slight
changes in the underlying distribution. For these situations, we saw in Example 1 and
Example 2 that the norm of total variation is indeed suited.

As for the other quantities occurring in (5) and (6), note that k1 − k2 generally is no
kernel and therefore ||k1 − k2||∞ in (5) denotes the general supremum norm of a function
instead of the special definition of ||·||∞ for kernels stated before (which coincides with the
square root of the general definition when applied to kernels, cf. Cucker and Zhou, 2007, p.
22).

In the following, we will give two examples in order to illustrate the behavior of this
supremum norm ||k1 − k2||∞. First of all, Example 4 compares two Gaussian kernels with
different bandwidths and examines how this difference influences ||k1 − k2||∞. As the ker-
nel’s hyperparameter(s) (in this case the bandwidth) are usually chosen in a data-dependent
way, often using grid search and cross-validation, such a difference can in practice for exam-
ple arise from two practitioners using slightly different grids and cross-validation schemes, as
well as from them having slightly different data at hand for performing the cross-validation.
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γ1/γ2 1 1.01 1.05 1.1 1.5 2

||kγ1 − kγ2 ||∞ 0.000 0.007 0.036 0.070 0.290 0.472

g(kγ1 , kγ2) 0.000 0.089 0.207 0.300 0.684 0.924

Table 1: Ratio between the bandwidths γ1 and γ2 of two Gaussian kernels, as well as the
resulting value of ||kγ1 − kγ2 ||∞ and the according value of g(kγ1 , kγ2) introduced
in equation (7) in Example 4.

Example 4 Let X ⊆ Rd for some d ∈ N and let kγ be the Gaussian kernel with bandwidth
γ > 0, which is defined by

kγ(x, x′) := exp

(
−
||x− x′||22

γ2

)
∀x, x′ ∈ X .

It is easy to see that changing the bandwidth from γ1 to γ2 results in a value of ||kγ1 − kγ2 ||∞
which depends only on the ratio between γ1 and γ2. We computed ||kγ1 − kγ2 ||∞ for some
such ratios γ1/γ2 and collected the results in Table 1. Additionally, that table also includes
the according values of

g(kγ1 , kγ2) :=
1

2
· ||kγ1 − kγ2 ||∞ + max{||kγ1 ||∞ , ||kγ2 ||∞} ·

√
||kγ1 − kγ2 ||∞ , (7)

which is the term associated with the last two summands of (5) that will (in combination with
a factor depending on loss function and regularization parameters) be used in the stability
result Theorem 2 in order to bound the difference between the two resulting SVMs.

Similarly to Example 4, one might also be interested in the effect on the SVM of not
slightly changing the Gaussian kernel’s bandwidth, but of instead for example switching to
a suiting Wendland kernel (cf. Wendland, 2005, Definition 9.11 and the subsequent results),
which possesses the numerical advantage of having a compact support:

Example 5 Let X ⊆ R5 (other dimensions can be analyzed analogously and yield similar
results). Let kγ be the Gaussian kernel with bandwidth γ > 0, cf. Example 4, and let kW
be the normalised Wendland kernel defined by kW (x, x′) := ψ6,3(||x− x′||2) with ψ6,3 as in
Chernih et al. (2014, Theorem 3.3, with α := γ−2); note that the notation used in that
paper differs from the one used by Wendland (2005), such that the function φ6,3 used in
the definition of ψ6,3 in the mentioned theorem corresponds to φ5,3 in the notation from
Wendland (2005). This results in ||kγ − kW ||∞ ≈ 0.0037, and thus g(kγ , kW ) ≈ 0.0631 with
g as in equation (7) from Example 4, being quite small and hence the corresponding SVMs
closely resembling each other because of their stability with respect to changes in the kernel
which will be shown in our results.

We now return to the already mentioned reduced conditions on the loss function L
compared to the referenced theorem by Christmann et al. (2018). We more specifically only
require L to be convex as well as Lipschitz continuous. Here, convexity refers to convexity
in the last argument, that is, we call a loss function L : X × Y × R → [0,∞) convex if
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L(x, y, ·) : R → [0,∞) is convex for all (x, y) ∈ X × Y. Furthermore, we call L Lipschitz
continuous if there exists a constant c ≥ 0 such that

|L(x, y, t1)− L(x, y, t2)| ≤ c · |t1 − t2| ∀x ∈ X , y ∈ Y, t1, t2 ∈ R .

We denote the smallest such constant by |L|1 and call it Lipschitz constant of L.

Additionally, we require the kernels used in the definition of the SVMs to be bounded,
which is, for example, satisfied by the popular Gaussian kernel. We will always denote
the RKHS and the canonical feature map associated with a kernel by providing them with
the same indices or other additional notation, for example, H̃1 and Φ̃1 denote RKHS and
canonical feature map belonging to k̃1.

With these conditions on the loss function L and the kernels k1 and k2, it would now be
possible to state a stability result of the type (5). This would however require us to impose
an additional condition on the probability measures P1 and P2 in order to guarantee both
of the SVMs which are to be compared to uniquely exist. More specifically, it would be
necessary that the RKHS Hi contains at least one function f with finite risk with respect
to Pi (cf. Steinwart and Christmann, 2008, Lemma 5.1 and Theorem 5.2). One way to
ensure this is to impose the moment condition EPi [|Y |] <∞ on Pi (cf. Christmann et al.,
2009). Alas, this moment condition excludes heavy-tailed distributions such as the Cauchy
distribution. In order to circumvent this problem, we will use so-called shifted loss functions.
These special losses have been applied in robust statistics for a long time (cf. Huber, 1967)
and have been introduced to SVMs by Christmann et al. (2009). The concept of shifted
loss functions is simple enough: As the name suggests, they just shift a loss function by
some fixed amount. More specifically, given a loss function L : X × Y × R → [0,∞), the
shifted loss function L? is defined by

L? : X × Y × R→ R ,
(x, y, t) 7→ L(x, y, t)− L(x, y, 0) .

Risks and SVMs can be defined in the same way as for normal loss functions, that is,

RL?,P(f) := EP [L?(X,Y, f(X))]

and

fL?,P,λ,k := arg inf
f∈H
RL?,P(f) + λ ||f ||2H . (8)

We will again just write fP,λ,k instead of fL?,P,λ,k whenever L? is clear from the context or
does not need to be specified. It is easy to see that L? is convex respectively Lipschitz con-
tinuous if and only if L is convex respectively Lipschitz continuous and that they both have
the same Lipschitz constant, that is, |L?|1 = |L|1 (cf. Christmann et al., 2009, Proposition
2). Hence, the properties of L and of L? can be used interchangeably.

Christmann et al. (2009) additionally showed that fL?,P,λ,k = fL,P,λ,k holds true when-
ever RL,P(0) < ∞, i.e., that using shifted loss functions leads to the same results as using
normal loss functions and is therefore justified, and that the use of L? eliminates the need
for the moment condition whenever L is Lipschitz continuous and the kernel is bounded.
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Since we required these two properties anyway, using L? instead of L rids us of the moment
condition without imposing any additional conditions. When writing fP,λ,k, we will usually
refer to fL?,P,λ,k instead of fL,P,λ,k because of these advantages of L?. However, since the
two functions coincide whenever both exist, we could obviously also use fL,P,λ,k in these
cases.

We will now state our first main result about the stability of SVMs. As mentioned in the
introduction, this is a generalization of a result (Theorem 2.7) by Christmann et al. (2018):
First of all, we eliminated an additional condition on L that was required by Christmann
et al. (2018). Previously, L did not only need to be convex and Lipschitz continuous but
also differentiable. Since many loss functions are not differentiable (e.g., pinball loss, ε-
insensitive loss, hinge loss), this change makes the result applicable to a considerably larger
class of learning tasks. Secondly, in Christmann et al. (2018, Theorem 2.7) it was assumed
that the regularization parameters λ1 and λ2 were greater than some specified positive
constant, which is unsatisfactory because the regularization parameter used by an SVM has
to converge to zero as the size of the training data set tends to infinity in order to achieve
consistency (cf. Christmann et al., 2009, Theorem 8). In order to circumvent this problem,
Christmann et al. (2018) additionally provided another result (Theorem 2.10) in which λ1

and λ2 are allowed to be arbitrarily close to zero and instead of ||fP1,λ1,k1 − fP2,λ2,k2 ||∞, as
in (4), they bound ||fP1,λ1,k1 − fP2,λ2,k2 ||H1

. Since

||f ||∞ ≤ ||k||∞ · ||f ||H (9)

for every RKHS H and f ∈ H (cf. Cucker and Zhou, 2007, Theorem 2.9; Steinwart and
Christmann, 2008, Lemma 4.23) and k1 is assumed to be bounded, this also translates to
a bound for ||fP1,λ1,k1 − fP2,λ2,k2 ||∞. Alas, this result obviously requires the RKHSs H1

and H2 be nested, H2 ⊆ H1, and additionally uses ||k1 − k2||H1
instead of the more easily

interpretable ||k1 − k2||∞ in the bound.
In the subsequent theorem, we neither need λ1 and λ2 to be greater than some positive

constant nor H1 and H2 to be nested:

Theorem 2 Let X be a complete and separable metric space and Y ⊆ R be closed. Let
P1,P2 ∈ M1(X × Y) be probability measures, λ1, λ2 > 0 and k1, k2 be measurable and
bounded kernels on X with separable RKHSs H1, H2. Denote κ := max{||k1||∞ , ||k2||∞}
and τ := min{λ1, λ2}. Let L be a convex and Lipschitz continuous loss function. Then,

||fP1,λ1,k1 − fP2,λ2,k2 ||∞ ≤
|L|1
τ
·
(
κ2 · ||P1 − P2||tv +

κ2

τ
· |λ1 − λ2|

+
1

2
· ||k1 − k2||∞ + κ ·

√
||k1 − k2||∞

)
.

Also recall Examples 1 to 5 and Remark 1, where we looked at how the different quan-
tities on the right hand side of the bound behave in different situations.

Remark 3 The condition of H1 and H2 being separable can be difficult to check. Because
of the separability of X , this however holds true whenever k1 and k2 are continuous (cf.
Berlinet and Thomas-Agnan, 2004, Corollary 4; Steinwart and Christmann, 2008, Lemma
4.33), and it suffices to verify this continuity instead (which is satisfied by most of the
typically used kernels and is easy to check).

10
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Now, the subsequent Theorem 4 states a result which is very similar to that from
Theorem 2 but with respect to the Lp(P

X
i )-norm:

Theorem 4 Let X be a complete and separable metric space and Y ⊆ R be closed. Let
P1,P2 ∈ M1(X × Y) be probability measures, λ1, λ2 > 0 and k1, k2 be measurable and
bounded kernels on X with separable RKHSs H1, H2. Denote κ := max{||k1||∞ , ||k2||∞}
and τ := min{λ1, λ2}. Let L be a convex and Lipschitz continuous loss function. Then, for
all p ∈ [1,∞) and all i ∈ {1, 2},

||fP1,λ1,k1 − fP2,λ2,k2 ||Lp(PX
i )

≤ |L|1
τ
·
(
κ2 · ||P1 − P2||tv +

κ2

τ
· |λ1 − λ2|

+
1

2
· ||k1 − k2||Lp(PX

i ⊗PX
i ) + κ ·

√
||k1 − k2||Lp(PX

i ⊗PX
i )

)
.

This result will become particularly useful in section Section 3.2 where we will investigate
the stability of localized SVMs by examining the difference between two localized SVMs
that are based on two different regionalizations of the input space X . These different
regionalizations will lead to the two localized SVMs possibly vastly differing at some points
where the regionalizations do not coincide and thus no interesting bound on the supremum
norm of their difference being possible. On the other hand, if the regionalizations do not
differ too much, we will still be able to derive meaningful bounds on the L1(PXi )-norm of
the difference between the two localized SVMs based on Theorem 4.

3. Total Stability of Localized SVMs

We now want to take look at localized SVMs and show that they inherit the stability
properties from Theorems 2 and 4 under certain conditions on the regionalization method.
We will take a similar approach to Dumpert and Christmann (2018); Dumpert (2020), that
is, divide the input space X into several, possibly overlapping, regions with relatively mild
assumptions about the specific regionalization. On these subspaces, we will define local
SVMs which we will then combine in order to obtain a global predictor that we will call
localized SVM.

3.1 Same Regionalization for Both Localized SVMs

First, we assume that both of the global predictors we want to compare in order to assess
the stability of this localized approach are based on the same regionalization. Our stability
result will not be based on any specific regionalization method but rather can be applied to
any regionalization satisfying some very mild conditions. We will denote this regionalization
by XB := {X1, . . . ,XB} for some sets X1, . . . ,XB such that the following holds true:

(R1) X1, . . . ,XB ⊆ X measurable and X =
⋃B
b=1Xb .

Additionally, XB needs to satisfy the following condition for whichever probability measure
P we will base a localized SVM on:

11
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(R2) P(Xb × Y) > 0 for all b ∈ {1, . . . , B}.

Note that (R1) tells us that the regions need not necessarily be pairwise disjoint but can
instead also overlap. Condition (R2) of no region having probability mass zero is trivially
needed because the local SVM on the respective region would not be defined elsewise.

Since we want to investigate stability similarly to Theorems 2 and 4, we again assume
to have two possibly different Borel probability measures P1 and P2 on X × Y which the
predictors we want to compare are based on. For obtaining local SVMs on X1, . . . ,XB
for our localized approach, we now first need to introduce the associated local probability
measures on these regions (respectively on Xb × Y, b = 1, . . . , B) by restricting P1 and P2:
On an arbitrary X̃ ⊆ X satisfying Pi(X̃ × Y) > 0, we define the local probability measure
based on Pi by

Pi,X̃ :=
1

Pi(X̃ × Y)
· (Pi) X̃×Y , i ∈ {1, 2}. (10)

If the regionalization satisfies (R2) for P1 and P2, these local probability measures are
obviously well-defined on any Xb, b ∈ {1, . . . , B}. Since we will mainly need the local
probability measures on these regions, we also write Pi,b := Pi,Xb

to shorten the notation,
i ∈ {1, 2}, b ∈ {1, . . . , B}.

As mentioned in Section 1, one big advantage of such localized approaches lies in their
increased flexibility with regards to learning a function whose complexity and volatility
vary across the input space since areas with differing complexities of the function can be
separated into different regions. Hence, it should obviously be possible to choose different
regularization parameters and kernels in the different regions because they to some extent
control the complexity of the resulting SVM. We therefore have vectors of regularization
parameters λi := (λi,1, . . . , λi,B), with λi,b > 0 for all b ∈ {1, . . . , B}, and vectors of kernels
ki := (ki,1, . . . , ki,B), for i = 1, 2. Based on these and a shifted loss function L?, we obtain
from (8) SVMs

fPi,b,λi,b,ki,b : Xb → R , i ∈ {1, 2}, b ∈ {1, . . . , B}

which we call local SVMs on Xb.
For combining these local SVMs and thus obtaining a global predictor on X , we first

need to extend them in a way such that they are defined on all of X . That is, for a function
g : X̃ → R on X̃ ⊆ X , we define the zero-extension ĝ : X → R by

ĝ(x) :=

{
g(x) , if x ∈ X̃ ,
0 , else .

Later on we will also need zero-extensions of kernels and probability measures which we
indicate by using the (̂·)-notation as well: If k : X̃ × X̃ → R is a kernel on X̃ ⊆ X , we define
k̂ : X × X → R by

k̂(x1, x2) :=

{
k(x1, x2) , if x1, x2 ∈ X̃ ,
0 , else .

12
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If Q is a Borel probability measure on X̃ × Y with X̃ ⊆ X , we define Q̂ : BX×Y → [0, 1] by

Q̂(A) := Q
(
A ∩

(
X̃ × Y

))
∀A ∈ BX×Y .

Before finally defining our global predictors, we lastly also need weight functions wb,
b ∈ {1, . . . , B}, which pointwisely control the influence of the different local SVMs in areas
where two or more regions overlap. We require these weight functions to satisfy the same
three conditions as in Dumpert and Christmann (2018); Dumpert (2020):

(W1) wb : X → [0, 1] measurable for all b ∈ {1, . . . , B}.

(W2)
∑B

b=1wb(x) = 1 for all x ∈ X .

(W3) wb(x) = 0 for all x /∈ Xb and all b ∈ {1, . . . , B}.

With this, global predictors fP1,λ1,k1 and fP2,λ2,k2 , which we will call localized SVMs
even though they are not necessarily SVMs themselves, can be defined by

fPi,λi,ki : X → R , x 7→
B∑
b=1

wb(x) · f̂Pi,b,λi,b,ki,b(x) (11)

for i = 1, 2, where we again omitted the shifted loss function L? from the index to shorten
the notation.

The succeeding theorem states that Theorem 2 can be transferred to the situation at
hand, i.e., that such localized SVMs inherit a similar stability property from regular SVMs:

Theorem 5 Let X be a complete and separable metric space and Y ⊆ R be closed. Let
P1,P2 ∈M1(X ×Y) be probability measures. Let XB := {X1, . . . ,XB} be a regionalization
of X such that XB satisfies (R1) and, for P1 as well as for P2, (R2). For all i ∈ {1, 2}
and b ∈ {1, . . . , B}, let λi,b > 0 and let ki,b be a bounded and measurable kernel on Xb with
separable RKHS Hi,b. Denote κb := max{||k1,b||∞ , ||k2,b||∞} and τb := min{λ1,b, λ2,b} for
all b ∈ {1, . . . , B}. Let L be a convex and Lipschitz continuous loss function. Let fP1,λ1,k1

and fP2,λ2,k2 be defined as in (11) with the weight functions w1, . . . , wB satisfying (W1),
(W2) and (W3). Then,

||fP1,λ1,k1 − fP2,λ2,k2 ||∞

≤ |L|1 · max
b∈{1,...,B}

1

τb
·
(
κ2
b · ||P1,b − P2,b||tv +

κ2
b

τb
· |λ1,b − λ2,b|

+
1

2
· ||k1,b − k2,b||∞ + κb ·

√
||k1,b − k2,b||∞

)
.

Similarly, we can also transfer Theorem 4 in order to bound the Lp(P
X
i )-norm of the

difference:

Theorem 6 Let X be a complete and separable metric space and Y ⊆ R be closed. Let
P1,P2 ∈M1(X ×Y) be probability measures. Let XB := {X1, . . . ,XB} be a regionalization
of X such that XB satisfies (R1) and, for P1 as well as for P2, (R2). For all i ∈ {1, 2}
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and b ∈ {1, . . . , B}, let λi,b > 0 and let ki,b be a bounded and measurable kernel on Xb with
separable RKHS Hi,b. Denote κb := max{||k1,b||∞ , ||k2,b||∞} and τb := min{λ1,b, λ2,b} for
all b ∈ {1, . . . , B}. Let L be a convex and Lipschitz continuous loss function. Let fP1,λ1,k1

and fP2,λ2,k2 be defined as in (11) with the weight functions w1, . . . , wB satisfying (W1),
(W2) and (W3). Then, for all p ∈ [1,∞) and all i ∈ {1, 2},

||fP1,λ1,k1 − fP2,λ2,k2 ||Lp(PX
i )

≤ |L|1 ·
B∑
b=1

(
PXi (Xb)

)1/p · (κ2
b

τb
· ||P1,b − P2,b||tv +

κ2
b

τ2
b

· |λ1,b − λ2,b|

+
1

2τb
· ||k1,b − k2,b||Lp(PX

i,b⊗PX
i,b)

+
κb
τb
·
√
||k1,b − k2,b||Lp(PX

i,b⊗PX
i,b)

)
.

Remark 7 Theorem 5 does actually not need (W3) and in Theorem 6 we can even waive
(W2) as well as (W3). We still included them in the assumptions of the two theorems
since we think that weight functions should usually satisfy these conditions.

As can be seen from the two preceding theorems, localizing the SVMs does not ruin their
stability with respect to probability measure, regularization parameters and kernel: We can
still bound the difference between two localized SVMs—with respect to its supremum or an
Lp-norm—by a term that converges to zero whenever the norm of total variation between
the two probability measures, the difference between the two regularization parameters and
the supremum norm respectively the Lp-norm of the difference between the two kernels all
converge to zero on all regions of the regionalization that is used.

3.2 Different Regionalizations for the Localized SVMs

In the previous section, we investigated stability of localized SVMs with respect to changes
in the triple (P,λ,k) but not in the regionalization. However, when there are changes in
the distribution P used for calculating the localized SVM (for example, because of changes
in the training data set in practice), it may very well happen that this also affects the
regionalization if it is not predetermined but also based on a learning method (for example,
decision trees, cf. Bennett and Blue, 1998; Wu et al., 1999; Tibshirani and Hastie, 2007;
Chang et al., 2010, among others). Hence, we will take a closer look at the effect of slight
changes in the regionalization (in addition to those in (P,λ,k)) on the resulting localized
SVM in this section.

First of all, it has to be mentioned that we will sadly not be able to derive a meaningful
result regarding the supremum norm of the difference of two such localized SVMs (like
Theorem 5 in the case of coinciding regionalizations), which can readily be seen from the
simple example visualized in Figure 1. There, two localized SVMs are being compared. Both
of them are based on the same training data (that is, on the same empirical distribution)
generated according to

X ∼ U(−1, 1) , Y |X ∼ sign(X) + ε with ε ∼ N (0, 0.5) ,
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Figure 1: Comparison of two localized SVMs based on the same distribution, regularization
parameters and kernels, but on slightly different regionalizations.

with U(a, b) denoting the uniform distribution on (a, b) and N (µ, σ2) the normal distri-
bution with mean µ and variance σ2. Furthermore, both localized SVMs use the same
regularization parameter and the same kernel on every region. They only differ in the un-
derlying regionalization: The input space is split into two parts in both cases, but for f1

the border between the two regions is at x = 0 (thus exactly capturing the pattern in the
data) whereas it is moved slightly to the right, to x = 0.05, for f2.

It can easily be seen from Figure 1 that this very minor change in the regionalization
greatly impacts the maximum difference between f1 and f2 and it is thus obviously not
possible to bound this maximum difference between two localized SVMs in any meaningful
way. However, the same Figure 1 also suggests that it might still be possible to find such
meaningful bounds on the L1(PXi )-norm of the difference (which is rather small in the
example, approximately 0.06, compared to the supremum norm of about 0.95), similarly to
Theorem 6. This will indeed be the case, but before stating the corresponding theorem, we
first need to modify some of the notation introduced in Section 3.1 such that it fits this new
situation:

First of all, we have two different regionalizations X (1)
A1

:= {X (1)
1 , . . . ,X (1)

A1
} and X (2)

A2
:=

{X (2)
1 , . . . ,X (2)

A2
} now. Contrary to Section 3.1, these regionalizations are now required to

actually be partitions of X , that is, to satisfy, for i = 1, 2, the following modified version of
condition (R1):

(R1’) X (i)
1 , . . . ,X (i)

Ai
⊆ X measurable and X =

⋃
· Ai
a=1X

(i)
a .

Furthermore, we also need to alter (R2) slightly since our proofs in this section will use

auxiliary SVMs defined on all possible intersections of sets from X (1)
A1

with sets from X (2)
A2

,
which is why all these intersections need to have positive probability with respect to any
probability measure P which a localized SVM will be based on:

(R2’) P(X ∗b × Y) > 0 for all X ∗b ∈ X ∗B, where

X ∗B := {X ∗1 , . . . ,X ∗B}

:=
{
X ∗ ⊆ X

∣∣∣∃X (1)
a1 ∈ X (1)

A1
,X (2)

a2 ∈ X (2)
A2

: X ∗ = X (1)
a1 ∩ X

(2)
a2

}
\ {∅} .
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Based on X ∗B from (R2’), we denote Ji,a := {b ∈ {1, . . . , B} | X ∗b ⊆ X
(i)
a } 6= ∅ for

i = 1, 2 and a = 1, . . . , Ai. Additionally, for i = 1, 2 and b = 1, . . . , B, we denote by a(i, b)

that index a ∈ {1, . . . , Ai} such that X ∗b ⊆ X
(i)
a , which is well-defined because of (R2’)

(existence of such an index) and (R1’) (uniqueness of that index).
Local probability measures can be defined as before, cf. (10), and we will again shorten

the notation for the ones we will mainly use: Pi,a := P
i,X (i)

a
, i = 1, 2, a = 1, . . . , Ai. We

then obtain local SVMs

fPi,a,λi,a,ki,a : X (i)
a → R , i ∈ {1, 2}, a ∈ {1, . . . , Ai}

based on regularization parameters λi,a > 0 and kernels ki,a.
For combining these local SVMs in order to obtain the global predictors, no weight

functions are needed this time, since the regions from the regionalizations are not allowed
to overlap, cf. (R1’). Thus, the localized SVMs are now readily defined as

f
Pi,λi,ki,X

(i)
Ai

: X → R , x 7→
Ai∑
a=1

f̂Pi,a,λi,a,ki,a(x) (12)

for i = 1, 2, where λi := (λi,1, . . . , λi,Ai) and ki := (ki,1, . . . , ki,Ai), again omitting the
shifted loss function L? from the index to shorten the notation.

As before, we will investigate stability by bounding the norm of the difference of two
estimators, in this case of two localized SVMs, based on how much the underlying probability
measures and the vectors of regularization parameters and kernels differ. Additionally, the
regionalizations are now added as a fourth possible difference. In order to base our new
bound on the difference between the two underlying regionalizations as well, this difference
first has to be quantified somehow. We will base this quantification on the intersections
between regions from the different regionalizations, that is, on the sets X ∗1 , . . . ,X ∗B from X ∗B
introduced in (R2’). For each such intersection X ∗b , we look at two properties which both
in some sense characterize the difference between the two regionalizations: Firstly, it has to
be considered how much the two intersecting regions producing X ∗b differ in size—relatively
to these regions’ own size and with respect to some probability measure Q on X satisfying

Q(X (i)
a ) > 0 for all i ∈ {1, 2} and a ∈ {1, . . . , Ai}. That is, we have to include the term∣∣∣Q(X (1)

a(1,b))−Q(X (2)
a(2,b))

∣∣∣
max

{
Q(X (1)

a(1,b)),Q(X (2)
a(2,b))

} (13)

for each such intersection, that is, for each b ∈ {1, . . . , B}. This difference in size has to be
accounted for since a large difference could possibly lead to the local SVM on the smaller
of the two regions being fitted much closer to its underlying data than its counterpart and
the two local SVMs therefore greatly differing on the regions’ intersection X ∗b . Secondly, we

also have to consider how closely each region from X (1)
A1

as well as from X (2)
A2

coincides with
one of the intersections X ∗1 , . . . ,X ∗B, that is, how well each such region can be identified with
a region from the other regionalization, again with respect to some probability measure Q
on X . In order to control this property, we will include the term

QX (i)
a(i,b)

(X ∗b ) ·
(

1−QX (i)
a(i,b)

(X ∗b )

)
(14)

16



Total Stability of SVMs and Localized SVMs

for each b ∈ {1, . . . , B} and i ∈ {1, 2}. If a region X (i)
a closely coincides with X ∗b0 for some

b0 ∈ Ji,a, then QX (i)
a

(X ∗b ) will be either close to 1 or close to 0, and (14) will hence be small,

for each b ∈ Ji,a. If this is the case for all i ∈ {1, 2} and a ∈ {1, . . . , Ai}, each region can
be identified well with a region from the other regionalization and the two regionalizations
are therefore similar to each other in the sense of this second criterion.

We now combine these two criteria in order to obtain a quantity to measure the difference

between X (1)
A1

and X (2)
A2

. Since we analyzed the two criteria intersection-wise, we also define
the quantification of this difference intersection-wise, that is,

dQ,b(X
(1)
A1
,X (2)

A2
) :=

∣∣∣Q(X (1)
a(1,b))−Q(X (2)

a(2,b))
∣∣∣

max
{

Q(X (1)
a(1,b)),Q(X (2)

a(2,b))
}

+

2∑
i=1

(
1

2
·QX (i)

a(i,b)

(X ∗b ) ·
(

1−QX (i)
a(i,b)

(X ∗b )

)

+

√
QX (i)

a(i,b)

(X ∗b ) ·
(

1−QX (i)
a(i,b)

(X ∗b )

))
, (15)

for all b ∈ {1, . . . , B} and for Q being a probability measure on X satisfying Q(X (i)
a ) > 0 for

all i ∈ {1, 2} and a ∈ {1, . . . , Ai}. We additionally included the square root of the criterion
from (14) since it will arise in the proof of the subsequent Theorem 8 that this square root
is also relevant to the difference we want to investigate.

Finally, we need to introduce some new notation which will arise in the succeeding
theorem because of the already mentioned auxiliary SVMs on the sets X ∗1 , . . . ,X ∗B from
(R2’) that are needed for proving the theorem: We will denote the auxiliary distributions
and kernels on the sets X ∗1 , . . . ,X ∗B by using the (·)∗-notation. That is, P∗i,b := Pi,X ∗b and
k∗i,b := ki,a(i,b) X ∗b ×X

∗
b

for i = 1, 2 and b = 1, . . . , B. By Berlinet and Thomas-Agnan (2004,

Theorem 6), k∗i,b is actually a kernel (on X ∗b ) again.

With this, we can now state our stability result. As seen before, we will not be able
to derive meaningful results regarding the supremum norm of the difference of two local-
ized SVMs based on different regionalizations. However, it is indeed possible to obtain a
meaningful bound on the L1(PXi )-norm of this difference:

Theorem 8 Let X be a complete and separable metric space and Y ⊆ R be closed. Let

P1,P2 ∈ M1(X × Y) be probability measures. Let X (i)
Ai

:= {X (i)
1 , . . . ,X (i)

Ai
}, i = 1, 2,

be regionalizations of X such that X (1)
A1

and X (2)
A2

both satisfy (R1’) and that they to-
gether satisfy, for P1 as well as for P2, (R2’). For all i ∈ {1, 2} and a ∈ {1, . . . , Ai}, let

λi,a > 0 and let ki,a be a bounded and measurable kernel on X (i)
a with separable RKHS

Hi,a. Denote κb := max{
∣∣∣∣k1,a(1,b)

∣∣∣∣
∞ ,
∣∣∣∣k2,a(2,b)

∣∣∣∣
∞}, τb := min{λ1,a(1,b), λ2,a(2,b)} and

ρ1,b := max
{

PX1 (X (1)
a(1,b)),P

X
1 (X (2)

a(2,b))
}

for all b ∈ {1, . . . , B}. Let L be a convex and Lip-

schitz continuous loss function. Let f
P1,λ1,k1,X (1)

A1

and f
P2,λ2,k2,X (2)

A2

be defined as in (12).
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Then,

∣∣∣∣∣∣∣∣fP1,λ1,k1,X (1)
A1

− f
P2,λ2,k2,X (2)

A2

∣∣∣∣∣∣∣∣
L1(PX

1 )

≤ |L|1 ·
A2∑
a=1

PX1 (X (2)
a ) ·

||k2,a||2∞
λ2,a

·
∣∣∣∣∣∣P

1,X (2)
a
− P

2,X (2)
a

∣∣∣∣∣∣
tv

+ |L|1 ·
B∑
b=1

(
ρ1,b ·

κ2
b

τ2
b

·
∣∣λ1,a(1,b) − λ2,a(2,b)

∣∣
+ PX1 (X ∗b ) ·

(
1

2τb
·
∣∣∣∣k∗1,b − k∗2,b∣∣∣∣L1((P∗1,b)X⊗(P∗1,b)X)

+
κb
τb
·
√∣∣∣∣∣∣k∗1,b − k∗2,b∣∣∣∣∣∣

L1((P∗1,b)X⊗(P∗1,b)X)

)

+ ρ1,b ·
κ2
b

τb
· dPX

1 ,b
(X (1)

A1
,X (2)

A2
)

)
.

Note that the denominator occurring in dPX
1 ,b

(X (1)
A1
,X (2)

A2
) is greater than zero for all

b ∈ {1, . . . , B} in the situation of this theorem because of X (1)
A1

and X (2)
A2

being assumed to
satisfy (R2’) for P1, and the bound from the theorem is therefore well-defined.

By interchanging the roles of f
P1,λ1,k1,X (1)

A1

and f
P2,λ2,k2,X (2)

A2

, it is furthermore obvious

that Theorem 8 also holds true with respect to the L1(PX2 )-norm if the indices on the right
hand side are adjusted accordingly. For the sake of notational clarity, we did not explicitly
include this in the theorem.

Even though allowing for differing regionalizations makes this result on total stability
look more complicated than those from Section 3.1 on first glance, the statement basically
stays the same—with the main difference being that we can only bound the L1-norm in
a meaningful way, but not other Lp-norms or the supremum norm (for other Lp-norms,
it would be possible to derive a similar result, but in this case, the factor in front of the
difference between the regularization parameters could increase with increasing similarity
of the two regionalizations and it would therefore not necessarily be possible to interpret
the result as yielding total stability, i.e., particularly stability with respect to simultaneous
slight changes in regularization parameters and regionalization). Here, we additionally
need to consider the difference between the two regionalizations, but otherwise have the
same statement as before: The L1-norm of the difference between the two localized SVMs
converges to zero if, on all regions respectively intersections of regions, the norm of total
variation of the difference between the two probability measures, the difference between the
two regularization parameters, the L1-norm of the difference between the two kernels, and
now additionally the difference between the two regionalizations, as measured by dPX

i ,b
, all

converge to zero as well.
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4. Discussion

This paper is composed of two main parts. In the first one, stability of SVMs with respect
to slight changes in the full triple (P, λ, k), consisting of a probability measure P, a regu-
larization parameter λ and a kernel k, was investigated. This part is related to Christmann
et al. (2018), where the difference ||fP1,λ1,k1 − fP2,λ2,k2 ||∞ between two such SVMs based
on slightly differing triples (Pi, λi, ki), i = 1, 2, had already been bounded in a very sim-
ilar way. We succeeded in considerably generalizing the referenced result by Christmann
et al. (2018), such that we now know that the investigated notion of stability holds true
for any SVM that uses a convex and Lipschitz continuous loss function. We also derived
an analogous stability result regarding ||fP1,λ1,k1 − fP2,λ2,k2 ||Lp(PX

i ), i = 1, 2, before turning

our attention to the second part of this paper.

Here, we investigated localized SVMs which, amongst other advantages, thrive on their
reduced computational requirements compared to calculating a global SVM. They share this
advantage with other methods mentioned in the introduction, like for example distributed
learning. Distributed learning is similar to localized approaches in that both divide the
training data into several subsets and then produce a global predictor by combining the
predictors obtained on the subsets. However, whereas the subsets constitute subregions
of the input space in localized approaches, they are usually generated by drawing simple
random samples (without replacement) from the original data set and thus typically cover
almost the entire input space in distributed learning (that is, each of the predictors on
the subsets is defined on all of X and they are then typically combined by means of some
weighted average). This leads to distributed learning reducing the computation time even
further on the one hand (since the effort of regionalizing can be omitted) but not sharing
the additional advantages of localized approaches (the ability to treat different structures
in different regions of the input space in different ways and the ability to better model
discontinuities in the true function) on the other hand, which is one reason why we think
that localized learning can be interesting.

We managed to transfer our stability results to localized SVMs, adding to the list of
properties such localized SVMs inherit from the local SVMs they are based on. This fur-
ther substantiates the theoretical justification for localized SVMs to be used in order to
accurately predict a function whose complexity varies across the input space or whenever a
large data set drastically increases the computation time of a global SVM. It has even been
possible to show stability with respect to the L1(PXi )-norm, i = 1, 2, if not only the triple
(P,λ,k) but also the regionalization slightly changes. Since variations in the underlying
probability measure (respectively data set)—which are also of interest in considerations re-
garding classical statistical robustness, where only stability with respect to the probability
measure is regarded—may very well lead to changes in the regionalization, it is especially
reassuring to see that this does not ruin the localized SVMs’ stability (as long as a statis-
tically robust method is used for constructing the regionalization, such that small changes
in P only lead to small changes in the regionalization).

Based on this influence of the probability measure on the regionalization, it might be
interesting to take another look at the already existing results about localized SVMs’ consis-
tency, learning rates and classical statistical robustness and examine whether they still hold
true if this influence is factored in, respectively what assumptions about the dependence
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between probability measure and regionalization are necessary in order for the results to
still hold true.

Appendix A. Auxiliary Results Regarding the Stability of SVMs

In order to prove Theorem 2, we will first apply the triangle inequality in order to decompose
the difference which we have to bound:

||fP1,λ1,k1 − fP2,λ2,k2 ||∞ ≤ ||fP1,λ1,k1 − fP2,λ1,k1 ||∞ + ||fP2,λ1,k1 − fP2,λ2,k1 ||∞
+ ||fP2,λ2,k1 − fP2,λ2,k2 ||∞ . (16)

Of course, the order of this decomposition can also be varied. We will take this into account
when actually proving Theorem 2 in Appendix B.1, but for now we will just investigate the
three summands on the right hand side of (16) separately. The Lp(P

X
i )-norm of fP1,λ1,k1 −

fP2,λ2,k2 can obviously be decomposed in the same way as

||fP1,λ1,k1 − fP2,λ2,k2 ||Lp(PX
i ) ≤ ||fP1,λ1,k1 − fP2,λ1,k1 ||Lp(PX

i ) + ||fP2,λ1,k1 − fP2,λ2,k1 ||Lp(PX
i )

+ ||fP2,λ2,k1 − fP2,λ2,k2 ||Lp(PX
i ) (17)

and thus, Theorem 4 can also be proven by examining the three summands separately.
Before doing this, first for the supremum norm and then for the Lp(P

X
i )-norm, we

have to state two auxiliary results needed for conducting the proofs. Firstly, we recall a
representer theorem for SVMs (Christmann et al., 2009, Theorem 7) and prior to that the
definition of a subdifferential (cf. Phelps, 1993; Christmann et al., 2009), which is referenced
in the representer theorem:

Definition 9 Let E be a Banach space and let f : E → R∪{∞} be a convex function, and
w ∈ E with f(w) <∞. Then, the subdifferential of f at w is defined by

∂f(w) := {w′ ∈ E′ : 〈w′, v − w〉 ≤ f(v)− f(w) for all v ∈ E} .

Remark 10 For a convex loss function L : X×Y×R→ [0,∞) we denote by ∂L(x, y, t0) the
subdifferential with respect to the third argument, that is, the subdifferential of the convex
function defined by t 7→ L(x, y, t) at the point t0 ∈ R. We say that a function g : X ×
Y → R is from the subdifferential of L with respect to a function f : X → R if g(x, y) ∈
∂L(x, y, f(x)) for all (x, y) ∈ X×Y. We use an analogous notation for shifted loss functions
L?.

Theorem 11 (Christmann et al., 2009). Let X be a complete and separable metric space
and Y ⊆ R be closed. Let P ∈ M1(X × Y) be a probability measure. Let L be a convex
and Lipschitz continuous loss function, k be a bounded and measurable kernel on X with
separable RKHS H. Then, for all λ > 0, there exists an h ∈ L∞(P) such that

h(x, y) ∈ ∂L?(x, y, fL?,P,λ,k(x)) ∀ (x, y) ∈ X × Y

fL?,P,λ,k = − 1

2λ
EP [hΦ]

||h||∞ ≤ |L|1∣∣∣∣fL?,P,λ,k − fL?,P̄,λ,k

∣∣∣∣
H
≤ 1

λ
||EP [hΦ]− EP̄ [hΦ]||H
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for all distributions P̄ on X × Y.

Since the feature map Φ is H-valued, we need to consider H-valued Bochner integrals
when examining the expectations from Theorem 11 and similar integrals. For a detailed
introduction to Bochner integrals, see Diestel and Uhl (1977); Diestel (1984); Denkowski
et al. (2003). We will additionally need the two succeeding inequalities (18) and (19) in
order to bound the norm of a Bochner integral. Even though we suppose that these two
inequalities are already established, we did not find them in the literature, which is why we
prove them here:

Lemma 12 Let Q be a probability measure on some measurable space (Ω,A) and let k be
a bounded kernel on Ω with RKHS H. Let g : Ω→ H be a Q-Bochner integrable function.
Then, ∣∣∣∣∣∣∣∣∫

Ω
g(x) dQ(x)

∣∣∣∣∣∣∣∣
∞
≤
∫

Ω
||g(x)||∞ dQ(x) (18)

and, for all p ∈ [1,∞),∣∣∣∣∣∣∣∣∫
Ω
g(x) dQ(x)

∣∣∣∣∣∣∣∣
Lp(Q)

≤
∫

Ω
||g(x)||Lp(Q) dQ(x) . (19)

Proof By Denkowski et al. (2003, Definition 3.10.7), g being Q-Bochner integrable means
that there exists a sequence (sn)n∈N of so-called simple functions sn : Ω → H, ω 7→∑mn

j=1 b
(n)
j 1

A
(n)
j

(ω), with b
(n)
j ∈ H, A

(n)
j ∈ A and 1

A
(n)
j

denoting the indicator function

on A
(n)
j for all n ∈ N and j ∈ {1, . . . ,mn}, such that

lim
n→∞

∫
Ω
||g(ω)− sn(ω)||H dQ(ω) = 0 . (20)

Then, the same definition tells us that∫
Ω
g(ω) dQ(ω) := lim

n→∞

∫
Ω
sn(ω) dQ(ω) ,

where ∫
Ω
sn(ω) dQ(ω) :=

mn∑
j=1

b
(n)
j Q

(
A

(n)
j

)

for all n ∈ N. Additionally, we know from Diestel (1984, Chapter IV) that we can without

loss of generality assume A
(n)
1 , . . . , A

(n)
mn to be pairwise disjoint for all n ∈ N.
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Let now ||·||• denote either ||·||∞ or ||·||Lp(Q). Then,

∣∣∣∣∣∣∣∣∫ g(ω) dQ(ω)

∣∣∣∣∣∣∣∣
•

=

∣∣∣∣∣∣
∣∣∣∣∣∣ lim
n→∞

mn∑
j=1

b
(n)
j Q

(
A

(n)
j

)∣∣∣∣∣∣
∣∣∣∣∣∣
•

= lim
n→∞

∣∣∣∣∣∣
∣∣∣∣∣∣
mn∑
j=1

b
(n)
j Q

(
A

(n)
j

)∣∣∣∣∣∣
∣∣∣∣∣∣
•

≤ lim
n→∞

mn∑
j=1

∣∣∣∣∣∣b(n)
j

∣∣∣∣∣∣
•

Q
(
A

(n)
j

) = lim
n→∞

mn∑
j=1

∫ ∣∣∣∣∣∣b(n)
j

∣∣∣∣∣∣
•
1
A

(n)
j

(ω) dQ(ω)


= lim

n→∞

∫ mn∑
j=1

∣∣∣∣∣∣b(n)
j

∣∣∣∣∣∣
•
1
A

(n)
j

(ω) dQ(ω)

 = lim
n→∞

∫ ∣∣∣∣∣∣
∣∣∣∣∣∣
mn∑
j=1

b
(n)
j 1

A
(n)
j

(ω)

∣∣∣∣∣∣
∣∣∣∣∣∣
•

dQ(ω)


= lim

n→∞

(∫
||sn(ω)||• dQ(ω)

)
=

∫
||g(ω)||• dQ(ω) , (21)

where we applied the continuity of ||·||• as a function on H in the second step and the

pairwise disjointness of A
(n)
1 , . . . , A

(n)
mn in the second to last row, with the continuity of ||·||•

holding true because of ||h||Lp(Q) ≤ ||h||∞ ≤ ||k||∞ ||h||H and thus

||h||• ≤ ||k||∞ ||h||H (22)

for all h ∈ H, cf. (9). Additionally, the equality in the last step of (21) holds true because
of ∣∣∣∣∫ ||g(ω)||• dQ(ω)− lim

n→∞

(∫
||sn(ω)||• dQ(ω)

)∣∣∣∣
≤ lim

n→∞

(∫ ∣∣ ||g(ω)||• − ||sn(ω)||•
∣∣ dQ(ω)

)
≤ lim

n→∞

(∫
||g(ω)− sn(ω)||• dQ(ω)

)
≤ ||k||∞ · lim

n→∞

(∫
||g(ω)− sn(ω)||H dQ(ω)

)
= 0 . (23)

Here, we employed the finiteness of the two summands on the left hand side in the first
step, and the reverse triangle inequality, (22) and (20) in the remaining steps. In the first
step, the finiteness of the first summand follows directly from (22) and Theorem 3.10.9 from
Denkowski et al. (2003), and the finiteness of the second one can be shown by again using
(22) and then slightly adapting the mentioned theorem’s proof:

lim
n→∞

(∫
||sn(ω)||H dQ(ω)

)
≤ lim

n→∞

(∫
||sn(ω)− g(ω)||H dQ(ω) +

∫
||g(ω)||H dQ(ω)

)
= lim

n→∞

(∫
||sn(ω)− g(ω)||H dQ(ω)

)
+

∫
||g(ω)||H dQ(ω) =

∫
||g(ω)||H dQ(ω) <∞

with the first inequality holding true because of the second integral on its right hand
side being finite (Denkowski et al., 2003, Theorem 3.10.9) and the first one being fi-
nite for n sufficiently large, cf. (20). The same equation (20) additionally tells us that
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limn→∞
(∫
||sn(ω)− g(ω)||H dQ(ω)

)
exists and the linearity of the limit can therefore be

applied in the second step. Finally, (20) and the mentioned Theorem 3.10.9 yield the last
two steps.

We will now turn our attention to the three summands on the right hand side of (16).
That is, in the subsequent three lemmas, we will examine the effect of only one element of
the triple (P, λ, k) varying at a time, with the proofs of Lemmas 13 and 14 being closely
connected to their counterparts by Christmann et al. (2018) but generalizing them to the
case of non-differentiable losses.

Lemma 13 Let X be a complete and separable metric space and Y ⊆ R be closed. Let
P1,P2 ∈ M1(X × Y) be probability measures, λ > 0 and k be a bounded and measurable
kernel on X with separable RKHS H. Let L be a convex and Lipschitz continuous loss
function. Then,

||fP1,λ,k − fP2,λ,k||∞ ≤
||k||2∞ |L|1

λ
· ||P1 − P2||tv .

Proof First of all,

||fP1,λ,k − fP2,λ,k||∞ ≤ ||k||∞ · ||fP1,λ,k − fP2,λ,k||H

by (9). By Theorem 11, there exists a function h from the subdifferential of L? with respect
to fP1,λ,k such that (using the properties of Bochner integrals, cf. Christmann et al., 2018,
Lemma 6.1, as well as (3))

||fP1,λ,k − fP2,λ,k||H ≤
1

λ
·
∣∣∣∣∣∣∣∣∫ h(x, y)Φ(x) dP1(x, y)−

∫
h(x, y)Φ(x) dP2(x, y)

∣∣∣∣∣∣∣∣
H

≤ 1

λ
·
∫
||h(x, y)Φ(x)||H d|P1 − P2|(x, y)

≤ 1

λ
· sup

(x,y)∈X×Y
|h(x, y)| · sup

x∈X
||Φ(x)||H ·

∫
1 d|P1 − P2|(x, y)

=
1

λ
· sup

(x,y)∈X×Y
|h(x, y)| · sup

x∈X

√
k(x, x) · ||P1 − P2||tv

≤ 1

λ
· |L|1 · ||k||∞ · ||P1 − P2||tv ,

from which the assertion follows.

Lemma 14 Let X be a complete and separable metric space and Y ⊆ R be closed. Let
P ∈ M1(X × Y) be a probability measure, λ1, λ2 > 0 and k be a bounded and measurable
kernel on X with separable RKHS H. Let L be a convex and Lipschitz continuous loss
function. Then,

||fP,λ1,k − fP,λ2,k||∞ ≤
||k||2∞ |L|1

min{λ1, λ2}2
· |λ1 − λ2| .
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Proof To shorten the notation, we define fi := fP,λi,k, i = 1, 2, in this proof. By (9) we
know that

||f1 − f2||∞ ≤ ||k||∞ · ||f1 − f2||H .

Assume now without loss of generality that ||f1 − f2||H > 0 since the case ||f1 − f2||H = 0
is trivial.

Theorem 11 yields functions h1 and h2 from the subdifferential of L? (with respect to
f1 respectively f2) such that

f1 − f2 = − 1

2λ1
·
∫
h1(x, y)Φ(x) dP(x, y) +

1

2λ2
·
∫
h2(x, y)Φ(x) dP(x, y) .

From this we obtain, by applying the reproducing property (2) in the last step,

||f1 − f2||2H = 〈f1 − f2, f1 − f2〉H

=

〈
1

2λ2
·
∫
h2(x, y)Φ(x) dP(x, y), f1 − f2

〉
H

−
〈

1

2λ1
·
∫
h1(x, y)Φ(x) dP(x, y), f1 − f2

〉
H

=
1

2λ2
·
∫
h2(x, y)(f1(x)− f2(x)) dP(x, y)

− 1

2λ1
·
∫
h1(x, y)(f1(x)− f2(x)) dP(x, y) . (24)

Because L (and thus also L?) is convex and hi(x, y) ∈ ∂L?(x, y, fi(x)) for all (x, y) ∈ X ×Y
and for i = 1, 2, we know that

hi(x, y) · (t− fi(x)) ≤ L?(x, y, t)− L?(x, y, fi(x)) ∀ t ∈ R, i = 1, 2 ,

more specifically

h1(x, y) · (f2(x)− f1(x)) ≤ L?(x, y, f2(x))− L?(x, y, f1(x))

and

h2(x, y) · (f1(x)− f2(x)) ≤ L?(x, y, f1(x))− L?(x, y, f2(x)) .

Plugging these two inequalities into (24) yields

||f1 − f2||2H ≤
(

1

2λ2
− 1

2λ1

)
·
∫
L?(x, y, f1(x))− L?(x, y, f2(x)) dP(x, y)

=

(
1

2λ2
− 1

2λ1

)
·
(
EP [L?(X,Y, f1(X))]− EP [L?(X,Y, f2(X))]

)
(25)

Now, ||f1 − f2||2H being positive implies that the right hand side of this inequality has to be
positive as well. That is, both factors need to have the same sign. First assume λ1 > λ2:
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In this case 1
2λ2
− 1

2λ1
> 0 and thus EP [L?(X,Y, f1(X))] − EP [L?(X,Y, f2(X))] has to

be positive as well. Because of the definition of f1 as the minimizer of the regularized risk
with regularization parameter λ1, we know that

EP [L?(X,Y, f1(X))] + λ1 ||f1||2H ≤ EP [L?(X,Y, f2(X))] + λ1 ||f2||2H .

From this, it follows that

0 < EP [L?(X,Y, f1(X))]− EP [L?(X,Y, f2(X))] ≤ λ1 ·
(
||f2||2H − ||f1||2H

)
= λ1 · (||f1||H + ||f2||H) · (||f2||H − ||f1||H) ≤ λ1 · (||f1||H + ||f2||H) · ||f1 − f2||H

with the last inequality holding true because of λ1(||f1||H + ||f2||H) ≥ 0 and the reverse
triangle inequality. Plugging this into (25) and dividing by ||f1 − f2||H , we obtain

||f1 − f2||H ≤
1

2
·
(

max{λ1, λ2}
min{λ1, λ2}

− 1

)
· (||f1||H + ||f2||H) . (26)

The case λ2 > λ1 yields the same inequality.

By additionally applying that ||fi||H ≤
1
λi
|L|1 ||k||∞ (cf. Christmann et al., 2009, proof

of Proposition 3), i = 1, 2, we now obtain

||f1 − f2||H ≤
|L|1 ||k||∞

2
·
(

max{λ1, λ2}
min{λ1, λ2}

− 1

)
·
(

1

λ1
+

1

λ2

)
≤
|L|1 ||k||∞

2 min{λ1, λ2}
·
(

max{λ1, λ2} −min{λ1, λ2}
)
· 2

min{λ1, λ2}

=
|L|1 ||k||∞

min{λ1, λ2}2
· |λ1 − λ2|

which yields the assertion.

Lemma 15 Let X be a complete and separable metric space and Y ⊆ R be closed. Let
P ∈ M1(X × Y) be a probability measure, λ > 0 and k1, k2 be bounded and measurable
kernels on X with separable RKHSs H1, H2. Denote κ := max{||k1||∞ , ||k2||∞}. Let L be
a convex and Lipschitz continuous loss function. Then,

||fP,λ,k1 − fP,λ,k2 ||∞ ≤
|L|1
λ
·
(

1

2
· ||k1 − k2||∞ + κ ·

√
||k1 − k2||∞

)
.

In order to prove Lemma 15, we first need a short auxiliary statement which is prob-
ably well-known, but which we were unable to find a reference for. For reasons of better
readability we therefore prove the following auxiliary lemma:

Lemma 16 Let X 6= ∅ and let k : X × X → R be a kernel with RKHS H. Let α > 0
and define the kernel k̃ : X × X → R by k̃ := αk. Then, H̃ := H equipped with the norm
||·||H̃ := 1√

α
||·||H is the RKHS of k̃.
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Proof Steinwart and Christmann (2008, Lemma 4.5) yields that k̃ is actually a kernel.
Hence, the assertion follows directly from Steinwart and Christmann (2008, Theorem 4.21):
It can easily be seen for the pre-Hilbert space from equation (4.12) in that theorem and
follows by completion for the whole Hilbert space.

Proof of Lemma 15 To shorten the notation, we define fi := fP,λ,ki , i = 1, 2, in this
proof.

Define k̃i := ki
2 for i = 1, 2. From Lemma 16 we know that H̃i = Hi (equipped with the

norm ||·||H̃i
=
√

2 ||·||Hi
) is the RKHS of k̃i. Thus, we obviously have fi ∈ H̃i for i = 1, 2.

In the next step, we define a new space which contains f1 as well as f2 by

H̃ := H̃1 ⊕ H̃2 :=
{
g : X → R

∣∣∣ g = g1 + g2, g1 ∈ H̃1, g2 ∈ H̃2

}
.

Berlinet and Thomas-Agnan (2004, Theorem 5) tells us that H̃ equipped with the norm

||g||2
H̃

:= min
g1∈H̃1, g2∈H̃2 : g1+g2=g

(
||g1||2H̃1

+ ||g2||2H̃2

)
∀ g ∈ H̃

is the RKHS of the reproducing kernel k̃ := k̃1+k̃2 = (k1+k2)/2. Since obviously f1, f2 ∈ H̃,
we will now use this new RKHS as an aid for investigating the difference between f1 and
f2:

First of all, because k̃ is measurable and bounded by ||k̃||∞ ≤ 1
2 (||k1||∞ + ||k2||∞) <∞

and H̃ is obviously separable, there exists a unique SVM fL?,P,λ,k̃ =: f̃ (cf. Theorem 11).
The triangle inequality then yields

||f1 − f2||∞ ≤
∣∣∣∣∣∣f1 − f̃

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣f2 − f̃

∣∣∣∣∣∣
∞
. (27)

By applying Theorem 11, we can expand both of the differences on the right hand side as

fi − f̃ = − 1

2λ
·
∫
hi(x, y)Φi(x) dP(x, y)

+
1

2λ
·
∫
h̃(x, y)Φ̃(x) dP(x, y)

=
1

2λ
·
∫
hi(x, y)

(
Φ̃(x)− Φi(x)

)
dP(x, y)

+
1

2λ
·
∫ (

h̃(x, y)− hi(x, y)
)

Φ̃(x) dP(x, y) (28)
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with hi and h̃ from the subdifferential of L? (with respect to fi respectively f̃). Thus, (9)
yields for i = 1, 2∣∣∣∣∣∣fi − f̃ ∣∣∣∣∣∣

∞
≤
∣∣∣∣∣∣∣∣ 1

2λ
·
∫
hi(x, y)

(
Φ̃(x)− Φi(x)

)
dP(x, y)

∣∣∣∣∣∣∣∣
∞

+

∣∣∣∣∣∣∣∣ 1

2λ
·
∫ (

h̃(x, y)− hi(x, y)
)

Φ̃(x) dP(x, y)

∣∣∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∣∣ 1

2λ
·
∫
hi(x, y)

(
Φ̃(x)− Φi(x)

)
dP(x, y)

∣∣∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣k̃∣∣∣∣∣∣

∞
·
∣∣∣∣∣∣∣∣ 1

2λ
·
∫ (

h̃(x, y)− hi(x, y)
)

Φ̃(x) dP(x, y)

∣∣∣∣∣∣∣∣
H̃

. (29)

Now, we can easily bound the first summand on the right hand side of (29) by∣∣∣∣∣∣∣∣ 1

2λ
·
∫
hi(x, y)

(
Φ̃(x)− Φi(x)

)
dP(x, y)

∣∣∣∣∣∣∣∣
∞
≤ 1

2λ
· ||hi||∞ · sup

x∈X

∣∣∣∣∣∣Φ̃(x)− Φi(x)
∣∣∣∣∣∣
∞

≤ |L|1
2λ
·
∣∣∣∣∣∣k̃ − ki∣∣∣∣∣∣

∞
, (30)

where we applied Lemma 12 in the first step and obtained the bound for hi from Theorem 11.

As for the square of the H̃-norm in the second summand on the right hand side of (29),
applying (28) yields∣∣∣∣∣∣∣∣ 1

2λ
·
∫ (

h̃(x, y)− hi(x, y)
)

Φ̃(x) dP(x, y)

∣∣∣∣∣∣∣∣2
H̃

=

〈
1

2λ
·
∫ (

h̃(x, y)− hi(x, y)
)

Φ̃(x) dP(x, y) , fi − f̃
〉
H̃

−
〈

1

2λ
·
∫ (

h̃(x, y)− hi(x, y)
)

Φ̃(x) dP(x, y) ,

1

2λ
·
∫
hi(x

′, y′)
(

Φ̃(x′)− Φi(x
′)
)
dP(x′, y′)

〉
H̃

, (31)

where we can apply the reproducing property (2) to the first of these two inner products in
order to obtain 〈

1

2λ
·
∫ (

h̃(x, y)− hi(x, y)
)

Φ̃(x) dP(x, y), fi − f̃
〉
H̃

=
1

2λ
·
∫ (

h̃(x, y)− hi(x, y)
)(

fi(x)− f̃(x)
)
dP(x, y) ≤ 0 .

This inequality holds true because L? is convex which implies that for all (x, y) ∈ X ×Y we
have s1 ≤ s2 for every s1 ∈ ∂L?(x, y, t1), s2 ∈ ∂L?(x, y, t2) with t1 ≤ t2. Now there are two
cases: Either at least one of the two factors in the integrand is zero or the two factors have
different signs. Therefore, the integrand, and hence also the whole integral, is non-positive.
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Plugging this result into (31) results in∣∣∣∣∣∣∣∣ 1

2λ
·
∫ (

h̃(x, y)− hi(x, y)
)

Φ̃(x) dP(x, y)

∣∣∣∣∣∣∣∣2
H̃

≤
∣∣∣∣〈 1

2λ
·
∫ (

h̃(x, y)− hi(x, y)
)

Φ̃(x) dP(x, y) ,

1

2λ
·
∫
hi(x

′, y′)
(

Φ̃(x′)− Φi(x
′)
)
dP(x′, y′)

〉
H̃

∣∣∣∣
=

1

4λ2
·
∣∣∣∣∫ ∫ (h̃(x, y)− hi(x, y)

)
hi(x

′, y′)
(
k̃(x, x′)− ki(x, x′)

)
dP(x′, y′) dP(x, y)

∣∣∣∣
≤ 1

4λ2
·
∣∣∣∣∣∣h̃− hi∣∣∣∣∣∣

∞
· ||hi||∞ ·

∣∣∣∣∣∣k̃ − ki∣∣∣∣∣∣
∞

≤ |L|
2
1

2λ2
·
∣∣∣∣∣∣k̃ − ki∣∣∣∣∣∣

∞
, (32)

where we again applied the reproducing property in the second step and Theorem 11 for
bounding h̃− hi and hi in the last step.

By the definition of k̃, we further know that∣∣∣∣∣∣k̃ − ki∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣k1 + k2

2
− ki

∣∣∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣k1 − k2

2

∣∣∣∣∣∣∣∣
∞

=
||k1 − k2||∞

2

for i = 1, 2, as well as∣∣∣∣∣∣k̃∣∣∣∣∣∣
∞

=

∣∣∣∣∣∣∣∣k1 + k2

2

∣∣∣∣∣∣∣∣
∞
≤
||k1||∞ + ||k2||∞

2
≤ max {||k1||∞ , ||k2||∞} = κ .

Thus, we obtain the assertion by combining (27) with (29), (30) and (32):

||f1 − f2||∞ ≤
∣∣∣∣∣∣f1 − f̃

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣f2 − f̃

∣∣∣∣∣∣
∞

≤
2∑
i=1

(
|L|1
2λ
·
∣∣∣∣∣∣k̃ − ki∣∣∣∣∣∣

∞
+
∣∣∣∣∣∣k̃∣∣∣∣∣∣

∞
· |L|1√

2λ
·
√∣∣∣∣∣∣k̃ − ki∣∣∣∣∣∣

∞

)
≤ |L|1

λ
·
(

1

2
· ||k1 − k2||∞ + κ ·

√
||k1 − k2||∞

)
.

We can now progress to the analogous decomposition of ||fP1,λ1,k1 − fP2,λ2,k2 ||Lp(PX
i ).

However, we only need to prove an analogous result to Lemma 15 but not to Lemmas 13
and 14, since our analysis of the first two summands on the right hand side of (17) in the
proof of Theorem 4 will be based directly on Lemma 13 respectively Lemma 14 and the
fact that

||g||Lp(PX) ≤ ||g||∞ (33)

for all bounded functions g and all p ∈ [1,∞).
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Lemma 17 Let X be a complete and separable metric space and Y ⊆ R be closed. Let
P ∈ M1(X × Y) be a probability measure, λ > 0 and k1, k2 be bounded and measurable
kernels on X with separable RKHSs H1, H2. Denote κ := max{||k1||∞ , ||k2||∞}. Let L be
a convex and Lipschitz continuous loss function and let p ∈ [1,∞). Then,

||fP,λ,k1 − fP,λ,k2 ||Lp(PX) ≤
|L|1
λ
·
(

1

2
· ||k1 − k2||Lp(PX⊗PX) + κ ·

√
||k1 − k2||Lp(PX⊗PX)

)
.

Proof The proof is almost identical to that of Lemma 15 with ||·||∞ being replaced by
||·||Lp(PX), for which reason we will only highlight the differences here.

First of all, because of (33), we obtain analogously to (29)

∣∣∣∣∣∣fi − f̃ ∣∣∣∣∣∣
Lp(PX)

≤
∣∣∣∣∣∣∣∣ 1

2λ
·
∫
hi(x, y)

(
Φ̃(x)− Φi(x)

)
dP(x, y)

∣∣∣∣∣∣∣∣
Lp(PX)

+

∣∣∣∣∣∣∣∣ 1

2λ
·
∫ (

h̃(x, y)− hi(x, y)
)

Φ̃(x) dP(x, y)

∣∣∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣∣∣ 1

2λ
·
∫
hi(x, y)

(
Φ̃(x)− Φi(x)

)
dP(x, y)

∣∣∣∣∣∣∣∣
Lp(PX)

+
∣∣∣∣∣∣k̃∣∣∣∣∣∣

∞
·
∣∣∣∣∣∣∣∣ 1

2λ
·
∫ (

h̃(x, y)− hi(x, y)
)

Φ̃(x) dP(x, y)

∣∣∣∣∣∣∣∣
H̃

.

Then, the first summand on the right hand side can be bounded in an analogous way to
(30):

∣∣∣∣∣∣∣∣ 1

2λ
·
∫
X×Y

hi(x, y)
(

Φ̃(x)− Φi(x)
)
dP(x, y)

∣∣∣∣∣∣∣∣
Lp(PX)

≤ 1

2λ

∫
X×Y

∣∣∣∣∣∣hi(x, y)
(

Φ̃(x)− Φi(x)
)∣∣∣∣∣∣

Lp(PX)
dP(x, y)

≤ 1

2λ
· ||hi||∞ ·

∫
X

∣∣∣∣∣∣Φ̃(x)− Φi(x)
∣∣∣∣∣∣
Lp(PX)

dPX(x)

=
1

2λ
· ||hi||∞ ·

∫
X

(∫
X

∣∣∣k̃(x, x′)− ki(x, x′)
∣∣∣p dPX(x)

)1/p

dPX(x)

≤ |L|1
2λ
·
∣∣∣∣∣∣k̃ − ki∣∣∣∣∣∣

Lp(PX⊗PX)
,

where we applied Lemma 12 in the first step, and Theorem 11 (for obtaining the bound on
hi) as well as Hölder’s inequality in the last step. Finally, we can tighten the bound from
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the last steps of (32) in the following way:

1

4λ2
·
∣∣∣∣∫ ∫ (h̃(x, y)− hi(x, y)

)
hi(x

′, y′)
(
k̃(x, x′)− ki(x, x′)

)
dP(x′, y′) dP(x, y)

∣∣∣∣
≤ |L|

2
1

2λ2
·
∫ ∫ ∣∣∣k̃(x, x′)− ki(x, x′)

∣∣∣ dP(x′, y′) dP(x, y)

=
|L|21
2λ2
·
∣∣∣∣∣∣k̃ − ki∣∣∣∣∣∣

L1(PX⊗PX)

≤ |L|
2
1

2λ2
·
∣∣∣∣∣∣k̃ − ki∣∣∣∣∣∣

Lp(PX⊗PX)
.

The assertion then follows in the same way as in the proof of Lemma 15.

Appendix B. Proofs

In this appendix, we will first prove the results from Section 2 in Appendix B.1 and then
the ones from Section 3 in Appendix B.2.

B.1 Proofs for Section 2

Proof of Theorem 2 Applying Lemmas 13 to 15 to the decomposition (16) of the
investigated norm ||fP1,λ1,k1 − fP2,λ2,k2 ||∞ yields

||fP1,λ1,k1 − fP2,λ2,k2 ||∞ ≤
||k1||2∞ |L|1

λ1
· ||P1 − P2||tv +

||k1||2∞ |L|1
min{λ1, λ2}2

· |λ1 − λ2|

+
|L|1
λ2
·
(

1

2
· ||k1 − k2||∞ + κ ·

√
||k1 − k2||∞

)
.

Since the order of decomposition can of course be freely varied, we also obtain analogous
bounds with k1 being replaced by k2 (and vice versa) as well as λ1 by λ2 (and vice versa)
in some of these summands. Since the right hand side of the assertion is greater or equal to
the right hand sides of all of the bounds generated this way, the assertion directly follows.

Proof of Theorem 4 Applying Lemma 17 as well as Lemmas 13 and 14 in combination
with (33) to the decomposition (17) of ||fP1,λ1,k1 − fP2,λ2,k2 ||Lp(PX

i ) yields for i = 2

||fP1,λ1,k1 − fP2,λ2,k2 ||Lp(PX
2 )

≤
||k1||2∞ |L|1

λ1
· ||P1 − P2||tv +

||k1||2∞ |L|1
min{λ1, λ2}2

· |λ1 − λ2|

+
|L|1
λ2
·
(

1

2
· ||k1 − k2||Lp(PX

2 ⊗PX
2 ) + κ ·

√
||k1 − k2||Lp(PX

2 ⊗PX
2 )

)
≤ κ2|L|1

τ
· ||P1 − P2||tv +

κ2|L|1
τ2

· |λ1 − λ2|

+
|L|1
τ
·
(

1

2
· ||k1 − k2||Lp(PX

2 ⊗PX
2 ) + κ ·

√
||k1 − k2||Lp(PX

2 ⊗PX
2 )

)
.
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Analogously, reversing the order of decomposition (such that Lemma 17 can be applied to
a summand with probability measure P1 in both SVMs) yields for i = 1

||fP1,λ1,k1 − fP2,λ2,k2 ||Lp(PX
1 )

≤ |L|1
λ1
·
(

1

2
· ||k1 − k2||Lp(PX

1 ⊗PX
1 ) + κ ·

√
||k1 − k2||Lp(PX

1 ⊗PX
1 )

)
+
||k2||2∞ |L|1

min{λ1, λ2}2
· |λ1 − λ2|+

||k2||2∞ |L|1
λ2

· ||P1 − P2||tv

≤ κ2|L|1
τ
· ||P1 − P2||tv +

κ2|L|1
τ2

· |λ1 − λ2|

+
|L|1
τ
·
(

1

2
· ||k1 − k2||Lp(PX

1 ⊗PX
1 ) + κ ·

√
||k1 − k2||Lp(PX

1 ⊗PX
1 )

)
.

B.2 Proofs for Section 3

Proof of Theorem 5 To shorten the notation, we define fi := fPi,λi,ki and fi,b :=
fPi,b,λi,b,ki,b , i = 1, 2, b = 1, . . . , B, in this proof. By the definition of f1 and f2 we know
that

||f1 − f2||∞ ≤ sup
x∈X

B∑
b=1

wb(x) ·
∣∣∣f̂1,b(x)− f̂2,b(x)

∣∣∣
≤ sup

x∈X
max

b∈{1,...,B}

∣∣∣f̂1,b(x)− f̂2,b(x)
∣∣∣

= max
b∈{1,...,B}

∣∣∣∣∣∣f̂1,b − f̂2,b

∣∣∣∣∣∣
∞
, (34)

where we applied (W1) and (W2) in the second step. Since the functions f̂i,b have not
been defined as SVMs but instead as zero-extensions of SVMs fPi,b,λi,b,ki,b on Xb, we cannot
apply Theorem 2 to the right hand side of (34) yet. However, these functions can actually
be seen as SVMs on X themselves, f̂i,b = fP̂i,b,λi,b,k̂i,b

:

According to Meister and Steinwart (2016, Lemma 2), we have Ĥi,b = { ĝ | g ∈ Hi,b}
and ||ĝ||Ĥi,b

= ||g||Hi,b
for all g ∈ Hi,b. Since additionally RL?,P̂i,b

(ĝ) = RL?,Pi,b
(g) for all

g ∈ Hi,b (because the whole probability mass of P̂i,b is on Xb where ĝ and g coincide), (8)

yields fP̂i,b,λi,b,k̂i,b
= f̂Pi,b,λi,b,ki,b (= f̂i,b).

Thus, we can apply Theorem 2 to the right hand side of (34) since the functions f̂i,b
are actually SVMs on the complete space X (whereas the functions fi,b are SVMs on the
not necessarily complete spaces Xb for which reason the theorem can not be applied to
||f1,b − f2,b||∞ even though this term is obviously equivalent to ||f̂1,b − f̂2,b||∞). By doing

this, the first assertion follows, but with every Pi,b replaced by P̂i,b and ki,b by k̂i,b. Because
of them just being zero-extensions of Pi,b and ki,b respectively however, this does not influ-
ence the respective norms.
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Proof of Theorem 6 To shorten the notation, we define fi := fPi,λi,ki and fi,b :=
fPi,b,λi,b,ki,b , i = 1, 2, b = 1, . . . , B, in this proof. By the definition of f1 and f2 we know
that

||f1 − f2||Lp(PX
i ) ≤

B∑
b=1

∣∣∣∣∣∣wb · (f̂1,b − f̂2,b

)∣∣∣∣∣∣
Lp(PX

i )

≤
B∑
b=1

(∫
X

∣∣∣f̂1,b(x)− f̂2,b(x)
∣∣∣p dPXi (x)

)1/p

=
B∑
b=1

(
PXi (Xb) ·

∫
Xb

∣∣∣f̂1,b(x)− f̂2,b(x)
∣∣∣p dPXi,b(x)

)1/p

=

B∑
b=1

(
PXi (Xb)

)1/p · (∫
X

∣∣∣f̂1,b(x)− f̂2,b(x)
∣∣∣p dP̂Xi,b(x)

)1/p

=
B∑
b=1

(
PXi (Xb)

)1/p · ∣∣∣∣∣∣f̂1,b − f̂2,b

∣∣∣∣∣∣
Lp(P̂X

i,b)
. (35)

Here, we applied (W1) in the second, f̂1,b and f̂2,b being zero on X \ Xb in combination

with (10) in the third, and the definition of P̂i,b as zero-extension of Pi,b in the fourth step.

Noting that f̂1,b and f̂2,b are SVMs on X themselves, f̂i,b = fP̂i,b,λi,b,k̂i,b
(cf. proof of

Theorem 5), we can now apply Theorem 4 to the norms on the right hand side of (35).
This yields the assertion (as in the proof of Theorem 5 with P̂i,b and k̂i,b instead ob Pi,b
and ki,b which does not change the respective norms).

Proof of Theorem 8 In addition to the auxiliary distributions and kernels introduced
prior to Theorem 8, we also need auxiliary regularization parameters in this proof. We
denote these parameters by λ∗i,j,b := (PX

j,X (i)
a(i,b)

(X ∗b ))−1λi,a(i,b) for i, j = 1, 2 and b = 1, . . . , B.

By applying the triangle inequality we can now expand the norm we have to investigate
as∣∣∣∣∣∣∣∣fP1,λ1,k1,X (1)

A1

− f
P2,λ2,k2,X (2)

A2

∣∣∣∣∣∣∣∣
L1(PX

1 )

≤
∣∣∣∣∣∣∣∣fP1,λ1,k1,X (1)

A1

− fP1,λ∗
1,1,k

∗
1,X

∗
B

∣∣∣∣∣∣∣∣
L1(PX

1 )

+
∣∣∣∣∣∣fP1,λ∗

1,1,k
∗
1,X

∗
B
− fP1,λ∗

2,1,k
∗
2,X

∗
B

∣∣∣∣∣∣
L1(PX

1 )

+

∣∣∣∣∣∣∣∣fP1,λ∗
2,1,k

∗
2,X

∗
B
− f

P2,λ2,k2,X (2)
A2

∣∣∣∣∣∣∣∣
L1(PX

1 )

(36)

with λ∗i,j := (λ∗i,j,1, . . . , λ
∗
i,j,B) and k∗i := (k∗i,1, . . . , k

∗
i,B) for i, j = 1, 2, and the newly

introduced localized SVMs being defined as in (12). We will now examine the three norms
from the right hand side of (36) separately:

(i) For a function g : X ∗b → R, denote by g̃ its zero-extension to X (1)
a(1,b) (respectively

to X (1)
a(1,b) × X

(1)
a(1,b) if the function is instead defined on X ∗b × X ∗b ). Defining k◦1,a :=
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∑
b∈J1,a k̃

∗
1,b yields for all a ∈ {1, . . . , A1} new local SVMs fP1,a,λ1,a,k◦1,a

which by (8)
are defined as

fP1,a,λ1,a,k◦1,a
= arg inf

f∈H◦1,a
RL?,P1,a(f) + λ1,a ||f ||2H◦1,a . (37)

Now, combining Theorem 5 from Berlinet and Thomas-Agnan (2004) and Lemma 2
from Meister and Steinwart (2016) yields that

H◦1,a =

f : X (1)
a → R

∣∣∣∣∣∣ f =
∑
b∈J1,a

f̃b, fb ∈ H∗1,b for b = 1, . . . , B

 ,

with the decomposition of each such f ∈ H◦1,a being unique because of the sets
X ∗1 , . . . ,X ∗B, the domains of the functions fb, being pairwise disjoint, cf. (R1’) and
(R2’). Thus, the mentioned results also yield ||f ||2H◦1,a =

∑
b∈J1,a ||fb||

2
H∗1,b

for all

f ∈ H◦1,a. Additionally, again because of the domains of the functions fb being pair-
wise disjoint, we are able to also expand the risk from (37) similarly to the preceding
expansion of the H◦1,a-norm:

RL?,P1,a(f) =

∫
X (1)

a

L?(x, y, f(x)) dP1,a(x, y)

=
∑
b∈J1,a

∫
X ∗b
L?(x, y, fb(x)) dP1,a(x, y)

=
∑
b∈J1,a

PX1,a(X ∗b ) ·
∫
X ∗b
L?(x, y, fb(x)) dP∗1,b(x, y)

=
∑
b∈J1,a

PX1,a(X ∗b ) · RL?,P∗1,b
(fb) ,

where we applied (10) in the third step.

By plugging this into (37), we obtain

fP1,a,λ1,a,k◦1,a
= arg inf

f∈H◦1,a

∑
b∈J1,a

(
PX1,a(X ∗b ) · RL?,P∗1,b

(fb) + λ1,a ||fb||2H∗1,b
)

=
∑
b∈J1,a

˜arg inf
fb∈H∗1,b

(
PX1,a(X ∗b ) · RL?,P∗1,b

(fb) + λ1,a ||fb||2H∗1,b
)

=
∑
b∈J1,a

˜arg inf
fb∈H∗1,b

(
RL?,P∗1,b

(fb) +
λ1,a

PX1,a(X ∗b )
||fb||2H∗1,b

)
=
∑
b∈J1,a

f̃P∗1,b,λ
∗
1,1,b,k

∗
1,b

and thus

fP1,λ∗
1,1,k

∗
1,X

∗
B

=
B∑
b=1

f̂P∗1,b,λ
∗
1,1,b,k

∗
1,b

=

A1∑
a=1

∑
b∈J1,a

f̂P∗1,b,λ
∗
1,1,b,k

∗
1,b

=

A1∑
a=1

f̂P1,a,λ1,a,k◦1,a
.
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We can therefore also interpret the first difference on the right hand side of (36) as
the difference between two localized SVMs that are based on the same regionalization

X (1)
A1

(and on the same probability measure and vector of regularization parameters).
An application of Theorem 6 hence yields

∣∣∣∣∣∣∣∣fP1,λ1,k1,X (1)
A1

− fP1,λ∗
1,1,k

∗
1,X

∗
B

∣∣∣∣∣∣∣∣
L1(PX

1 )

=

∣∣∣∣∣
∣∣∣∣∣fP1,λ1,k1,X (1)

A1

−
A1∑
a=1

f̂P1,a,λ1,a,k◦1,a

∣∣∣∣∣
∣∣∣∣∣
L1(PX

1 )

≤ |L|1 ·
A1∑
a=1

PX1 (X (1)
a ) ·

(
1

2λ1,a
·
∣∣∣∣k1,a − k◦1,a

∣∣∣∣
L1(PX

1,a⊗PX
1,a)

+
max

{
||k1,a||∞ ,

∣∣∣∣k◦1,a∣∣∣∣∞}
λ1,a

·
√∣∣∣∣∣∣k1,a − k◦1,a

∣∣∣∣∣∣
L1(PX

1,a⊗PX
1,a)

)
.

Because

k◦1,a(x, x
′) =

{
k1,a(x, x

′) , if ∃ b ∈ J1,a : x, x′ ∈ X ∗b ,
0 , else ,

we furthermore know that max
{
||k1,a||∞ ,

∣∣∣∣k◦1,a∣∣∣∣∞} = ||k1,a||∞ and

∣∣∣∣k1,a − k◦1,a
∣∣∣∣
L1(PX

1,a⊗PX
1,a)

=

∫
X (1)

a

∫
X (1)

a

∣∣k1,a(x, x
′)− k◦1,a(x, x′)

∣∣ dPX1,a(x
′)dPX1,a(x)

=
∑
b∈J1,a

∫
X ∗b

∫
X (1)

a \X ∗b

∣∣k1,a(x, x
′)
∣∣ dPX1,a(x

′)dPX1,a(x)

≤ ||k1,a||2∞ ·
∑
b∈J1,a

PX1,a(X ∗b ) ·
(
1− PX1,a(X ∗b )

)
which finally results in∣∣∣∣∣∣∣∣fP1,λ1,k1,X (1)

A1

− fP1,λ∗
1,1,k

∗
1,X

∗
B

∣∣∣∣∣∣∣∣
L1(PX

1 )

≤ |L|1 ·
A1∑
a=1

PX1 (X (1)
a ) ·

(
||k1,a||2∞

2λ1,a
·
∑
b∈J1,a

PX1,a(X ∗b ) ·
(
1− PX1,a(X ∗b )

)
+
||k1,a||2∞
λ1,a

·
√ ∑
b∈J1,a

PX1,a(X ∗b ) ·
(

1− PX1,a(X ∗b )
))

.

(ii) The second norm on the right hand side of (36) already consists of the difference of two
localized SVMs that are based on the same regionalization X ∗B (and the same prob-
ability measure), without us needing to make any changes before. We can therefore
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directly apply Theorem 6 and obtain∣∣∣∣∣∣fP1,λ∗
1,1,k

∗
1,X

∗
B
− fP1,λ∗

2,1,k
∗
2,X

∗
B

∣∣∣∣∣∣
L1(PX

1 )

≤ |L|1 ·
B∑
b=1

PX1 (X ∗b ) ·

(
(κ∗b)

2

(τ∗1,b)
2
·
∣∣λ∗1,1,b − λ∗2,1,b∣∣

+
1

2τ∗1,b
·
∣∣∣∣k∗1,b − k∗2,b∣∣∣∣L1((P∗1,b)X⊗(P∗1,b)X)

+
κ∗b
τ∗1,b
·
√∣∣∣∣∣∣k∗1,b − k∗2,b∣∣∣∣∣∣

L1((P∗1,b)X⊗(P∗1,b)X)

)
(38)

with

κ∗b := max
{∣∣∣∣k∗1,b∣∣∣∣∞ , ∣∣∣∣k∗2,b∣∣∣∣∞} ≤ max

{∣∣∣∣k1,a(1,b)

∣∣∣∣
∞ ,
∣∣∣∣k2,a(2,b)

∣∣∣∣
∞

}
= κb ,

because k∗i,b and ki,a(i,b) coincide everywhere k∗i,b is defined, and

τ∗1,b := min
{
λ∗1,1,b, λ

∗
2,1,b

}
≥ min

{
λ1,a(1,b), λ2,a(2,b)

}
= τb

because of λ∗i,1,b being defined as (PX
1,X (i)

a(i,b)

(X ∗b ))−1λi,a(i,b). Thus, (38) still holds true

after replacing κ∗b and τ∗1,b by κb and τb. Additionally, applying the definition of λ∗i,1,b
again as well as the definition of PX

1,X (i)
a(i,b)

from (10), yields

∣∣λ∗1,1,b − λ∗2,1,b∣∣ =
1

PX1 (X ∗b )
·
∣∣∣λ1,a(1,b) · PX1 (X (1)

a(1,b))− λ2,a(2,b) · PX1 (X (2)
a(2,b))

∣∣∣
≤ 1

PX1 (X ∗b )
·
(
λ1,a(1,b) ·

∣∣∣PX1 (X (1)
a(1,b))− PX1 (X (2)

a(2,b))
∣∣∣

+ PX1 (X (2)
a(2,b)) ·

∣∣λ1,a(1,b) − λ2,a(2,b)

∣∣ )
as well as analogously

∣∣λ∗1,1,b − λ∗2,1,b∣∣ ≤ 1

PX1 (X ∗b )
·
(
λ2,a(2,b) ·

∣∣∣PX1 (X (1)
a(1,b))− PX1 (X (2)

a(2,b))
∣∣∣

+ PX1 (X (1)
a(1,b)) ·

∣∣λ1,a(1,b) − λ2,a(2,b)

∣∣ ) ,
and hence∣∣λ∗1,1,b − λ∗2,1,b∣∣

≤ 1

PX1 (X ∗b )
·
(
τb ·
∣∣∣PX1 (X (1)

a(1,b))− PX1 (X (2)
a(2,b))

∣∣∣+ ρ1,b ·
∣∣λ1,a(1,b) − λ2,a(2,b)

∣∣ ) .
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Plugging this into (38) finally yields∣∣∣∣∣∣fP1,λ∗
1,1,k

∗
1,X

∗
B
− fP1,λ∗

2,1,k
∗
2,X

∗
B

∣∣∣∣∣∣
L1(PX

1 )

≤ |L|1 ·
B∑
b=1

(
ρ1,b ·

κ2
b

τ2
b

·
∣∣λ1,a(1,b) − λ2,a(2,b)

∣∣
+ PX1 (X ∗b ) ·

(
1

2τb
·
∣∣∣∣k∗1,b − k∗2,b∣∣∣∣L1((P∗1,b)X⊗(P∗1,b)X)

+
κb
τb
·
√∣∣∣∣∣∣k∗1,b − k∗2,b∣∣∣∣∣∣

L1((P∗1,b)X⊗(P∗1,b)X)

)

+
κ2
b

τb
·
∣∣∣PX1 (X (1)

a(1,b))− PX1 (X (2)
a(2,b))

∣∣∣) .
(iii) The third norm on the right hand side of (36) can be analyzed similarly to the first

one. Let the (̃·)-notation now denote zero-extensions to X (2)
a(2,b) instead of X (1)

a(1,b).

Analogously to (i), it can be shown that

fP1,λ∗
2,1,k

∗
2,X

∗
B

=
B∑
b=1

f̂P∗1,b,λ
∗
2,1,b,k

∗
2,b

=

A2∑
a=1

∑
b∈J2,a

f̂P∗1,b,λ
∗
2,1,b,k

∗
2,b

=

A2∑
a=1

f̂P
1,X (2)

a
,λ2,a,k◦2,a

,

where k◦2,a :=
∑

b∈J2,a k̃
∗
2,b for a = 1, . . . , A2. We can thus also interpret the third

difference on the right hand side of (36) as the difference between two localized SVMs

that are based on the same regionalization X (2)
A2

(and on the same vector of regular-
ization parameters) and apply Theorem 6:∣∣∣∣∣∣∣∣fP1,λ∗

2,1,k
∗
2,X

∗
B
− f

P2,λ2,k2,X (2)
A2

∣∣∣∣∣∣∣∣
L1(PX

1 )

=

∣∣∣∣∣
∣∣∣∣∣
A2∑
a=1

f̂P
1,X (2)

a
,λ2,a,k◦2,a

− f
P2,λ2,k2,X (2)

A2

∣∣∣∣∣
∣∣∣∣∣
L1(PX

1 )

≤ |L|1 ·
A2∑
a=1

PX1 (X (2)
a ) ·

(
||k2,a||2∞
λ2,a

·
∣∣∣∣∣∣P

1,X (2)
a
− P

2,X (2)
a

∣∣∣∣∣∣
tv

+
||k2,a||2∞

2λ2,a
·
∑
b∈J2,a

PX
1,X (2)

a
(X ∗b ) ·

(
1− PX

1,X (2)
a

(X ∗b )
)

+
||k2,a||2∞
λ2,a

·

√√√√ ∑
b∈J2,a

PX
1,X (2)

a

(X ∗b ) ·
(

1− PX
1,X (2)

a

(X ∗b )

))
,

where we employed that max
{
||k2,a||∞ ,

∣∣∣∣k◦2,a∣∣∣∣∞} = ||k2,a||∞ and∣∣∣∣k2,a − k◦2,a
∣∣∣∣
L1(PX

1,X (2)
a

⊗PX

1,X (2)
a

)
≤ ||k2,a||2∞ ·

∑
b∈J2,a

PX
1,X (2)

a
(X ∗b ) ·

(
1− PX

1,X (2)
a

(X ∗b )
)
,

36



Total Stability of SVMs and Localized SVMs

which follows in the same way as the analogous statements in (i).

Plugging these three bounds into (36) and additionally observing

Ai∑
a=1

PX1 (X (i)
a ) ·

(
||ki,a||2∞

2λi,a
·
∑
b∈Ji,a

PX
1,X (i)

a
(X ∗b ) ·

(
1− PX

1,X (i)
a

(X ∗b )
)

+
||ki,a||2∞
λi,a

·

√√√√∑
b∈Ji,a

PX
1,X (i)

a

(X ∗b ) ·
(

1− PX
1,X (i)

a

(X ∗b )

))

≤
Ai∑
a=1

∑
b∈Ji,a

PX1 (X (i)
a ) ·

||ki,a||2∞
λi,a

·

(
1

2
· PX

1,X (i)
a

(X ∗b ) ·
(

1− PX
1,X (i)

a
(X ∗b )

)

+

√
PX

1,X (i)
a

(X ∗b ) ·
(

1− PX
1,X (i)

a

(X ∗b )

))

≤
B∑
b=1

ρ1,b ·
κ2
b

τb
·

PX
1,X (i)

a(i,b)

(X ∗b ) ·
(

1− PX
1,X (i)

a(i,b)

(X ∗b )

)
2

+

√
PX

1,X (i)
a(i,b)

(X ∗b ) ·
(

1− PX
1,X (i)

a(i,b)

(X ∗b )

) ,

i = 1, 2, yields the assertion.
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