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Abstract

This paper studies the problem of estimating the means ±θ∗ ∈ Rd of a symmetric two-
component Gaussian mixture δ∗ · N(θ∗, I) + (1 − δ∗) · N(−θ∗, I), where the weights δ∗
and 1 − δ∗ are unequal. Assuming that δ∗ is known, we show that the population ver-
sion of the EM algorithm globally converges if the initial estimate has non-negative inner
product with the mean of the larger weight component. This can be achieved by the triv-
ial initialization θ0 = 0. For the empirical iteration based on n samples, we show that
when initialized at θ0 = 0, the EM algorithm adaptively achieves the minimax error rate

Õ
(

min
{

1
(1−2δ∗)

√
d
n ,

1
‖θ∗‖

√
d
n ,
(
d
n

)1/4 })
in no more than O

(
1

‖θ∗‖(1−2δ∗)

)
iterations (with

high probability). We also consider the EM iteration for estimating the weight δ∗, assum-
ing a fixed mean θ (which is possibly mismatched to θ∗). For the empirical iteration of n

samples, we show that the minimax error rate Õ
(

1
‖θ∗‖

√
d
n

)
is achieved in no more than

O
(

1
‖θ∗‖2

)
iterations. These results robustify and complement recent results of Wu and

Zhou (2019) obtained for the equal weights case δ∗ = 1/2.

Keywords: expectation-maximization, finite-sample guarantees, Gaussian mixtures,
global convergence, parameter estimation

1. Introduction

The expectation-maximization (EM) algorithm developed by Dempster et al. (1977) is a
heuristic formulated to approximate the maximum likelihood estimator (MLE) in paramet-
ric models (X,S) ∼ Pθ(x, s) when X is observed, but S is latent. Remarkably, despite its
simplicity, widespread use, and rich history (McLachlan and Krishnan, 2007; Gupta and
Chen, 2011), no theoretical guarantees on its performance for finite number of iterations
and samples were established until recently. Recently, Balakrishnan et al. (2017) obtained
the first such explicit guarantees, and proved general bounds on the statistical precision,
the convergence rate, and the basin of attraction (the distance of the initial estimate from
the ground truth sufficient to obtain a statistically accurate solution). These bounds ap-
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ply to any latent variables model, yet require verifying several conditions for each concrete
model. As a canonical example, these conditions were explicitly verified for the symmetric
two-component Gaussian mixture (2-GM). The resulting guarantees are not sharp, however,
both in the strong conditions required for their validity, as well as their distance from the
accuracy guarantees of optimal algorithms. Consequently, a dedicated analysis of EM for
2-GM was conducted by various authors (Klusowski and Brinda, 2016; Wu et al., 2016; Xu
et al., 2016; Daskalakis et al., 2017; Wu and Zhou, 2019; Dwivedi et al., 2020a, 2018, 2020b).
The performance of EM for 2-GM with balanced components, i.e., when both weights equal
1/2, was by and large recently settled by Wu and Zhou (2019).

In this paper, we proceed in the direction of Wu and Zhou (2019), and sharply analyze
a slight variation of the balanced 2-GM model—namely, the unbalanced symmetric 2-GM
model. Some of the key arguments made by Wu and Zhou (2019) strongly depend on the
symmetry properties of the EM iteration, which are a direct result of the symmetry in the
model. It seems challenging to adapt these arguments to the unbalanced model, where
symmetry breaks down due to the unequal weights. Our analysis therefore uses indirect
arguments, which are based on comparisons between the EM iterations of unbalanced mod-
els for different weights. In particular, we compare the iterations for unbalanced models
with the iterations for the balanced model, since the latter is already known to globally
converge (Wu and Zhou, 2019). For the population iteration, we prove that increasing the
larger of the two weights, that is, enhancing the model imbalance, makes the corresponding
EM iteration converge faster. By contrast, this increase also increases our empirical error
bound, i.e., the bound on the difference between the empirical iteration and the popula-
tion iteration. As we prove, however, this does not result in deterioration of the statistical
accuracy of the estimate because this increased error is compensated for by the improved
convergence of the population iteration. Hence, the overall statistical accuracy actually
improves when the model is more unbalanced.

1.1 EM for Two-Component Gaussian Mixture

The symmetric two-component Gaussian mixture (2-GM) model in d ≥ 1 dimensions is
given by

Pθ,ρ = 1+ρ
2 ·N(θ, Id) + 1−ρ

2 ·N(−θ, Id) . (1)

The goal is to estimate the parameter θ∗ ∈ Rd from n samples (X1, . . . , Xn)
i.i.d.∼ Pθ∗,ρ∗

under the `2 loss function `(θ, θ∗) = ‖θ − θ∗‖ when ρ∗ 6= 0 (unbalanced model), or under
`0(θ, θ∗) = min(‖θ − θ∗‖, ‖θ + θ∗‖) when ρ∗ = 0 (balanced model). The dimension d is
allowed to be high, and both d and ρ∗ may scale with the number of samples n. Based
on the n samples and the value of ρ∗, the EM algorithm defines a mapping fn(θ) which
is iteratively applied to produce a sequence of estimates θt = fn(θt−1) for all t ≥ 1, given
an initial guess θ0. This mapping fn is described in detail later in the introduction. We
will refer to fn(θ) as the empirical iteration, and to the idealized operator f(θ) obtained by
replacing empirical averages with expected values as the population iteration.

Balanced GM. The general results of Balakrishnan et al. (2017) specialized to the bal-
anced 2-GM (1) (ρ∗ = 0) require that the separation between the means is lower bounded
as ‖θ∗‖= Ω(1), and that the initial estimate θ0 is at most ‖θ∗‖/4 in `2 distance from θ∗.
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When these two conditions hold, Balakrishnan et al. (2017) state that EM converges to
a neighborhood of θ∗ of radius O(

√
d/n) (i.e., parametric error rate), after no more than

O(1/‖θ∗‖2) iterations. The qualifying conditions above are problematic for several reasons:
(1) Without knowing θ∗ one has no way of knowing when the separation condition holds;
(2) EM can be slow and inaccurate when there is no separation between the components
(Redner and Walker, 1984) and in this case no guarantees are provided by Balakrishnan
et al. (2017); (3) One of the main challenges in utilizing EM is the choice of initial guess.
A common method is attempting multiple random guesses followed by a choice of the op-
timal converged solution (Karlis and Xekalaki, 2003). For a high-dimensional parameter
vector, the guarantee of Balakrishnan et al. (2017) on the volume of the basin of attraction
that ensures good convergence is negligible compared to the volume of the feasible set of
parameter vectors, and hence randomly initializing is not proved to succeed.

These drawbacks have led to various attempts to sharpen the above results (Klusowski
and Brinda, 2016; Wu et al., 2016; Xu et al., 2016; Daskalakis et al., 2017; Wu and Zhou,
2019), which will be discussed in more detail in Section 1.5. For the population itera-
tion, various authors (Xu et al., 2016; Daskalakis et al., 2017; Wu and Zhou, 2019) proved
global convergence to ±θ∗ at a geometric rate, unless the initial guess θ0 is orthogonal to
θ∗ (in which case EM converges to the saddle point θ = 0). For the empirical iteration,
sharp high-probability guarantees were obtained by Wu and Zhou (2019) as follows: In the
worst case, without any separation condition, the EM algorithm applied to (1) achieves
an error rate of Õ((d/n)1/4) in at most O(

√
n) iterations. If, however, a separation of

‖θ∗‖= Ω(( log
3 n·d
n )1/4) holds, then an error rate of O( 1

‖θ∗‖

√
log3 n·d

n ) is achieved by EM after

no more than O( logn
‖θ∗‖2 ) iterations, and in addition, the EM iteration converges to the MLE.

Evidently, for ‖θ∗‖= Ω(1), this implies a parametric error rate in the number of samples,
and geometric rate in the number of iterations. Hence, the EM algorithm adapts to the
actual separation between the two means (as captured by ‖θ∗‖), to achieve error rate of
Õ(min{ 1

‖θ∗‖
√
d/n, (d/n)1/4}). Moreover, no other estimation technique can perform signif-

icantly better since, up to logarithmic factors, this error rate matches the local minimax
rate (Wu and Zhou, 2019, Appendix B). Remarkably, it was also shown by Wu and Zhou
(2019) that these guarantees are achieved by a random initialization of the EM algorithm,
in which θ0 is an isotropic random d-dimensional vector scaled to have appropriately low
norm.

Unbalanced GM and preview of results. In this work, we study the model (1) for ρ∗ ∈
(0, 1). The value of ρ∗ may be fixed, or, more interestingly, ρ∗ ≡ ρ∗,n → 0 as n → ∞ at
some arbitrary rate. Note that the samples from the model (1) are equal in distribution to

X = Sθ + Z , (2)

where S ∈ {±1} is such that P[S = 1] = (1 + ρ∗)/2 and Z ∼ N(0, Id), with S and Z
independent. Intuitively, moving ρ∗ away from 0 reduces uncertainty in the signs {Si},
and one might expect that this would lead to better error rates for estimating θ∗. The
problem is indeed trivial for the extreme case ρ∗ = 1 in which case (1) coincides with the
Gaussian location model. More generally, it seems helpful that for ρ∗ 6= 0 the expectation
E[X] = ρ∗θ∗ is a vector in the direction of θ∗.
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While estimation seems easier for ρ∗ 6= 0, in this case the model (1) is no longer balanced,
and this makes a direct analysis of the EM iteration difficult. Nonetheless, we prove a global
convergence property for the population iteration, which shows that any initial guess θ0
with 〈θ0, θ∗〉 ≥ 0 converges to θ∗ (including the trivial initialization θ0 = 0). We also show
that the EM iteration might have a spurious (stable) fixed point θ− 6= −θ∗ which satisfies
〈θ−, θ∗〉 < 0 whose existence depends on the value of (ρ∗, θ∗). This phenomenon does not
occur in the balanced case.

For the empirical iteration, we first note that a method-of-moments estimator 1
ρ∗
En[X] :=

1
ρ∗n

∑n
i=1Xi achieves an error rate of O( 1

ρ∗

√
d/n). In addition, an estimator can always

ignore the reduced uncertainty in the signs, formally, by multiplying each sample with a
random sign Ri ∈ {±1} such that P[Ri = 1] = 1/2 for each i ∈ [n]. This reduces the ρ∗ 6= 0
case to the ρ∗ = 0 case, and then an error rate of Õ(min{ 1

‖θ∗‖
√
d/n, (d/n)1/4}) can be

achieved, using the balanced EM iteration.1 The main result of this paper is analysis of the
unbalanced EM iteration for the estimation of θ∗, which shows that the EM iteration adap-
tively achieves the minimum of both error rates, i.e., Õ(min{ 1

ρ∗

√
d/n, 1

‖θ∗‖
√
d/n, (d/n)1/4}).

As for the balanced case, this error rate obtained by the EM algorithm coincides with the
local minimax rate for any ρ∗, up to logarithmic terms.

1.2 Main Result

It will be convenient throughout to use the weight parameter δ := (1 − ρ)/2 interchange-
ably with ρ according to convenience.2 We denote the corresponding inverse-temperature
parameter by

βρ :=
1

2
log

1 + ρ

1− ρ
= tanh−1(ρ) (3)

and let ρβ denote the inverse relation. With a slight abuse of notation from (3), we also
denote βδ := 1

2 log 1−δ
δ (and sometimes just β). Let θ∗ ∈ Rd and ρ∗ ∈ [0, 1] (or δ∗ ∈ [0, 1/2])

denote the ground truth of the model (1). Given n independent and identically distributed

(i.i.d.) samples X = (X1, . . . , Xn)
i.i.d.∼ Pθ∗,ρ∗ , the goal is to estimate the parameter θ∗

under the `2 loss function, up to the identifiability of the model. For ρ∗ > 0 this amounts
to the standard loss function `(θ, θ∗) = ‖θ − θ∗‖ and when ρ∗ = 0 then the loss function is
`0(θ, θ∗) = min {‖θ − θ∗‖, ‖θ + θ∗‖}.

Assumptions. Our results will depend on the following global assumptions:

1. Norm assumption: There exists Cθ > 0 such that ‖θ∗‖≤ Cθ.

2. Unbalancedness assumption: There exists Cρ ∈ (0, 1) such that |ρ∗|≤ Cρ.

Because ρ 7→ 1
2 log 1+2a

1−2a is convex and increasing in [0, 1/2), an immediate consequence of

the unbalancedness assumption is that |βρ∗ |≤ Cβ holds for Cβ := 1
2 log

1+Cρ
1−Cρ , and that there

exist (Cβ,Cβ) such that Cβρ∗ ≤ |βρ∗ |≤ Cβρ∗. These assumptions are based on the fact that
the interesting regime is in which ‖θ∗‖ and ρ∗ are close to zero.

1. In the latter case, this error is actually only with respect to (w.r.t.) the sign-ambiguous loss function `0
(see Proposition 11).

2. The notation used in this section is standard. See Section 1.6 for notational conventions.
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EM iteration. While we focus on estimating θ∗ for a given ρ∗, we will also consider the
opposite case of estimating ρ∗, and briefly discuss the joint estimation problem. Thus, we
will next consider the more general joint iteration. The evolution of the iterates {(θt, ρt)}∞t=1

of the EM algorithm can be brought to a simple closed form we describe next. To start,
the density function of observed samples X from (1) is given by

pθ,ρ(x) =

(
1 + ρ

2

)
ϕ(x− θ) +

(
1− ρ

2

)
ϕ(x+ θ)

= e−‖x‖
2/2 · ϕ(x) ·

[(
1 + ρ

2

)
e−〈θ,X〉 +

(
1− ρ

2

)
e〈θ,X〉

]
= e−‖x‖

2/2 · ϕ(x) · cosh (〈θ,X〉+ βρ) , (4)

where ϕ(x) := 1√
2π
e−‖x‖

2/2 is the standard normal density in Rd. Similarly, the full obser-

vation, which also includes the latent sign s (2) is given by a standard Gaussian density

pθ,ρ(s, x) =

(
1 + sρ

2

)
ϕ(x− sθ) .

Assume that X = x is given and the EM algorithm has ran up to its tth iteration, and
so (θt, ρt) is given. The next iteration of the EM algorithm is the pair (θt+1, ρt+1) which
maximizes the following Q-function:

Q(θ, ρ | θt, ρt) :=
∑

s∈{±1}n
pθt,ρt(s | X) log pθ,ρ(s,X) .

Using the i.i.d. property of X, and the expression (4) for the density, this is equivalent to

(θt+1, ρt+1) ∈ argmin
ρ

n∑
i=1

Eθt,ρt
[
log

(
1 + Siρ

2

)
| Xi = xi

]

+ argmin
θ

{
n‖θ‖2−

〈
θ,

n∑
i=1

xiEθt,ρt [Si | Xi = xi]

〉}
,

where Si ∈ {±1} for i ∈ [n] with P[Si = 1] = (1 + ρt)/2, and are i.i.d.. Hence, given (θt, ρt),
the optimization over (θ, ρ) is decoupled, and its solution is given by the pair

θt+1 =
1

n

n∑
i=1

xi · Eθt,ρt [Si | Xi = xi] , ρt+1 =
1

n

n∑
i=1

Eθt,ρt [Si | Xi = xi] ,

where

Eθt,ρt [S | X = x] =
(1 + ρ) · e〈θ,x〉 − (1− ρ) · e−〈θ,x〉

(1 + ρ) · e〈θ,x〉 + (1− ρ) · e−〈θ,x〉
= tanh(〈θ, x〉+ βρ) . (5)

Hence the EM iteration {θt,ρt}∞t=1 of the symmetric 2-GM model evolves according to

θt+1 = fn(θt, ρt | θ∗, ρ∗) (6)

ρt+1 = hn(ρt, θt | θ∗, ρ∗) , (7)
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where the sample mean EM iteration is

fn(θ, ρ | θ∗, ρ∗) = En

[
X · (1 + ρ) · e〈θ,X〉 − (1− ρ) · e−〈θ,X〉

(1 + ρ) · e〈θ,X〉 + (1− ρ) · e−〈θ,X〉

]
= En [X · tanh (〈θ,X〉+ βρ)] ,

(8)
and the sample weight EM iteration is

hn(ρ, θ | θ∗, ρ∗) = En

[
(1 + ρ)e〈θ,X〉 − (1− ρ)e−〈θ,X〉

(1 + ρ)e〈θ,X〉 + (1− ρ)e−〈θ,X〉

]
= En [tanh (〈θ,X〉+ βρ)] . (9)

In the limit of n→∞, the iterations (8) and (9) tend, respectively, to the population mean
and population weight EM iterations

f(θ, ρ | θ∗, ρ∗) = E [X · tanh (〈θ,X〉+ βρ)] , X ∼ Pθ∗,ρ∗

and
h(ρ, θ | θ∗, ρ∗) = E [tanh (〈θ,X〉+ βρ)] , X ∼ Pθ∗,ρ∗ .

We will usually omit (θ∗, ρ∗) from the notation for the iteration, except when it is required
to avoid confusion.

Statement of Results. The balanced case ρ∗ = 0 was analyzed by Wu and Zhou (2019):

Theorem 1 (Wu and Zhou, 2019, Theorems 1 and 2) Assume that ‖θ∗‖≤ Cθ and that
n & d log3 d, and consider the balanced EM iteration θt+1 = fn(θt, 0 | θ∗, 0). There exists
C0 > 0 such that if û is drawn uniformly from the unit sphere Sd−1, and the iteration is

initialized with θ0 = C0

(
d logn
n

)1/4
· û then with probability 1− on(1)

`0(θ∗, θt) .

(
d log3 n

n

)1/4

(10)

holds for all t &
√
n. Furthermore, if ‖θ∗‖&

(
d log3 n

n

)1/4
then with probability 1− on(1)

`0(θ∗, θt) .
1

‖θ∗‖

√
d log n

n

holds for all t & logn
‖θ∗‖2 . The constants involved in the asymptotic inequalities depend only

on Cθ.

Our main result complements Theorem 1 in the unbalanced case, ρ∗ 6= 0:

Theorem 2 (Simplified version of Theorem 10) Assume that ‖θ∗‖≤ Cθ and that |ρ∗|≤ Cρ,
as well as n & d log n.

If ρ∗ &
(
d logn
n

)1/4
then the unbalanced EM iteration θt+1 = fn(θt, ρ∗ | θ∗, ρ∗) initialized

with either θ0 = 0 or θ0 = 1
ρ∗
En(X) satisfies that with probability 1− on(1)

`(θ∗, θt) .
1

max {ρ∗, ‖θ∗‖}

√
d log n

n
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‖θ∗‖. 1
ρ∗

√
d logn
n

1
ρ∗

√
d logn
n . ‖θ∗‖. ρ∗ ρ∗ . ‖θ∗‖

θ0 = 0 T . 1 T . 1
ρ2∗

T . 1
ρ∗‖θ∗‖

θ0 = 1
ρ∗
En(X) T . 1 T . 1 T . 1

‖θ∗‖2

Table 1: T: Number of iterations until convergence of unbalanced EM algorithm.

hold for all t ≥ T, where upper bounds on T are specified in Table 1. The constants involved
in the asymptotic inequalities depend only on (Cθ,Cρ).

If ρ∗ .
(
d logn
n

)1/4
the balanced EM iteration as in Theorem 1 guarantees (10). If, in

addition

‖θ∗‖&
(
d log n

n

)1/4

& ρ∗ &
1

‖θ∗‖

√
d log n

n
(11)

holds, then by setting st = sign〈θt,En[X]〉 it holds that

`(θ∗, st · θt) .
1

‖θ∗‖

√
d log n

n

for all t & logn
‖θ∗‖2 .

Interpretation of results. Note that in comparison to the balanced case ρ∗ = 0, the case
ρ∗ > 0 simplifies the analysis of the EM iteration in the sense that the algorithm may be
initialized at θ0 = 0 or at θ0 = 1

ρ∗
En[X], and no random initialization is required—the

expected value E[X] is proportional to θ∗ and steers the iteration in the right direction.
Nonetheless, an isotropic random initialization in a ball is not advised for the ρ∗ > 0 case,
since there is a probability of 1/2 that the random initialization θ0 is negatively correlated
with θ∗ (the mean of the component with the larger weight 1−δ∗), which leads to convergence
to a spurious fixed point (even for the population version).

The convergence times specified in Table 1 in case ρ∗ &
(
d logn
n

)1/4
can be interpreted

as follows. While the EM iteration is d-dimensional, it can be decomposed into movements
in the signal direction (the direction of θ∗), and in its orthogonal direction (Daskalakis
et al., 2017; Wu and Zhou, 2019). The factor dominating the number of iterations until
convergence is the time it takes the projected one-dimensional EM iteration in the direction
of θ∗ to converge:

• When ‖θ∗‖. 1
ρ∗

√
d logn
n the signal is very low, and the EM estimate remains around

θ∗ for all iterations (for both types of initialization).

• When 1
ρ∗

√
d logn
n . ‖θ∗‖. ρ∗, an error rate of O( 1

ρ∗

√
d logn
n ) is achieved by θ0 =

1
ρ∗
En(X) starting from the first iteration (and the EM iterations remain at this area

of low statistical error). When θ0 = 0 the one-dimensional EM iteration in direction
of θ∗ is contracting with slope bounded by 1− cρ2∗ for some c > 0 and the convergence
time is O(1/ρ2∗).
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• When ρ∗ . ‖θ∗‖, an error rate of O( 1
‖θ∗‖

√
d logn
n ) is achieved. For θ0 = 1

ρ∗
En(X), it is

shown that the empirical iteration converges faster than the corresponding balanced
iteration starting from the first iteration. For θ0 = 0 the same effect occurs, but
after an initial phase of additive increase in θt, and this early phase dominates the
convergence time.

Evidently, the worst convergence time of the balanced iteration is also similar to the worst
case convergence time of the unbalanced iteration and given by Õ(

√
n), which is achieved

when ρ∗ �
(
d logn
n

)1/4
. We also remark that as was shown by Daskalakis et al. (2017) and

Wu and Zhou (2019), the analysis of the EM iteration in high dimension is possible when
it is initialized with a low norm, but not zero. For the unbalanced model, initializing at
θ0 = 0 leads to global convergence, yet represents the longest convergence time (worst-case
scenario). It should be noted that the bounds on the convergence times for θ0 = 1

ρ∗
En(X)

exhibit a discontinuity at ‖θ∗‖= ρ∗. This is because T does not capture the time required for
convergence to a fixed point but rather to a neighborhood around θ∗ within the statistical
error rate.3

The information-theoretic lower bounds obtained by Wu and Zhou (2019) for ρ∗ = 0
are generalized in Theorem 20 (Appendix B) and show that the error rate achieved by
EM in Theorem 2 equals the minimax error rates (up to logarithmic factors) whenever

ρ∗ &
(
d logn
n

)1/4
. It switches from the minimax error rate O( 1

ρ∗

√
d/n) assured for any signal

strength to the local minimax error rates for stronger signals O( 1
‖θ∗‖

√
d/n) at ‖θ∗‖� ρ∗. In

the balanced case ρ∗ = 0, a similar switch occurs at ‖θ∗‖� (d/n)1/4, improving from error
rate of O((d/n)1/4) to O( 1

‖θ∗‖
√
d/n). This observation along with expected monotonicity

of the error rates in ρ∗ elucidates the condition ρ∗ &
(
d logn
n

)1/4
in Theorem 2 (see the

rigorous statement in Theorem 20).

We complete the picture by discussing the case ρ∗ .
(
d logn
n

)1/4
. In this case, the

minimax error rate analysis (Theorem 20) suggests that the error rates cannot be improved
due to the unbalancedness of the samples. However, the error rate of the balanced case can
be achieved for the `0 loss function (which allows for sign ambiguity), and when condition
(11) holds, it can be achieved without sign ambiguity. The idea is simply to use the
balanced iteration which is insensitive to the actual signs generating the samples X, and
upon convergence, evaluate the angle between θt and En[X]. With high probability, this

detects the correct sign required to estimate θ∗ when ρ∗ & 1
‖θ∗‖

√
d logn
n . If this condition

fails then no correct decoding of the sign is possible, as the signal is too low compared to
the unbalancedness of the iteration (cf. the minimax error rates of estimating ρ when θ∗ is
known and d is fixed of Theorem 22 in Appendix B).

3. For illustration, consider one-dimensional convergence, let the required statistical accuracy be ω, and
suppose that θ0 = 0. If θ∗ ≤ ω then statistical accuracy is achieved already in the first iteration, and then
it is only need to be proved (and also possible, as we shall show throughout) that the iteration remains
at this accuracy for all subsequent iterations. If, however, the order of θ∗ is increased, say θ∗ = 2ω, then
the iteration should increase, say, from θ0 = 0 to θt ≥ ω to achieve statistical accuracy, and the required
number of iteration for this increase depends on ω.
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We note in passing that we also analyze an EM iteration for estimating ρ∗ given any fixed
value of θ (perhaps mismatched to θ∗). As we will discuss in Section 2.5, this shows that
the given EM algorithm can be used for joint estimation of (θ∗, ρ∗) if sufficient separation
holds. Characterizing the minimal separation required for joint estimation remains an open
problem.

Significance of the unbalanced model:

1. The likelihood-based EM has method-of-moments alternatives (Anandkumar et al.,
2014; Heinrich and Kahn, 2015; Wu and Yang, 2020) which may achieve the same
error rates as the EM algorithm, perhaps at a higher computational cost. Specifi-
cally, for the balanced 2-GM model, the optimal error rate4 is achieved by a spec-
tral algorithm (Wu and Zhou, 2019). Such an algorithm estimates θ∗ by θSP =√

max{λmax − 1, 0} · θ̂sp where λmax and θ̂sp are, respectively, the maximal eigenvalue

and the corresponding normalized maximal eigenvector θ̂sp, of the empirical covari-
ance matrix En[XXT ]. The spectral algorithm can be interpreted as eliminating the
sign ambiguity by “squaring” the samples, since the covariance matrix

E[XXT ] = θ∗θ
T
∗ + Id ,

does not depend on the unknown sign S (cf. the model in Equation 1). Hence,
while EM attempts to learn the latent signs, spectral algorithms attempt to eliminate
them. Despite this conceptual difference, it was observed by Daskalakis et al. (2017)
that whenever ‖θt‖ has sufficiently low norm, the EM iteration behaves as a power
iteration on the empirical covariance matrix, and in this regime the operation of EM is
not fundamentally different from a spectral algorithm. Nonetheless, sign elimination
can only be optimal for sufficiently small values of ρ∗, since the distribution of the
statistic En[XXT ] is insensitive to the value of ρ∗, so it cannot lower its error in case
ρ∗ > 0. Our results thus demonstrate that EM is nearly optimal in a regime in which
the estimator must learn the latent signs.

2. The worst case error over ‖θ‖∗ is given by max{(d/n)1/4, 1
ρ∗

√
d/n} and improves

as ρ∗ is increased. In practice, ρ∗ may be increased, e.g., by collecting additional
information on the latent signs generating d12ρ∗ne of the samples, and then align
the signs of those samples by proper multiplication by {±1}. As another example,
consider a communication system in which (S1, . . . , Sn) ∈ {±1}n are the input bits
to a noisy channel whose output at time i is given by Xi = θ∗Si + Z, as in (2). In
order to decode the bits, a typical decoder will estimate θ∗ as a preliminary step, and
assume that the samples are i.i.d..5 The input distribution P[Si = 1] = (1 − ρ∗)/2
then trades-off between estimation and data rate, with best estimation and zero data
rate for ρ∗ = 1 versus maximal data rate and worst estimation for ρ∗ = 0.

3. The proofs of global convergence for the balanced 2-GM model (ρ∗ = 0) (Xu et al.,
2016; Daskalakis et al., 2017; Wu and Zhou, 2019) rely heavily on global symmetry

4. In fact, unlike EM, method-of-moments do not have “spurious” logarithmic terms.
5. Typically, the data bits are encoded using an error correcting code before being sent over the channel,

and so the bits {Si} are not i.i.d.. Nonetheless, the receiver may ignore these dependencies for the
purpose of estimation.
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properties of the population iteration (see next, Section 1.3). This lack of symmetry
is challenging for proving global convergence. For example, we show that a stable
spurious fixed point is possible at some θ ∈ (−θ∗, 0) . Nonetheless, we show that
(essentially) global convergence to θ∗ is not restricted to ρ∗ = 0.

1.3 Discussion of Proof Ideas

In order to give context for the proof ideas, we first consider the balanced case ρ∗ = 0 and
describe the ideas behind the results of Xu et al. (2016); Daskalakis et al. (2017); Wu and
Zhou (2019), and how they compare with the general analysis of Balakrishnan et al. (2017).
There are two main ideas—one pertains to the population iteration and the other to the
empirical error.

For the population iteration, Balakrishnan et al. (2017) prove a guarantee on the con-
vergence radius using a fixed-point theorem whose conditions require contractivity of the
iterative iteration. The guarantee on the size of the basin of attraction is obtained from a
guarantee on the contractivity of f(θ) in this region. However, global convergence cannot
be established by such an argument since the EM iteration for (1) with ρ∗ = 0 is in fact
not globally contractive. Nonetheless, contractivity is only a sufficient, but not necessary
condition for convergence, and other global properties of the iteration may be used. For
example, in the one-dimensional case d = 1, the balanced EM iteration has two stable fixed
points θ = ±θ∗, due to the well known consistency property of EM (both which are accept-
able solutions with `0(θ, θ∗) = 0), and a single unstable fixed point θ = 0. The fact that any
other fixed point is impossible follows from the observation that f(θ) is an odd function,
which is concave for θ ∈ R+ (Wu and Zhou, 2019). By contrast, in the unbalanced case
(ρ∗ > 0), neither concavity (say, for all θ ∈ R+) nor global contractivity hold for unbalanced
iterations. It is also seems to be difficult to analytically characterize the required distance
of θ from θ∗ for these properties to hold.

For the empirical iteration, the error guarantee made by Balakrishnan et al. (2017) is
obtained from the following high probability uniform error bound on the empirical error

sup
θ:‖θ0−θ∗‖≤ 1

4
‖θ∗‖
‖fn(θ)− f(θ)‖= Õ

(√
d

n

)
. (12)

However, it was observed by Dwivedi et al. (2020a) and Wu and Zhou (2019) that a stronger
bound on the error can be obtained which allows arbitrarily small ‖θ∗‖ and ‖θ‖ by “local-
izing” the error as follows:

sup
θ:‖θ‖≤Cθ

‖fn(θ)− f(θ)‖= ‖θ‖·Õ

(√
d

n

)
. (13)

So, while the empirical iteration analyzed using (12) requires strong separation ‖θ∗‖= Ω(1),
no such condition is required when the bound (13) is used, leading to the sharp results
obtained by Wu and Zhou (2019).

The analysis of the unbalanced case ρ∗ 6= 0 in this paper is based on the following
intuitive idea of ρ-ordering of iterations, which allows a comparison with the ρ∗ = 0 case.
If ρ∗ = 1, the model (1) is the Gaussian location model, for which it can be easily verified
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(see Section 1.2) that the EM iteration converges in a single iteration to the sample mean
(which is also the MLE). Extrapolating from this extreme case, we might expect that if
ρ1 > ρ0 then the iteration for ρ1 will converge faster since the model more closely resembles
the Gaussian location model. We state global comparison results (Theorem 4 for d = 1
and Proposition 9 for d > 1) establishing this property for any arbitrary pair ρ0, ρ1 ∈ [0, 1].
Combining this property with the known global convergence rate of the balanced case ρ∗ = 0
yields the global convergence proof of the population iteration for unbalanced ρ∗ 6= 0.

For the empirical iteration, it turns out that increasing ρ has an opposite effect. We
generalize the localized error bound developed by Wu and Zhou (2019) in (13) from ρ∗ = 0
to a general ρ∗ ∈ [0, 1] and obtain that

sup
θ:‖θ‖≤C

‖fn(θ)− f(θ)‖= max {‖θ‖, ρ∗} · Õ

(√
d

n

)
, (14)

indicating that the empirical error increases with ρ∗. The main challenge of the analysis of
the empirical iteration is to prove that the increased empirical error for larger ρ∗ is com-
pensated by the improved convergence rate of the population iteration. It should be noted,
however, that the empirical error may break key properties of the population iteration. For
example, for d = 1, the convergence of the population iteration for θ0 = 0 towards θ∗ is
based on the fact that f(0) > 0, assuming without loss of generality (w.l.o.g.) that θ∗ > 0.
Clearly, the empirical error (14) might result in fn(0) < 0 which would steer the iteration
towards a spurious fixed point in R−. Our analysis shows that with high probability this
occurs only if ‖θ∗‖ is low, so that this bad convergence does not dominate the error rate.

It is reasonable to expect that an argument that hinges on “ordering-of-iterations” and
error localization would be beneficial in analyzing more complicated models. These include,
e.g., a hidden-Markov 2-GM model, which is similar to the model studied here, except that
S0 is uniform, and the the unknown signs {Si}i>1 evolve according to a stationary symmetric
binary Markov chain with flip probability ζ ∈ (0, 1/2). As ζ approaches 0, this model also
tends to essentially a Gaussian location model (except for a sign-ambiguity). So it expected
that the population EM iteration will converge better for ζ compared to models with larger
flip probability. We envision that with some additional innovation, similar ideas could be
used for unbalanced 2-GM model with zero mean (unlike the non-zero mean in our model),
or a model with unknown covariance matrix.

1.4 General Background on the EM Algorithm

In this section, we briefly outline relevant background on the EM algorithm. It is well
known that it is typically computationally complex to compute the MLE

θMLE = argmax
θ

En [logPθ(X)]

in parametric models (X,S) ∼ Pθ(x, s) for which only X is observed but S is latent.
For one thing, exact marginalization over the latent variables S to obtain the likelihood
Pθ(x) (or its gradient) is computationally heavy due the need to sum over all possible
configurations of the latent variable. Moreover, in most interesting cases, the likelihood
Pθ(x) is not a concave function of θ, and so standard optimization techniques do not have
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strong guarantees. Various authors (Baum et al., 1970; Beale and Little, 1975; Hartley,
1958; Healy and Westmacott, 1956; Sundberg, 1974; Woodbury, 1970; Hasselblad, 1966,
1969) have independently proposed several heuristics akin to the EM algorithm for this
problem, and the EM algorithm was later on formulated in its well known form in the
seminal paper of Dempster et al. (1977), which also proposed a wide range of statistical
applications.

The EM is an iterative procedure, which determines an empirical operator fn based
on n samples from the data X ∼ Pθ. Given an initial guess θ0, the algorithm produces
a sequence of iterations θt = fn(θt−1) for all t ≥ 1. Owing to its name, the empirical
operator is determined by solving two steps. The first step computes a posterior probability
Pθt(S | X) on the latent variable S based on the current estimate θt, and then averages the
log-likelihood with this posterior (“expectation”) to obtain the Q-function

Q(θ | θt) =

∫
pθt(s | X) · log pθ(X, s) · ds .

The second step then sets θt+1 = fn(θt) := argmaxθQ(θ | θt) (“maximization”). In many
practical cases, the last maximization step can be solved analytically and an explicit expres-
sion of the operator fn(·) is available. A different interpretation of EM as a minorization-
maximization algorithm is obtained from the fact that the bound

logPθ(x)− logPθt(x) ≥ Q(θ | θt)−Q(θt | θt)

holds for any θ, which immediately implies a strong general property: The EM algorithm
produces increasing likelihoods Pθt(x) as t increases. This elegant property, along with its
typically low computational complexity has contributed to its widespread application in
numerous applications (Gupta and Chen, 2011).

Despite the above appealing properties, not long after its formulation by Dempster
et al. (1977), it was recognized that the EM algorithm may actually fail to compute the
MLE. Wu (1983) clarified that in the general case, the EM algorithm may converge to
local maxima of the likelihood, or even get trapped in a saddle point. Clearly, such local
maxima may be far from the required MLE, and in high dimension their number could
be exponentially large. Consequently, except in favorable cases in which the likelihood is
unimodal, the convergence of the EM algorithm heavily depends on the initial guess. In
practice, this necessitates complicated initialization algorithms such as multiple restarts
with random initial estimates (Karlis and Xekalaki, 2003), or using a pilot estimator to
obtain an initial guess. Both options are typically costly. In the more restricted case of
mixtures of exponential families, Redner and Walker (1984) showed that EM converges at
a geometric rate to the MLE, under positivity conditions of the Fisher information matrix
and the mixing weights, and more importantly, assuming local initialization. However,
the dependence of the guarantees on the convergence radius and rate are only qualitative
and do not specify their dependence on the parameters of the model. Furthermore, it was
empirically observed by Redner and Walker (1984) that the EM iterations can become
painfully slow to converge whenever the separation between the components is low.

Later works (Hero and Fessler, 1995; Meng and Rubin, 1994; Chrétien and Hero, 2008)
displayed similar guarantees, albeit to a local maxima of the likelihood, which, naturally,
might be far from the true likelihood. Xu and Jordan (1996) have cast the EM algorithm
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for Gaussian mixtures as a gradient ascent algorithm, where in each step the gradient is
pre-multiplied by a positive-definite matrix, and exemplified slow convergence akin to first-
order optimization methods. These drawbacks of EM were then addressed by a multitude
of ad hoc methods and variants, comprehensively summarized by McLachlan and Krishnan
(2007). The bottom line however, that even if the MLE is known to have good statisti-
cal properties, it is not clear whether they can be computationally achieved by the EM
algorithm.

The apparent discrepancy between the wide practicality of the EM algorithm versus
its relatively weak theoretical guarantees mentioned above, along with the growth in size
and dimension of modern data sets, resulted in two paradigm shifts in the anticipated
goals expected from its analysis. The first one, most notably made by Balakrishnan et al.
(2017), is the explicit characterization of the statistical precision, convergence rate, and
the distance of the initialization from the ground truth required to obtain that statistically
accurate solution (basin of attraction). The characterization made by Balakrishnan et al.
(2017) is based on general smoothness and stability properties of the auxiliary function
Q(θ | θ′), which need to be verified independently for any given problem. As concrete
examples, these conditions were applied by Balakrishnan et al. (2017) to canonical models
such as the balanced 2-GM, symmetric mixture of two regressions, and linear regression
with missing covariates. Nonetheless, as discussed in Section 1.1, this approach, even when
combined with further refinements (Klusowski and Brinda, 2016; Wu et al., 2016), did not
lead to sharp results for the basic balanced 2-GM model. As discussed in Section 1.2,
the local convergence result of the 2-GM model was then improved to global convergence
guarantees by various authors. For the idealized population version, it was shown by various
authors (Xu et al., 2016; Daskalakis et al., 2017) that EM converges at a geometric rate to
±θ∗, unless the initial guess θ0 is orthogonal to θ∗. A finite sample analysis was made by
Daskalakis et al. (2017), but was based on sample-splitting—EM was assumed to run on a
fresh batch of samples at each iteration. Optimality of EM in terms of statistical error and
convergence time was ultimately established by Wu and Zhou (2019).

1.5 Other Known Results

The unbalanced 2-GM model studied in this paper was mostly explored in relation to
misspecification or overspecification, i.e., cases in which the true model does not belong
to the set of fitted models, or belongs to a simpler set of models. An extreme case of
2-GM mixture model was considered by Dwivedi et al. (2020a), in which the components
are not separated at all, thus reduced to a zero-mean Gaussian θ∗ = 0. The EM algorithm
was designed to operate on the unbalanced model (1) with ρ∗ 6= 0 that over-fits the true
model. For this case, it was shown that the population iteration is globally contracting at

a rate ‖θt+1‖� ‖θt‖(1 − ρ2∗
2 ) and thus globally converging at a geometric rate, and has a

statistical error of O( 1
ρ2∗

√
d
n), which is parametric for fixed ρ, but in general, worse than

the minimax rate ( 1
ρ∗

√
d
n) ), and from our Theorem 2. This behavior was contrasted with

the same setting, except for which ρ∗ = 0, where it was shown that convergence of the
population EM is much slower, and behaves as ‖θt+1‖� ‖θt‖

(
1− ‖θt‖2

)
, and the error rate

for the sample-based EM is O((d/n)1/4). This error rate was achieved by partitioning the
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EM iterations to multi-epochs, where in the lth epoch, ‖θt‖∈ [
(
d
n

)αl+1 ,
(
d
n

)αl ] for judiciously
chosen powers αl. With this approach, the guarantees on the empirical error in the iterations
of the lth epoch improve as l ↑ ∞, which allows the “localization” of the empirical error
discussed in Section 1.3. Dwivedi et al. (2020b) also considered the EM for 2-GM mixture
model with θ∗ = 0, but in which the algorithm is also allowed to fit the variance of the
samples. The obtained behavior is distinctively different in one and multiple dimensions.
For d ≥ 2, the number of required iterations is O(

√
d/n), and the error rate for estimating

the mean is O((d/n)1/4), whereas for d = 1 the number of required iterations is even larger
O(n3/4), and so is the error rate O((1/n)1/8). Other misspecified models were considered by
Dwivedi et al. (2018), and one of them is an unbalanced 2-GM one-dimensional mixture to
a balanced 2-GM one-dimensional mixture, albeit with a smaller, unknown variance. The
paper bounded the distance between the true parameter and the parameter corresponding to
the KL projection of the true model onto the set of allowed models. Based on this bound,
the population EM operator was shown be contractive w.r.t. the projected parameter,
and geometric convergence with statistical error rate O(1/

√
n) of the samples-based EM

iteration was established.

Following the general analysis made by Balakrishnan et al. (2017), various latent mod-
els were explored. A high-dimensional setting with d ≥ n and sparsity assumptions was
studied by various authors (Wang et al., 2014; Yi and Caramanis, 2015), which proposed
truncation and regularization approaches for modifying EM to that setting, and provided
results comparable to that of Balakrishnan et al. (2017). The problem of estimating mix-
tures of linear regressions was considered by Klusowski et al. (2019), which enlarged the
contraction region assured by Balakrishnan et al. (2017) for this case, and showed that any
initial guess with sufficiently large angle with the target parameter vector, rather than the
small distance requirement of Balakrishnan et al. (2017), will converge to θ∗. It also showed
that a sample-splitting version of the EM algorithm converges with high probability. Global
convergence of the sample EM iteration was later established by Kwon et al. (2019) by con-
trolling both the empirical error and empirical angle between the population and empirical
iterations. Results of this nature were then generalized to the k mixture of linear regression
by Klusowski et al. (2019). The k-GM for a general k ≥ 2 was studied by Yan et al. (2017);
Zhao et al. (2018), which provided results comparable to Balakrishnan et al. (2017) for
gradient EM under minimal separation condition between the means, and closeness of the
initial guess to the true means. Beyond the i.i.d. setting, estimation problems in hidden
Markov models using EM were studied by Yang et al. (2015); Aiylam (2018).

1.6 Notational Conventions

Constant values which are used to state results or used in more than a single place in the
paper are denoted by sans-serif letters and are summarized in Table 2.6 Constants which are
used only locally are denoted by c, C, c0, . . .. Those constants are either universal or depend
only on the parameters of the global assumptions Cθ and Cρ. Asymptotic relations such as
.,� are within these constant factors. Standard Bachmann—Landau asymptotic notation

6. In principle, these constants can be upper bounded by functions of the global constants Cθ and Cρ.
Since, this will lead to rather cumbersome statements of the results described in this paper, and since
obtaining tight bounds for these constants is an onerous task, we opt to leave them unspecified.
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Constant Description

Cθ Global assumption (Section 1.2): Maximal norm of θ∗

Cρ Global assumption (Section 1.2): Maximal absolute value of ρ∗

Cβ Global assumption (Section 1.2): Maximal absolute value of βρ∗

(Cβ , Cβ) Global assumption (Section 1.2): Cβρ ≤ |βρ|≤ Cβρ.

Cω Concentration (Section 2.1): Constant for empirical iteration error (w.h.p.)

{C(1)
i } Result for d = 1 mean iteration (Section 2.1): Constants in Theorem 6

T(1) Result for d = 1 mean iteration (Section 2.1): Convergence time in Theorem 6

C′′ Proof of d = 1 mean iteration (Lemma 15): A constant for a bound on f ′′(θ)

{C(d)
i } Result for d > 1 mean iteration (Section 2.3): Constants in Theorem 10

T
(d)
θ0

, T
(d)
G

Result for d > 1 mean iteration (Section 2.3): Convergence times in Theorem 10

CF,0, C
′′
F , C
′′′
F Proof of d > 1 mean iteration (Lemma 17): Constants for bounds on F (a, b) and its derivatives

C
(d)
G,ρ

, C
(d)
G,η

Proof of d > 1 mean iteration (Proposition 9): Constants for bounds on G(a, b) and its derivatives

C
(d)
η Proof of d > 1 mean iteration (Proposition 11): A constant for a condition on η = ‖θ∗‖

{C(ρ)
i } Result for weight iteration (Section 2.4): Constants in Theorem 12

T(ρ) Result for weight iteration (Section 2.4): Convergence time in Theorem 12

C′′h Proof for weight iteration (Lemma 18): A constant for a bound on the second derivative of h(ρ)

Table 2: Summary of global constants.

will be used, where in specific, the notation an = Õ(bn) for a pair of positive sequences
{an}n∈N, {bn}K∈N implies that there exists k ∈ N+ so that lim supn→∞

an
bn(logn)k

<∞ (i.e.,

an = O(bn · (log n)k)).

The expectation of a random variable U is denoted by E[U ], and the empirical mean
of n i.i.d. samples (U1, . . . , Un) of U is denoted by En[(U)] := 1

n

∑n
i=1 Ui. The distribution

(law) of a random variable U will be denoted by L(U). The 1-Wasserstein distance between
probability measures µ and ν is given by (Villani, 2003) W1(V,U) = inf E|V −U | where the
infimum is over all couplings of µ and ν, i.e., a pair of random variables (V,U) such that
L(V ) = µ and L(U) = ν. The Euclidean norm is denoted by ‖·‖, and the Euclidean ball of
radius r in dimension d is denoted by Bd(r), where for d = 1 we omit the superscript. A
unit vector in the direction of a vector θ is denoted by θ̂. For a given Orlicz function ψ, the
Orlicz norm of a random variable U is denoted by ‖U‖ψ= inft>0 {E[ψ(|U |/t)] ≤ 1}, where U
is called σ2-sub-gaussian (resp. σ-sub-exponential) if ‖U‖ψ2≤ σ where ψ2(t) = exp(t2)−1=
(resp. ‖U‖ψ1≤ σ where ψ1(t) = exp(t)−1) . The set {1, . . . , n} is denoted by [n], equivalence
(usually local simplification of notation) is denoted by ≡, and equality in distribution by
d
=.

1.7 Organization

Section 2 contains detailed statements of the results, along with discussions, and proof
outlines. Proofs appear in later sections according to order. Specifically:

• In Section 2.1 we generalize the uniform error concentration bounds of Wu and Zhou
(2019) to the unbalanced case, and also states such a bound for the weight iteration.
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The proof is not fundamentally different from Wu and Zhou (2019) and is provided
in Appendix A for completeness.

• In Section 2.2 we analyze the mean population and empirical EM iterations assuming
the true weight ρ∗ is known for d = 1.

• In Section 2.3 we extend the analysis of the previous section to d > 1, and prove the
main result of the paper.

• In Section 2.4 we analyze the population and empirical EM iterations for the weight
assuming a fixed mean θ (possibly mismatched to θ∗).

• In Section 2.5 we briefly discuss the problem in which both ρ∗ and θ∗ are unknown,
and the estimator is required to jointly estimate both.

In Appendix B we analyze minimax rates, and in Appendix C we provide miscellaneous
results used in the paper.

2. Detailed Results

In this section we describe our results in detail.

2.1 Concentration of the Empirical EM Iteration

We first establish the concentration properties of the empirical iterations to their population
versions. The following theorem is a generalization of the result of Wu and Zhou (2019,
Theorem 4) from the ρ = 0 case to ρ 6= 0 case, and is proved in Appendix A.

Theorem 3 Assume that that ‖θ∗‖≤ Cθ and that |ρ∗|≤ Cρ, and consider the event

E := {‖fn(θ, ρ)− f(θ, ρ)‖≤ max{‖θ‖, ρ} · ωd} ∩ {|hn(ρ, θ)− h(ρ, θ)| ≤ ‖θ‖·ω1} (15)

where

ωd :=

√
Cω

d log n

n
.

Then, there exist a constant Cω which depends on (Cθ,Cρ) such that P[E ] ≥ 1− 1
ncd

for all
n ≥ Cd log n.

We assume in the rest of the paper that the high probability event (15) holds, and often
denote ωd by ω for brevity. Note that in general, the error bound depends on the iteration
values (θ, ρ) and is uniform in the ground truth parameters (θ∗, ρ∗) (as long as they satisfy
the global assumptions). For the mean iteration, it is interesting to contrast the balanced
iteration of ρ = 0 with ρ 6= 0. For the balanced iteration, fn(θ, 0) = En[X · tanh〈θ,X〉]
and so fn(0, 0) = f(0, 0) = 0 ∈ Rd with probability 1. Hence, a valid upper bound on the
empirical error may tend to zero as ‖θ‖→ 0, and, indeed, Wu and Zhou (2019, Theorem 4)
have obtained an empirical error bound of order OP (‖θ‖ω). Similar intuition was used by
Dwivedi et al. (2020a,b) to “localize” the error around ‖θ‖≈ 0, although in a more granular
way. When the iteration is unbalanced, i.e., ρ 6= 0, the iteration fn(0, ρ) = ρ·En[X] is a non-
degenerate random variable, whose population version is f(0, ρ) = ρ ·E[X] = ρ2 ·θ∗. In fact,
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in one-dimension, fn(0, ρ) might even be negative (i.e., have opposite sign to its population
version). Hence, one cannot expect the empirical error to behave as in the balanced case,
and an additional term is required, which depends on ρ, as given in (15). Evidently, as
ρ increases, so does the error bound. Intuition again may arise from the extreme case,
this time when ρ = 1. In this case the iteration is simply limρ→1 fn(θ, ρ) = En[X], i.e.,
the iteration provides the empirical mean at a single step, which clearly must have an

empirical error of OP (
√

d
n), even with ‖θ‖ being arbitrarily small. Figuratively speaking,

the more the iteration is “aggressive” in assuming prior knowledge regarding the signs {Si}
generating the samples, the larger is the empirical error in the iteration. On the other
hand, as we shall see, such (correct) prior knowledge improves the convergence properties
of the population iteration. So, the convergence properties of the empirical iteration for
ρ > 0 are obtained from a balance between improved population convergence compared to
ρ = 0 which compensate for the larger empirical error. The error in the weight iteration
is proportional to OP (‖θ‖·ω1), which agrees with the observations that hn(θ, ρ) → ρ as
‖θ‖→ 0, and ρ is unidentifiable, along with the observation that the weight iteration is
effectively one-dimensional, and so the error is proportional to ω1 rather than to ωd.

2.2 The Mean Iteration for Known Weight at d = 1

In this section we consider the mean iteration in one dimension. While the model for d = 1 is
simple, its analysis already captures some of the complication of the analysis, and also serves
as a building block for the analysis of the d > 1 case. We assume that δ∗ = (1− ρ∗)/2 ≡ δ
is known and fixed, and this true parameter is used in the EM iteration. Hence the model
can be written as

Pη,δ = (1− δ) ·N(η, 1) + δ ·N(−η, 1) ,

where η := ‖θ∗‖> 0 is assumed w.l.o.g.. The population version of the EM iteration for this
case can be written as

f(θ | η, δ) := E
[
X · (1− δ) · eXθ − δ · e−Xθ

(1− δ) · eXθ + δ · e−Xθ

]
= E [X · tanh(Xθ + β)] ,

with X ∼ (1 − δ)N(η, 1) + δN(−η, 1) and where we abbreviate to f(θ | η) or f(θ) when
possible. Similarly, the empirical iteration will be denoted by fn(θ | η, δ), and abbreviated to
fn(θ). Figure 1 illustrates several EM iterations (based on single runs of n = 104 samples).

We begin with the population iteration.

Theorem 4 (Population mean iteration, known weight, d = 1) The following holds:

1. The unique fixed point of θ 7→ f(θ | η, δ) in R+ is θ = η, and its fixed points in R−
are confined to the interval (−η, 0).

2. If θ0 ≥ 0 then the iteration θt+1 = f(θt | η, δ) converges to η.

3. Let δ ≤ δ̃ < 1/2 and θ0 ≥ 0. Consider the iteration θ̃t = f(θ̃t−1 | η, δ̃) such that
θ0 = θ̃0 ≥ 0. Then |η − θ̃t|> |η − θt| for all t ≥ 1, i.e., the convergence is faster as δ
is lower. The same holds for δ̃ = 1/2 if θ0 > 0.
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Figure 1: Illustration of f(θ, δ | η, δ) for η = 2 and η = 0.4.
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Though not crucial for the analysis or later derivations, we conjecture from exhaustive
numerical evidence that there are only two spurious fixed points of f(θ) in R−, and fur-
thermore, there exists δcr ∈ (0, 1/2) such that the number of fixed points of f(θ) in R−
is 

2, δ ∈ (δcr,
1
2)

1, δ = δcr

0, δ ∈ [0, δcr)

.

Theorem 4 establishes global convergence properties for the unbalanced one-dimensional
EM population iteration, when initializing either with the correct sign of the larger weight
component, or with a neutral sign (θ = 0). Nonetheless, the illustration in Figure 1 also
demonstrates that initializing with the strictly wrong sign may lead to convergence to a
spurious stable fixed point which is at a non-zero distance from −η, even when n → ∞.
Thus, a correct initialization of this iteration is both simple and crucial.

To describe the proof idea of Theorem 4, we briefly recall the properties of the balanced
iteration f(θ | η, 12) and why this iteration globally converges. As evident from Figure 1
and proved by Wu and Zhou (2019, Section 2), θ 7→ f(θ | η, 12) is an odd increasing function
which is concave on R+. It is not difficult to show (see also Proposition 23 in Appendix C)
that in this case that the iteration must converge to one of the three unique fixed points
θ = 0,±θ̃. The general consistency property of EM7 then implies that θ̃ = η. Thus, for
the balanced iteration, the concavity property provides a global property on the iteration
which is used to establish global convergence.

The reduced uncertainty in the δ < 1/2 case hints that the iteration should converge
faster and more accurately than for the δ = 1/2 case. However, at the same time, the
change from δ = 1/2 to δ < 1/2 breaks the symmetry in the iteration, and hence the
concavity property of the iteration in R+. For example, the yellow iteration in Figure 1
corresponding to δ = 0.01 is non-concave around θ ≈ 0.6. While the second-derivative of
the iteration at θ ≈ 0.6 can be numerically shown have a small magnitude (and as evident
from the figure, the iteration is rather flat there), no general concavity statement can be
made, and hence a different global property is required. The consistency property assures
at θ = η the iteration is insensitive to δ, and specifically that f(η | η, δ) = η for all δ. As
evident from Figure 1, and as is true in general, for θ < η and θ > η a change in δ bares an
opposite, yet consistent effect. The next proposition summarizes this property, along with
another global property related to “oddness dominance” that will be used in the analysis
of the empirical iteration.

Proposition 5 Assume that η > 0 and δ ∈ [0, 12 ].

1. f(θ | η, δ) ≥ −f(−θ | η, δ) for all θ > 0.

2. δ 7→ f(θ | η, δ) is non-increasing (resp. constant, resp. non-decreasing) for θ < η
(resp. for η = θ, resp. θ > η).

The second property can be described as θ = η being a “pivot-point” for the iteration as δ
is varied (see Figure 1). Given the second property of Proposition 5, along with the known
convergence for the case δ = 1/2, global convergence can be easily established for θ0 ≥ 0.

7. Consistency can also be proved directly for the Gaussian mixture model—see proof of Lemma 15 below.
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In order to prove property 2 in Proposition 5, one may assume an arbitrary and fixed
true parameter η > 0, and attempt to establish this property for all θ ∈ R. It turns out
that if θ < 0, this property can be proved by a direct reasoning on ∂

∂δf(θ | η, δ). However,
similar strategy seems daunting for θ > 0, and our proof is built on an indirect argument.
More explicitly, for θ > 0 it is required to be proved that:

∂f(θ | η, δ)
∂δ


> 0, 0 < η < θ

= 0, η = θ

< 0, η > θ

. (16)

The proof of (16) is based on the following ideas:

• Analyzing ∂
∂δf(θ | η, δ) as a function of η, rather than as a function of θ directly. For

this to be useful, we will need to analyze η ∈ R and not just η ∈ R+.

• Expressing ∂
∂δf(θ | η, δ) as a convolution of some function with a Gaussian kernel. We

then exploit a variation diminishing property of Gaussian kernels which implies that
if a function h(θ) has k zero-crossings in R, its convolution with a Gaussian kernel
may only reduce the number of zero-crossings. See Proposition 25 in Appendix C.3
for a formal statement. This allows us to prove that η 7→ ∂

∂δf(θ | η, δ) has a single
crossing point for some θ0.

• Then, utilizing the consistency property, which states that f(θ | η, δ) = θ for θ = η
and any δ, establishes that θ0 = θ, and this results (16).

The idea of analyzing the iteration w.r.t. the true parameter η, rather than w.r.t. θ was
previously used by Daskalakis et al. (2017), which used it in order to prove one-dimensional
global convergence (as well as convergence rates) for the balanced iteration. While such an
argument is not essential for this case given the direct analysis of Wu and Zhou (2019), an
idea in that spirit is useful here for proving a different global property.

We now turn to the empirical iteration. As we show next, the improved convergence in
the unbalanced case compared to the balanced case stated in Theorem 4 compensates for
the larger empirical error.

Theorem 6 Assume that |η|≤ Cθ, |ρ∗|≤ Cρ and that the high probability event (15) holds.
Consider the empirical mean EM iteration θt = fn(θt−1) ≡ fn(θt−1, δ | η, δ). There exists

n0(Cθ,Cρ) and constants {C(1)
i (Cθ,Cρ)} such that if ρ∗ > C

(1)
1

√
ω1 and n ≥ n0 then

`(θt, η) ≤ C
(1)
2 ·min

{
ω1

ρ
,
ω1

η

}
holds for all t ≥ T

(1)
θ0=0 where

T
(1)
θ0=0 :=


1, η ≤ ω1

ρ

C
(1)
3 · 1

ρ2
log

(
ω1

C
(1)
5 ρ

)
, ω1

ρ ≤ η ≤ C
(1)
4 ρ

C
(1)
3 ·

(
1
ρη + 1

η2
log

(
1

C
(1)
6 ρω1

))
, C

(1)
4 ρ < η ≤ Cθ
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in case the iteration was initialized by θ0 = 0, and for all t ≥ T
(1)

θ0=
1
ρ
En[X]

where

T
(1)

θ0=
1
ρ
En[X]

:=

1, η ≤ C
(1)
4 ρ

C
(1)
3

1
η2

log

(
1

C
(1)
6 ρω1

)
, C

(1)
4 ρ < η ≤ Cθ

in case the iteration was initialized by θ0 = 1
ρEn[X].

The proof uses a “sandwiching” argument developed by Wu and Zhou (2019) that bounds
the empirical iteration f−(θ) ≤ fn(θ) ≤ f+(θ) by the envelopes f±(θ) = f(θ)±max{|θ|, ρ} ·
ω1 (which holds with high probability), and the resulting iterations θ±t = f±(θt−1) obtained
when initializing those iterations and the empirical iteration with the same initial guess
θ±0 = θ0. We consider both θ0 = 0 or θ0 = 1

ρEn[X]. First, it is proved that all three

iterations {θt}, {θ±t } converge to fixed points, ηn, η± respectively. Then, the analysis is split
into three regimes. For initialization at θ0 = 0:

1. If ω1
ρ . η . ρ then the envelopes converge to fixed points 0 < η− ≤ ηn ≤ η+, and the

envelopes are approximated as f±(θ) ≈ 1 − cρ2 for some c > 0. Thus, the envelopes
are contractions whose convergence times is on the order of Õ( 1

ρ2
).

2. If ρ . η then convergence has two phases. At the first phase, θt is low, and the
iteration increases additively each step from θ0 = 0 by Ω(ρ2η) at each iteration.
Thus, after T1 = O( 1

ρη ) iterations, θt = Ω(ρ). At this point, the empirical error is
ω1 ·max{θ, ρ} . ω1θ, to wit, the same empirical error as for the balanced iteration.
Since the population iteration converges faster in the unbalanced case than in the
balanced case (Theorem 4), and the empirical error in this case is of the same order,
then the convergence of the unbalanced empirical iteration is only faster than that
of the empirical balanced iteration. The latter was analyzed by Wu and Zhou (2019,
Theorem 3), and its result is used here.

3. If η . ω1
ρ then analysis similar to the previous cases shows that the upper envelope θ+t

will increase, and will remain within the required statistical error, i.e., 0 ≤ θ+t . ω1
ρ ,

for all t ≥ 1. On the other hand, for the lower envelope, it is not guaranteed that
f−(0) > 0 , and so it is also not guaranteed that θ−t will increase and converge to a
positive fixed point. If it does converge to a positive fixed point η− > 0, then η− < η+
must also hold, and, as for the upper envelope, 0 ≤ θ−t . ω1

ρ , for all t ≥ 1. If, however,

this is not the case and f−(0) < 0, then θ−t will decrease and converge to a negative
fixed point η− < 0. In that event, the oddness domination property of the population
iteration (Proposition 5, item 1) assures that |η−|≤ η+, and so the same statistical
error O(ω1

ρ ) is again assured.

For initialization at θ0 = 1
ρEn[X], the error in the first iteration is already within the

statistical accuracy in Cases 1 and 3. For Case 2, it can be shown that the first phase of
convergence does not occur, and the convergence is as in the balanced case.
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2.3 The Mean Iteration for Known Weight at d > 1

We now consider the general d > 1 case. Recall that the n i.i.d. samples are given by
X ∼ (1 − δ) · N(θ∗, Id) + δ · N(−θ∗, Id) where θ∗ ∈ Rd and δ ∈ (0, 1/2) is known. For the
population mean EM iteration we show that:

Theorem 7 (Population iteration, known weight, d > 1) Consider the population mean
EM iteration θt = f(θt−1, δ | θ∗, δ). If 〈θ0, θ∗〉 ≥ 0 then limt→∞ θt = θ∗. Specifically, this
holds for θ0 = 0.

As in the one-dimensional case, the idealized population iteration does not converge to a
spurious fixed point, whenever the iteration is not initialized in a direction which has an
obtuse angle with θ∗ (which is the mean of the larger weight component, 1−δ). Furthermore,
such initialization can be achieved by setting θ0 = 0, since f(0, δ | θ∗, δ) = (1 − 2δ)2 · θ∗
which already points to the desired direction. Evidently, in this case, θt ∝ θ̂∗ for all t ≥ 1.
A slightly more general property holds for any initialization, and this is the basic ingredient
of the proof which we describe next.

The proof of Theorem 7 is based on an observation made by Xu et al. (2016); Daskalakis
et al. (2017) that the population mean EM iteration is “trapped” to the two-dimensional
space spanned by the true vector θ∗ and the initial guess θ0. Wu and Zhou (2019) formulated
this observation in the following way. Let us denote η := ‖θ∗‖ for brevity, let V ∼ (1− δ) ·
N(η, 1) + δ ·N(−η, 1) and W ∼ N(0, 1) be such that V ⊥⊥W , and define:

F ((a, b), δ | η, δ) = E [V tanh(aV + bW + β)] ,

and
G((a, b), δ | η, δ) = E [W tanh(aV + bW + β)] ,

where we omit the dependence in (η, δ) whenever it is inessential and simply write F (a, b |
η, δ), G(a, b | η, δ), or even just, F (a, b), G(a, b). The following was proved by Wu and
Zhou (2019, Lemma 4) for the balanced case,8 but the proof is similar for any δ ∈ [0, 1] and
thus omitted.

Lemma 8 Consider the population mean iteration θt+1 = f(θt, δ | θ∗, δ), and define

θt = at · θ̂∗ + bt · ξt

where η = ‖θ∗‖, θ̂∗ = θ∗/η, ξt ⊥ η and ‖ξt‖= 1 such that span{θ∗, ξt} = span{θ∗, θt} and
bt ≥ 0. Then, θt ∈ span{θ0, θ∗} (i.e., ξt = ξ0) for all t, and

at+1 = F (at, bt)

bt+1 = G(at, bt) .

We refer to F (·) as the signal iteration and to G(·) as the orthogonal iteration. Lemma 8
thus implies that to analyze the iteration θt+1 = f(θt, δ | θ∗, δ) it suffices to analyze the
evolution of {at, bt}, and that θt → θ∗ is equivalent to at → η and bt → 0.

In the balanced case, the population mean EM iteration was shown to globally con-
verge to ±θ∗ by showing that the orthogonal error goes to zero unconditionally of the

8. A similar, but not identical, claim was previously made by Daskalakis et al. (2017).
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signal iteration, i.e., bt → 0 is always satisfied. Then, the problem is reduced to the one-
dimensional iteration studied in the previous section. Essentially, this global property holds
due to the fact that for G(a, b | η, 12) is a concave increasing function with G(a, 0) = 0,

and ∂
∂bG(a, b)

∣∣
b=0

< 1 (Wu and Zhou, 2019, Lemma 5). As in the one-dimensional case, in
the unbalanced case, the lack of symmetry in case of δ < 1/2 breaks down the concavity
property of G(a, b | η, δ), and so a different global property is required. This is achieved in
the following proposition, which states properties of G(a, b | η, δ) w.r.t. the true parameters
(η, δ), and specifically states that G(a, b | η, δ) is dominated by G(a, b | η, 1/2), and so the
orthogonal iteration in case of δ < 1/2 converges faster than in the case of δ = 1/2.

Proposition 9

1. Monotonicity w.r.t. δ: If a ≥ 0 then δ 7→ G(a, b | η, δ) is an increasing function on
[0, 1/2].

2. Dominance w.r.t. δ: Let Cf > 0 be given. There exists C
(d)
G,ρ(Cθ,Cβ, Cf ) > 0 and

n0(Cθ,Cβ, Cf ) such that for any n ≥ n0

G(a, b | η, δ) ≤ G(a, b | η, 12)− C
(d)
G,ρρ

2b ≤ b
(

1− a2 + b2

2 + 4(a2 + b2)
− C

(d)
G,ρρ

2

)
for all (a, b, η) ∈ [0, Cf ]2 × [0,Cθ].

3. Monotonicity w.r.t. η: For a ≥ 0, η 7→ G(a, b | η, δ) is a decreasing function in

η ∈ [0, a+ b2

a ].

4. Dominance w.r.t. η: Let C
(d)
G,η = 3Cθ. Then,

G(a, b | η, δ) ≤ G(a, b | 0, δ) + C
(d)
G,ηbη

2

for all (a, b, η) ∈ R× R+ × [0,Cθ].

Given items 1 and 2 of Proposition 9, it is evident that unconditional convergence of the
orthogonal part of the iteration to zero is assured in the unbalanced case (and the conver-
gence is only faster compared to the balanced case). After such convergence, the problem is
almost precisely reduced to the one-dimensional setting in the signal iteration {at}, except
for a small residual additive error resulting from orthogonal iteration. However, as was
shown in the one-dimensional analysis, the unbalanced mean EM iteration may tolerate
small additive term (therein, this was due to the term ω1ρ which, unlike the error term ω1θ
does not vanishes when ‖θ‖→ 0), and so this additive term does not prevent convergence.

We now turn to the empirical iteration:

Theorem 10 Assume that ‖θ∗‖≤ Cθ and that |ρ∗|≤ Cρ, and that the high probability event
(15) holds. Consider the empirical mean EM iteration θt = fn(θt−1, δ | θ∗, δ). There exists

n0 and constants {C(d)
i } which depend on (Cθ,Cρ) such that if ρ∗ > C

(d)
1

√
ω and n ≥ n0 then

`(θt, θ∗) ≤ C
(d)
2 min

{
ω

ρ
,
ω

η

}
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holds for all t ≥ T
(d)
θ0

= T
(1)
θ0

+ T
(d)
G where either θ0 = 0 or θ0 = 1

ρEn[X], T
(1)
θ0

is determined

as in Theorem 6 by replacing9 ω1 → ω =
√
Cω

d logn
n and where

T
(d)
G :=

1, η ≤ ρ
C

(d)
3
η2
· log

(
C

(d)
4

ω
η

)
, η ≥ ρ

.

The proof of this theorem is based on splitting the analysis into three regimes 0 < η . ω
ρ ,

ω
ρ . η . ρ and η & ρ. First, it is shown that when initializing at either θ0 = 0 or

θ0 = 1
ρEn[X], the orthogonal iteration satisfies bt = O(ωρ ), and remains so for all iterations.

In the η . ω
ρ regime, this is shown by the local behavior of G(a, b | η, δ) around η ≈ 0

(Proposition 9, item 4). In the η & ω
ρ this is proved by the dominance relation to the

balanced orthogonal iteration (Proposition 9, items 1 and 2), along with a verification that
at remains positive for all iterations (so that these dominance relations are in fact valid).
Given that bt = O(ωρ ), the effect of the orthogonal iteration on the signal iteration is
negligible, and it is essentially reduced to the one-dimensional iteration. The convergence

time for this is T
(1)
θ0

(when setting the specific initialization for θ0
10), and the resulting error

for the signal iteration is |at − η|= O(min{ωρ ,
ω
η }). If η < ρ then this is also the error rate

for θ∗ as |θ − θ∗|= O(|at − η|+bt). If η > ρ, then the orthogonal iteration can be shown to

decrease to O(ωη ) after additional T
(d)
G iterations.

We next consider the case of ρ∗ which is too small to satisfy the condition of Theorem
10.

Proposition 11 (Empirical iteration, known weight, d > 1, small ρ∗) Assume that ‖θ∗‖≤
Cθ and that the high probability event (15) holds. Further assume that the balanced EM
weight iteration is run θt = fn(θt−1, δ = 1

2 | θ∗, δ = 1
2) with random initialization as in

Theorem 1. Let θ̃t = stθt where st = sign〈En[X], θt〉. Then, there exists C
(d)
ρ (Cθ) > 0 such

that if
ω

η
≤ ρ∗ ≤ C

(d)
1

√
ω ≤ C(d)

η η ,

then

`(θt, θ∗) ≤ C
(d)
2

ω

η

holds for all t ≥ logn
‖θ∗‖2 .

Theorem 10 and Proposition 11 together imply Theorem 2, which is the main result of the
paper.

2.4 The Weight Iteration for a Fixed Mean

In previous sections, we have considered the mean iteration assuming a known weight. In
this section, we study the opposite extreme case, and study the weight iteration assuming a

9. The constants determining T
(1)
θ0

might also be different than for d = 1.

10. In fact, Theorem 10 is valid for any θ0 for which bt = O(ω
ρ

).
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fixed mean θ, and specifically, the case in which θ = θ∗ holds. In this case, the log-likelihood
is given by

ρMLE = argmax
ρ∈[0,1]

n∑
i=1

log

(
1 + ρ

2
e−〈Xi,θ∗〉 +

1− ρ
2

e+〈Xi,θ∗〉
)
.

As apparent and also well-known, the log-likelihood is a concave function of the unknown
parameter ρ, and so, the EM algorithm is assured to converge to the MLE (Wu, 1983).
Alternatively, a simple method-of-moments estimator ρMoM = 1

‖θ‖〈θ̂,En[X]〉 can be readily

shown to achieve the minimax error rate for this problem, given roughly by min{ 1
‖θ∗‖
√
n
, 1}

(see Theorem 22 in Appendix B). Nonetheless, in this section we directly analyze the EM
iteration and provide statistical and computational guarantees similar to the previous sec-
tions. Despite the favorable behavior mentioned above, the analysis of the EM iteration is
delicate, especially in the mismatched case θ 6= θ∗. Understanding the EM iteration in this
setting may then further illuminate its basic features.

We thus assume in this section the model

Pρ =
1 + ρ

2
·N(θ∗, 1) +

1− ρ
2
·N(−θ∗, 1)

where δ = 1−ρ
2 . As in Section 2.3, the weight iteration can be written as

h(ρ, θ | θ∗, ρ∗) = E

[
(1 + ρ)e‖θ‖V − (1− ρ)e−‖θ‖V

(1 + ρ)e‖θ‖V + (1− ρ)e−‖θ‖V

]

where V ∼ (1+ρ∗2 ) · N(〈θ̂, θ∗〉, 1) + (1−ρ∗2 ) · N(−〈θ̂, θ∗〉, 1) and θ̂ = θ/‖θ‖. Similarly, the
empirical iteration will be denoted by hn(ρ, θ). In addition, since |ρ∗|≤ Cρ is assumed, we
may also consider truncated iterations given by [h(ρ, θ | θ∗, ρ∗)]Cρwhere

[t]Cρ =


−Cρ, t < −Cρ
t, −Cρ < t < Cρ

Cρ, t > Cρ

.

Figure 2 illustrates EM iteration (based on single runs of n = 106 samples).
As expected, for a given fixed θ, the iteration is essentially one-dimensional and does

not depend on d. Note also that if 〈θ, θ∗〉 = 0 then ρ∗ is not identifiable, and, in accordance,
the population iteration is useless; indeed h(ρ) = ρ for this case. Regarding the population
iteration, we have the following theorem:

Theorem 12 (Population weight iteration, fixed mean) Assume that ρ∗ > 0 and that
〈θ, θ∗〉 6= 0. The following holds:

1. The iteration h(ρ, θ) has either two or three fixed points in [−1, 1]. The boundaries
ρ = ±1 are always fixed points. There exists a third fixed point ρ# ∈ (−1, 1) if and
only if

d

dρ
h(ρ, θ)

∣∣∣∣
ρ=1

= e2‖θ‖
2

[(
1 + ρ∗

2

)
e−2〈θ,θ∗〉 +

(
1− ρ∗

2

)
· e2〈θ,θ∗〉

]
> 1 (17)
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Figure 2: Illustration of h(ρ, η | η, ρ∗) for ρ∗ = 0.6.

and if it exists, it satisfies ρ# ∈ (0, 1) if 〈θ, θ∗〉 > 0 and ρ# ∈ (−1, 0) if 〈θ, θ∗〉 < 0.

Specifically, condition (17) holds if ‖θ‖> |〈θ̂, θ∗〉|, and, furthermore, if θ = θ∗ then
ρ# = ρ∗.

2. If ρ# > 0 exists then the iteration ρt+1 = h(ρt, θ) converges monotonically upwards
(resp. downwards) to ρ# if ρ0 ∈ (−1, ρ#] (resp. ρ0 ∈ [ρ#, 1)).

The proof mainly uses the following properties of ρ 7→ h(ρ, θ): It increases monotonically
from h(−1, θ) = −1 to h(1, θ) = 1, and in case there is a fixed point ρ# ∈ (−1, 1), its
uniqueness follows from the fact that h(ρ, θ) changes its curvature only once as ρ traverse
from −1 to 1 (from concave to convex).

A rough characterization of the influence of mismatched θ can be derived as follows.
Note that for the method-of-moments estimator, a mismatch in the knowledge of θ∗ when
assuming the true vector is θ 6= θ∗ results in bias in estimation, such that, on the population
level

ρMoM =
1

‖θ‖
〈θ̂,E[X]〉 =

1

‖θ‖
〈θ̂, θ∗〉 · ρ∗ .

Thus, ρMoM < ρ∗ if and only if 〈θ̂, θ∗〉 < ‖θ‖. The next proposition shows the same effect
for the EM iteration:

Proposition 13 Assume that ρ∗ > 0 and that 〈θ̂, θ∗〉 > 0. Let ρ# be the fixed point of
ρ 7→ h(ρ, θ) which satisfies ρ# ∈ (−1, 1) (if such exists). Then, ρ# < ρ∗ if and only if

〈θ̂, θ∗〉 < ‖θ‖.
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The proof of the global property in Proposition 13 is again based on the variation dimin-
ishing property of the Gaussian kernel, on consistency, and on exploring the location of the
fixed point as a function of the true parameter θ∗ for a fixed θ.

The empirical weight iteration satisfies the following theorem:

Theorem 14 (Empirical weight iteration, known mean) Assume that ‖θ∗‖≤ Cθ and that
|ρ∗|≤ Cρ, and that the high probability event (15) holds. Consider the truncated empirical
weight iteration ρt = [hn(ρt−1, θ∗ | θ∗, ρ∗)]Cρ when initialized with ρ0 = 0. There exists

n0(Cθ,Cρ) and constants {C(ρ)
i } which depend on (Cθ,Cρ) such that if ‖θ∗‖> C

(ρ)
1

ω1
ρ∗

and
n ≥ n0 then

`(ρt, ρ∗) ≤ C
(ρ)
2

ω1

‖θ∗‖

holds for all t ≥ T(ρ) =
C
(ρ)
3
‖θ∗‖2 .

The proof is based on bounding the empirical iteration with envelopes of absolute error
ω1‖θ∗‖, and analyzing their convergence. As might be expected, both the error bound and
convergence time diverge when ‖θ∗‖→ 0; In the extreme case ‖θ∗‖= 0, ρ∗ is not identifiable
at all. The error bound of the EM iteration (and thus, also the MLE) matches that of the
method-of-moments estimator, and also the minimax error rate (Theorem 22 in Appendix
B).

2.5 An Open Problem: Joint Mean and Weight Estimation

We have analyzed the EM algorithm for the model Pθ,δ in case one of the parameters
is known and the other is required to be estimated. We next briefly discuss the more
challenging scenario in which both δ∗ and θ∗ are required to be jointly estimated. In this
case, each of the parameters serves as a nuisance parameter for estimating the other one,
and the exact statistical and computational rates of EM remains an open problem. We
nonetheless briefly discuss several aspects of this problem.

For the idealized population version, it is straightforward to ensure convergence, even
far from the solution by a proper “scheduling”, i.e., not necessarily running both (6)-(7) at
each iteration. Specifically, a simple possible scheduling is “freezing” θt = θ0 and running
the weight iteration for T0 steps until convergence, then freezing ρt = ρT0 and running the
mean iteration until convergence, and so on. The initialization and scheduling order will
then affect convergence. If we set ρ0 = 0 and run the balanced mean iteration θt+1 =
f(θt,

1
2 |η, δ) it will converge to θ∗. If we after this convergence we will run the weight

iteration ρt+1 = h(ρt, θ∗) it will converge to ρ∗. Thus, this scheduling globally converges
to (θ∗, ρ∗). By contrast, while we have empirically observed that initializing with a frozen
θ0 also globally converges, it is more challenging to establish via our methods. To see
this, suppose for simplicity that d = 1. Note that Proposition 13 hints the importance
of assuring that θ0 > θ∗ ≡ η so that the weight iteration ρt+1 = h(ρt, θ0) will have a
fixed point ρ# < ρ∗. If this condition does not hold, then the weight iteration might
not have a fixed point ρ# in (−1, 1), and the iteration will converge to the spurious fixed
point of ρ = 1. Thus, we would like to initialize with a frozen θ0 such that |θ0|> η.
By our assumptions, this could be achieved, by setting ‖θ0‖= Cθ. Next, we freeze ρt at
the obtained fixed point ρ#, and run the mean iteration. The following property can be
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proved: Let X ∼ (1− δ∗) ·N(η, 1) + δ∗ ·N(−η, 1) with η > 0 and assume that θ > 0. Then
f(θ, δ | η, δ∗) < f(θ, δ | η, δ) if and only if δ∗ > δ. Due to consistency and the convergence
properties of f(θ, δ | η, δ) (Theorem 4), it can also be assured that f(θ, δ | η, δ∗) has no
fixed points in (η,∞), and has at least a single fixed point in (0, η] (which might not be
unique). Upon convergence to such a fixed point η0 ≤ η, we may freeze it and run the
weight iteration h(ρ, η0). At this phase, since η0 < η it is not clear that the weight iteration
will have a non-trivial fixed point ρ# ∈ (−1, 1). A more delicate argument is required to
assure global convergence for a scheduling that begins with a phase of frozen θt. For the
population iteration, we can always choose to begin with ρ = 0 that is provably globally
converges, but it is not clear if this scheduling is better in terms of the empirical iteration.

For the empirical iteration, the result of running the balanced mean EM iteration (or
a spectral algorithm) can clearly be used to obtain with high probability an initial guess
θ0 with ‖θ0 − θ∗‖= Õ(

√
ω) if ‖θ∗‖.

√
ω and ‖θ0 − θ∗‖= Õ( ω

‖θ∗‖) otherwise. In the former
case, θ0 is not informative regarding the direction of θ∗, and so this initial guess is not
expected to be better than θ0 = 0. When ‖θ∗‖&

√
ω, the initial guess has non-trivial

angle with θ∗, and so it seems beneficial to initialize with that θ0. Furthermore, the only
possible case case in which EM algorithm can improve the error rate is ρ∗ > ‖θ∗‖&

√
ω.

A possible direction to prove such a result, is to learn the stability of the mean iteration
w.r.t. error in the weight and vice-versa. Specifically, using θ with ‖θ − θ∗‖. ω

‖θ∗‖ in the

iteration ρt+1 = h(ρt, θ | θ∗, ρ∗) shifts the population fixed point by at most O( ω
‖θ∗‖2 ), but

this is larger than the shift due to the empirical error which is O( ω
‖θ∗‖). If, however, one

can use ρ with |ρ− ρ∗|. ω
‖θ∗‖ in the empirical mean iteration θt+1 = fn(θt, ρt | θ∗, ρ∗) then

this mismatch can be shown to be negligible compared to the empirical error. Thus, with
this scheduling, the key point is how to finely estimate θ∗ so that its effect on the weight
iteration will be negligible. Nonetheless, if non trivial separation holds and θ∗ = Ω(1) then
running the balanced EM mean iteration followed by the weight iteration leads to (nearly)
optimal error rates.

3. Proofs for Section 2.2

In this section we prove the results of Section 2.2.

3.1 Population Iteration

The following lemma summarizes simple properties of the mean population iteration for
d = 1.

Lemma 15 Assume that η ≥ 0. The following properties hold for f(θ) ≡ f(θ, δ | η, δ):

1. Iteration: f(0) = (1− 2δ)2 · η > 0, f(η) = η (consistency) and limθ→∞ f(θ) ≤ η+ 1 <
Cθ + 1.

2. First order derivative: f(θ) is increasing on R and

f ′(θ) = E
[

X2

cosh2(Xθ + β)

]
= 4δ(1− δ) · E

[
X2

((1− δ) · eXθ + δ · e−Xθ)2

]
> 0 .
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At θ = 0
f ′(0) = 4δ(1− δ) ·

[
η2 + 1

]
,

and furthermore, if θ ≥ η then

f ′(θ) ≤ 2
√
δ(1− δ)e−

1
2
η2 ≤ 1− 1

4
·max{min{η2, 1}, ρ2} .

3. Second order derivative:

f ′′(θ) = −2EX
[
X3 tanh(Xθ + β)

cosh2(Xθ + β)

]
= −8·δ(1−δ)·E

[
X3

(
(1− δ) · eXθ − δ · e−Xθ

)
((1− δ) · eXθ + δ · e−Xθ)3

]
.

Furthermore, there exists C′′(Cθ,Cρ) such that for all θ ∈ R∣∣f ′′(θ)∣∣ ≤ C′′ ·max{θ, ρ} .

Proof We only explicitly prove non-trivial properties, or ones which are non-trivial exten-
sions of the results of Wu and Zhou (2019, Lemma 3). Let Z ∼ N(0, 1).

1. The consistency property is well-known, but can also be proved explicitly:

f(η)
(a)
= e−η

2/2 · E
[
Z ·
(
(1− δ) · eZη − δ · e−Zη

)]
= e−η

2/2 · E
[
ZeZη

]
− δe−η2/2 · E

[
Z ·
(
eZη + e−Zη

)]
(b)
= e−η

2/2 · E
[
ZeZη

] (c)
= e−η

2/2 · E
[
ηeZη

]
= η ,

where (a) is by change of measure (see Equation 52 in Appendix C.1), (b) is by oddness
of the argument in the second expectation, (c) is by Stein’s identity (see Equation 55
in Appendix C.1).

2. The bound on f ′(θ) for θ > η holds since

f ′(θ)
(a)
= e−

1
2
η2 · E

[
Z2 · 4δ(1− δ)

((1− δ) · eZθ + δ · e−Zθ)2
·
(
(1− δ) · eZη + δ · e−Zη

)]
(b)

≤ e−
1
2
η2 · E

[
Z2 · 2

√
δ(1− δ) · (1− δ) · eZη + δ · e−Zη

(1− δ) · eZθ + δ · e−Zθ

]
(c)
= 2

√
δ(1− δ)e−

1
2
η2×

E
[

1

2
Z2 · (1− δ) · eZη + δ · e−Zη

(1− δ) · eZθ + δ · e−Zθ
+

1

2
Z2 · (1− δ) · e−Zη + δ · eZη

(1− δ) · e−Zθ + δ · eZθ

]
(d)

≤ e−
1
2
η2 · 2

√
δ(1− δ) · E

[
Z2
]

(18)

where: (a) is proved again by a change of measure; (b) holds since by the inequality
of arithmetic and geometric means, for any a ≥ 0

4δ(1− δ)
(1− δ) · a+ δ · a−1

≤ 2
√
δ(1− δ) ,
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(c) follows since Z
d
= −Z; (d) holds since

max
δ∈[0, 1

2
], a>b>1

1

2
· (1− δ) · b+ δ · b−1

(1− δ) · a+ δ · a−1
+

1

2
· (1− δ) · b−1 + δ · b

(1− δ) · a−1 + δ · a
= 1 . (19)

To show that (19) holds, note that objective function on the left-hand side (l.h.s.) is a
convex function of b for a given (a, δ), hence it is maximized for either b = a or b = 1.
At b = a the value of the objective is 1. At b = 1 we maximize over a > 1:

max
a>1

1

2
· 1

(1− δ) · a+ δ · a−1
+

1

2
· 1

(1− δ) · a−1 + δ · a

= max
a>1

1

2
· a+ a−1

(1− δ)2 + δ2 + δ(1− δ) · (a+ a−1)

= max
c>2

1

2
· c

(1− 2δ)2 + δ(1− δ) · c
= 1 ,

where c = a + a−1 was used, and the fact that the function to be maximized has a
single maximum in R+ at c = 1−2δ√

δ(1−δ) ≤ 2. Using δ = 1−ρ
2 , we thus have f ′(θ) =√

1− ρ2 · e−
1
2
η2 . The final bound is obtained from

√
1− ρ2 ≤ 1 − ρ2

2 and e−
1
2
η2 ≤

max{e−1, 1− η2

4 }.

3. The bound on the second derivative follows from |tanh(t)|≤ t and cosh(t) > 1.

We next turn to prove Proposition 5. To this end, we need the following technical lemma:

Lemma 16 Let β > 0 be given, and let

s(u) := − tanh(u+ β) + tanh(u− β)− 1

2δ cosh2(u+ β)
+

1

2(1− δ) cosh2(u− β)
. (20)

Then, d
dus(u) = 0 has a unique solution, this solution is negative, and s(u) < 0 for all

u ∈ R.

Proof For u < 0 the claim that s(u) < 0 holds since both tanh(u − β) < tanh(u + β)
and (1 − δ) cosh2(u − β) > δ cosh2(u + β) hold when β > 0. For u ≥ 0, we begin by
analyzing d

dus(u) and show that the real solution of d
dus(u) = 0 is negative and unique.

Using the double-argument identities 1 + cosh(2t) = 2 cosh2(t), sinh(2t) = 2 sinh(t) cosh(t),

the half-argument identity tanh( t2) = sinh(t)
cosh(t)+1) we obtain that the derivative is

ds(u)

du
= −

1− 1
δ tanh(u+ β)

cosh2(u+ β)
+

1− 1
1−δ tanh(u− β)

cosh2(u− β)
, (21)

and thus get that d
dus(u) = 0 is equivalent to[

1 + cosh(2u− 2β)

1 + cosh(2u+ 2β)

]2
=

1 + cosh(2u− 2β)− 1
1−δ sinh(2u− 2β)

1 + cosh(2u+ 2β)− 1
δ sinh(2u+ 2β)

,
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or, by using exp(2β) = 1−δ
δ and denoting ψ := e2u, equivalent to[

2 + 1−δ
δ ψ−1 + δ

(1−δ)ψ
]2

[
2 + δ

1−δψ
−1 + 1−δ

δ ψ
]2 =

2 + 2−δ
δ ψ−1 − δ2

(1−δ)2ψ

2 + 1+δ
1−δψ

−1 − (1−δ)2
δ2

ψ
.

After further algebraic manipulations, the last display can be shown to be equivalent to

(2δ−1)·[δψ + 1− δ]·[(1− δ)ψ + δ]·
[
2δ(1− δ)ψ3 + 3δ(1− δ)ψ2 + (1− 2δ)2ψ − δ(1− δ)

]
= 0.

As δ ∈ (0, 12) and ψ > 0, the only real solution to this equation is the solution to

2δ(1− δ)ψ3 + 3δ(1− δ)ψ2 + (1− 2δ)2ψ − δ(1− δ) = 0.

The l.h.s. of the last display is an increasing function of ψ ∈ R+ with value −δ(1 − δ) at
ψ = 0 and a strictly positive value at ψ = 1. Thus, the above equation has a single real
solution which belongs to (0, 1). Hence, d

dus(u) = 0 has a unique solution, and this solution
is negative.

We next use this property d
dus(u) to show that s(u) < 0 for all u ≥ 0. As s(0) =

4(2δ − 1) < 0 and limu→∞ s(u) = 0, the mean value theorem implies that d
dus(u) must be

strictly positive for some u > 0. Since d
dus(u) 6= 0 for u > 0, s(u) must be increasing for all

u > 0. Since limu→∞ s(u) = 0 holds, s(u) ≥ 0 is impossible for u > 0.

Proof (of Proposition 5) Let U ∼ N(η, 1). To prove the first property, we write

f(θ | η, δ) + f(−θ | η, δ)
= E [X · tanh(Xθ + β)−X · tanh(Xθ − β)]

= (1− 2δ) · E [U · tanh(Uθ + β)− U · tanh(Uθ − β)]

≥ 0

which holds since u 7→ u · tanh(uθ+β)−u · tanh(uθ−β) is an odd function, that is positive
on R+.

To prove the second property, we write the iteration as

f(θ | η, δ) = E [(1− δ) · U tanh(Uθ + β) + δ · U tanh(Uθ − β)] ,

and then analyze its derivative w.r.t. δ

∂f(θ | η, δ)
∂δ

= E [−U tanh(Uθ + β) + U tanh(Uθ − β)]

− 1

2δ(1− δ)
E
[

(1− δ)U
cosh2(Uθ + β)

− δU

cosh2(Uθ − β)

]
.

To prove the required property, we will show that

∂f(θ | η, δ)
∂δ


< 0, θ < η

= 0, η = θ

> 0, θ > η
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and to this end we split the analysis to the cases θ = 0, θ < 0 and θ ≥ 0.

Case θ = 0: In this case, trivially, ∂f(θ|η,δ)
∂δ

∣∣∣ θ=0 = −4(1 − 2δ)η < 0 for η > 0 and

δ ∈ (0, 12).

Case θ < 0: Let

q1(u) := −u tanh(uθ + β) + u tanh(uθ − β)

and note that since tanh is monotonically increasing and negative for t < 0, it holds that
q1(u) is an odd function, and q1(u) < 0 for all u > 0. Thus E[q1(U)] < 0. Also let

q2(u) :=
(1− δ)u

cosh2(uθ + β)
− δu

cosh2(uθ − β)
.

Since cosh is an even function with a unique minimum at t = 0, it holds that

q2(u) = u

[
(1− δ)

cosh2(uθ + β)
− δ

cosh2(uθ − β)

]
> 0 ,

and

q2(u) + q2(−u) =
(1− δ)u

cosh2(uθ + β)
− δu

cosh2(uθ − β)
− (1− δ)u

cosh2(uθ − β)
+

δu

cosh2(uθ + β)

= u

(
1

cosh2(uθ + β)
− 1

cosh2(uθ − β)

)
> 0

for any u > 0. Thus q2(u) > −q2(−u) for u > 0, and E[q2(U)] > 0 (see Appendix C.1). The

required property then follows since ∂f(θ|η,δ)
∂δ = E [q1(U)]− 1

2δ(1−δ)E [q2(U)] < 0.

Case θ > 0: We follow the ideas outlined in the discussion following the statement of

the proposition. We note that ∂f(θ|η,δ)
∂δ = E [U · s(U)] where s(u) is as defined in (20), and

so

∂f(θ | η, δ)
∂δ

= [η · s(θη)] ∗ ϕ(η) (22)

where ϕ(η) := 1√
2π
· e−η2/2 is the Gaussian kernel, and the convolution is w.r.t. η.

We begin by proving that η 7→ ∂f(θ|η,δ)
∂δ has at least a single zero-crossing in R+ by

showing that for η = 0 and as η →∞:

∂f(θ | η, δ)
∂δ

∣∣∣∣
η=0

> 0,
∂f(θ | η, δ)

∂δ
↑ 0 as η →∞.
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At η = 0, using the definitions of q1(u) and q2(u), and recalling that Z ∼ N(0, 1)

∂f(θ | η, δ)
∂δ

∣∣∣∣
η=0

= E [q1(Z)]− 1

2δ(1− δ)
E [q2(Z)]

(a)
= − 1

2δ(1− δ)
E [q2(Z)]

= − 1

2δ(1− δ)
E [q2(Z) + q2(−Z)]

= − 1

2δ(1− δ)
E
[
Z

(
1

cosh2(Zθ + β)
− 1

cosh2(Zθ − β)

)]
(b)
> 0

where (a) is since q1(u) is an odd function, and (b) is since for θ > 0 and any u ∈ R

u

(
1

cosh2(uθ + β)
− 1

cosh2(uθ − β)

)
< 0 .

For η →∞, we note that the first term in the limit of ∂f(θ|η,δ)
∂δ is

lim
η→∞

E [−(Z + η) tanh ((Z + η)θ + β) + (Z + η) tanh ((Z + η)θ − β)]

= E
[

lim
η→∞

(−(Z + η) [tanh ((Z + η)θ + β)− tanh ((Z + η)θ − β))])

]
by dominated convergence theorem. Then, by L’Hı̈¿1

2pital

lim
η→∞

(z + η) [tanh ((z + η)θ + β)− tanh ((z + η)θ − β)]

= lim
η→∞

[tanh ((z + η)θ + β)− tanh ((z + η)θ − β)]

(z + η)−1

= lim
η→∞

θ

[
1

cosh2((z+η)θ+β)
− 1

cosh2((z+η)θ−β)

]
−(z + η)−2

= 0

since cosh(t) > et/2 for t > 0. The second term in the limit of ∂f(θ|η,δ)
∂δ can be analyzed

similarly and also equals zero. The fact that the limit of ∂f(θ|η,δ)
∂δ to 0 is from below, can be

deduced from η · s(θη) < 0 for all η > 0 (Lemma 16) and the convolution relation (22).

Next, we prove that the zero-crossing of η 7→ ∂f(θ|η,δ)
∂δ in R+ is unique. The function

η 7→ η · s(θη) has a unique zero-crossing at η = 0 since Lemma 16 implies that s(θη) < 0
for all η > 0. Furthermore, for any given θ, η 7→ η · s(θη) is a bounded function. Indeed,

η · s(θη) is clearly bounded for |η|≤ 1. For |η|> 1, note that using tanh(t) = 1 − e−t

cosh(t) , it
holds that for any η > 0

|tanh(θη + β)− tanh(θη − β)|

= e−θη
∣∣∣∣ e−β

cosh(θη + β)
− eβ

cosh(θη − β)

∣∣∣∣
≤ e−θη · 2eβ,
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and analogous result holds for η < 0. Also, using cosh(t) ≥ 1 + t2

2 , it holds that∣∣∣∣( 1

2δ cosh2(θη + β)
− 1

2(1− δ) cosh2(θη − β)

)∣∣∣∣ ≤ 1

2δ
(

1 + θη+β
2

)2 +
1

2(1− δ)
(

1 + θη−β
2

)2 .
Hence, |η · s(θη)| ≤ |η|·[e−θ|η| · 2eβ + 1

δθ2η2
] which is bounded for all |η|> 1.

The variation diminishing property of the Gaussian kernel (Proposition 25, Appendix

C.3), and the convolution relation (22) imply that ∂f(θ|η,δ)
∂δ has at most a single zero-crossing

as a function of η. From all the above, ∂f(θ|η,δ)
∂δ has exactly a single zero-crossing for some

η > 0. The consistency property implies that ∂f(θ|η,δ)
∂δ

∣∣∣
θ=η

= 0, and so this zero-crossing

must occur at η = θ. From this, (16) follows.

Proof (of theorem 4) Recall that ±η and 0 are the only fixed points of the balanced iter-
ation f(θ, 12 | η,

1
2), and that f(|θ|, 12 | η,

1
2) > |θ| for 0 < |θ|< η, and f(|θ|, 12 | η,

1
2) < |θ| for

|θ|> η. The claim then follows from Proposition 5, item 2. The last two claims follow from
Proposition 23, items 4 and 5.

3.2 Empirical Iteration

Proof (of Theorem 6) We analyze the empirical iteration fn(θ) ≡ fn(θ, δ | η, δ). From
Lemma 15 and assuming the high probability event (15), it holds that

|fn(θ)|≤ Cθ + 1 + ω ≤ Cθ + 2

for all n sufficiently large, and that

fn(θ) ≥ f−(θ) := f(θ)−max{|θ|, ρ} · ω , (23)

and

fn(θ) ≤ f+(θ) := f(θ) + max{|θ|, ρ} · ω , (24)

where we abbreviate here ω ≡ ω1 =
√
Cω

logn
n and f±(θ) will be referred to as the lower

(−) and upper (+) envelopes. We consider the empirical iteration θt+1 = fn(θt) as well
as the lower and upper envelopes iterations θ±t+1 = f±(θ±t ), all which are initialized at the
same point, to wit, θ0 = θ±0 . We begin by thoroughly analyzing the initialization θ0 = 0
and then briefly discuss the initialization θ0 = 1

ρEn[X] (which is similar and simpler). In

the first step of the proof, we show that {θt} and {θ±t } all converge monotonically to fixed
points. In the second step, we analyze the convergence time and the distance between the
fixed points. We split the analysis into three different regimes for η.

Fixed points: We show that {θt} and {θ±t } converge monotonically to fixed points, which
we denote, respectively, by ηn and η±. We use several intuitive properties of convergence of
one-dimensional iterations, which are formally stated and proved in Proposition 23, items
1 and 4.
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For the empirical iteration fn(θ), since

f ′n(θ) = En
[

X2

cosh2(Xθ + β)

]
> 0

and fn(θ) is bounded by assumption, {θt} converges monotonically to a fixed point ηn, and
is either increasing or decreasing according to the sign of fn(0).

For the upper envelope f+(θ), recall from Lemma 15 that f(θ) is increasing and bounded.
So limθ→∞ f

′(θ) = 0. Hence, f+(θ) is increasing, and for n > n0(Cω) it holds that
limθ→∞ f

′
+(θ) < 1. Thus {θ+t } is increasing and converges to a fixed point η+.

For the lower envelope f−(θ), first note that there exists n1(Cθ,Cρ) such that f−(θ) is
increasing for all θ ∈ [−Cθ,Cθ] since

f ′−(θ) ≥ f ′(θ)− ω ≥ min
0≤η≤Cθ

E
[

X2

cosh2(|X|Cθ + β)

]
− ω > 0 . (25)

If f−(0) > 0 then since f(θ) has a unique fixed point η in [0,∞), f−(θ) must have a fixed
point in [0, η], and no fixed points in [η,∞), and {θ−t } is increasing to one of the fixed
points in [0, η). If f−(0) < 0 then as the negative fixed points of f(θ) are confined to [−η, 0]
(Theorem 4) similar reasoning as for the upper envelope leads to the conclusion that {θ−t }
is decreasing and converges to some fixed point η− < 0. Furthermore, since the negative
fixed points of f(θ) are confined to [−η, 0] (Theorem 4) and since f(θ) ≥ −f(−θ) for all
θ > 0 (Proposition 5, item 1) the minimal negative fixed point η− < 0 satisfies |η−|≤ |η+|.

Stochastic error and convergence time: We now prove bounds on the stochastic error and
on the required number of iterations for convergence. We will use constants C1, C2, C3 > 0
which satisfy relations that will be specified throughout the proof. Assume that ρ ≥ C1

√
ω.

We split the analysis to three regimes for η given by [0, ωρ ], [ωρ , C2ρ] and [C2ρ,Cθ] where

C1 ≥
√

1/C2 is assumed so that these are three non-empty intervals. For simplicity, we
assume that C2 ≤ 1 (its value will eventually be chosen to be sufficiently small).

Case 1: Assume η ∈ [ωρ , C2ρ]. For θ ≥ η, Lemma 15 implies that

f ′+(θ) ≤ 1− ρ2

4
+ ω .

Thus, assuming C1 ≥
√

12 then f ′+(θ) ≤ 1− ρ2

6 . For 0 ≤ θ < η, we have∣∣f ′′(θ)∣∣ ≤ C′′ ·max{η, ρ} ≤ C′′ρ ,

and using f ′+(θ) = f ′+(η)−
∫ η
θ f
′′(θ̃)dθ̃, it holds that

f ′+(θ) ≤ 1− ρ2

4
+ C′′ρ(η − θ) + ω

≤ 1− ρ2

4
+ C′′ηρ+ ω

≤ 1− ρ2

4
+ C′′C2ρ

2 + ω .
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Assuming that C1 ≥
√

12 and C2 ≤ 1
12·C′′ we get that f ′+(θ) ≤ 1 − ρ2

12 . Thus, f+(θ) is a
contraction for θ ∈ [0,∞). Hence, so is f−(θ) (as 0 ≤ f ′−(θ) ≤ f ′+(θ)). Furthermore, it holds
that f+(0) > f−(0) = f(0) − ρω > 0 for all n ≥ n2(Cθ,Cρ). Thus both θ±t are increasing

and converge to fixed points η± > 0 where η+ ≥ η ≥ η− and satisfy η± − θ±t ≤ η±(1− ρ2

12)t

(Proposition 23, item 6). We next analyze the errors ε− = η− η− > 0 and ε+ = η+− η > 0.
For the error of the lower envelope, let θ ∈ [η−, η] and recall that η− ≤ η ≤ C2ρ. Then,
f ′′(θ) ≥ −C′′ρ and so

f ′(η) ≥ f ′(θ)− C′′ρ(η − θ) ,

as well as f−(θ) > f(θ)− ρω. Hence

η − ρω = f−(η)

= f−(η−) +

∫ η

η−

f ′−(θ) · dθ

≤ η− +

∫ η

η−

f ′(θ) · dθ

≤ η− + f ′(η)ε− + C′′ρ

(
ηε− −

η2 − η2−
2

)
≤ η− + f ′(η)ε− + C′′C2ρ

2ε− .

The above implies ε−(1 − f ′(η) − C2ρ
2) ≤ ρω and since f ′(η) ≤ 1 − ρ2

4 then if C2 ≤ 1
8 we

obtain η− η− ≤ 8ωρ . Since η−− θ−t ≤ η−(1− ρ2

12)t ≤ Cθ(1− ρ2

12)t it holds that η−− θ−t ≤ 8ωρ

for all t ≥ 12
ρ2

log
(
Cθ
8 ·

ρ
ω

)
(Proposition 23, item 6) and so also η − θ−t ≤ 16ωρ . The analysis

for η+ is similar:

η+ = f+(η+)

= f+(η) +

∫ η+

η
f ′+(θ) · dθ

= η + ρω + ε+
(
f ′(η) + ω

)
.

Then, since η ≤ C2ρ and f ′(θ) ≤ 1− ρ2

4 it holds that ε+(ρ
2

4 − ω) ≤ ρω for all θ > η. Since

ρ ≥ C1
√
ω, assuming C1 ≥

√
8 we get η+ − η ≤ 8ωρ . Furthermore, for all n ≥ n3(Cω),

η+ ≤ 2η and so for all t ≥ 12
ρ2

log
(
Cθ
4
ρ
ω

)
it holds that |η − θ+t |≤ 16ωρ .

Case 2: Assume η ∈ [C2ρ,Cθ]. The convergence has two phases. The time spent in
phase 1 (resp. phase 2) until the required convergence is assured will be denoted by T1
(resp. T2).

1. We show that there exists C3 ≤ 1
2 sufficiently small and C1 sufficiently large such that

f−(θ) > θ+ 1
6ρ

2η holds for all θ ∈ [0, C3ρ] (note that ρ > 2θ is assured). In turn, this
inequality is satisfied if

f(θ) > θ + ω(θ + ρ) +
1

6
ρ2η (26)
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holds. Since

f ′(θ) = f ′(0) +

∫ θ

0
f ′′(θ̃) · dθ̃

≥ (1− ρ2)(1 + η2)− C′′

2
θ2 − C′′ρθ ,

and as f(0) = ρ2η, we get that

f(θ) = f(0) +

∫ θ

0
f ′(θ̃) · dθ̃

≥ ρ2η + (1− ρ2)(1 + η2)θ − C′′

6
θ3 − C′′

2
ρθ2 .

Thus, (26) is satisfied if the following inequality holds:

5

6
ρ2η + (1− ρ2)η2θ > ρ2θ +

C′′

6
θ3 +

C′′

2
ρθ2 + ωθ + ωρ. (27)

Since clearly (1 − ρ2)η2θ > 0, this inequality can be assured to hold for all n >
n4(Cω, C1) large enough, by proper choice of constants. Specifically, by “allocating”
1
6ρ

2η for each of the five additive terms on the right-hand side (r.h.s.) of (27), and using

the assumption ρ > C1
√
ω, the inequality (27) is satisfied for C3 ≤ min

{
C2
6 ,

4C2
C′′ ,

2C2
3C′′

}
(for the first three terms) and C1 ≥ max

{√
6C3
C2
,
√

6
C2

}
(for the fourth and fifth

terms). Therefore, as long as θt ≤ C3ρ, it holds that θt+1− θt ≥ 1
6ρ

2η. So, initializing

from θ0 = 0, it holds that θ−t ≥ C3ρ for all t ≥ T1 = 6C3
ρη where T1 ≤ 1

ω . Naturally,

this holds for θ+t too.

2. At this phase, the convergence behaves similarly to the balanced case. Specifically, as
C3 ≤ 1 and since θ > C3ρ then

f+(θ) ≤ f(θ) +
1

C3
θω

and

f−(θ) ≥ f(θ) +
1

C3
θω .

Using Theorem 4, the convergence of the envelopes with f(θ) ± 1
C3
θω is faster than

the convergence of the envelopes of the balanced iterations f(θ, 12 | η,
1
2) ± 1

C3
θω.

Thus, the one-dimensional analysis and result of Wu and Zhou (2019, Theorem 3)
holds. Specifically, Wu and Zhou (2019, Theorem 3) demonstrated the existence of
constants {ci} such that if the balanced EM is initialized at θ0 = C3ρ, assuming that

η > c4
√
ω it holds that |η± − η|≤ c2

ω
η for all t ≥ T2 = c3

η2
log
(

1
C3ρω

)
. The condition

η > c4
√
ω is satisfied by requiring that C1 >

c4
C2

.
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Case 3: Assume η ∈ [0, ωρ ]. For the upper envelope, as in case 2, f+(θ) is increasing and

satisfies f+(0) > 0 and thus θ+t is increasing and converges to a fixed point η+ > 0. In
addition, similar analysis shows that η+ − η ≤ 8ωρ . Thus, for all t > 1

|θ+t − η|≤ |θ
+
t |+|η|≤ |η+|+|η|≤ 10

ω

ρ
.

So, the error is O(ωρ ) for all iterations. For the lower envelope, by the assumption on n > n1

in (25), f−(θ) is increasing for θ ∈ B(Cθ). If f−(0) > 0 then θ−t will converge to a fixed point
0 < η− ≤ η+ and similar analysis as for the upper envelope implies that |θ−t − η|≤ 10ωρ for

all t > 1. Otherwise, if f−(0) < 0, {θ−t } is decreasing and converges to a fixed point η−. As
was shown in the analysis of the fixed points, it must hold that |η−|≤ |η+| and so the last
bound on |θ−t − η| is valid in this case too.

The result for θ0 = 0 then follows from summarizing all three cases, and determining
the constants in the following order: C2 to be sufficiently small, then C3 sufficiently small,
and finally C1 sufficiently large.

We now discuss the case θ0 = 1
ρEn[X]. Since f(0) = ρ2η and fn(0) = ρEn[X], and

under the high probability event |fn(0) − f(0)|≤ ωρ we have that |θ0 − η|≤ ω
ρ which is in

fact already within the error rate obtained in Cases 1 and 3 above. By repeating the same
arguments in those cases, the error is O(ωρ ) for all subsequent iterations. In Case 2, the first

phase is unnecessary since in this case η > C2ρ and so η− ω
ρ > C3ρ as long as C3 <

C2
2 and

C1 ≥
√

1
C2

. Thus, if θ0 ≤ η only the second phase in the analysis above occurs. If θ0 > η

then the analysis of the balanced iteration (Wu and Zhou, 2019, Theorem 3) is similarly
intact.

4. Proofs for Section 2.3

In this section we prove the results of Section 2.3.

4.1 Population Iteration

The next lemma summarizes basic properties of F (·) and G(·) which are useful for the
unbalanced iteration analysis.

Lemma 17 (Properties of F and G as functions of (a, b)) Assume that b ≥ 0 and δ ∈ [0, 12).
Then:

1. Monotonicity: a 7→ F (a, b) and b 7→ G(a, b) are monotonically increasing functions.

2. Positivity: F (a, b) > 0 for a ≥ 0, and G(a, b) ≥ 0 = G(a, 0).

3. Strict positivity of F (0, b): For any Cf > 0 there exists CF,0 > 0 which depends on
(Cf ,Cβ) such that minb∈[0,Cf ] F (0, b) ≥ CF,0ρ

2η.

4. Boundedness: |F (a, b)|≤ η + 1 and G(a, b) ≤ η + 1.
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5. Upper bounded first derivatives:∣∣∣∣∂F (a, b)

∂a

∣∣∣∣ ≤ 1 + η2,

∣∣∣∣∂F (a, b)

∂b

∣∣∣∣ ≤√1 + η2,

∣∣∣∣∂G(a, b)

∂a

∣∣∣∣ ≤√1 + η2,

∣∣∣∣∂G(a, b)

∂b

∣∣∣∣ ≤ 1.

6. Lower bounded first derivative: Let Cf > 0 be given. There exists C′′F (Cθ, Cf ,Cβ) > 0
such that

min
a,b∈[0,Cf ]2

∂F (a, b)

∂a
≥ C′′F .

7. Derivative at b = 0: For a ∈ [0, η]

∂G(a, b)

∂b

∣∣∣∣
b=0

≤ 4δ(1− δ)

and for a ≥ η

∂G(a, b)

∂b

∣∣∣∣
b=0

≤ 2
√
δ(1− δ)e−

1
2
η2 ≤ 1− 1

4
·max{min{η2, 1}, ρ2} .

8. Crossed derivative at b = 0:
∂F (a, b)

∂b

∣∣∣∣
b=0

= 0 .

9. Upper bounded crossed second order derivatives at b = 0:∣∣∣∣ ∂2F (a, b)

∂b2

∣∣∣∣
b=0

∣∣∣∣ ≤ a(1 + η2) + ρCβ(1 + η)

and the same bound holds for ∂2G(a,b)
∂b∂a = ∂2F (a,b)

∂b2
.

10. Upper bounded crossed third order derivatives: There exists C′′′F (Cθ) > 0 such that∣∣∣∣∂3F (a, b)

∂b3

∣∣∣∣ ≤ C′′′F .

Proof

1. We have

∂F (a, b)

∂a
= E

[
V 2

cosh2(aV + bW + β)

]
> 0 ,

and similarly,

∂G(a, b)

∂b
= E

[
W 2

cosh2(aV + bW + β)

]
> 0 .
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2. F (a, b) ≥ 0 for a ≥ 0 since a 7→ F (a, b) is increasing and

F (0, b) = E[V ] · E[tanh(bW + β)] > 0 (28)

where the inequality is because E[V ] = (1 − 2δ)η > 0 and since tanh is odd and
increasing and W is symmetric. Similarly, G(a, b) ≥ 0 = G(a, 0) = E[W ]·E[tanh(aV +
β)] = 0 because b 7→ G(a, b) is increasing.

3. The minimal value of minb∈[0,Cf ] E [tanh(bW + β)] is obtained for b = Cf as

∂E [tanh(bW + β)]

∂b
= E

[
W

cosh(bW + β)2

]
= E

[
W

cosh(bW + β)2
− W

cosh(bW − β)2
|W > 0

]
< 0 . (29)

We next analyze the minimal value q(β) := E[tanh(CfW + β)]. It holds that q(0) =
E[tanh(CfW )] = 0 and that

q′(β) :=
dq(β)

dβ
= E

[
1

cosh2(CfW + β)

]
and so q′(0) = E[ 1

cosh2(CfW )
] > 0 and only depends on Cf . Also,

q′′(β) :=
d2q(β)

dβ2
= E

[
−2 tanh(CfW + β)

cosh2(CfW + β)

]
=

1

Cf
E
[

W

cosh2(CfW + β)

]
< 0

by Stein’s identity (see (55) in Appendix C.1), and where the inequality is as in (29).
Hence, β 7→ q(β) is a concave function at β ∈ R+, and so for all β ∈ [0,Cβ], q(β) is
lower bounded by the straight line connecting q(0) and q(Cβ), to wit,

E[tanh(CfW + β)] = q(β) ≥
q(Cβ)

Cβ
β = C1β ≥ C1Cβρ .

The claim then follows from (28) and E[V ] = ρη > 0.

4. |F (a, b)|≤ E [|V tanh(aV + bW + β)|] ≤ E|V |≤ η +
√

2/π, and, similarly,

|G(a, b)|≤ E [|W tanh(aV + bW + β)|] ≤ E|W |≤
√

2/π.

5. We only show∣∣∣∣∂F (a, b)

∂b

∣∣∣∣ ≤ E
[

|WV |
cosh2(aV + bW + β)

]
≤ E [|WV |] ≤

√
E [W 2]E [V 2]

since cosh(t) ≥ 1. The other bounds are proved similarly.
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6. Let U ∼ N(η, 1), U ⊥⊥W . Then, for any a, b ∈ [0, Cf ]2

∂F (a, b)

∂a
= E

[
V 2

cosh2(aV + bW + β)

]
= E

[
2V 2

1 + cosh(2aV + 2bW + 2β)

]
= E

[
2(1− δ)U2

1 + cosh(2aU + 2bW + 2β)
+

2δU2

1 + cosh(2aU − 2bW − 2β)

]
(a)

≥ E
[

(1− δ)U2

cosh(2aU + 2bW + 2β)
+

δU2

cosh(2aU − 2bW − 2β)

]
(b)

≥ E
[

U2

cosh(2aU + 2bW + 2β) · cosh(2aU − 2bW − 2β)

]
= E

[
2U2

cosh(4aU) + cosh(4bW + 4β)

]
(c)

≥ E
[

2U2

cosh(4CfU) + cosh(4bW + 4β)

]
(d)

≥ E
[

4U2

2 cosh(4CfU) + exp (4b |W |+ 4β)

]
≥ E

[
2U2

2 cosh(4CfU) + exp (4Cf |W |+ 4β)

]
:= C′′F > 0

where (a) and (b) are since cosh(t) ≥ 1, (c) is since cosh(t) is an even function, and
increasing for t ≥ 0, (d) is since cosh(t) ≥ 1

2e
|t|.

7. We have

∂G(a, b)

∂b
= E

[
W 2

cosh(aV + bW + β)2

]

and

∂G(a, b)

∂b

∣∣∣∣
b=0

= E
[

W 2

cosh(aV + β)2

]
= E

[
1

cosh(aV + β)2

]
= 4δ(1− δ)E

[
1

((1− δ)eaV + δe−aV )2

]
.
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At this point, for a > η, the proof follows the same steps of the proof of Lemma 15,
item 2 and thus omitted. For a ∈ [0, η] we let Z ∼ N(0, 1)

∂G(a, b)

∂b

∣∣∣∣
b=0

(a)
= 4δ(1− δ)e−η2/2 · E

[
(1− δ)eηZ + δe−ηZ

((1− δ)eaV + δe−aV )2

]
(b)
= 4δ(1− δ)e−η2/2×

E

[
1

2

(1− δ)eηZ + δe−ηZ

((1− δ)eaV + δe−aV )2
+

1

2

(1− δ)e−ηZ + δeηZ

((1− δ)e−aV + δeaV )2

]
(c)

≤ 4δ(1− δ)e−η2/2 · E
[
eηZ
]

= 4δ(1− δ) ,

where (a) is by a change of measure (see Equation 52 in Appendix C.1) and (b) is by
the symmetry of N(0, 1). The inequality (c) can be proved pointwise as follows: We
denote ψη = eηZ and ψa = eaZ , and may assume that Z > 0 if we show it holds for
all δ ∈ [0, 1]. Thus, it remains to show that

max
ψη≥ψa>1

[
(1− δ)ψη + δψ−1η(
(1− δ)ψa + δψ−1a

)2 +
(1− δ)ψ−1η + δψη(
(1− δ)ψ−1a + δψa

)2 − 2ψη

]
≤ 0 . (30)

We prove this inequality by showing that it holds for ψη = ψa and then show that the
term in the l.h.s. of (30) is non-increasing in ψη for ψη ∈ (ψa,∞). We first verify the
inequality (30) for ψη = ψa. In this case

max
ψa>1

[
1

(1− δ)ψa + δψ−1a
+

1

(1− δ)ψ−1a + δψa
− 2ψa

]
= max

ψa>1
ψa ·

[
1

(1− δ)ψ2
a + δ

+
1

(1− δ) + δψ2
a

− 2

]
and the term in brackets is non-positive (its maximal value is 0 obtained by ψa = 1).
To prove that the l.h.s. of (30) is monotonic w.r.t. ψη, we next differentiate w.r.t. to
ψη:

∂

∂ψη

[
(1− δ)ψη + δψ−1η(
(1− δ)ψa + δψ−1a

)2 +
(1− δ)ψ−1η + δψη(
(1− δ)ψ−1a + δψa

)2 − 2ψη

]
=

=

 (1− δ)− δ
ψ2
η[

(1− δ)ψa + δψ−1a
]2 +

δ − 1−δ
ψ2
η[

(1− δ)ψ−1a + δψa
]2
− 2

≤

(
1− δ[

(1− δ)ψa + δψ−1a
]2 +

δ[
(1− δ)ψ−1a + δψa

]2
)
− 2 . (31)

This last term in (31) is symmetric w.r.t. δ so we may return to assume δ ∈ [0, 12 ],

which along ψa ≥ 1 satisfies (1−δ)ψa+δψ−1a > 1 and (1−δ)ψ−1a +δψa ≥ 2
√
δ(1− δ).

With these properties, we may further upper bound (31) as(
1− δ +

1

4(1− δ)

)
− 2 < 0 .
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8. We have
∂F (a, b)

∂b

∣∣∣∣
b=0

= E
[

WV

cosh2(aV + β)

]
= 0 .

9. We have
∂2G(a, b)

∂a∂b
=
∂2F (a, b)

∂b2
= −2E

[
W 2V tanh(aV + bW + β)

cosh2(aV + bW + β)

]
and so using |tanh(t)|≤ t and cosh(t) ≥ 1∣∣∣∣ ∂2F (a, b)

∂b2

∣∣∣∣
b=0

∣∣∣∣ ≤ E
[
|V |·|aV + β|

cosh2(aV + β)

]
≤ aE

[
|V |2

]
+ βE [|V |] .

10. We have ∣∣∣∣∂3F (a, b)

∂b3

∣∣∣∣ =

∣∣∣∣∣−2E

[
W 3V

(
1− 2 sinh2(aV + bW + β)

)
cosh4(aV + bW + β)

]∣∣∣∣∣
≤ 2E

[∣∣W 3V
∣∣]

≤ 2
√
E [W 6]E [V 2]

≤ 2
√

15(1 + η2)

since
∣∣∣1−2 sinh2(t)

cosh4(t)

∣∣∣ is maximized at t = 0 and its maximal value is 1.

We next turn to prove Proposition 9:
Proof (of Proposition 9)

1. By Stein’s identity (see Equation 55 in Appendix C.1), for U ∼ N(aη, a2 + b2)

G(a, b | η, δ)
b

= E
[

1− δ
cosh2(U + β)

+
δ

cosh2(U + β)

]
.

Then,

∂
[
1
bG(a, b | η, δ)

]
∂δ

= E

[
1− 1

1−δ tanh(U − β)

cosh2(U − β)
−

1− 1
δ tanh(U + β)

cosh2(U + β)

]
= E

[
s′(U)

]
= E

[
r
(
aU
)]

:= q(η) ,

where s(u) was defined in (20), and its derivative is denoted by s′(u) ≡ ds
du (as in

Equation 21), r(u) := s′(au) and U ∼ N(η, 1 + b2

a2
). Recall that Lemma 16 implies

that s′(u) has at most a single zero-crossing at some u < 0. As a > 0, r(u) also has
a single zero-crossing at some u < 0. Hence, from Proposition 25, the total positivity
of the Gaussian kernel implies that η 7→ q(η) has at most a single zero-crossing point
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as a function of η ∈ R (note that for the sake of the proof we allow η < 0). We next
show that the zero crossing must occur for η < 0. We do so by evaluating q(η) for

η = 0 and for large η. For η = 0, U ∼ N(0, 1 + b2

a2
)
d
= −U and so

q(0) =

(
1

1− δ
+

1

δ

)
E
[

tanh(aU + β)

cosh2(aU + β)

]
> 0 (32)

since t 7→ tanh(t)

cosh2(t)
is an odd function, positive (resp. negative) on R+ (resp. R−).

Furthermore, noting that r(0) =
1
δ
tanh(β)− 1

1−δ tanh(β)

cosh2(β)
> 0, and using again the single

zero-crossing of r(u) at some u < 0, we have that r(u) > 0 for all u ∈ R+. Since

q(η) = r(η) ∗ ϕ(η | 1 + b2

a2
) where ϕ(η | σ2) is the Gaussian kernel with variance σ2,

i.e., ϕ(η | σ2) := (2πσ2)−1/2 ·e−η2/(2σ2), there exists some η0 > 0 such that q(η) > 0 for
all η > η0 (note that q(η) is bounded because r(u) is). Since q(η) > 0 for η = 0 and all
η > η0, q(η) must have an even number of zero-crossing in R+. Since it cannot have

more than one single crossing, it does not have any. Hence, q(η) = 1
b
∂[G(a,b|η,δ)]

∂δ > 0
for all η > 0, and thus G(a, b | η, δ) ≤ G(a, b | η, 12).

2. Let Ṽ ∼ N(η, 1). We analyze the partial derivatives of

G(a, b | η, δ) = E
[
W ·

(
(1− δ) tanh(aṼ + bW + β) + δ tanh(−aṼ + bW + β)

)]
= E

[
W ·

(
(1− δ) tanh(aṼ + bW + β) + δ tanh(aṼ + bW − β)

)]
w.r.t. δ around δ = 1

2 (i.e., β = 0) and then use Taylor expansion for 1
bG(a, b | η, δ).

For brevity, we denote U = aṼ + bW ∼ N(aη, a2 + b2).

(a) First derivative: Taking partial derivative w.r.t. δ11

∂ [G(a, b | η, δ)]
∂δ

= E [W · (tanh(U − β)− tanh(U + β))]

+ E
[
W ·

(
− 1

2δ cosh2(U + β)
+

1

2(1− δ) cosh2(U − β)

)]

we get ∂[G(a,b|η,δ)]
∂δ

∣∣∣
δ= 1

2

= 0.

(b) Second derivative: Taking the next partial derivative w.r.t. δ

∂2G(a, b | η, δ)
∂δ2

=
1

2δ2(1− δ)2
×

E
[
W ·

(
(1− δ) [1− tanh(U + β)]

cosh2(U + β)
+
δ [1− tanh(U − β)]

cosh2(U − β)

)]
(33)

11. Note that this form is different from the form used in the previous item, and is before applying Stein’s
identity.
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and letting U = U − aη ∼ N(0, a2 + b2),

∂2
[
1
bG(a, b | η, δ)

]
∂δ2

∣∣∣∣∣
δ= 1

2

=
4

b
· E
[
W · [1− tanh(U)]

cosh2(U)

]

=
4

b
· E
[

[1− tanh(U)]

cosh2(U)
· E [W | U ]

]
=

4

a2 + b2
· E

[
U ·

[
1− tanh(U + aη)

]
cosh2(U + aη)

]
:=

4

a2 + b2
·A0(a, b) ,

where the equality holds since E[W | U ] = b
a2+b2

(U −aη) and where A0(a, b) was
implicitly defined. We next show that A0(a, b) < 0. To this end, first assume

that both a > 0 and b > 0, and let h(t) := 1−tanh(t)
cosh2(t)

. It holds that h(t) ≥ 0 for all

t ∈ R, h(t) ≤ h(−t) for t ≥ 0, and h(t) has unique maximum at t = − log
√

2 < 0.
In addition, for any u > 0, it holds that h(−u + aη) > h(u + aη). Indeed, if
−u + aη ≥ 0 then this is true since h(t) is strictly decreasing for t ≥ 0, and if
−u + aη < 0 then h(−u + aη) > h(u − aη) > h(u + aη). Now, the conditional
version of the expectation defining A0(a, b), when conditioned on |U |= u > 0
satisfies

E
[
U · h(U + aη) | |U |= u

]
=

1

2
[u · h(u+ aη)− u · h(−u+ aη)] < 0 ,

and so A0(a, b) < 0. Therefore, any (a, b, η) ∈ (0, Cf ]2 × [0,Cθ] satisfies

∂2
[
1
bG(a, b | η, δ)

]
∂δ2

∣∣∣∣∣
δ= 1

2

:= Γ(a, b, η) < 0 .

We may now consider the cases a = 0 or b = 0. If a = 0 but b 6= 0 or vice-versa,
similar analysis to before shows that Γ(a, b, η) < 0. For (a, b) = (0, 0) we use
Stein’s identity (see Equation 55 in Appendix C.1) to obtain

4

a2 + b2
A0(a, b) = 4 · E

[
e−2(U+aη) − 2

cosh4(U + aη)

]

and so 1
b
∂2[G(a,b|η,δ)]

∂δ2

∣∣∣
δ= 1

2

= −4 for (a, b) = (0, 0). So, there exists C2(Cf ,Cθ,Cβ) >

0 such that

max
(a,b,η)∈[0,Cf ]2×[0,Cθ]

Γ(a, b, η) = −C2 < 0 .

(c) Third derivative: We show that its absolute value is upper bounded. As apparent

from form (33), the second derivative ∂2[G(a,b;δ)]
∂δ2

can be written as the sum of two
terms of the same form. We show how to bound the derivative of the first, and as

45



Weinberger and Bresler

it is similar, omit the bounding of the second. Recalling that U ∼ N(0, a2 + b2),
the first term is,

1

2δ2(1− δ)
E
[
W

[1− tanh(U + β)]

cosh2(U + β)

]
=

1

2δ2(1− δ)
b

a2 + b2
E

[
U ·

[
1− tanh(U + aη + β)

]
cosh2(U + aη + β)

]

using again E[W | U ] = b
a2+b2

(U − aη). Hence 1
b ·

∂3[G(a,b;δ)]
∂δ3

has two terms of a
similar form, the first of them is

1

a2 + b2
· ∂
∂δ

{
1

2δ2(1− δ)
E

[
U ·

[
1− tanh(U + aη + β)

]
cosh2(U + aη + β)

]}

= − 1

a2 + b2
·

(1− 3
2δ)

δ3(1− δ)2
· E

[
U ·

[
1− tanh(U + aη + β)

]
cosh2(U + aη + β)

]

− 1

a2 + b2
· 1

δ3(1− δ)2
E

[
U · e−2U−2aη−2β − 2[

1 + cosh(2U + 2aη + 2β)
]2
]

:= −
(1− 3

2δ)

δ3(1− δ)2
A1(a, b)−

1

δ3(1− δ)2
A2(a, b) ,

whereA1(a, b), A2(a, b) where implicitly defined. The multiplicative factors
(1− 3

2
δ)

δ3(1−δ)2

and 1
δ3(1−δ)2 are upper bounded since δ is assume to be bounded away from zero

(β < Cβ), and so we focus on A1(a, b), A2(a, b). Further,

A1(a, b) =
1

a2 + b2
·E

[∣∣∣∣∣U ·
[
1− tanh(U + aη + β)

]
cosh2(U + aη + β)

∣∣∣∣∣
]
< 2

1

a2 + b2
·E
∣∣U ∣∣ < 2√

a2 + b2

and

A2(a, b) =
1

a2 + b2
· E

[
U · e−2U−2aη−2β − 2[

1 + cosh(2U + 2aη + 2β)
]2
]

≤ 4

a2 + b2
· E

|U |· e−2U−2aη−2β[
2 + e2U+2aη+2β + e−2U−2aη−2β

]2


+
1

a2 + b2
· E

[∣∣U ∣∣ · 2[
1 + cosh(2U + 2aη + 2β)

]2
]

≤ 6

a2 + b2
· E
∣∣U ∣∣ < 6√

a2 + b2
.

Thus, if either a > 0 or b > 0 then both A1(a, b) < ∞ and A2(a, b) < ∞. It
remains to consider limits to (a, b) = (0, 0). The limits for A1(a, b) can be shown
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to be finite by an analysis similar to the one made for the second derivative
∂2G(a,b|η,δ)

∂δ2
. For A2(a, b), using Stein’s identity (see Equation 55 in Appendix

C.1)

A2(a, b) =
1

a2 + b2
E

[
U

e−2U−2aη−2β − 2[
1 + cosh(2U + 2aη + 2β)

]2
]

= −2 · E

[
e−2U−2aη−2β[

1 + cosh(2U + 2aη + 2β)
]2
]

− 4 · E


(
e−2U−2aη−2β − 2

)
sinh(2U + 2aη + 2β)[

1 + cosh(2U + 2aη + 2β)
]3


and so |A2(0, 0)|< 2e−2β + 4

∣∣e−2β − 2
∣∣ sinh(2β) < ∞. Hence, there exists

C3(Cf ,Cβ) such that

sup
(a,b,η)∈[0,Cf ]2×[0,Cθ]

∣∣∣∣∣∂3
[
1
bG(a, b | η, δ)

]
∂δ3

∣∣∣∣∣ ≤ C3 .

From the analysis of the derivatives, and recalling that ρ = 2(12−δ), for any (a, b, η) ∈
[0, Cf ]2 × [0,Cθ] it holds that

G(a, b | η, δ)
b

≤
G(a, b | η, 12)

b
− C2

8
· ρ2 +

C3

48
ρ3.

If Cβ is such that ρ ≤ C2
3C3

= ρ then 1
bG(a, b | η, δ) ≤ 1

bG(a, b | η, 12)−C2
16 ·ρ

2. Otherwise,
by dominance of G w.r.t δ (item 1)

1

b
G(a, b | η, δ) ≤ 1

b
G
(
a, b | η, 1−ρ2

)
≤
G(a, b | η, 12)

b
− C2

8
ρ2

≤ 1

b
G(a, b | η, 12)− C4ρ

2

for some constant C4 (which depends on Cβ). Taking C
(d)
1 = min(18C2, C4)

G(a, b | η, δ) ≤ G(a, b | η, 12)− C
(d)
1 ρ2b

≤ b
(

1− a2 + b2

2 + 4(a2 + b2)
− C

(d)
1 ρ2

)
where the upper bound on G(a, b | η, 12) was obtained in the analysis of the balanced
iteration (Wu and Zhou, 2019, Lemma 5, item 8).

3. Let Z ∼ N(0, 1). By Stein’s identity for W (see Equation 55 in Appendix C.1), and
a change of measure (see Equation 52 in Appendix C.1)

G(a, b | η, δ) = E
[

b

cosh2(aV + bW + β)

]
= e−η

2/2E
[

b

cosh2(aZ + bW + β)

(
(1− δ)eηZ + δe−ηZ

)]
.
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Then,

∂G(a, b | η, δ)
∂η

= −η ·G(a, b | η, δ) + e−η
2/2 · E

[
bZ

cosh(aZ + bW + β)2
(
(1− δ)eηZ − δe−ηZ

)]
= −2be−η

2/2 · E
[

tanh(aZ + bW + β)

cosh2(aZ + bW + β)

(
(1− δ)eηZ − δe−ηZ

)]
, (34)

by Stein’s identity for Z. Letting U = aZ + bW + β ∼ N(β, a2 + b2), we have that

Z|U ∼ N(a(U−β)
a2+b2

, b2

a2+b2
), and so

∂G(a, b | η, δ)
∂η

= −2 exp

(
− η2a2

2(a2 + b2)

)
×

E
[
b tanh(U)

cosh2(U)

(
(1− δ) exp

(
ηa

a2 + b2
(U − β)

)
− δ exp

(
− ηa

a2 + b2
(U − β)

))]
.

Letting

p+ := (1− δ) exp

(
− ηa

a2 + b2
β

)
, p− := δ exp

(
ηa

a2 + b2
β

)
,

then under the assumption ηa
a2+b2

< 1 and using exp(β) =
√

(1− δ)/δ it holds that
p+ ≥ p−. Now,

h(u) =
tanh(u)

cosh2(u)

(
p+ exp

(
ηau

a2 + b2

)
− p− exp

(
− ηau

a2 + b2

))
satisfies that for u ≥ 0, h(u) ≥ 0 and |h(u)|≥ |h(−u)|. Thus, we deduce that

∂G(a, b | η, δ)
∂η

= −2b · e−
η2a2

2(a2+b2)E [h(U)] ≤ 0

(see the Gaussian average of odd function property in Appendix C.1).

4. We show that 1
b
∂G(a,b|η,δ)

∂η

∣∣∣
η=0

< 0 and that 1
b
∂2G(a,b|η,δ)

∂η2
is uniformly bounded over all

(a, b, η), and the result then follows from Taylor expansion.

(a) First derivative: Let U ∼ N(0, a2 + b2). If b = 0 then ∂G(a,b|η,δ)
∂η

∣∣∣
η=0

= 0 and

so we next assume b > 0. From (34) and Stein’s identity (see Equation 55 in
Appendix C.1)

∂G(a, b | η, δ)
∂η

∣∣∣∣
η=0

= −2(1− 2δ) · bE
[

tanh(U + β)

cosh2(U + β)

]
= (1− 2δ) · b 1

a2 + b2
E
[

U

cosh2(U + β)

]
< 0

since for u > 0, β > 0 it holds that cosh(u+β) > cosh(−u+β) > 0 and U
d
= −U .

48



EM Algorithm is Adaptively-Optimal

(b) Second derivative: Let Z ∼ N(0, 1). Taking the next partial derivative w.r.t. η
in (34)

∂2G(a, b | η, δ)
∂η2

= −η∂G(a, b | η, δ)
∂η

− 2be−η
2/2 · E

[
Z

tanh(aZ + bW + β)

cosh2(aZ + bW + β)

(
(1− δ)eηZ + δe−ηZ

)]
.

The absolute value of the first term is bounded by 2Cθb since∣∣∣∣∂G(a, b | η, δ)
∂η

∣∣∣∣ ≤ 2be−η
2/2E

[
(1− δ)eηZ + δe−ηZ

]
= 2

(using
∣∣∣ tanh(t)
cosh2(t)

∣∣∣ ≤ 1). The absolute value of the second term is bounded by 4Cθb

since

E
[∣∣∣∣Z tanh(aZ + bW + β)

cosh2(aZ + bW + β)

(
(1− δ)eηZ + δe−ηZ

)∣∣∣∣]
≤ E

[
|Z|
(
(1− δ)eηZ + δe−ηZ

)]
= E

[
|Z| eηZ

]
≤ 2 · E

[
ZeηZ

]
(a)
= 2 · ηE

[
eηZ
]

= 2ηeη
2/2

where (a) follows from Stein’s identity. Thus,
∣∣∣∂2G(a,b)

∂η2

∣∣∣ ≤ 6Cθb.

We may now prove that the population mean iteration converges.

Proof (of Theorem 4) If a0 ≥ 0 then at ≥ 0 for all t > 1 (Lemma 17, item 2). Consider
the upper envelope iteration b+t+1 = G(at, b

+
t | η, 12), where b+0 = b0. Since b 7→ G(a, b | η, δ)

is increasing for a > 0 (Lemma 17, item 1), Proposition 9, item 1 and induction imply that
b+t ≥ bt for all t ≥ 1. It follows from the analysis of the balanced iteration (Wu and Zhou,
2019, Lemma 5, item 8) that (see Proposition 9, item 2 and its proof) that b+t → 0. Thus

also bt → 0 as t → ∞. As
∣∣∣∂F (a,b)

∂b

∣∣∣ ≤ √1 + η2 ≤
√

1 + Cθ is uniformly bounded (Lemma

17, item 5), for any given ε > 0, there exists t > 0 such that

|F (at, bt)− F (at, 0)| ≤ ε ,

where F (at, 0) = f(θ | η, δ), i.e., the population mean iteration in d = 1. Theorem 6 shows
that convergence is assured for any given sufficiently small absolute error, and that the error
|θt − η| tends to zero as ε→ 0.
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4.2 Empirical Iteration

Proof (of Theorem 10) We analyze the empirical iteration θt+1 = fn(θt) ≡ fn(θt, δ | θ∗, δ).
We will assume that ρ ≥ C1

√
ω and specify conditions on C1 along the proof. As for the

population iteration (Lemma 8), we may write

θt = at · θ̂∗ + bt · ξt

where η = ‖θ∗‖, θ̂∗ = θ∗
η , ξt ⊥ η and ‖ξt‖= 1 such that span{θ∗, ξt} = span{θ∗, θt} and

bt ≥ 0. Assuming the high probability event (15) holds, we have that

‖fn(θ)− f(θ)‖≤ max{η, ρ} · ω

and so for the signal iteration

at+1 = 〈θt+1, θ̂∗〉 = 〈fn(θt), θ̂∗〉
≤ F (at, bt) + max {|at|+ bt, ρ} · ω
≤ F (at, bt) + (|at|+ bt + ρ) · ω
:= F+(at, bt) ,

and, similarly,

at+1 ≥ F (at, bt)−max {|at|+ bt, ρ} · ω
≥ F (at, bt)− (|at|+ bt + ρ) · ω
:= F−(at, bt) .

In the same spirit, for the orthogonal iteration , it holds that

bt+1 ≤ G(at, bt) + max {|at|+ bt, ρ} · ω .

We split the analysis into two regimes of η . ω
ρ and η & ω

ρ . In the former regime,
the iteration dwells around ‖θt‖. ω

ρ , though the corresponding signal iteration at might be
negative. In the later regime, it is assured that at ≥ 0 for all t (given that a0 ≥ 0), and so
properties such as dominance of the orthogonal iteration may be used. As a preliminary
step, we show that the iteration is bounded:

Step 0 (Boundedness): We prove that for all n sufficiently large, it holds that |at|, bt ≤ Cf
for all t ≥ 1 if Cf ≥ max{2Cθ, ρ/2, 4(Cθ+1)}. By induction, when the iteration is initialized
with θ0 = 0 then |a0|= b0 = 0. When θ0 = 1

ρEn[X] then assuming the high probability
event (15) it holds that ‖θ0‖≤ η + ω

ρ ≤ 2Cθ for all n > n0(Cθ,Cω) (see the end of the proof
of Theorem 6). Thus also |a0|, b0 ≤ 2Cθ. Note that for all n > n1(Cω) it holds that ω ≤ 1/4.
For the induction step, assume that |at|, bt ≤ Cf for some t. Then, using Lemma 17, item 4

at+1 ≤ F (at, bt) + max {|at|+ bt, ρ} · ω
≤ Cθ + 1 + 2Cfω

≤ Cf ,

and a similar lower bound on at+1 holds, as well as a similar upper bound bt+1. We
henceforth assume that |at|, bt ≤ Cf .
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Large signal case: Assume that η > C0
ω
ρ where C0 > 0 is to be specified later on.

Step 1 (Orthogonal iteration and Positivity): We prove by induction that there exists
c1 > 0 to be specified (large enough) such that if a0 ≥ 0 and b0 ≤ c1

ω
ρ then at ≥ 0 and

bt ≤ c1
ω
ρ for all t. For t = 0, this is satisfied when initializing with both θ0 = 0 since,

trivially, a0 = b0 = 0, and also when initializing with θ0 = 1
ρEn[X], since under the high

probability event (15)

‖1

ρ
En[X]− θ∗‖=

1

ρ2
‖fn(0)− f(0)‖≤ ω

ρ
.

Taking C0 > 2 (say) implies that a0 > 0 and b0 ≤ ω
ρ . We assume that at ≥ 0 and that

bt ≤ c1
ω
ρ and show that these properties continue to hold after iteration t + 1. We first

consider the orthogonal iteration which is analyzed through its upper bound. There are
two differences compared to the balanced case (Wu and Zhou, 2019, Theorem 5): 1) The

slope of the upper bound on bt has additional −C(d)
G,ρρ

2 term (which improves the bound on
bt and improves convergence to low values). 2) The empirical error has an additional ωρ
term which deteriorates the bound on bt. Nonetheless, the first effect dominates the second.
Specifically, from Proposition 9, item 2,12 since at > 0 and η > C0

ω
ρ was assumed,

bt+1 ≤ bt

1− a2t + b2t
2 + 4(a2t + b2t )

−
C
(d)
G,ρ

2
ρ2

+ ω (at + bt + ρ) (35)

(a)

≤ bt

1 + ω −
C
(d)
G,ρ

2
ρ2

− b3t
C2

+ sup
0≤at≤Cf

(
ωat −

a2t
C2

)
+ ωρ

(b)

≤ bt

1−
C
(d)
G,ρ

2
ρ2

− b3t
C2

+
C2ω

2

4bt
+ ωρ

where in (a) we have used C2 = 2 + 8C2
f , and (b) holds by requiring that C1 ≥

√
2

C
(d)
G,ρ

. We

assume w.l.o.g. that C
(d)
G,ρ ≤ 1 as otherwise, we may weaken the bound by setting C

(d)
G,ρ = 1.

Now, we may show that bt+1 ≤ c1 ωρ : Let c2 > 0 be a constant to be specified.

• If 0 ≤ bt ≤ c2ω then the bound

bt+1 ≤ bt

1−
C
(d)
G,ρ

2
ρ2

+ ωCf + ωρ ≤ c1
ω

ρ

holds as long as c2 + ω(Cf + ρ) ≤ c1
ρ (condition I).

• If c2ω ≤ bt ≤ c1 ωρ we may use the bound

bt+1 ≤ bt

1−
C
(d)
G,ρ

2
ρ2

− b3t
C2

+
C2ω

2

4bt
+ ωρ := h(bt) .

12. For simplicity of later notation, the constant C
(d)
G,ρ was reduced to

C
(d)
G,ρ

2
.
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Under the assumption ρ ≥ C1
√
ω it holds that ω2

ρ2
≤ ω

C2
1
→ 0 as n→∞ Thus, we may

assume that c1 <
ρ2

ω2 and c2 ≥
√
C2 (condition II), so that for all n > n2(c1, C1, C2,Cω)

dh

db
=

1−
C
(d)
G,ρ

2
ρ2

− 3b2

C2
− C2ω

2

4b2
≥ 1

2
− 3c21ω

2

C2ρ2
− C2

4c22
> 0 .

In this event, b 7→ h(b) is increasing, and thus if C2
4c1

+ 1 − c1
C
(d)
G,ρ

2 < 0 (condition III)
then

bt+1 ≤ max
c2ω≤b≤c1 ωρ

h(b) = h(c1
ω

ρ
)

≤ c1
ω

ρ
+

 C2

4c1
+ 1− c1

C
(d)
G,ρ

2

ωρ

≤ c1
ω

ρ

holds. We choose c2 such that condition II holds, and then choose c1 ≥ 1 and large
enough so that conditions I and III will hold (note that n2 may be affected by these
choices).

Thus, we have proved that bt+1 ≤ c1
ω
ρ in the next iteration. We next show that at+1 > 0.

Using the boundedness from step 0 and Lemma 17, items 1 and 3

at+1 ≥ F (at, bt)−max {|at|+ bt, ρ} · ω
(a)

≥ F (at, bt)− ωat − c1
ω2

ρ
− ρω

(b)

≥ F (0, bt) + C′′Fat − ωat − c1
ω2

ρ
− ρω

(c)

≥ (C′′F − ω)at + ρ

(
CF,0ρη − c1

ω2

ρ2
− ω

)
> 0 ,

where (a) is by the induction assumption, (b) is by the uniform bound on ∂F
∂a in Lemma 17

item 6 and Taylor expansion, (c) is by the lower bound on F (0, b) in Lemma 17 item 3, and
the final inequality holds as long as n is sufficiently large so that ω ≤ C′′F , and ω

ρ < 1, when

requiring that C0 ≥ c1+1
CF,0

.

Step 2 (Signal iteration): From the previous step, we may assume that at ≥ 0 and
bt ≤ c1

ω
ρ for all t ≥ 0. Lemma 17 items 8, 9 and 10 characterize the derivative of F (a, b)

w.r.t. b around b = 0. Using these claims and the global assumptions η ≤ Cθ and β ≤ Cβρ,
Taylor expansion of F (a, b) around b = 0 results

F+(a, b) ≤ F (a, 0) +
[
C3 · (|a|+ρ)b2 + C′′′F b

3 + ω(|a|+b+ ρ)
]
,
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and
F−(a, b) ≥ F (a, 0)−

[
C3 · (|a|+ρ)b2 + C′′′F b

3 + ω(|a|+b+ ρ)
]
.

Observe that for b = 0 it holds that F (a, 0) = f(θ, δ | η, δ) is simply the one-dimensional
iteration with absolute mean η. Furthermore, the envelopes F±(a, b) are the same as one-
dimensional envelopes f±(θ) with θ ≡ a except for excess error C3 · (|a|+ρ)b2 + C′′′F b

3 + ωb
which results from the orthogonal error when b 6= 0. From the previous step, we have
that bt ≤ c1

ω
ρ ≤

c1
C1

√
ω ≤ c1ρ

C2
1

for all t and thus we may evaluate the terms of this excess

error under this assumption. Then, C3 · |a|b2 ≤ C3
c1
C1
ω|a|, C3 · ρb2 ≤ C3

c21
C2

1
ωρ, C′′′F b

3 ≤

C′′′F
c31
C2

1
ωρ, and ωb ≤ c1

C2
1
ωρ. Hence, the excess error is no more than C4(|a|+ρ)ω for some

C4 > 0. Since the one-dimensional envelopes have error max{|a|, ρ}ω ≥ 1
2(|a|+ρ)ω and

max{|a|, ρ}ω ≤ (|a|+ρ)ω (see Equation 23 and Equation 24), the excess error due to b 6= 0
only contributes to increasing the factor multiplying (|a|+ρ)ω. Thus, taking F±(at, bt) as
envelopes of one dimensional iteration for at (with bt acting as bounded disturbance), we
obtain that, orderwise, the statistical error and convergence time of at are the same as for θt
in the one-dimensional empirical iteration given in Theorem 6. Thus, after the convergence

time specified in Theorem 6, the error is |at − η|≤ C5 min
{
ω
ρ ,

ω
η

}
where C5 ≤ C

(1)
2 (1 + C4)

(note, however, that ω =
√

Cω
d logn
n with d > 1). We denote this convergence time by Ta.

Step 3 (Refinement of the orthogonal iteration): At the end of the previous step, it

was shown that the error in |at − η|. min
{
ω
ρ ,

ω
η

}
, whereas in the proceeding step it was

shown that bt . ω
ρ . We next refine the latter bound to bt . ω

η in case η > ρ. Assume that

Cf ≥ 2
3C5Cl so that after the previous step it holds that at ∈ [η2 , 2η] for all t ≥ Ta. Thus,

it holds that
a2 + b2

2 + 4(a2 + b2)
≥ η2/4

2 + 4(4C2
θ + c1

ω2

ρ2
)
≥ C7η

2

for some C7 > 0. Utilizing the bound of Proposition 9 item 2, we get

bt+1 ≤ bt
(

1− C7η
2 − C

(d)
1 ρ2

)
+ max {|at|+ bt, ρ} · ω

≤ bt
(
1− C8(η

2 + ρ2)
)

+ C9η · ω

where C8 ≤ C7 + C
(d)
1 and C9 ≤ max{2Cθ, 1 + c1

C2
1
}. From convergence properties of one-

dimensional iterations, (Proposition 23, item 7) bt ≤ 8C9
C8
· ωη for all t ≥ Ta + Tb where

Tb ≤
2

C8η2
· log

(
8C9

C8

ω

η

)
.

Small signal case: Assume that η < C0
ω
ρ . As the signal is small, we show that the

EM iteration remains small for all iterations. There are only two steps—an analysis of the
orthogonal iteration (without assuming that at is positive), and then the signal iteration.

Step 1 (Orthogonal iteration): In this case at < 0 is possible, and so we cannot use
the dominance relation to the balanced iteration (Proposition 9 item 1). However, since
the signal is small, we may use Taylor expansion to relate G(a, b | η, δ) to G(a, b | 0, δ)
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(Proposition 9 item 4), and then use the fact that for η = 0, the weight δ does not affect
the iteration at all. Specifically, Proposition 9, items 1 and 4, along with the assumption

ρ > C1
√
ω while requiring that C1 ≥

(
2C

(d)
G,η

C
(d)
1

)1/4√
C0 imply that

G(a, b | η, δ) ≤ G(a, b | 0, δ) + bC
(d)
G,ηC

2
0

ω2

ρ2

≤ b
(

1− a2 + b2

2 + 4(a2 + b2)
− C

(d)
G,ρρ

2 + C
(d)
G,ηC

2
0

ω2

ρ2

)

≤ b

1− a2 + b2

2 + 4(a2 + b2)
−

C
(d)
G,ρ

2
ρ2


for all (a, b, η) ∈ [−Cf , Cf ]2 × [0,Cθ]. Thus, the bound (35) holds for this case too (note
that the error ω(at + bt + β) with mixed signs for at < 0 and bt > 0 is only lower than both
being positive). Hence, for all (a, b, η) ∈ [−Cf , Cf ]2 × [0,Cθ] it holds that

bt+1 ≤ bt

1−
C
(d)
G,ρ

2
ρ2

− b3t
C2

+
C2ω

2

4bt
+ ωρ.

Similar analysis to the large signal case then yields bt ≤ c1 ωρ for all t.
Step 2 (Signal iteration): The analysis is similar to the large signal case, which shows

that |at − η|≤ C5
ω
ρ for t ≥ Ta. The conclusion then follows since for some C6 > 0

|θt − θ∗| ≤ |at − η|+ bt ≤ C6
ω

ρ
.

We complete the proof of Theorem 2 with the case of ρ .
√
ω:

Proof (of Proposition 11) The balanced iteration fn(θ, δ = 1
2 | θ∗, δ = 1

2) = En[X ·
tanh(Xθ))] is insensitive to the actual signs generating the samples (X1, . . . , Xn), and thus
the convergence result of Theorem 1 holds, where we note that its error guarantee is w.r.t.
`0. It is thus remain to show that st correctly adjusts the sign of θt. Recall that ρ = 1− 2δ,
and let ε = 1

ρEn[X]− θ∗. Under the high probability event (15)

‖ε‖= ‖ 1

ρ2
En[X]− 1

ρ2
E[X]‖= 1

ρ2
‖fn(θ, δ | θ∗, δ)− f(θ, δ | θ∗, δ)‖≤

ω

ρ
.

By the guarantees of the balanced iteration, there exists c0 such that for t large enough (as
specified in the theorem) ‖θt − θ∗‖≤ c0

ω
η . Thus, if η > c1

√
ω for properly large c1, then

|〈θt, θ∗〉|≥ ω
ρ ‖θt‖≥ |〈θt, εn〉|. Hence,

st = sign〈θt,
1

ρ
En[X]〉 = sign (〈θt, θ∗〉+ 〈θt, εn〉) = sign〈θt, θ∗〉 .
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5. Proofs for Section 2.4

In this section we prove the results of Section 2.4.

5.1 Population Iteration

We begin with basic properties:

Lemma 18 Assume that ρ∗ ≥ 0 and that 〈θ, θ∗〉 > 0. Then:

1. Iteration: The iteration is consistent h(ρ∗, θ∗) = ρ∗, at the boundaries limρ↑1 h(ρ, θ) =
1 and limρ↓−1 h(ρ, θ) = −1. At ρ = 0

h(0, θ) ≥ ρ∗
[
1− e−〈θ,θ∗〉/2

]
.

2. First order derivative: It holds that d
dρh(ρ, θ) > 0 and so ρ 7→ h(ρ, θ) is increasing on

[−1, 1]. At the left boundary limρ↓−1
∂
∂ρh(ρ, θ) > 1, and at the right boundary

lim
ρ↑1

∂

∂ρ
h(ρ, θ) = e2‖θ‖

2

[(
1 + ρ∗

2

)
e−2〈θ,θ∗〉 +

(
1− ρ∗

2

)
· e2〈θ,θ∗〉

]
for which limρ↑1

∂
∂ρh(ρ, θ) > 1 if ‖θ‖> |〈θ̂, θ∗〉|.

3. Second order derivative: There exists ρ ≤ ρ∗ such that h(ρ) is strictly concave on

[−1, ρ] and strictly convex on [ρ, 1]. Consequently, ∂h(ρ,θ)
∂ρ is strictly decreasing on

[−1, ρ] and strictly increasing on [ρ, 1].

4. Contractivity at ρ ∈ [0, ρ∗]: If ‖θ‖> |〈θ̂, θ∗〉| then

max
ρ∈[0,ρ∗]

∂h(ρ, θ)

∂ρ
≤ e−|〈θ̂,θ∗〉|2/2 ·max

{
5

6
, 1− ‖θ‖

2

6

}
.

5. Bounded second derivative for θ = θ∗: maxρ∈(0,Cρ)
∂2h(ρ,θ∗)
∂ρ2

≤ C′′h · η2 for C′′h =
32+36(4C2

θ+1)

(1−C2
ρ)

2 .

Proof Let Z ∼ N(0, 1) and U ∼ N(η, 1) where η = 〈θ̂, θ∗〉.

1. Consistency for θ = θ∗ is well-known and can be proved as in the proof of Lemma 15,
item 1. The limits at the boundaries are immediate. At ρ = 0

h(0, θ) = E [tanh (‖θ‖V )]

=

(
1 + ρ∗

2

)
· E [tanh (‖θ‖U)] +

(
1− ρ∗

2

)
· E [tanh (−‖θ‖U)]

= ρ∗E [tanh (‖θ‖U)]

≥ ρ∗
[
1− e−〈θ,θ∗〉/2

]
,

where the last inequality is from (53) in Appendix C.1.
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2. By direct computation

h′(ρ) :=
∂h(ρ, θ)

∂ρ
=

1

1− ρ2
· E
[

1

cosh2 (‖θ‖V + βρ)

]

= E

 1[
(1+ρ2 )e‖θ‖V + (1−ρ2 )e−‖θ‖V

]2
 > 0

and so the iteration is monotonically increasing. The limit at ρ = −1

lim
ρ↓−1

h′(ρ) = E
[
e2‖θ‖V

]
=

(
1 + ρ∗

2

)
· E
[
e2‖θ‖U

]
+

(
1− ρ∗

2

)
· E
[
e−2‖θ‖U

]
= e2‖θ‖

2

[(
1 + ρ∗

2

)
e2〈θ,θ∗〉 +

(
1− ρ∗

2

)
· e−2〈θ,θ∗〉

]
> 1

where the last inequality is since
(
1+ρ∗
2

)
s +

(
1−ρ∗
2

)
s−1 for s ∈ [1,∞) is minimized

for s = 1 (assuming ρ∗ > 0). Similarly, the limit at ρ = 1

lim
ρ↑1

h′(ρ) = E
[
e−2‖θ‖V

]
=

(
1 + ρ∗

2

)
· E
[
e−2‖θ‖U

]
+

(
1− ρ∗

2

)
· E
[
e2‖θ‖U

]
= e2‖θ‖

2

[(
1 + ρ∗

2

)
e−2〈θ,θ∗〉 +

(
1− ρ∗

2

)
· e2〈θ,θ∗〉

]
. (36)

3. By direct computation

h′′(ρ) :=
∂2h(ρ, θ)

∂ρ2
=

2

(1− ρ2)2
· E
[
ρ− tanh (‖θ‖V + βρ)

cosh2 (‖θ‖V + βρ)

]
,

and evidently, limρ↑1 h
′′(ρ) > 0. At ρ = 0,

h′′(0) = −2 · E
[

tanh (‖θ‖V )

cosh2 (‖θ‖V )

]
< 0 ,

since P[V = v] > P[V = −v] for any v > 0 (see Equation 56 in Appendix C.1) and
tanh is an odd function. To show that h(ρ) changes its curvature from convex to
concave as ρ increases from −1 to 1 only a single time at some ρ, we note that

h′′′(ρ) :=
∂3h(ρ, θ)

∂ρ3
=

3

(1− ρ2)2
· E
[

cosh (2‖θ‖V )− 1

cosh4 (‖θ‖V + βρ)

]
> 0 .

Thus, h′′(ρ) is monotonically increasing. The fact that ρ ≤ ρ∗ follows from h′′(ρ∗) > 0
but we omit the full proof since this property is inconsequential for further analysis.

4. We prove the claimed bound at the edge points of the interval [0, ρ∗], and then the
same bound holds at the interior of the interval since the property of h′′(ρ) stated in
item 3 implies that maxρ∈[0,ρ∗] h

′(ρ) is bounded by its values at the edge points. At
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ρ = 0, let V 1
2
∼ 1

2 ·N(η, 1) + 1
2 ·N(−η, 1) be a balanced version of V , where we recall

that η = 〈θ̂, θ∗〉 here. Then,

h′(0) = E
[

1

cosh2 (‖θ‖V )

]
(a)
= E

[
1

cosh2(‖θ‖V 1
2
)

]
(b)
= e−η

2/2 · E
[

1

cosh(‖θ‖Z)
· eηZ + e−ηZ

e‖θ‖Z + e−‖θ‖Z
| Z > 0

]
(c)

≤ e−η
2/2 · E

[
1

cosh(‖θ‖Z)

]
(d)

≤ e−η
2/2 ·

(
1− ‖θ‖2

2(1 + 2‖θ‖2)

)
≤ e−η2/2 ·

{
5
6 , ‖θ‖≤ 1

1− ‖θ‖
2

6 , ‖θ‖> 1
, (37)

where (a) is since cosh2(t) is even, (b) is by a change of measure (see Equation 52 in Ap-

pendix C.1) and symmetry, (c) is since maxa≥b≥1
b+b−1

a+a−1 = max
{

1,maxa≥1
2

a+a−1

}
≤ 1

(e.g., by the inequality of arithmetic and geometric means), and (d) is by the result
of Wu and Zhou (2019, eq.(125) and Lemma 24). At ρ = ρ∗ it holds that

h′(ρ∗) = E

 1[(
1+ρ∗
2

)
e‖θ‖V +

(
1−ρ∗
2

)
e−‖θ‖V

]2


(a)
= e−η

2/2 · E

 1(
1+ρ∗
2

)
e‖θ‖Z +

(
1−ρ∗
2

)
e−‖θ‖Z

·

(
1+ρ∗
2

)
eηZ +

(
1−ρ∗
2

)
e−ηZ(

1+ρ∗
2

)
e‖θ‖Z +

(
1−ρ∗
2

)
e−‖θ‖Z


(b)

≤ e−η
2/2 · E

 1(
1+ρ∗
2

)
e‖θ‖Z +

(
1−ρ∗
2

)
e−‖θ‖Z


= e−η

2/2 · E
[

1

cosh(‖θ‖Z + β)

]
(c)

≤ e−η
2/2 · E

[
1

cosh(‖θ‖Z)

]
(d)

≤ e−η
2/2 ·

{
5
6 , ‖θ‖≤ 1

1− ‖θ‖
2

6 , ‖θ‖> 1
,

where (a) is again by a change of measure, (b) is as in (18) assuming ‖θ‖≥ η = 〈θ̂, θ∗〉,
(c) is since the argument inside the expectation is an even function of β, and using
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arguments similar to (32) to show that

∂

∂β
E
[

1

cosh(‖θ‖Z + β)

]
= −E

[
tanh(‖θ‖Z + β)

cosh(‖θ‖Z + β)

]
< 0 ,

and (d) is as in (37).

5. To bound the second derivative let η = ‖θ∗‖ and V ∼ (1− δ∗) ·N(η, 1) + δ∗ ·N(−η, 1).
Then, for any ρ ∈ [0,Cρ)

h′′(ρ) =
2

(1− ρ2)2
· E
[
ρ− tanh (ηV + βρ)

cosh2 (ηV + βρ)

]
:=

2

(1− ρ2)2
· a(η)

and using ψ± = η2 + ηZ ± βρ with Z ∼ N(0, 1) we may write

a(η) = (1− δ∗) · E
[
ρ− tanh(ψ+)

cosh2(ψ+)

]
+ δ∗ · E

[
ρ+ tanh(ψ−)

cosh2(ψ−)

]
.

We will bound a(η) by its Taylor expansion around η = 0. Note that a(0) = 0 (since
ρ = tanh(βρ)), and that the first derivative is

a′(η) =
∂a(η)

∂η
= −4(1− δ∗) · E

[
(2η + Z) · 2 + ρ sinh(2ψ+)− cosh(2ψ+)[

1 + cosh2 (2ψ+)
]2

]

+ 4δ∗ · E

[
(2η + Z) · 2 + ρ sinh(2ψ−)− cosh(2ψ−)[

1 + cosh2 (2ψ−)
]2

]

and so a′(0) = 0. Next we upper bound the second derivative a′′(η) = ∂a2(η)
∂η2

. As a′(η)
in the last display is comprised from a mixture of two expectations, we only bound
the first (and the second one can be bounded similarly by the same bound). So,

∂

∂η
E

[
(2η + Z) · 2 + ρ sinh(2ψ+)− cosh(2ψ+)[

1 + cosh2 (2ψ+)
]2

]

= 2 · E

[
2 + ρ sinh(2ψ+)− cosh(2ψ+)[

1 + cosh2 (2ψ+)
]2

]
+ E

[
(2η + Z)2×

ρ+ ρ cosh(2ψ+)− 5 sinh(2ψ+) + cosh(2ψ+) sinh(2ψ+)− ρ sinh2(2ψ+)[
1 + cosh2 (2ψ+)

]3
]
.

Using |sinh(t)|≤ |cosh(t)| and the triangle inequality, the absolute value of the above
expression is bounded from above by

2(3 + ρ) + (3ρ+ 6) · E
[
(2η + Z)2

]
≤ 8 + 9(4η2 + 1).

Hence, a′′(η) ≤ 32 + 36(4C2
θ + 1) for all η ∈ Cθ and the result follows from Taylor

expansion.
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We may now prove the convergence of the population iteration.

Proof (of Theorem 12) For brevity, we denote the iteration by h(ρ). Let h′(ρ) = ∂
∂ρh(ρ, θ)

and recall that Lemma 18 states that: h′(−1) > 1; that there exists a ρ such that h′(ρ) is
strictly decreasing in (−1, ρ) and strictly increasing in (ρ, 1); that ρ = ±1 are fixed points
of h(ρ) = h(ρ, θ). Note also that an explicit expression for h′(1) is given in (36). We show
that:

1. If h′(1) ≤ 1 then h(ρ) has no fixed points in (−1, 1).

2. If h′(1) > 1 then h(ρ) has a unique fixed point ρ# ∈ (−1, 1).

In the second case, we may deduce that h(ρ) > ρ for ρ ∈ (−1, ρ#) and h(ρ) < ρ for
ρ ∈ (ρ#, 1). By Lemma 18 item 2, h(ρ) is increasing, and so Proposition 23, item 4 and
analogous arguments imply that the iteration ρt+1 = h(ρt) will converge monotonically
upwards (resp. downwards) to ρ# if ρ0 ∈ (−1, ρ#] (resp. ρ0 ∈ [ρ#, 1)). By consistency
(Lemma 18) ρ# = ρ∗ for θ = θ∗.

Case 1: Assume h′(1) < 1. By the properties mentioned above, it must be that there
exists ρ̃ ∈ (−1, 1] such that

h′(ρ)


> 1, −1 ≤ ρ ≤ ρ̃
= 1, ρ = ρ̃

< 1, ρ̃ < ρ ≤ 1

. (38)

Assume by contradiction that ρ1 ∈ (−1, 1) is a fixed point. Further assume that there are
no other fixed points in (−1, ρ1).

13 Since h(−1) > 1, Proposition 23, item 2 implies that
h′(ρ1) ≤ 1. Hence, (38) implies that ρ1 ≥ ρ̃, and so h′(ρ) < 1 for all ρ ∈ (ρ1, 1). But this
implies

h(1) = h(ρ1) +

∫ 1

ρ1

h′(ρ)dρ ≤ ρ1 + (1− ρ1) · max
ρ∈[ρ1,1]

h′(ρ) < 1 (39)

which contradicts the property h(1) = 1.

Case 2: Assume h′(1) > 1. In this case h(ρ) < ρ for ρ close enough to ρ = 1 from
below, and as h′(−1) > 1 then h(ρ) > ρ for ρ close enough to ρ = −1 from above. By the
intermediate value theorem for h(ρ) − ρ for ρ ∈ [−1, 1], there must exists at least a single
fixed point ρ# for h(ρ) in (−1, 1). We show that ρ# is unique. By the properties mentioned
above, it must be that there exists −1 < ρ̃− < ρ̃+ < 1 such that

h′(ρ)



> 1, −1 ≤ ρ < ρ̃−

= 1, ρ = ρ̃−

< 1 ρ̃− < ρ < ρ̃−

= 1, ρ = ρ̃+

> 1, ρ̃+ < ρ ≤ 1

(40)

13. The fixed points of h(ρ) must be isolated; see Proposition 23, item 2.
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(and also h′(ρ) decreases in (−1, ρ) and increases in (ρ, 1) where ρ ∈ (ρ̃−, ρ̃+)). If there are
multiple fixed points in (−1, 1) then we denote by ρ# the minimal one. Since h′(−1) > 1
Proposition 23, item 2 implies that h′(ρ#) ≤ 1, and, in fact, a similar argument to (39)
together with (40) show that h′(ρ#) < 1. We next separately show that there are no fixed
points in (−1, ρ#) and in (ρ#, 1):

• Assume by contradiction that ρ1 ∈ (ρ#, 1) is a fixed point, and further assume that
there are no other fixed points in (ρ#, ρ1). By Proposition 23, item 2, it holds that
h′(ρ1) ≥ 1. Since h′(ρ) has (strictly) increased from h′(ρ#) < 1 to h′(ρ1) ≥ 1, (40)
implies that h′(ρ) is strictly increasing on (ρ1, 1). Hence, h(ρ) > ρ for all ρ ∈ (ρ1, 1).
However, as ρ = 1 is a fixed point, and h′(1) > 1, continuity of h(ρ) implies that there
exists ρ1 < ρ̃ < 1 such that h(ρ) < ρ for ρ ∈ (ρ̃, 1); a contradiction.

• Assume by contradiction that ρ1 ∈ (−1, ρ∗) is a fixed point, and further assume that ρ1
is such that there are no other fixed points in (−1, ρ1). Since h(−1) > 1, Proposition
23, item 2, implies that h′(ρ1) ≤ 1. We consider separately the cases h′(ρ1) < 1 and
h′(ρ1) = 1. First, if h′(ρ1) < 1, then there exists ρ such that h(ρ) < ρ for (ρ1, ρ).
Since h′(ρ#) < 1 it holds that there exists ρ̀ such that h(ρ) > ρ for ρ ∈ (ρ̀, ρ∗). By the
mean value theorem, there must exist at least one more fixed point ρ2 ∈ (ρ1, ρ#) for
which h′(ρ2) > 1 (Proposition 23, item 2). Since h′(ρ) has increased from h′(ρ1) < 1
to h(ρ2) > 1, (40) implies that we must have that ρ̃+ ≤ ρ2. But since ρ# > ρ2
(40) implies that h′(ρ#) > 1; a contradiction since it holds h′(ρ#) < 1. Second, if
h′(ρ1) = 1, then if, in addition, ρ1 = ρ̃+ then h′(ρ) is strictly increasing on (ρ1, 1)
which will result h′(ρ#) > 1; a contradiction. If h′(ρ1) = 1 and ρ1 = ρ̃− then a similar
proof to the case h′(ρ1) < 1 holds verbatim.

Proof (of Proposition 13) As discussed in the beginning of Section 2.4, we may assume d =
1, with η = 〈θ̂, θ∗〉. Per the statement of the theorem, we assume that θ > 0 and that there
exists a fixed point ρ# ∈ (−1, 1). According to Theorem 12, this fixed point must be unique
and so h(ρ, θη, ρ∗) > ρ for ρ ∈ (−1, ρ#) and h(ρ, θ | η, ρ∗) < ρ for ρ ∈ (ρ#, 1). Consequently,
the location of ρ# with respect to ρ∗ may be determined by comparing h(ρ∗, θ | η, ρ∗) to
= h(ρ∗, η | η, ρ∗) = ρ∗. Specifically, it suffices to show that h(ρ∗, θ | η, ρ∗) > ρ∗ for θ ∈ (0, η)
and h(ρ∗, θ | η, ρ∗) < ρ∗ for θ > η. In the former case, this implies that ρ# > ρ∗ and in the
latter case, this implies that ρ# < ρ∗ (and that such ρ# ∈ (−1, 1) exists). To show that
property, we take similar strategy as in the analysis of the mean iteration (Proposition 5),
and prove this “global” property by exploring h(ρ∗, θ | η, ρ∗) as a function of η for a fixed
θ. We thus denote it here explicitly as k(θ | η) := h(ρ∗, θ | η, ρ∗). Thus, it boils down to
show that for θ > 0 {

k(θ | η) < k(θ | θ) = ρ∗, θ > η

k(θ | η) > k(θ | θ) = ρ∗, θ < η
. (41)
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To this end, note that

k(θ | η)− k(θ | θ)
= E {(1− δ∗) [tanh (θU + βδ∗)− 1]− δ∗ [tanh (θU − βδ∗)− 1]}
= E [s(θU)] = s(θη) ∗ ϕ(η) (42)

where ϕ(η) = 1√
2π
e−η

2/2 is the Gaussian kernel and

s(u) := (1− δ∗) [tanh (u+ βδ∗)− 1]− δ∗ [tanh (u− βδ∗)− 1] .

Note that k(θ | η)− k(θ | θ) = 0 for η = θ. We will show that this is a unique zero-crossing
point of η 7→ k(θ | η) − k(θ | θ) by analyzing s(u). The function s(u) has a single zero-
crossing point at u = 0 since: (a) It can be shown by some simple algebra that the unique
root of s(u) = 0 is u = 0, and (b) s(u) changes from negative to positive at u = 0 since
limu→−∞ s(u) = −2ρ∗ < 0 and

ds(u)

du

∣∣∣∣
u=0

= (1− 2δ∗)
1

cosh2(βδ∗)
> 0 .

Thus, s = 0 is a unique zero-crossing point of s(u). As in the proof of Proposition 5, the
convolution relation (42) and the variation diminishing property of the Gaussian kernel
(Proposition 25 in Appendix C.3) imply that η 7→ k(θ | η) − k(θ | θ) has at most a single
zero-crossing point as a function of η ∈ R (note that for the sake of the proof we allow
η < 0). Clearly, this zero-crossing point can only be at η = θ. To show that this is indeed a
zero crossing point, we show that k(θ | η)− k(θ | θ) changes from negative to positive from
η = 0 to η →∞. Indeed, for η = 0

k(θ | η = 0)− k(θ | θ) = E [tanh (θZ + βδ∗)]− ρ∗ < 0

because k(θ | η = 0)− k(θ | θ)|θ=0= tanh(βδ∗)− ρ∗ = 0 and

∂ [k(θ | η = 0)− k(θ | θ)]
∂θ

= E
[

Z

cosh2 (θZ + βδ∗)

]
< 0

(by conditioning on |Z| and using δ∗ ≤ 1
2 and θ, βδ∗ ≥ 0 ). For η → ∞, since s(u) ≥ 0 for

all u > 0, (42) implies that k(θ | η) − k(θ | θ) > 0 for all η large enough. Thus, η = θ is a
unique zero-crossing point of k(θ | η)− k(θ | θ) and (41) holds.

5.2 Empirical Iteration

Proof (of Theorem 14) Let hn(ρ) ≡ hn(ρ, θ∗). Under the high probability event (15), it
holds that hn(ρ) is sandwiched between the envelopes

hn(ρ) ≤ h(ρ) + ηω1 := h+(ρ)

and
hn(ρ) ≥ h(ρ)− ηω1 := h−(ρ)
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and where η = ‖θ∗‖. Thus, for the weight iteration, the empirical error is absolute, i.e.,
comprised of an additive term ηω1 which does not depend on ρ. Furthermore, the trun-
cated empirical iteration [hn(ρ)]Cρ is bounded by the truncated envelopes [h±(ρ)]Cρ . The
truncation does not affect the analysis of the lower envelope, but will be used for the error
analysis of the upper envelope.

By repeating the arguments in the proof of Theorem 12, it can be shown that h−(ρ) has
only two fixed points in [−1, 1], denoted here by ρ− and ρ, such that ρ− ↑ ρ∗ and ρ ↓ −1
as ω1 → 0 (or, n→∞).14 Hence, h(ρ) > ρ for ρ ∈ (ρ, ρ−), and if the iteration is initialized
in ρ0 ∈ (ρ, ρ−) it will converge to ρ−. We next show that this holds for initialization at

ρ0 = 0. It is readily verified that η 7→ 1−e−η2/2
η2

is an even function of η which is strictly

decreasing for η > 0. Since η ≤ Cθ it holds that 1 − e−η2/2 ≥ C1η
2 for C1 = 1−e−C2θ/2

C2
θ

> 0.

Then, Lemma 18, item 1 implies that if η > 2
C1
· ω1
ρ∗

then

h−(0) ≥ ρ∗
[
1− e−η2/2

]
− ηω1 ≥ C1ρ∗η

2 − ηω1 > 0 .

Hence the iteration ρt+1 = h−(ρt) with ρ0 = 0 will converge to ρ−. Analogous claims hold
for the upper envelope for which clearly h+(0) > 0. We next bound the errors ρ∗ − ρ− and
ρ+−ρ∗ and the convergence times of the envelops. For the lower envelope, the truncation is

inconsequential. Lemma 18, item 4 implies that h′−(ρ) ≤ min{e−1, 1− η2

12} for all ρ ∈ [0, ρ∗],
and so

ρ− = h−(ρ−)

= h(ρ−)− ηω1

= h(ρ∗)−
∫ ρ∗

ρ−

h′(ρ)dρ− ηω1

= ρ∗ −
∫ ρ∗

ρ−

h′(ρ)dρ− ηω1

≥ ρ∗ −min{e−1, 1− η2

12
} · (ρ∗ − ρ−)− ηω1 .

Thus, the error is at most

ρ∗ − ρ− ≤
ηω1

1−max{e−1, 1− η2

12}
≤ max

{
12
ω1

η
, 2Cθω1

}
≤ 12C2

θ ·
ω1

η
.

Further note that as ρ∗ >
2
C1
· ω1
η was assumed, this also implies that ρ− > ρ∗

2 . We now

turn to the convergence time. Again, since h′−(ρ) ≤ min{e−1, 1− η2

12} < 1 for all ρ ∈ (0, ρ−),
Proposition 23, item 6, implies that |ρt − ρ−|≤ ω1

η for all

t ≥ 1

1−max{e−1, 1− η2

12}
log

[
ω1

η · ρ−

]
.

14. Indeed, the proof Theorem 12 mostly uses the first order derivative h′(ρ) which is not changed by absolute
errors.
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The r.h.s. is at most 12C2
θη
−2 log(C1).

For the upper envelope, we use again Lemma 18, item 4 implies that h′(ρ∗) ≤ max{e−1, 1−
η2

12}. Furthermore, by the truncation operation ρ ≤ Cρ and Lemma 18, item 5 imply that

h′′(ρ) ≤ C′′hη
2. Since ρ+ − ρ∗ → 0 as n → ∞ there exists n0 such that

C′′h
2 (ρ+ − ρ∗) ≤ 1

24
and so by Taylor expansion, for any ρ ∈ [ρ∗, ρ+]

h′(ρ) ≤ h′(ρ∗) + C′′h(ρ− ρ∗)η2

≤ max{e−1, 1− η2

24
} .

With this bound on the first derivative, the analysis is similar to the one made for the lower
envelope.
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Appendix A. A Proof for the Concentration Inequality of Section 2.1

The proof of Theorem 3 follows the analysis of Wu and Zhou (2019, Proof of Theorem
4), where here, uniform convergence of the relative error should be assured for all possible
βρ, and uniform convergence of the error is also established for the weight iteration. For
legibility of the proof, we summarize the required bounds on the moments and the tail
bounds in the following lemma.

Lemma 19 Let X ∼ Pθ∗,ρ∗ for arbitrary ρ∗ ∈ (−1, 1) and θ∗ ∈ Rd. There exists an absolute
constant c > 0 and n0 ∈ N such that the following holds:

1. Population moments:

E‖X‖2= d+ ‖θ∗‖2 ,

and

E‖X‖3≤ c(‖θ∗‖+
√
d)3 .

2. Concentration of empirical moments:

P
[
En
[
‖X‖2

]
> 2‖θ∗‖2+10d

]
≤ e−dn

and for all n > n0

P
[
En
[
‖X‖3

]
> 4‖θ∗‖3+16d3/2 + 16n3/2

]
≤ e−cn .
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3. Concentration of projections: For any u, v ∈ Sd−1 and b > 0 and n > 0

P

[
E [〈u,X〉]− En [〈u,X〉] >

√
(1 + ‖θ∗‖2)

bd log n

n

]
≤ 2 exp (−cbd log n) ,

and for any n ≥ bd log n

P

[
|E [〈u,X〉〈v,X〉]− En [〈u,X〉〈v,X〉]| > (1 + ‖θ∗‖2)

√
bd log n

n

]
≤ 2 exp (−cbd log n) .

4. Concentration of empirical EM iterations at a single point: For any u, v ∈ Sd−1, b > 0
and n ≥ bd log n

P

[
|〈u, fn(θ, ρ)〉 − 〈u, f(θ, ρ)〉| ≥ (‖θ‖+βρ) · (1 + ‖θ∗‖2)

√
bd log n

n

]
≤ 2 exp (−cbd log n) .

Proof

1. The second moment follows from direct computation. For the third moment, we
use ‖X‖≤ ‖θ∗‖+‖Z‖ where Z ∼ N(0, Id). By Vershynin (2018, Theorem 3.1.1)
‖‖Z‖−

√
d‖ψ2. 1 and so also ‖‖Z‖‖ψ2.

√
d. Hence, ‖‖X‖‖ψ2. ‖θ∗‖+

√
d. The re-

sults then follows the moment property of the sub-gaussian ‖X‖ (Vershynin, 2018,
Proposition 2.5.2).

2. Since En
[
‖X‖2

]
≤ 2‖θ∗‖2+2En

[
‖Z‖2

]
, where nEn

[
‖Z‖2

]
∼ χ2

dn using the χ2 tail
bound (54) in Appendix C.1 it holds that

P
[
En
[
‖Z‖2

]
≥ 5d

]
≤ e−dn .

Hence,

P
[
En
[
‖X‖2

]
> 2‖θ∗‖2+10d

]
≤ e−dn .

For the third moment,

En
[
‖X‖3

]
≤ 4‖θ∗‖3+4En

[
‖Z‖3

]
≤ 4‖θ∗‖3+4

(
max
i∈[n]
‖Zi‖

)3

.

Since ‖‖Zi‖−
√
d‖ψ2. 1 we have P[‖Zi‖−

√
d >
√
n] ≤ e−c0n for some c0 > 0. By the

union bound, there exists n0(c0) and c1 > 0 such that for all n > n0

P
[
max
i∈[n]
‖Zi‖≥

√
d+
√
n

]
≤ ne−c0n ≤ e−c1n .

Thus, En
[
‖Z‖3

]
≤ (
√
d+
√
n)3 ≤ 4d3/2 +4n3/2 with probability larger than 1−e−c1n.
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3. We note that ‖〈u,X〉‖ψ2≤
√

1 + ‖θ∗‖2 for any u ∈ Sn−1, and so the first claim fol-
lows from sub-gaussian concentration (Vershynin, 2018, Proposition 2.6.1). Next, by
Vershynin (2018, Lemma 2.7.7)

‖〈u,X〉 · 〈v,X〉‖ψ1
≤ ‖〈u,X〉‖ψ2

‖〈v,X〉‖ψ2
= 1 + ‖θ∗‖2

and Bernstein’s inequality (Vershynin, 2018, Corollary 2.8.3) implies the required
inequality for any b > 0 such that n ≥ bd log n.

4. For the mean iteration using the fact that product of sub-gaussian is sub-exponential
(Vershynin, 2018, Lemma 2.7.7) (twice)∥∥∥〈u,X〉 · tanh

(
‖θ‖〈θ̂, X〉+ βρ

)∥∥∥
ψ1

≤ ‖θ‖
∥∥∥〈u,X〉 · 〈θ̂, X〉∥∥∥

ψ1

+ βρ ‖〈u,X〉‖ψ1

≤ ‖θ‖· ‖〈u,X〉‖ψ2

∥∥∥〈θ̂, X〉∥∥∥
ψ2

+ βρ ‖〈u,X〉‖ψ2

≤ (‖θ‖+βρ) · (1 + ‖θ∗‖2) .

Bernstein’s inequality (Vershynin, 2018, Corollary 2.8.3) implies the required inequal-
ity for any b > 0 such that n ≥ bd log n.

Define for some arbitrary nonnegative constants {Cj > 0}j∈[3] the events

E(1)n (C1) :=
{
fn(θ, ρ) ∈ Bd(C1), ∀θ ∈ Rd, ∀ρ ∈ B(Cρ)

}
,

E(2)n (C2, C1) :={
‖fn(θ, ρ)− f(θ, ρ)‖≤ C2 (‖θ‖+βρ) ·

√
d log n

n
, ∀θ ∈ Bd(C1), ∀ρ ∈ B(Cρ)

}
,

E(3)n (C3) :=

{
|hn(ρ, θ)− h(ρ, θ)| ≤ C3‖θ‖·

√
log n

n
, ∀θ ∈ Rd, ∀ρ ∈ (−1, 1)

}
.

To prove the theorem we will show that there exist constants c, C,C3 > 0 which depend on
(Cθ,Cρ) such that for all n ≥ Cd log n

P
[
E(1)n (C1) ∩ E(2)n (C2, C1) ∩ E(3)n (C3)

]
≥ 1− 1

ncd

with C1 := 5(
√
d+Cθ) and C2 = C

(
1 + C2

θ

)
. The proof is then completed using the relation

Cβρ ≤ |βρ|≤ Cβρ (with Cβ and Cβ depending on Cρ).

For E(1)n (C1) we note that

‖fn(θ, ρ)‖≤ ‖En[X tanh(〈θ,X〉+ β)]‖≤ En[‖X‖] ≤
√

En[‖X‖2]

and then use Lemma 19.
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For E(2)n (C2, C1), let ε ≤ 1
2 be given, and let C ⊂ Sd−1 be an ε-net of Sd−1 in Euclidean

distance, whose size satisfies |C|≤ (3ε )
d, whose existence is assured by Vershynin (2018,

Corollary 4.2.13). By a standard argument (Vershynin, 2018, Exercise 4.4.2)

‖fn(θ, ρ)− f(θ, ρ)‖≤ 2 ·max
u∈C
〈u, fn(θ, ρ)− f(θ, ρ)〉 .

Furthermore, any θ̂ ∈ Sd−1 may be approximated by v ∈ C such that ‖θ‖·‖v − θ̂‖≤ ε‖θ‖.
As tanh is 1-Lipschitz∣∣∣E[〈u,X〉 tanh(‖θ‖〈θ̂, X〉+ βρ)]− E[〈u,X〉 tanh(‖θ‖〈v,X〉+ βρ)]

∣∣∣ ≤ ε‖θ‖·E‖X‖2 .
Repeating the same argument for the empirical iteration we get

‖fn(θ, ρ)− f(θ, ρ)‖ ≤ 2 · max
(u,v)∈C2

〈u, fn(‖θ‖·v, ρ)− f(‖θ‖·v, ρ)〉+ ε‖θ‖·
(
E‖X‖2+En‖X‖2

)
:= max

(u,v)∈C2
Φ(u, v, ‖θ‖, ρ).

Define the sets A = B(ε) × B(ε) and A = B(C1) × B(C1)\A. By the union bound, the
required probability is bounded as:

P
[
E(2)n (C2, C1)

]
≤

∑
(u,v)∈C2

P

[
∃(‖θ‖, ρ) ∈ A: Φ(u, v, ‖θ‖, ρ) > C2 (‖θ‖+βρ) ·

√
d

n
log n

]
(43)

+ P

[
∃(‖θ‖, ρ) ∈ A: Φ(u, v, ‖θ‖, ρ) > C2 (‖θ‖+βρ) ·

√
d

n
log n

]
. (44)

The probability pertaining to the set A in (43) is analyzed as follows. Since tanh′ ≤ 1 and
|tanh′′|≤ 1 Taylor expansion of tanh around 0 implies

|E [〈u,X〉 tanh (‖θ‖〈v,X〉+ βρ)]− E [〈u,X〉 (‖θ‖〈v,X〉+ βρ)]|
≤ ‖θ‖2·E

[
|〈u,X〉| 〈v,X〉2

]
+ β2ρ · E [|〈u,X〉|] .

Repeating the same argument for the empirical iteration, and then using the triangle and
Cauchy-Schwartz inequalities, we obtain

Φ(u, v, ‖θ‖, ρ) ≤ ‖θ‖|E [〈u,X〉〈v,X〉]− En [〈u,X〉〈v,X〉]|+ βρ |E [〈u,X〉]− En [〈u,X〉]|

+ ‖θ‖2E
[
‖X‖3

]
+ β2ρ

√
E [‖X‖2] + ‖θ‖2En

[
‖X‖3

]
+ β2ρ

√
En [‖X‖2]

+ ε‖θ‖·
(
E‖X‖2+En‖X‖2

)
.

By Lemma 19, for any given (u, v, ‖θ‖, βρ) ∈ C2 × A, as long as n ≥ bd log n, there exists
absolute constants {ci} such that

P

[
Φ(u, v, ‖θ‖, ρ)

‖θ‖+βρ
> c1

(
1 + ‖θ∗‖2

)√bd log n

n
+ ε ·

(
‖θ∗‖3+n3/2

)]
≤ 4 exp (−c2bd log n) + exp(−c2n) + exp(−dn) ≤ exp(−c3bd log n) .
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We will choose ε ≤ c4
n2 with sufficiently small c4 and b to be sufficiently large so that the

probability in (43) is bounded by exp(−c4bd log n) for C2 =
(
1 + C2

θ

)√
bd
n log n.

The probability of A in (44) is analyzed as follows. Let Rβ be an ε2-net of [−Cβ,Cβ]
of size 2Cβ · ε−2, and let Rθ be an ε2-net of [0, C1] of size C1 · ε−2. As tanh is 1-Lipschitz,
and by the triangle and Cauchy-Schwartz inequalities, for any (u, v) ∈ C2 and (‖θ‖, βρ) ∈ A
there exists (s, γ) ∈ Rβ ×Rθ such that

|E[〈u,X〉 tanh(‖θ‖〈v,X〉+ βρ)]− E[〈u,X〉 tanh(s〈v,X〉+ γ)]|

≤ ε2
(
E
[
‖X‖2

]
+
√
E‖X‖2

)
≤ ε(‖θ‖+βρ)

(
E
[
‖X‖2

]
+
√
E‖X‖2

)
where the first term in the r.h.s. (resp. second) corresponds to the approximation of ‖θ‖
with s (resp. β with γ), and the second inequality is since (‖θ‖, ρ) ∈ A. Repeating the
same argument for the empirical iteration, we deduce

Φ(u, v, ‖θ‖, ρ) ≤ max
(s,γ)∈Rθ×Rβ

|E [〈u,X〉 · tanh (s〈v,X〉+ γ)]− En [〈u,X〉 · tanh (s〈v,X〉+ γ)]|

+ 2ε(‖θ‖+βρ)
(
E
[
‖X‖2

]
+ En

[
‖X‖2

]
+
√

E‖X‖2 +
√
En [‖X‖2]

)
:= Ψ(u, v, s, ργ) .

By Lemma 19, for any given (u, v, s, γ) ∈ C2×Rθ×Rβ, and any b > 0 such that n ≥ bd log n
there exists absolute constants {ci}

P

[
Ψ(u, v, s, ργ) > (s+ γ) · (1 + ‖θ∗‖2)

√
bd log n

n
+ c1ε(s+ γ)(d+ ‖θ∗‖2)

]
≤ 2 exp (−c2bd log n) + exp(−dn) ≤ exp(−c3bd log n) . (45)

We will choose ε ≤ c4

√
d logn
n for sufficiently small c4 so that the probability in (45) is

bounded by exp(−c3bd log n) for

C2 = c5 · (‖θ‖+βρ) · (1 + ‖θ∗‖2)
√
bd log n

n
.

By a union bound over Rθ×Rβ of size 2CβC1ε
−4, the probability in (44) is upper bounded

by exp(−c6bd log n). The proof is then completed by another union bound over C2 whose
size is (3ε )

2d, and taking b to be large enough.

We next turn to the analysis for E(3)n (C3, C1), which deals with the error of the weight
iteration. Since this is, in essence, a one-dimensional iteration, the analysis is somewhat
simpler. Since tanh is 1-Lipschitz, for all θ ∈ Rd

|tanh(‖θ‖u+ βρ)− tanh(‖θ‖v + βρ)| ≤ ‖θ‖·|u− v| .
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LetX(n) be a random variable distributed according to the empirical distribution of {Xi}ni=1.
Hence, by coupling,

|hn(ρ, θ)− h(ρ, θ)| ≤
∣∣∣E [tanh(‖θ‖〈θ̂, X〉+ βρ)− tanh(‖θ‖〈θ̂, X(n)〉+ βρ)

]∣∣∣
≤ E

[∣∣∣tanh(‖θ‖〈θ̂, X〉+ βρ)− tanh(‖θ‖〈θ̂, X(n)〉+ βρ)
∣∣∣]

≤ ‖θ‖E
[∣∣∣〈θ̂, X〉 − 〈θ̂, X(n)〉

∣∣∣]
≤ ‖θ‖·W1(ν, νn) (46)

where W1 is the first order Wasserstein distance, ν = L(〈θ̂, X〉) and νn is the empirical law
of {〈θ̂, Xi〉}ni=1. Now, 〈θ̂, X〉 ∼ (1 − δ∗)N(〈θ̂, θ∗〉, 1) + δ∗N(−〈θ̂, θ∗〉, 1) and so ‖〈θ̂, X〉‖ψ2≤√

1 + ‖θ∗‖2 for any θ̂ ∈ Sn−1. The concentration inequality of Fournier and Guillin (2015,

Theorem 2, Case 1) with the choices d = 1 (the dimension of 〈θ̂, X〉), p = 1 (Wasserstein
distance order) and α = 2 (for the ψα condition E[eγ|X|

α
] < ∞) implies that for x0 > 0

there exists c, C > 0 such that

P

[
W1(ν, νn) >

√
log n

n

]
≤ C · exp (−c log n) . (47)

The bounds (46) and (47) imply that E(3)n (C3) has high probability as stated in the theorem.

Appendix B. Minimax Rates

Theorem 20 (Minimax rates for mean estimation) For any d ≥ 2, n ∈ N and η ≥ 0, let θ̃

be any estimator of θ∗ based on X = (X1, . . . , Xn)
i.i.d.∼ Pθ∗,ρ∗. Then, for d ≤ n

sup
θ̃(ρ∗)

inf
‖θ∗‖=η

Eθ∗,ρ∗
[
`(θ̃, θ∗)

]
�



η, η ≤ 1
ρ∗

√
d
n

1
ρ∗

√
d
n ,

1
ρ∗

√
d
n < η < ρ∗

1
η

√
d
n , ρ∗ < η < 1√

d
n , η > 1

(48)

if ρ∗ ≥ ( dn)1/4 and

sup
θ̃(ρ∗)

inf
‖θ∗‖=η

Eθ∗,ρ∗
[
`(θ̃, θ∗)

]
�


η, η ≤

(
d
n

)1/4
1
η

√
d
n ,

(
d
n

)1/4
< η < 1√

d
n , η > 1

.

if ρ∗ ≤ ( dn)1/4.
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Proof
Upper bounds: The error rates in all cases except for the second case in (48) were shown

to be achieved by a spectral method (Wu and Zhou, 2019, Appendix B). Specifically, in case
ρ∗ ≤ ( dn)1/4 then the knowledge of the weight can be completely ignored by the estimator.

Furthermore, the same method achieves 1
η

√
d
n in the third case of (48). We next show that

an error rate of 1
ρ∗

√
d
n is also achievable by the estimator θ̃(ρ∗) = 1

ρ∗
En[X]. Indeed, let

X = Sθ∗ + Z as in (2). Then,

Eθ∗,ρ∗
[
`(θ̃(ρ∗), θ∗)

]
≤ E‖θ̃(ρ∗)− θ∗‖

≤ ‖θ∗‖
ρ∗

E [|En[S]− ρ∗|] +
1

ρ∗
E [‖En[Z]‖]

.
‖θ∗‖
ρ∗
√
n

+
1

ρ∗

√
d

n

≤ 1

ρ∗

√
d

n

where the penultimate asymptotic inequality follows from: (a) For the first term, as ‖En[1{S =
−1}]− δ∗‖ψ2≤ c1√

n
for some universal constant c1 > 0 (Vershynin, 2018, Example 2.5.8. and

Proposition 2.6.1), and so

E [‖En[S]− ρ∗‖] = 2E [|En[1{S = −1}]− δ∗)|] ≤
c2√
n

for some universal constant c2 > 0 (Vershynin, 2018, Proposition 2.5.2). (b) For the second

term, similarly, ‖‖En[Z]‖‖ψ2≤ c3

√
d
n for some universal constant c3 > 0 as in Lemma 19,

and using the result of Vershynin (2018, Proposition 2.6.1).
Lower bounds: The proof follows that of Wu and Zhou (2019, Appendix B), which uses

Fano’s method (Yang and Barron, 1999) for all cases which are not lower bounded by the `2

error-rate of the standard Gaussian location model min{η,
√

d
n}. Thus, we mainly highlight

the main difference and omit all other details. First note that if |ρ∗|≥ 1
2 (say), then the

lower bound (48) us again equivalent to the `2 error-rate of the standard Gaussian location
model, and thus no proof is required. Thus, we may henceforth only consider the case
|ρ∗|≤ 1

2 . The lower bound of Wu and Zhou (2019) is based on Lemma 27 therein which is
here generalized from ρ = 0 to any ρ ∈ (−1, 1) as follows:

Lemma 21 Let 0 ≤ η ≤ 1 and |ρ|≤ 1
2 . Then there exists a universal constant C such that

for any d ≥ 1 and u, v ∈ Sd−1

dKL(Pη·u,ρ||Pη·v,ρ) ≤ C · `2(u, v) · η2(η2 + ρ2) .

Proof By symmetry, it suffice to prove

dKL(Pη·u,ρ||Pη·v,ρ) ≤ C · ‖θ̂1 − θ̂2‖2·η2(η2 + ρ2) ,

and by rotational invariance of the normal distribution it can be assumed that v = e1 =
(1, 0, . . . , 0). Let λ = max {1− u1, ‖u⊥‖} < 1 where u⊥ = (u2, . . . , ud) (and similar notation
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will be used for any d-dimensional vector). Further, let Q be the distribution of X =
(X1, . . . Xd) ∈ Rd under θ∗ = ηv = ηe1, to wit Q = QX1,...Xd = Pη,ρ∗ ⊗N(0, Id−1) (which is
a product distribution), and let P be the corresponding distribution under θ∗ = ηu. From
the chain rule of the KL divergence

dKL(Pη·u,ρ||Pη·v,ρ) = dKL(PX1 ||QX1) + EPX1

[
dKL(PX⊥|X1

||N(0, Id−1))
]

:= (I) + (II).

We bound the two KL divergence terms using the corresponding chi-square divergence.
Bounding (I): In one dimension,

pη,ρ(x) = e−η
2/2ϕ(x)

[(
1 + ρ

2

)
eθx +

(
1− ρ

2

)
e−θx

]
= e−η

2/2ϕ(x) [cosh(ηx) + ρ sinh(ηx)] .

Hence, denoting for brevity

αε,η,ρ(x) := e−(η−ε)
2/2 (cosh ((η − ε)x) + ρ sinh ((η − ε)x))− e−η2/2 (cosh (ηx) + ρ sinh (ηx))

we get for ε = ηλ

(I) = dKL(PX1 ||QX1) (49)

≤ dχ2(Pη−ε,ρ||Qη,ρ)

= eη
2/2 ·

∫
ϕ(x) ·

α2
ε,η,ρ(x)

cosh(ηx) + ρ sinh(ηx)
dx

(a)

≤
√

4e

3
·
∫
ϕ(x) · α2

ε,η,ρ(x)dx

(b)
=

√
4e

3
· e−(η−ε)2

∫
ϕ(x)

[
cosh2 ((η − ε)x) + ρ2 sinh2 ((η − ε)x)

]
dx

−
√

4e

3
· 2e−(η−ε)2/2−η2/2

∫
ϕ(x)

[
cosh ((η − ε)x) cosh (ηx) + ρ2 sinh ((η − ε)x) sinh (ηx)

]
dx

+

√
4e

3
· e−η2/2

∫
ϕ(x)

[
cosh2 (ηx) + ρ2 sinh2 (ηx)

]2
dx

(c)
=

√
4e

3
·
[
cosh

(
(η − ε)2

)
+ cosh

(
η2
)
− 2 cosh (η(η − ε))

]
+

√
4e

3

[
sinh

(
(η − ε)2

)
+ sinh

(
η2
)
− 2 sinh (η(η − ε))

]
ρ2

≤ C1ε
2(η2 + ρ2) = C1λ

2η2(η2 + ρ2) , (50)

where (a) is since by the inequality of arithmetic and geometric means cosh(t) +ρ sinh(t) =(
1+ρ
2

)
eθx +

(
1−ρ
2

)
e−θx ≥

√
1− ρ2 and using 0 < η < 1 and |ρ|< 1

2 ; (b) is obtained by

expanding the square, and noting sinh is odd and that as ϕ(x) ∝ e−x2/2 is an even function,∫
ϕ(x)f(x)dx = 0 for any odd function f ; (c) is obtained by the identities∫

ϕ(x) cosh(ηx)2dx = eη
2

cosh(η2),

∫
ϕ(x) cosh(ηx)2dx = eη

2
sinh(η2) ,
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∫
ϕ(x) cosh(η1x) cosh(η2x)dx =

1

2
e

(η1+η2)
2

2 +
1

2
e

(η1−η2)
2

2 ,

∫
ϕ(x) sinh(η1x) sinh(η2x)dx =

1

2
e

(η1+η2)
2

2 − 1

2
e

(η1−η2)
2

2 ;

(d) is by Taylor expansion of cosh and sinh around η2, since |ε|≤
√

2η ≤
√

2 and where
C1 > 0 is a universal constant.

Bounding (II): The proof follows that of Wu and Zhou (2019) up until almost the very
last step. Recall that under P one can write X = Ri + Zi for i ∈ [d] where Ri = S · ηui
where S ∈ {±1} and P[S = −1] = δ∗. Then,

(II) = EPX1

[
dKL(PX⊥|X1

||N(0, Id−1))
]

(a)

≤ E
[
dχ2(PX⊥|X1

||N(0, Id−1))
]

(b)

≤ η2 ·
d∑
i=2

u2iEPX1

[
E2[R | X1]

]
+ C2(ηλ)4

(c)
= η2 ·

d∑
i=2

u2iEPX1

[
tanh2(u1X1 + βρ)

]
+ C2(ηλ)4

(d)

≤ η2 ·
d∑
i=2

u2iEPX1

[
2(u21η

2X2
1 + β2ρ)

]
+ C2(ηλ)4

(e)

≤ 4η4λ2 + 2C3η
2ρ2λ2 + C2(ηλ)4

(f)

≤ C4η
2(η2 + ρ2)λ2 , (51)

where (a) is by bounding the KL divergence using the chi-square divergence; (b) stems from
the Ingster-Suslina identity (Ingster and Suslina, 2012) along with Taylor expansion (see
details in Wu and Zhou, 2019, Appendix B); (c) follows from Eη,ρ[S | X1] = tanh(ηX1 +βρ)
(see Equation 5); (d) follows from tanh2(x) ≤ x2; (e) follows from |u1|≤ 1, ‖u⊥‖≤ λ,
EPX1

[X2
1 ] = 1 + η2 ≤ 2, and βρ ≤ C3ρ for all |ρ|≤ 1

2 and C3 > 0 is a universal constant; (f)
holds for a universal constant C4 > 0 since λ < 1.

Combining (50) and (51) we complete the proof of the lemma.

For completeness, we outline the proof of the lower bound using Fano’s method. The
method states that if there exists a set of M parameters ΘM = {θ1, . . . , θM} such that
I(θ;X) . logM and ‖θm−θm′‖≥ εη for all m,m′ ∈ [M ],m′ 6= m then the lower bound is of
the order εη. This is shown by bounding the mutual information with the KL radius of ΘM

as I(θ;X) . nmaxm∈[m] dKL(Pθm,ρ||Pθ0,ρ) for some θ0. Wu and Zhou (2019, Appendix B)

constructed a set {θ0} ∪ΘM with M ≥ eC0d for some C0, and a small constant c0 > 0 such
that: (a) ‖θm‖= η for all m ∈ 0 ∪ [m]; (b) ‖θm − θm′‖≥ c0εη for all m,m′ ∈ [M ],m′ 6= m;
(c) ‖θm − θ0‖≤ 2c0εη for all m ∈ [m]. By Lemma 21

I(θ;X)

logM
� I(θ;X)

d
.
n

d
max
m∈[m]

dKL(Pθm,ρ||Pθ0,ρ) .
n

d
ε · η2(max{η, ρ})2
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and so choosing

ε = min{1, 1

ηmax{η, ρ}

√
d

n
}

yields a minimax lower bound of rate min{η, 1η
√

d
n ,

1
ρ

√
d
n}.

Theorem 22 (Minimax rates for weight estimation) For any d, n ∈ N let ρ̃ be any estimator

of ρ∗ based on X = (X1, . . . , Xn)
i.i.d.∼ Pθ∗,ρ∗. Then,

sup
ρ̃(θ∗)

inf
ρ∗∈B(ρ)

Eθ∗,ρ∗ [`(ρ̃, ρ∗)] �


ρ, ‖θ∗‖≤ ρ√

n
1

‖θ∗‖
√
n
, ρ√

n
< ‖θ∗‖< 1

1√
n
, ‖θ∗‖> 1

.

Proof Given the measurements {Xi}ni=1 the projections {〈θ̂∗, Xi〉}ni=1 are sufficient statis-
tics for the estimation of ρ∗. Hence we may assume that d = 1, and we may write
Xi = Siθ∗ + Zi ∈ Rd for i ∈ [n] where Si ∈ {±1} and P[Si = −1] = δ∗

Upper bound: The first case can be achieved by the trivial estimator ρ̃ = 0. For the

other two cases, as in the proof of Theorem 20, the estimator ρ̃(θ∗) = 1
‖θ∗‖〈θ̂∗,En[X]〉 can

be shown to achieve an error rate of max{ 1√
n
, 1
‖θ∗‖
√
n
} where the first term stems from the

empirical error of En[S], and the second term is due to the additive error Z.

Lower bound: If ‖θ∗‖> 1 we may bound the error rate of the given estimator by the
error rate of an estimator which known the noise sequence {Zi}ni=1, which, equivalently, has
direct access to {Si}ni=1. This is a simple Bernoulli model and the error rate is 1√

n
. We thus

next assume that ‖θ∗‖= η < 1. As the calculation in the bound of term (I) in Lemma 21,

dKL(Pη,ρ||Pη,0) ≤ dχ2(Pη,ρ||Pη,0)

= e−η
2/2

∫
ϕ(x)

ρ2 · sinh2(ηx)

cosh(ηx)
dx

≤ e−η2/2
∫
ϕ(x)ρ2 · sinh2(ηx)dx

= eη
2/2 sinh(η2)ρ2

≤ Cη2ρ2 ,

for some C > 0 using sinh(t) ≤ C|t| for t ≤ 1. Le-Cam’s two point argument with
ρ = c0 min{ρ, 1

η
√
n
} and c0 > 0 small enough then results a minimax error rate of 1

η
√
n

.

Appendix C. Miscellaneous

In this Appendix we summarize various results which are used in the proofs.
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C.1 Useful Results

We collect here several useful results which are repeatedly used throughout the paper:

• Relations for inverse temperature parameter: For β := 1
2 log 1−δ

δ it holds that tanh(β) =

1− 2δ, cosh(β) = 1√
4δ(1−δ)

, and dβδ
dδ = − 1

2δ(1−δ) and
dβρ
dρ = 1

1−ρ2 .

• Change of measure: Let V ∼ (1− δ) ·N(θ, 1) + (1− δ) ·N(−θ, 1) and let Z ∼ N(0, 1).
Then, for any integrable function f

E [f(V )] = e−θ
2/2 · E [f(Z) · cosh(θZ + βδ)]

= e−θ
2/2 · E

[
f(Z) ·

(
(1− δ)eθZ + δe−θZ

)]
. (52)

• For U ∼ N(η, 1) (Daskalakis et al., 2017, Lemma 2)

E [tanh(Uθ)] ≥ 1− e−ηθ/2 , (53)

• (a+ b)k ≤ 2k−1(ak + bk) for k ≥ 1.

• Chi-square tail bound: (Boucheron et al., 2013, Remark 2.11)

P
[
χ2
k ≥ 2k + 3t

]
≤ P

[
χ2
k − k ≥ 2

√
ktk + 2t

]
≤ e−t. (54)

• Stein’s identity: (Vershynin, 2018, Lemma 7.2.3) Let Z ∼ N(0, σ2). Let f be a
differentiable function such that E|f ′(Z)|<∞. Then,

E [f(Z) · Z] = σ2E
[
f ′(Z)

]
. (55)

• Let V ∼ (1− δ)N(θ, 1) + δN(−θ, 1) with θ > 0 and δ < 1
2 . Then P[V = v | |V |= v] >

P[V = −v | |V |= v] for any v > 0. This follows from Chebyshev’s sum inequality

P[V = v | |V |= v]

P[V = −v | |V |= v]
=

(1− δ)ϕ(η − v) + δϕ(η + v)

(1− δ)ϕ(η + v) + δϕ(η − v)
> 1 (56)

since 1− δ > δ and ϕ(η + v) < ϕ(η − v).

• Gaussian average of odd function. Let f(u) be an odd function which is positive on
R+ and negative on R−. Let U be a continuous random variable such that P[U = u |
|U |= u] ≥ P[U = −u | |U |= u]. Then, E[f(U)] ≥ 0. This is satisfied for U ∼ N(η, σ2)
with η > 0.

C.2 Convergence Properties of One-Dimensional Iterations

Proposition 23 (Convergence properties of one-dimensional iterations) Let θ 7→ h(θ) be
an analytic monotonically increasing function, and h(θ) − θ is not identically 0. Let θ0 be
given, and suppose that either supθ>θ0 h(θ) <∞ or limθ→∞ h

′(θ) < 1. Let h+(θ) be another
function which satisfies the same properties as h(·).
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1. If h(θ0) > θ0 for some θ0 then h(θ) has at least a single fixed point in (θ0,∞).

2. Let {θ̃k} be an enumeration of the fixed points of h(θ). For all k ≥ 1, if h′(θ̃k) < 1
then h′(θ̃k+1) ≥ 1 and if h′(θ̃k) > 1 then h′(θ̃k+1) ≤ 1.

3. Assume that h(θ) is strictly concave on [θ0,∞). If h(θ0) > θ0 then h(θ) has a single
fixed point in (θ0,∞). If h(θ0) ≤ θ0 then h(θ) has at most two fixed points in (θ0,∞).

4. Consider the iteration θt+1 = h(θt). If θ1 = h(θ0) > θ0 (resp. θ1 < θ0) then {θt+1}
is monotonically increasing (resp. decreasing) and converges to a fixed point θ∞. It
holds that h′(θ∞) ≤ 1 (resp. h′(θ∞) ≥ 1).

5. Consider, in addition, the iteration θ+t+1 = h+(θ+t ) such that θ0 = θ+0 , and suppose that
h+(θ) > h(θ) on [θ0,∞). θ+t ≥ θt for all t ≥ 1, and this holds specifically in the limit
t→∞. Hence, if, in addition, limt→∞ θt = limt→∞ θ

+
t = θ∞ then θ∞−θ+t ≤ θ∞−θt,

i.e., the convergence of {θ+t } to the fixed point is faster than that of {θt}.

6. Convergence rate of a contraction: If maxθ∈[θ0,θ∞] h
′(θ) = ζ < 1 then θ∞ − θt ≤

(θ∞ − θ0) · ζt, and θ∞ − θt ≤ c for all t ≥ 1
1−ζ · log c

θ∞−θ0 (assuming c ≥ θ∞ − θ0,
otherwise t ≥ 1 suffice).

7. Suppose that 0 ≤ h(θ) ≤ (1−a)θ+ b for a ∈ (0, 1). Then h(θt) ≤ 2b
a for all t ≥ 1

a log a
b

Proof

1. Under both conditions, there exists θ1 such that h(θ1) < θ1. The claim follows from
the intermediate value theorem for the function h(θ)− θ.

2. First, we note that such an enumeration is possible since h(θ)−θ is analytic and not a
constant, and so its zeros in R+ are isolated. Assume w.l.o.g. that h′(θ̃1) > 1. Thus,

h(θ) > θ for all θ ∈ (θ̃1, θ̃2) and so h′(θ̃2) = limt→0
h(θ̃2)−h(θ̃2−t)

t = θ̃2−h(θ̃2−t)
t ≤ 1. The

analogous property is proved similarly.

3. Let θ1 be the minimal fixed point which is larger than θ0. If h(θ0) > θ0 then we must
have h′(θ1) < 1 and by concavity h′(θ) < 1 for all θ ≥ θ1. Thus there are no fixed
points in (θ1,∞). If h(θ0) ≤ θ0 then assume by contradiction that there are more than
or three fixed points {θ̃k}. By strict concavity, it is not possible that h′(θ̃k) = 1 for
any of the fixed point since this fixed point would be unique. By the previous item,
the signs h′(θ̃k) − 1 are alternating. Thus, there exists k such that h′(θ̃k) > 1 and
h′(θ̃k+1) < 1. Strict concavity implies that no fixed points are possible in (−∞, θ̃k),
(θ̃k, θ̃k+1) and (θ̃k,∞). So h(θ) cannot be more than two fixed points in (θ0,∞).

4. Assume θ1 > θ0. Since h is increasing, then θ2 = h(θ1) > h(θ0) = θ1. By induction,
{θt} is an increasing an bounded sequence, and thus has a limit θ̃. Since h is continuous
θ̃ = limt→∞ θt+1 = limt→∞ h(θt) = h(limt→∞ θt) = h(θ̃), and so θ̃ is a fixed point.
The proof for θ1 < θ0 is similar.

5. By induction θ+t+1 = h+(θ+t ) ≥ h+(θt) ≥ h(θt) = θt+1.
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6. By induction and |θt+1 − θ∞|= |h(θt) − h(θ∞)|≤ ζ|θt − θ∞|. To achieve θ∞ − θt ≤ c

we may require t ≥ log
θ∞−θ0

c
log(1/ζ) , and the claim holds since 1

log(1/ζ) ≤
1

1−ζ .

7. By induction θt+1 ≤ (1− a)t +
∑t

j=1 b(1− a)j ≤ (1− a)t + b
a . Using −a ≥ log(1− a)

we have (1− a)t ≤ b
a if t ≥ 1

a log a
b .

C.3 Totally Positive Kernels and Variation Diminishing Property

Let A,B ⊆ R. A kernel K : A×B 7→ R is said to be totally positive of order k, TPk if for
all m ∈ [k] and all x1 < · · · < xm and y1 < · · · < ym (with xi ∈ A and yi ∈ B for i ∈ [k]) it
holds that

K

(
x1, · · · , xm
y1, · · · , ym

)
= det

 K(x1, y1) · · · K(x1, ym)
...

...
K(xm, y1) · · · K(xm, ym)

 ≥ 0 .

If K is TPk for all k ∈ N then the kernel is said to be totally positive (resp. strictly totally
positive), which is written TP∞.

An important consequence of totally positive property is its variation diminishing prop-
erty. The number of zero-crossings of a function f :B 7→ R is the supremum of the numbers
of sign changes in sequences of the form f(x1), . . . f(xm), for m ∈ N, xi ∈ B for all i ∈ [m]
and x1 < · · · < xm, where zero values in the sequence are discarded. The following is a
result by Karlin (Marshall et al., 1979, Theorem A.5 p. 759):

Theorem 24 (Variation diminishing property of totally positive kernels) Let A,B ⊆ R,
and let K:A × B 7→ R be Borel-measurable and TPk. Let σ be a regular σ-finite measure
on B, and let f :B 7→ R be a bounded measurable function such that

g(x) =

∫
B
K(x, y)f(y)dσ(y)

converges absolutely. If f changes sign at most j ≤ k− 1 times on B, then g changes signs
at most j times on A.

Proposition 25 Let f :R 7→ R be a bounded and measurable function. If f has at most
j sign-changes on R, then g:R 7→ R defined by g(η) = EU∼N(η,1)[f(U)] has at most j
signs-changes on R.

Proof The Gaussian kernel K(x, y) = e−(x−y)
2

for A = B = R is TP∞ (Marshall et al.,
1979, Theorem A.6.B p. 759). We use Theorem 24 and

g(η) = E [f(U)] =

∫
ϕ(u− η)f(u)du

=
1√
2π

∫
e−(u−η)

2/2f(u)du =
1√
π

∫
e−(ũ−η̃)

2
f(ũ)dũ = g(

√
2η̃) (57)
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with ũ = u√
2

and η̃ = η√
2

as well as the observation that f( u√
2
) (resp. g(

√
2η)) has the same

zero-crossings as f(u) (resp. g(η)).
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