
Journal of Machine Learning Research 23 (2022) 1-85 Submitted 4/21; Revised 12/21; Published 1/22

Approximation and Optimization Theory for Linear
Continuous-Time Recurrent Neural Networks

Zhong Li∗ li zhong@pku.edu.cn
School of Mathematical Sciences
Peking University
Beijing, China, 100080

Jiequn Han∗ jiequnhan@gmail.com
Department of Mathematics
Princeton University
Princeton, New Jersey, USA, 08544

Weinan E weinan@math.princeton.edu
Department of Mathematics and PACM
Princeton University
Princeton, New Jersey, USA, 08544

Qianxiao Li† qianxiao@nus.edu.sg

Department of Mathematics

National University of Singapore

Singapore, 119076

Editor: Ohad Shamir

Abstract

We perform a systematic study of the approximation properties and optimization dynamics
of recurrent neural networks (RNNs) when applied to learn input-output relationships in
temporal data. We consider the simple but representative setting of using continuous-time
linear RNNs to learn from data generated by linear relationships. On the approximation
side, we prove a direct and an inverse approximation theorem of linear functionals using
RNNs, which reveal the intricate connections between memory structures in the target
and the corresponding approximation efficiency. In particular, we show that temporal
relationships can be effectively approximated by RNNs if and only if the former possesses
sufficient memory decay. On the optimization front, we perform detailed analysis of the
optimization dynamics, including a precise understanding of the difficulty that may arise
in learning relationships with long-term memory. The term “curse of memory” is coined
to describe the uncovered phenomena, akin to the “curse of dimension” that plagues high-
dimensional function approximation. These results form a relatively complete picture of
the interaction of memory and recurrent structures in the linear dynamical setting.
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1. Introduction

Recurrent neural networks (RNNs; Rumelhart et al. (1986)) are among the most frequently
employed tools to build machine learning models on temporal data. Despite its ubiquitous
application in many domains (Baldi et al., 1999; Graves and Schmidhuber, 2009; Graves,
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2013; Graves et al., 2013; Graves and Jaitly, 2014; Gregor et al., 2015), some fundamental
theoretical questions remain to be answered. Such questions come in several flavors. First,
one may pose the approximation problem, which essentially ask what kind of input-output
relationships can RNNs model to arbitrary precision. Second, one may also consider the
optimization problem, which concerns the dynamics of training (say, by gradient descent)
the RNN. While such questions can be posed for any machine learning model, the crux of
the problem for RNNs is how the recurrent structure of the model and the dynamical nature
of the data shape the answers to such problems. For example, it is often claimed that when
there are long-term dependencies in the data (Bengio et al., 1994; Hochreiter et al., 2001),
then RNN may encounter problems in learning, but such statements have rarely been put
on precise mathematical footing.

In this paper, we make a step in this direction by studying the approximation and
optimization properties of RNNs. Compared with their feed-forward counterparts, the key
distinguishing feature of RNNs is the presence of temporal dynamics in terms of recurrent
architectures and the structure of the data. Hence, to understand the influence of dynamics
on learning is of fundamental importance. As is often the case, the key effects of dynamics
can already be revealed in the simplest setting of linear dynamics. For this reason, we
will focus our analysis on linear RNNs, i.e. those with linear recurrent activations. In
this case, the RNNs serve to approximate relationships represented by sequences of linear
functionals. At the first glance, the setting appears to be simple, but we show that it is very
interesting and yields representative results that underlies key differences in the dynamical
setting as opposed to static supervised learning problems. In fact, we show that memory,
which can be made precise by the decay rates of the target linear functionals, can affect
both approximation rates and optimization dynamics in a non-trivial way.

We will employ a continuous-time analysis initially studied in the context of feed-forward
architectures (E, 2017; Haber and Ruthotto, 2017; Li et al., 2017; Li and Hao, 2018) and
recently in recurrent settings (Ceni et al., 2020; Chang et al., 2019; Lim, 2021; Sherstinsky,
2018; Niu et al., 2019; Herrera et al., 2020; Rubanova et al., 2019) and idealize the RNN
as a continuous-time dynamical system that depends on the trainable parameters. This
allows us to phrase the problems under investigation in convenient analytical settings that
accentuates the effect of dynamics.

The current paper is an expanded version of our conference publication (Li et al., 2021).
There, we gave a precise characterization of the approximation rates using RNNs in terms
of regularity and memory of the target functional. Moreover, we performed a fine-grained
analysis of the optimization dynamics when training linear RNNs, and show that the train-
ing efficiency is adversely affected by the presence of long-term memories. We coin the
term “curse of memory” to describe these uncovered phenomena. In the current paper,
we complete the prior analysis on two fronts. On the approximation side, we prove an in-
verse approximation theorem, which states that only targets with sufficient memory decay
can be efficiently approximated. On the optimization side, we expand upon the dynamical
analysis in Li et al. (2021) to also account for the transient training dynamics, before the
onset of stalling or plateauing. Together, these form a more complete description of the
approximation and optimization properties of RNNs in the linear continuous-time setting.

The rest of the paper is organized as follows. We first introduce our problem setting in
Section 3. The main approximation results and their implications are given in Section 4.
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The optimization counter part is presented in Section 6. The detailed proofs are found in
Section 5 and Section 7 respectively.

Notations. For consistency, we adhere notations used in this paper to the following. Bold-
faced letters are reserved for paths, e.g. functions of time. Lower case letters can mean
vectors or scalars. Matrices are denoted by capital letters. Superscript with a parenthesis
denotes derivatives, i.e. f (k)(t) means dk

dtk
f(t). For any n ∈ N+, write the set {1, 2, · · · , n}

by [n]. For a set S, |S| represents its cardinality. For two numbers x, y ∈ R, we use x . y
to indicate that there exists a universal constant c0 > 0 such that x ≤ c0y, and x & y is
similarly defined. For any vector x ∈ Rd, Diag(x) ∈ Rd×d is the diagonal matrix with the
elements x1, x2, · · · , xd. For two vectors x, y ∈ Rd, x � y and x � y mean that xi > yi and
xi ≥ yi for all i = 1, 2, · · · , d, respectively. We use ◦ to represent the common Hadamard
product, i.e. x ◦ y = (x1y1, x2y2, · · · , xdyd).

2. Related Work

A number of results on RNNs have been obtained in the literature. Concerning the central
results in this paper, we mainly discuss on three fronts, namely approximation theory, op-
timization dynamics and the role of memory in learning. There are many universal approx-
imation results for RNNs, e.g. Matthews (1993); Doya (1993); Schäfer and Zimmermann
(2006, 2007) in discrete-time, and Funahashi and Nakamura (1993); Chow and Li (2000);
Li et al. (2005); Maass et al. (2007); Nakamura and Nakagawa (2009) in continuous-time.
Most of these perform analysis under the regime that the target relationship is generated
from some underlying dynamical system (often in the form of difference or differential equa-
tions). While for the present work, the formulation of functional approximation and learning
is more general. Although the results here are currently limited to the linear setting, it has
been already sufficient to reveal new phenomena involving the interaction of learning and
dynamics. This point will be apparent in the following, especially when we discuss for ap-
proximation rates and optimization dynamics. We also note that the functional/operator
approximation has been explored in Chen and Chen (1993); Tianping Chen and Hong Chen
(1995); Lu et al. (2019). However, the results therein only investigate the neural networks
model and reservoir systems, not for recurrent structures, hence the derived approxima-
tion results are similar to random feature models (Gonon et al., 2020). Here we explicitly
study the effect of long-term memory in target functionals on approximation using recurrent
structures. This is the main difference.

On the optimization side, there are also many recent results concerning the training dy-
namics of RNNs using gradient-based algorithms, and most of them are positive in the sense
that the trainability is proved under specific regimes, including recovering linear dynami-
cal systems (Hardt et al., 2018), or training under over-parameterized settings (Allen-Zhu
et al., 2019). Our results here consider the general setting of learning for linear functionals,
which need not come from some hidden dynamics (difference/differential equations), and
is also away from the over-parameterized regime. In our setting, it is discovered on the
contrary that the training can become quite difficult even for this linear case, which can
be understood in a quantitative way. It is shown that this difficulty again relates to the
long-term memory in target functionals.
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The above statements point to the practical literature regarding memory and learning.
As is shown later, the dynamical analysis in this work puts the ubiquitous but heuristic
observations - that the long-term memory adversely effects training efficiency (Bengio et al.,
1994; Hochreiter et al., 2001) - on a concrete theoretical footing, at least under idealized
settings. The theoretical analysis here may also serve as a starting point to justify and
improve current heuristic methods (Tseng et al., 2016; Dieng et al., 2017; Trinh et al.,
2018) developed in applications, in order to handle the difficulty in training with long-term
memory. In the meantime, we also complement general results on “vanishing and explosion
of gradients” (Pascanu et al., 2013; Hanin and Rolnick, 2018; Hanin, 2018) that are typically
restricted to the initialization stage with more complete and precise characterizations under
the dynamical regime during the whole training process.

As a supplement, we also provide related work from the time series literature. Although
the long-range dependency within temporal data has been studied for a long time, its effect
on learning target relationships in the input-output form is rarely covered. For example,
the Hurst exponent (Hurst, 1951) is often used as a measure of long-term memory in tem-
poral data, e.g. fractional Brownian motion (Mandelbrot and Ness, 1968). However, it only
measures temporal variations and dependence within the input time series itself, which is
different from the setting in this paper where memory involves the dependence of the output
time series on the input. Nevertheless, motivated by much of the time series literature where
the statistical properties and estimation methods of temporal data with long-range depen-
dency are investigated (Samorodnitsky, 2006; Taqqu et al., 1995; Beran, 1992; Doukhan
et al., 2002), in practice one can also combine the RNN-like architectures with these classic
statistical methodologies to design hybrid models for various applications (Loukas and Öke,
2007; Diaconescu, 2008; Mohan and Gaitonde, 2018; Bukhari et al., 2020).

3. Problem Formulation

The basic problem of supervised learning on time series data is to learn a mapping from
an input sequence to an output, which may be a single scalar/vector or also a temporal
sequence of such values. Formally, one can think of the output as produced from the input
via an unknown function that depends on the entire input sequence, at least up to the time
at which the prediction is made. In the discrete-time case, one can write

yk = Hk(x0, . . . , xk−1), (1)

where {xk : k = 0, 1, . . . } and {yk : k = 0, 1, . . . } denote the input and output sequence
respectively, and {Hk : k = 0, 1, . . . } is a sequence of functions of increasing input di-
mension accounting for temporal evolution. The goal of supervised learning is to learn an
approximation of HK (single target setting at step K) or {Hk : k = 0, . . . ,K} (sequence to
sequence setting) given observation data.

Recurrent neural networks (RNNs; Rumelhart et al. (1986)) gives a natural way to
parameterize such a sequence of functions. In the simplest case, the one-layer RNN is given
by

hk+1 = σ(Whk + Uxk),

ŷk = c>hk.
(2)
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Here, {hk} are the hidden states and its evolution is governed by a feed-forward neural
network. Note that we do not include a bias term in the neural network as it can be
absorbed into the hidden states. Also, the last output layer can also be nonlinear, but we
will consider the simplest linear setting. For each time step k, the mapping from inputs to
outputs {x0, . . . , xk−1} 7→ ŷk parameterizes a function Ĥk(·) through adjustable parameters
(c,W,U). Hence, for a particular choice of these parameters, a sequence of functions {Ĥk}
is constructed at the same time.

The primary question one can ask is, can {Ĥk}, through adjusting (c,W,U), approximate
any arbitrary sequence of target functions {Hk} using the same set of parameters? If so,
what structure in the latter makes the approximation process easy or difficult? Another
question one can ask is, what is the dynamics of learning (c,W,U) by gradient descent, and
what properties of the system affects such dynamics? It is the purpose of this paper to
investigate such questions in a precise and systematic manner.

The RNN (2) is not easy to analyze due to its discrete iterative nature. Hence, here we
employ a continuous-time idealization that replaces the time-step index k by a continuous
time parameter t. The key advantage of this approach is that the previously motivated
questions can be investigated under a unified framework, borrowing useful tools from ap-
proximation theory, functional analysis and asymptotic analysis. Let us now introduce this
framework.

3.1 Continuous-Time Formulation

Now, let us consider a sequence of inputs indexed by a real-valued variable t ∈ R instead of a
discrete variable k considered previously. We will assume that the input signal is continuous
in t, giving a natural input space

X = C0(R,Rd), (3)

which is the linear space of continuous functions from R (time) to Rd that vanishes at
infinity. We will equip X with the supremum norm

‖x‖X := sup
t∈R
‖xt‖∞. (4)

For the space of outputs we will take a scalar time series, i.e. the space of bounded contin-
uous functions from R to R:

Y = Cb(R,R). (5)

Vector-valued outputs can be handled by considering each output separately, and will not
be explicitly treated in the following analyses. To denote paths without ambiguity, we will
hereafter adopt the shorthand xs:t := {xr : r ∈ [s, t]}. Similarly, we write x:s := {xr : −∞ <
r ≤ s} and similarly, xs: := {xr : s ≤ r < ∞}. Finally we write x := {xr : r ∈ R} ∈ X .
Similar notations will be used for y ∈ Y.

To specify the target, we consider a ground truth relationship between inputs x and
outputs y as

yt = Ht(x), (6)
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where for each t ∈ R, Ht is a functional

Ht : X → R. (7)

Let us assume for the moment that the family of functionals {Ht : t ∈ R} satisfies the
continuity condition

lim
δ→0

Ht+δ(x) = Ht(x), ∀t ∈ R, ∀x ∈ X . (8)

This ensures that yt = Ht(x) is continuous in t and so that y ∈ Y as long as the boundedness
is satisfied. Later we will show that this is a consequence of other restrictions we may wish
to place on the family.

Following the continuous-time viewpoint, we can then define a continuous and residual
version of (2) as a hypothesis space to model continuous-time functionals:

ŷt = c>ht,

d

dt
ht = σ(Wht + Uxt),

(9)

where each ht ∈ Rm denotes a hidden (latent) state with dimension m, and σ is a point-wise
activation function. The dynamics then naturally defines a hypothesis space of sequences
of functionals

{Ĥt(x) = ŷt : t ∈ R}, (10)

which can be used to approximate the target functionals {Ht} via adjusting (c,W,U).

Remark 1 It is worth noting that when viewed in this setting, the RNN parameterization
of a family of functionals is in some sense a reverse of the Mori-Zwanzig formalism in sta-
tistical mechanics (Zwanzig, 2001). In the latter, one passes from a fully observed dynamical
system, via introducing memory, to model a closed dynamics involving a subset of relevant
observables. For the RNN, the reverse process occurs where one models a input-output re-
lationship with memory by introducing a hidden, but autonomous forced dynamical system.
This connection has been pointed out in Ma et al. (2018). Thus, a thorough understanding
of the behavior of RNNs may also contribute towards developing practical implementations
of the Mori-Zwanzig formalism for physical applications.

Clearly, the family of functionals the RNN can represent is not arbitrary, and must
possess some structure. Let us now introduce some definitions of functionals that makes
these structures precise.

The first is the idea of causality, which means that each functional Ht should only
depend on the input time sequence up to time t.

Definition 2 (Causal Functionals) We call Ht a causal functional if it does not depend
on the future values of x. Concretely, Ht is causal if for every pair of x,x′ ∈ X such that

xs = x′s for all s ≤ t, (11)

we must have Ht(x) = Ht(x
′).
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Next, the primary object of study in this paper are (continuous) linear functionals,
which is defined as follows.

Definition 3 (Continuous Linear Functionals) We call H a continuous linear func-
tional if for any x,x′ ∈ X and λ, λ′ ∈ R, if

H(λx + λ′x′) = λH(x) + λ′H(x′) (12)

and moreover that

sup
x∈X ,‖x‖X≤1

H(x) <∞, (13)

in which case we can define the induced norm as

‖H‖ := sup
x∈X ,‖x‖X≤1

|H(x)|, H ∈ X ∗. (14)

We call that a family {Ht} is continuous and linear if each Ht is continuous and linear.

We end with two other properties that functionals able to satisfy, that are especially of
relevance to RNNs.

Definition 4 (Regular Functionals) We call that a functional H : X → R is regular if
for any sequence {x(n) ∈ X , : n ∈ N+} such that x(n)t → 0 for almost every t ∈ R (in the
sense of Lebesgue measure), then

lim
n→∞

H(x(n)) = 0. (15)

We call that the family {Ht} is regular if each Ht is regular.

Definition 5 (Time-Homogeneous Functionals) We call that a family of functionals
{Ht : t ∈ R} is time-homogeneous if for every t, τ ∈ R, we have

Ht(x) = Ht+τ (x(τ)), (16)

where x(τ)s = xs−τ for all s, i.e. x(τ) is x whose time index is shifted to the right by τ .

One can think of regular functionals as those that are not determined by values of the inputs
on an arbitrarily small time interval, e.g. a thin spike. Time-homogeneous functionals, on
the other hand, are those where there is no special reference point in time: if the time index
of both the input sequence and the functional are shifted in a coordinated way, then the
output value remains the same.

4. The Problem of Approximation and Main Results

In this section we develop an approximation theory of functionals by RNNs. We first
introduce the basic approximation setting. In continuous-time, the linear RNN obeys the
following dynamics

ŷt = c>ht,

dht
dt

= Wht + Uxt.
(17)
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Notice that in the theoretical setup, the initial time of the system goes back to −∞ with
limt→−∞ xt = 0, ∀x ∈ X , thus by linearity (Ht(0) = 0) we specify the initial condition of
the hidden state h−∞ = 0 for consistency.1 In this case, the dynamical system (17) has the
following solution

ŷt =

∫ ∞
0

c>eWsUxt−sds. (18)

We will consider the stable RNNs, where W ∈ Wm with

Wm = {W ∈ Rm×m : eigenvalues of W have negative real parts}. (19)

Owing to the representation of solutions in (18), the linear RNN defines a family of func-
tionals

Ĥ := ∪m∈N+Ĥm,

Ĥm :=

{
{Ĥt : t ∈ R} : Ĥt(x) =

∫ ∞
0

c>eWsUxt−sds,

W ∈ Wm, U ∈ Rm×d, c ∈ Rm
}
.

(20)

The most basic approximation problem is as follows: given some sequence of target func-
tionals {Ht : t ∈ R} satisfying appropriate conditions, does there always exist a sequence of
RNN functionals {Ĥt : t ∈ R} in Ĥ such that Ht ≈ Ĥ for all t ∈ R?

We now make an important remark with respect to the current problem formulation
that differs from previous investigations in RNN approximation: we are not assuming that
the target functionals {Ht : t ∈ R} are themselves generated from an underlying dynamical
system. In other words, there may be no dynamical systems satisfying

Ht(x) = yt, where
yt = g(ht),

d

dt
ht = f(ht, xt)

(21)

for any linear or nonlinear functions f, g. This sets apart our current setting with previous
work on approximation theory of RNNs (Matthews, 1993; Nakamura and Nakagawa, 2009;
Chow and Li, 2000; Li et al., 2005; Schäfer and Zimmermann, 2006, 2007; Funahashi and
Nakamura, 1993), and also RNN training dynamics (Hardt et al., 2018), where it is assumed
that the sequence of target functionals are indeed generated from some unknown dynamical
system. In this setting, the approximation problem reduces to the approximation of the
functions f, g of the underlying dynamical system by neural networks, and the obtained
results often resemble those in feed-forward neural networks.

In our case, however, we consider general input-output relationships related by temporal
sequences of functionals, with no necessary recourse to the mechanism from which these
relationships are generated. This is an important distinction, for often in RNN applications,
the time-series data may not be generated from some partially-observed Markovian process.

1. In application frameworks such as TensorFlow and PyTorch, the initial hidden state is set to zero by
default.
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Hence, this setting is more general, and natural for applications. Moreover, notice that in
the linear case, if the target functionals {Ht} are generated from a linear dynamical system,
then the approximation question is trivial: as long as the dimension of ht in the approxi-
mating RNN is greater than or equal to that which generates the target, we have perfect
approximation. However, we will see that in the more general consideration of approxima-
tion a sequence of target functionals, this question becomes much more interesting, even in
the linear regime. In fact, we will now prove precise approximation theories and characterize
approximation rates that reveal intricate connections with memory effects, which may be
otherwise obscured if one considers more limited settings of recovering hidden dynamical
systems.

4.1 Universal Approximation Theorem

First, it is clear that the functionals in RNN hypothesis Ĥ space must possess some struc-
ture, which motivated the introduction of various classes of functionals in Section 3.1. The
following observation can be verified directly and its proof is immediate and hence omitted.

Proposition 6 Let {Ĥt : t ∈ R} be any family of functionals in Ĥ (see (20)) resulting from
the linear RNN dynamics (9). Then for each t ∈ R,

1. Ĥt is a continuous, linear functional.

2. Ĥt is a causal functional.

3. Ĥt is a regular functional.

4. The family {Ĥt} is time-homogeneous.

Our first main result of approximation is in some sense a converse of Proposition 6. In
particular, we prove the following approximation theorem, which states that any sequence
of functionals satisfying the properties in Proposition 6 can be approximated uniformly by
sequences of RNN functionals in Ĥ to arbitrary accuracy.

Theorem 7 (Universal Approximation for Linear RNNs) Let {Ht : t ∈ R} be a
family of continuous, linear, causal, regular and time-homogeneous functionals on X . Then,
for any ε > 0 there exists {Ĥt : t ∈ R} ∈ Ĥ such that

sup
t∈R
‖Ht − Ĥt‖ ≡ sup

t∈R
sup
‖x‖X≤1

|Ht(x)− Ĥt(x)| ≤ ε. (22)

The proof relies on the classical Riesz-Markov-Kakutani representation theorem, which
states that each linear functional Ht can be uniquely associated with a signed measure
µt such that Ht(x) =

∫
R x
>
s dµt(s). Owing to the assumptions of Theorem 7, we can

further show that the sequence of representations {µt} are related to an integrable function
ρ : [0,∞)→ Rd, such that {Ht} admits the common representation

Ht(x) =

∫ ∞
0

x>t−sρ(s)ds, t ∈ R, x ∈ X . (23)

Comparing this representation with the solution (18) of the linear continuous-time RNN,
we find that the approximation property of RNNs is closely related to how well ρ(t) can

10
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be approximated by the exponential sums of the form (c>eWtU)>. That is to say, the
functional approximation is then reduced to the function approximation in the sense of
representations. Intuitively, (23) shows that each output yt = Ht(x) is simply a convolution
between the input signal and the kernel ρ. Thus, the smoothness and decay of the input-
output relationship is characterized by the convolution kernel ρ. Due to this observation,
we will hereafter refer to {Ht} and ρ interchangeably.

Remark 8 Theorem 7 can be extended in several ways. Without the assumption of causal-
ity, we can use bidirectional recurrent neural networks (Schuster and Paliwal, 1997) to
achieve the universal approximation. Without the assumption of time-homogeneity, we can
introduce another coordinate to act as time. Without regularity assumption on {Ht}, we
would not have uniform error estimate (i.e. supt), in which case we can replace it with
some Lp-estimate in time.

Remark 9 In the literature, there are in fact many results on the approximation proper-
ties of RNNs in discrete-time (Schäfer and Zimmermann, 2006, 2007; Matthews, 1993) and
continuous-time (Funahashi and Nakamura, 1993; Nakamura and Nakagawa, 2009; Li et al.,
2005; Chow and Li, 2000). However, as discussed before, most of these focus on the case
where the target relationship is generated from dynamical systems. The functional approxi-
mation formulation considered here is more general, and reveals new phenomena that may
not be discovered from these approaches. This will be especially apparent in the next section
when it comes to approximation rates. We also note that functional/operator approxima-
tion using neural networks has been explored in Chen and Chen (1993); Tianping Chen and
Hong Chen (1995); Lu et al. (2019) for non-recurrent structures and reservoir systems for
which approximation results similar to random feature models are derived (Gonon et al.,
2020).

4.2 Approximation Rates and Inverse Approximation Theorem

While the previous result establishes the universal approximation property of linear RNNs
for suitable classes of linear functionals, it does not reveal to us which functionals can be
efficiently approximated. In the practical literature, it is often observed that when there is
some long-term memory in the inputs and the outputs, the RNN becomes quite ill-behaved
(Bengio et al., 1994; Hochreiter et al., 2001). It is the purpose of this section to establish
results which make these heuristics statements precise. In particular, we will show that the
rate at which linear functionals can be approximated by RNNs depends on the smoothness
and memory properties of the former. We note that this is a much less explored area in the
approximation theory of RNNs.

To characterize smoothness and decay of functionals, we may pass to investigating the
properties of their actions on constant input signals. Concretely, let us denote by ei (i =
1, . . . , d) the standard basis vector in Rd, and ei denotes a constant signal with ei,t = ei1{t≥0}
for all t. Then

1. smoothness is characterized by the smoothness of the maps t 7→ Ht(ei), i = 1, . . . , d;

2. memory is characterized by the decay rate of the maps t 7→ Ht(ei), i = 1, . . . , d.

11
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Our second main result of approximation shows that these two properties are intimately
tied with the approximation rate.

Theorem 10 (Approximation Rates of Linear RNNs) Assuming the conditions as in
Theorem 7. Consider the output of constant signal

yi(t) = Ht(ei), i = 1, . . . , d. (24)

Suppose there exist constants α ∈ N+, β, γ > 0 such that for i = 1, . . . , d, yi(t) ∈ C(α+1)(R)
and for k = 1, . . . , α+ 1,

eβty
(k)
i (t) = o(1) as t→ +∞, (25)

sup
t≥0

|eβty(k)
i (t)|
βk

≤ γ. (26)

Then, there exists a universal constant C(α) > 0 only depending on α such that for any
m ∈ N+, there exists a sequence of width-m RNN functionals {Ĥt : t ∈ R} ∈ Ĥm such that

sup
t∈R
‖Ht − Ĥt‖ ≡ sup

t∈R
sup
‖x‖X≤1

|Ht(x)− Ĥt(x)| ≤ C(α)γd

βmα
. (27)

Theorem 10 can be treated as a direct approximation theorem for linear functionals. The
classical direct approximation theorems in approximation theory, also known as Jackson-
type theorems (Jackson, 1930), provide an approximation rate of a function in terms of its
smoothness properties. Following a similar spirit, Theorem 10 gives an approximation rate
of a linear functional in terms of its smoothness and decay properties when using linear
RNNs. Accordingly, we can also consider inverse approximation theorems, also known as
Bernstein-type theorems (Bernstein, 1920), whose classical forms characterize the smooth-
ness of target functions that can be efficiently approximated by classes of simple functions,
e.g. polynomials. Our next theorem gives such a result in the context of approximating
linear functionals by recurrent neural networks. In particular, we show that if a target func-
tional can be effectively approximated by RNNs, then it must have exponentially decaying
memory.

Theorem 11 (Inverse Approximation Theorem on Exponential Decay) Assume the
conditions as in Theorem 7 and consider the output of constant signal

yi(t) = Ht(ei) ∈ C(α+1)(R), i = 1, . . . , d, α ∈ N+. (28)

Suppose for each m ∈ N+, there exists a sequence of width-m RNN functionals {Ĥt : t ∈
R} ∈ Ĥm approximating Ht in the following sense

lim
m→∞

sup
t≥0
|ŷ(k)
i,m(t)− y(k)

i (t)| = 0, i = 1, . . . , d, k = 1, . . . , α+ 1, (29)

where

ŷi,m(t) = Ĥt(ei), i = 1, . . . , d. (30)

12
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Define wm = maxj∈[m] Re(λj), where λj , j = 1, . . . ,m are the eigenvalues of W in {Ĥt :
t ∈ R}. Assume the parameters in RNNs are uniformly bounded and there exists a constant
β > 0 such that lim supm→∞wm < −β, then we have

eβty
(k)
i (t) = o(1) as t→ +∞, i = 1, . . . , d, k = 1, . . . , α+ 1. (31)

The direct and inverse approximation theorems paints a picture of what functionals
are amenable to efficient approximation through linear RNNs: those, and only those, with
exponentially decaying memory structures. The next section discusses what occurs when
such a decay pattern is not present.

4.3 The Curse of Memory in Approximation

For approximation of nonlinear functions using linear combinations of basis functions, one
often suffers from the “curse of dimensionality” (Bellman, 1957), in that the number of basis
functions required to achieve a certain approximation accuracy increases exponentially when
the dimension d of the input space increases. In the case of Theorem 10, the bound scales
linearly with d (see (27)). This is because the target functional possesses a linear structure,
and hence each dimension can be approximated independently of others, resulting in an
additive error estimate. Nevertheless, due to the presence of the temporal dimension, there
enters another type of challenge, which we coin the curse of memory. Let us now discuss
this point in detail.

We assume d = 1 and drop subscripts for simplicity. By (23) and (24), we get

y(t) = Ht(1{s≥0}) =

∫ t

0
ρ(s)ds, t ≥ 0. (32)

Consider the example ρ(t) ∈ C(1)(R) and

ρ(t) ∼ t−(1+ω) as t→ +∞. (33)

Here ω > 0 indicates the decay rate of the memory effects in our target functional family
{Ht}. The smaller its value, the slower the decay and the longer the system memory. Notice
that y(1)(t) = ρ(t) and in this case there exists no β > 0 making (25) true, and no rate
estimate can be deduced from it.

A natural way to circumvent this obstacle is to introduce a truncation in time. With
T � 1 we can define ρ̃(t) ∈ C(1)(R), such that ρ̃(t) ≡ ρ(t) for t ≤ T , ρ̃(t) ≡ 0 for t ≥ T + 1,
and ρ̃(t) is monotonically decreasing for T ≤ t ≤ T + 1. Considering the linear functional

H̃t(x) :=

∫ t

0
xt−sρ̃(s)ds, (34)

we have the truncation error estimate

|Ht(x)− H̃t(x)| ≤ ‖x‖X
(∫ ∞

T
|ρ(s)|ds

)
∼ ‖x‖XT−ω. (35)

13
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Now Theorem 10 is applicable to the truncated {H̃t} with α = 1, and we have for any
β > 0, there is a linear RNN (i.e. there exists parameters (c,W,U)) such that the associated
functionals {Ĥt} ∈ Ĥm satisfy

sup
t∈R
‖H̃t − Ĥt‖ ≤

Cγ

βm
:=

C

βm
sup
t≥0

|eβty(1)(t)|
β

=
Cω

m

eβT

β2Tω+1
. (36)

It is straightforward to verify that when β = 2/T , the right-hand side of (36) achieves the
minimum, which gives

sup
t∈R
‖H̃t − Ĥt‖ ≤

Cω

m
T 1−ω. (37)

Combining (35) and (37) gives

sup
t∈R
‖Ht − Ĥt‖ ≤ C

(
T−ω +

ω

m
T 1−ω

)
. (38)

In order to achieve an error tolerance ε, we require T ∼ ε−
1
ω according to the first term

above, and then according to second term, we have

m = O
(
ωT 1−ω

ε

)
= O

(
ωε−

1
ω

)
. (39)

This estimate gives us a quantitative relationship between the degree of freedom needed
and the decay speed. When ω > 0 is small, i.e. the system has long-term memory, the size
of the RNN model required grows exponentially. This is akin to the curse of dimensionality,
but this time on memory, which manifests itself even in the simplest linear settings.

Remark 12 Here, the curse of memory is on approximation properties, in that functionals
with long-term memory are hard to approximate by the RNN architecture. This is unrelated
to the commonly quoted idea of ”vanishing and explosion of gradients” (Pascanu et al.,
2013; Hanin and Rolnick, 2018; Hanin, 2018) that plagues RNNs (and indeed many deep
architectures). In fact, the curse of memory for approximation is inherent in the architecture
itself, without reference to any training algorithm. At the same time, this is also specific to
RNNs when viewed as approximators of functionals.

Remark 13 The result here also highlights the importance of considering the approxima-
tion of general sequences of functionals, instead of those generated by underlying dynamical
systems. In the latter case, approximation theory reduces to the function approximation
regime of feed-forward neural networks, and the approximation rates one obtains may not
capture the dynamical aspect of the problem and reveal the curse of memory associated.

5. Proofs of Approximation Results

We first present the proof of Theorem 7. A key simplification of considering linear func-
tionals is due to the classical representation result below, which allows us to pass from the
approximation of functionals to the approximation of functions.

14



Approximation and Optimization Theory for Linear Continuous-Time RNNs

Theorem 14 (Riesz-Markov-Kakutani Representation Theorem) Let H : X → R
be a continuous linear functional. Then, there exists a unique, vector-valued, regular, count-
ably additive signed measure µ on R such that

H(x) =

∫
R
x>s dµ(s) =

d∑
i=1

∫
R
xs,idµi(s). (40)

Moreover, we have

‖H‖ := sup
‖x‖X≤1

|H(x)| = ‖µ‖1(R) :=
∑
i

|µi|(R). (41)

Proof Well-known. See e.g. Bogachev (2007), CH 7.10.4.

We will use the representation theorem to prove Theorem 7. First, we prove some
lemmas.

Lemma 15 Let {Ht} be a family of continuous, linear, regular, causal and time-homogeneous
functionals on X . Then, there exists a measurable function ρ : [0,∞) → Rd that is inte-
grable, i.e.

‖ρ‖L1([0,∞)) :=
d∑
i=1

∫ ∞
0
|ρi(s)|ds <∞ (42)

and

Ht(x) =

∫ ∞
0

x>t−sρ(s)ds, t ∈ R. (43)

In particular, {Ht} is uniformly bounded with supt ‖Ht‖ = ‖ρ‖L1([0,∞)) and t 7→ Ht(x) is
continuous for all x ∈ X .

Proof By the Riesz-Markov-Kakutani representation theorem (Theorem 14), for each t
there is a unique regular signed Borel measure µt such that

Ht(x) =

∫
R
x>s dµt(s), (44)

and
∑

i |µt,i|(R) = ‖Ht‖. Since {Ht} is causal, we must have
∫∞
t x>s dµt(s) = 0 for any x,

thus

Ht(x) =

∫ t

−∞
x>s dµt(s). (45)

Now, by time homogeneity we have∫ t

−∞
x>s dµt(s) = Ht(x) = Ht+τ (x(τ)) =

∫ t+τ

−∞
x>s−τdµt+τ (s). (46)
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Take τ = −t and set µ = −µ0 to get

Ht(x) =

∫ ∞
0

x>t−sdµ(s). (47)

Note that we have ‖µ‖1([0,∞)) = ‖µ0‖1([0,∞)) = ‖H0‖ = ‖Ht‖, and continuity follows
from the fact that

|Ht+δ(x)−Ht(x)| =
∣∣∣∣∫ ∞

0
(xt+δ−s − xt−s)>dµ(s)

∣∣∣∣
≤
∑
i

∫ ∞
0
‖xt+δ−s − xt−s‖∞d|µi|(s),

(48)

which converges to 0 as δ → 0 by Lebesgue’s dominated convergence theorem. Finally, we
will show that each µi is absolutely continuous with respect to λ (Lebesgue measure). Take
a measurable E ⊂ [0,∞) such that λ(E) = 0 and set E′ = [0,∞) \ E. For each n ∈ N+,
set Kn ⊂ E,K ′n ⊂ E′ where Kn,K

′
n are closed and µi(E \Kn) ≤ 1/n, µi(E

′ \K ′n) ≤ 1/n.

For a fixed i ∈ [d], define x(n) to be such that x
(n)
t−s,j = 0 for all j 6= i and all s. For j = i,

we set x
(n)
t−s,i = 1 if s ∈ Kn and 0 if s ∈ K ′n, which can then be continuously extended to

[0,∞). Observe that by construction, x
(n)
t−s → 0 for λ-a.e. s, thus by Lebesgue’s dominated

convergence theorem

0 = lim
n→∞

Ht(x
(n)) = µi(E). (49)

This shows that µi is absolutely continuous with respect to λ, and by the Radon-Nikodym
theorem, there exists a measurable function ρi : [0,∞) → R such that for any measurable
A ⊂ R, we have ∫

A
dµi(s) =

∫
A
ρi(s)ds, i = 1, . . . , d. (50)

Hence, we get

Ht(x) =

∫ ∞
0

x>t−sρ(s)ds, (51)

with ‖ρ‖L1([0,∞)) =
∑

i

∫∞
0 |ρi(s)|ds = ‖µ‖1([0,∞)) <∞. The proof is completed.

Lemma 16 Let ρ : [0,∞) → R be a Lebesgue integrable function, i.e. ‖ρ‖L1([0,∞)) < ∞.
Then, for any ε > 0, there exists a polynomial p with p(0) = 0 such that

∥∥ρ− p(e−·)∥∥
L1([0,∞))

=

∫ ∞
0
|ρ(t)− p(e−t)|dt ≤ ε. (52)

Proof The approach here is similar to that of the approximation of functions using ex-
ponential sums (Kammler, 1976; Braess, 1986). Alternatively, one may also appeal to the
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density of phase type distributions (He and Zhang, 2007; O’Cinneide, 1990) in the space of
positive distributions, and generalizing them to signed measures.

Fix any ε > 0. Define

R(u) =

{
1
uρ(− log u), u ∈ (0, 1],

0, u = 0.
(53)

Then, we can check that

‖R‖L1([0,1]) = ‖ρ‖L1([0,∞)) <∞. (54)

By density of continuous functions in L1, there exists a continuous function R̃ on [0, 1] with
R̃(0) = 0 such that

‖R− R̃‖L1([0,1]) ≤ ε/2. (55)

By Müntz-Szász theorem (Müntz, 1914; Szász, 1916), there exists a polynomial p with
p(0) = 0 such that

‖q − R̃‖L1([0,1]) ≤ ε/2, (56)

and q(u) := p(u)/u is also a polynomial. Therefore, we have∥∥ρ− p(e−·)∥∥
L1([0,∞))

=

∫ 1

0
|R(u)− p(u)/u|du

≤
∫ 1

0
|R(u)− R̃(u)|du+

∫ 1

0
|R̃(u)− p(u)/u|du ≤ ε.

(57)

The proof is completed.

We are now ready to present the proofs of Theorem 7, Theorem 10 and Theorem 11.
Proof [Proof of Theorem 7] By (18), for each {Ĥt} ∈ Ĥ we can write

Ĥt(x) =

∫ ∞
0

x>t−s(U
>[eWs]>c)ds. (58)

By Lemma 15, we have

Ht(x) =

∫ ∞
0

x>t−sρ(s)ds, (59)

where ρ is integrable. Thus, we can apply Lemma 16 to conclude that there exists polyno-
mials pi, i = 1, . . . , d with pi(0) = 0, such that∑

i

‖ρi − pi(e−·)‖L1([0,∞)) ≤ ε. (60)

Notice that we can write each pi(u) =
∑m

j=1 αiju
j for some m ∈ N+ equaling the maximal

degree of {pi}di=1. Taking W = diag(−1, . . . ,−m), c = (1, . . . , 1) and Uij = αji, we get

(U>[eWs]>c)i = pi(e
−s), i = 1, . . . , d. (61)
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Consequently, we have for any x with ‖x‖∞ ≤ 1,

|Ht(x)− Ĥt(x)| =
∣∣∣∣∫ ∞

0
x>t−sρ(s)ds−

∫ ∞
0

x>t−sp(e
−s)ds

∣∣∣∣
≤
∑
i

∫ ∞
0
|xt−s,i|

∣∣ρi(s)− pi(e−s)∣∣ ds ≤∑
i

‖ρi − pi(e−·)‖L1([0,∞))

≤ε.

(62)

The proof is completed.

Proof [Proof of Theorem 10] We fix i ∈ [d] below until the last part of the proof. By
Lemma 15, there exists ρi(t) ∈ Cα[0,∞) such that

yi(t) = Ht(ei) =

∫ t

0
ρi(r)dr, t ≥ 0. (63)

By the assumption,

ρ
(k)
i (t) = o(e−βt) as t→∞, k = 0, . . . , α. (64)

Consider the transform

qi(s) =

0, s = 0,

ρi

(
−(α+1) log s

β

)
s , s ∈ (0, 1].

(65)

For any k ∈ {0, 1, . . . , α}, one can prove by induction that

q
(k)
i (s) = (−1)k

k∑
j=0

c(j, k)

(
α+ 1

β

)j ρ(j)
i

(
−(α+1) log s

β

)
sk+1

, (66)

where c(j, k) are some integer constants. Together with the assumption, we have

∣∣∣q(k)
i (e−

β
α+1

t)
∣∣∣ =

∣∣∣∣∣∣
k∑
j=0

c(j, k)

(
α+ 1

β

)j ρ
(j)
i (t)

e−
(k+1)β
α+1

t

∣∣∣∣∣∣ ≤
k∑
j=0

∣∣c(j, k)|(α+ 1)j
∣∣ γ ≤ C(α)γ, (67)

where C(α) > 0 is a universal constant only depending on α. Note that for j = 0, 1, . . . , α,

lim
s→0+

ρ
(j)
i

(
−(α+1) log s

β

)
sk+1

= lim
t→∞

ρ
(j)
i (t)

e−
(k+1)β
α+1

t
= lim

t→∞

ρ
(j)
i (t)

e−βt
e−

(α−k)β
α+1

t = 0, (68)

hence qi(s) ∈ Cα[0, 1] with qi(0) = q
(1)
i (0) = · · · = q

(α)
i (0) = 0. By Jackson’s theorem

(Jackson, 1930), for any m ∈ N+, there exists a polynomial Qi,m of degree m− 1 such that

‖qi −Qi,m‖L∞([0,1]) ≤
C(α)γ

mα
. (69)
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Denote the polynomial Qi,m as

Qi,m(s) =
m−1∑
j=0

αi,js
j , (70)

and define

φi,m(t) = e−
β
α+1

tQi,m(e−
β
α+1

t). (71)

Then we have

φi,m(t) = c>eWtui, (72)

where

c = (1, 1, . . . , 1), (73)

W =


− β
α+1

− 2β
α+1

. . .

− mβ
α+1

 , (74)

ui = (αi,0, αi,1, . . . , αi,m−1). (75)

With the change of variables s = e−
β
α+1

t, we have the estimate

‖ρi − φi,m‖L1([0,∞)) =

∫ ∞
0
|ρi(t)− φi,m(t)|dt

=

∫ 1

0

∣∣∣∣ρi(−(α+ 1) log s

β

)
− sQi,m(s)

∣∣∣∣ α+ 1

βs
ds

=
α+ 1

β

∫ 1

0
|qi(s)−Qi,m(s)|ds

≤ C(α)γ

βmα
.

(76)

Finally, define U = [u1, . . . , ud] ∈ Rm×d, we have

c>eWtU = (φ1,m(t), . . . , φd,m(t)). (77)

The parameters (c,W,U) together determine the dynamical system (9). Similar to the
arguments in the proof of Theorem 7, for any x with ‖x‖∞ ≤ 1 and t, we have

|Ht(x)− Ĥt(x)| ≤
∑
i

‖ρi − φi,m‖L1([0,∞)) ≤
C(α)γd

βmα
. (78)

The proof is completed.
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Proof [Proof of Theorem 11] For each m ∈ N+, by (18) and the assumption, we know there
exist c ∈ Rm,W ∈ Rm×m, U = [u1, . . . , ud] ∈ Rm×d such that

ŷi,m(t) =

∫ t

0
c>eWsuids, i = 1, . . . , d. (79)

Accordingly, for k = 1, . . . , α+ 1,

ŷ
(k)
i,m(t) = c>W k−1eWtui, i = 1, . . . , d. (80)

Given a function f ∈ C[0,∞), we again consider the transformation T f : [0, 1] 7→ R defined
as

(T f)(s) =

0, s = 0,

f
(
− log s
β

)
s , s ∈ (0, 1].

(81)

Under the change of variables s = e−βt, we have

f(t) = e−βt(T f)(e−βt), t ≥ 0. (82)

By the assumption on the uniform bound of the eigenvalues of W , we have

lim
s→0+

(T ŷ(k)
i,m)(s) = lim

t→∞

ŷ
(k)
i,m(t)

e−βt
= 0, (83)

which implies T ŷ(k)
i,m ∈ C([0, 1]). Let δ = −β − lim supm→∞wm. By the assumption, we

have δ > 0, and

sup
s∈[0,1]

∣∣∣(T ŷ(k)
i,m1

)(s)− (T ŷ(k)
i,m2

)(s)
∣∣∣

= sup
t≥0

∣∣∣∣∣ ŷ
(k)
i,m1

(t)

e−βt
−
ŷ

(k)
i,m2

(t)

e−βt

∣∣∣∣∣
≤ max

{
sup

0≤t≤T0

∣∣∣∣∣ ŷ
(k)
i,m1

(t)

e−βt
−
ŷ

(k)
i,m2

(t)

e−βt

∣∣∣∣∣ , c0e
−δT0

}

≤ max

{
eβT0 sup

0≤t≤T0

∣∣∣ŷ(k)
i,m1

(t)− ŷ(k)
i,m2

(t)
∣∣∣ , c0e

−δT0

}
, (84)

where c0 > 0 is a universal constant. Since {ŷ(k)
i,m}m is a Cauchy sequence in C([0,∞))

equipped with the sup-norm, using the estimate (84), we know {T ŷ(k)
i,m}m is a Cauchy

sequence in C([0, 1]) equipped with the sup-norm. By the completeness of C([0, 1]), there
exists f∗ ∈ C([0, 1]) with f∗(0) = 0 such that

lim
m→∞

sup
s∈[0,1]

|(T ŷ(k)
i,m)(s)− f∗(s)| = 0. (85)
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Given any s > 0, we have

f∗(s) = lim
m→∞

(T ŷ(k)
i,m)(s) = (T y(k)

i )(s), (86)

hence

lim
t→∞

eβty
(k)
i (t) = lim

s→0+
(T y(k)

i )(s) = f∗(0) = 0, (87)

which completes the proof.

6. The Problem of Optimization and Main Results

In the previous section, we gave a general characterization of the approximation of linear
functionals using linear RNNs. It is revealed that memory plays an important role in de-
termining the approximation rates, and vice versa. The result therein only depends on the
architecture, and does not concern the actual training dynamics. In this section, we turn our
attention to the optimization problem and perform a fine-grained analysis of the dynamics
of the training process when applying linear RNNs to learn linear functionals. In this case,
we again find an interesting interaction between memory and learning dynamics. These
results then put the ubiquitous but heuristic observations - that long-term memory nega-
tively impacts training efficiency (Bengio et al., 1994; Hochreiter et al., 2001) - on concrete
theoretical footing, at least in idealized settings. At the same time, we also complement
general results on “vanishing and explosion of gradients” (Pascanu et al., 2013; Hanin and
Rolnick, 2018; Hanin, 2018) that are typically restricted to initialization settings with more
precise characterizations in the dynamical regime during the whole training process.

6.1 Optimization Problem Formulation

We first define the loss function for training. We use the squared difference between the
target functional and the (linear) RNN model at some terminal time T > 0 averaged over
input distributions, which can be written as

ExJT (x; c,W,U) := Ex|ĤT (x)−HT (x)|2 = Ex

∣∣∣∣∫ T

0
[c>eWtU − ρ(t)>]xT−tdt

∣∣∣∣2 . (88)

Without loss of generality, here the input time series x is assumed to be finitely cut off at
zero, i.e. xt = 0 for any t ≤ 0 almost surely. Training the RNN amounts to optimizing
ExJT with respect to the parameters (c,W,U). The most commonly applied method in
practice is gradient descent (GD) or its stochastic variants (say SGD), which updates the
parameters in the steepest descent direction.

6.1.1 Motivating Numerical Examples

We first show numerically that the gradient descent training dynamics of ExJT exhibits
very interesting and different behaviors depending on the form of target functionals. Take
the input dimension d = 1 and recall the target functional HT (x) =

∫ T
0 ρ(t)xT−tdt, we take
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the input x as white noise, while the representation ρ is selected as the exponential sum or
the (scaled) Airy function:

1. Exponential sum: ρ(t) = [c∗>]eW
∗tb∗, where c∗, b∗ ∈ Rm∗ are standard normal random

vectors, and W = −I − Z>Z with Z ∈ Rm∗×m∗ is a Gaussian random matrix with
i.i.d. entries having variance 1/m∗.

2. Airy function: ρ(t) = Ai(s0[t− t0]), where Ai(t) denotes the Airy function of the first
kind, given by the improper integral

Ai(t) =
1

π
lim
ξ→∞

∫ ξ

0
cos

(
u3

3
+ tu

)
du. (89)

Note that in the first example, the memory of target functional decays quickly. While for
the second example, the effective rate of decay is controlled by the parameter t0 and s0: for
t ≤ t0, the Airy function is oscillatory, hence a large amount of memory is present in the
target for large t0.

We now show via numerical experiments that the long-term memory adversely affects the
optimization process with gradient descent. In Figure 1 (a) (b), we plot the GD dynamics on
training linear RNNs (discretized using Euler method, hence equivalent to residual RNNs).
We observe that the training proceeds efficiently for the exponential sum target. However,
for the Airy function target, there are interesting “plateauing” behaviors of the loss function,
where the training slows down significantly after some initial decrements. The plateauing
is sustained for a long time before further decrements are observed. This causes a severe
slow down of training. This effect gets worse as t0 increases, which corresponds to a more
complex Airy function with more memory effects.

As a further demonstration that this plateauing behavior may be generic, a nonlinear
forced dynamical system is also investigated. That is, the Lorenz 96 system (Lorenz, 1996):

ẏ = −y + x+

K∑
k=1

zk/K,

żk = 2[zk+1(zk−1 − zk+2)− zk + y], k = 1, · · · ,K.

(90)

Here, x is an external stochastic noise, and the variables zk are with cyclic indices: zk+K =
zk for k ∈ [K]. When the unresolved variables zk are unknown, the dynamics of the
resolved variable y driven by x is a nonlinear dynamical system with memory effects. We
use a standard nonlinear RNN model (with the tanh activation) to learn the sequence-to-
sequence mapping x0:T 7→ y0:T with the Adam optimizer. Figure 1 (c) shows that the
training of the Lorenz 96 system with presence of memory also exhibits the interesting
plateauing phenomenon.

The results in Figure 1 hint at the fact that there are certainly some functionals which are
much harder to learn than others. It is the purpose of the remaining analysis to understand
precisely when and why such difficulties occur, at least in simplified but representative
settings. In particular, we will again relate this in a precise manner to memory effects in
the target functional, which shows yet another facet of the curse of memory when it comes
to optimization.
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Figure 1: Comparison of training dynamics on different types of functionals. (a) and (b):
using the linear RNN model with the GD optimizer; (c): using the nonlinear RNN model
(with tanh activation) with the Adam optimizer. The shaded region depicts the mean ±
the standard deviation in 10 independent runs using randomized initialization. Here, we set
m∗ = 8 for the exponential sum target, and t0 = 3, s0 = 2.25 for the Airy function target.
In all cases, the trained RNN has the hidden dimension 16 and the total length of the path
is T = 6.4. The continuous-time RNNs are discretized using the Euler method with step
size 0.1. Observe that learning complex functionals (Airy, Lorenz) suffers from slow downs
in the form of long plateaus.

Remark 17 There are a number of recent results concerning the training of RNNs using
gradient methods (Hardt et al., 2018; Allen-Zhu et al., 2019). They are mostly positive
in the sense that trainability is proved under specific settings, including recovering linear
dynamics (Hardt et al., 2018) or over-parameterized settings (Allen-Zhu et al., 2019). Our
result here concerns the general setting of learning linear functionals, which need not come
from certain underlying dynamics, and may not be in the over-parameterized regime. In
this setting, we discover on the contrary that the training can become very difficult even in
the linear case. This can be understood in a quantitative way, as we will show later.

6.1.2 Simplifications

Motivated by numerical examples presented above, it is our goal now to precisely analyze
the observed difficulty in training (i.e. the plateauing behavior) when the target functional
possesses certain structures (with long-term memories), as shown in Section 6.1.1. To make
the theoretical analysis amenable, we make the following simplifications.

• Take the input data x to be the white noise, so that

xT−tdt
in distribution

= dBt, (91)

where Bt is the standard d-dimensional Wiener process. As a consequence, simplifying
(88) via Itô’s isometry gives

JT (c,W,U) := ExJT (x; c,W,U) =

∫ T

0

∥∥∥c>eWtU − ρ(t)>
∥∥∥2

2
dt. (92)
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• We focus on the temporal dimension and take the spatial dimension d = 1 in (92).2

Moreover, to investigate the effect of long-term memory, it is necessary to consider
the training on large time horizons. Hence, we take T →∞ to get

J∞(c,W, b) :=

∫ ∞
0

(
c>eWtb− ρ(t)

)2
dt, (93)

where b is the sole column of U in (92) and ρ(t) becomes a scalar-valued target. This
corresponds to the so-called single-input-single-output (SISO) system.

• Due to the difficulty of directly analyzing ∇W eWt and ∇2
W e

Wt, we consider a further
simplified ansatz. Assume that W is a diagonal matrix with negative entries (to
guarantee the stability of the model). That is, W = −diag(w) with w ∈ Rm+ . Then
we can combine a = b ◦ c and rewrite the model as

ρ̂(t; c,W, b) := c>eWtb =
m∑
i=1

aie
−wit , a>e−wt , ρ̂(t; a,w). (94)

The optimization problem (93) becomes

min
(a,w)∈Rm×Rm+

J(a,w) :=

∫ ∞
0

(
m∑
i=1

aie
−wit − ρ(t)

)2

dt. (95)

Here we omit the subscript ∞.3

• We apply a continuous-time idealization of the gradient descent dynamics by consid-
ering the gradient flow with respect to J(a,w). That is,{

a′(τ) = −∇aJ(a(τ), w(τ)),
w′(τ) = −∇wJ(a(τ), w(τ)),

(96)

with some initial value a(0) = a0 ∈ Rm, w(0) = w0 ∈ Rm+ .

As we will show later, applying the training dynamics (96) to optimize (95) is able to
serve as a starting point in the fine-grained dynamical analysis, since this still preserves
the plateauing behavior observed in the optimization process (Section 6.1.1), provided ad-
ditional structures related to memories (see details in Section 6.1.3) on the target ρ ∈
L2([0,∞)) ∩ C2([0,∞)) are imposed, as discussed next.

2. One can observe that the spatial dimension plays little role in the previous approximation analysis (see
the proof of Theorem 10 and Theorem 11), since each spatial dimension can be handled separately.

3. The time horizon is always taken as ∞ in the whole analysis. Note that here we also omit an index
m (width of the network, relating to the model capacity), since it remains unchanged in the following
content if not specified.
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6.1.3 Heuristic Insights

We start with some informal discussion on probable reasons behind the plateauing behavior.
A straightforward computation shows that, for k = 1, 2, . . . ,m,

∂J

∂ak
(a,w) = 2

∫ ∞
0

e−wkt

(
m∑
i=1

aie
−wit − ρ(t)

)
dt, (97)

∂J

∂wk
(a,w) = 2ak

∫ ∞
0

(−t)e−wkt
(

m∑
i=1

aie
−wit − ρ(t)

)
dt. (98)

To construct conditions when the dynamics (96) shows plateauing behaviors, one can con-
sider as follows. When there are plateaus in the training dynamics, the loss J must be
large while the gradient norm ‖∇J‖2 must be small. To make both ∂J

∂ak
and ∂J

∂wk
small,

we need to require that the multiplier, e−wkt or te−wkt, is nearly orthogonal to the residual
ρ̂(t; a,w) − ρ(t) = a>e−wt − ρ(t). Since the large loss also implies a large residual, and
notice that multipliers are exponentially decayed, one can construct a sufficient condition:
the plateauing behavior occurs if the residual is large only for large t. That is to say, the
learned functional differs from the target functional only at large times. This again relates
to the long-term memory.

Based on this observation, we build the memory effect explicitly into the target func-
tional. Concretely, we consider a ground truth ρ with the form

ρ(t) = ρ̄(t) + ρ0,ω(t), (99)

where ρ̄ is a function which can be well-approximated by ρ̂(t; a,w), e.g. ρ̄ is also an expo-
nential sum (or integral), which appears the short-term memory; while ρ0,ω is a bounded
function with light tails and the long-term memory (parameterized by ω > 0), e.g. a spike
function with a finite support at an increasing time position as ω → 0+. In this case, one
can investigate the landscape around the area ρ̂(t; a,w) ≈ ρ̄(t):

• For small t, the residual is small;

• For large t, the residual is not small (but remains bounded), while e−wkt will be small.

Both of them give small gradients, but the overall residual (and hence loss) is large. This
then leads to the plateauing behavior observed in Section 6.1.1. More importantly, by
taking a target like (99), one can get an increasing plateauing time as the memory becomes
longer, since ρ̂ tends to first fit the short-term memory part ρ̄, and then fit the long-term
memory part ρ0,ω.4 A simple example of such target functionals is

ρ(t) = a∗e−w
∗t + ce−

(t−1/ω)2

2σ2 . (100)

where w∗ > 0 and a∗, c, σ 6= 0. Observe that as ω → 0+, the memory of the sequence
of functionals corresponding to ρ increases. We numerically verify that this simple target
(100) gives rise to the plateauing behavior (see Figure 2) as expected, just like Figure 1 for
the Airy function and the Lorenz 96 system. We will subsequently quantify this behavior
in the following section.

4. This is a claim based on the observation of numerical experiments, which are omitted here. The theo-
retical characterization will be given later.
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Figure 2: The training dynamics of the target functional defined by (100) using the model
(94). Here we take the width m = 2 in ρ̂. The corresponding gradient flow (96) is numer-
ically solved by the Adams-Bashforth-Moulton method. Observe that the plateauing time
increases rapidly as the memory becomes longer (ω > 0 decreases).

Remark 18 As with the approximation results, we emphasize that it is not obvious at all
if target functionals with the representation (99) can be generated by autonomous or forced
differential equations. Hence, it is interesting and necessary to consider the general case
of learning/approximating sequences of functionals as is done here, as opposed to previous
approaches of recovering some underlying dynamical systems using RNNs (Hardt et al.,
2018).

6.2 Main Results

In this section, we present the main optimization results theoretically and numerically.

6.2.1 Theoretical Results

Let us implement the insights proposed above in a precise manner and quantify the plateau-
ing dynamics. Recall the discussion in Section 6.1.2 and Section 6.1.3, i.e. (95) and (99),
(100), we aim to analyze the optimization problem

min
(a,w)∈Rm×Rm+

Jω(a,w) := ‖ρ̂(t; a,w)− ρω(t)‖2L2[0,∞) , (101)

where ρ̂(t; a,w) :=
∑m

i=1 aie
−wit , a>e−wt is the exponential sum model to be trained

(i.e. the kernel of linear RNNs); ρω(t) denotes the target and is set to be two-part and
memory-dependent, as defined in (99) and motivated by (100):

ρω(t) := ρ̄(t) + ρ0,ω(t) =

∫ wr

wl

a∗(w)e−wtdπ0(w) + ρ0(t− 1/ω). (102)
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Here we take the short-term memory part ρ̄ to be an exponential sum, where wr > wl > 0
are two fixed constants, a∗ : [wl, wr] 7→ R is a fixed bounded function, and π0 is a fixed
probability distribution defined on [wl, wr]. For the long-term memory part ρ0,ω, ω > 0
controls the quantity of memory, and ρ0 : R 7→ R is a fixed template function which satisfies
the following assumptions.

Assumptions on ρ0. (i) ρ0(t) 6≡ 0; (ii) ρ0 ∈ L2(R) ∩C2(R); (iii) ρ0 is bounded on R, i.e.
‖ρ0‖L∞(R) <∞; (iv) lim

t→−∞
ρ0(t) = 0.

Remark 19 The above assumptions (i), (ii) and (iii) are rather natural, and (iv) only
restricts the single side tail of ρ0 to be zero. In the following analysis, we further focus on
ρ0 with light tails, e.g. the sub-Gaussian tails

|ρ0(t)| ≤ c0e
−c1t2 , ∀t : |t| ≥ t0 (103)

for some fixed positive constants c0, c1, t0. Obviously, the Gaussian densities and continuous
functions with compact supports possess the sub-Gaussian tails.

The ultimate goal is to analyze the gradient flow training dynamics of the loss Jω:

d

dτ
θω(τ) = −∇Jω(θω(τ)), θω(0) = θ0, (104)

where θω(τ) := (aω(τ), wω(τ)) ∈ R2m for any τ ≥ 0, and the initialization θ0 := (a0, w0).

In Li et al. (2021), we proved that the curse of memory occurs in the optimization of
linear RNNs when applied to linear functional targets. That is, the learning can get slow
downs with the exponentially large timescale as the target memory increases.

Theorem 20 (Exponential Timescale of Plateauing) Take dπ0(w)/dw =
∑m∗

j=1 δ(w−
w∗j ) with m∗ < m.5 For any ω > 0, m ∈ N+, θ0 = (a0, w0) ∈ Rm × Rm+ and δ > 0, define
the hitting time

τ0 = τ0(δ;ω,m, θ0) := inf {τ ≥ 0 : ‖θω(τ)− θ0‖2 > δ} , (105)

τ ′0 = τ ′0(δ;ω,m, θ0) := inf {τ ≥ 0 : |Jω(θω(τ))− Jω(θ0)| > δ} . (106)

Assume that the initialization satisfies ρ̂(t; θ0) ≈ ρ̄(t). Then there exist universal constants
C(ρ0), C ′(ρ0) > 0 only depending on ρ0, such that

Jω(θ0) & C(ρ0) > 0, ∀ω ∈ (0, C ′(ρ0)), (107)

and

lim
ω→0+

τ0(δ;ω,m, θ0) = lim
ω→0+

τ ′0(δ;ω,m, θ0) = +∞. (108)

5. Here δ(·) denotes the common Dirac function. That is, assume that the distribution π0 is discrete with

particles {w∗j }m
∗

j=1, which gives ρ̄(t) =
∑m∗

j=1 a
∗
je
−w∗

j t with a∗j := a∗(w∗j ). Without loss of generality, here
we set the non-degenerate conditions: a∗j 6= 0, w∗j > 0 and w∗i 6= w∗j for any i 6= j, i, j ∈ [m∗]. The
condition m∗ < m is to ensure that ρ̄ can be well-approximated by ρ̂, and also introduces degeneracy to
simplify the analysis and help to derive a more concise bound.
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In particular, if ρ0 has the sub-Gaussian tails (103), and the initialization is bounded as
(a0, w0) ∈ [a0

l , a
0
r ]
m × [w0

l , w
0
r ]
m with constants a0

l < a0
r, 0 < w0

l < w0
r , we further have

τ ′0(δ;ω,m, θ0) ≥ τ0(δ;ω,m, θ0) & ω2e
w0
l
ω min

{
δ√
m
, ln(1 + δ)

}
(109)

for any ω ∈ (0,min{1/2, 1/t0, 2c1/w
0
r}) sufficiently small, where δ � min{1, C(ρ0)}, and &

hides universal positive constants only depending on a0
l , a

0
r, w

0
r and ρ0, t0, c0, c1.

Remark 21 The proof of Theorem 20 follows from ρ̂(t; θ0) ≡ ρ̄(t) and continuity. Ac-
cording to the linear independence of exponential functions (Lemma 28), we can obtain a
further relation between parameters of ρ̂(·; θ0) and ρ̄(·) (see Definition 29 and Lemma 30).
This further implies a permutation symmetry in the parameter space, which leads to a fac-
torial number of equivalent initialization regions. All the details are found in Definition 29,
Lemma 30, Remark 31 and Remark 36 in Section 7.1.

In the current work, we expand significantly the setting of Theorem 20 (i.e. π0 is discrete
and the initialization condition ρ̂ ≈ ρ̄), and perform a complete dynamical analysis under
a general regime: π0 can be either discrete or continuous, and the initialization is generally
defined as follows.

Bounded Initialization. Denote the set of initializations by

Θ0 :=
{
θ0 = (a0, w0) ∈ Rm × Rm+ : w0 ∈ [w0

l , w
0
r ]
m,

a0 = a′0m
−β with a′0 ∈ [a0

l , a
0
r ]
m
}
, (110)

where 0 < w0
l < w0

r , a
0
l < a0

r and β ≥ 1 are fixed constants.

Remark 22 Here we take the bounded initialization for convenience. There are two points
that need explanation:

• notice that the exponential sum ρ̂(t; a,w) = a>e−wt is (square) integrable on [0,∞) if
and only if w � 0m, it is natural to set the non-degenerate condition w0 � w0

l 1m to
ensure a finite initial loss;

• the normalization factor m−β (β ≥ 1) on a0 is to ensure a bounded initial loss with
respect to the network width m ∈ N+. It is due to ‖ρ̂(t; a0, w0)‖L2[0,∞) = O(‖a0‖1),
which gives Jω(a0, w0) = O(‖a0‖1 + 1) (see details in the proof of Lemma 38 and
Remark 39).

The bounded initialization (110) also implies stability of the training dynamics (104).
The details are found in Lemma 40 (and Remark 41, Lemma 50), which states that there
exists a universal constant τ1 > 0, such that for any ω > 0, m ∈ N+ and θ0 ∈ Θ0, each
component of wω(τ) is uniformly bounded away from zero within the time horizon [0, τ1].

To summarize, it is shown that as ω → 0+, the gradient flow training dynamics (104)
becomes a two-stage process with the timescale separation:

• Stage I: ρ̂(·; θω(τ)) first learns ρ̄(·) within an O(1) time;
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• Stage II: the dynamical system (104) then gets stuck for a long time, which can be
exponentially large as a function of 1/ω (the target memory).

Now we state the precise results regarding both stages. For Stage II, we have the
following estimate for the timescale of plateauing under general settings.

Theorem 23 (Extensions on Plateauing Time) For any ω > 0, m ∈ N+ and θ0 ∈ Θ0,
assume ∥∥∥[aω(τ)]>e−wω(τ)t − ρ̄(t)

∥∥∥2

L2[0,∞)
≤ c̄ε̄, ∀τ ∈ [τ̄ /2, τ̄ ] (111)

with ε̄ = ε̄(ω,m), τ̄ = τ̄(ω,m), and c̄ > 0 is a universal constant independent of ω, m and
θ0.6 Then there exist universal constants C(ρ0), C ′(ρ0) > 0 only depending on ρ0, such that

for any ω ∈ (0, C ′(ρ0)), m ∈ N+ with ε̄ = ε̄(ω,m) < C(ρ0)
4c̄ and any θ0 ∈ Θ0, we have

Jω(θω(τ)) & C(ρ0) > 0, ∀τ ∈ [τ̄ /2, τ̄ ]. (112)

In addition, for any δ > 0, ω > 0, m ∈ N+, θ0 ∈ Θ0 and some τ ′ ∈ [τ̄ /2, τ̄ ], define the
hitting time

τ0 = τ0(δ;ω,m, θ0) := inf
{
τ ≥ τ ′ : ‖θω(τ)− θω(τ ′)‖2 > δ

}
, (113)

τ ′0 = τ ′0(δ;ω,m, θ0) := inf
{
τ ≥ τ ′ : |Jω(θω(τ))− Jω(θω(τ ′))| > δ

}
. (114)

Then for any ω ∈ (0,min{1/2, 1/t0, 4c1/w
0
l }) sufficiently small, m ∈ N+ appropriately large

such that τ̄ = τ̄(ω,m) ≤ τ1, ε̄ = ε̄(ω,m) and ε̄/τ̄ sufficiently small, and any θ0 ∈ Θ0, there
exists τ ′ = τ ′(ω,m, θ0) ∈ [τ̄ /2, τ̄ ], such that

τ ′0 − τ ′ ≥ τ0 − τ ′ &


min

{
δ

√
mε̄+

√
mω−1e−

w0
l

2ω

, ln(1+δ)

mC−m+
√
ε̄+ω−2e−

w0
l

2ω

}
, τ̄ = 0,

min

{
δ

√
ε̄/τ̄+

√
mω−1e−

w0
l

4ω

, ln(1+δ)

mC−m+
√
ε̄+ω−2e−

w0
l

2ω

}
, τ̄ 6= 0,

(115)

where δ � min{1, C(ρ0)}, C > 1 and & hide universal positive constants only depending
on a0

l , a
0
r, w

0
l , w0

r , wl, wr and a∗, ρ0, t0, c0, c1.

Remark 24 One can view Theorem 23 as an extension of Theorem 20. In fact, by taking
ε̄ = τ̄ = 0 and noticing that the term mC−m is eliminated due to simpler analysis,7 we
can recover Theorem 20 based on Theorem 23. In addition, Theorem 23 implies that an
exponentially small ε̄ in the target memory 1/ω (in particular, ε̄ = 0) with an appropriately
large m ∈ N+ leads to an exponentially large lower bound for the timescale of plateauing.
That is to say, the learning to the short-term memory part of the target results in the curse
of memory in optimization.

6. That is, the gradient flow training dynamics (104) achieves an error tolerance ε̄ to the short-term memory
part ρ̄(·) within a timescale O(τ̄).

7. Compare the proofs of Proposition 34 and Proposition 46, we have that the termmC−m can be eliminated
by introducing the degeneracy (the condition m∗ < m in Theorem 20) and applying the “parameter”
arguments.
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Now we derive conditions for dynamics to display the behavior of Stage I, i.e. ρ̂(·; θω(τ))
learns ρ̄(·) within an O(1)-time, and also to illustrate the conditions in Theorem 23 in a
sufficient sense. In particular, we consider random bounded initialization for sufficiently
wide RNNs.

Random Bounded Initialization. Denote the set of random initializations by

Θ̃0 :=
{
θ0 = (a0, w0) ∈ Rm × Rm+ : the components of θ0 are i.i.d. sampled,

w0 ∼ πm0 ([wl, wr]), a0 = a′0m
−β with a′0 ∼ πm1 ([al, ar])

}
, (116)

where 0 < wl < wr, al < ar and β ≥ 1 are fixed constants, and π1 is a fixed probability
distribution defined on [al, ar].

Theorem 25 (Stage-I Dynamics) Set p ∈ (1/3, 1) and assume that m ≥ 1/τ
1/p
1 with τ1

defined above (after Remark 22). Fix any ω ∈ (0,min{1/2, 1/t0, 4c1/wl}) and m ∈ N+. For
any δ0 > 0, with probability of at least 1− δ0 over the choice of θ0 ∈ Θ̃0, we have∥∥∥[aω(τ)]>e−wω(τ)t − ρ̄(t)

∥∥∥2

L2[0,∞)

.
1

m1−p + ln(6/δ0)

(
1

m6p−2
+

1

m

)
+m2(1−p)e−

wl
2ω , ∀τ ∈ [m−p/2,m−p], (117)

where . hides universal positive constants only depending on al, ar, wl, wr and a∗, ρ0, t0,
c0, c1.

According to Theorem 25, when there is sufficient model capacity, the gradient flow
training dynamics of linear RNNs learns a solution close to the short-term memory part of
target rapidly with high probabilities, even when the target with long-term memory.

Remark 26 By Theorem 25, let

ε̄ = ε̄(ω,m) =
1

m1−p + ln(6/δ0)

(
1

m6p−2
+

1

m

)
+m2(1−p)e−

wl
2ω ,

τ̄ = τ̄(ω,m) = m−p, c̄ = c̄(al, ar, wl, wr, a
∗, ρ0, t0, c0, c1),

we get

ε̄(ω,m)/τ̄(ω,m) =
1

m1−2p
+ ln(6/δ0)

(
1

m5p−2
+

1

m1−p

)
+m2−pe−

wl
2ω .

Further restrict p ∈ (2/5, 1/2), we have

lim
m→∞

lim
ω→0+

ε̄(ω,m) = lim
m→∞

lim
ω→0+

τ̄(ω,m) = lim
m→∞

lim
ω→0+

ε̄(ω,m)/τ̄(ω,m) = 0,

which implies that ε̄, τ̄ and c̄ satisfy all the conditions in Theorem 23 for any ω > 0
sufficiently small and m ∈ N+ sufficiently large. Applying Theorem 25 to Theorem 23 gives
that for any δ0 > 0, with the probability of at least 1 − δ0 over the initialization θ0 ∈ Θ̃0,
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the plateauing timescale τ0(δ;ω,m, θ0), τ ′0(δ;ω,m, θ0) defined in (113), (114) can be lower
bounded by

min

 δ

mp− 1
2 +

√
ln(6/δ0)

m
5
2 p−1

+m1− p
2ω−1e−

wl
4ω

,
ln(1 + δ)

mC−m +m
p−1
2 +

√
ln(6/δ0)

m3p−1 +m1−pω−2e−
wl
4ω

 .

(118)

This lower bound goes to infinity in the iterated limit when ω → 0+ first and then m→∞.

Connecting Theorem 25 with Theorem 23, we conclude that the gradient flow training
dynamics for learning with linear RNNs appears a typical two-stage process with timescale
separation. That is, when there are long-term memories in targets, the model first learns the
short-term memory part of target rapidly, then becomes stuck for a long time. Increasing
the model capacity cannot alleviate this issue. This is because, even if we increase the width
m of linear RNNs, a sufficiently long memory term (ω > 0 sufficiently small that depends
on m) can make the lower bound in (118) arbitrarily large.

6.2.2 Numerical Verifications

(1) Timescale Estimates
We numerically verify the timescale proved in Theorem 20. That is, we verify that the

timescale of plateauing (|Jω(θω(τ))−Jω(θ0)|, see (106)) and parameter separation (‖θω(τ)−
θ0‖2, see (105)) are exponentially large as the memory 1/ω → +∞. The results are shown
in Figure 3, where we observe good agreement with the predicted scaling.
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10 12 14 16 18
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Figure 3: The timescale of plateauing and parameter separation. Here the model and target
are both selected the same as Figure 2, but with a larger width m = 10. We observe that
the logarithm of plateauing time and parameter separation is almost linear to the memory
1/ω.

(2) General Settings
To facilitate the mathematical tractability, the results in Section 6.2.1 is derived under

the restrictive conditions of the diagonal W (recurrent kernel) with negative entries, linear
activations and the gradient flow training dynamics. However, we show here that the
plateauing behavior - which we now understand as a generic feature of long-term memory
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of the target functional and its interaction with the optimization dynamics - is present even
for more general settings, and hence our simplified analytical setting is representative of
general situations.

In Figure 4, we still take the target functional as defined in (100), but apply more general
models to learn it, including using the RNN with full (non-diagonal) recurrent kernel W
with no restrictions on entries, using the nonlinear activation (tanh) and using the Adam
optimizer (Kingma and Ba, 2015). Furthermore, to be consistent with practice, we use
the actual input sample paths of finite time horizons, instead of taking the Itô isometry
simplification. We observe that the plateauing behaviors are present in all cases. Moreover,
in the last case of applying the Adam optimizer (which can be viewed as a momentum-
based optimization method), the plateauing behavior is somewhat alleviated, although the
separation of timescales is still present. This is consistent with our supplemental analysis in
Appendix B, where we show that momentum-based methods will speed up training based
on the dynamical analysis of plateauing given in Section 7.1.
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(a) White noise inputs
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(b) Cosine noise inputs

Figure 4: Numerical verifications of the plateauing behavior under general settings, with the
non-diagonal recurrent kernel, the nonlinear activation (tanh), and the Adam (momentum-
based) optimizer. Here we use the target functional the same as Figure 2 with the memory
1/ω = 20. The time horizon is chosen as T = 32, and 128 input samples are generated
from a standard white noise. The learning rate is 1.0 for GD and 0.001 for Adam. 10
initializations are sampled and trained for each experiment. We consider two possible input
distributions: (a) white noise inputs; (b) inputs of the form xt =

∑J
j=1 αj cos(λjt), where

λj ∼ U [0, 10] and αj ∼ N (0, 1). We observe that plateaus occur in all cases, and the
momentum generally improves the situation but still not resolve the difficulty.
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6.2.3 The Curse of Memory in Optimization

Let us summarize the findings from Section 6.2.1 and Section 6.2.2. The form of target
functional defined in (102) captures the long-term memory in a concrete way. Note that
when ω → 0+, it corresponds to the case where the influence of target functional Ht does not
decay, much like that considered in the curse of memory in approximation (see Section 4.3).
However, different from the approximation part where an exponentially large number of
neurons/hidden states is required to achieve a given tolerance, here in optimization the
adverse effect of memories comes with (possibly exponential) slow downs of the gradient
flow training dynamics. In other words, the plateauing time can be exponential in memory,
as shown in Theorem 20 and numerically verified in Figure 3. Under more general settings,
this adverse effect of memories is still quantified, even increasing the model capacity can
not help (Theorem 23 and Theorem 25). While these results are proved under sensible but
restrictive conditions, we show numerically in Figure 4 that they are representative of the
general settings.

In the literature, a number of results have been obtained pertaining to the analysis
of training dynamics of RNNs. A positive result for training with GD is established in
Hardt et al. (2018), but that is in the setting of identifying dynamical systems. That is,
the target functional analyzed there is generated by a hidden linear dynamical system,
hence it must possess exponential memory decay properties that is consistent with the
RNN, provided that the hidden linear dynamics is stable. The results here show that if one
makes no assumption that the target linear functional is generated from a linear dynamical
system, then the situation is different. Another example of positive result is when the
RNN is sufficiently over-parameterized in empirical risk minimization (i.e. the number
of model parameters are much more than the number of samples; see Allen-Zhu et al.
(2019)). Here, we consider population risk minimization, and we show that in this case,
even when the model size is large, the risk minimization problem can become difficult. These
results provide an alternative analysis of a setting that is representative of the difficulties
one may encounter in practice. In particular, the curse of memory that we quantified
here is consistent with the difficulty in the training of RNNs often observed in practical
applications, where heuristic attributions to “memory” are often alluded to (Hu et al., 2018;
Campos et al., 2018; Talathi and Vartak, 2015; Li et al., 2018). The analysis here makes
the connection between target memories and optimization difficulties precise, and forms a
basis for the principled development of means to overcome such difficulties in applications.

7. Proofs of Optimization Results

In this section, proofs of the theoretical results shown in Section 6.2.1 are given.

7.1 Exponential Timescale of Plateauing

We prove Theorem 20 in this section. The basic insight is, by adding (appropriate) long-
term memories in targets, one can increase the loss with little effect on the gradient and
Hessian, which leads to a significant slow down of the gradient flow training dynamics near
the short-term memory part of target. Therefore, Theorem 20 is proved subsequently in
the following procedure:
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1. We prove that Jω has a large value but small gradient when ρ̂(t; a,w) ≡ ρ̄(t);

2. We prove that when ρ̂(t; a,w) ≡ ρ̄(t), the Hessian ∇2Jω is positive semi-definite for
ω = 0, but for finite, small ω > 0, ∇2Jω has O(1) positive eigenvalues and multiple
o(1) eigenvalues;

3. Based on these results, we perform a local linearization analysis on the gradient flow
(104) initialized by ρ̂(t; a0, w0) ≡ ρ̄(t), from which and by continuity the timescale of
plateauing is derived.

(1) Preliminary Results
Recall the assumptions on targets in Section 6.2.1. Since dπ0(w)/dw =

∑m∗

j=1 δ(w−w∗j ),
we get

ρω(t) = ρ̄(t) + ρ0,ω(t) =

∫ wr

wl

a∗(w)e−wtdπ0(w) + ρ0(t− 1/ω)

=
m∗∑
j=1

a∗je
−w∗j t + ρ0(t− 1/ω).

Here, a∗j := a∗(w∗j ) 6= 0, w∗j > 0 and w∗i 6= w∗j for any i 6= j, i, j ∈ [m∗], and m∗ < m. The
former requirements are just non-degenerate conditions, and the last requirement ensures
that the model can perfectly represent the short-term memory part of target, ρ̄(t). The
memory in target is controlled by ρ0,ω(t) = ρ0(t−1/ω), with ρ0 as a fixed template function.
As ω → 0+, the support of function shifts towards large times, modeling the dominance of
long-term memories. Recall the assumptions on ρ0: (i) ρ0(t) 6≡ 0; (ii) ρ0 ∈ L2(R) ∩ C2(R);
(iii) ‖ρ0‖L∞(R) <∞; (iv) lim

t→−∞
ρ0(t) = 0. For quantitative analysis, we mainly focus on ρ0

with the sub-Gaussian tails (103).
We begin by the following preliminary estimate that is used throughout the subsequent

analysis.

Lemma 27 For any n ∈ N, ω > 0 and w > 0, let

∆n,ω(w) : =

∫ ∞
0

tne−wtρ0,ω(t)dt, (119)

∆+
n,ω(w) : =

∫ ∞
0

tne−wt|ρ0,ω(t)|dt. (120)

Then

• ∆+
n,ω(w) is monotonically decreasing on (0,∞);

• lim
ω→0+

∆n,ω(w) = lim
ω→0+

∆+
n,ω(w) = 0;

• In particular, if ρ0 is sub-Gaussian, we further have

|∆n,ω(w)| ≤ ∆+
n,ω(w) . ω−ne−w/ω

(
cw

2

2 + cw3

)
, ω ∈ (0,min{1/2, 1/t0, 2c1/w}).

(121)

Here c2 = e
1

4c1 > 1, c3 = et0 > 1, and . hides universal positive constants only
depending on n and ρ0, t0, c0, c1.
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Proof (i) Obviously ∆+
n,ω(w1) ≤ ∆+

n,ω(w2) for any w1 > w2 > 0.
(ii) Obviously |∆n,ω(w)| ≤ ∆+

n,ω(w), we only need to show lim
ω→0+

∆+
n,ω(w) = 0. By the

assumptions on ρ0, we get

lim
ω→0+

|ρ0,ω(t)| = lim
ω→0+

|ρ0(t− 1/ω)| = lim
s→−∞

|ρ0(s)| = 0, ∀t ≥ 0,

and M0 := ‖ρ0‖L∞(R) < +∞, which gives tne−wt|ρ0,ω(t)| ≤ M0t
ne−wt ∈ L1([0,∞)) for any

n ∈ N, ω > 0 and w > 0. By Lebesgue’s dominant convergence theorem, we have

lim
ω→0+

∆+
n,ω(w) =

∫ ∞
0

tne−wt · lim
ω→0+

|ρ0,ω(t)|dt = 0, ∀n ∈ N, ∀w > 0. (122)

(iii) Now we estimate ∆+
n,ω(w) under the sub-Gaussian condition (103). Suppose 0 <

ω < 1/t0, we have

∆+
n,ω(w) =

∫ ∞
0

tne−wt|ρ0(t− 1/ω)|dt

=

∫ 1/ω+t0

1/ω−t0
tne−wt|ρ0(t− 1/ω)|dt+

∫ 1/ω−t0

0
tne−wt|ρ0(t− 1/ω)|dt

+

∫ ∞
1/ω+t0

tne−wt|ρ0(t− 1/ω)|dt , I1 + I2 + I3.

Then we bound I1, I2 and I3 respectively:

I1 ≤M0

∫ 1/ω+t0

1/ω−t0
tne−wtdt ≤M0e

−w(1/ω−t0)

∫ 1/ω+t0

1/ω−t0
tndt

= M0e
wt0 · e−w/ω · (1 + ωt0)n+1 − (1− ωt0)n+1

(n+ 1)ωn+1

.M0e
wt0ω−ne−w/ω(t0 + ω),

where ω ∈ (0, 1/2), and . hides universal positive constants only related to n and t0. Let
1/c1 := 2σ2, we have

I2 = e−w/ω
∫ −t0
−1/ω

(s+ 1/ω)ne−ws|ρ0(s)|ds ≤ e−w/ω
∫ −t0
−1/ω

(s+ 1/ω)ne−ws · c0e
−c1s2ds,

where∫ −t0
−1/ω

(s+ 1/ω)ne−wse−c1s
2
ds = e

w2

4c1

∫ −t0
−1/ω

(s+ 1/ω)ne
−c1(s+ w

2c1
)2
ds

≤ eσ2w2/2

∫
R

(|t|+ |1/ω − σ2w|)n · e−
t2

2σ2 dt

= eσ
2w2/2

n∑
k=0

Ckn(1/ω − σ2w)n−k · 2
∫ ∞

0
tke−

t2

2σ2 dt

≤ eσ2w2/2
n∑
k=0

Ckn(1/ω)n−k
(√

2σ
)k+1

Γ

(
k + 1

2

)
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holds for any ω ∈ (0, 2c1/w). Here the last inequality is due to the Mellin Transform of
absolute moments of the Gaussian density (see Dytso et al. (2018), Proposition 1). The
argument is similar for I3, which gives the same bound as I2. Combining all the estimates
gives the desired conclusion. The proof is completed.

The main idea to analyze plateauing behaviors is to investigate the local dynamics of the
gradient flow (104) when ρ̂ = ρ̄, then extend the results to the setting ρ̂ ≈ ρ̄ by continuity.
Recall that both of them are exponential sums, we can obtain the relation of parameters
between ρ̂ and ρ̄, according to the following lemma.

Lemma 28 For any m ∈ N+, let λ = (λ1, · · · , λm) with λi 6= λj for any i 6= j, i, j ∈ [m].
Then the series of functions

{
eλit
}m
i=1

is linear independent on any interval I ⊂ R.

Proof The aim is to show

m∑
i=1

cie
λit = 0, t ∈ I ⇒ ci = 0, ∀i ∈ [m]. (123)

(123) holds trivially for m = 1. Assume that (123) holds for m− 1, then

m∑
i=1

cie
λit = 0, t ∈ I ⇒

m−1∑
i=1

cie
(λi−λm)t + cm = 0, t ∈ I (124)

⇒
m−1∑
i=1

ci(λi − λm)e(λi−λm)t = 0, t ∈ I.

By induction, we get ci(λi − λm) = 0 for any i = 1, · · · ,m − 1. Since λ1, · · · , λm are dis-
tinct, we have ci = 0 for any i = 1, · · · ,m− 1. Together with (124), we get cm = 0, which
completes the proof.

Definition 29 Let m ≥ m∗. For any partition P: [m] = ∪m∗j=0Ij with Ij1 ∩ Ij2 = ∅ for

any j1 6= j2, j1, j2 ∈ {0} ∪ [m∗], and I0 = ∪i0r=1I0,r with I0,r1 ∩ I0,r2 = ∅ for any r1 6= r2,
r1, r2 ∈ [i0], where Ij 6= ∅ for any j ∈ [m∗] and I0,r 6= ∅ for any r ∈ [i0] (if I0 6= ∅), define
the affine space (with respect to P):

M∗P :=

{
(a,w) ∈ Rm × Rm+ :

∑
i∈Ij

ai = a∗j , wi = w∗j for any i ∈ Ij , j ∈ [m∗];

∑
i∈I0,r

ai = 0, wi = vr 6= w∗j for any i ∈ I0,r, r ∈ [i0] and j ∈ [m∗]

}
.

Denote the collection of all such affine spaces by M∗ :=
⋃
PM∗P .

The following lemma characterizes the relation of parameters, by showing thatM∗ is exactly
the set of equivalent points to (a∗, w∗) for the purpose of representation via exponential
sums.
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Lemma 30 For any (a,w) ∈ Rm × Rm+ , ρ̂(t; a,w) ≡ ρ̄(t)⇔ (a,w) ∈M∗.

Proof (i) (⇐) Since (a,w) ∈ M∗, there exists P such that (a,w) ∈ M∗P . Then for any
t ≥ 0,

ρ̂(t; a,w) =

m∑
i=1

aie
−wit =

m∗∑
j=0

∑
i∈Ij

aie
−wit =

i0∑
r=1

∑
i∈I0,r

aie
−wit +

m∗∑
j=1

∑
i∈Ij

aie
−wit

=

i0∑
r=1

( ∑
i∈I0,r

ai

)
e−vrt +

m∗∑
j=1

(∑
i∈Ij

ai

)
e−w

∗
j t =

m∗∑
j=1

a∗je
−w∗j t = ρ̄(t).

(ii) (⇒) Let Ij =
{
i ∈ [m] : wi = w∗j

}
for any j ∈ [m∗], and I0 =

{
i ∈ [m] : wi 6=

w∗j for any j ∈ [m∗]
}

. Recall that ρ̄(t) =
∑m∗

j=1 a
∗
je
−w∗j t is non-degenerate: a∗j 6= 0, w∗j > 0

and w∗i 6= w∗j for any i 6= j, i, j ∈ [m∗], we get [m] = ∪m∗j=0Ij , Ij1 ∩ Ij2 = ∅ for any j1 6= j2,
j1, j2 ∈ {0} ∪ [m∗]. Combining Lemma 28 and the non-degeneracy of ρ̄ , Ij 6= ∅ for any
j ∈ [m∗]. Assume that there are i0 different components in (wi)i∈I0 , say v1, · · · , vi0 , then
vr 6= w∗j for any r ∈ [i0] and j ∈ [m∗]. Let I0,r =

{
i ∈ I0 : wi = vr

}
for any r ∈ [i0],

we get I0,r 6= ∅ for any r ∈ [i0] (if I0 6= ∅), and I0 = ∪i0r=1I0,r, and I0,r1 ∩ I0,r2 = ∅ for
any r1 6= r2, r1, r2 ∈ [i0]. Hence [m] = ∪m∗j=0Ij with I0 = ∪i0r=1I0,r forms a P defined in
Definition 29, and

0 ≡ ρ̂(t; a,w)− ρ̄(t) =
m∑
i=1

aie
−wit −

m∗∑
j=1

a∗je
−w∗j t

=

m∗∑
j=0

∑
i∈Ij

aie
−wit −

m∗∑
j=1

a∗je
−w∗j t

=

i0∑
r=1

∑
i∈I0,r

aie
−wit +

m∗∑
j=1

∑
i∈Ij

aie
−wit −

m∗∑
j=1

a∗je
−w∗j t


=

i0∑
r=1

( ∑
i∈I0,r

ai

)
e−vrt +

m∗∑
j=1

(∑
i∈Ij

ai − a∗j

)
e−w

∗
j t.

Again by Lemma 28, we have
∑

i∈Ij ai = a∗j for any j ∈ [m∗] and
∑

i∈I0,r ai = 0 for any

r ∈ [i0], which gives (a,w) ∈M∗P . The proof is completed.

Remark 31 Let I0 = ∅.8 It is straightforward to check that for any partition P, the
dimension of M∗P is

∑m∗

j=1(|Ij | − 1) = m − m∗. In addition, it can be verified that the

cardinality of M∗ is m∗!

{
m
m∗

}
, where

{
m
m∗

}
is the Stirling number of the second kind.9

8. That is, the non-degenerate case. Obviously, I0 6= ∅ implies an uncountable M∗P , but they are all
degenerate.

9. The result follows from basic knowledge of combinatorics. See details in the proof of Theorem 57.
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(2) Loss

Proposition 32 There exist universal constants C(ρ0), C ′(ρ0) > 0 only depending on ρ0,
such that for any (a,w) ∈ Rm × Rm+ satisfying ρ̂(t; a,w) ≡ ρ̄(t), we have

Jω(a,w) ≥ C(ρ0) > 0, ∀ω ∈ (0, C ′(ρ0)). (125)

That is, the loss is lower bounded away from zero uniformly in sufficiently small ω > 0.

Proof Recall the assumptions on ρ0, we have ρ0(t) 6≡ 0 and ρ0(t) ∈ C(R). Let t1 ∈ R
satisfying ρ0(t1) 6= 0. By continuity, there exists δ0 > 0 such that |ρ0(t)| ≥ |ρ0(t1)|/2 for
any t ∈ [t1 − δ0, t1 + δ0]. Hence, for any ω > 0 satisfying −1/ω < t1 − δ0, we have

‖ρ0,ω‖2L2[0,∞) =

∫ ∞
0

ρ2
0(t− 1/ω)dt =

∫ ∞
− 1
ω

ρ2
0(t)dt

≥
∫ t1+δ0

t1−δ0
ρ2

0(t)dt ≥ 1

2
δ0|ρ0(t1)|2 > 0. (126)

Let C(ρ0) = δ0|ρ0(t1)|2/2 and C ′(ρ0) = 1/|t1 − δ0|. Then for any (â, ŵ) ∈ Rm × Rm+ such
that ρ̂(t; â, ŵ) ≡ ρ̄(t), and any ω ∈ (0, C ′(ρ0)), we get

Jω(â, ŵ) = ‖ρ̂(t; â, ŵ)− ρ̄(t)− ρ0,ω(t)‖2L2[0,∞) = ‖ρ0,ω‖2L2[0,∞) ≥ C(ρ0) > 0,

which completes the proof.

(3) Gradient

Proposition 33 For any (a,w) ∈ Rm × Rm+ satisfying ρ̂(t; a,w) ≡ ρ̄(t), we have

lim
ω→0+

‖∇Jω(a,w)‖2 = 0. (127)

In particular, if ρ0 has the sub-Gaussian tails (103), the estimate

‖∇Jω(a,w)‖2 .
√
mω−1e−wmin/ω

(
c
w2

min
2 + cwmin

3

)
(1 + ‖a‖∞) (128)

holds for any ω ∈ (0,min{1/2, 1/t0, 2c1/wmin}). Here wmin := mini∈[m]wi > 0, c2, c3 > 1
are constants only related to c1, t0, and . hides universal positive constants only depending
on ρ0, t0, c0, c1.

Proof A straightforward computation shows, for k = 1, 2, · · · ,m,

∂Jω
∂ak

(a,w) = 2

 m∑
i=1

ai
wk + wi

−
m∗∑
j=1

a∗j
wk + w∗j

− 2∆0,ω(wk), (129)

∂Jω
∂wk

(a,w) = −2ak

 m∑
i=1

ai
(wk + wi)2

−
m∗∑
j=1

a∗j
(wk + w∗j )

2

+ 2ak∆1,ω(wk). (130)
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Fix any (â, ŵ) ∈ Rm × Rm+ satisfying ρ̂(t; â, ŵ) ≡ ρ̄(t). By Lemma 30, we have (â, ŵ) ∈
M∗. Recall Definition 29, there exists a partition P: [m] = ∪m∗j=0Ij with I0 = ∪i0r=1I0,r,
where Ij 6= ∅ for any j ∈ [m∗] and I0,r 6= ∅ for any r ∈ [i0] (if I0 6= ∅), such that
(â, ŵ) ∈ M∗P , which gives that

∑
i∈Ij âi = a∗j , ŵi = w∗j for any i ∈ Ij and j ∈ [m∗];∑

i∈I0,r âi = 0, ŵi = vr 6= w∗j for any i ∈ I0,r, r ∈ [i0] and j ∈ [m∗]. Therefore, for any
n ∈ N+, we have

m∑
i=1

âi
(ŵk + ŵi)n

−
m∗∑
j=1

a∗j
(ŵk + w∗j )

n

=

i0∑
r=1

∑
i∈I0,r

âi
(ŵk + ŵi)n

+
m∗∑
j=1

∑
i∈Ij

âi
(ŵk + ŵi)n

−
m∗∑
j=1

a∗j
(ŵk + w∗j )

n

=

i0∑
r=1

∑
i∈I0,r âi

(ŵk + vr)n
+

m∗∑
j=1

∑
i∈Ij âi

(ŵk + w∗j )
n
−

m∗∑
j=1

a∗j
(ŵk + w∗j )

n
= 0. (131)

This yields

∂Jω
∂ak

(â, ŵ) = −2∆0,ω(ŵk),
∂Jω
∂wk

(â, ŵ) = 2âk∆1,ω(ŵk),

and hence

‖∇Jω(â, ŵ)‖22 = 4

m∑
k=1

[
∆2

0,ω(ŵk) + â2
k∆

2
1,ω(ŵk)

]
.

By Lemma 27, we get limω→0+ ‖∇Jω(â, ŵ)‖2 = 0.
If ρ0 has the sub-Gaussian tails (103), again by Lemma 27, the estimate

|∆n,ω(ŵk)| ≤ ∆+
n,ω(ŵk) ≤ ∆+

n,ω(ŵmin) . ω−ne−ŵmin/ω
(
c
ŵ2

min
2 + cŵmin

3

)
(132)

holds for any n ∈ N, ω ∈ (0,min{1/2, 1/t0, 2c1/ŵmin}) and k ∈ [m]. Here ŵmin :=
mini∈[m] ŵi > 0, c2, c3 > 1 are constants only related to c1, t0, and . hides universal
positive constants only depending on n and ρ0, t0, c0, c1. Therefore

‖∇Jω(â, ŵ)‖2 .
√
mω−1e−ŵmin/ω

(
c
ŵ2

min
2 + cŵmin

3

)
(1 + ‖â‖∞) , ω ∈ (0, 1].

The proof is completed.

(4) Eigenvalues of Hessian

Proposition 34 For any (a,w) ∈ Rm × Rm+ satisfying ρ̂(t; a,w) ≡ ρ̄(t), denote the eigen-
values of ∇2Jω(a,w) by λ1(ω) ≥ λ2(ω) ≥ · · · ≥ λ2m(ω). If m > m∗, we have

λk(ω) > 0, k = 1, 2, · · · ,m′, (133)

lim
ω→0+

λk(ω) = 0, k = m′ + 1,m′ + 2, · · · , 2m (134)
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for ω > 0 sufficiently small, where m′ ≤ 2m∗ + |I0| ≤ m+m∗. In particular, if ρ0 has the
sub-Gaussian tails (103), the estimate

|λk(ω)| . ω−2e−wmin/ω
(
c
w2

min
2 + cwmin

3

)
(1 + ‖a‖∞) k = m′ + 1,m′ + 2, · · · , 2m (135)

holds for any ω ∈ (0,min{1/2, 1/t0, 2c1/wmin}). Here wmin := mini∈[m]wi > 0, c2, c3 > 1
are constants only related to c1, t0, and . hides universal positive constants only depending
on ρ0, t0, c0, c1.

Proof A straightforward computation shows, for k, j = 1, 2, · · · ,m,

∂2Jω
∂ak∂aj

(a,w) =
2

wk + wj
, (136)

∂2Jω
∂ak∂wj

(a,w) =
−2aj

(wk + wj)2
, k 6= j, (137)

∂2Jω
∂ak∂wk

(a,w) = −2

 m∑
i=1

ai
(wk + wi)2

−
m∗∑
j′=1

a∗j′

(wk + w∗j′)
2

− ak
2w2

k

+ 2∆1,ω(wk), (138)

∂2Jω
∂wk∂wj

(a,w) =
4akaj

(wk + wj)3
, k 6= j, (139)

∂2Jω
∂wk∂wk

(a,w) = 4ak

 m∑
i=1

ai
(wk + wi)3

−
m∗∑
j′=1

a∗j′

(wk + w∗j′)
3

+
a2
k

2w3
k

− 2ak∆2,ω(wk). (140)

Fix any (â, ŵ) ∈ Rm × Rm+ satisfying ρ̂(t; â, ŵ) ≡ ρ̄(t). By (131), we have

∂2Jω
∂ak∂aj

(â, ŵ) =
2

ŵk + ŵj
,

∂2Jω
∂ak∂wj

(â, ŵ) =
−2âj

(ŵk + ŵj)2
(k 6= j),

∂2Jω
∂ak∂wk

(â, ŵ) = − âk
2ŵ2

k

+ 2∆1,ω(ŵk),

∂2Jω
∂wk∂wj

(â, ŵ) =
4âkâj

(ŵk + ŵj)3
(k 6= j),

∂2Jω
∂wk∂wk

(â, ŵ) =
â2
k

2ŵ3
k

− 2âk∆2,ω(ŵk).

Let

J̄(a,w) := ‖ρ̂(t; a,w)− ρ̄(t)‖2L2[0,∞) (141)

=

∥∥∥∥∥∥
m∑
i=1

aie
−wit −

m∗∑
j=1

a∗je
−w∗j t

∥∥∥∥∥∥
2

L2[0,∞)

,

and

Eω(a,w) :=

[
Om×m Diag(∆1,ω(w))

Diag(∆1,ω(w)) −Diag(a ◦∆2,ω(w))

]
,
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where ∆n,ω(·) (n = 1, 2) is performed element-wisely. One can verify that

∇2Jω(a,w) = ∇2J̄(a,w) + 2Eω(a,w). (142)

Then we analyze ∇2J̄(â, ŵ) and Eω(â, ŵ) respectively.
(i) ∇2J̄(â, ŵ). Obviously (â, ŵ) is a global minimizer of J̄(a,w) due to J̄(â, ŵ) =

0. Hence ∇J̄(â, ŵ) = 0 and ∇2J̄(â, ŵ) is positive semi-definite. We further show that
∇2J̄(â, ŵ) has multiple zero eigenvalues when m > m∗. In fact, since

∂2J̄

∂ak∂aj
(â, ŵ) =

2

ŵk + ŵj
,

∂2J̄

∂ak∂wj
(â, ŵ) =

−2âj
(ŵk + ŵj)2

,
∂2J̄

∂wk∂wj
(â, ŵ) =

4âkâj
(ŵk + ŵj)3

,

it is straightforward to verify that for any i, j ∈ Ip, p ∈ [m∗] and any i, j ∈ I0,r, r ∈ [i0],

∇2J̄(â, ŵ)i,: = ∇2J̄(â, ŵ)j,:, âj · ∇2J̄(â, ŵ)m+i,: = âi · ∇2J̄(â, ŵ)m+j,:,

where Ai,: denotes the i-th row of matrix A. Notice that
∑

i∈I0,r ∇
2J̄(â, ŵ)m+i,: = 0 for any

r ∈ [i0], we conclude that the Hessian ∇2J̄(â, ŵ) has at most 2m∗ + i0 + i2 ≤ 2m∗ + |I0| ≤
m+m∗ different rows,10 which yields rank(∇2J̄(â, ŵ)) ≤ 2m∗ + |I0| ≤ m+m∗. Therefore,
the number of zero eigenvalues of ∇2J̄(â, ŵ) ≥ dim

{
x ∈ R2m : ∇2J̄(â, ŵ) · x = 0

}
= 2m−

rank(∇2J̄(â, ŵ)) ≥ 2(m −m∗) − |I0| ≥ m −m∗. Since ∇2J̄(â, ŵ) is positive semi-definite,
all the non-zero eigenvalues must be positive.

(ii) Eω(â, ŵ). Let

G
(1)
k := {y ∈ R : |y| ≤ |∆1,ω(ŵk)|} ,

G
(2)
k := {y ∈ R : |y + âk∆2,ω(ŵk)| ≤ |∆1,ω(ŵk)|} .

By Gershgorin’s circle theorem, for any eigenvalue of Eω(â, ŵ), say λ(ω), we have λ(ω) ∈⋃m
k=1(G

(1)
k ∪G

(2)
k ). Combining with Lemma 27, we get

|λ(ω)| ≤ max
k∈[m]

(
|âk||∆2,ω(ŵk)|+ |∆1,ω(ŵk)|

)
→ 0, ω → 0+. (143)

If ρ0 has the sub-Gaussian tails (103), again by Lemma 27 (similar to (132)), we further
have

|λ(ω)| ≤ max
k∈[m]

(
|âk|∆+

2,ω(ŵk) + ∆+
1,ω(ŵk)

)
≤ max

k∈[m]

(
|âk|∆+

2,ω(ŵmin) + ∆+
1,ω(ŵmin)

)
. ω−2e−ŵmin/ω

(
c
ŵ2

min
2 + cŵmin

3

)
(1 + ‖â‖∞), ω ∈ (0, 1], (144)

where ω ∈ (0,min{1/2, 1/t0, 2c1/ŵmin}), ŵmin := mini∈[m] ŵi > 0, c2, c3 > 1 are constants
only related to c1, t0, and . hides universal positive constants only depending on ρ0, t0, c0,
c1.

10. Here i2 := |{r ∈ [i0] : |I0,r| ≥ 2}|. When I0 = ∅, the upper bound is 2m∗; when I0 6= ∅, since
I0,r 6= ∅ for any r ∈ [i0], let i1 := |{r ∈ [i0] : |I0,r| = 1}| and i2 defined as before. Then i0 = i1 + i2,

|I0| =
∑i0
r=1 |I0,r| ≥ i1 + 2i2 = i0 + i2. The last inequality follows from |I0| = m−

∑m∗

j=1 |Ij | ≤ m−m
∗.
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Combining (i), (ii) and applying Weyl’s theorem gives the desired result.

(5) Local Linearization Analysis

The previous analysis can now be tied directly to a quantitative dynamics via lineariza-
tion arguments. It is shown that under mild assumptions, the gradient flow (104) can
become trapped in plateaus with an exponentially large timescale. That is, the curse of
memory occurs, this time in optimization dynamics instead of approximation rates.

Proof [Proof of Theorem 20] Consider the asymptotic expansion with the form

θω(τ) = θ0
ω(τ) +

∞∑
i=1

δiθiω(τ) = θ0
ω(τ) + δθ1

ω(τ) + δ2θ2
ω(τ) + o(δ2), (145)

for some δ ∈ (0, 1) (with δ � 1) and θiω(τ) = O(1) (τ ≥ 0, i = 0, 1, · · · ).11 For consistency,
we have θ0

ω(0) = θ0 and θiω(0) = 0 for i = 1, 2, · · · . By continuity, τ0 > 0 and ‖θω(τ)−θ0‖2 ≤
δ for any τ ∈ [0, τ0]. The aim is to quantify the scale of τ0.

Let g0 := ∇Jω(θ0) and H0 := ∇2Jω(θ0). The local linearization on (104) shows

d

dτ
θω(τ) = −g0 −H0(θω(τ)− θ0) +O(δ2), τ ∈ [0, τ0].

Combining with (145), we have

d

dτ
θ0
ω(τ) = −g0 −H0(θ0

ω(τ)− θ0), θ0
ω(0) = θ0, at O(1) scale,

d

dτ
θ1
ω(τ) = −H0θ

1
ω(τ), θ1

ω(0) = 0, at O(δ) scale,

d

dτ
θ2
ω(τ) = −H0θ

2
ω(τ) +O(1), θ2

ω(0) = 0, at O(δ2) scale.

Therefore

θ0
ω(τ) = θ0 −

(∫ τ

0
e−H0sds

)
g0,

θ1
ω(τ) = e−H0τθ1

ω(0) = 0,

which gives

θω(τ) = θ0 −
(∫ τ

0
e−H0sds

)
g0 +O(δ2), τ ∈ [0, τ0]. (146)

To achieve a parameter separation gap δ0, i.e. ‖θω(τ) − θ0‖2 = δ0 with δ0 = cδ, c ∈ (0, 1],
we need to take τ such that ∥∥∥∥(∫ τ

0
e−H0sds

)
g0

∥∥∥∥
2

≥ δ0

2
. (147)

11. Here θiω(τ) denotes the i-th term in the asymptotic expansion of θω(τ), not the i-th power.
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Let H0 = P>ΛP be the eigenvalue decomposition with P orthogonal and Λ diagonal con-
sisting of the eigenvalues of H0 (i.e. Λ = diag(λ1, · · ·λ2m) with λ1 ≥ · · · ≥ λ2m). Then∥∥∥∥(∫ τ

0
e−H0sds

)
g0

∥∥∥∥
2

=

∥∥∥∥P>(∫ τ

0
e−Λsds

)
Pg0

∥∥∥∥
2

≤
∥∥∥∥∫ τ

0
e−Λsds

∥∥∥∥
2

‖g0‖2

≤ ‖g0‖2 ·max

{
max

i∈[2m],λi 6=0

1

|λi|
|e−λiτ − 1|, τ

}
.

It is straightforward to verify that h(τ ;λ) := 1
|λ| |e

−λτ − 1|, τ ≥ 0 monotonically decreases

on λ ∈ R for any τ ≥ 0.12 Hence∥∥∥∥(∫ τ

0
e−H0sds

)
g0

∥∥∥∥
2

≤ ‖g0‖2 ·
{ 1
−λ2m (e−λ2mτ − 1), λ2m < 0,

τ, λ2m ≥ 0,
(148)

and the right-hand side monotonically increases on τ ≥ 0. Combining (147), (148) gives

δ0

2
≤ ‖g0‖2 ·

{ 1
−λ2m (e−λ2mτ − 1), λ2m < 0,

τ, λ2m ≥ 0.
(149)

We discuss for different cases:
(i) ‖g0‖2 = 0. Obviously the inequality (149) fails since (147) fails for any τ ≥ 0, which

gives τ0 = +∞;
(ii) ‖g0‖2 6= 0 and λ2m ≥ 0. By (149), we get τ ≥ δ0

2‖g0‖2 ;

(iii) ‖g0‖2 6= 0 and λ2m < 0. By (149), we get

τ ≥ 1

−λ2m
ln

(
1 + δ0

−λ2m

2‖g0‖2

)
.

If −λ2m ≤ 2‖g0‖2, we have

τ ≥ 1

−λ2m
· δ0
−λ2m

2‖g0‖2
·

ln
(

1 + δ0
−λ2m
2‖g0‖2

)
δ0
−λ2m
2‖g0‖2

=
δ0

2‖g0‖2

(
1 +O

(
δ0
−λ2m

2‖g0‖2

))
=

δ0

2‖g0‖2
(1 +O(δ0));

if −λ2m > 2‖g0‖2, we have τ ≥ ln(1+δ0)
−λ2m .

Combining (i), (ii), (iii) gives

τ0 = τ0(δ;ω,m, θ0) & min

{
δ

‖g0‖2
,
ln(1 + δ)

|λ2m|

}
. (150)

Let the initialization satisfy ρ̂(t; θ0) ≡ ρ̄(t), and assume m > m∗. According to Proposition
33 and Proposition 34, we have

lim
ω→0+

‖g0‖2 = 0, lim
ω→0+

λ2m = 0⇒ lim
ω→0+

τ0(δ;ω,m, θ0) = +∞. (151)

12. With the convention that h(τ ; 0) = τ for any τ > 0, and h(0;λ) ≡ 0 for any λ ∈ R.
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If ρ0 has the sub-Gaussian tails (103), again by Proposition 33 and Proposition 34, we
further have

τ0(δ;ω,m, θ0) & ω2ew0,min/ω min

{
δ√
m
, ln(1 + δ)

}
1(

c
w2

0,min

2 + c
w0,min

3

)
(1 + ‖a0‖∞)

(152)

for any ω ∈ (0,min{1/2, 1/t0, 2c1/w0,min}), where w0,min := mini∈[m]w0,i > 0, c2, c3 > 1 are
constants only related to c1, t0, and & hides universal positive constants only depending on
ρ0, t0, c0, c1. Since the initialization is bounded as (a0, w0) ∈ [a0

l , a
0
r ]
m × [w0

l , w
0
r ]
m with

a0
l < a0

r , 0 < w0
l < w0

r , let c0
a = max{|a0

l |, |a0
r |}, we get

τ0(δ;ω,m, θ0) & ω2ew
0
l /ω min

{
δ√
m
, ln(1 + δ)

}
1(

c
(w0
r)2

2 + c
w0
r

3

)
(1 + c0

a)

& ω2ew
0
l /ω min

{
δ√
m
, ln(1 + δ)

}
, (153)

where & hides universal positive constants only related to w0
r , a

0
l and a0

r .
The last task is to show the dynamics of loss is much slower than the parameter sepa-

ration when there are slow downs. The argument is trivial since for any τ ∈ [0, τ0],

Jω(θω(τ))− Jω(θ0) = g>0 (θω(τ)− θ0) + (θω(τ)− θ0)>H0(θω(τ)− θ0) + o(δ2)

≥ −‖g0‖2‖θω(τ)− θ0‖2 + λ2m‖θω(τ)− θ0‖22 + o(δ2)

= o(1)O(δ) + o(1)O(δ2) + o(δ2)

= o(δ2), ω → 0+.

By continuity, the proof is completed.

Remark 35 The estimate in Theorem 20 shows a lower bound on the escape time, hence
it does not appear to preclude the situation that the plateauing lasts forever. However, in
the proof above, if one supposes τ0 = +∞ in (105), i.e. the hypothetical situation where the
parameters are trapped forever, and write g̃0 := Pg0 = (g̃0,1, · · · , g̃0,2m), we have∥∥∥∥(∫ τ

0
e−H0sds

)
g0

∥∥∥∥2

2

= g̃>0

(∫ τ

0
e−Λsds

)2

g̃0 =

2m∑
i=1

(g̃0,i)
2(h(τ ;λi))

2 ≥ (g̃0,j)
2(h(τ ;λj))

2

for any j such that λj < 0. If g̃0,j 6= 0, (146) gives

‖θω(τ)− θ0‖2 ≥
∥∥∥∥(∫ τ

0
e−H0sds

)
g0

∥∥∥∥
2

+O(δ2)

≥ |g̃0,j |
−λj

(e−λjτ − 1) +O(δ2)→ +∞, τ →∞,

which is a contradiction. That is to say, the parameter separation has to achieve the gap δ
within a finite time, even if it is exponentially large.
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Remark 36 Recall Lemma 30, ρ̂(t; a0, w0) ≡ ρ̄(t) if and only if (a0, w0) ∈ M∗ =
⋃
PM∗P ,

where P is a partition over [m] as defined in Definition 29. That is, as a union of affine
spaces, M∗ is in fact an equivalent set for qualified initializations. As discussed in Remark

31, when there is no degeneracy, the cardinality of M∗ is m∗!

{
m
m∗

}
(i.e. the number of

P), with each M∗P an (m−m∗)-dimensional affine space; when there is degeneracy in some
M∗P , it then becoms an uncountable set. Certainly, initializations sufficiently near M∗ are
also qualified by continuity.

Remark 37 Motivated by the idea of weights degeneracy (Definition 29), we can further
apply similar methods to a global landscape analysis on the loss function Jω. The results
there show that the plateaus are all over the landscape, even provided general targets without
memory structures. See details in Appendix A.

7.2 Extensions on Plateauing Time

Theorem 23 is proved in this section, which can be viewed as an extension to Theorem 20
in the following aspects:

• Recall ρ̄(t) =
∫ wr
wl

a∗(w)e−wtdπ0(w). Theorem 23 considers general π0, while Theo-
rem 20 only takes the discrete one;

• More importantly, the condition that ρ̂ ≈ ρ̄ is quantified in the estimates of Theo-
rem 23, while it is only qualified in Theorem 20.

The basic insight behind the proof of Theorem 23 is the same as that of Theorem 20
(see Section 7.1). That is, by adding long-term memories in targets, one can make little
difference on the gradient and Hessian of the loss function, but affects the loss value to a
large extent. This leads to a significant slow down of the gradient flow training dynamics
near the short-term memory part of target.

However, when it comes to techniques of analysis, although both Theorem 20 and The-
orem 23 are subsequently proved following the same procedure of “landscape analysis”: i)
show the large loss; ii) show small gradients; iii) show small eigenvalues of Hessian; iv)
apply the local linearization argument to give a quantitative timescale on slow downs of
the training dynamics, in fact i), ii), iii) are respectively performed under different regimes.
That is, for Theorem 20, we firstly assume the condition ρ̂ ≡ ρ̄ (at initialization) and then
derive a fundamental relation on parameters (Lemma 30), which is used through the follow-
ing analysis, and the conclusion is finally extended to ρ̂ ≈ ρ̄ by continuity, which is related
to ε̄ in a qualified sense (where ‖ρ̂− ρ̄‖2 ≤ ε̄). While in Theorem 23, to show a quantitative
dependence on ε̄, obviously the parameter relation (Lemma 30) does not hold,13 hence we
are forced to directly work with the partial loss ε̄.

The analysis in this section follows the same organization as Section 7.1.
(1) Preliminary Results

We begin by a uniform upper bound on the initial loss.

13. In fact, it can be numerically observed that when ρ̄(t) = a∗>e−w
∗t (i.e. take a discrete distribution π0),

the model parameters (a,w) can be far away from the ground truth (a∗, w∗) even when ρ̂(t) = a>e−wt ≈
ρ̄(t). That is to say, it is reasonable (and also direct) to investigate the partial loss (i.e. ε̄) instead of
relations on parameters.
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Lemma 38 (Bounded Initial Loss) For any ω > 0, m ∈ N+ and (a,w) ∈ Rm×Rm+ , we
have √

Jω(a,w) ≤ ‖a‖1√
2wmin

+
c∗√
2wl

+ ‖ρ0‖L2(R) , (154)

where wmin := mini∈[m]wi > 0, c∗ := ‖a∗‖L∞[wl,wr]. Recall the bounded initialization (110),
we have √

Jω(θ0) ≤ c0
a√

2w0
l

+
c∗√
2wl

+ ‖ρ0‖L2(R) , θ0 ∈ Θ0, (155)

where c0
a := max{|a0

l |, |a0
r |}.

Proof We have |ρ̄(t)| =
∣∣∣∫ wrwl

a∗(w)e−wtdπ0(w)
∣∣∣ ≤ c∗e−wlt, then ‖ρ̄‖L2[0,∞) ≤ c∗/

√
2wl.

Notice that ‖ρ0,ω‖L2[0,∞) = ‖ρ0(t− 1/ω)‖L2[0,∞) ≤ ‖ρ0‖L2(R), we have

√
Jω(a,w) =

∥∥∥∥∥
m∑
i=1

aie
−wit − ρ̄(t)− ρ0,ω(t)

∥∥∥∥∥
L2[0,∞)

≤
m∑
i=1

|ai|
∥∥e−wit∥∥

L2[0,∞)
+ ‖ρ̄(t)‖L2[0,∞) + ‖ρ0,ω(t)‖L2[0,∞)

=
m∑
i=1

|ai|
1√
2wi

+ ‖ρ̄(t)‖L2[0,∞) + ‖ρ0(t− 1/ω)‖L2[0,∞)

≤ ‖a‖1√
2wmin

+
c∗√
2wl

+ ‖ρ0‖L2(R) .

For any θ0 ∈ Θ0, w0 � w0
l 1m and ‖a0‖1 = m−β‖a′0‖1 ≤ m1−βc0

a ≤ c0
a, which gives the

desired conclusion. The proof is completed.

Remark 39 Lemma 38 shows that to ensure a normal loss at initialization with respect
to the model capacity (i.e. the width m), one has to take a particular scaling on the outer
parameters. That is, it is necessary to take ‖a0‖1 = O(1) for any a0 ∈ Rm, m ∈ N+. In
addition, the initial loss is bounded uniformly in any ω > 0 since ‖ρ0,ω‖L2[0,∞) ≤ ‖ρ0‖L2(R).

Then we prove the non-degeneracy property for the dynamics of parameters under the
gradient flow (104). It is used throughout the subsequent analysis.

Lemma 40 (Training Stability) Let J0 := c0a√
2w0

l

+ c∗√
2wl

+‖ρ0‖L2(R). Define the Cauchy

problem

v′(τ) =
1

2
J0

(
c0
a +
√

2J0

∫ τ

0
v(s)ds

)
v6(τ), v(0) =

1.1√
w0
l

. (156)
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Let τ1 := inf

{
τ ≥ 0 : v(τ) >

√
2
w0
l

}
. Then for any ω > 0, m ∈ N+, θ0 ∈ Θ0 and τ ∈ [0, τ1],

we have

wω,k(τ) ≥
w0
l

2
> 0, k = 1, 2, · · · ,m. (157)

Proof For any ω > 0, m ∈ N+ and θ0 ∈ Θ0, let

τ+
k = τ+

k (ω,m, θ0) := inf {τ ≥ 0 : wω,k(τ) ≤ 0} , k = 1, 2, · · · ,m,

and τ+
k := +∞ ⇔ wω,k(τ) > 0 for any τ ≥ 0. Then by continuity, for any ω > 0,

m ∈ N+ and θ0 ∈ Θ0, τ+
k ∈ (0,+∞], wω,k(τ

+
k ) = 0,14 and wω,k(τ) > 0 for any τ ∈ [0, τ+

k ),
k = 1, 2, · · · ,m. Assume that the conclusion does not hold, i.e. there exists ω′ > 0,
m′ ∈ N+, θ′0 ∈ Θ0 and τ ′ ∈ [0, τ1], such that wω′,k′(τ

′) < w0
l /2 for some k′ ∈ [m′]. Write the

corresponding solution to (104) by θ(τ) = (a(τ), w(τ)).15 A straightforward computation
shows, for k = 1, 2, · · · ,m,

∂Jω
∂ak

(a,w) = 2

∫ ∞
0

e−wkt

(
m∑
i=1

aie
−wit − ρω(t)

)
dt, (158)

∂Jω
∂wk

(a,w) = −2ak

∫ ∞
0

te−wkt

(
m∑
i=1

aie
−wit − ρω(t)

)
dt. (159)

By the gradient flow (104), for any τ ∈ [0, τ+
k′ ), wk′(τ) > 0, then

|a′k′(τ)| = 2

∣∣∣∣∣
∫ ∞

0
e−wk′ (τ)t

(
m′∑
i=1

ai(τ)e−wi(τ)t − ρω(t)

)
dt

∣∣∣∣∣
≤ 2

{∫ ∞
0

e−2wk′ (τ)tdt

} 1
2


∫ ∞

0

(
m′∑
i=1

ai(τ)e−wi(τ)t − ρω(t)

)2

dt


1
2

= 2
1√

2wk′(τ)

√
Jω′(θ(τ)) ≤

√
2Jω′(θ

′
0)

1√
wk′(τ)

≤
√

2J0 1√
wk′(τ)

, (160)

where the Cauchy–Schwartz inequality and the monotonicity of gradient flow is used, and
the last inequality is due to Lemma 38. Similarly, for any τ ∈ [0, τ+

k′ ), we have

|w′k′(τ)| ≤ J0 |ak′(τ)|√
w3
k′(τ)

. (161)

Combining (160) and (161) gives

|w′k′(τ)| ≤ J0

(
c0
a +
√

2J0

∫ τ

0

ds√
wk′(s)

)
1√
w3
k′(τ)

. (162)

14. Certainly, wω,k(τ+k ) = 0 implies aω,k(τ+k ) = 0, otherwise the loss will blow up.
15. Generally, the solution to (104) is related to ω (target memory), m (model capacity) and θ0 (initializa-

tion). Here they are all omitted since fixed.
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Let v̂(τ) := 1/
√
wk′(τ) for any τ ∈ [0, τ+

k′ ), we get wk′(τ) = 1/v̂2(τ), w′k′(τ) = −2/v̂3(τ) ·
v̂′(τ), hence

|v̂′(τ)| = 1

2
v̂3(τ)|w′k′(τ)|

≤ 1

2
J0

(
c0
a +
√

2J0

∫ τ

0
v̂(s)ds

)
v̂6(τ). (163)

Now we make the comparison between (156) and (163). At the initialization, we have
v̂(0) = 1√

wk′ (0)
≤ 1√

w0
l

< v(0), and

|v̂′(0)| ≤ 1

2
J0c0

a

1

w3
k′(0)

≤ 1

2
J0c0

a

1

(w0
l )

3
<

1

2
J0c0

a

1.16

(w0
l )

3
= v′(0).

If we assume that v̂(s) < v(s) for any s ≤ τ ∈ [0, τ+
k′ ), then

|v̂′(τ)| < 1

2
J0

(
c0
a +
√

2J0

∫ τ

0
v(s)ds

)
v6(τ) = v′(τ).

As a result, for any τ ∈ [0, τ+
k′ ), v̂(τ) ≤ v(τ), which gives wk′(τ) ≥ 1/v2(τ). By the definition

of τ1, v(τ) ≤
√

2
w0
l

for any τ ∈ [0, τ1]. If τ+
k′ ≤ τ1, we get wk′(τ) ≥ 1/(2/w0

l ) = w0
l /2 for any

τ ∈ [0, τ+
k′ ) ⊂ [0, τ1], which is contradictory with the fact that wk′(τ

+
k′ ) = 0 by continuity;

if τ1 < τ+
k′ , we get wk′(τ) ≥ 1/(2/w0

l ) = w0
l /2 for any τ ∈ [0, τ1] ⊂ [0, τ+

k′ ), which is also
contradictory with the hypothesis. The proof is completed.

Remark 41 Lemma 40 gives a “control” dynamical system (156) on the dynamics of the
“feature” parameter w of the gradient flow (104). It is shown that the training dynamics
is stable (i.e. wω(τ) � c1m � 0) regardless of the target memory 1/ω, the model capacity
(width m) and the initialization (specific θ0), at least within a bounded time.

The following lemma gives estimates for the change of parameters.

Lemma 42 (Dynamics of Parameters) For any ω > 0, m ∈ N+, θ0 ∈ Θ0 and τ ∈
[0, τ1], we have

‖aω(τ)− aω(0)‖2 . τ
√
m, (164)

‖wω(τ)− wω(0)‖2 . τ

(
1√
m

+ τ
√
m

)
, (165)

where . hides universal positive constants only depending on a0
l , a

0
r, w

0
l , wl, wr and a∗, ρ0.

Proof According to Lemma 40 (similar to (160) and (161)), for any ω > 0, m ∈ N+,
θ0 ∈ Θ0, τ ∈ [0, τ1] and k = 1, · · · ,m,

|a′ω,k(τ)| ≤
√

2J0 1√
wω,k(τ)

≤ 2J0√
w0
l

, (166)

|w′ω,k(τ)| ≤ J0 |aω,k(τ)|√
w3
ω,k(τ)

≤ 2
√

2J0 |aω,k(τ)|√
(w0

l )
3
, (167)
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which gives

|aω,k(τ)− aω,k(0)| ≤ 2J0√
w0
l

τ, (168)

|wω,k(τ)− wω,k(0)| ≤ 2
√

2

(J0

w0
l

)2

τ2 +
J0√
(w0

l )
3
|aω,k(0)|τ

 , (169)

hence

‖aω(τ)− aω(0)‖2 ≤ Cτ
√
m, (170)

‖wω(τ)− wω(0)‖2 ≤ Cτ(‖aω(0)‖2 + τ
√
m), (171)

where C := C(J0, w0
l ) > 0 is some universal constant only related to J0 and w0

l . The proof
is completed.

Remark 43 Given that the network width m � 1. Comparing (164) with (165) implies
that the dynamics of the outer weights a is much faster than the inner weights (or features)
w within the timescale τ = o(1). In other words, a is the fast variable, while w is the slow
variable. It appears in the typical training dynamics of the over-parameterized one-hidden-
layer feed-forward neural networks.16

Now we get down to perform the “landscape analysis”. Motivated by the proof of
Proposition 34, we define the corresponding optimization problem to the short-term memory
part of target

min
(a,w)∈Rm×Rm+

J̄(a,w) := ‖ρ̂(t; a,w)− ρ̄(t)‖2L2[0,∞) , (172)

the same as (141). We will subsequently show that (172) can be viewed as a good reference
to the original optimization problem (101). Recall the assumption on dynamics of the loss
in Theorem 23.

Conditions on Loss Dynamics. For any ω > 0, m ∈ N+ and θ0 ∈ Θ0, assume

J̄(θω(τ)) =
∥∥∥[aω(τ)]>e−wω(τ)t − ρ̄(t)

∥∥∥2

L2[0,∞)
≤ c̄ε̄, ∀τ ∈ [τ̄ /2, τ̄ ] (173)

with ε̄ = ε̄(ω,m), τ̄ = τ̄(ω,m), and c̄ > 0 is a universal constant independent of ω, m and
θ0. That is, the gradient flow training dynamics (104) achieves an error tolerance ε̄ to the
short-term memory part ρ̄(·) within a timescale O(τ̄).

(2) Loss

16. This is reasonable since the gradient flow training dynamics (104) aims to optimize the problem (101),
which is in fact a population risk defined in the classical supervised learning, with the target possess-
ing memories and the model to be one-hidden-layer feed-forward neural networks with the negative
exponential activations.
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Proposition 44 There exist universal constants C(ρ0), C ′(ρ0) > 0 only depending on ρ0,

such that for any ω ∈ (0, C ′(ρ0)), m ∈ N+ with ε̄ = ε̄(ω,m) ≤ C(ρ0)
4c̄ and any θ0 ∈ Θ0, we

have

Jω(θω(τ)) & C(ρ0) > 0, ∀τ ∈ [τ̄ /2, τ̄ ]. (174)

That is, the loss is lower bounded away from zero uniformly in sufficiently small ω > 0.

Proof Recall the proof of Proposition 32 up to the estimate (126), we have

‖ρ0,ω‖2L2[0,∞) ≥ C(ρ0) > 0, ∀ω ∈ (0, C ′(ρ0)),

where C(ρ0) = δ0|ρ0(t1)|2/2 and C ′(ρ0) = 1/|t1 − δ0| the same as Proposition 32. By (173)

and the assumption, for any ω ∈ (0, C ′(ρ0)), m ∈ N+ such that ε̄ = ε̄(ω,m) ≤ C(ρ0)
4c̄ and

any θ0 ∈ Θ0, J̄(θω(τ)) ≤ C(ρ0)/4 for any τ ∈ [τ̄ /2, τ̄ ], which gives√
Jω(θω(τ)) =

∥∥∥[aω(τ)]>e−wω(τ)t − ρ̄(t)− ρ0,ω(t)
∥∥∥
L2[0,∞)

≥
∣∣∣∣√J̄(θω(τ))− ‖ρ0,ω‖L2[0,∞)

∣∣∣∣
≥
√
C(ρ0)− 1

2

√
C(ρ0) =

1

2

√
C(ρ0) > 0,

which completes the proof.

(3) Gradient

Proposition 45 For any ω ∈ (0,min{1/2, 1/t0, 4c1/w
0
l }), m ∈ N+ such that τ̄ = τ̄(ω,m) ≤

τ1 and any θ0 ∈ Θ0, there exists τ ′ = τ ′(ω,m, θ0) ∈ [τ̄ /2, τ̄ ], such that

‖∇Jω(θω(τ ′))‖22 .

mε̄+mω−2e−
w0
l
ω , τ̄ = 0,

ε̄/τ̄ +mω−2e−
w0
l

2ω , τ̄ 6= 0,
(175)

where . hides universal positive constants only depending on a0
l , a

0
r, w

0
l , wl, wr and a∗, ρ0,

t0, c0, c1.

Proof By (158) and (159), for any k = 1, 2, · · · ,m, we have

∂Jω
∂ak

(a,w) = 2

∫ ∞
0

e−wkt

(
m∑
i=1

aie
−wit − ρ̄(t)

)
dt− 2∆0,ω(wk), (176)

∂Jω
∂wk

(a,w) = −2ak

∫ ∞
0

te−wkt

(
m∑
i=1

aie
−wit − ρ̄(t)

)
dt+ 2ak∆1,ω(wk). (177)

That is,

∇Jω(a,w) = ∇J̄(a,w) + Eω(a,w), (178)
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where Eω(a,w) := 2[−∆0,ω(w), a ◦∆1,ω(w)
]>

in an element-wise sense. Then (104) can be
rewritten as

d

dτ
θω(τ) = −∇J̄(θω(τ))− Eω(θω(τ)), θω(0) = θ0, (179)

hence

d

dτ
J̄(θω(τ)) = ∇J̄(θω(τ))

d

dτ
θω(τ) = −‖∇J̄(θω(τ))‖22 −

[
∇J̄(θω(τ))

]> Eω(θω(τ)). (180)

According to Lemma 40, for any ω > 0, m ∈ N+, θ0 ∈ Θ0 and τ ∈ [0, τ1], we have
wω,k(τ) ≥ w0

l /2 > 0, k = 1, 2, · · · ,m. Combining with Lemma 27 (similar to (132)), we
have the estimste

|∆n,ω(wω,k(τ))| ≤ ∆+
n,ω(wω,k(τ)) ≤ ∆+

n,ω(w0
l /2) . ω−ne−

w0
l

2ω

(
c

(w0
l )2/4

2 + c
w0
l /2

3

)
(181)

holds for any ω ∈ (0,min{1/2, 1/t0, 4c1/w
0
l }), where c2, c3 > 1 are constants only depending

on c1, t0, and . hides universal positive constants only related to n and ρ0, t0, c0, c1.
Therefore

‖Eω(θω(τ))‖22 = 4
m∑
k=1

|∆0,ω(wω,k(τ))|2 + 4
m∑
k=1

|aω,k(τ)|2|∆1,ω(wω,k(τ))|2

.
m∑
k=1

[
1 + |aω,k(τ)|2ω−2

]
e−

w0
l
ω

(
c

(w0
l )2/4

2 + c
w0
l /2

3

)2

.
(
m+ ‖aω(τ)‖22ω−2

)
e−

w0
l
ω ,

where c2, c3 > 1 and w0
l > 0 are also hided. According to Lemma 42, for any ω > 0,

m ∈ N+, θ0 ∈ Θ0 and τ ∈ [0, τ1], we have ‖aω(τ)− a0‖2 . τ
√
m, hence

‖aω(τ)‖2 . ‖a0‖2 + τ1

√
m .

√
m, (182)

where . hides universal positive constants only related to c0
a and τ1. Therefore

‖Eω(θω(τ))‖2 .
√
mω−1e−

w0
l

2ω , ∀ω ∈ (0,min{1/2, 1/t0, 4c1/w
0
l }). (183)
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According to Lemma 40, for any ω > 0, m ∈ N+ such that τ̄ = τ̄(ω,m) ≤ τ1 and any
θ0 ∈ Θ0, τ ∈ [τ̄ /2, τ̄ ], by (173) we have∣∣∣∣ ∂J̄∂ak (aω(τ), wω(τ))

∣∣∣∣ ≤ 2

∫ ∞
0

e−wω,k(τ)t
∣∣∣[aω(τ)]>e−wω(τ)t − ρ̄(t)

∣∣∣ dt
.

1√
wω,k(τ)

∥∥∥[aω(τ)]>e−wω(τ)t − ρ̄(t)
∥∥∥
L2[0,∞)

.

√
ε̄√
w0
l

.
√
ε̄,

∣∣∣∣ ∂J̄∂wk (aω(τ), wω(τ))

∣∣∣∣ ≤ 2|aω,k(τ)|
∫ ∞

0
te−wω,k(τ)t

∣∣∣[aω(τ)]>e−wω(τ)t − ρ̄(t)
∣∣∣ dt

. |aω,k(τ)| 1√
w3
ω,k(τ)

∥∥∥[aω(τ)]>e−wω(τ)t − ρ̄(t)
∥∥∥
L2[0,∞)

. |aω,k(τ)|
√
ε̄√

(w0
l )

3
. |aω,k(τ)|

√
ε̄.

By (182), we get

‖∇J̄(θω(τ))‖22 =
m∑
k=1

∣∣∣∣ ∂J̄∂ak (aω(τ), wω(τ))

∣∣∣∣2 +
m∑
k=1

∣∣∣∣ ∂J̄∂wk (aω(τ), wω(τ))

∣∣∣∣2
. mε̄+ ε̄‖aω(τ)‖22 . mε̄. (184)

By (183) and (184), we obtain that for any ω ∈ (0,min{1/2, 1/t0, 4c1/w
0
l }), m ∈ N+ such

that τ̄ = τ̄(ω,m) ≤ τ1, and any θ0 ∈ Θ0, τ ∈ [τ̄ /2, τ̄ ],∣∣∣[∇J̄(θω(τ))
]> Eω(θω(τ))

∣∣∣ ≤ ∥∥∇J̄(θω(τ))
∥∥

2
‖Eω(θω(τ))‖2 .

√
ε̄mω−1e−

w0
l

2ω . (185)

We discuss for different cases.
(i) τ̄ = 0. Then τ ′ = 0. By (178), (183) and (184), we get

‖∇Jω(θω(τ ′))‖22 . ‖∇J̄(θω(τ ′))‖22 + ‖Eω(θω(τ ′))‖22 . mε̄+mω−2e−
w0
l
ω .

(ii) τ̄ 6= 0. If ‖∇J̄(θω(τ))‖22 & 4ε̄/τ̄ +
√
ε̄mω−1e−

w0
l

2ω for any τ ∈ [τ̄ /2, τ̄ ], then by (173),
(180) and (185), we have

J̄(θω(τ̄)) = J̄(θω(τ̄ /2)) +

∫ τ̄

τ̄/2

d

dτ
J̄(θω(τ))dτ

. ε̄−
∫ τ̄

τ̄/2
‖∇J̄(θω(τ))‖22dτ +

∫ τ̄

τ̄/2

∣∣∣[∇J̄(θω(τ))
]> Eω(θω(τ))

∣∣∣ dτ
. ε̄−

(
2ε̄+

√
ε̄mω−1e−

w0
l

2ω
τ̄

2

)
+
√
ε̄mω−1e−

w0
l

2ω
τ̄

2
= −ε̄ < 0,
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which is a contradictory. Hence, there exists τ ′ = τ ′(ω,m, θ0) ∈ [τ̄ /2, τ̄ ], such that

‖∇J̄(θω(τ ′))‖22 . 4ε̄/τ̄ +
√
ε̄mω−1e−

w0
l

2ω . Therefore, by (178) and (183), we get

‖∇Jω(θω(τ ′))‖22 . ‖∇J̄(θω(τ ′))‖22 + ‖Eω(θω(τ ′))‖22

.
4

τ̄
ε̄+
√
ε̄mω−1e−

w0
l

2ω +mω−2e−
w0
l
ω

.
ε̄

τ̄
+mω−2e−

w0
l

2ω .

Combining (i) (ii) completes the proof.

(4) Eigenvalues of Hessian

Proposition 46 Under the conditions of Proposition 45, denote by λ1 ≥ λ2 ≥ · · · ≥ λ2m

the eigenvalues of ∇2Jω(θω(τ ′)). Then we have

|λm+i| . mC−i +
√
ε̄+ ω−2e−

w0
l

2ω , i = 1, 2, · · · ,m. (186)

Here C > 1 and . hide universal positive constants only depending on a0
l , a

0
r, w

0
l , w0

r , wl,
wr and a∗, ρ0, t0, c0, c1.

Proof A straightforward computation shows, for k, j = 1, 2, · · · ,m,

∂2Jω
∂ak∂aj

(a,w) =
2

wk + wj
,

∂2Jω
∂ak∂wj

(a,w) =
−2aj

(wk + wj)2
, k 6= j,

∂2Jω
∂ak∂wk

(a,w) = − ak
2w2

k

− 2

∫ ∞
0

te−wkt

(
m∑
i=1

aie
−wit − ρ̄(t)

)
dt+ 2∆1,ω(wk),

∂2Jω
∂wk∂wj

(a,w) =
4akaj

(wk + wj)3
, k 6= j,

∂2Jω
∂wk∂wk

(a,w) =
a2
k

2w3
k

+ 2ak

∫ ∞
0

t2e−wkt

(
m∑
i=1

aie
−wit − ρ̄(t)

)
dt− 2ak∆2,ω(wk).

Consider the decomposition ∇2Jω(a,w) = H1(a,w) + 2H2(a,w) + 2H3(a,w), where

H1(a,w) :=

 [ 2
wk+wj

] [
−2aj

(wk+wj)2

][
−2ak

(wk+wj)2

] [
4akaj

(wk+wj)3

] ,
H2(a,w) :=

[
Om×m Diag

(
−
∫∞

0

(
a>e−wt − ρ̄(t)

)
te−wtdt

)
Diag

(
−
∫∞

0

(
a>e−wt − ρ̄(t)

)
te−wtdt

)
Diag

(
a ◦
∫∞

0

(
a>e−wt − ρ̄(t)

)
t2e−wtdt

)] ,
H3(a,w) :=

[
Om×m Diag(∆1,ω(w))

Diag(∆1,ω(w)) Diag(−a ◦∆2,ω(w))

]
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are blocked matrices, where [Mkj ] denotes the matrix M with the (k, j)-element Mkj , and
the integral is performed element-wisely. We analyze the eigenvalues of H1, H2 and H3

respectively.
(i) Eigenvalues of H1.
a) We first show that H1(a,w) is positive semi-definite (PSD) for any (a,w) ∈ Rm×Rm+ .

It is straightforward to verify that H1(a,w) = H1,1(w) ◦ 2H1,2(a), where

H1,1(w) :=

 [ 1
wk+wj

] [
1

(wk+wj)2

][
1

(wk+wj)2

] [
2

(wk+wj)3

] , H1,2(a) :=

[
1m×m −1ma

>

−a1>m aa>

]
.

Since

H1,1(w) =

∫ ∞
0

[ [
e−(wk+wj)t

] [
te−(wk+wj)t

][
te−(wk+wj)t

] [
t2e−(wk+wj)t

]] dt =

∫ ∞
0

[
e−wt

te−wt

] [
e−w

>t te−w
>t
]
dt,

and for any w ∈ Rm+ and t ≥ 0, the matrix

[
e−wt

te−wt

] [
e−w

>t te−w
>t
]

is PSD, we obtain

that H1,1(w) is PSD for any w ∈ Rm+ .17 The fact that H1,2(a) is also PSD for any a ∈ Rm

is trivial, since H1,2(a) =

[
1m
−a

] [
1>m −a>

]
. Therefore, by Schur’s product theorem, as an

Hadamard product of two PSD matrices, H1(a,w) is PSD for any (a,w) ∈ Rm × Rm+ .
b) Then we show that H1(a,w) has multiple near-zero eigenvalues for any (a,w) ∈

Rm × Rm+ , provided m ∈ N+ appropriately large. Let µ1 ≥ µ2 ≥ · · · ≥ µ2m ≥ 0 and

ν1 ≥ ν2 ≥ · · · ≥ νm be the eigenvalues of H1(a,w) and
[

2
wk+wj

]
, respectively. By Cauchy’s

interlacing theorem, µm+i ≤ νi ≤ µi for i = 1, 2, · · · ,m. Then νm ≥ µ2m ≥ 0, which gives[
2

wk+wj

]
is also PSD, hence all the eigenvalues {νk}mk=1 are singular values. Since

[
2

wk+wj

]
is in fact a Cauchy matrix, according to Corollary 7 in Beckermann and Townsend (2017),
its singular values decay exponentially fast, i.e.

νj+k ≤ 4

[
exp

(
π2

2 log(16γ)

)]−2k

νj , 1 ≤ j + k ≤ m,

where γ denotes the absolute value of the cross-ratio of wmin, wmax, −wmax and −wmin

with wmin := mini∈[m]wi, wmax := maxi∈[m]wi.
18 Since ν1 =

∥∥∥[ 2
wk+wj

]∥∥∥
2
≤
∥∥∥[ 2

wk+wj

]∥∥∥
F
≤∥∥∥[ 1

wmin

]∥∥∥
F

= m
wmin

, we get ν1+k . m
wmin

C−kw for k = 0, 1, · · · ,m − 1, where Cw > 1 is a

universal constant only depending on wmin, wmax. This implies 0 ≤ µm+i ≤ νi . m
wmin

C−iw .19

That is, H1(a,w) has O(m) exponentially small eigenvalues for any (a,w) ∈ Rm × Rm+ .

17. If A(t) is PSD for any t ∈ I ⊂ R, then the matrix A :=
∫
I
A(t)dt is also PSD. In fact, for any x,

x>Ax =
∫
I
x>A(t)xdt ≥

∫
I
λmin(A(t))‖x‖22dt ≥ 0.

18. Given four numbers a, b, c and d, the cross-ratio is given by γ := (c−a)(d−b)
(c−b)(d−a) . One can easily check γ ≥ 1

here and the equality holds if and only if wmin = wmax, i.e. w = c1m for some c > 0. This degenerate

case is trivial since now rank
([

2
wk+wj

])
= 1, which gives ν2 = · · · = νm = 0.

19. Since for any w ∈ Rm+ , γ = γ(wmin, wmax,−wmax,−wmin) ≥ 1, we have Cw := exp
(

π2

log(16γ)

)
∈(

1, exp
(

π2

log 16

)]
.
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c) Back to the dynamics of parameters. According to Lemma 40 and Lemma 42, for any
ω > 0, m ∈ N+, θ0 ∈ Θ0 and τ ∈ [0, τ1], we have wω,k(τ) ≥ w0

l /2 > 0, k = 1, 2, · · · ,m, and
|wω,k(τ)−wω,k(0)| . (τ2 + |aω,k(0)|τ) by (169), where . hides universal positive constants
only related to J0, w0

l , which gives

|wω,k(τ)| . |w0,k|+ (τ2 + |a0,k|τ) ≤ w0
r + τ2

1 + c0
aτ1 . 1, (187)

where . hides universal positive constants only depending on w0
r , c

0
a, τ1. Take τ = τ ′ =

τ ′(ω,m, θ0) with τ ′ derived from Proposition 45, and w = wω(τ ′), we get τ ′ ∈ [τ̄ /2, τ̄ ] ⊂
[0, τ1], hence wmin ≥ w0

l /2 and wmax . 1. A more refined estimate on above constants gives

1 ≤ γ = 1
4

(
wmax
wmin

+ wmin
wmax

)
+ 1

2 . 1
4

(
2
w0
l

+
w0
l

2

)
+ 1

2 . 1, where w0
l > 0 is also hided. Rewrite

the upper bound as C0 ≥ 1, we get that C0 only depends on w0
l , w

0
r , c

0
a, J

0, τ1. This yields

Cw ≥ exp
(

π2

log(16C0)

)
, C > 1. Therefore, we obtain 0 ≤ µm+i ≤ νi . m

wmin
C−iw . m

w0
l
C−iw .

mC−i with w0
l > 0 hided.

(ii) Eigenvalues of H2. By the Cauchy-Schwartz inequality, for any wk > 0 we have∣∣∣∣∫ ∞
0

te−wkt
(
a>e−wt − ρ̄(t)

)
dt

∣∣∣∣ . 1√
w3
k

∥∥∥a>e−wt − ρ̄(t)
∥∥∥
L2[0,∞)

,

∣∣∣∣ak ∫ ∞
0

t2e−wkt
(
a>e−wt − ρ̄(t)

)
dt

∣∣∣∣ . |ak|√
w5
k

∥∥∥a>e−wt − ρ̄(t)
∥∥∥
L2[0,∞)

.

Take (a,w) = (aω(τ ′), wω(τ ′)) with τ ′ derived from Proposition 45. According to Lemma
40 and (173), (168), we have∣∣∣∣∫ ∞

0
te−wω,k(τ ′)t

(
[aω(τ ′)]>e−wω(τ ′)t − ρ̄(t)

)
dt

∣∣∣∣ . 1√
(w0

l )
3

√
ε̄ .
√
ε̄, (188)

∣∣∣∣aω,k(τ ′) ∫ ∞
0

t2e−wω,k(τ ′)t
(

[aω(τ ′)]>e−wω(τ ′)t − ρ̄(t)
)
dt

∣∣∣∣ . c0
a + τ1√
(w0

l )
5

√
ε̄ .
√
ε̄, (189)

where . hides universal positive constants only depending on w0
l , c

0
a, J

0, τ1. By Gerŝgorin’s
circle theorem, for any ξ as the eigenvalue of H2(aω(τ ′), wω(τ ′)), we have

|ξ| ≤
∣∣∣∣∫ ∞

0
te−wω,k(τ ′)t

(
[aω(τ ′)]>e−wω(τ ′)t − ρ̄(t)

)
dt

∣∣∣∣ ,
or

∣∣∣∣ξ − aω,k(τ ′)∫ ∞
0

t2e−wω,k(τ ′)t
(

[aω(τ ′)]>e−wω(τ ′)t − ρ̄(t)
)
dt

∣∣∣∣
≤
∣∣∣∣∫ ∞

0
te−wω,k(τ ′)t

(
[aω(τ ′)]>e−wω(τ ′)t − ρ̄(t)

)
dt

∣∣∣∣ ,
and each of them gives |ξ| .

√
ε̄ by (188) and (189).

(iii) Eigenvalues of H3. According to Lemma 27 and Lemma 40, we have the same
bound as (181). That is,

|∆n,ω(wω,k(τ
′))| ≤ ∆+

n,ω(wω,k(τ
′)) ≤ ∆+

n,ω(w0
l /2) . ω−ne−

w0
l

2ω

(
c

(w0
l )2/4

2 + c
w0
l /2

3

)
(190)
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holds for any ω ∈ (0,min{1/2, 1/t0, 4c1/w
0
l }), where c2, c3 > 1 are constants only depending

on c1, t0, and . hides universal positive constants only depending on n and ρ0, t0, c0, c1.
By (168), we have |aω,k(τ ′)| . c0

a + τ1 . 1 with . hiding universal positive constants only
related to w0

l , c
0
a, J

0, τ1. Again, by Gerŝgorin’s circle theorem, for any η as the eigenvalue
of H3(aω(τ ′), wω(τ ′)), we have

|η| ≤ |∆1,ω(wω,k(τ
′))|,

or |η + aω,k(τ
′)∆2,ω(wω,k(τ

′))| ≤ |∆1,ω(wω,k(τ
′))|,

which gives |η| . ω−2e−
w0
l

2ω , where . also hides universal positive constants only related to
w0
l , c2, c3.

Combining the estimates of (i), (ii) and (iii) and applying Weyl’s theorem yields, for
i = 1, 2, · · · ,m,

λm+i ≤ µm+i + ξ1 + η1 . mC−i +
√
ε̄+ ω−2e−

w0
l

2ω ,

λm+i ≥ µm+i + ξ2m + η2m & −
√
ε̄− ω−2e−

w0
l

2ω ,

where C > 1 is a universal constant only related to w0
l , w

0
r , c

0
a, J

0, τ1. The proof is com-
pleted.

Proposition 46 naturally implies that learning for the teacher-student model of expo-
nential sums is ill-conditioned, in the sense that all the global minimizers are singular.
Specifically, we can show that the Hessian around these global minimizers has multiple
exponentially small eigenvalues, provided the network width (model capacity) m ∈ N+

appropriately large.

Corollary 47 For any (a,w) ∈ Rm × Rm+ satisfying J̄(a,w) = ‖a>e−wt − ρ̄(t)‖2L2[0,∞) ≤
ε̄ = ε̄(m), then we have

‖∇J̄(a,w)‖22 . mε̄, (191)

|λ̄m+i| . mC−iw +
√
ε̄, i = 1, 2, · · · ,m, (192)

where λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄2m are the eigenvalues of ∇2J̄(a,w), and . hides universal positive
constants only related to (a,w), and Cw > 1 is a universal constant only depending on w.
Therefore, ε̄ = 0 implies a zero gradient and |λ̄m+i| . mC−iw for any i ∈ [m].20

Proof For any any (a,w) ∈ Rm × Rm+ , by the Cauchy-Schwartz inequality, we have∣∣∣∣ ∂J̄∂ak (a,w)

∣∣∣∣ ≤ 2

∫ ∞
0

e−wkt
∣∣∣a>e−wt − ρ̄(t)

∣∣∣ dt ≤ √
2

√
wk
‖a>e−wt − ρ̄(t)‖L2[0,∞),∣∣∣∣ ∂J̄∂wk (a,w)

∣∣∣∣ ≤ 2|ak|
∫ ∞

0
te−wkt

∣∣∣a>e−wt − ρ̄(t)
∣∣∣ dt ≤ |ak|√

w3
k

‖a>e−wt − ρ̄(t)‖L2[0,∞),

20. Obviously, a sufficient condition to lead ε̄ = 0 is to take a discrete distribution π0, e.g. dπ0(w)/dw =∑m∗

j=1 δ(w − w
∗
j ) with m∗ ≤ m and w∗j > 0 for any j ∈ [m∗], where δ(·) denotes the common Dirac

function. Then there exists (b∗, v∗) ∈ Rm × Rm+ such that b∗>e−v
∗t ≡ ρ̄(t).
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which gives (191). Notice that ∇2J̄(a,w) = H1(a,w) + H2(a,w), according to the argu-
ments (i), (ii) in the proof of Proposition 46, we get (192). The proof is completed.

(5) Local Linearization Analysis

Now we can derive a quantitative timescale of the trap in plateauing via linearization
arguments.

Proof [Proof of Theorem 23] (i) The estimate (112) follows from Proposition 44.

(ii) The proof for hitting time (115) follows the same procedure as that of Theorem 20
(i.e. Section 7.1 (5)), where the asymptotic analysis and linearization techniques are ap-
plied. Based on estimates of local curvature of the loss landscape, we can obtain the same
lower bound as (150) of the timescale of slow downs

τ0 − τ ′ & min

{
δ

‖g0‖2
,
ln(1 + δ)

|λ2m|

}
, (193)

where g0 := ∇Jω(θω(τ ′)), and λ2m is the minimal eigenvalue of H0 := ∇2Jω(θω(τ ′)). Ac-
cording to Proposition 45 and Proposition 46, we obtain

τ0 − τ ′ &


min

{
δ

√
mε̄+

√
mω−1e−

w0
l

2ω

, ln(1+δ)

mC−m+
√
ε̄+ω−2e−

w0
l

2ω

}
, τ̄ = 0,

min

{
δ

√
ε̄/τ̄+

√
mω−1e−

w0
l

4ω

, ln(1+δ)

mC−m+
√
ε̄+ω−2e−

w0
l

2ω

}
, τ̄ 6= 0,

(194)

where C > 1 and & hide universal positive constants only depending on a0
l , a

0
r , w

0
l , w

0
r ,

wl, wr and a∗, ρ0, t0, c0, c1. The last task is to show the loss dynamics is much slower
than the parameter dynamics when there are slow downs. It is straightforward since for
any τ ∈ [τ ′, τ0],

Jω(θω(τ))− Jω(θω(τ ′)) = g>0 (θω(τ)− θω(τ ′)) + (θω(τ)− θω(τ ′))>H0(θω(τ)− θω(τ ′)) + o(δ2)

≥ −‖g0‖2‖θω(τ)− θω(τ ′)‖2 + λ2m‖θω(τ)− θω(τ ′)‖22 + o(δ2)

= o(1)O(δ) + o(1)O(δ2) + o(δ2)

= o(δ2), ω → 0+,

provided m ∈ N+ appropriately large and max{ε̄, ε̄/τ̄} � 1. The proof is completed.

7.3 Sufficiently Wide RNNs: an Example

In this section, we prove Theorem 25 for sufficiently wide RNNs, which gives an example
to illustrate the conditions in Theorem 23. Connecting Theorem 25 with Theorem 23, we
obtain that the gradient flow training dynamics (104) for learning with linear RNNs (101)
appears a typical two-stage process with separation of timescales. That is, the model ρ̂ first
learns the short-term memory part of target (i.e. ρ̄) rapidly, then the training becomes
stuck for a long time.
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Motivated by E et al. (2020), the basic insight here is to compare the non-convex training
dynamics (104) with the random feature model (i.e. sampling the feature parameters w at
initialization and freezing them during training), which is convex and hence easy to analyze.

Random Feature Model. For reference, we consider a random feature version of (172):

min
a∈Rm

J̄(a,w0) = ‖ρ̂(t; a,w0)− ρ̄(t)‖2L2[0,∞) , (195)

with the corresponding gradient flow training dynamics

d

dτ
ã(τ) = −∇aJ̄(ã(τ), w0), ã(0) = a0. (196)

Here (a0, w0) = θ0 ∈ Θ̃0, i.e. under the random bounded initialization (recall (116)).

Theorem 25 is proved subsequently in the following procedure:

1. For the random feature model (195), we prove that the optimal solution exists, and
it can be achieved by the gradient flow training dynamics (196);

2. We prove that the solution of the “full” gradient flow (104) and the “partial” one
(196) starting from the same initialization can be close, provided we have sufficiently
wide RNNs (m� 1) and long-term memories in targets (0 < ω � 1);

3. Combining the former two steps gives the desired conclusion.

(1) Model for Reference

The analysis of the random feature model (195) is given in this part. We first show the
existence of optimal solutions.

Lemma 48 Fix any m ∈ N+. For any δ > 0, with probability of at least 1 − δ over the
choice of w0, there exists â = â(w0) such that

J̄(â, w0) .
1

m
(1 + ln(2/δ)), (197)

‖â‖2 .
1√
m
, (198)

where . hides universal positive constants only depending on wl, wr and a∗.

Proof For any w0, let â = â(w0) = a∗(w0)/m with a∗(·) performed element-wisely, then

ρ̂(t; â, w0) =
1

m

m∑
k=1

a∗(w0,k)e
−w0,kt, (199)

hence Ew0 [ρ̂(t; â, w0)]=Ew∼π0 [a∗(w)e−wt] = ρ̄(t). Let

Z(w0) :=
√
J̄(â(w0), w0) = ‖ρ̂(t; â(w0), w0)− ρ̄(t)‖L2[0,∞) . (200)
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If w̃0 is different from w0 at only one component indexed by i, the triangle inequality gives

|Z(w0)− Z(w̃0)| =
∣∣∣‖ρ̂(t; â(w0), w0)− ρ̄(t)‖L2[0,∞) − ‖ρ̂(t; â(w̃0), w̃0)− ρ̄(t)‖L2[0,∞)

∣∣∣
≤ ‖ρ̂(t; â(w0), w0)− ρ̂(t; â(w̃0), w̃0)‖L2[0,∞)

=
1

m

∥∥a∗(w0,i)e
−w0,it − a∗(w̃0,i)e

−w̃0,it
∥∥
L2[0,∞)

≤ 1

m

(
|a∗(w0,i)|

√
1

2w0,i
+ |a∗(w̃0,i)|

√
1

2w̃0,i

)
≤ c∗

m

√
2

wl
,

where c∗ := ‖a∗‖L∞[wl,wr]. By McDiarmid’s inequality, for any δ > 0, with probability of at
least 1− δ, we have

|Z(w0)− Ew0 [Z(w0)]| ≤ c∗

m

√
2

wl

√
m ln(2/δ)/2 .

√
ln(2/δ)

m
, (201)

where . hides universal positive constants only related to wl, wr and a∗. Since

Ew0

[
Z2(w0)

]
= Ew0

[
J̄(â(w0), w0)

]
=

∫ ∞
0

Ew0

( 1

m

m∑
k=1

a∗(w0,k)e
−w0,kt − ρ̄(t)

)2
 dt

=
1

m2

∫ ∞
0

Ew0

( m∑
k=1

(a∗(w0,k)e
−w0,kt − ρ̄(t))

)2
 dt

=
1

m2

m∑
k=1

∫ ∞
0

Ew∼π0
[
(a∗(w)e−wt − ρ̄(t))2

]
dt

+
1

m2

∑
i 6=j

∫ ∞
0

E2
w∼π0 [a∗(w)e−wt − ρ̄(t)]dt

=
1

m

∫ ∞
0

Ew∼π0
[
(a∗(w)e−wt − ρ̄(t))2

]
dt

≤ 1

m

∫ ∞
0

Ew∼π0
[
a∗(w)2e−2wt

]
dt ≤ 1

m

(c∗)2

2wl
,

by Jensen’s inequality,

J̄(â(w0), w0) = Z2(w0) .

(
|Ew0 [Z(w0)]|+

√
ln(2/δ)

m

)2

≤ 2

(
Ew0

[
Z2(w0)

]
+

ln(2/δ)

m

)
.

1

m
(1 + ln(2/δ)).

Obviously, ‖â‖2 = ‖a∗(w0)‖2/m ≤ c∗/
√
m. The proof is completed.

Then we show that the gradient flow training dynamics (196) can find the optimal
solution for the random feature model (195).
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Lemma 49 Fix any m ∈ N+. For any δ > 0, with probability of at least 1 − δ over the
choice of w0, we have

J̄(ã(τ), w0) .
1

mτ
+

1

m
C2
δ , (202)

‖ã(τ)‖2 .
1√
m

(1 + Cδ
√
τ). (203)

Here ã(τ) is the solution to (196), and . hides universal positive constants only depending
on al, ar, wl, wr and a∗, and Cδ :=

√
1 + ln(2/δ).

Proof According to Lemma 48, for any δ > 0, with probability of at least 1 − δ over the
choice of w0, there exists â = â(w0) such that J̄(â, w0) . (1+ln(2/δ))/m and ‖â‖2 . 1/

√
m,

where . hides universal positive constants only related to wl, wr and a∗. Consider the
Lyapunov function

E(τ) := τ
(
J̄(ã(τ), w0)− J̄(â, w0)

)
+

1

2
‖ã(τ)− â‖22, (204)

It is straightforward to verify that J̄(ã(τ), w0) is quadratic, and hence convex to ã(τ).
Therefore

E′(τ) = J̄(ã(τ), w0)− J̄(â, w0) + τ
[
∇aJ̄(ã(τ), w0)

]> d

dτ
ã(τ) + (ã(τ)− â)>

d

dτ
ã(τ)

= J̄(ã(τ), w0)− J̄(â, w0)− τ‖∇aJ̄(ã(τ), w0)‖22 − (ã(τ)− â)>∇aJ̄(ã(τ), w0)

≤ −
[
J̄(â, w0)−

(
J̄(ã(τ), w0) + (â− ã(τ))>∇aJ̄(ã(τ), w0)

)]
≤ 0,

which gives

E(τ) ≤ E(0)⇔ τ(J̄(ã(τ), w0)− J̄(â, w0)) +
1

2
‖ã(τ)− â‖22 ≤

1

2
‖a0 − â‖22 (205)

⇒ ‖ã(τ)− â‖22 ≤ ‖a0 − â‖22 + 2τ J̄(â, w0)

⇒ ‖ã(τ)‖22 ≤ 2‖ã(τ)− â‖22 + 2‖â‖22 ≤ 2‖a0 − â‖22 + 4τ J̄(â, w0) + 2‖â‖22

≤ 4‖a0‖22 + 6‖â‖22 + 4τ J̄(â, w0) .
c2
a

m
+

1

m
+
τ

m
(1 + ln(2/δ)),

where ca := max{|al|, |ar|}. In addition, (205) also gives

J̄(ã(τ), w0) ≤ 1

2τ
‖a0 − â‖22 + J̄(â, w0) .

1

mτ
(1 + c2

a) +
1

m
(1 + ln(2/δ)).

The proof is completed.

(2) Comparison

To ensure the stability of training dynamics (104) under the new (random bounded)
initialization, we first restate Lemma 40 by taking (a0

l , a
0
r , w

0
l , w

0
r) = (al, ar, wl, wr).
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Lemma 50 (Training Stability, Restatement) Let J0 := (ca + c∗)/
√

2wl + ‖ρ0‖L2(R)

with ca := max{|al|, |ar|}, c∗ := ‖a∗‖L∞[wl,wr]. Define the Cauchy problem

v′(τ) =
1

2
J0

(
ca +

√
2J0

∫ τ

0
v(s)ds

)
v6(τ), v(0) =

1.1
√
wl
. (206)

Let τ1 := inf
{
τ ≥ 0 : v(τ) >

√
2
wl

}
. Then for any ω > 0, m ∈ N+, θ0 ∈ Θ̃0 and τ ∈ [0, τ1],

we have

wω,k(τ) ≥ wl
2
> 0, k = 1, 2, · · · ,m. (207)

Then Lemma 42 is restated as follows.

Lemma 51 (Dynamics of Parameters, Restatement) For any ω > 0, m ∈ N+, θ0 ∈
Θ̃0 and τ ∈ [0, τ1], we have

‖aω(τ)− aω(0)‖2 . τ
√
m, (208)

‖wω(τ)− wω(0)‖2 . τ

(
1√
m

+ τ
√
m

)
, (209)

where . hides universal positive constants only depending on al, ar, wl, wr and a∗, ρ0.

Now we bound the difference between solutions to the “full” gradient flow (104) and the
“partial” one (196).

Lemma 52 Fix any ω ∈ (0,min{1/2, 1/t0, 4c1/wl}) and m ∈ N+. For any δ > 0, with
probability of at least 1− δ over the choice of θ0 ∈ Θ̃0, we have

‖aω(τ)− ã(τ)‖2 . τ2

(
1√
m

+ τ
√
m

)
(1 + Cδ

√
τ) + τ

√
me−

wl
4ω , ∀τ ∈ [0, τ1]. (210)

Here aω(τ), ã(τ) are solutions to (104), (196) respectively with θ0 = (a0, w0) = (aω(0), wω(0))
= (ã(0), w0), and . hides universal positive constants only depending on al, ar, wl, wr and
a∗, ρ0, t0, c0, c1, and Cδ =

√
1 + ln(2/δ).

Proof For any ω > 0, m ∈ N+, we have

d

dτ
(aω(τ)− ã(τ))

=− 2

∫ ∞
0

[(
[aω(τ)]>e−wω(τ)t − ρ̄(t)

)
e−wω(τ)t −

(
[ã(τ)]>e−w0t − ρ̄(t)

)
e−w0t

]
dt+ 2∆0,ω(wω(τ))

=− 2

∫ ∞
0

[
(aω(τ)− ã(τ))>e−wω(τ)t

]
e−wω(τ)tdt+ 2

∫ ∞
0

ρ̄(t)
(
e−wω(τ)t − e−w0t

)
dt

− 2

∫ ∞
0

[(
[ã(τ)]>e−wω(τ)t

)
e−wω(τ)t −

(
[ã(τ)]>e−w0t

)
e−w0t

]
dt+ 2∆0,ω(wω(τ))

=− 2

∫ ∞
0

e−wω(τ)te−[wω(τ)]>t(aω(τ)− ã(τ))dt+ 2

∫ ∞
0

ρ̄(t)
(
e−wω(τ)t − e−w0t

)
dt

− 2

∫ ∞
0

(
e−wω(τ)te−[wω(τ)]>t − e−w0te−w

>
0 t
)
ã(τ)dt+ 2∆0,ω(wω(τ)),
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which gives

1

4

d

dτ
‖aω(τ)− ã(τ)‖22 =

1

2
(aω(τ)− ã(τ))>

d

dτ
(aω(τ)− ã(τ))

=−
∫ ∞

0

[
(aω(τ)− ã(τ))>e−wω(τ)t

]2
dt+

∫ ∞
0

ρ̄(t)(aω(τ)− ã(τ))>
(
e−wω(τ)t − e−w0t

)
dt

−
∫ ∞

0
(aω(τ)− ã(τ))>

(
e−wω(τ)te−[wω(τ)]>t − e−w0te−w

>
0 t
)
ã(τ)dt

+ (aω(τ)− ã(τ))>∆0,ω(wω(τ))

≤‖aω(τ)− ã(τ)‖2
∫ ∞

0
|ρ̄(t)|

∥∥∥e−wω(τ)t − e−w0t
∥∥∥

2
dt+ ‖aω(τ)− ã(τ)‖2 ‖∆0,ω(wω(τ))‖2

+ ‖aω(τ)− ã(τ)‖2 ‖ã(τ)‖2
∫ ∞

0

∥∥∥e−wω(τ)te−[wω(τ)]>t − e−w0te−w
>
0 t
∥∥∥

2
dt

≤‖aω(τ)− ã(τ)‖2
{∫ ∞

0
|ρ̄(t)|2dt

} 1
2
{∫ ∞

0

∥∥∥e−wω(τ)t − e−w0t
∥∥∥2

2
dt

} 1
2

+ ‖aω(τ)− ã(τ)‖2 ‖ã(τ)‖2
∫ ∞

0

∥∥∥e−wω(τ)t − e−w0t
∥∥∥

2

(
‖e−wω(τ)t‖2 + ‖e−w0t‖2

)
dt

+ ‖aω(τ)− ã(τ)‖2 ‖∆0,ω(wω(τ))‖2

≤‖aω(τ)− ã(τ)‖2 ‖ρ̄‖L2[0,∞)

{∫ ∞
0

∥∥∥e−wω(τ)t − e−w0t
∥∥∥2

2
dt

} 1
2

+
√

2 ‖aω(τ)− ã(τ)‖2 ‖ã(τ)‖2
{∫ ∞

0

∥∥∥e−wω(τ)t − e−w0t
∥∥∥2

2
dt

} 1
2

×
{∫ ∞

0
‖e−wω(τ)t‖22dt+

∫ ∞
0
‖e−w0t‖22dt

} 1
2

+ ‖aω(τ)− ã(τ)‖2 ‖∆0,ω(wω(τ))‖2 , (211)

where the Cauchy-Schwartz inequality is repeatedly used.21 By Lemma 50, for any ω > 0,
m ∈ N+, θ0 ∈ Θ̃0 and τ ∈ [0, τ1], we have wω,k(τ) ≥ wl/2 > 0, k = 1, 2, · · · ,m. This gives∫ ∞

0

∥∥∥e−wω(τ)t − e−w0t
∥∥∥2

2
dt =

m∑
k=1

∫ ∞
0

(
e−wω,k(τ)t − e−w0,kt

)2
dt

=

m∑
k=1

(
1

2wω,k(τ)
− 2

wω,k(τ) + w0,k
+

1

2w0,k

)
=

m∑
k=1

(wω,k(τ)− w0,k)
2

2wω,k(τ)w0,k(wω,k(τ) + w0,k)

≤ 2

3w3
l

‖wω(τ)− w0‖22, (212)

and similarly, ∫ ∞
0

∥∥∥e−wω(τ)t
∥∥∥2

2
dt ≤ m

wl
,

∫ ∞
0
‖e−w0t‖22dt ≤

m

2wl
. (213)

By Lemma 27, we also have∥∥∆0,ω(wω(τ))
∥∥2

2
≤
∥∥∆+

0,ω(wω(τ))
∥∥2

2
≤ m

[
∆+

0,ω(wl/2)
]2

. me−
wl
2ω

(
c
w2
l /4

2 + c
wl/2
3

)
(214)

21. Here we also use the inequality ‖bb> − cc>‖2 ≤ ‖b− c‖2(‖b‖2 + ‖c‖2) for any vectors b, c.
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holds for any ω ∈ (0,min{1/2, 1/t0, 4c1/wl}), where c2, c3 > 1 are constants only depending
on c1, t0, and . hides universal positive constants only related to ρ0 and t0, c0, c1. Notice
that d

dτ ‖aω(τ)− ã(τ)‖22 = 2‖aω(τ)− ã(τ)‖2 d
dτ ‖aω(τ)− ã(τ)‖2, combining with (211), (212),

(213) and (214), we get

d

dτ
‖aω(τ)− ã(τ)‖2

≤ 2‖ρ̄‖L2[0,∞)

{∫ ∞
0

∥∥∥e−wω(τ)t − e−w0t
∥∥∥2

2
dt

} 1
2

+ 2 ‖∆0,ω(wω(τ))‖2

+ 2
√

2‖ã(τ)‖2
{∫ ∞

0

∥∥∥e−wω(τ)t − e−w0t
∥∥∥2

2
dt

} 1
2
{∫ ∞

0
‖e−wω(τ)t‖22dt+

∫ ∞
0
‖e−w0t‖22dt

} 1
2

. ‖ρ̄‖L2[0,∞)‖wω(τ)− w0‖2 + ‖ã(τ)‖2‖wω(τ)− w0‖2
√
m+

√
me−

wl
4ω ,

where . hides universal positive constants only related to wl, c2, c3. It is shown that
‖ρ̄‖L2[0,∞) ≤ c∗/

√
2wl (see the proof of Lemma 38). Combining with Lemma 49 and Lemma

51, we obtain that for any δ > 0, with probability of at least 1− δ over the choice of w0,

d

dτ
‖aω(τ)− ã(τ)‖2 . τ

(
1√
m

+ τ
√
m

)(
c∗√
2wl

+ (1 + Cδ
√
τ)

)
+
√
me−

wl
4ω

. τ(1 + Cδ
√
τ)

(
1√
m

+ τ
√
m

)
+
√
me−

wl
4ω ,

where . hides universal positive constants only related to al, ar, wl, wr and a∗, ρ0, and
Cδ =

√
1 + ln(2/δ). Since aω(0) = ã(0) = a0, we finally get

‖aω(τ)− ã(τ)‖2 .
∫ τ

0

[
s(1 + Cδ

√
s)

(
1√
m

+ s
√
m

)
+
√
me−

wl
4ω

]
ds

= τ2

[
1√
m

(
1

2
+

2Cδ
√
τ

5

)
+ τ
√
m

(
1

3
+

2Cδ
√
τ

7

)]
+ τ
√
me−

wl
4ω ,

which completes the proof.

(3) Result
Eventually, we can establish the optimization result of (172) under the gradient flow

training dynamics (104).
Proof [Proof of Theorem 25] For any ω > 0 and m ∈ N+, we have∥∥∥[aω(τ)]>e−wω(τ)t − ρ̄(t)

∥∥∥2

L2[0,∞)

.
∥∥∥(aω(τ)− ã(τ))> e−wω(τ)t

∥∥∥2

L2[0,∞)
+
∥∥∥[ã(τ)]>

(
e−wω(τ)t − e−w0t

)∥∥∥2

L2[0,∞)
+ J̄(ã(τ), w0).

By the Cauchy-Schwartz inequality, we get∥∥∥(aω(τ)− ã(τ))> e−wω(τ)t
∥∥∥2

L2[0,∞)
≤ ‖aω(τ)− ã(τ)‖22

∫ ∞
0
‖e−wω(τ)t‖22dt,∥∥∥[ã(τ)]>

(
e−wω(τ)t − e−w0t

)∥∥∥2

L2[0,∞)
≤ ‖ã(τ)‖22

∫ ∞
0
‖e−wω(τ)t − e−w0t‖22dt.
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Combining with Lemma 49, Lemma 51, Lemma 52 and (212), (213), we obtain that for any
ω ∈ (0,min{1/2, 1/t0, 4c1/wl}), m ∈ N+, and for any δ > 0, with probability of at least
1− δ over the choice of θ0 ∈ Θ̃0,∥∥∥[aω(τ)]>e−wω(τ)t − ρ̄(t)

∥∥∥2

L2[0,∞)
. τ4m

(
1√
m

+ τ
√
m

)2

(1 + Cδ
√
τ)2 + τ2m2e−

wl
2ω

+
1

m
(1 + Cδ

√
τ)2‖wω(τ)− w0‖22 +

(
1

mτ
+

1

m
C2
δ

)
. τ2

(
1√
m

+ τ
√
m

)2

(1 + Cδ
√
τ)2

(
τ2m+

1

m

)
+ τ2m2e−

wl
2ω +

(
1

mτ
+

1

m
C2
δ

)
, ∀τ ∈ [0, τ1],

where . hides universal positive constants only related to al, ar, wl, wr and a∗, ρ0, t0, c0,

c1, and Cδ =
√

1 + ln(2/δ). Let C ′δ := (1 + Cδ)
2. For any m ≥ 1/τ

1/p
1 , p ∈ (1/3, 1), and

any τ ∈ [m−p/2,m−p] ⊂ [0, τ1], we get∥∥∥[aω(τ)]>e−wω(τ)t − ρ̄(t)
∥∥∥2

L2[0,∞)

.
1

m2p

(
1√
m

+
1

mp− 1
2

)2

C ′δ

(
1

m2p−1
+

1

m

)
+m2(1−p)e−

wl
2ω +

(
2

m1−p +
1

m
C ′δ

)
=C ′δ

(
2

m4p
+

1

m2p+2
+

1

m6p−2
+

2

m5p−1
+

2

m3p+1
+

1

m

)
+m2(1−p)e−

wl
2ω +

2

m1−p

.C ′δ

(
1

m6p−2
+

1

m

)
+m2(1−p)e−

wl
2ω +

1

m1−p ,

which completes the proof.

8. Conclusion

In this paper, we analyze the basic approximation and optimization aspects of using RNNs
to learn input-output relationships involving temporal sequences in the linear, continuous-
time setting. In both aspects, our analysis reveals that the dynamical nature of the problem
connects the idea of memory and learning in a precise way. In particular, we theoretically
and numerically uncover phenomena called the curse of memory, and reveals two of its
facets: when the target relationship to be learned has long-term memory, both approxi-
mation and optimization become exceedingly difficult. The analysis makes concrete the
heuristic observations of the adverse effect of memory on learning with RNNs. Moreover, it
quantifies the interaction between the model architectures (RNN functionals) and the data
structures (target functionals). The latter is a much less-studied topic. The current analyses
focus on the linear case. A natural question is whether such interactions between approx-
imation, optimization and memory structures persist in the nonlinear case. We showed
using numerical experiments in Figure 4 that even with nonlinear activation functions, the
behavior of RNNs with respect to memory structures remains similar. Nevertheless, it is
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important to develop the mathematical theory for this case, and the key ingredient is to
understand whether point-wise non-linearity can induce fundamental changes in memory
patterns for functionals parameterized by otherwise linear dynamics. More broadly, the
approach here may act as a basic starting point for understanding partially-observed time
series data in general, including gated variants of RNNs (Hochreiter and Schmidhuber, 1997;
Cho et al., 2014), and other models such as transformers and convolution-based approaches
such as WaveNet (Vaswani et al., 2017; Oord et al., 2016). These are certainly worthy of
future exploration.
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Appendix A. Landscape Analysis: Weights Degeneracy

As mentioned in Remark 37, we can perform a global landscape analysis on the loss function
based on the idea of weights degeneracy, which arises from Definition 29. Recall that the
loss function reads

min
(a,w)∈Rm×Rm+

Jm(a,w) :=

∫ ∞
0

(
m∑
i=1

aie
−wit − ρ(t)

)2

dt. (215)

Here we use the subscript m to emphasize the effect of model capacity, since different
choices of m are discussed in the following analysis. The main results of the appendix are
summarized as follows.

• In Theorem 57, we prove that the loss function has infinitely many critical points,
which form a factorial number of affine spaces (affine spaces);

• In Theorem 58, we prove that such (critical) affine spaces are much more than global
minimizers provided the target as an exponential sum;22

• In Theorem 61, we prove that on such (critical) affine spaces, the Hessian is singular
in the sense of processing multiple zero eigenvalues;

• In Proposition 71, we prove that the (critical) affine spaces contain both saddles and
degenerate stable points which are not global optimal.

Instead of a local dynamical analysis in the main text, we generalize similar methods
to a global landscape analysis here, and the results hold for the loss function associated
with general targets. More specifically, these results complement our main results (see
Section 6.2.1) in the following aspects.

22. The global minimizers are distinct when the target is an exponential sum. Here we compare the number
of (critical) affine spaces with the number of global minimizers (both of them are finite). When the
target is not an exponential sum, the same conclusion holds if there are still finite number of global
minimizers. See Remark 60 in Section A.2 for details.
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• It is shown that the weights degeneracy is quite common in the whole landscape of
the loss function. Unfortunately, weights degeneracy often worsens the landscape to
a large extent;

• It is shown that the weights degeneracy leads to a large number of stable areas (i.e.
critical affine spaces), but most of them contribute to non-global minimizers;

• It is shown that these stable areas can also be quite flat, which often connect with
local plateaus;

• For the structure of these stable areas, there are both saddles and degenerate critical
points (not global optimal). In certain regimes, even saddles can be rather difficult to
escape (Theorem 20).

As a consequence, the optimization problem of linear RNNs is globally and essentially
difficult to solve.

This section consists of three parts: in Section A.1, we give main results provided the
existence of weights degeneracy; in Section A.2, we give sufficient conditions to guarantee
the existence. A low-dimensional example is investigated in Section A.3. Since the key
observation to use weights degeneracy is to notice the permutation symmetry of coordinates
of gradients, we also called it “symmetry analysis”.

A.1 Generic Theories

We begin with the following definition, which describes the idea of weights degeneracy in a
natural and rigorous way.

Definition 53 (coincided critical solutions and affine spaces) Let d ∈ N+ and 1 ≤ d ≤ m.
We call that (a,w) is a d-coincided critical solution of Jm, if ∇Jm(a,w) = 0, and w =
(wi) ∈ Rm+ has d different components. The coincided critical affine spaces are defined as
coincided critical solutions that form affine spaces.

To guarantee the existence of such solutions, it is necessary to have the following defi-
nition.

Definition 54 (â, ŵ) ∈ Rm × Rm+ is called the non-degenerate global minimizer of Jm, if
and only if

Jm(â, ŵ) = inf
(a,w)∈Rm×Rm+

Jm(a,w), (216)

and (â, ŵ) takes a non-degenerate form

âi 6= 0, ŵi 6= ŵj for i 6= j, i, j = 1, 2, · · · ,m. (217)

For convenience, we also define an index set

N := {n ∈ N+ : Jm has non-degenerate global minimizers for any m ≤ n} , (218)

which is used frequently in the following analysis. For any f ∈ L2[0,∞), let L[f ] be the
Laplace transform of f , i.e. L[f ](s) =

∫∞
0 e−stf(t)dt, s > 0.

We begin with the following lemma.
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Lemma 55 Assume that ρ is smooth and
√
w |L[ρ](w)| → 0 as w → 0+ and w →∞. Then

we have 1 ∈ N and thus N 6= ∅.

Proof We aim to show that there exists â 6= 0 and ŵ > 0, such that

J1(â, ŵ) = inf
(a,w)∈R×R+

J1(a,w). (219)

The basic idea is to limit the unbounded domain R×R+ to a compact set without effecting
the minimization of J1(a,w). We have

min
a,w>0

J1(a,w) = min
w>0

min
a

{
1

2w
· a2 − 2L[ρ](w) · a+ ‖ρ‖2L2[0,∞)

}
= min

w>0
min
a

{
1

2w

(
a− 2wL[ρ](w)

)2
+
[
‖ρ‖2L2[0,∞) − 2w(L[ρ](w))2

]}
= min

w>0

{
‖ρ‖2L2[0,∞) − 2w(L[ρ](w))2

}
= J1(a(w), w),

where a(w) := 2wL[ρ](w). Write h(w) := J1(a(w), w), then h(0+) = h(∞) = ‖ρ‖2L2[0,∞).

Obviously h(w) < ‖ρ‖2L2[0,∞) for any w > 0, hence

min
w>0

h(w) = min
w∈[wlb,wub]

h(w), 0 < wlb < wub <∞,

which implies

min
a,w>0

J1(a,w) = min
w>0

J1(a(w), w) = min
w∈[wlb,wub]

J1(a(w), w).

That is to say, the minimization of J1(a,w) can be equivalently performed on a 2-dimensional
smooth curve
(w, a(w))w∈[wlb,wub], which is certainly a compact set. By continuity, J1(a,w) has global
minimizers, say (â, ŵ). Obviously ŵ > 0 and â = a(ŵ) 6= 0 (since â = 0 implies
J1(â, w) = ‖ρ‖2L2[0,∞), certainly not a minimum), which completes the proof.

Remark 56 If the ground truth is an exponential sum, i.e. ρ(t) =
∑m∗

j=1 a
∗
je
−w∗j t, we know

ρ is smooth and
√
w |L[ρ](w)| → 0 as w → 0+ and w →∞; hence 1 ∈ N by Lemma 55, and

thus N 6= ∅. In fact, L[ρ](w) =
∑m∗

j=1

a∗j
w+w∗j

implies that L[ρ](w) = O(1) when w → 0+,

and L[ρ](w) = O(1/w) when w →∞.

Theorem 57 Assume that N 6= ∅ with N defined as (218). Let M := sup N . Then for

any m ∈ N+, 1 ≤ d ≤ min{m,M}, there exists at least d!

{
m
d

}
d-coincided critical affine

spaces of Jm,23 where

{
m
d

}
∈ N+ is called the Stirling number of the second kind.

23. Certainly, the affine spaces degenerate to distinct points when d = m. For sufficient conditions to
guarantee M > 1 (to give meaningful results), see Theorem 68 and Remark 69 in Section A.2.
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Proof (i) Existence. The key observation is the permutation symmetry of ∇Jm: by (97)
and (98), if ai = aj and wi = wj for some i 6= j, then ∂Jm

∂ai
= ∂Jm

∂aj
and ∂Jm

∂wi
= ∂Jm

∂wj
.

For any m, d ∈ N+, 1 ≤ d ≤ m, suppose that w = (wi) ∈ Rm+ has d different components.
Then for any partition P: {1, · · · ,m} = ∪dj=1Ij with Ij1 ∩ Ij2 = ∅ for any j1 6= j2,
j1, j2 = 1, · · · , d, define the affine space

MP,(b,v),(m,d) :=

(a,w) ∈ Rm × Rm+ : wi = vj for any i ∈ Ij ,
∑
i∈Ij

ai = bj , j = 1, · · · , d


for some (b, v) ∈ Rd × Rd+, where v has exactly d different components. Therefore, for any
(a,w) ∈MP,(b,v),(m,d), we have

Jm(a,w) =

∥∥∥∥∥∥
d∑
j=1

∑
i∈Ij

aie
−wit − ρ(t)

∥∥∥∥∥∥
2

L2[0,∞)

=

∥∥∥∥∥∥
d∑
j=1

bje
−vjt − ρ(t)

∥∥∥∥∥∥
2

L2[0,∞)

= Jd(b, v),

and similarly

∂Jm
∂ak

(a,w) = 2

∫ ∞
0

e−vst

 d∑
j=1

bje
−vjt − ρ(t)

 dt, k ∈ Is, s = 1, 2, · · · , d,

∂Jm
∂wk

(a,w) = 2ak

∫ ∞
0

(−t)e−vst
 d∑
j=1

bje
−vjt − ρ(t)

 dt, k ∈ Is, s = 1, 2, · · · , d.

Notice that

∂Jd
∂bs

(b, v) = 2

∫ ∞
0

e−vst

 d∑
j=1

bje
−vjt − ρ(t)

 dt, s = 1, 2, · · · , d,

∂Jd
∂vs

(b, v) = 2bs

∫ ∞
0

(−t)e−vst
 d∑
j=1

bje
−vjt − ρ(t)

 dt, s = 1, 2, · · · , d,

we have

∂Jm
∂ak

(a,w) =
∂Jd
∂bs

(b, v), bs
∂Jm
∂wk

(a,w) = ak
∂Jd
∂vs

(b, v), k ∈ Is, s = 1, 2, · · · , d, (220)

which is in fact a model reduction.24 Since d ≤ min{m,M}, d ∈ N . In fact, for any k ∈ N+,
if k /∈ N , there exists i ≤ k such that J(i) has no non-degenerate global minimizers, we have
j /∈ N for any j ≥ i, hence M ≤ i− 1 ≤ k− 1. Hence M =∞ implies N = N+ and M <∞

24. By considering the gradient flow dynamic of Jd instead of Jm, a model reduction (from m-dimensional to
d-dimensional) is almost completed onMP,(b,v),(m,d), except for the trivial degenerate cases (e.g. ak = 0
or bs = 0).
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implies M ∈ N , and both of them lead to d ∈ N . Therefore, Jd has non-degenerate global
minimizers, i.e. there exists (b̂, v̂) ∈ Rd × Rd+ such that

Jd(b̂, v̂) = inf
(b,v)∈Rd×Rd+

Jd(b, v), (221)

and (b̂, v̂) takes a non-degenerate form

b̂i 6= 0, v̂i 6= v̂j for any i 6= j, i, j = 1, 2, · · · , d. (222)

By (221), we get ∇Jd(b̂, v̂) = 0. Combining with (220) and (222), we obtain ∇Jm(â, ŵ) = 0
for any (â, ŵ) ∈MP,(b̂,v̂),(m,d), i.e. (â, ŵ) belongs to a d-coincided critical affine space. Note

that the affine space is with the dimension
∑d

j=1(|Ij | − 1) = m− d, since there are d linear
equality constrains on the m-dimensional vector a.

(ii) Counting. By the structure of affine spaces discussed above, we can identify different
affine spaces with respect to the partition P. For counting the number of different parti-
tions P: {1, · · · ,m} = ∪dj=1Ij , it can be decomposed into the following two steps. First,
partitioning a set of m labelled objects into d non-empty unlabelled subsets. By definition,

the answer is the Stirling number of the second kind

{
m
d

}
. Second, assign each partition

to I1, · · · , Id accordingly. There are d! ways in total. Therefore, the number of d-coincided

critical affine spaces is at least d!

{
m
d

}
. The proof is completed.

Combining Lemma 55, Remark 56 and Theorem 57 gives the following theorem, which
states that there are much more saddles and degenerate stable points which are not global
optimal than global minimizers in the landscape (provided the target as an exponential
sum).

Theorem 58 Fix any m ∈ N+ relatively large. Consider the loss Jm with the ground truth
as a non-degenerate exponential sum, i.e. ρ(t) =

∑m
j=1 a

∗
je
−w∗j t, where a∗j 6= 0 and w∗i 6= w∗j

for any i 6= j, i, j = 1, · · · ,m. Assume that m ∈ N with N defined in (218).25 Then in
the landscape of Jm, the number of coincided critical affine spaces is at least Poly(m) times
larger than the number of global minimizers.

Proof (i) Global minimizers. Since the ground truth is an exponential sum, we have
Jm(a,w) ≥ 0 and Jm(ā∗, w̄∗) = 0, where ā∗ = Pa∗ and w̄∗ = Pw∗ with P ∈ Rm×m to be
some permutation matrix. Next we show Jm has no other global minimizers.

Suppose Jm(a,w) = 0, we have

m∑
i=1

aie
−wit −

m∑
j=1

a∗je
−w∗j t = 0, t ≥ 0. (223)

It is easy to get that for any j = 1, 2, · · · ,m, there exists i(j) such that wi(j) = w∗j .
Otherwise, if wi 6= w∗j , i = 1, · · · ,m, by (123) or Lemma 28, we have a∗j = 0, which is a

25. Although the assumption m ∈ N seems strong, we will provide sufficient conditions to guarantee its
validity in Section A.2. See Theorem 70.
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contradiction. Notice that w∗i 6= w∗j for any i 6= j, different w∗j will correspond to different
wi, hence the correspondence is one-to-one. Therefore, let wi = w∗j(i), (223) can be rewritten
as

0 =
m∑
i=1

aie
−w∗

j(i)
t −

m∑
i=1

a∗j(i)e
−w∗

j(i)
t

=
m∑
i=1

(ai − a∗j(i))e
−w∗

j(i)
t
, t ≥ 0.

Again by Lemma 28, we have ai = a∗j(i). That is to say, Jm(a,w) = 0 implies a = Pa∗ and

w = Pw∗ with P ∈ Rm×m to be some permutation matrix. This gives m! global minimizers.

(ii) Coincided critical affine spaces. ObviouslyN 6= ∅, and M = sup N ≥ m. According

to Theorem 57, for any d, 1 ≤ d ≤ min{m,M} = m, we have at least d!

{
m
d

}
d-coincided

critical affine spaces of Jm. By (i), for any d ≤ m − 1, there are no global minimizers in
these affine spaces. Counting the total number

m−1∑
d=1

d!

{
m
d

}
. (224)

(iii) Comparison. To give a bound between (224) and m!, we need an elementary
recurrence {

m
d

}
= d

{
m− 1
d

}
+

{
m− 1
d− 1

}
.

• For d = m− 1, let pm :=

{
m

m− 1

}
, then

pm = (m− 1)

{
m− 1
m− 1

}
+

{
m− 1
m− 2

}
= (m− 1) + pm−1 = · · · = m(m− 1)

2
.

• For d = m− 2, let qm :=

{
m

m− 2

}
, then

qm = (m− 2)

{
m− 1
m− 2

}
+

{
m− 1
m− 3

}
= (m− 2)pm−1 + qm−1 = · · ·

=
1

24
[2(m− 2)(m− 1)(2m− 3) + 3(m− 2)2(m− 1)2].

Combining above gives

1

m!

m−1∑
d=1

d!

{
m
d

}
>

1

m!
[(m− 1)!pm + (m− 2)!qm] =

(m+ 1)(3m− 2)

24
,

which is a quadratic polynominal on m. The proof is completed.
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Remark 59 We only take the last two terms of (224) for a lower bound, which is obviously
rather loose. In principle, a Poly(m) bound with higher degrees can be similarly obtained.
That is to say, on one hand, there are infinitely many critical points forming affine spaces
in the landscape of Jm; on the other hand, we deduce that even only counting the affine
spaces, there are still much less global minimizers (given the width m relatively large).

Remark 60 When the target ρ is not an exponential sum, it is straightforward to verify
Theorem 58 still holds if there are finite number (with the scale of no more than factorial)
of global minimizers.

Now we get down to investigate ∇2Jm on the above coincided critical affine spaces. It
is shown that ∇2Jm is singular and can have multiple zero eigenvalues.

Theorem 61 Fix any m, d ∈ N+, 1 ≤ d ≤ m. On the d-coincided critical affine spaces of
Jm,26 ∇2Jm is with rank at most m+ d, and hence has at least m− d zero eigenvalues.

Proof A straightforward computation shows that, for k, l = 1, 2, · · · ,m,

∂2Jm
∂ak∂al

(a,w) =
2

wk + wl
, (225)

∂2Jm
∂ak∂wl

(a,w) =
−2al

(wk + wl)2
, k 6= l, (226)

∂2Jm
∂ak∂wk

(a,w) =
−ak
2w2

k

+ 2

∫ ∞
0

(−t)e−wkt
(

m∑
i=1

aie
−wit − ρ(t)

)
dt. (227)

Let the induced d-coincided critical affine space be MP,(b̂,v̂),(m,d), as is derived in the proof

of Theorem 57. Since (b̂, v̂) is the non-degenerate global minimizer of Jd, we have

∫ ∞
0

(−t)e−ŵkt
(

m∑
i=1

âie
−ŵit − ρ(t)

)
dt =

∫ ∞
0

(−t)e−v̂st
 d∑
j=1

b̂je
−v̂jt − ρ(t)

 dt

=
1

2b̂s

∂Jd
∂vs

(b̂, v̂) = 0, k ∈ Is, s = 1, 2, · · · , d,

for any (â, ŵ) ∈MP,(b̂,v̂),(m,d). This gives

∂2Jm
∂ak∂wk

(â, ŵ) =
−âk
2ŵ2

k

. (228)

Now we show that, for any i, j ∈ Is, i 6= j, s = 1, 2, · · · , d, the i-th row and j-th row of
∇2Jm(â, ŵ) are the same. In fact, for any k = 1, · · · ,m, let k ∈ Is′ , then by (225),

∂2Jm
∂ai∂ak

(â, ŵ) =
2

ŵi + ŵk
=

2

v̂s + v̂s′
,

∂2Jm
∂aj∂ak

(â, ŵ) =
2

ŵj + ŵk
=

2

v̂s + v̂s′
.

26. That is, the affine space MP,(b̂,v̂),(m,d) induced by non-degenerate global minimizers of Jd. See details
in the proof of Theorem 57.
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For k 6= i and k 6= j, (226) gives

∂2Jm
∂ai∂wk

(â, ŵ) =
−2âk

(ŵi + ŵk)2
=

−2âk
(v̂s + v̂s′)2

,
∂2Jm
∂aj∂wk

(â, ŵ) =
−2âk

(ŵj + ŵk)2
=

−2âk
(v̂s + v̂s′)2

.

Together with (228), for k = i 6= j,

∂2Jm
∂ai∂wk

(â, ŵ) =
−âi
2ŵ2

i

=
−âi
2v̂2
s

,
∂2Jm
∂aj∂wk

(â, ŵ) =
−2âi

(ŵj + ŵi)2
=
−âi
2v̂2
s

,

and similarly for k = j 6= i,

∂2Jm
∂ai∂wk

(â, ŵ) =
−2âj

(ŵi + ŵj)2
=
−âj
2v̂2
s

,
∂2Jm
∂aj∂wk

(â, ŵ) =
−âj
2ŵ2

j

=
−âj
2v̂2
s

.

That is to say, there are at most m+d different rows in the symmetric matrix ∇2Jm(â, ŵ) ∈
R2m×2m, hence rank

(
∇2Jm(â, ŵ)

)
≤ m + d. Therefore, the number of zero eigenvalues of

∇2Jm(â, ŵ) ≥ dim
{
x ∈ R2m : ∇2Jm(â, ŵ) ·x = 0

}
= 2m− rank(∇2Jm(â, ŵ)) ≥ m− d. The

proof is completed.

Remark 62 The bound in Theorem 61 is not sharp. The estimate on rank
(
∇2Jm

)
here is

loose since only rows with the same elements are considered. In practice (numerical tests),
it is often the case that there are more zero eigenvalues of rank

(
∇2Jm

)
on the coincided

critical affine space MP,(b̂,v̂),(m,d).

Remark 63 Theorem 61 shows that, there are local plateaus around the d-coincided critical
affine spaces MP,(b̂,v̂),(m,d) for d ≤ m − 1. In addition, the 0-eigenspace of Jm is higher-
dimensional for smaller d, which may suggest that one can stuck on plateaus more easily.

A.2 Sufficient Conditions

There is still a gap when connecting Theorem 57 and Theorem 58. That is, it is necessary
to guarantee sup N relatively large, i.e. J1, J2, · · · , Jd all have non-degenerate global mini-
mizers for d as large as possible. Motivated by Kammler (1979), we can give some sufficient
conditions by limiting the ground truth ρ within a smaller function space, the so-called
completely monotonic functions.

Definition 64 F ∈ C[0,∞] ∩ C∞(0,∞) is called completely monotonic, if and only if

(−1)nF (n)(t) ≥ 0, 0 < t <∞, n = 0, 1, · · · ,

and F (∞) = 0.

Remark 65 Several examples of completely monotonic functions:

• ρ(t) = 1/(1 + t)α for any α > 0;
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• The non-degenerate exponential sum with positive coefficients

ρ(t) =
m∗∑
j=1

a∗je
−w∗j t, 0 ≤ w∗1 < · · · < w∗m∗ , a

∗
j > 0, j = 1, 2, · · · ,m∗.

Since the space of exponential sums is not close, we turn to consider the problem of
finding a best approximation to a given ρ ∈ L2[0,∞) from the set

Vd(R+) :=
{
ρ̂ ∈ Cd[0,∞) : [(D + w1) · · · (D + wd)]ρ̂ = 0 for some w1, · · ·wd ∈ R+

}
(229)

with respect to the common L2-norm, i.e. inf ρ̂∈Vd(R+) ‖ρ̂− ρ‖L2[0,∞), where D denotes the
common differential operator. Obviously Vd(R+) ⊂ L2[0,∞) and Vd(R+) ( Vd+1(R+) for
any d ∈ N+.

The work Kammler (1979) proves the following theorem.

Theorem 66 Assume ρ ∈ L2[0,∞) to be completely monotonic. Then there exists a best
approximation ρ̂0 to ρ in Vd(R+), i.e.

‖ρ̂0 − ρ‖L2[0,∞) = inf
ρ̂∈Vd(R+)

‖ρ̂− ρ‖L2[0,∞). (230)

When ρ /∈ Vd(R+), any such best approximation admits a non-degenerate form

ρ̂0(t) =

d∑
j=1

b̂je
−v̂jt, 0 < v̂1 < · · · < v̂d, b̂j > 0, j = 1, 2, · · · , d, (231)

and satisfies the generalized Aigrain-Williams equations

L[ρ̂0](v̂j) = L[ρ](v̂j), j = 1, 2, · · · , d, (232)

d

ds
L[ρ̂0](s)

∣∣∣
s=v̂j

=
d

ds
L[ρ](s)

∣∣∣
s=v̂j

, j = 1, 2, · · · , d. (233)

Note that (230) and (231) are pretty similar to Definition 54, except for a different choice
of hypothesis function space. Now we show a connection between these two problems.

Theorem 67 Assume ρ ∈ L2[0,∞) to be completely monotonic, and ρ /∈ Vd(R+) for some
d ∈ N+. Then Jd has non-degenerate global minimizers (b̂, v̂) ∈ Rd × Rd+.

Proof According to Theorem 66, there exists a non-degenerate best approximation ρ̂0 to
ρ from Vd(R+), i.e.

‖ρ̂0 − ρ‖L2[0,∞) = inf
ρ̂∈Vd(R+)

‖ρ̂− ρ‖L2[0,∞), (234)

ρ̂0(t) =

d∑
j=1

b̂je
−v̂jt, 0 < v̂1 < · · · < v̂d, b̂j > 0, j = 1, 2, · · · , d. (235)
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We aim to prove Jd(b̂, v̂) = inf
(b,v)∈Rd×Rd+

Jd(b, v). Define the following subsets of exponential

sums

Vd(R+) :=

{
ρ̂ : ρ̂(t) =

d∑
i=1

aie
−wit, ai ∈ R, wi > 0

}
,

Vd,k(R+) :=

{
ρ̂ ∈ Vd(R+) : w = (wi) has k different components

}
, k = 1, 2, · · · , d,

then we have inf
(b,v)∈Rd×Rd+

Jd(b, v) = inf
ρ̂∈Vd(R+)

‖ρ̂ − ρ‖2L2[0,∞). It is straightforward to verify

that Vd(R+) =
⋃d
k=1 Vd,k(R+), and Vd,k(R+) = Vk,k(R+) ( Vk(R+) for k = 1, · · · , d. By

(234), we get

‖ρ̂0 − ρ‖2L2[0,∞) = inf
ρ̂∈Vd(R+)

‖ρ̂− ρ‖2L2[0,∞) ≤ inf
ρ̂∈Vd,d(R+)

‖ρ̂− ρ‖2L2[0,∞).

Since ρ̂0 ∈ Vd,d(R+), we have

Jd(b̂, v̂) = ‖ρ̂0 − ρ‖2L2[0,∞) = inf
ρ̂∈Vd,d(R+)

‖ρ̂− ρ‖2L2[0,∞).

The last task is to show inf
ρ̂∈Vd(R+)

‖ρ̂− ρ‖L2[0,∞) = inf
ρ̂∈Vd,d(R+)

‖ρ̂− ρ‖L2[0,∞). In fact, for any

ρ̂ ∈ Vk,k, ρ̂(t) =
∑k

i=1 aie
−wit, let ã := (a1, · · · , ak, 0), w̃ := (w1, · · · , wk, 1 + max

1≤i≤k
wi), we

get ρ̂(t) :=
∑k+1

i=1 ãie
−w̃it ∈ Vk+1,k+1, which implies Vk,k ⊂ Vk+1,k+1. Therefore,

inf
ρ̂∈Vd(R+)

‖ρ̂− ρ‖L2[0,∞) = inf
ρ̂∈
⋃d
k=1 Vd,k(R+)

‖ρ̂− ρ‖L2[0,∞) = min
1≤k≤d

{
inf

ρ̂∈Vd,k(R+)
‖ρ̂− ρ‖L2[0,∞)

}
= min

1≤k≤d

{
inf

ρ̂∈Vk,k(R+)
‖ρ̂− ρ‖L2[0,∞)

}
≥ inf

ρ̂∈Vd,d(R+)
‖ρ̂− ρ‖L2[0,∞),

which completes the proof.

Combining Theorem 57 and Theorem 67 immediately gives the following result.

Theorem 68 Assume ρ ∈ L2[0,∞) to be completely monotonic, and ρ /∈ V1(R+). Let
D := {d ∈ N+ : ρ /∈ Vd(R+)}, D0 := supD and write m′ := min{m,D0}. Then the total

number of coincided critical affine spaces of Jm is at least
∑m′

d=1 d!

{
m
d

}
.

Proof We have 1 ∈ D and thus D 6= ∅, D0 ≥ 1. Since Vd(R+) ( Vd+1(R+) for any
d ∈ N+, we have D = {1, 2, · · · , D0} if D0 < ∞, and D = N+ if D0 = ∞.27 Both of
them gives {1, 2, · · · ,m′} ⊂ D, i.e. ρ /∈ Vk(R+) for any k ≤ m′. By Theorem 67, J(k) has

27. In fact, Vd(R+) ( Vd+1(R+) for any d ∈ N+ implies if ρ /∈ Vd(R+), ρ /∈ Vk(R+) for any k ≤ d, i.e.
d ∈ D ⇒ k ∈ D for any k ≤ d; otherwise, if ρ ∈ Vd(R+), ρ ∈ Vl(R+) for any l ≥ d, i.e. d /∈ D ⇒ l /∈ D
for any l ≥ d.
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non-degenerate global minimizers for any k ≤ m′, i.e. m′ ∈ N . According to Theorem 57,

for any d ∈ N+, 1 ≤ d ≤ m′ = min{m,m′} ≤ min{m,M}, there exists at least d!

{
m
d

}
d-coincided critical affine spaces of Jm. Sum over d gives the total number

∑m′

d=1 d!

{
m
d

}
.

Remark 69 Examples:

• Suppose the target is ρ(t) = 1/(1 + t)α, α > 0, then D = N+ and D0 = ∞. The
total number of coincided critical affine spaces of the corresponding Jm is at least∑m

d=1 d!

{
m
d

}
.

• Suppose the target is an non-degenerate exponential sum with positive coefficients:
ρ(t) =

∑m
j=1 a

∗
je
−w∗j t, where a∗j > 0 and w∗i 6= w∗j for any i 6= j, i, j = 1, · · · ,m. Then

D = {1, 2, · · · ,m− 1} and D0 = m− 1. The total number of coincided critical affine

spaces of the corresponding Jm is at least
∑m−1

d=1 d!

{
m
d

}
, which is exactly (224).

An complement for Theorem 58 is as follows.

Theorem 70 Fix any m ∈ N+ relatively large. Consider the loss Jm with the ground truth
as a non-degenerate exponential sum with positive coefficients, i.e. ρ(t) =

∑m
j=1 a

∗
je
−w∗j t,

where a∗j > 0 and w∗i 6= w∗j for any i 6= j, i, j = 1, · · · ,m. Then in the landscape of Jm, the
number of coincided critical affine spaces is at least Poly(m) times larger than the number
of global minimizers.

Proof By Theorem 58, the only fact we need to show is m ∈ N . Since ρ ∈ L2[0,∞) is
completely monotonic, and ρ /∈ Vk(R+) for any k ≤ m − 1, then by Theorem 67, J(k) has
non-degenerate global minimizers for any k ≤ m−1, i.e. m−1 ∈ N . The proof is completed
by noticing that Jm obviously has non-degenerate global minimizers, e.g. (a∗, w∗).

A.3 A Low-Dimensional Example

To further understand the structure of coincided critical affine spaces, we focus on a specific
low-dimensional example in this section. That is

min
(a,w)∈R2×R2

+

J2(a,w) =

∥∥∥∥∥
2∑
i=1

aie
−wit − ρ(t)

∥∥∥∥∥
2

L2[0,∞)

,

with the ground truth to be a non-degenerate exponential sum ρ(t) =
∑m∗

j=1 a
∗
je
−w∗j t, where

a∗j 6= 0 and w∗i 6= w∗j for any i 6= j, i, j = 1, · · · ,m∗. As we will show later, the coincided
critical affine spaces of J2 contain both saddles and degenerate stable points which are not
global optimal.
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By Lemma 55, Remark 56 and Theorem 57, we know the 1-coincided critical affine space
of J2 exists, and it can be constructed by taking the non-degenerate global minimizer of J1,
say (â, ŵ) with â 6= 0 and ŵ > 0. Then M(â,ŵ),(2,1) := {(a1, â − a1, ŵ, ŵ) : a1 ∈ R} ∈ R4

is a line,28 and ∇J2(a1, â − a1, ŵ, ŵ) = 0 for any a1 ∈ R. Denote the Hessian of J2 on the
line M(â,ŵ),(2,1) by A(â,ŵ)(a1), i.e. A(â,ŵ)(a1) := ∇2J2(a1, â− a1, ŵ, ŵ). We investigate the
landscape of J2 on the lineM(â,ŵ),(2,1) by analyzing the eigenvalue distribution ofA(â,ŵ)(a1).

Proposition 71 Suppose m = m∗ = 2, and 0 < w∗1 < w∗2. Let I1 := [0, â] and I2 :=
(−∞, 0) ∪ (â,+∞).29 Then

1. If a∗1a
∗
2 < 0, the minimal eigenvalue of A(â,ŵ)(a1) is 0 for any a1 ∈ I1, and negative

for any a1 ∈ I2;

2. If a∗1a
∗
2 > 0 and w∗2/w

∗
1 < 2 +

√
3, the minimal eigenvalue of A(â,ŵ)(a1) is negative for

any a1 ∈ I1, and 0 for any a1 ∈ I2.

Proof Write c(w) :=
∑m∗

j=1 a
∗
j

[
1

2w(w+w∗j )2
− 1

(w+w∗j )3

]
, and a2 := â− a1. A straightforward

computation shows that

A(â,ŵ)(a1) =


1
ŵ

1
ŵ

−a1
2ŵ2

−a2
2ŵ2

1
ŵ

1
ŵ

−a1
2ŵ2

−a2
2ŵ2

−a1
2ŵ2

−a1
2ŵ2

a21
2ŵ3 + 4c(ŵ)a1

a1a2
2ŵ3

−a2
2ŵ2

−a2
2ŵ2

a1a2
2ŵ3

a22
2ŵ3 + 4c(ŵ)a2

 .
Considering the congruent transformation of A(â,ŵ)(a1), which does not affect the index of
inertia:

A(â,ŵ)(a1) =


1
ŵ

1
ŵ

−a1
2ŵ2

−a2
2ŵ2

1
ŵ

1
ŵ

−a1
2ŵ2

−a2
2ŵ2

−a1
2ŵ2

−a1
2ŵ2

a21
2ŵ3 + 4c(ŵ)a1

a1a2
2ŵ3

−a2
2ŵ2

−a2
2ŵ2

a1a2
2ŵ3

a22
2ŵ3 + 4c(ŵ)a2



→


1
ŵ 0 0 0
0 0 0 0

0 0
a21

4ŵ3 + 4c(ŵ)a1
a1a2
4ŵ3

0 0 a1a2
4ŵ3

a22
4ŵ3 + 4c(ŵ)a2

 ,
we get that A(â,ŵ)(a1) has one positive eigenvalue 1/ŵ and one eigenvalue 0. What remains

are the eigenvalues of A′(â,ŵ)(a1) :=

[
a21

4ŵ3 + 4c(ŵ)a1
a1a2
4ŵ3

a1a2
4ŵ3

a22
4ŵ3 + 4c(ŵ)a2

]
. To determine their

signs, we compute

det(A′(â,ŵ)(a1)) = a1(â− a1) · 4c(ŵ)

(
â

4ŵ3
+ 4c(ŵ)

)
=

1

â2ŵ3
a1(â− a1) · âc(ŵ) ·

(
â2 + 16ŵ3âc(ŵ)

)
. (236)

28. Here we omit the corresponding partition P since it is unique.
29. Suppose â > 0 here without loss of generality. If â < 0, we let I1 := [â, 0] and I2 := (−∞, â) ∪ (0,+∞)

and the same results hold.
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So we need to analyze the sign of âc(ŵ) and â2 + 16ŵ3âc(ŵ) under different assumptions
on (a∗, w∗).

(i) a∗1a
∗
2 < 0. By the optimality condition of (â, ŵ) for J1, we have

â = 2ŵ

m∗∑
j=1

a∗j
ŵ + w∗j

= 4ŵ2
m∗∑
j=1

a∗j
(ŵ + w∗j )

2
, (237)

and therefore

c(ŵ) =
â

8ŵ3
−

m∗∑
j=1

a∗j
(ŵ + w∗j )

3
.

Write vj := w∗j/ŵ, j = 1, 2, we get 0 < v1 < v2, and

â = 2
m∗∑
j=1

a∗j
1 + vj

= 4
m∗∑
j=1

a∗j
(1 + vj)2

, ŵ3c(ŵ) =
â

8
−

m∗∑
j=1

a∗j
(1 + vj)3

.

Therefore

8ŵ3âc(ŵ) = â2 − 8â
m∗∑
j=1

a∗j
(1 + vj)3

= 16

m∗∑
j=1

a∗j
(1 + vj)2

2

− 16
m∗∑
j=1

a∗j
1 + vj

·
m∗∑
j=1

a∗j
(1 + vj)3

=
−16a∗1a

∗
2(v1 − v2)2

(1 + v1)3(1 + v2)3
(238)

> 0,

which gives âc(ŵ) > 0 and â2 + 16ŵ3âc(ŵ) > 8ŵ3âc(ŵ) > 0.
(ii) a∗1a

∗
2 > 0, w∗2/w

∗
1 < 2 +

√
3. By (238), âc(ŵ) < 0. Let c := a∗2/a

∗
1, uj := 1 + vj > 1

and s := u2/u1 > 1, we have

â2 + 16ŵ3âc(ŵ) = 3â2 − 16â

m∗∑
j=1

a∗j
(1 + vj)3

= 16

3

m∗∑
j=1

a∗j
(1 + vj)2

2

− 2

m∗∑
j=1

a∗j
1 + vj

·
m∗∑
j=1

a∗j
(1 + vj)3


=

a∗21

u4
1u

4
2

[
u4

2 + c2u4
1 + 6cu2

1u
2
2 − 2cu3

1u2 − 2cu1u
3
2

]
=
a∗21

u4
2

(
s4 + c2 + 6cs2 − 2cs− 2cs3

)
=
a∗21

u4
2

[
c2 − 2s(s2 − 3s+ 1)c+ s4

]
.
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Since 4s2(s2−3s+1)2−4s4 = 4s2(s−1)2[(s−2)2−3], and 1 < s = u2/u1 = (ŵ+w∗2)/(ŵ+
w∗1) < w∗2/w

∗
1 < 2 +

√
3, we get ∆c < 0. This implies c2 − 2s(s2 − 3s + 1)c + s4 > 0 and

â2 + 16ŵ3âc(ŵ) > 0.

In both (i) and (ii), â2 +16ŵ3âc(ŵ) > 0, which implies that there is at least one positive
diagonal element of A′(â,ŵ)(a1) in a sufficiently small neighborhood of a1 = 0 and a1 = â.

By the Rayleigh-Ritz Theorem and Weyl’s Theorem, A′(â,ŵ)(a1) has at least one positive

eigenvalue in this neighborhood. However, by (236), det(A′(â,ŵ)(a1)) only changes the sign

at a1 = 0 and a1 = â. This implies another eigenvalue of A′(â,ŵ)(a1) changes the sign at

a1 = 0 and a1 = â accordingly. By different signs of âc(ŵ) derived in (i) and (ii), and (236),
the proof is completed.

Remark 72 From Proposition 71, we deduce that there are both saddles and degenerate
stable points of J2 on the critical affine spaces (line) M(â,ŵ),(2,1), and each of them in
fact forms affine spaces (lines) respectively, but they are certainly not global minimizers.
Therefore, the gradient-based algorithms can get stuck around this affine space, except that
it meets saddles with negative eigenvalues with large magnitude.

Appendix B. Momentum Helps Training: a Quadratic Example

In practice, it is often the case that training is trapped in some very flat regions (plateaus),
where the loss function has rather small gradients and negative eigenvalues of Hessian. Now
we illustrate the escape dynamics (escape from a plateau) via a simple quadratic example.

Consider the loss function f(x) = (x2
1 − εx2

2)/2 with 0 < ε� 1. We check the escaping
performance for continuous-time analogues of two optimization algorithms: gradient decent
(GD) and momentum (heavy ball) method.

B.1 Gradient Decent

Consider the gradient flow of f(x) with an initial value x0 = (δ, 1)>, where 0 < δ � 1 and
δ = O(ε). Thus ‖∇f(x0)‖ = O(ε), and{

x′1(τ) = −x1(τ), x1(0) = δ
x′2(τ) = εx2(τ), x2(0) = 1

⇒
{
x1(τ) = δe−τ

x2(τ) = eετ

⇒ f(x(τ)) = (δ2e−2τ − εe2ετ )/2 , `1(τ).

It is easy to show that there are different timescales of `1(τ). In fact, when τ = O(1/ε),
`1(τ) = O(ε2)e−|O(1/ε)| − εe|O(1)| = O(ε). However, when τ continues to increase, say

τ ≥ 1

2ε
ln
δ0

ε
, τ ε1 , (239)

where δ0 > 0 denotes the gap satisfying ε = o(δ0), we get `1(τ) ≤ `1(τ ε1) = O(ε2) −
εe2ε· 1

2ε
ln
δ0
ε /2 = O(ε2)− δ0/2 < −δ0/4 for any τ ≥ τ ε1 .
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B.2 Momentum

The momentum algorithm has the update rule

xk+1 = xk − η∇f(xk) + ρ(xk − xk−1), (240)

where ρ ∈ R, η > 0 is the learning rate, and f is the objective. The continuous-time
analogue can be derived as (see e.g. Su et al. (2014) for more details)

0 = ρ
xk+1 − 2xk + xk−1

η
+

(1− ρ)
√
η

xk+1 − xk√
η

+∇f(xk)

≈ ρx′′(t) +
(1− ρ)
√
η

x′(t) +∇f(x(t)),

with xk := x(k
√
η) and the step size

√
η of the simple finite differences.30 Let x1 =

x0 − η∇f(x0), we also get x′(0) = −√η∇f(x(0)).
To facilitate a comparison to GD, we take η = 1,31 and ρ = 1.32 Plugging the expression

of f , we can solve the ODE

x′′(t) +∇f(x(t)) = 0⇔
{
x′′1(τ) + x1(τ) = 0, x1(0) = δ, x′1(0) = −δ
x′′2(τ)− εx2(τ) = 0, x2(0) = 1, x′2(0) = ε

⇒

{
x1(τ) = δ(cos τ − sin τ)

x2(τ) = 1+
√
ε

2 e
√
ετ + 1−

√
ε

2 e−
√
ετ

⇒ f(x(τ)) =
1

2

[
δ2(cos τ − sin τ)2 − ε

(
1 +
√
ε

2
e
√
ετ +

1−
√
ε

2
e−
√
ετ

)2
]

, `2(τ).

It is not hard to show that there are still different timescales of `2(τ). In fact, when
τ = O(1/

√
ε), `2(τ) = O(ε2)|O(1)| − ε|O(1)|(e|O(1)| + e−|O(1)|)2 = O(ε). However, when τ

continues to increase, say

τ ≥ 1

2
√
ε

ln
4δ0

ε
, τ ε2 , (241)

we get `2(τ ε2) = O(ε2) − ε(1+
√
ε

2 )2e2
√
ετ/2 + O(ε) = O(ε) − δ0 < −δ0/2, hence `2(τ) ≤

O(ε)− δ0 < −δ0/2 for any τ ≥ τ ε2 .
Combining Appendix B.1 and Appendix B.2 gives the following statements:

• For both dynamics, there are different timescales in the loss function. That is to say,
relatively long time is needed to escape the plateaus;

• Compare (239) and (241), we get different timescales for escaping: O (1/ε · ln(1/ε))
for GD and O (1/

√
ε · ln(1/ε)) for momentum. Just like the convex case, where mo-

mentum improves the convergence rate by weakening the dependence on condition
number, we show that momentum can also help to escape rather flat saddles.

30. It is easy to check the error is of order O(
√
η).

31. In the continuous-time analogue of GD (gradient flow), the step size is taken as 1.
32. As is shown later, ρ = 1 not only simplifies the analysis, but also helps to obtain the best acceleration.
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Ch H. Müntz. Über den approximationssatz von Weierstrass. In Mathematische Abhand-
lungen Hermann Amandus Schwarz, pages 303–312. Springer, 1914.

Yuichi Nakamura and Masahiro Nakagawa. Approximation capability of continuous time
recurrent neural networks for non-autonomous dynamical systems. In International Con-
ference on Artificial Neural Networks, pages 593–602, 2009.

Murphy Yuezhen Niu, Lior Horesh, and Isaac Chuang. Recurrent neural networks in the
eye of differential equations. arXiv preprint arXiv:1904.12933, 2019.

Colm Art O’Cinneide. Characterization of phase-type distributions. Stochastic Models, 6:
1–57, 1990.
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