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Abstract

Most data sets comprise of measurements on continuous and categorical variables. Yet,
modeling high-dimensional mixed predictors has received limited attention in the regression
and classification statistical literature. We study the general regression problem of inferring
on a variable of interest based on high dimensional mixed continuous and binary predictors.
The aim is to find a lower dimensional function of the mixed predictor vector that contains
all the modeling information in the mixed predictors for the response, which can be either
continuous or categorical. The approach we propose identifies sufficient reductions by
reversing the regression and modeling the mixed predictors conditional on the response.
We derive the maximum likelihood estimator of the sufficient reductions, asymptotic tests
for dimension, and a regularized estimator, which simultaneously achieves variable (feature)
selection and dimension reduction (feature extraction). We study the performance of the
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proposed method and compare it with other approaches through simulations and real data
examples.

Keywords: High-dimensional, Multivariate Bernoulli, Regularization, Feature selection,
Feature extraction

1. Introduction

Most data sets comprise of measurements on a mixture of categorical and continuous fea-
tures. Examples abound in the biomedical and health sciences, neuro-imaging, genomics,
finance, social media, and internet advertising. Genome-wide association studies GWAS are
widely used in human genetics research to identify genes associated with complex diseases
and in agricultural research to identify genes associated with quantitative traits such as
yield and productivity (Dahl et al., 2016; Huang et al., 2010; Bermingham et al., 2015).
In GWAS, single nucleotide polymorphism (SNPs) are genotyped for different groups of
subjects and mixed linear model methodologies, where SNPs effects are modeled as random
effects, are mainstream in genome-wide association studies (GWAS) (Zhang et al., 2010,
2021, e.g.), even though, a characterization of the biological mechanism for most quantita-
tive traits remains elusive Dahl et al. (2016). In marketing, mixed media modeling is used
to estimate the impact of various tactics on sales in order to forecast and come up with a
better marketing strategy. Facebook is collecting data on media mix ; i.e., factors that may
have influence over sales, both continuous and discrete, and is using them to quantify the
weight for each factor to create a model to predict marketing results for future strategy. In
neuro-imaging, brain network analysis searches for insight into links between system-level
properties and health outcomes. For example, Simpson et al. (2019) analyze the effects
of multiple variables of interest and topological network features, both a mix of continu-
ous and categorical variables, on the overall network structure in a multivariate modeling
framework.

The first statistical approach to modeling the dependence structure of mixed data we
found in the literature is the location model of Olkin and Tate (1961). The location model
uses correlation as a measure of dependence and bypasses the mixed nature of the data by
grouping the continuous variables using the categorical ones and requiring they be normally
distributed with different means but same variance within the groups.

More recently, Markov Networks, or undirected graphical models, that encode pairwise
conditional dependence relationships among random variables have been used to model
multivariate mixed data. With few exceptions (Yang et al., 2014a,b, 2015; Chen et al.,
2014), mixed continuous and categorical data are modeled with the Gaussian Graphical
Model (GGM) in a manner similar to the location model. Binary variables are used to
define the different categories and GGM requires the continuous variables be conditionally
normal and pairwise conditionally independent within categories. References for GMMs for
low-dimensional mixed data include Lauritzen and Wermuth (1989), Lauritzen (1996), Yuan
and Lin (2007), Martin and Michael (2008), and in the high-dimensional setting, Cheng
et al. (2014, 2017) and Lee and J.H. (2015). In particular, Cheng et al. (2017) proposed
a simplified version of the conditional Gaussian distribution that reduces the number of
parameters significantly while maintaining flexibility.
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Both, GGM and the location model are unsupervised approaches for mixed data that
do not include an output of interest. In the case of a categorical output, approaches for the
treatment of mixed, in particular, binary and continuous input variables, include methods
based on nonparametric density estimation (Aitchison and Aitken, 1976), the use of logistic
discrimination (Day and Kerridge, 1967), in which the probability of group membership is
assumed to be a logistic function of the observed variates (Anderson, 1972, 1975), and a
likelihood ratio classification rule (Krzanowski, 1975) based on the location model of Olkin
and Tate (1961). Krzanowski (1993) surveys and summarizes the associated developments.
More recently, the location model has been used in multiple imputation [see, e.g., Javaras
and Van Dyk (2003), Van Buuren (2018, Ch. 4, Sec. 4.4)].

In this paper we study the general regression and classification problem with high-
dimensional mixed predictors. Specifically, we consider the conditional distribution of

Y | (X,H), (1)

where the response Y is either continuous or categorical, X = (X1, X2, . . . , Xp)
T is a vector

of p continuous, and H = (H1, H2, . . . ,Hq)
T is a vector of q binary predictor variables. Our

aim is to find a lower dimensional function of the mixed predictor vector Z = (XT ,HT )T

that encapsulates all information the mixed predictors contain for the response Y . Specifi-
cally, our target is the identification of a function, other than the identity, R : Rp×Rq → Rd
such that F (Y | Z) = F (Y | R(Z)), where F (·|·) denotes the conditional cumulative distri-
bution function of the response given the predictors. Such a function R is called a sufficient
reduction of the regression of Y on Z.

This seemingly ambitious goal turns out to be surprisingly simple using the inventive
tool of inverse regression. When Y and Z are both random, inverse regression is based on
the equivalence of the following two statements [see Cook (2007), Bura et al. (2016), Bura
and Forzani (2015)],

(i) Y | Z d
=Y | R(Z)

(ii) Z | (Y,R(Z))
d
= Z | R(Z)

where
d
= signifies equal in distribution. Statement (i) is an alternative definition of a suffi-

cient reduction for the forward regression in (1) and (ii) is the usual definition of a sufficient
statistic for a parameter Y indexing the distribution of the mixed Z. The equivalence of
(i) and (ii) obtains that if one considers Y as a parameter, the sufficient “statistic” for Y
is the sufficient reduction for the regression of Y on Z. In consequence, in order to find a
sufficient reduction for the forward regression of Y on Z in (1), we can equivalently solve
the inverse problem of finding a sufficient statistic for the regression of Z on Y .

In particular, if Z | Y is modeled with a distribution that allows the specification
of a sufficient “statistic” for Y , then the reduction is exhaustive and minimal sufficient.
This branch of sufficient dimension reduction is called model-based in contrast to moment-
based approaches, such as sliced inverse regression (SIR, Li (1991)), sliced average variance
estimation (SAVE, Cook and Weisberg (1991)), directional regression (DR, Li and Wang
(2007)), among several others, that are based on inverse moments of Z | Y and typically
obtain partial sufficient reductions.
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Our approach exploits the factorization

F (X,H | Y ) = F (X | Y,H)F (H | Y ), (2)

which allows us to treat the continuous and binary predictors separately, while at the same
time we account for their interdependence in their relationship with Y in Section 2. An
advantageous aspect of (2) is that it provides an easier way to model and parametrize mixed
data, since binary and continuous data can be modeled separately.

In Section 2.1 we model X | (Y,H) as multivariate normal and H | Y as multivariate
Bernoulli in Section 2.2, in analogy to the Gaussian graphical model and the location
model in unsupervised multivariate analysis of mixed data. We show that the resulting
distribution (2) belongs to the exponential family, and derive sufficient reductions for the
regression Y | (X,H) from the two separate regressions, X | (Y,H) and H | Y in Section 3.
We compute the maximum likelihood estimator of the sufficient reduction in Sections 4.1
and 4.2, its asymptotic distribution in Section 4.4, and an asymptotic test for the dimension
of the sufficient reduction in Section 4.5. We complete our treatment with a method for
simultaneous sufficient dimension reduction and variable selection in Section 4.3.

Section 5 contains an extensive simulation study that demonstrates the competitive per-
formance of our approach. Furthermore, we show the superior performance of our methods
as compared with generalized linear models and a version of principal component regression
that allows for mixed predictors in the analysis of three data sets in Section 6.

Even though our focus in this paper is the regression of the usually univariate Y on
the mixed Z vector, our development results in a new multivariate regression method for
a mixed continuous and binary response, on which we comment further as we conclude in
Section 7.

2. The Model

Our approach combines the two types of graphical models, the multivariate Gaussian model
for continuous data and the Ising model (Ising, 1925) for binary data, conditional on the
appropriate arguments. By conditioning, we transform the graphical models into separate
regressions of the multivariate continuous X on (Y,H) and the multivariate binary H on Y
and use the factorization in (2) to regress (X,H) on Y .

We start by specifying the notation we use throughout. The vec operator converts its
matrix argument into a column vector. More precisely, if G is an m×n matrix then vec(G)
is an mn × 1 vector obtained by stacking the columns of G. The unvec operator is such
that unvec(vec(G)) = G. We let kq = q(q − 1)/2 and mp = p(p+ 1)/2. The vech operator
converts the lower half of a matrix including the main diagonal to a vector. That is, if G is
a square q× q matrix then vech(G) is a mq × 1 vector obtained by stacking the columns of

the lower triangular part of G including the diagonal. There is a unique Dq ∈ Rq2×q(q+1)/2

and Cq ∈ Rq(q+1)/2×q2 , such that vec(G) = Dq vech(G) and vech(G) = Cqvec(G) for any
G symmetric q × q matrix.

The matrix Lq ∈ Rq×q(q+1)/2 has entries 1 and 0, so that LqCq is equal to Cqexcept for
replacing the value 1/2 by zero throughout. The matrix Jq ∈ Rkq×q(q+1)/2 has entries 1 and
0, so that JqCq is equal to Cq except for replacing the ones with zeros. A projection onto
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the columns of b is denoted by Pb and the projection onto the orthogonal complement of
b as Qb.

2.1 The distribution of X | (H, Y )

We let the p-dimensional vector of continuous random variables X|(H, Y ) be multivariate
normal with

X | (H, Y ) ∼ N
(
µX + A(fY − f̄Y ) + β(H− µH),∆

)
, (3)

where µX = EX(X), µH = EH(H), fY : R → Rr is a known function of Y , f̄Y = EY (fY ),
A : p × r, and β : p × q, are unconstrained parameter matrices, and ∆ is a p × p positive
definite covariance matrix. For example, if the response is continuous, fY can be a vector of
polynomials of order r, or, in order to avoid multicollinearity, of a set of r orthonormal basis
functions. If the response is categorical with values in one of h categories Ck, k = 1, . . . , h,
we set r = h − 1 and let the k-th element of fY to be I(Y ∈ Ck), where I is the indicator
function. To simplify notation, henceforth fY will signify the centered fY − f̄Y .

The probability density function of X | (H, Y ) in model (3) is

f(X | H, Y = y) =
1√

2π
√
|∆|

exp

{
− 1

2

(
(X− µX)−Afy − β(H− µH)

)T
∆−1

(
(X− µX)−Afy − β(H− µH)

)}
. (4)

Modelling the conditional distribution of the continuous predictors via (3) is a variation
of the model used in principal fitted components (PFC) by Cook and Forzani (2008) by
adding the multivariate categorical component H to the response Y . PFC is the first
model-based SDR method that appeared in the literature. It leveraged the parametric
inverse regression approach in Bura and Cook (2001) by adding the normality assumption
to the linear model for the conditional mean in (3) and thereby obtaining the minimal
sufficient reduction for the regression of Y on the continuous X and its maximum likelihood
estimator. Specifically, PFC assumes model (3) with no categorical variables, so that E(X |
Y ) = µX + A(fY − f̄Y ) and constant variance-covariance matrix ∆. Here we further build
upon this formulation device by conditioning on the categorical predictors as well, and
including them as binary regressors in the linear model for E(X | H, Y ). Despite the
difficulties this addition introduces, as will become evident in Section 3, the idea is similar
and simple: use a linear model and all associated well studied tools to obtain statistically
efficient and easily computable minimal sufficient reductions.

2.2 The distribution of H | Y

The joint distribution of a random vector, whose elements are binary random variables,
is modelled with the multivariate Bernoulli distribution [see Whittaker (2009); Dai (2012);
Dai et al. (2013)]. Its probability mass function involves terms representing third and higher
order moments of the random variables. The Ising model (Ising, 1925) is a simplified version
of the multivariate Bernoulli distribution that includes up to second order interactions
among the binary variables and is frequently used to alleviate the complexity of modeling.

5



Bura Forzani Garćıa Liop Tomassi

In the Ising model, the network structure can be identified from the coefficients of the
interaction terms in the probability mass function.

Cheng et al. (2014) proposed a model for the conditional distribution of binary network
data given covariates, which naturally incorporates covariate information into the Ising
model, allowing the strength of the connection to depend on the covariates. We adapt their
model to regress the multivariate binary H on Y .

Let H = all possible combinations of H ∈ {0, 1}q, H−j = (H1, . . . ,Hj−1, Hj+1, . . . ,Hq),
H−i,−j = (H1, . . . , Hi−1, Hi+1, . . .,Hj−1, Hj+1, . . . ,Hq), i, j = 1, . . . , q. The joint probability
mass function of the q-dimensional vector of binary variables H conditional on Y is [see
Cheng et al. (2014)]

Pr(H | Y = y) =
1

G(Γy)
exp

{
vechT (HHT ) vech(Γy)

}
, (5)

where G(Γy) =
∑

H∈H exp
(

vechT (HHT ) vech(Γy)
)
, and Γy = (γyij) is a q × q symmetric

matrix with elements

γyjj = log

(
Pr(Hj = 1 | H−j = 0, y)

1− Pr(Hj = 1|H−j = 0, y)

)
,

γyij = log
Pr(Hi = 1, Hj = 1 | H−i,−j = 0, y) Pr(Hi = 0, Hj = 0 | H−i,−j = 0, y)

Pr(Hi = 1, Hj = 0 | H−i,−j = 0, y) Pr(Hi = 0, Hj = 1 | H−i,−j = 0, y)
,

for i 6= j. A linear model with independent variables fY ∈ Rr is a natural choice for each
γyij ,

γyij = τ∗ij,0 + τTij fY , i, j = 1, . . . , q, (6)

where τTij = (τij,1, . . . , τij,r) is a vector of parameters independent of Y , and τ∗ij,0 is the
intercept for each (i, j). The vector fY of functions in Y plays the role of covariates in
the multivariate binary regression model formulation of Cheng et al. (2014). Here, fY is
centered, and can be different from that in (4), even though, as will be seen later, choosing
the same fY simplifies the formula for the joint distribution in (8) as well as the derivation
of a sufficient reduction for the regression of Y on (X,H).

Next, we define the q × q matrices, τ0 and τk, k = 1, . . . , r, as [τ ∗0 ]ij = τ∗ij,0 and
[τk]ij = τij,k with i, j = 1, . . . , q and k = 1, . . . , r. We let τ0 = vech(τ ∗0 ), a q(q + 1)/2
vector, and τ = ( vech(τ1), . . . , vech(τr)), a q(q + 1)/2 × r matrix, so that the q(q + 1)/2
vector vech(Γy) is

vech(Γy) = τ0 + τ fy.

Under (6), the probability mass function of H | Y in (5) is

Pr(H | Y = y) =
1

G(Γy)
exp

{
vechT (HHT )(τ0 + τ fy)

}
, (7)

with G(Γy) =
∑

H∈H exp
(

vechT (HHT )(τ0 + τ fy)
)
. Under (7) and (4), the joint distribu-

tion of the inverse regression (X,H | Y ) has probability density function

f(X,H | Y = y) = f(X | H, Y = y)f(H | Y = y)
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=
1√

2π
√
|∆|

exp

{
− 1

2

(
(X− µX)−Afy − β(H− µH)

)T
∆−1

(
(X− µX)−Afy − β(H− µH)

)}
× 1

G(Γy)
exp

{
vechT (HHT ) (τ0 + τ fy)

}
. (8)

Our regression model for the mixed vector Z is similar to the regression model of Fitzmaurice
and Laird (1997) with the difference that we do not allow µH to vary with Y in (4). This
results in different maximum likelihood estimates for the parameters in (8) in Section 4.1.

3. Sufficient Reductions

We focus on the regression problem (1), where we aim to identify a reduction R(Z) such

that Y | Z
d
=Y | R(Z). Since the latter is equivalent to Z | (Y,R(Z))

d
= Z | R(Z), as

discussed in the introduction, we derive the sufficient reduction R(Z) using (2).
Of central importance to our development is showing that the density of (X,H) | Y in

(8) belongs to the exponential family of distributions. In Appendix A.1, we express (8) as

f(X,H | Y = y) = h(X,H) exp
(
TT (X,H)ηy − ψ(ηy)

)
, (9)

which belongs to the natural exponential family of distributions [see, e.g., Morris (2006)].
In (9), h(X,H) = (2π)−1/2, the sufficient statistic is

T(X,H) =


X
H

−1
2DT

p Dp vech(XXT )

vec(XHT )
Jq vech(HHT )

 , (10)

the natural parameters are

ηy =


ηy1

ηy2

ηy3

ηy4

ηy5

 =


Ip fTy ⊗ Ip 0 0 0 0 0 0

0 0 Iq fTy ⊗ Iq 0 0 0 0

0 0 0 0 Imp 0 0 0
0 0 0 0 0 Ipq 0 0
0 0 0 0 0 0 Ikq fTy ⊗ Ikq



ϑ1

ϑ2

ϑ3

ϑ4

ϑ5


:= Fyϑ, (11)

with ϑT = (ϑT1 ,ϑ
T
2 ,ϑ

T
3 ,ϑ

T
4 ,ϑ

T
5 )T , where

ϑ1 =

(
ϑ1,0

ϑ1,1

)
=

(
∆−1µX −∆−1βµH

vec(∆−1A)

)
: (p+ pr)× 1,

ϑ2 =

(
ϑ2,0

ϑ2,1

)
=

(
−βT∆−1µX + βT∆−1βµH + Lqτ0 − 1

2LqD
T
q vec(βT∆−1β)

vec(Lqτ − βT∆−1A)

)
: (q + qr)× 1,

ϑ3 = ϑ3,0 = vech(∆−1) : kp × 1, (12)

7



Bura Forzani Garćıa Liop Tomassi

ϑ4 = ϑ4,0 = vec(∆−1β) : pq × 1,

ϑ5 =

(
ϑ5,0

ϑ5,1

)
=

(
−1

2JqD
T
q vec(βT∆−1β) + Jqτ0

vec(Jqτ )

)
,

and

ψ(ηy) = −1

2
log |unvec(Dpηy3)|+ log(G(Γy)) +

1

2
ηTy1(unvec(Dpηy3))−1ηy1 (13)

:= ψ1(ηy) + ψ2(ηy) + ψ3(ηy),

with

G(Γy) =
∑
H

exp

[ (
JqCqvec(HHT )

)T (
ηy5 + Jq

1

2
DT
q vec(η̄Ty4(unvec(Dpηy3))−1η̄y4)

)
(14)

+HT

(
ηy2 + η̄Ty4(unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄Ty4(unvec(Dpηy3))−1η̄y4))

)]
,

where η̄y4 = unvec(ηy4).

For any matrix V, let SV denote the span of the columns of V; that is, SV = span(V).
Theorem 1 obtains the sufficient reduction for the regression of Y on (X,H) using a result
from Bura et al. (2016).

Theorem 1 Suppose that (X,H) | Y has density given by (9). The minimal sufficient
reduction for the regression Y | (X,H) is

R(X,H) = αTa (T(X,H)− E(T(X,H))) , (15)

where T(X,H) is given by (10) and αa is a basis for Sa = span{ηY −E(ηY ), Y ∈ Y}, with
ηY given in (11).

We prove Theorem 1 in Appendix A.2, where we see that the reduction in (15) is
characterized by the coefficients of the basis for span {ηY − E(ηY ), Y ∈ Y} = span(a) with

a =


∆−1A

Lqτ − βT∆−1A
0
0

Jqτ

 =


unvec(ϑ1,1)
unvec(ϑ2,1)

0
0

unvec(ϑ5,1)

 .

Since ηy3 and ηy4 do not depend on y, we denote them by η3 and η4, respectively, and
Corollary 2 follows.

Corollary 2 Suppose the density of (X,H) | Y is given by (9). A minimal sufficient
dimension reduction for the regression of Y on (X,H) is given by

R(X,H) = αTb (t (X,H)− E (t(X,H))) , (16)

8
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where

t(X,H) =
(
XT ,HT ,

(
Jq vech(HHT )

)T)T
, (17)

and αb is a basis for Sb = span{b} with

b =

 ∆−1A
Lqτ − βT∆−1A

Jqτ

 =

 unvec(ϑ1,1)
unvec(ϑ2,1)
unvec(ϑ5,1)

 . (18)

As the reduction in (16) is not only sufficient but also minimal, we call it optimal SDR
in the sequel.

Theorem 1 is consistent with previous work in model based sufficient dimension reduc-
tion. PFC (Cook and Forzani, 2008), in particular, is a special case when the predictors are
all continuous. The PFC sufficient reduction is αT1 (X − E(X), where α1 = span(∆−1A),
which agrees with Theorem 1 in the absence of H. We summarize this case in Corollary 3.

Corollary 3 When the predictor vector contains only continuous variables; that is, q = 0
and Z = X, the sufficient dimension reduction is

R(X) = αT1 (X− E(X)) , (19)

where Sα1 = span(α1) = span(∆−1A), and A : p× r in (3).

Corollary 4, on the other hand, obtains the minimal sufficient reduction in the important
case of all binary predictors.

Corollary 4 When the predictor vector contains only binary variables; that is, p = 0 and
Z = H, the sufficient dimension reduction is

R(X) = αT2 (s(H)− E (s(H))) , (20)

where

s(H) =
(
HT ,

(
Jq vech(HHT )

)T)T
, (21)

and

Sα2 = span(α2) = span

(
Lqτ
Jqτ

)
. (22)

When the predictors are mixed, we derive a sufficient but not minimal reduction in
Corollary (5), which we call sub-optimal SDR.

Corollary 5 Suppose that (X,H) | Y has density (9). A sufficient reduction for the re-
gression of Y on (X,H) is given by

R(X,H) = αTc (w(X,H)− E(w(X,H))) , (23)

9
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with

w(X,H) =
(
XT ,HT ,

(
vech(HHT )

)T)T
, (24)

span(αc) = Sc = span

(
c1 0
0 c2

)
= span

 ∆−1A 0
−βT∆−1A 0

0 τ

 . (25)

If rank(c1) = d1 ≤ min{r, p} and rank(c2) = d2 ≤ min{r, q(q + 1)/2}, then

c1 =

(
∆−1A

−βT∆−1A

)
=

(
αξ

−βTαξ

)
, c2 = κι, (26)

where A = αξ, α ∈ Rp×d1 , ξ ∈ Rd1×r, κ ∈ Rq(q+1)/2×d2 and ι ∈ Rd2×r are full rank
matrices. Therefore,

span(c1) = span{(αT ,−αTβ)T }, (27)

span(c2) = span(κ). (28)

The weights of the sub-optimal reduction corresponding to the continuous part of the factor-
ized joint density are obtained separately from those of the binary part. In some applications
this separation may be of interest. For example, to predict the price of a certain good such
as wine, continuous predictors may be related to the production process, such as alcohol
content, acidity, aging time, etc., and binary predictors, such as whether it contains cer-
tain information on the label, are more related to sales strategies. Having two composite
indicators (reductions), one that synthesizes quality (continuous part) and the other the
marketing of the product (binary part), facilitates economic interpretability.

In Table 1, we summarize the results of this Section and tabulate the sufficient reductions
for mixed normal and binary predictors.

4. Reduction Estimators and their Asymptotic Distribution

In this section we derive maximum likelihood estimators for our optimal and sub-optimal
sufficient reductions, the asymptotic normality of the projection matrix of the optimal
SDR, with which we also obtain asymptotic tests for dimension of both optimal and sub-
optimal reductions. In addition, since identifying variables that are not associated with
the outcome is important for both interpretation and for improving the predictive power
of a classifier or a regression model, we introduce a method to simultaneously obtain the
sufficient reduction and carry out variable selection.

4.1 Parameter Estimation via Maximum Likelihood

We assume a random sample (yi,xi,hi), i = 1, . . . , n, is drawn from the joint distribution
of (Y,X,H) and that the conditional distribution models (5) and (3) hold. Finding the

10
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Sufficient Reductions

Predictor Distribution optimal SDR sub-optimal SDR

(X,H) | Y with density (9)

αTb (t(X,H)− E(t(X,H))) αTc (w(X,H)− E(w(X,H)))

t(X,H) in (17), w(X,H) in (24),

Sb = span{b}, b in (18) Sc in (25), (27), and (28)

X | Y ∼ N
(
µX + A(fY − f̄Y ),∆

) αT1 (X− E(X))

Sα1 = span(∆−1A)

H | Y with mass function (7)
αT2 (s(H)− E(s(H)))

s(H) in (21)

Sα2 in (22)

Table 1: Sufficient Reductions in Regressions with Mixed Predictors.

maximum likelihood estimators of the reductions derived in Section 3 requires first the esti-
mation of the parameters ∆,µ,µH,A,β, τ0, τ , in the joint density (8) with log-likelihood

n∑
i=1

log fX,H(xi,hi | yi; ∆,µ,µH,A,β, τ0, τ ). (29)

We maximize (29) in two steps. First, we maximize
∑n

i=1 log fX(xi|yi,hi; Ω) to estimate
the parameters Ω = {∆,µ,µH,A,β}. Since X | (H, Y ) follows a normal distribution,
the maximum likelihood estimator (MLE) of Ω is obtained from fitting a multivariate
normal linear model of X on the centered (H, Y ) via maximum likelihood estimation. The

MLEs of A and β are (Â, β̂) = XTL
(
LTL

)−1
, where X denotes the n × p matrix with

rows (xi − x̄)T , and L the n × (r + q) matrix with rows
(
(fyi − f̄y)

T , (hi − h̄)T
)
, x̄ =∑n

i=1 xi/n, f̄y =
∑n

i=1 fyi/n and h̄ =
∑n

i=1 hi/n. The MLE of the covariance matrix is

∆̂ =
(
XT − (Â, β̂)LT

)(
XT − (Â, β̂)LT

)T
/n.

Next, we estimate Υ = (τ0, τ ) maximizing the conditional log-likelihood function

n∑
i=1

log fH(hi | yi; Υ).

Using parametrization (6), the joint probability mass function (5) can be written as

Pr(H | Y = y) = exp

( q∑
j=1

τ∗jj0Hj +

q∑
j=1

τTjjfyHj

+
∑

1≤j<j′≤q
τ∗jj′0HjHj′ +

∑
1≤j<j′≤q

τTjj′fyHjHj′

)
1

G(Γy)
.

11
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Following Cheng et al. (2014), we consider a single binary variable Hj and condition over
the rest H−j = (H1, . . . ,Hj−1, Hj+1, . . . ,Hq) to obtain

log
Pr(Hj = 1 | H−j , Y )

Pr(Hj = 0 | H−j , Y )
= τ∗jj0 + τTjjfy +

∑
j 6=j′

τ∗jj′0Hj′ +
∑
j<j′

τTjj′fyHj′ . (30)

Thus, the conditional log-odds for a specific binary variable Hj is linear in the parame-
ters. Moreover, the conditional maximum likelihood estimators for these parameters can be
obtained by fitting a logistic regression of Hj on (fy,H−j , fyH−j), so that we obtain esti-
mators for τ0 and τ by fitting q univariate logistic regressions. In particular, for the sample
points (hTi , yi) = (hi1, . . . , hiq, yi), for each binary variable j (j = 1, . . . , q), the conditional
log-likelihood function is

`j(τ0, τ ; hi, yi) =
1

n

n∑
i=1

log Pr(hij | hi,−j , yi) =
1

n

n∑
i=1

(hijεij − log(1 + exp(εij))) , (31)

where hi,−j = (h11, . . . , hi,j−1, hi,j+1, . . . , hiq) and

εij = log
Pr(hij = 1 | hi,−j , y)

Pr(hij = 0 | hi,−j , yi)
= τ∗jj0 + τTjjfyi +

∑
j 6=j′

τ∗jj′0hij′ +
∑
j 6=j′

τTjj′fyihij′ .

To estimate Υ we use the joint estimation algorithm proposed by Cheng et al. (2014) that
maximizes

∑
j `j(τ0, τ ; hi, yi).

4.2 Maximum Likelihood Estimation of the Reductions

To estimate the optimal SDRαb in Corollary 2 and the sub-optimal SDRαc in Corol-
lary 5, we need first to estimate b in (18) and c1 and c2 in (25). We use the ML estimators
(∆̂, µ̂, µ̂H, Â, β̂, τ̂0, τ̂ ) of the corresponding parameters in (29) in Section 4.1.

4.2.1 Optimal SDR

If d = dim(Sb), with d ≤ min{r, p+ q(q + 1)/2}, the rank of b is also d with singular value
decomposition

b = UT

(
K 0
0 0

)
R, (32)

where k1 ≥ . . . ≥ kd > 0 are the singular values of b, K = diag(k1, . . . , kd), UT = (U1,U0)
is an m ×m orthogonal matrix with m = p + q(q + 1)/2, U1 : m × d, U0 : m × (m − d),
and RT = (R1,R0) is an r × r orthogonal matrix with R1 : r × d, R0 : r × (r − d).
The submatrices satisfy U1U

T
1 + U0U

T
0 = Im, UT

1 U1 = Id, UT
0 U0 = Im−d, UT

0 U1 = 0,
R1R

T
1 + R0R

T
0 = Ir, RT

1 R1 = Id, RT
0 R0 = Ir−d, RT

0 R1 = 0. Then,

b = U1KRT
1 , (33)

and, as a consequence, αb in Corollary 2 can be set to U1. Plugging in the ML estimators
(∆̂, Â, β̂, τ̂ ) yields the ML estimator of b,

b̂ =

 ∆̂−1Â

Lqτ̂ − β̂T ∆̂−1Â
Jqτ̂

 =

unvec(ϑ̂1,1)

unvec(ϑ̂2,1)

unvec(ϑ̂5,1)

 . (34)

12
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The singular value decomposition of the MLE of b is

b̂ = ÛT

(
K̂1 0

0 K̂0

)
R̂, (35)

where K̂1 = diag(k̂1, . . . , k̂d), K̂0 = diag(k̂d+1, . . . , k̂min(m,r)), k̂i are the singular values of b̂

in decreasing order, Û is an m×m orthogonal matrix whose columns are the left singular
vectors of b̂, and R̂ is an r × r orthogonal matrix, whose columns are the right-singular
vectors of b̂. Let Û1 be the first d columns of Û, R̂1 the first d columns of R̂T , and
B̂ = K̂1R̂

T
1 . An estimator of b subject to d = dim(Sb) is

b̂(d) = Û1K̂1R̂
T
1 = Û1B̂, (36)

and an estimator of the reduction αb in Corollary 2 is

α̂b = Û1. (37)

4.2.2 Sub-optimal SDR

To obtain an estimator for the space Sc in (25) that gives the sub-optimal sufficient reduc-
tion (23), we set c = (c1, c2), where c1 and c2 are given in (26), with rank(c1) = d1 and
rank(c2) = d2. Plugging in the MLE (∆̂, µ̂, µ̂H, Â, β̂, τ̂0, τ̂ ) of the corresponding parame-
ters in (29) from Section 4.1, we obtain estimators of c1 and c2,

ĉ1 =

(
∆̂−1Â

−β̂T ∆̂−1Â

)
, ĉ2 = τ̂ .

We consider their respective SVD decompositions as in Section 4.2.1. Let Ûc1 denote the
first d1 left eigenvectors of ĉ1, and Ûc2 the first d2 left eigenvectors of ĉ2. Then, we define
the estimator for the sub-optimal sufficient reduction in (23) as

α̂c =

(
Ûc1 0

0 Ûc2

)
.

4.3 Variable selection

We propose a method to combine computation of the sufficient reduction with variable
selection by removing redundant variables from the reduction. This is carried out simul-
taneously by introducing structured regularization on matrix factorization. We exploit the
factorization of the full rank maximum likelihood estimate b̂ into a relevant full-rank factor
C ∈ Rp+q(q+1)/2×d, which determines the reduction, and a matrix B that is immaterial.

The procedure is built upon the fact that the reduced rank estimator b̂(d) = Û1B̂ in
(36) is also the solution to the least squares minimization problem

min
C∈Rp+q(q+1)/2×d,CT C=I,B∈Rd×r

(vec(b̂)− vec(CB))T (vec(b̂)− vec(CB)), (38)

where b̂ is the maximum likelihood estimator of b. The solution can be expressed as
Ĉ = Û1V, for some orthogonal matrix V ∈ Rd×d, so that span(Ĉ) = span(Û1).

13
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All sufficient reductions in Section 4.2.1 are of the form R(X,H) = UT
1 (t(X,H) −

E(t(X,H)). If tj is the jth component of t(X,H), and tj is not associated with Y , the
jth row of U1 is zero. Therefore, identifying predictors that are conditionally independent
of Y corresponds to identifying the rows of C that contain only 0. This can be achieved
using mixed-norm regularizers that are known to induce structured sparsity in the estimates
(Bach et al., 2012).

The proposed procedure is as follows. For a fixed d, once we obtain b̂(d) = Û1B̂ in (36),
we solve

arg min
C∈R(p+q(q+1)/2)×d,CT C=I

(
vec(b̂)− vec(CB̂)

)T (
vec(b̂)− vec(CB̂)

)
+ λΩ(C), (39)

where Ω(C) is a mixed-norm regularizer which penalizes the rows of C in a similar manner to
group-lasso. The specific form of Ω(C) depends on the type of predictor variables involved
in the problem. We provide details in Appendix C.

4.4 Asymptotic distribution of the optimal sufficient reduction estimator

We derive the asymptotic distribution of the projection onto the column space of the es-
timated optimal sufficient reduction α̂b in (37), Pα̂b

= α̂b(α̂Tbα̂b)−1α̂Tb . We use this
result in the derivation of the asymptotic tests for dimension in Section 4.5. It can also
be potentially used for inference about the sufficient dimension reduction, as, for example,
computing confidence intervals for the prediction of future observations using results from
Forzani et al. (2019).

Proposition 6 Suppose that (X,H) | Y has probability mass function (9) with the natural
parameters ηY satisfying (11) and that b has rank d. Then,

√
n vec

(
Pα̂b

−Pαb

) D−→ N (0,Vα̂b

)
,

with
Vα̂b

= (Im2 ⊗Kmm)
(
b− ⊗Qb

)T
Vrcl

(
b− ⊗Qb

)
(Im2 ⊗Kmm), (40)

where b− is the Moore-Penrose generalized inverse of b,

Vrcl = WMVMTWT , (41)

with
V−1 = E

(
FT
y JFy

)
, (42)

Fy is defined in (11), J is the matrix of partial derivatives given by

J =
∂2ψ(ηy)

∂ηy∂ηTy
, (43)

M =

 0pr×p Ipr 0pr×q 0pr×qr 0pr×mp 0pr×qp 0pr×kq 0pr×rkq
0qr×p 0qr×pr 0qr×q Iqr 0qr×mp 0qr×qp 0qr×kq 0qr×rkq
0rkq×p 0rkq×pr 0rkq×q 0rkq×qr 0rkq×mp 0rkq×qp 0rkq×kq Irkq

 , (44)
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and

W =

 Ir ⊗

 Ip
0q×p
0kq×p

 , Ir ⊗

 0p×q
Iq
0kq×q

 , Ir ⊗

 0p×kq
0q×kq
Ikq

  . (45)

The proof of Proposition 6 is given in Appendix B.

4.5 Tests for dimension

We propose two asymptotic tests for the dimension of the sufficient reduction in optimal
SDR. We adapt these tests for the case of sub-optimal SDR, in order to estimate the
dimension of the continuous predictors separately from the binary predictors.

The dimension of the sufficient reduction coincides with the rank d of b in (18), which
we estimate by sequentially testing the hypotheses

H0 : rank(b) = j vs. H1 : rank(b) > j, (46)

for j = 0, 1, . . . ,min(r,m), where m = p + q(q + 1)/2. For a fixed level α, the estimated
rank is the smallest value of j for which the null is not rejected.

Bura and Yang (2011) proposed asymptotic tests for the rank of random matrices in se-
quential hypothesis testing. To construct the corresponding tests for dimension, we consider
the singular value decomposition of b in (33) and b̂ in (36) with d = j.

The first statistic we use to test (46) is Λ1(j) = n
∑min(m,r)

i=j+1 k̂2
i , where k̂i’s are the

singular values of b̂ in descending order. Proposition 6 obtains the asymptotic normality
of b̂ with covariance Vrlc in (41). When rank(b) = j,

Λ1(j)
D−→

s∑
i=1

ωiX
2
i , (47)

where s = min(rank(Vrcl), (r−j)(m−j)), X2
i are independent chi-squared random variables

with 1 degree of freedom, and the weights are the descending eigenvalues of Q = (RT
0 ⊗

UT
0 )Vrcl(R0 ⊗U0) [see Bura and Yang (2011)]. In practice, the weights ωi, i = 1, . . . , s,

are replaced by ω̂1 ≥ ω̂2 ≥ . . . ≥ ω̂s, the descending eigenvalues of

Q̂ = (R̂T
0 ⊗ ÛT

0 )V̂rcl(R̂0 ⊗ Û0), (48)

where V̂rcl is a consistent estimate of Vrcl. This test rejects H0 if Λ1(j) > qα, where qα is
the (1−α) percentile of the distribution of

∑s
i=1 ω̂iX

2
i . We estimate qα from the empirical

distribution function of Λ1, by generating 10000 realizations of
∑s

i=1 ω̂iX
2
i and computing

the empirical quantile q̂α.

The second is a Wald test with test statistic, Λ2(j) = nvec(K̂0)T Q̂†vec(K̂0), where K̂0

is defined in (35) and Q̂† is the Moore-Penrose inverse of Q̂ in (48). Following Bura and

Yang (2011), since b̂ is asymptotically normal, if j = rank(b), then Λ2(j)
D−→ χ2(s), where

the degrees of freedom are s = min (rank(Vrcl), (r − j)(m− j)). The rejection region is
Λ2(j) > χ2

α(s), where χ2
α(s) is the (1− α) percentile of the χ2(s) distribution.
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5. Simulation Studies

We assess the performance of the proposed methods in estimating the sufficient reduction
and its dimension, out-of-sample prediction, and variable selection in simulations.

In all our simulations, the response is generated from the uniform distribution on the
integers {1, . . . , r+1}, with r = 5, and we set fy = I(y = j)−nj/n, where I is the indicator
function, n denotes the total sample size and nj the number of observations in category j,
for j = 1, . . . , r. All reported results are based on sample sizes n = 100, 200, 300, 500, 750,
and 100 repetitions. The R code we used in both simulations and real data analyses in
Section 6 can be found at https://github.com/lforzani/SDR mixed predictions.

5.1 Estimation, prediction and dimension tests

We assess the accuracy of estimating span(α) with span(α̂) using ||Pα−Pα̂||2 [see Ye and
Lim (2016)]. The prediction error is computed as ||PαT (XN ,HN ) − Pα̂T (XN ,HN )||2, where

(XN ,HN ) is a new sample of size N = 2000 that is independent of the training sample. We
estimate the sufficient reduction using the true d.

5.1.1 Continuous predictors

We generate p-variate continuous predictors as X | Y = y ∼ N (µy,∆) with µy = Afy for
A = ∆αξ, where α ∈ Rp×d of rank(α) = d and ξ ∈ Rd×r. We let p = 20 and 0l, 1l denote
the l-vectors of zeros and ones, respectively.

(a) For d = 1, we set ξ = 1Tr , α = (0Tp/2,1
T
p/2)T , ∆ = 5(Ip + ρααT ) with ρ = 0.55.

(b) For d = 2, we set

ξ =

(
1 1 1 1 1
0 0 0 1 1

)
,

α = (α1,α2) is an orthonormal basis of span
(

(0Tp/2,1
T
p/2)T , (0Tp/2,1

T
p/4,−1Tp/4)T

)
, and

∆ = 5(Ip + ρ1α1α
T
1 + ρ2α2α

T
2 ), for ρ1 = 0.55 and ρ2 = 0.25.

5.1.2 Binary predictors

We generate q = 10 binary predictors assuming that H | Y follows an Ising model with
parameters {τ0, τ}, where τ = [ vech(τ1), . . . , vech(τr)], τj are q×q matrices and set τ0 = 0.
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(a) For d = 1, and j = 1, . . . , r, τj = 3×K1/
√∑

ij([K1]ij) with

K1 =



1 30 5 0 0 0 01×4

30 1 10 0 0 0
...

5 10 1 30 0 0
...

0 0 30 1 30 0
...

0 0 0 30 1 30
...

0 0 0 0 30 1
...

0 0 0 0 0 30 01×4

03×1 · · · · · · · · · · · · 03×1 03×4


.

(b) For d = 2, τj = 3×K1/
√∑

ij([K1]ij), for j = 1, 3, 4, 5, and

τ2 =
12√

6
×
(

I6 06×4

04×6 04×4

)
.

5.1.3 Mixed predictors

(a) For d = 1, we use the same parameters as for continuous X | (H, Y ) and binary
variables H | Y in Sections 5.1.1, 5.1.2, respectively. Moreover, we set µH = 0 and
β = (1p×6/10,0p×4) ∈ Rp×q, to induce sparsity in the binary predictors.

(b) For d = 2, we generate H | Y as in Section 5.1.2 with dimension 1 and X | (H, Y ) as
in (a) with dimension 2.

In Figure 1, we plot on the y-axis the estimation error, ‖Pα̂ −Pα‖2, and the prediction
error,

∥∥Pα̂T XN
−PαT XN

∥∥
2
, for optimal SDR versus the training sample size on the x-axis

across all our simulation scenarios. For all types of predictors the prediction is smaller than
the estimation error and both decrease as the sample size increases. Moreover, both increase
as the dimension increases from 1 to 2 in the left and right panels, respectively, across types
of predictors. When comparing types of predictors, continuous predictors exhibit higher
estimation and prediction errors across sample sizes and mixed predictors result in the
highest estimation and prediction errors.

For comparative purposes, we also include in Figure 1 the results from applying Principal
Components Analysis (PCA), as unsupervised alternative, and Principal Fitted Component
(PFC) that, although supervised, is designed only for continuous variables. In both cases,
the reductions are on variables derived from the sufficient statistics in our SDR methods.
That is, for mixed predictors, we apply PCA and PFC on (17), for continuous predictors
X on themselves and for binary on (21). Figure 1 shows the clear advantage of optimal
SDR for continuous and binary predictors. For mixed, even though PCA and PFC have
an advantage since they are applied on the sufficient statistics and not on the predictors
themselves, optimal SDR nevertheless performs better than both for d = 1 and roughly
on par with PFC, which is also the closest to optimal SDR.
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Figure 1: L2 error of the estimation (Reduction) and out of sample prediction (Projection)
of optimal SDR (black), PCA (red) and PFC (green) with continuous (first
row), binary (second row) and mixed (last row) predictors for d = 1 (left panel)
and d = 2 (right panel).
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Figure 2: L2 error of the estimation (Reduction) and out of sample prediction (Projection)
of sub-optimal SDR with mixed predictors with continuous (black) and binary
(red) predictos for d = 1 (left panel) and d = 2 (right panel).

In Figure 2 we plot the estimation and prediction error of sub-optimal SDR, where
the continuous and binary variables are reduced separately. The pattern of behavior is
consistent with that of optimal SDR in Figure 1, with the continuous variables inducing
larger errors of both types across sample sizes and d = 1, 2. Again, the errors are smaller
for dimension 1.

Under the same simulation settings, we also evaluate the performance of our simulta-
neous variable selection and dimension reduction method in Section 4.3. Selection of the
hyperparameters (λ, γ) in (39) is carried out via 10-fold cross validation and minimizing
the prediction error as optimization criterion. The procedure starts by estimating an upper
bound λm so that the whole estimate vanishes for any λ > λm. We then set a grid of nλ
candidate values for λ, uniformly spaced on a logarithmic scale between 0 and λm. Here, we
set nλ = 100. For γ, we consider 11 values uniformly spaced in [0, 1]. In each fold, an initial
full-rank estimate of the reduction is computed using the training set and then factorized
using truncated SVD to compute B̂ and an initial estimate for C. The solution to (39) is
computed for each pair of candidate values (λk, γk). The obtained reduction is applied to
both the training and the test samples. Next, we fit a prediction model using the reduced
training set and evaluate the prediction error on the reduced test sample. The average
prediction error over the ten cross-validation folds is then computed for each candidate pair
(λk, γk). We pick the combination that attains the smallest mean prediction error.

In Table 2, we report the proportion of variables correctly identified as non-relevant (true
positives, TP) and the proportion of variables erroneously assessed as non-relevant (false
negatives, FN). Between d = 1 and d = 2, TP is higher across sample sizes, whereas FN is
lower. Both rates improve substantially as the sample size increases. When all predictors
are continuous, both rates are lower across sample sizes. This is expected since the inclusion
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Sample Size

Predictors d Rates 100 200 300 500 750

Continuous 1 TP 0.653 0.751 0.796 0.851 0.889
FN 0.314 0.170 0.095 0.044 0.012

2 TP 0.521 0.591 0.629 0.748 0.843
FN 0.165 0.048 0.014 0.004 0.002

Binary 1 TP 0.188 0.310 0.400 0.55 0.623
FN 0.167 0.117 0.045 0.015 0.018

2 TP 0.255 0.300 0.368 0.458 0.528
FN 0.048 0.020 0.012 0.000 0.000

Mixed 1 TP 0.632 0.592 0.589 0.671 0.674
FN 0.493 0.333 0.196 0.200 0.170

2 TP 0.596 0.656 0.639 0.583 0.610
FN 0.451 0.413 0.325 0.163 0.124

Table 2: Accuracy of the regularized estimator in variable selection.

of a binary variable results in second order interaction effects in the reduction. Therefore,
to rule out a binary variable both its own-coefficient and all the coefficients of its interaction
terms must be zero. Overall, our regularized SDR approach achieves high true positive and
small false negative rates for reasonable sample sizes.

In Table 3 we report the proportion of times out of 100 replications that the dimension d
was correctly estimated based on the sequential tests of dimension in Section 4.5 for all our
simulation settings. The sample size has a noticeable effect in the accuracy of the estimation
of dimension, as expected since both tests are asymptotic. The weighted χ2 test accuracy
suffers more from increasing the dimension and all binary predictors as compared to that
of the chi-squared test, across sample sizes. For mixed predictors, as well, the chi-squared
test exhibits higher accuracy for both optimal and sub-optimal SDR across sample sizes.

Additionally, we check the robustness of our methods to non-normality of the continuous
predictors. For this, we draw X from a multivariate non-central t-distribution with 5 degrees
of freedom and the same mean and variance as the normal X. The results are reported in
Table 6 in Appendix D. We can see the methods continue to work well for heavy-tailed t
predictors. In contrast, the unsupervised alternative, PCA, gives poorer results compared
to PCA with normal predictors. As an aside, Table 6 provides further evidence of the
much better performance of optimal SDR compared to PCA uniformly across normal
and non-normal predictors.

6. Data Analyses

We compare our method with other approaches, such as generalized linear models and
principal component regression, in two data applications. Specifically, we compare our
methods with PCA and PCAmix in Sections 6.1 and 6.2. PCAmix (Chavent et al., 2012,
2014) is a version of PCA that accommodates mixed variables and implements PCA with
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Predictors Sample Size
Dimension Test Method 100 200 300 500 750

Continuous d = 1 Weighted χ2 0.60 0.82 0.83 0.89 0.95
χ2 0.00 0.99 0.99 1.00 0.98

d = 2 Weighted χ2 0.65 0.77 0.86 0.94 0.94
χ2 0.2 1.00 0.99 0.97 0.95

Binary d = 1 Weighted χ2 0 0.80 0.96 0.94 0.94
χ2 0 0.02 0.94 0.99 0.94

d = 2 Weighted χ2 0 0.02 0.30 0.66 0.96
χ2 0.02 0.20 0.92 0.96 0.94

Mixed d = 1 Weighted χ2 optimal SDR 0 0.2 0.45 0.64 0.94
Weighted χ2 sub-optimal SDR(cts) 0.68 0.84 0.89 0.90 0.95
Weighted χ2 sub-optimal SDR(bin) 0.5 0.75 0.87 0.94 0.95
χ2 optimal SDR 0 0.18 1 0.98 0.98
χ2 sub-optimal SDR(cts) 0 0.95 0.98 0.98 0.95
χ2 sub-optimal SDR(bin) 0 0.18 0.94 0.98 0.96

d = 2 Weighted χ2 optimal SDR 0 0.06 0.30 0.45 0.90
Weighted χ2 sub-optimal SDR(cts) 0.60 0.75 0.84 0.95 0.95
Weighted χ2 sub-optimal SDR(bin) 0 0.08 0.40 0.56 0.96
χ2 optimal SDR 0.08 0.36 0.64 0.92 0.93
χ2 sub-optimal SDR(cts) 0.12 0.98 0.99 0.96 0.95
χ2 sub-optimal SDR(bin) 0.22 0.30 0.96 0.96 0.95

Table 3: Proportion of correct dimension estimation under the simulation settings in Section
5.
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metrics; i.e., Generalized Singular Value Decomposition (GSVD) of pre-processed data [see
Chavent et al. (2014) for details]. PCAmix is ordinary standard PCA, when all variables
are continuous, and standard multiple correspondence analysis (MCA), when all variables
are categorical (Greenacre and Blasius (2006), Zhu et al. (2011), Camiz and Gomes (2013)).

6.1 Krzanowski Data Sets

Krzanowski (1975) studied the problem of discriminating between two groups in the pres-
ence of both binary and continuous explanatory variables. Krzanowski (1975) modeled the
mixed predictors using the location model (Olkin and Tate, 1961) and proposed an allocation
rule to two groups similar to Fisher’s discriminant function. The location model transforms
the q binary variables H1, . . . ,Hq to the corresponding 2q-category multinomial vector and
requires the continuous variables be conditionally normal in each of the 2q categories with
different means and same variance-covariance matrix. He showed that the simple linear dis-
criminant function often gives satisfactory results, except when there is interaction between
the mixed variables.

We analyze four of the five data sets in Krzanowski’s paper which contains continuous
and binary predictors and a binary response.

1. Data Set 1: Ten variables recorded on 40 patients who were surgically treated for
renal hypertension. Seven of the variables were continuous and three binary. After
one year, 20 patients were classified as improved and 20 as unimproved.

2. Data Set 2: Seven variables recorded on 93 patients suffering from jaundice. Four
of the variables were continuous and three binary. The two groups were patients
requiring medical and surgical treatment.

3. Data Set 3: Twelve variables recorded on 62 patients suffering from jaundice. Eight
of the variables were continuous and four binary. The two groups were patients
requiring medical and surgical treatment.

4. Data Set 4: Eleven variables recorded on 186 patients who underwent ablative
surgery for advanced breast cancer between 1958 and 1965 at Guy’s Hospital, London.
Six of the variables were continuous and three binary. The two groups were patients
for which the treatment was deemed to be successful and failure.

Some of the continuous variables were transformed to normality across all data sets.
Since the response is binary, fy in (8) is a vector of frequencies with r = 1, so that the
dimension either SDR method can detect cannot exceed 1. We reduced the mixed predic-
tors using our two methods, optimal SDR and sub-optimal SDR, and also PCA and
PCAmix setting d = 1. In order to assess the classification accuracy of each method, the
reduced predictors serve as independent variables in a logistic regression model. For com-
parison, we also fit an unreduced logistic regression model with all the original predictors,
which we refer to as Full.

In Table 4 we report the leave-one-out misclassification rate and the area under the
receiver operator characteristics curve, AUC (Pepe, 2003, p. 67), with the smallest and
largest values, respectively, in boldface. sub-optimal SDRemerges as the best method to
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Set optimal SDR sub-optimal SDR Full PCA PCAmix Location Fisher Logistic

1 MR 0.250 0.300 0.375 0.325 0.425 0.350 0.325 0.325
AUC 0.918 0.918 0.885 0.675 0.575 - - -

2 MR 0.280 0.204 0.258 0.387 0.290 0.290 0.280 0.301
AUC 0.857 0.858 0.837 0.513 0.469 - - -

3 MR 0.161 0.145 0.226 0.484 0.500 0.226 0.177 0.222
AUC 0.949 0.951 0.944 0.623 0.646 - - -

4 MR 0.296 0.290 0.392 0.457 0.430 0.328 0.382 0.371
AUC 0.784 0.785 0.738 0.544 0.572 - - -

Table 4: Leave-one-out misclassification rates and AUC values for four data sets in
Krzanowski (1975).

summarize the mixed predictors with respect to misclassification error, followed by SDR
Optimal that has better performance for data set 1. With respect to AUC, sub-optimal
SDR is always the best.

In Table 4, we provide the leave-one-out misclassification rates of Fisher’s LDA, lo-
gistic regression and Krzanowski’s allocation rule based on the location model, as re-
ported in Krzanowski (1975, Tab. 3). sub-optimal SDRexhibits better performance
than Krzanowski’s location model across data sets. optimal SDR performs the best in all
data sets except for data set 2 where it is on par with Fisher’s linear discriminant analysis.
Moreover, the optimal and sub-optimal SDR misclassification rates are smaller than all
other methods in Krzanowski (1975), as well as mixed nonparametric kernel methods (Vla-
chonikolis and Marriott, 1982). Taken all together, our SDR methods for mixed predictors
consistently produce targeted data reductions that provide better fit and prediction.

6.2 Governance index application

Considerable social science and economics research is devoted to the construction of indexes
for descriptive and predictive purposes (Vyas and Kumaranayake, 2006; Kolenikov and
Angeles, 2009; Filmer and Scott, 2012; Merola and Baulch, 2014; Forzani et al., 2018; Duarte
et al., 2021). An index is a statistical summary measure of change in a representative group
of individual data points. It usually synthesizes the information contained in a set of p
variables X ∈ Rp via a linear combination, R(X) = ωTX ∈ R, where ω is the vector of
weights of the composite index.

In this example, we study the impact of governance on economic growth in the twelve
South American countries as measured by per capita Gross Domestic Product (GDP) using
the World Bank Governance Indicators.1 The World Bank considers the following six aggre-
gate indicators of governance that combine the views of a large number of enterprise, citizen
and expert survey respondents: control of corruption (X1); rule of law (X2); regulatory qual-
ity (X3); government effectiveness (X4); political stability (X5); voice and accountability
(X6). They are standardized to have mean zero and standard deviation one, with values

1. Governance Indicators and per capita GDP data can be downloaded from Worldwide Governance Indi-
cators and The World Bank Data, respectively.
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Figure 3: Log of per capita GDP versus Standard PCA and PFC based composite governance
indexes.

from -2.5 to 2.5, approximately, where higher values correspond to better governance. All
six are highly positively correlated, and are all positively correlated with the per capita
GDP; i.e., economic growth is positively associated with better governance indicators.

Our aim is to build a Composite Governance index (CG) to predict Y , the logarithm of
per capita Gross Domestic Product (GDP), measured in 2010 US dollars, over the period
1996 to 2018. Using the set of governance indicator variables, we start by constructing
the CG index via standard Principal Component Analysis (PCA) and Principal Fitted
Components (PFC) [see Corollary 3] setting d = 1 and fy = log(GDP ) in (8).

In the left panel of Figure 3, we plot log(GDP ) versus the CG indexes based on PCA,
which is the standard approach in such index construction (Mazziotta and Pareto, 2019).
In the right panel of Figure 3, the response is plotted versus the index based on PFC. Both
plots indicate dependence of the response on the indexes but the nature of relationship is
the data pattern is hard to understand. A linear trend appears stronger in the right panel,
which is reflected in the better fit of the linear regression model (black) with R2 = 0.27
versus 0.17 for PCA. However, the PCA-based index in nonparametric kernel regression
(blue) results in better fit. Using the np R package, the value of the nonparametric version
of R2 is 0.32 for the PFC-based CG index, which is much lower than 0.54, the value for the
PCA-based index.

In Figure 4, we plot log(GDP ) versus the PCA and PFC composite governance indexes
by country. The plots indicate that the PFC index gives a much better visualization of
the relationship of log(GDP ) within each country, suggesting that adjusting the index by
country could improve its predictive performance.

We add country effect by introducing eleven binary variables H. In Figure 5 we plot
the log of GDP versus the CG index constructed by PCA for mixed variables (PCAmix)
in the left panel and by our mixed optimal SDRapproach in the right panel. Hardly any
difference between the plots in the left panels of Figures 3 and 5 is noticeable. The PCAmix
based CG index is very similar to the conventional PCA based CG that does not include
country effect, with R2 equal to 0.17 and 0.61 for the linear and nonparametric models,
respectively. Moreover, neither PCA based CG index exhibits an easy to understand or
model relationship with the response.
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Figure 4: Log of per capita GDP versus standard PCA and standard PFC composite gov-
ernance indexes by country.
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Figure 5: Log of per capita GDP versus Composite Governance index with country effect.

In contrast, a very clear and simple pattern appears in the right panel of Figure 5,
where the response is plotted versus our optimal SDR based index. The pattern suggests
modeling log(GDP ) as a linear function of the GC index. This is a distinct improvement
over PCA and PCAmix (left panels of Figures 3 and 5) but also the SDR method PFC,
which does not account for country effect (right panel of Figure 3). As a result, both the
linear (black) and the kernel (blue) regression models for the regression of the log per capita
GDP on the optimal SDR for mixed predictors based CG index have excellent fit with
respective R2 values of 0.91 and 0.93.

The average of the leave-one-out mean square prediction errors of the linear and ker-
nel regression models in Table 5, provides an unbiased measure of predictive performance.
The logarithm of the per capita GDP is regressed on the unsupervised CG indexes, con-
structed by PCA using only continuous predictors (PCA(X)) and its extension for mixed
variables (PCAmix(X,H)), and the supervised CG Indexes, constructed by PFC only on
continuous predictors (PFC(X)) and our mixed predictor SDR methods, optimal SDRand
sub-optimal SDR.

The leave-one-out mean squared prediction errors of the supervised PFC based CG
index are smaller than both PCA and PCAmix for the linear model, even though PFC
does not account for country effect. Nevertheless, when the kernel regression model is
fitted, the PCA based index exhibits better performance than PFC. The dramatic drop
in prediction error results from using optimal and sub-optimal SDR, as it is between 5
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Predictive Model
Index Type Method Linear Non-Parametric

Unsupervised PCA(X) 0.319 0.189
PCAmix(X,H) 0.320 0.209

Supervised PFC(X) 0.292 0.282
optimal SDR(X,H) 0.029 0.028
sub-optimal SDR(X,H) 0.028 0.022

Table 5: Leave-one-out mean squared prediction errors for the per capita log GDP in South-
American countries.

to 9 times smaller than the PCA, PCAmix and PFC errors for both the linear regression
and the kernel regression models.

The regularized estimation of the optimal SDR reduction selects all five continuous
predictors except for rule of law. Political stability and voice and accountability have the
highest weights in the CG index. Rule of law is the most correlated with four of the other
variables, with correlation coefficient values over 0.80. We stipulate that our method drops
it as its relationship with GDP is mostly absorbed by the other four. The binary variables
are all selected. That is, our method finds a significant country effect on GDP.

7. Discussion

Our approach falls within model-based inverse regression for sufficient dimension reduction
(SDR) (Cook, 2007; Cook and Forzani, 2008; Bura and Forzani, 2015; Bura et al., 2016).
Model-based SDR requires knowledge of the family of distributions of the inverse predictors
in contrast to moment-based SDR, such as SIR (Li, 1991), SAVE (Cook and Weisberg,
1991), or DR (Li and Wang, 2007), that impose conditions on the moments of the marginal
distribution of the predictors. Because of this, our approach provides exhaustive iden-
tification and statistically efficient estimation of sufficient reductions for the conditional
distribution of an output given mixed variables that contain all information in the mixed
predictors for the output Y .

Furthermore, beyond the context of dimension reduction for the forward regression
problem of Y on mixed predictors Z, the modeling we use to accommodate the factorization
in (2) in developing our SDR methods, is a new multivariate modeling approach for response
vectors comprised of mixed variables. That is, if one were to only consider the multivariate
regression of the mixed vector Z = (XT ,HT )T on some other variables, say F, the models we
use for the continuous and binary elements of Z in our development provide a new regression
tool for mixed responses. Specifically, since the joint distribution of Z | F belongs to the
exponential family (9), our approach yields sufficient statistics for the unknown natural
parameters ϑ in (11), as well as optimal (efficient) maximum likelihood estimators, in a
similar manner to generalized linear modeling for univariate responses.
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S. Duarte, L. Forzani, R. Garćıa Arancibia, P. Llop, and D. Tomassi. Socioeconomic index
for income and poverty prediction: A sufficient dimension reduction approach. Review
of Income and Wealth, 2021. URL https://doi.org/10.1111/roiw.12529.

D. Filmer and K. Scott. Assessing asset indices. Demography, 49:359–392, 2012. URL
https://doi.org/10.1007/s13524-011-0077-5.

28

https://doi.org/10.1007/s11634-012-0105-3
https://doi.org/10.1007/s11634-012-0105-3
https://doi.org/10.1093/biomet/asu051
https://doi.org/10.1093/biomet/asu051
https://doi.org/10.1111/biom.12202
https://doi.org/10.1111/biom.12202
https://doi.org/10.1080/10618600.2016.1237362
https://doi.org/10.1080/10618600.2016.1237362
https://doi.org/10.1214/088342306000000682
https://doi.org/10.1214/08-STS275
https://doi.org/10.2307/2290564
https://doi.org/10.2307/2290564
https://doi.org/10.1038/ng.3513
http://pages.stat.wisc.edu/~wahba/ftp1/tr1171.pdf
http://pages.stat.wisc.edu/~wahba/ftp1/tr1171.pdf
10.3150/12-BEJSP10
http://www.jstor.org/stable/2528164
https://doi.org/10.1111/roiw.12529
https://doi.org/10.1007/s13524-011-0077-5


Sufficient reductions for mixed predictors

G.M. Fitzmaurice and N.M. Laird. Regression models for mixed discrete and continu-
ous responses with potentially missing values. Biometrics, 53(1):110–122, 1997. ISSN
0006341X, 15410420. URL http://www.jstor.org/stable/2533101.
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Appendix A. Proofs and Derivations for Section 3

A.1 Derivation of Eqn. (9)

From Eqn. (8), f(X,H | Y = y) up to the constant 1/
√

2π is

exp

{
− 1

2

(
(X− µX)−Afy − β(H− µH)

)T
∆−1

(
(X− µX)−Afy − β(H− µH)

)
+ vechT (HHT ) (τ0 + τ fy) +

1

2
log(|∆|−1)− log(G(Γy))

}
.

After some algebra and rearrangement of terms, we obtain

f(X,H | Y = y) = h(X,H) exp
(
TT (X,H)ηy − ψ(ηy)

)
,

with h(X,H) = (2π)−1/2,

TT (X,H)ηy = XT∆−1µX −XT∆−1βµH + XT∆−1Afy

−HTβT∆−1µX + HTβT∆−1βµH −HTβT∆−1Afy

− 1

2
XT∆−1X + XT∆−1βH

− 1

2
HTβT∆−1βH + vechT (HHT )τ0 + vechT (HHT )τ fy, (49)

and

ψ(ηy) =
1

2
µTX∆−1µX +

1

2
fTy AT∆−1Afy +

1

2
µTHβ

T∆−1βµH

+ µTX∆−1Afy − µTX∆−1βµH − µTHβT∆−1Afy (50)

− 1

2
log(|∆|−1) + log(G(Γy)).

Since tr(ATB) = vec(A)Tvec(B), vec(ABC) = (CT ⊗ A)vec(B) and Dq in Section 2 is
such that vec(A) = Dq vech(A), (49) equals

TT (X,H)ηy = XT
(
∆−1µX −∆−1βµH + (fTy ⊗ Ip)vec(∆−1A)

)
+ HT

(
−βT∆−1µX + βT∆−1βµH − (fTy ⊗ Iq)vec(βT∆−1A)

)
− 1

2
(DpD

T
p vech(XXT ))T vech(∆−1) + vec(XHT )Tvec(∆−1β)

+ vech(HHT )T
(
−1

2
DT
q vec(βT∆−1β) + τ0 + (fTy ⊗ Iq(q+1)/2)vec(τ )

)
.

Using the matrices Jq and Lq defined in Section 2, we obtain Eqns (10) and (11) from

TT (X,H)ηy = XT
(
∆−1µX −∆−1βµH + (fTy ⊗ Ip)vec(∆−1A)

)
+ HT

(
−βT∆−1µX + βT∆−1βµH − (fTy ⊗ Iq)vec(βT∆−1A)

)
− 1

2
(DpD

T
p vech(XXT ))T vech(∆−1) + vec(XHT )Tvec(∆−1β)
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+ HT

(
−1

2
LqD

T
q vec(βT∆−1β) + Lqτ0 + (fTy ⊗ Iq)vec(Lqτ )

)
+ (Jq vech(HHT ))T

(
−1

2
JqD

T
q vec(βT∆−1β) + Jqτ0 + (fTy ⊗ Ikq)vec(Jqτ )

)
= XTηy1 + HTηy2 −

1

2
(DT

p Dpvec(XXT ))Tη3

+ vec(XHT )Tη4 + (Jq vech(HHT ))Tηy5,

where
ηy1 = ∆−1µX −∆−1βµH + (fTy ⊗ Ip)vec(∆−1A) = Fy1ϑ1,

with Fy1 = (Ip, f
T
y ⊗Ip), ϑ1 = (ϑT10,ϑ

T
11)T , ϑ10 = ∆−1µX−∆−1βµH and ϑ11 = vec(∆−1A),

ηy2 = −βT∆−1µX + βT∆−1βµH − (fTy ⊗ Iq)vec(βT∆−1A)

− 1

2
LqD

T
q vec(βT∆−1β) + Lqτ0 + (fTy ⊗ Iq)vec(Lqτ )

= Fy2ϑ2,

where Fy2 = (Iq, f
T
y ⊗ Iq), ϑ2 = (ϑT20,ϑ

T
21)T , with ϑ20 = −βT∆−1µX + βT∆−1βµH +

Lqτ0 − 1
2LqD

T
q vec(βT∆−1β) and ϑ21 = vec(Lqτ − βT∆−1A),

η3 := η3y = vech(∆−1),

η4 := η4y = vec(∆−1β),

and,

ηy5 = −1

2
JqD

T
q vec(βT∆−1β) + Jqτ0 + (fTy ⊗ Ikq)vec(Jqτ )

:= Fy5ϑ5,

with Fy5 = (Ikq , f
T
y ⊗ Ikq) and ϑ5 = (ϑT50,ϑ

T
51)T , ϑ50 = −1

2JqD
T
q vec(βT∆−1β) + Jqτ0 and

ϑ51 = vec(Jqτ ).
Eqn. (7) yields

G(Γy) =
∑
H

exp
[

vechT (HHT ) (τ0 + τ fy)
]
.

Therefore, using Jq, Lq, Dq and Cq defined in Section 2, the notation defined above and
the new notation η̄4 := unvec(η4), we get

G(Γy) =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)
(51)

+ HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
Finally, from Eqn. (50) using the matrix Dp defined in Section 2 and (51),

ψ(ηy) =
1

2
ηTy1(unvec(Dpη3))−1ηy1 + logG(Γy)−

1

2
log |unvec(Dpη3)|

:= ψ1(ηy) + ψ2(ηy) + ψ3(ηy). (52)
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A.2 Proof of Theorem 1

Since the density of (X,H) | Y belongs to the exponential family (Eqn. (9)), following
Theorem 1 in Bura et al. (2016) we have that, the minimal sufficient reduction for the
regression Y | (X,H) is given by

R(X,H) = αTa (T(X,H)− E(T(X,H))) ,

with αa is a basis for Sa = span {ηY − E(ηY ), Y ∈ Y}, with ηY given in (11). Therefore,
from Eqns. (11) and (12) and since E(fY ) = 0,

ηy − E(ηy) =


(fTy ⊗ Ip)vec(∆−1A)

(fTy ⊗ Iq)vec(Lqτ − βT∆−1A)

0
0

(fTy ⊗ Ikq)vec(Jqτ )

 =


∆−1Afy

(Lqτ − βT∆−1A)fy
0
0

Jqτ fy

 .

Thus, span {ηY − E(ηY ), Y ∈ Y} = span(a) with

a =


∆−1A

Lqτ − βT∆−1A
0
0

Jqτ

 .

A.3 Proof of Corollary 3

If follows from Corollary 2, since, in this case, ϑ2,1 = 0 and ϑ5,1 = 0.

A.4 Proof of Corollary 4

If follows from Corollary 2 since in this case ϑ1,1 = 0 and ϑ2,1 = Lqτ .

A.5 Proof of Corollary 5

It suffices to show that span(b) ⊂ span(αc). We observe that b can be written as

b =

 ∆A 0
−βT∆−1A L1τ

0 Jqτ

( Ir
Ir

)
:= b̃

(
Ir
Ir

)
,

with
span(b̃) = span(αc).

As a consequence, span(b) ⊂ span(αc), and therefore R(X,H) in (23) is a sufficient di-
mension reduction, not necessarily minimal. The rest of the corollary follows immediately.

Appendix B. Proof of Proposition 6

In order to prove Proposition 6, we have to first study the asymptotic distribution of b̂ in
(34) in Section B.1 and prove some auxiliary lemmas in Section B.2.
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B.1 Asymptotic distribution of b̂

Proposition 7
√
nvec(b̂− b)

D−→ N (0,Vrcl) with

Vrcl = WMVMTWT ,

where M, W and V are defined in Eqns. (44), (45) and (42), respectively.

Proof of Proposition 7. To obtain the asymptotic distribution of b̂, we rewrite

b =

 ∆−1A
Lqτ − βT∆−1A

Jqτ

 =

unvec(ϑ1,1)
unvec(ϑ2,1)
unvec(ϑ5,1)

 ,

as follows. Letting b̃ :=
(
ϑT1,1,ϑ

T
2,1,ϑ

T
5,1

)T
, b̃ = Mϑ, with M given in (44), which implies

that
vec(b) = Wb̃ = WMϑ, (53)

with W defined in (45). Then, from Eqn. (53) applied to b̂,

vec(b̂) = WMϑ̂. (54)

To compute the asymptotic distribution of vec(b̂) we need to first obtain the asymptotic
distribution of of ϑ̂, which is stated in the next lemma.

Lemma 8 If avar
(√

n ϑ̂
)

= V, then

V−1 = E
(
FT
y JFy

)
,

where Fy is defined in (11) and J is the matrix of partial derivatives given by (43)

J =
∂2ψ(ηy)

∂ηy∂ηTy
.

The asymptotic normality of b̂ follows from Lemma 8. Its asymptotic variance is

avar(
√
n b̂) = WMavar

(√
n ϑ̂
)

MTWT

= WMVMTWT ,

as stated in Proposition 7.

Proof of Lemma 8. Since ϑ̂ is the maximum likehood estimator,

V = avar
(√

n ϑ̂
)

= −
(

E

[
∂2 log f(X,H | Y = y)

∂θ∂θT

])−1

.

Plugging in Eqn. (9) ηy = Fyϑ from Eqn. (11) obtains

log f(X,H | Y = y) = log h(X,H) + TT (X,H)ηy − ψ(ηy)
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= log h(X,H) + TT (X,H)Fyϑ− ψ(Fyϑ).

From (8), it follows that

∂ log f(X,H | Y = y)

∂vecT (θ)
= TT (X,H)Fy −

∂ψ(ηy)

∂ηTy
Fy,

∂2 log f(X,H | Y = y)

∂vec(θ)vecT (∂θ)

= −FT
y

∂2ψ(ηy)

∂ηy∂ηTy
Fy

= −FT
y JFy,

and therefore V−1 = E
(
FT
y JFy

)
. �

In order to compute J, the first and second derivatives of ψ(ηy) with respect to ηy are
required. This computation is carried out in Appendix E.

B.2 Auxiliary lemmas to prove Proposition 6

Lemma 9 Let Ĥ = Û1K̂1R̂
T
1 R1K

−1. Then,

√
nvec(Ĥ−U1)

D−→ N
(
0, (K−1RT

1 ⊗ Im)Vrlc(R1K
−1 ⊗ Im)

)
,

where Vrlc is defined in Eqn. (41), Û1, K̂1 and R̂1 in Eqn. (18), U1,K and R1 in Eqn.
(32).

Proof By Eqn. (32), b = U1KRT
1 , and by Eqn. (18), b̂ = Û1K̂1R̂

T
1 + Û0K̂0R̂

T
0 . Then,

Ĥ−U1 = Û1K̂1R̂
T
1 R1K

−1 −U1

= b̂R1K
−1 − Û0K̂0R̂

T
0 R1K

−1 −U1

= (b̂− b)R1K
−1 − Û0K̂0R̂

T
0 R1K

−1,

and

√
nvec(Ĥ−U1) =

√
nvec((b̂− b)R1K

−1 − Û0K̂0R̂
T
0 R1K

−1)

=
√
n(K−1RT

1 ⊗ Im)vec(b̂− b)− vec(Û0K̂0R̂
T
0 R1K

−1). (55)

From Proposition 7,

√
n(K−1RT

1 ⊗ Im)vec(b̂− b)
D−→ N (0,ΣU), (56)

with ΣU = (K−1RT
1 ⊗ Ik)Vrcl(K

−1RT
1 ⊗ Ik)

T = (K−1RT
1 ⊗ Ik)Vrcl(R1K

−1 ⊗ Ik). Also,

since
√
n
(
Û0K̂0R̂

T
0

)
= Op(1) and PR1 = P

R̂1
+Op(n

−1/2),

√
n(Û0K̂0R̂

T
0 R1K

−1) =
√
n(Û0K̂0R̂

T
0 )PR1R1K

−1

=
√
n
(
Û0K̂0R̂

T
0

)(
P

R̂1
+Op(n

−1/2)
)

R1K
−1
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=
√
n
(
Û0K̂0R̂

T
0

)
Op(n

−1/2)R1K
−1

= Op(n
−1/2),

where we use that R̂T
0 R̂1 = 0. As a consequence,

√
n vec(Û0K̂0R̂

T
0 R1K

−1)→ 0 in proba-
bility which, together with (56) in (55), obtain the result.

Lemma 10 Let Γ be a matrix of dimension p× d with d ≤ p of full rank d and let PΓ be
the orthogonal projection onto the columns of Γ. Then,

∂PΓ

∂vecT (Γ)
= (Ip2 + Kpp)(Γ(ΓTΓ)−1 ⊗QΓ). (57)

Proof For a matrix X and F(X) : m× p, G(X) : p× q differentiable functions of X,

∂vec (F(X)G(X))

∂vecT (X)
= (GT ⊗ Im)

∂vec (F(X))

∂vecT (X)
+ (Iq ⊗ F)

∂vec (G(X))

∂vecT (X)
. (58)

For F(X) = XT and G(X) = X with X : p× q, applying (58) gives

∂vec(XTX)

∂Tvec(X)
= (Iq2 + Kqq)(Iq ⊗XT ). (59)

∂vec(XTX)−1

∂Tvec(X)
= −((XTX)−1 ⊗ (XTX)−1))

∂vec(XTX)

∂Tvec(X)
.

Applying (58) we have

∂vecPΓ

∂vecT (Γ)
=
∂vec(Γ(ΓTΓ)−1ΓT )

∂vecT (Γ)

= (Γ(ΓTΓ)−1 ⊗ Ip)
∂vec(Γ)

∂vecT (Γ)
+ (Ip ⊗ Γ)

∂vec((ΓTΓ)−1ΓT )

∂vecT (Γ)

= (Γ(ΓTΓ)−1 ⊗ Ip) + (Ip ⊗ Γ)
∂vec((ΓTΓ)−1ΓT )

∂vecT (Γ)
.

Let

H =
∂vec((ΓTΓ)−1ΓT )

∂vecT (Γ)
.

Then, by (58), (59) and (60),

H = (Γ⊗ Id)
∂vec(ΓTΓ)−1

∂vecT (Γ)
+ (Ip ⊗ (ΓTΓ)−1)Kpd

= −(Γ⊗ Id)((Γ
TΓ)−1 ⊗ (ΓTΓ)−1))(Id2 + Kdd)(Id ⊗ ΓT ) + (Ip ⊗ (ΓTΓ)−1)Kpd,

which, in turn, yields

∂vecPΓ

∂vecT (Γ)
= (Γ(ΓTΓ)−1 ⊗ Ip) + (Ip ⊗ Γ)

[
− (Γ⊗ Id)((Γ

TΓ)−1 ⊗ (ΓTΓ)−1)(Id2 + Kdd)(Id ⊗ ΓT )
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Bura Forzani Garćıa Liop Tomassi

+(Ip ⊗ (ΓTΓ)−1)Kpd

]
= (Γ(ΓTΓ)−1 ⊗ Ip) + (Ip ⊗ Γ(ΓΓ)−1)Kpd − (Γ(ΓTΓ)−1 ⊗ Γ(ΓTΓ)−1ΓT )

−(Γ(ΓTΓ)−1 ⊗ Γ(ΓTΓ)−1)Kdd(Id ⊗ ΓT )

= (Ip2 + Kpp)(Γ(ΓTΓ)−1 ⊗ Ip)− (Γ(ΓTΓ)−1 ⊗ Γ(ΓTΓ)−1ΓT )

−(Γ(ΓTΓ)−1 ⊗ Γ(ΓTΓ)−1)(ΓT ⊗ Id)Kpd

= (Ip2 + Kpp)(Γ(ΓTΓ)−1 ⊗ Ip)− (Ip2 + Kpp)(Γ(ΓTΓ)−1 ⊗PΓ)

= (Ip2 + Kpp)(Γ(ΓTΓ)−1 ⊗ Ip −PΓ)

= (Ip2 + Kpp)(Γ(ΓTΓ)−1 ⊗QΓ).

Lemma 11 Assume that the p× d, d ≤ p, matrix Γ̂ is asymptotically normal,

√
nvec(Γ̂− Γ)

D−→ N (0,V),

for a p×d matrix Γ of rank d. Then,
√
nvec(P

Γ̂
−PΓ) is asymptotically normal with mean

0 and variance-covariance matrix

(Ip2 + Kpp)(Γ(ΓTΓ)−1 ⊗QΓ)V((ΓTΓ)−1ΓT ⊗QΓ)(Ip2 + Kpp).

Proof Let PΓ be the projection onto the columns of Γ defined as PΓ = Γ(ΓTΓ)−1ΓT and
let g be the function defined in the subspace of the matrices p× d of full rank d such that
g(Γ) = Γ(ΓTΓ)−1ΓT = PΓ. Lemma 10 implies

∇g(Γ) =
∂PΓ

∂vecT (Γ)
= (Ip2 + Kpp)(Γ(ΓTΓ)−1 ⊗QΓ).

Applying the Delta method, we obtain

√
n
(
g(Γ̂)− g(Γ)

)
→ N

(
0,∇g(Γ)V∇T g(Γ)

)
,

which completes the proof.

B.3 Proof of Proposition 6

By (37), α̂b = Û1 and thereforeαb = U1 and span(Û1) = span(Ĥ) with Ĥ = Û1K̂1R̂
T
1 R1K

−1

defined in Lemma 9. The same lemma gives the asymptotic distribution of Ĥ and therefore
applying Lemma 11 with Γ̂ = Ĥ and Γ = H = U1 obtains the asymptotic distribution.
Since UT

1 U1 = Id, it follows from Lemma 11 that the asymptotic variance is

(Ip2 + Kpp)(U1K
−1RT

1 ⊗QU1)Vrlc(R1K
−1UT

1 ⊗QU1))(Ip2 + Kpp)

By (33), b = U1KRT
1 , and therefore b− = R1K

−1UT
1 and the result follows. �
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Appendix C. Regularization term in variable selection

The specific form of Ω(C) in (39) depends on the type of predictor variables, as follows.

(a) When all predictors are continuous, we use the penalty Ω(C) =
∑p

j=1 ||Cj ||2, with Cj

the jth row of C. In this case the sufficient reduction contains no interaction terms
and each row of C corresponds to a single element of X. Hence, by shrinking the jth
row of C to 0, the computed reduction becomes insensitive to the measured value of
Xj . When all predictors are continuous, under the assumed model the optimization
problem is indeed fairly similar to group lasso (Yuan and Lin, 2006), as can be seen
after rewriting (39) as

arg min
C∈R(p+q(q+1)/2)×d,CT C=I

‖vec(b̂)− (B̂T ⊗ I)vec(C)‖22 + λ

p∑
j=1

‖Cj‖2.

(b) When all predictors are binary, the sufficient reduction includes interaction effects
HiHj . To discard the effect of a given binary variable, say Hj , we need to set all
the entries in C related to Hj to zero. For a reduction of dimension d, there are d
such entries related to the main effects and d(q − 1) related to the interaction terms.
The grouping of the entries of C does not form a partition, since the entries affecting
the interaction terms appear twice. For instance, assume for simplicity that d = 1.
Parameter θ13 operates on variables H1 and H3 and then it enters the regularizer
in groups {η1, θ12, θ13, . . . , θ1q} and {η3, θ13, θ23, . . . , θq3}. Both groups of parameters
overlap at θ13. Thus, the regularizer inducing the desired sparsity structure is a
mixed-norm regularizer with overlapping groups, Ω(C) =

∑
g∈G‖Cg‖2. Here, g ⊂

{1, . . . , dq(q + 1)/2} indicates the subset of entries that affect the binary variable Hi

and G is the collection of such groups. Moreover, each binary variable is associated
with two groups, one derived from the main effects and one from the interaction terms,
since they typically have rather different scales. The resulting regularized problem can
be solved using algorithms for overlapping group lasso, as proposed, for example, in
Liu and Ye (2010).

(c) When the predictors are mixed normal and binary, we combine the regularizers de-
scribed in (a) and (b) in a single penalty Ω(C) = γ

∑p
j=1‖Cj‖2 +(1−γ)

∑
g∈G‖CGi‖2.

The value of γ serves as a tuning weight for the amount of regularization in the con-
tinuous and binary parts, respectively. In sub-optimal SDR, we carry out variable
selection separately for the continuous and binary variables as described in (a) and
(b).
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Appendix D. Robustness under non-normality: Simulation results
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Table 6: Estimation and prediction errors (Euclidean norm) for normal (N) and non-central
t(5) (NN) distributed X.
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Appendix E. Computation of the matrix derivative in Eqn. (43)

The computation of J in Eqn. (42) (or Eqn. (43)) requires computing the derivative of
ψ(ηy) with respect to ηy.

E.1 General derivatives

Let

∂vec((unvec(Dpη3))−1)

∂vecT (η3)
=

∂vec((unvec(Dpη3))−1)

∂vecT (η3)

= −
[
(unvec(Dpη3))−1)⊗ (unvec(Dpη3))−1)

] ∂vec((unvec(Dpη3)))

∂vec(Dpη3)

= −
[
(unvec(Dpη3))−1)⊗ (DT

p unvec(η3))−1)
]
Dp

= −(∆⊗∆)Dp.

∂ηTy1(unvec(Dpη3))−1ηy1

∂ηTy1

= 2ηTy1(unvec(Dpη3))−1 = 2ηTy1∆.

∂2ηTy1(unvec(Dpη3))−1ηy1

∂ηy1∂ηTy1

= 2∆.

Derivatives of ψ1(η3):

∂ψ1(η3)

∂ηT3
= −1

2
vecT ((unvec(Dpη3))−1)Dp = −1

2
vecT (∆)Dp.

∂2ψ1(η3)

∂η3∂ηT3
=

1

2
DT
p (unvec(Dpη3))−1 ⊗ (unvec(Dpη3))−1Dp =

1

2
DT
p (∆⊗∆)Dp.

Derivatives of ψ3(ηy1,η3): Let Kpm ∈ Rpm×pm be the unique matrix such that, for any
symmetric p×m matrix A, vec(AT ) = Kpmvec(A). Then,

∂ψ3(ηy1,η3)

∂ηTy1

= ηTy1(unvec(Dpη3))−1 = ηTy1∆.

∂ψ3(ηy1,η3)

∂ηy1∂ηTy1

= ∆.

∂ψ3(ηy1,η3)

∂ηT3
= −1

2
vecT (ηy1η

T
y1)((unvec(Dpη3))−1 ⊗ (unvec(Dpη3))−1)DT

p

= −1

2
vecT (ηy1η

T
y1)(∆⊗∆)Dp

= −1

2
vecT (∆ηy1η

T
y1∆)Dp.

∂2ψ3(ηy1,η3)

∂η3∂ηT3
= Dp

(
I + Kpm

2

)
(∆ηy1η

T
y1∆⊗∆)DT

p

= DT
p (∆ηy1η

T
y1∆⊗∆)Dp.

∂2ψ3(ηy1,η3)

∂ηy1∂ηT3
= −(ηTy1∆⊗∆)Dp.
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Derivatives of ψ2(ηy): Let

M1 =

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)
,

M2 =

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)
.

For the sake of simplicity, we set G(Γy) in (14) to S. Then, the first derivatives are

∂ψ2(ηy)

∂ηTy1

=
S1

S
,

∂ψ2(ηy)

∂ηTy2

=
S2

S
,

∂ψ2(ηy)

∂ηT3
= −S31

S
− S32

S
,

∂ψ2(ηy)

∂ηT4
=

S41

S
+
S42

S
,

∂ψ2(ηy)

∂ηTy5

=
S5

S
,

with,

S1 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
HT η̄T4 ∆,

S2 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
HT ,

S31 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqCqvec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
(

(ηTy1∆⊗HT η̄T4 ∆)Dp +
1

2
HTLqCq(η̄

T
4 ∆⊗ η̄T4 ∆)Dp

)
},

S32 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
vecT (HHT )CT

q JTq JqCq(η̄
T
4 ∆⊗ η̄T4 ∆)Dp,
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S41 = 2
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
vecT (HHT )CT

q JTq JqCq(Iq ⊗ η̄T4 ∆),

S42 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
(
HTLqCq(Iq ⊗ η̄T4 ∆) + (HT ⊗ ηTy1∆)

)
,

S5 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
vecT (HHT )CT

q JTq .

Finally, the second derivatives are given by

∂2ψ2(ηy)

∂ηy1∂ηTy1

= −ST1 S1

S2
+

S11

S
,

∂2ψ2(ηy)

∂ηy1∂ηTy2

= −ST1 S2

S2
+

S12

S
,

∂2ψ2(ηy)

∂ηy1∂ηT3
=

ST1 (S31 + S32)

S2
− (S131 + S132)

S
,

∂2ψ2(ηy)

∂ηy1∂ηT4
= −ST1 (S41 + S42)

S2
+

(S141 + S142)

S
,

∂2ψ2(ηy)

∂ηy1∂ηT5
= −ST1 S5

S2
+

S15

S
,

∂2ψ2(ηy)

∂ηy2∂ηTy2

=
−ST2 S2

S2
+

S22

S
,

∂2ψ2(ηy)

∂η2∂ηT3
=

ST2 (S31 + S32)

S2
− (S231 + S232)

S
,

∂2ψ2(ηy)

∂ηy2∂ηT4
= −ST2 (S41 + S42)

S2
+

(S241 + S242)

S
,

∂2ψ2(ηy)

∂ηy2∂ηTy5

= −ST2 S5

S2
+

S25

S
,

∂2ψ2(ηy)

∂η3∂ηT3
= −(S31 + S32)T (S31 + S32)

S2
+

S33

S
,
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∂2ψ2(ηy)

∂η3∂ηT4
=

(S31 + S32)T (S41 + S42)

S2
− S34

S
,

∂2ψ2(ηy)

∂η4∂ηT4
= −(S41 + S42)T (S41 + S42)

S2
+

S44

S
,

∂2ψ2(ηy)

∂η3∂ηTy5

=
ST5 (S31 + S32)

S2
− (S351 + S352)

S
,

∂2ψ2(ηy)

∂η4∂ηTy5

= −ST5 (S41 + S42)T

S2
+

(S451 + S452)

S
,

∂2ψ2(ηy)

∂η5∂ηTy5

= −ST5 S5

S2
+

S55

S
,

where,

S11 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
∆η̄4HHT η̄T4 ∆,

S12 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
∆η̄4HHT ,

S22 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
HHT ,

S15 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
∆η̄4HvecT (HHT )CT

q JTq ,

S25 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
HvecT (HHT )CT

q JTq ,

S55 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
JqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
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JqCqvec(HHT )vecT (HHT )CT
q JTq ,

S141 = 2
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
[
∆η̄4HvecT (HHT )CT

q JTq JqCq(Iq ⊗ η̄T4 ∆)
]
,

S142 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
[
∆η̄4H

{
HTLqCq(Iq ⊗ η̄T4 ∆) + (HT ⊗ ηTy1∆)

}
+ (HT ⊗∆)

]
,

S241 = 2
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
HvecT (HHT )CT

q JTq JqCq(Iq ⊗ η̄T4 ∆),

S242 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q qvec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
H
(
HTLqCq(Iq ⊗ η̄T4 ∆) + (HT ⊗ ηTy1∆)

)
,

S451 = 2
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
(Iq ⊗∆η̄4)CT

q JTq JqCqvec(HHT )vecT (HHT )CT
q JTq ,

S452 =
∑
H

exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
{

(Iq ⊗∆η̄4)CT
q LTq H + (H⊗∆ηy1)

}
vecT (HHT )CT

q JTq .

We let

[1] = exp

[
(JqCqvec(HHT ))T

(
ηy5 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4))

)]
,

and,

[2] = exp

[
HT

(
ηy2 + η̄T4 (unvec(Dpη3))−1ηy1 +

1

2
LqD

T
q vec(η̄T4 (unvec(Dpη3))−1η̄4)

)]
.
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Then,

S131 =
∑
H

[1][2]∆η̄4H

(
(ηTy1∆⊗HT η̄T4 ∆)Dp+

1

2
HTLqCq(η̄

T
4 ∆⊗ η̄T4 ∆)Dp

)
+
∑
H

[1][2](∆⊗HT η̄T4 ∆)Dp,

S132 =
∑
H

[1][2]∆η̄4HvecT (HHT )CT
q JTq JqCq(η̄

T
4 ∆⊗ η̄T4 ∆)Dp,

S231 =
∑
H

[1][2]H

(
(ηTy1∆⊗HT η̄T4 ∆)Dp +

1

2
HTLqCq(η̄

T
4 ∆⊗ η̄T4 ∆)Dp

)
,

S232 =
∑
H

[1][2]HvecT (HHT )CT
q JTq JqCq(η̄

T
4 ∆⊗ η̄T4 ∆)Dp,

S351 =
∑
H

[1][2]

(
DT
p (∆η1 ⊗∆η̄4H) +

1

2
DT
p (∆η̄4 ⊗∆η̄4)CT

q LTq H

)
vecT (HHT )CT

q JTq ,

S352 =
∑
H

[1][2]DT
p (∆η̄4 ⊗∆η̄4)CT

q JTq JqCqvec(HHT )vecT (HHT )CT
q JTq ,

S34 =
∑
H

[1][2]

(
DT
p (∆η1 ⊗∆η̄4H) +

1

2
DT
p (∆η̄4 ⊗∆η̄4)CT

q LTq H

+DT
p (∆η̄4 ⊗∆η̄4)CqJ

T
q JqCqvec(HHT )

)
[
2vecT (HHT )CT

q JTq JqCq(Iq ⊗ η̄T4 ∆) +
(
HTLqCq(Iq ⊗ η̄T4 ∆) + (HT ⊗ ηTy1∆)

) ]
+
∑
H

[1][2]SS +
∑
H

[1][2]LL.

where,

SS = DT
p (∆⊗∆)(HT ⊗ Ip2) {[Kpq(η1 ⊗ Iq)]⊗ Ip}+ DT

p (∆⊗∆)(OT ⊗ Ip2)KK,

O = CT
q JTq JqCqvec(HHT )),

LL = DT
p (∆⊗∆)(GT ⊗ Ip2)KK,

G =
1

2
CT
q LTq H,

KK = {(Iq ⊗ [(Kpq ⊗ Ip)(Ip ⊗ η4)]) + ([(Iq ⊗Kpq)(η4 ⊗ Iq)]⊗ Ip)} ,

S44 =
∑
H

[1][2]

[
2(Iq ⊗∆η̄4)CT

q JTq JqCqvec(HHT ) + (Iq ⊗∆η̄4)CT
q LTq H + (H⊗∆ηy1)

]
[
2vecT (HHT )CT

q JTq JqCq(Iq ⊗ η̄T4 ∆) +
(
HTLqCq(Iq ⊗ η̄T4 ∆) + (HT ⊗ ηTy1∆)

) ]
+
∑
H

[1][2]HH +
∑
H

[1][2]JJ,

HH = 2(Iq ⊗∆)(OT ⊗ Iqp)TT,

TT = {(Iq ⊗Kq2)(vec(Iq)⊗ Iq)⊗ Ip},
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JJ = (Iq ⊗∆)(HTLqCq ⊗ Ipq)TT,

S33 =
∑
H

[1][2]

(
DT
p (∆η1 ⊗∆η̄4H) +

1

2
DT
p (∆η̄4 ⊗∆η̄4)CT

q LTq H

+ DT
p (∆η̄4 ⊗∆η̄4)CT

q JTq JqCqvec(HHT )

)
,(

(ηTy1∆⊗HT η̄T4 ∆)Dp +
1

2
HTLqCq(η̄

T
4 ∆⊗ η̄T4 ∆)Dp

+ vecT (HHT )CT
q JTq JqCq(η̄

T
4 ∆⊗ η̄T4 ∆)Dp

)
+
∑
H

[1][2]J1 +
∑
H

[1][2]J2 +
∑
H

[1][2]J3,

ST = (Ip ⊗G)(∆⊗∆)Dp + (H ⊗ Ip)(∆⊗∆)Dp,

G = (Kp2 ⊗ Ip)(Ip ⊗ vec(∆)),

H = (Ip ⊗Kp2)(vec(∆)⊗ Ip),

J1 = DT
p [(ηT1 ⊗HT η̄T4 )⊗ Ip2 ]ST ,

J2 =
1

2
DT
p [HTLqCq(η̄

T
4 ⊗ η̄T4 ))⊗ Ip2 ]ST

J3 = DT
p [(vecT (HHT )CT

q JTq JqCq(η̄
T
4 ⊗ η̄T4 ))⊗ Ip2 ]ST .
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