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Abstract

Gaussian processes (GPs) enable principled computation of model uncertainty, making
them attractive for safety-critical applications. Such scenarios demand that GP decisions
are not only accurate, but also robust to perturbations. In this paper we present a frame-
work to analyse adversarial robustness of GPs, defined as invariance of the model’s decision
to bounded perturbations. Given a compact subset of the input space T ⊆ Rd, a point x∗

and a GP, we provide provable guarantees of adversarial robustness of the GP by comput-
ing lower and upper bounds on its prediction range in T . We develop a branch-and-bound
scheme to refine the bounds and show, for any ε > 0, that our algorithm is guaranteed to
converge to values ε-close to the actual values in finitely many iterations. The algorithm is
anytime and can handle both regression and classification tasks, with analytical formulation
for most kernels used in practice. We evaluate our methods on a collection of synthetic and
standard benchmark data sets, including SPAM, MNIST and FashionMNIST. We study
the effect of approximate inference techniques on robustness and demonstrate how our
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method can be used for interpretability. Our empirical results suggest that the adversarial
robustness of GPs increases with accurate posterior estimation.

Keywords: Gaussian processes, adversarial robustness, non-linear optimisation, Bayesian
learning, branch-and-bound methods

1. Introduction

Adversarial examples are input points intentionally crafted to trick a machine learning
model into a misclassification. Imperceptible perturbations that can fool deep learning
models in computer vision have been popularised by Szegedy et al. (2013) and, in the
context of security, account for the growth in adversarial machine learning techniques, see
review in (Biggio and Roli, 2018). Since test accuracy fails to account for the behaviour of a
model in adversarial settings, algorithmic techniques for quantifying adversarial robustness
of machine learning models are needed to aid their deployment in safety-critical scenarios.
As a consequence, a number of methods that provide exact or approximate guarantees on
the model output have been developed for neural networks, e.g., (Huang et al., 2017; Katz
et al., 2017; Zhang et al., 2018).

Gaussian process (GP) models (Rasmussen and Williams, 2006) provide a flexible prob-
abilistic framework for performing inference over functions, which integrates information
from prior and data into a predictive posterior distribution that informs the optimal model
decision. GPs are particularly attractive in view of their favourable analytical properties and
support for Bayesian inference. One advantage of GPs compared to neural network models
is that they support the computation of uncertainty over model predictions, which can then
be propagated through the decision-making pipelines. Various notions of robustness have
been investigated for Gaussian process models, such as robustness against outliers (Kim and
Ghahramani, 2008) or against labelling errors (Hernández-Lobato et al., 2011). However,
to the best of our knowledge, studies of adversarial robustness of GPs have been limited
to statistical (i.e., input distribution dependent) (Abdelaziz, 2017) and heuristic analyses
(Grosse et al., 2018; Bradshaw et al., 2017) or limited to an analysis on the behaviour of
the latent mean (Smith et al., 2019).

In this work, we develop a novel algorithmic framework to quantify the adversarial
robustness of optimal predictions of Gaussian process models trained on a data set D. To
this end, we adapt the notion of adversarial robustness commonly employed for neural
networks models to the GP setting, defined as the invariance of the decision in a small
neighbourhood of a test point (Huang et al., 2017), and thus study the worst-case effect
of bounded perturbations of the input on the GP optimal decision. We represent bounded
perturbations by a compact subset of the input space T ⊆ Rd enclosing a test point x∗ ∈ Rd,
and consider the prediction range of the GP over T . Similarly to (Ruan et al., 2018), we
observe that, to provide provable guarantees on the model prediction over T , it suffices to
compute the minimum and maximum of the reachable prediction range. Unfortunately,
exact direct computation of the minimum and maximum class probabilities over compact
sets is not possible, as these would require providing an exact solution of a global non-linear
optimisation problem, for which no general method exists (Neumaier, 2004). Instead, we
approximate each extremum of the prediction range by lower and upper bounds. We show
how such upper and lower bounds for the minimum and maximum prediction probabilities
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of the GP can be computed on any given compact set T , and then iteratively refine these
bounds in a branch-and-bound algorithmic optimisation scheme until convergence to the
minimum and maximum is obtained. The method we propose is anytime (the bounds
provided are at every step an over-estimation of the actual classification ranges over T , and
can thus be used to provide guarantees) and ε-exact (the actual values are reached in finitely
many steps up to an error ε selected a-priori). Our framework can handle robustness for
both regression and classification tasks, with analytical formulation for most kernels used
in practice, including generalised spectral kernels.

We implement the methods in Matlab and apply our approach to analyse the robust-
ness profile of GP models on a synthetic two-dimensional data set, the SPAM data set,
feature-based analysis of both binary and 3-class subsets of the MNIST and Fashion-MNIST
(F-MNIST) data sets, and on a Water Quality multi-output regression data set (Džeroski
et al., 2000).1 In particular, we compare the guarantees computed by our method with
the robustness estimation approximated by adversarial attack methods for GPs (Grosse
et al., 2018), discussing in which settings the latter fails. Then, we analyse the effect of
approximate Bayesian inference techniques and hyper-parameter optimisation procedures
on the GP model robustness. Across the four data sets analysed here, we observe that
approximations based on Expectation Propagation (Minka, 2001) give more robust clas-
sification models than approximations based on Laplace approximation. We further find
that GP robustness increases with the number of hyper-parameter training epochs, and
that sparse GP model robustness generally increases with the number of training points
(for a fixed number of inducing points). Finally, we show how our framework can be used
to perform global interpretability analysis of GP predictions, highlighting differences over
LIME (Ribeiro et al., 2016)

To the best of our knowledge, ours is the first comprehensive framework that provides
methods to compute provable guarantees for the adversarial robustness of Gaussian process
models. In summary, the paper presents the following contributions:

• We design a flexible framework for the bounding of the posterior mean and variance
of GPs in compact subsets of the input space.

• Using the mean and variance bounds, we develop methods to lower- and upper-bound
the minimum and maximum of a GP output over compact sets for the adversarial
analysis of GPs in both classification and regression settings.

• We incorporate the bounding procedures in a branch-and-bound algorithmic optimi-
sation scheme, which we show converges for any specified error ε > 0 in finitely many
steps.

• We empirically evaluate the robustness of a variety of GP models on four classifica-
tion and a multi-output regression data sets, for different training regimes including
sparse approximations, and demonstrate how our method can be used for global in-
terpretability analysis of classification models.

A preliminary version of this work appeared in (Blaas et al., 2020). This paper extends
previous work in several aspects. In (Blaas et al., 2020) we provide analytical bounds only for

1. The code can be found at https://github.com/andreapatane/check-GPclass.
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GP classification using a probit link function and consider GPs with the squared exponential
kernels. Here, we also derive analytical bounds in the case of logit link function, show that
regression models can be analysed using a subset of the methods developed for classification,
and extend our framework to a class of kernel functions that satisfy certain smoothness
conditions (see Section 4). Furthermore, we extend the experimental evaluation to show
that our framework can be employed to analyse the robustness of sparse GP approximations,
and additionally consider the Fashion-MNIST data set and a multi-output regression task.

This paper is structured as follows. In Section 2 we introduce background on GP
regression and classification. The definition of adversarial robustness of GP models and
the problem statements we consider are given in Section 3. Computation of adversarial
robustness of a GP requires lower- and upper-bounding of the variation of the GP mean
and variance in a neighbourhood of a test point. These bounds are presented in Section
4 and then employed in Section 5 to compute adversarial robustness for both (binary and
multiclass) classification and regression. A branch-and-bound algorithm that incorporates
the bounding methods is presented in Section 6, where we also show that it is guaranteed
to converge to the true adversarial robustness of a GP model. Finally, empirical results on
multiple data sets are discussed in Section 7.

1.1 Related Works

Following on from seminal work that drew attention to deep learning models being suscepti-
ble to adversarial attacks in computer vision (Szegedy et al., 2013) and security (Biggio and
Roli, 2018), a range of techniques have been proposed for the analysis of adversarial robust-
ness of machine learning models. The developed techniques mainly focus on neural networks
and the prevailing approach is to compute worst-case guarantees on the model prediction
at a given test point (Huang et al., 2017; Katz et al., 2017). Various approaches have been
considered to compute such robustness measures, including constraint solving (Huang et al.,
2017; Katz et al., 2017), optimisation (Ruan et al., 2018; Bunel et al., 2020), convex relax-
ation (Zhang et al., 2018), and abstract interpretation (Gehr et al., 2018). Such methods
have also been extended to Bayesian Neural Networks (BNNs) (i.e., neural networks with a
prior distribution over their weights and biases) with both sampling-based (Cardelli et al.,
2019a; Wicker et al., 2021) and numerical (Wicker et al., 2020; Berrada et al., 2021) solution
methods. However, these techniques rely on the parametric nature of neural networks, and
therefore cannot be directly applied to GPs.

While various notions of robustness have been studied for Gaussian process models,
such as robustness against outliers (Kim and Ghahramani, 2008) or against labelling errors
(Hernández-Lobato et al., 2011), studies of adversarial robustness of GPs have been limited
to heuristic analyses (Grosse et al., 2018; Bradshaw et al., 2017) and binary classification
(Smith et al., 2019). In particular, in Smith et al. (2019), the authors give guarantees for
GPs in a binary classification setting under the `0-norm and only consider the mean of
the distribution in the latent space without taking into account the uncertainty intrinsic in
the GP framework. In contrast, our approach also considers multi-class classification and
regression, takes into account the full posterior distribution, and allows for exact (up to
ε > 0) computation under any `p-norm.
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Formal probabilistic guarantees for learning with GPs have been developed in the con-
text of GP optimisation (Bogunovic et al., 2018) and GP regression (Cardelli et al., 2019b).
Cardelli et al. (2019b) derive an upper bound on the probability that a function sampled
from a trained GP is invariant to bounded perturbations at a specific test point, whereas
Bogunovic et al. (2018) consider a GP optimisation algorithm, in which the returned solu-
tion is guaranteed to be robust to adversarial perturbations with a certain probability. We
note that our problem formulation is different, and the methods developed in the above pa-
pers cannot be applied to classification with GPs due to its non-Gaussian nature. Further,
our approach yields guarantees on the optimal model decision rather than on the latent GP
posterior, is guaranteed to converge to any given error ε > 0 in finite time, and is anytime
(i.e., at any time it gives sound upper and lower bounds of the classification probabilities).
We also remark that the guarantees we provide in this paper are substantially different from
those that can be obtained via randomized smoothing (Cohen et al., 2019). Randomized
smoothing can “smooth” any base classifier at a given input point by perturbing the point
with Gaussian isotropic noise. In contrast, our methods aim to directly quantify the ro-
bustness of the base machine learning model obtained by Gaussian process classification or
regression.

2. Bayesian Learning with Gaussian Processes

This section provides background material on Gaussian process modelling for regression
and classification. More information can be found in (Rasmussen and Williams, 2006). An
Rm-valued Gaussian process over a real-valued vector space Rd is a particular stochastic
process f : Ω × Rd → Rm, where Ω is a suitable sample space, such that for every finite
subset of input points their joint distribution under the GP is Gaussian. Namely, denoting
with f(x) := f(·, x) : Ω → Rm the random variable induced by the stochastic process in
the input point x, and given a collection of input points x = [x(1), . . . , x(N)], with x(i) ∈ Rd,
a GP is such that f(x) ∼ N (µ(x),Σx,x), where µ : Rd → Rm is the mean function and

Σ : Rd × Rd → Rm2
is the covariance (or kernel) function, which fully characterise the

behaviour of the GP.

Consider now a data set D = {(x(i), y(i)) | x(i) ∈ Rd, y(i) ∈ Y, i = 1, . . . , N} for some in-
put space Rd and output space Y. We denote with x = [x(1), . . . , x(N)] the aggregate vector
of input points, and similarly y = [y(1), . . . , y(N)] is the aggregate vector of output points.
We let Y to be (a subset of) Rm for regression, and the discrete set {1, . . . ,m} in case of
an m-class classification problem. Gaussian processes provide a probabilistic framework for
performing inference over functions, where a prior is combined with data through an appro-
priate likelihood to obtain a posterior process that is consistent with the prior and data. In
a Bayesian framework this is done by introducing a latent space F = Rm, and defining a GP
prior f over the latter by instantiating a specific form for its mean, µ, and kernel, Σ, func-
tions. The prior is updated to take into account the information contained in the data set
D by means of the Bayes formula p(f(x)|D) ∝ p(y|f(x))p(f(x)), where p(y|f(x)) denotes
the likelihood function, resulting in the posterior distribution, p(f(x)|D), over the latent
space F . Given a previously unseen point x∗, the predictive posterior distribution over its
associated output y∗ can be obtained by marginalising the posterior evaluated on x∗ over
the latent space, i.e., p(y∗|D) =

∫
F p(y

∗|f(x∗))p(f(x∗)|D)df(x∗). For practical applications,
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we typically extract a point value, ŷ(x∗), from the posterior predictive distribution p(y∗|D)
that satisfies specific criteria. In Bayesian decision theory, one proceeds by assuming a
loss function, L(y∗, ŷ∗), and minimising it with respect to the posterior distribution on the
specific test point, that is,

ŷ(x∗) = arg min
y∈Y

∫
Y
L(y∗, y)p(y∗|D)dy∗.

Since y is a continuous variable for regression models and a discrete variable for classi-
fication, different likelihood and loss functions are used in each case, resulting in different
treatment for the posterior distribution and the model decision. Below, we review the
specific details separately.

Regression For regression models we typically assume a Gaussian likelihood function
with uncorrelated noise σ2

noise, i.e., p(y|f) = N (y|f, σ2
noiseIN ). The posterior distribution

over F is still Gaussian, and is characterised by the following inference equations for its
posterior mean and variance:

µ̄(x∗) = µ(x∗) + Σx∗,xt (1)

Σ̄(x∗) := Σ̄x∗,x∗ = Σx∗,x∗ − Σx∗,xSΣx,x∗ , (2)

where S and t are computed using the conditioning formula for Gaussian distributions
(Rasmussen and Williams, 2006). Namely, S is a matrix in RN×N with S = (Σx,x+σ2IN )−1

and t is a vector in RN with t = S(y − µ(x)). Furthermore, the predictive posterior
distribution over Y has the same mean as the posterior and variance equal to that of the
posterior plus the underlying noise σ2

noise. Assuming a symmetric loss (e.g. the squared
distance loss), which we refer to as the canonical loss for regression, the optimal model
decision is simply given by the posterior mean, i.e., ŷ(x∗) = µ(x∗).

Classification For classification models, the likelihood is generally defined in terms of
a sigmoid function p(y = i|f) = σi(f), for i ∈ {1, . . . ,m}, as the probit or softmax func-
tion. Unfortunately, this does not result in a Gaussian posterior and is intractable. In-
stead, analytical approximations are applied to estimate a Gaussian distribution of the
form q(f |D) = N (f | µ̄(x∗), Σ̄(x∗)), which approximates the true distribution p(f |D). In
this paper we consider q derived using the Laplace approximation method (Williams and
Barber, 1998), the Expectation Propagation (EP) method (Minka, 2001), as well as sev-
eral sparse approximation techniques (Snelson and Ghahramani, 2005); more details can
be found in Section 7. We observe that, in all these settings, the inference equations for
q(f |D) have the same form as those given in Equations (1) and (2), with S and t defined
depending on the method chosen (Rasmussen and Williams, 2006).2 Once the approximate
posterior q has been computed, the predictive posterior distribution for class i ∈ {1, . . . ,m}
is

πi(x
∗) := p(y∗ = i|D) =

∫
F
σi(ξ)N (ξ|µ̄(x∗), Σ̄(x∗))dξ. (3)

2. We remark that this form of inference equations is common for Gaussian approximations, as it results
from conditioning formulas for multivariate Gaussian distribution. Our method can thus be applied in
any situation in which Gaussian approximations are used (i.e., not necessarily resulting from Laplace or
EP techniques).
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Since Equation (3) includes a non-linear multi-dimensional integral, its solution cannot in
general be found in closed form. However, when there are two classes, i.e. Y = {1, 2}, it
suffices to compute π1 and then simply set π2 = 1−π1. This allows us to simplify the latent
variable space as uni-dimensional, so that ξ ∈ R. Assuming standard 0-1 loss,3 which we
consider canonical for classification, the optimal model decision is the class that maximises
the predictive posterior distribution, that is, ŷ(x∗) = arg maxi=1,...,m p(y

∗ = i|D).

3. Problem Formulation

Let f be a Gaussian process trained on a data set D. We wish to analyse its adversarial
robustness, in the sense of studying the worst-case effect of bounded perturbations on the
model’s optimal decision ŷ(x). For a generic test point x∗, we represent the possible adver-
sarial perturbations by defining a compact neighbourhood T around x∗, and measure the
changes in the decisions caused by limiting the perturbations to lie within T .

Definition 1 (Adversarial Robustness w.r.t. Model Decision) Let T ⊆ Rd be a com-
pact subset and x∗ ∈ T . Consider a GP f , a loss function L and the resulting optimal
decision ŷ(·). Given an `p norm || · ||, we say that f is δ-adversarially robust in T at a
point x∗ with respect to the optimal decision induced by L iff

||ŷ(x∗)− ŷ(x)|| ≤ δ ∀x ∈ T. (4)

In the remainder of this paper, we will formulate a method for the worst-case analysis of the
GP decision function ŷ(x), which enables computing provable guarantees on whether a given
f is adversarially robust around a test point x∗ (that is, whether it satisfies the condition
in Equation 4). Since regression and classification differ in how optimal decisions are made,
which is reflected in the definition of the function ŷ(·), to simplify the presentation we will
discuss the two cases separately.

3.1 Classification

For classification problems, adversarial robustness is customarily defined in terms of in-
variance of the decision over the neighbourhood of an input (Huang et al., 2017; Ruan
et al., 2018). This can be obtained by selecting δ = 0 in Definition 1, and noting that for
classification ŷ(x) = arg maxi∈{1,...,m} πi(x).

Definition 2 (Adversarial Robustness in Classification) Let T ⊆ Rd be a compact
subset and x∗ ∈ T . Consider a classification GP f and its predictive posterior distribution
πi(x), i ∈ {1, . . . ,m}, defined as in Equation (3). Then we say that f is adversarially robust
in T at a point x∗ iff

arg max
i∈{1,...,m}

πi(x) = arg max
i∈{1,...,m}

πi(x
∗) ∀x ∈ T. (5)

Adversarial robustness therefore provides guarantees that the classification decision is not
influenced by adversarial perturbations applied to x∗, as long as the perturbations are con-
strained to remain within T . Recall that the optimal decision for classification accounts for

3. Our method is sufficiently general to accommodate other loss functions, e.g., weighted loss, which can
be computed from the predictive posterior.
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model uncertainty by moderating class probabilities with respect to the posterior distribu-
tion. In general, the outcome differs from the most likely class, because the decisions are
affected by variance.

Similarly to (Ruan et al., 2018), we note that, in order to check the condition in Equation
(5), it suffices to compute the minimum and maximum of the prediction ranges in T , i.e.:

πmin,i(T ) = min
x∈T

πi(x) πmax,i(T ) = max
x∈T

πi(x), (6)

for i = 1, . . . ,m. It is easy to see that the knowledge of πmin,i(T ) and πmax,i(T ) for all
i = 1, . . . ,m can be used to provide guarantees on the absence of adversarial attacks of the
model output, where an adversarial attack is a point x ∈ T that is classified differently from
x∗, that is, such that arg maxi∈{1,...,m} πi(x) 6= arg maxi∈{1,...,m} πi(x

∗). More specifically,
by letting ŷ∗ = arg maxi∈{1,...,m} πi(x

∗) and defining the vector

π∗i (T ) =

{
πmax,i(T ) if i 6= ŷ∗

πmin,i(T ) if i = ŷ∗,
(7)

we can check whether the (stronger) condition arg maxi∈{1,...,m} π
∗
i (T ) = arg maxi∈{1,...,m} πi(x

∗)
holds. That is, in order to decide whether a GP classification model f satisfies Definition
2 around a point x∗ we need to solve the following problem.

Problem 1 (Computation of Adversarial Prediction Ranges) Let T ⊆ Rd be a com-
pact subset. Consider a classification GP f and its predictive posterior distribution πi(x), i ∈
{1, . . . ,m}, defined as in Equation (3). For i = 1, . . . ,m, compute the adversarial prediction
ranges for πi(x) in T , that is:

πmin,i(T ) = min
x∈T

πi(x) πmax,i(T ) = max
x∈T

πi(x).

Unfortunately, the solution of Problem 1 requires solving 2m non-linear optimisation
problems, for which no general solution method exists (Neumaier, 2004). We discuss the
bounding of Problem 1 in Sections 5.1 and 5.2, and then show how to refine the bounds in
Section 6.4

3.2 Regression

For regression models, since the output is a continuous variable, we define adversarial robust-
ness in terms of a small, bounded variation of the decision over a compact neighbourhood T
of a test point x∗. This follows from Definition 1, since for regression ŷ(x) = µ̄(x). Formally,
we have the following.

Definition 3 (Adversarial Robustness in Regression) Let T ⊆ Rd be a compact sub-
set, x∗ ∈ T and consider a GP f . We say that f is adversarially δ-robust in T at a point
x∗ with respect to `p norm || · || iff

||µ̄(x∗)− µ̄(x)|| ≤ δ ∀x ∈ T, (8)

where µ̄(x) = E[f(x)] is the posterior mean of the GP.

4. While we focus on adversarial robustness w.r.t. the 0-1 loss, the computation of the prediction ranges
poses a more general problem and the methods developed here can be used for classifiers associated to
different loss functions (e.g., a weighted classification loss) through an appropriate definition of a vector
in Equation (7).
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This definition is analogous to the computation of the reachable set of outputs (or confidence
values) for neural networks (Ruan et al., 2018). Since for a GP the mean corresponds to
the maximum of the distribution, it thus follows, under the assumption of convergence,
that it can be computed by a deterministic scheme that relies on regularised maximum
likelihood estimation. We remark that, in contrast to classification, adversarial robustness
for GP regression does not take into consideration model variance, and analyses only the
most likely model among those obtained by Bayesian inference. As a consequence, the
computation of adversarial robustness for regression reduces to the adversarial robustness
of the posterior mean function. More specifically, Definition 3 can be checked once the value
of supx∈T ||µ̄(x∗) − µ̄(x)|| is known. That is, in order to decide whether a GP regression
model f satisfies Definition 3 around a point x∗ we need to solve the following problem.

Problem 2 (Computation of Posterior Mean Ranges) Let T ⊆ Rd be a compact sub-
set. Consider a regression GP f and its posterior mean µi(x), i ∈ {1, . . . ,m}, defined as
in Equation (1). For i = 1, . . . ,m, compute the minimum and maximum of the posterior
mean µi(x) in T , that is:

µmin,i(T ) = min
x∈T

µi(x) µmax,i(T ) = max
x∈T

µi(x).

As for Problem 1, solving Problem 2 requires the solution of 2m non-linear optimisation
problems. Similarly to classification, for regression we will develop a bound for Problem 2
in Section 5.3 and refine it through a branch-and-bound technique in Section 6.

3.3 Outline of the Approach

We now give an outline of a computational scheme to solve Problems 1 and 2 introduced
in Sections 3.1 and 3.2, respectively, which will be developed in detail in Section 5. We
first discuss classification, and then show how the regression scenario can be obtained as a
special case of classification.

Classification For Problem 1, we devise a branch-and-bound optimisation scheme for
the lower- and upper-bounding computation of the prediction ranges of a GP classification
model over the input region T . In particular, for i = 1, . . . ,m, we first compute lower and
upper bounds for πmin,i(T ) and πmax,i(T ), that is, we compute a set of real values πLmin,i(T ),

πUmin,i(T ), πLmax,i(T ) and πUmax,i(T ) such that

πLmin,i(T ) ≤πmin,i(T ) ≤ πUmin,i(T ) (9)

πLmax,i(T ) ≤πmax,i(T ) ≤ πUmax,i(T ). (10)

We refer to πLmin,i(T ) and πUmax,i(T ) as over-approximations of the ranges, as they provide
pessimistic estimation of the actual values of πmin,i(T ) and πmax,i(T ) for the purpose of ad-
versarial robustness, and hence tighter guarantees. On the other hand, we refer to πUmin,i(T )

and πLmax,i(T ) as under-approximations, because they provide an optimistic estimation of
the actual values that we want to compute.

The branch-and-bound scheme proceeds by iterative refinement of lower and upper
bounds for the minimum and maximum of prediction ranges and is illustrated in Figure 1
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Figure 1: Left: Computation of upper and lower bounds on πmin(T ), i.e., the minimum of
the classification range on T . Right: The search region is repeatedly partitioned
into sub-regions (only first partitioning is visualised), reducing the gap between
best lower and upper bounds until convergence (up to ε).

for the simplified case of a GP with a single output value. First, we compute a lower-
and an upper-bound function (the lower-bound function is depicted with a dashed red
curve in Figure 1) for the GP output (solid blue curve) in the region T . We obtain this
by deriving explicit bounds over the posterior mean and variance and relying on kernel
bounding, which we then propagate through the predictive function. We then find the
minimum of the lower-bound function, πLmin(T ) (shown in the plot), and the maximum
of the upper bound function, πUmax(T ) (not shown). Then, valid values for πUmin(T ) and
πLmax(T ) can be computed by evaluating the GP predictive distribution on any point in T
(a specific πUmin(T ) is depicted in Figure 1). Next, the region T is iteratively subdivided
into sub-regions (R1 and R2 in the plot), for which we compute new (tighter) bounds by
repeating the procedure previously applied to T . This procedure repeats until the bounds
converge up to a desired tolerance ε > 0. For each iteration, the bounds computed are
valid, and therefore our method is anytime and can be terminated after a fixed number of
iterations, at a cost of precision.

The bounds on the predictive distribution depend analytically on the maximum vari-
ations of the posterior mean and variance over the region T , which we therefore need to
compute beforehand. For this purpose, in Section 4, we develop an optimisation frame-
work for the computation of a set of real values µLT,i, µ

U
T,i, ΣL

T,i,j and ΣU
T,i,j that under- and

over-approximate the posterior mean and variance in T , i.e.

µLT,i ≤ min
x∈T

µ̄i(x) µUT,i ≥ max
x∈T

µ̄i(x) (11)

ΣL
T,i,j ≤ min

x∈T
Σ̄i,j(x) ΣU

T,i,j ≥ max
x∈T

Σ̄i,j(x), (12)

for a general GP. We will utilise this framework in Section 5 to compute the desired upper
and lower bounds on the ranges of the predictive posterior distribution.
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Regression For regression, in Section 5.3 we develop a similar branch-and-bound ap-
proach to that for classification, except that (see Problem 2) we only need to consider the
mean of the predictive posterior distribution (discussed in the next section).

4. Bounding Posterior Mean and Variance Function

In Section 5 we will develop a method for the computation of adversarial robustness guar-
antees for GPs. This method utilises upper and lower bounds on the variation of the mean
and variance in the compact region T . Therefore, in this section, we formulate a general
framework for the computation of lower and upper bounds on the posterior mean (Section
4.1) and variance (Section 4.2) of a GP model. Hence, we propose a method for the com-
putation of µLT,i, µ

U
T,i, ΣL

T,i,j and ΣU
T,i,j that satisfy Equations (11) and (12), which will be

used in Section 5.
To simplify the presentation, we consider a GP with a single output value, eliding the

explicit dependence on i. Since T is compact and therefore bounded, it can be covered by
a finite union of hyper-boxes Tl, l = 1, . . . , nL, i.e., T ⊆

⋃nL
l=1 Tl, and furthermore the over-

approximation error can be made vanishingly small. The bounds can thus be computed for
each of the boxes, Tl, and the minimum and maximum across l = 1, . . . , nL can be used
as bounds for the infimum and supremum over the original set T . Thus, without loss of
generality, in the following we assume that T is a box in the input space, i.e., T = [xL, xU ].

We proceed by restricting the setting to kernel functions that admit an upper-bounding
function U , which we propagate through inference equations to obtain bounds on mean and
variance. Our construction admits analytical bounds for a large class of kernels.

Definition 4 (Bounded Kernel Decomposition) Consider a one-dimensional kernel func-
tion Σ : Rd × Rd → R and a compact set T . We say that (ϕ,ψ, U) is a bounded decompo-
sition for Σ in T if Σx′,x′′ = ψ (ϕ (x′, x′′)) and the following conditions are satisfied:

1. ϕ : Rd × Rd → R is linearly separable and continuously differentiable along each
coordinate, so that ϕ(x′, x′′) =

∑d
j=1 ϕj(x

′
j , x
′′
j );

2. ψ : R→ R is continuously differentiable and with a finite number of flex points;

3. U is an upper bounding function such that, for any vector of coefficients c = [c1, . . . , cN ] ∈
RN and finite set of associated input points [x(1), . . . , x(N)], with N ∈ N, we have that
U(c) ≥ supx∈T

∑N
i=1 ciϕ(x, x(i)).

Intuitively, a kernel decomposition separates the part of the kernel function that depends
on the two inputs (represented by ϕ) with the part of the kernel that relates their depen-
dence to the variance of the GP (represented by ψ). Assumptions 1 and 2 usually follow
immediately from the smoothness of kernel functions.5 Assumption 3 guarantees that we
are able to upper bound the kernel function. The key idea is that, in view of the linearity
of the inference equations for GPs, we can then propagate this bound through the inference
equations to obtain bounds on the posterior mean and variance of the GP. We remark that,
although not all kernel functions Σ admit kernel decomposition (for example if they are not
smooth), the majority of kernel functions used in practice do. In Appendix B, we provide

5. The finite number of flex points can be guaranteed, for example, by inspecting the function derivatives.
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explicit computations for the squared exponential, the Matern, rational quadratic, and the
periodic families of kernels, as well as sums and products thereof. Further, we describe
the computation of bounded kernel decompositions for generalised (stationary and non-
stationary) spectral kernels, which by means of Bochner’s theorem can be shown to define
a dense subset of the set of all the possible covariance functions (Samo and Roberts, 2015).
In the remainder of the paper we assume that we are dealing with a kernel that admits a
bounded decomposition.

Before computing bounds on mean and variance, we state the following result (proved
in Appendix A) that ensures that the knowledge of a kernel decomposition allows us to
compute a Lower Bounding Function (LBF) and an Upper Bounding Function (UBF) on
the kernel values, linearly on ϕ.

Lemma 1 Let Σ be a kernel and (ϕ,ψ, U) be a bounded decomposition. Let T = [xL, xU ] ⊆
Rd be a box in the input space, then for every x̄ ∈ Rd there exists a set of real coefficients
āL, b̄L, āU and b̄U such that:

gL(x) := āL + b̄Lϕ (x, x̄) ≤ Σx,x̄ ≤ āU + b̄Uϕ (x, x̄) =: gU (x) ∀x ∈ T.

In other words, gL and gU respectively represent an LBF and a UBF for the kernel function,
given a fixed input point.

The above proposition allows us to explicitly compute coefficients of an LBF and a
UBF on the overall kernel value, for any fixed point x̄ in the input space. The main idea
is that, since the posterior mean and variance are defined in terms of the summation and
multiplication of pieces of the form Σx,x(i) , for all x(i) in the training data set D, we can
compute LBFs and UBFs corresponding to each point in the training set, and propagate
them through the inference equations for any unseen test point in T . By the design of the
upper-bounding function U , we can then use the resulting LBFs and UBFs to bound the
overall mean and variance functions. This is formalised in the following two subsections.

4.1 Bounding the Posterior Mean

Let T ⊆ Rd be an axis aligned hyper-rectangle. In this section we show how to compute a
lower bound µLT for the posterior mean function in T , i.e. such that µLT ≤ infx∈T µ̄(x), for a
kernel Σ with an associated bounded kernel decomposition (ϕ,ψ, U). Analogous techniques
can be used to compute an upper bound µUT by considering the function −µ̄(x). We will then
show that the bounds provided on the mean converge to the actual values as the diameter
of the input region T tends to 0.

For simplicity, we assume that the prior mean function is identically null (Rasmussen
and Williams, 2006). Then, the posterior mean (Equation 1) can be written down as

µ̄(x) = Σx,xt =
N∑
i=1

Σx,x(i)ti. (13)

A lower bound for the mean function can thus be computed analytically, as shown in the
following proposition.

12
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Proposition 2 Let Σ be a kernel with bounded decomposition (ϕ,ψ, U). Consider a
(i)
L , b

(i)
L ,

a
(i)
U and b

(i)
U , the set of coefficients for LBFs and UBFs associated to each training point

x(i), i = 1, . . . , N , in an axis-aligned hyper-rectangle T ⊆ Rd (computed as for Lemma 1).
Define

(ā
(i)
L , b̄

(i)
L ) =

{
(a

(i)
L , b

(i)
L ), if ti ≥ 0

(a
(i)
U , b

(i)
U ), otherwise

.

Then

µLT :=

N∑
i=1

ā
(i)
L − U([−b̄(1)

L , . . . ,−b̄(N)
L ]) ≤ inf

x∈T
µ̄(x).

Proof By construction of the coefficients a
(i)
L , b

(i)
L , a

(i)
U and b

(i)
U we have that

a
(i)
L + b

(i)
L ϕ(x, x(i)) ≤ Σx,x(i) ≤ a(i)

U + b
(i)
U ϕ(x, x(i)).

We can propagate the bounding functions through linear transformations (see Lemma 15
in Appendix A), so that we obtain

Σx,x(i)ti ≥ ā(i)
L + b̄

(i)
L ϕ(x, x(i)) ∀x ∈ T. (14)

By summing over the index i and taking the infimum of both sides of the inequality above
we obtain

inf
x∈T

N∑
i=1

Σx,x(i)ti ≥
N∑
i=1

ā
(i)
L + inf

x∈T

N∑
i=1

b̄
(i)
L ϕ(x, x(i)). (15)

We then observe that infx∈T
∑N

i=1 b̄
(i)
L ϕ(x, x(i)) = − supx∈T

∑N
i=1−b̄

(i)
L ϕ(x, x(i)) and that ac-

cording to the definition of U (point 3 of Definition 4) we have that supx∈T
∑N

i=1−b̄
(i)
L ϕ(x, x(i)) ≤

U([−b̄(1)
L , . . . ,−b̄(N)

L ]). By putting these two equations together we have that

inf
x∈T

N∑
i=1

b̄
(i)
L ϕ(x, x(i)) ≥ −U([−b̄(1)

L , . . . ,−b̄(N)
L ]).

Finally, chaining the inequality above with that in Equation (15), we obtain

inf
x∈T

N∑
i=1

Σx,x(i)ti ≥
N∑
i=1

ā
(i)
L − U([−b̄(1)

L , . . . ,−b̄(N)
L ]),

which proves the proposition statement.
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4.1.1 Convergence of Mean Bounds

We are able to show, importantly, that the bounds provided for the mean converge uniformly
to the actual mean function, when the input region T is small enough. We first state the
following lemma that proves that the LBFs and UBFs given by Lemma 1 yield converging
bounds. The proof is provided in Appendix A.

Lemma 3 Let Σ be a kernel with bounded decomposition (ϕ,ψ, U). Let T = [xL, xU ] ⊆ Rd,
x̄ ∈ T , and let, for every axis-aligned hyper-rectangle R ⊆ T , gRL (x) and gRU (x) be the LBF
and UBF computed on R for Σx̄,x using Lemma 1. Then we have that gRL and gRU converge
uniformly to Σx̄,x as diam(R)→ 0.

As the lower bound that we compute on the mean over T is obtained by summing
together the individual LBFs gRL computed over each training point x(i) on R, it then
follows that convergence of all LBFs gRL combined with a tight bounding function U implies
convergence of the posterior mean lower bound, and similarly for the upper bound. This is
formally shown in the proposition below.

Proposition 4 Let Σ be a kernel with bounded decomposition (ϕ,ψ, U). Then bounds for
the posterior mean µLR and µUR computed through the application of Proposition 2 converge
if the bounds provided by U do so.

Proof We discuss the case of µLR; the arguments are analogous for µUR.

We have that µ̄(x) =
∑N

i=1 Σx,x(i)ti. By Proposition 2, we obtain that:

N∑
i=1

tiḡ
(i)
L (x) ≤

N∑
i=1

Σx,x(i)ti, (16)

where ḡ
(i)
L (x) = g

(i)
L (x) if ti ≥ 0 and ḡ

(i)
L (x) = g

(i)
U (x) otherwise. For Lemma 3 we have

that each g
(i)
L converges uniformly to Σx,x(i) for each x(i). As ti is a scalar quantity, we

also have that each tiḡ
(i)
L (x) converges uniformly to Σx,x(i)ti. Hence, we obtain that the

bounds in Equation (16) converge uniformly as diam(R) = r → 0, by virtue of being a
linear combination of bounds that converge uniformly. The statement of the proposition
then follows by the definition of U .

Therefore, convergence of the bounds for the posterior mean is reduced to a property of
the kernel bounding function U . In Appendix B we show how explicit kernel decomposition
can be computed for many kernel functions used in practice, where the derived functions U
converge to the actual desired values (as further discussed in Appendix B.8).

4.2 Bounding the Posterior Variance

We now show how to find a lower and an upper bound for the posterior variance from
Equation (2). For simplicity, we assume that Σx,x = σ2

p for all x ∈ Rd,6 so that we need

6. This is always the case for stationary kernels. In the general case Σx,x can be replaced by either its
maximum or minimum value depending on whether we want to compute the minimum or the maximum
of the posterior variance.
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only to compute:

min
x∈T

Σ̄(x) = σ2
p + min

x∈T
−Σx,xSΣT

x,x (17)

max
x∈T

Σ̄(x) = σ2
p −min

x∈T
Σx,xSΣT

x,x. (18)

We first show how an upper bound for Equation (18) can be computed by means of convex
quadratic programming.

4.2.1 Variance Upper Bound

The key observation is that S given in Equation (2) is a positive semi-definite matrix, so
that the objective function to optimise in the case of the upper-bounding computation is a
quadratic convex function on the variables Σx,x (but not on the optimisation variable x).
In the following proposition, we show how the problem can be relaxed to obtain a quadratic
convex program on the variable x and a suitably defined vector of slack variables.

Proposition 5 Let Σ be a kernel with bounded decomposition (ϕ,ψ, U) and T = [xL, xU ] a

box of the input space Rd. Consider a
(i)
L , b

(i)
L , a

(i)
U and b

(i)
U , a set of coefficients for LBFs and

UBFs associated to each training point x(i), i = 1, . . . , N , computed according to Lemma

1. Let r = [r(1), . . . , r(N)], ϕ(i), ϕ
(i)
j , for i = 1, . . . , N and j = 1, . . . , d, be slack continuous

variables. Let σ̄2 be the solution of the following convex quadratic programming problem:

min
x∈T

rSrT

subject to: r(i) + a
(i)
L + b

(i)
L ϕ

(i) ≤ 0 i = 1, . . . , N

r(i) − a(i)
U − b

(i)
U ϕ

(i) ≤ 0 i = 1, . . . , N

a
(i)
j,L + b

(i)
j,Lxj − ϕ

(i)
j ≤ 0 i = 1, . . . , N j = 1, . . . , d

ϕ
(i)
j − a

(i)
j,U − b

(i)
j,Uxj ≤ 0 i = 1, . . . , N j = 1, . . . , d

ϕ(i) =

d∑
j=1

ϕ
(i)
j i = 1, . . . , N j = 1, . . . , d.

Then ΣU
T := σ2

p − σ̄2 is an upper bound for the posterior variance Σ̄(x) in T .

Proof By setting r = Σx,x in the minimum computation in Equation (18), we obtain the
objective function of the problem statement, rSrT , which is quadratic on the vector variable
r. Since S is symmetric and positive semi-definite it follows that the objective function is
a quadratic convex function in the slack variable vector r. In order to obtain a convex
program we then need to linearise the constraint r = Σx,x We show how this is done for a
generic index i = 1, . . . , N .

We have that r(i) = Σx,x(i) = ψ(ϕ(x, x(i))). By Lemma 1 we obtain that

a
(i)
L + b

(i)
L ϕ

(
x, x(i)

)
≤ Σx,x(i) ≤ a(i)

U + b
(i)
U ϕ

(
x, x(i)

)
.
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Hence, the dependence of ψ on the constraints can be linearised by considering the following
over-approximation for the definition of r(i):

r(i) + a
(i)
L + b

(i)
L ϕ

(
x, x(i)

)
≤ 0

r(i) − a(i)
U − b

(i)
U ϕ

(
x, x(i)

)
≤ 0.

The final step is to linearise the dependency over ϕ
(
x, x(i)

)
. We introduce slack variables

ϕ(i) = ϕ(x, x(i)), and ϕ
(i)
j = ϕj(xj , x

(i)
j ). For Assumption 1 of Definition 4 we have that

ϕ(x, x(i)) =
∑d

j=1 ϕj(xj , x
(i)
j ). Let i ∈ {1, . . . , N} and let j ∈ {1, . . . , d}, then by applying

Lemma 1 with ψ := ϕj(·, x(i)
j ) and ϕ := x, we obtain that there exists a set of coefficients

a
(i)
j,L, b

(i)
j,L, a

(i)
j,U and b

(i)
j,U such that:

a
(i)
j,L + b

(i)
j,Lxj ≤ ϕj(xj , x

(i)
j ) ≤ a(i)

j,U + b
(i)
j,Uxj .

Hence, we can over-approximate the set of constraints ϕ(i) = ϕ(x, x(i)) and ϕ
(i)
j = ϕ(xj , x

(i)
j )

with the following set of linear constraints:

a
(i)
j,L + b

(i)
j,Lxj − ϕ

(i)
j ≤ 0

ϕ
(i)
j − a

(i)
j,U − b

(i)
j,Uxj ≤ 0

ϕ(i) =
d∑
j=1

ϕ
(i)
j .

The formula for ΣU
T then follows by the definition of minimum and by Equation (18).

Crucially, the proposition above casts the computation of the quantity ΣU
T as the solution

of a convex quadratic programming problem, for which ready-made solver software exists
(Rosen and Pardalos, 1986).

4.2.2 Variance Lower Bound

The situation is, unfortunately, more complicated for the lower-bounding computation of
minx∈T −Σx,xSΣT

x,x. In fact, though we can write down an optimisation problem akin to
that of Proposition 5, since S is positive definite we have that −S is negative definite,
which implies that the function we want to optimise is quadratic concave. Thus, a number
of local minima may exist, and simple quadratic optimisation is not guaranteed to yield
the global solution. However, as we are interested in worst-case scenario analysis, we need
to compute the global minimum. Unfortunately, this is an NP-hard problem, whose exact
solution would be impractical to compute.

Instead, we apply the methods proposed in (Rosen and Pardalos, 1986) and proceed by
computing a safe lower bound to the global minimum, that is, we want to compute a lower
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bound to the solution of:

min
x∈T
−rSrT (19)

subject to: r(i) + a
(i)
L + b

(i)
L ϕ

(i) ≤ 0 i = 1, . . . , N

r(i) − a(i)
U − b

(i)
U ϕ

(i) ≤ 0 i = 1, . . . , N

a
(i)
j,L + b

(i)
j,Lxj − ϕ

(i)
j ≤ 0 i = 1, . . . , N j = 1, . . . , d

ϕ
(i)
j − a

(i)
j,U − b

(i)
j,Uxj ≤ 0 i = 1, . . . , N j = 1, . . . , d

ϕ(i) =
d∑
j=1

ϕ
(i)
j i = 1, . . . , N j = 1, . . . , d.

We highlight the details of the procedure applied to our specific setting below. First, we
start by re-writing the constraints of the optimisation problem above in matrix form. Next,

we introduce the aggregate variable vector z = [x1, . . . , xd, ϕ
(1), . . . , ϕ(N), ϕ

(1)
1 , . . . , ϕ

(N)
d ].

Since the constraints are linear, it is possible to define two matrices Ar and Az such that
the optimisation problem above can be equivalently written down as:

min−rTSr (20)

Subject to: Arr +Azz ≤ b
rL ≤ r ≤ rU

zL ≤ z ≤ zU ,

for suitably defined vectors b, rL, rU , zL, zU . Now, as S is symmetric and positive defi-
nite, there exists a matrix of eigenvectors U = [u(1), . . . ,u(N)] and a diagonal matrix Λ of
the associated eigenvalues λ(i), for i = 1, . . . , N , such that S = UΛUT . We then define
r̂(i) = u(i) · r for i = 1, . . . , N , the rotated variables, and r̂ the aggregated vector of ro-
tated variables, and compute their ranges [r̂(i),L, r̂(i),U ] by solving the following 2N linear
programming problems:

min /max u(i) · r
Subject to: Arr +Azz ≤ b

rL ≤ r ≤ rU

zL ≤ z ≤ zU .

Implementing the change of variables into the optimisation problem defined in Equation
(20), we obtain

min−r̂TΛr̂

Subject to: Ar̂r̂ +Azz ≤ b
r̂L ≤ r̂ ≤ r̂U

zL ≤ z ≤ zU ,

17
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where we have set Ar̂ = ArU . We then notice that r̂TΛr̂ =
∑N

i=1 λ
(i)r̂(i)2. Each summand is

a simple one-dimensional quadratic function, for which we can find a linear LBF by relying
on Lemma 1. Let α(i) and β(i) be coefficients of such LBFs, then we have that α(i)+β(i)r̂(i) ≤
−λ(i)r̂(i),2 for all i = 1, . . . , N . Let β = [β(1), . . . , β(N)] and α̂ =

∑N
i=1 α

(i), then we can
lower-bound the optimisation problem defined in Equation (20) with the following linear
programming problem:

min
(
α̂+ βT r̂

)
(21)

Subject to: Ar̂r̂ +Azz ≤ b
r̂L ≤ r̂ ≤ r̂U

zL ≤ z ≤ zU .

Hence, we have that a solution of the latter problem yields a lower bound for the solution of
the optimisation problem in Equation (19). That is, we have proved the following statement.

Proposition 6 Let
¯
σ2 be the solution of the linear programming problem defined in Equa-

tion (21). Then ΣL
T := σ2

p +
¯
σ2 is a lower bound for the posterior variance Σ̄(x) in T .

4.2.3 Convergence of Variance Bounds

The convergence of the bounds computed for the variance to the actual values in hyper-
rectangles R ⊆ T , with diam(R) → 0, is an immediate consequence of Lemma 3, and
proceeds similarly to what we have shown for the posterior mean. In fact, the objective
function for the upper bound (Proposition 5) is exact, and the over-approximation results
only from the feasible region of the optimisation problem. This is relaxed by using LBFs
and UBFs introduced in Lemma 1, so that their uniform convergence implies that the
over-approximated feasible region converges to the actual one in the limit of the diameter
diam(R) tending to 0. Similarly, for the lower-bounding of the variance the only difference
arises from the use of Lemma 1, also for the lower-bounding of the optimisation function.
However, this also converges to the actual objective function. Thus, the exact solution of
both optimisation problems converges uniformly to the actual values, for R small enough.
We summarise the discussion as the following proposition. The proof is a straightforward
generalisation of the proof of Proposition 4 and is therefore omitted.

Proposition 7 Let Σ be a kernel with bounded decomposition (ϕ,ψ, U). Then bounds on
the posterior variance, ΣL

R and ΣU
R, computed through the application of Propositions 5 and

6 converge if the bounds provided by U do so.

5. Bounds on Adversarial Robustness

In this section we show how the lower and upper bounds for the posterior mean and vari-
ance can be propagated through the predictive distribution of a GP to compute adversarial
robustness guarantees, in the sense of ensuring invariance of the GP decision to perturba-
tions constrained to a small neighbourhood around a test point. Thus developed bound will
then be included in a branch-and-bound scheme in Section 6 for its iterative refinement.
Recall from Section 3.1 and Problem 1 that for classification this reduces to bounding the
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minimum and maximum of the prediction ranges over the neighbourhood. We first discuss
the bound for the two-class classification problem, and then show how the two-class bound
can be extended to the multi-class setting. Finally, we discuss how to obtain guarantees for
regression (Problem 2) as a particular case of the techniques derived for classification.

5.1 Bounds for Two-class Classification

As discussed in Section 2, for a two-class GP it suffices to consider a one-dimensional output
space, which greatly simplifies the computations. Namely, we have that the predictive
posterior distribution of Equation (3) evaluated on a generic point x can be simplified to
one-dimensional integral, i.e.

π(x) =

∫
R
σ(ξ)N (ξ|µ̄(x), Σ̄(x))dξ, (22)

where µ̄ and Σ̄ are the posterior mean and variance functions, respectively, and σ(·) denotes
the likelihood function. We give analytical bounds for the case where the likelihood function
is either the probit function or the logistic sigmoid, which entail the majority of applications
for GP classification (Rasmussen and Williams, 2006). A general bound based on latent
space discretisation is discussed for the multi-class problem in Section 5.2, and can also be
used for a generic two-class likelihood function.

Let µLT , µUT , ΣL
T and ΣU

T be lower and upper bounds for the posterior mean and variance
of the GP, computed according to the methods discussed Section 4. We consider the function
that describes the dependence of the predictive posterior distribution directly on the mean
and variance by dropping their dependence on x:

Π(µ,Σ) =

∫
R
σ(ξ)N (ξ|µ,Σ)dξ for µ ∈ [µLT , µ

U
T ],Σ ∈ [ΣL

T ,Σ
U
T ]. (23)

Then, by definition of lower and upper bounds we have that:

min
µ∈[µLT ,µ

U
T ]

Σ∈[ΣLT ,Σ
U
T ]

Π(µ,Σ) ≤ min
x∈T

π(x) and max
µ∈[µLT ,µ

U
T ]

Σ∈[ΣLT ,Σ
U
T ]

Π(µ,Σ) ≥ max
x∈T

π(x),

that is, over-approximations of the prediction ranges can be found by optimising the function
Π over the mean/variance box domain [µLT , µ

U
T ]× [ΣL

T ,Σ
U
T ]. In the next two subsections we

show how this can be done depending on the particular form of the chosen likelihood σ.

5.1.1 Classification with the Probit Likelihood

We first consider the probit likelihood, i.e., σ(ξ) = Φ(λξ) is the cdf of the univariate
standard Gaussian distribution scaled by λ > 0. In this case, the predictive distribution
can be written down in closed form, which greatly simplifies the computation of the bounds:

π(x) = Φ

(
µ̄(x)√

λ−2 + Σ̄(x)

)
.

We can use this explicit form to derive analytic upper and lower bounds by direct inspection
of the predictive distribution derivatives with respect to the induced mean and variance
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variables. The following proposition provides a solution for Problem 1 in the case of two-
class classification with the probit likelihood.

Proposition 8 Consider a predictive posterior distribution π(x) defined as in Equation
(22), input box T ⊆ Rd, and µLT , µUT , ΣL

T and ΣU
T , lower and upper bounds on the GP

posterior variance, computed as detailed in Section 4. Let σ(ξ) = Φ(λξ), with λ > 0, then
we have that

πLmin(T ) := Φ

(
µLT√

λ−2 +
¯
Σ∗

)
≤ πmin(T ) (24)

πmax(T ) ≤ Φ

(
µUT√

λ−2 + Σ̄∗

)
=: πUmax(T ), (25)

with

¯
Σ∗ =

{
ΣU
T if µLT ≥ 0

ΣL
T otherwise

Σ̄∗ =

{
ΣL
T if µUT ≥ 0

ΣU
T otherwise.

Proof We have:

Π(µ,Σ) = Φ

(
µ√

λ−2 + Σ

)
.

As Φ is monotonically increasing, it suffices to optimise for the argument φ(µ,Σ) = µ√
λ−2+Σ

.

By computing the partial derivatives it is easy to see that ∂φ(µ,Σ)
∂µ > 0 for all values of µ

and Σ. Therefore, for every value of Σ the minimum is obtained for µ = µLT . On the other
hand, for the derivative wrt to Σ we have that:

∂φ(µLT ,Σ)

∂Σ


< 0 if µLT > 0

= 0 if µLT = 0

> 0 if µLT < 0

as Σ > 0. Hence, given µLT , we have that φ is monotonic in Σ and the proposition follows.

5.1.2 Classification via Logistic Likelihood

We now consider the case where σ is defined as the logistic sigmoid. We will show that the
minimum and maximum are to be found in the same extrema as for the probit likelihood.
However, as the predictive distribution cannot be expressed in closed form (Rasmussen
and Williams, 2006), we first show that the derivative of the predictive distribution can be
computed by passing the sign of the derivative under the integral sign.

First, we note that upper and lower bounds on the variance Σ naturally induce upper
and lower bounds on the standard deviation s =

√
Σ, which we denote sLT and sUT . By

substituting s in the definition of Π in Equation (23), which yields Φ(µ, s) := Π(µ, s2) =
Π(µ,Σ), and changing the integration variable to t = (ξ − µ)/s, we have:

Π(µ,Σ) =: Φ(µ, s) =

∫
R
h(t, µ, s)dt where h(t, µ, s) = σ(st+ µ)N (t|0, 1).
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We now want to compute ∂Φ
∂µ and ∂Φ

∂s . It is easy to show that all the conditions to apply
differentiation under the integral sign theorem are satisfied. Thus, we have:

∂Φ(µ, s)

∂µ
=

∫
σ′(st+ µ)N (t|0, 1)dt,

∂Φ(µ, s)

∂s
=

∫
tσ′(st+ µ)N (t|0, 1)dt.

By relying on the derivatives, we can establish the following bounds. Specifically, the
following proposition provides a solution for Problem 1 for two-class classification with the
logistic likelihood.

Proposition 9 Consider T , π(x), µLT , µUT ,
¯
Σ∗ and Σ̄∗ defined as in Proposition 8. Let

σ(ξ) be the sigmoid, then we have that:

πLmin(T ) := Π
(
µLT , ¯

Σ∗
)
≤ πmin(T ) (26)

πmax(T ) ≤ Π
(
µUT , Σ̄

∗) =: πUmax(T ). (27)

Proof We show that the derivatives have the same sign as the probit, and then the proof
follows as for probit. More specifically, we have that

∂Φ(µ, s)

∂µ
=

∫
σ′(st+ µ)N (t|0, 1)dt > 0,

since the sigmoid is a monotonically increasing function.

For the derivative with respect to s we want to show that

∂Φ(µ, s)

∂s
=

∫
tσ′(st+ µ)N (t|0, 1)dt =


< 0 if µ > 0

= 0 if µ = 0

> 0 if µ < 0

.

The case for µ = 0 is trivial. For the remaining cases we have:∫
tσ′(st+ µ)N (t|0, 1)dt =

∫ 0

−∞
tσ′(st+ µ)N (t|0, 1)dt+

∫ +∞

0
tσ′(st+ µ)N (t|0, 1)dt

=

∫ +∞

0
tσ′(−st+ µ)N (t|0, 1)dt+

∫ +∞

0
tσ′(st+ µ)N (t|0, 1)dt

=

∫ +∞

0
t
(
σ′(µ+ st)− σ′(µ− st)

)
N (t|0, 1)dt,

and Lemma 16 (see Appendix A) can be applied to get the sign of the integral, since t and
N (t|0, 1) are always positive in [0,+∞).

Though the methods provided in this section suffice for the solution of Problem 1 in the
two-class case, in Section 6 we will show how the bounds described above can be utilised to
develop a branch-and-bound scheme for their refinement to ensure convergence to πmin(T )
and πmax(T ). Before we do this, we show in the next subsection how to compute bounds
for multi-class classification.
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5.2 Bounds for Multi-class Classification

In this section we generalise the results for two-class classification. Given a class index
i ∈ {1, . . . ,m}, we are interested in computing upper and lower bounds on the ith component
of the predictive posterior distribution πi(x) (see Equation 3) for every x ∈ T , with T an
axis-aligned hyper-rectangle in the input space. For simplicity, we explicitly tackle only
the softmax likelihood, but similar arguments can be applied to the case of the multi-
dimensional probit, as well as other likelihood functions that have similar monotonicity
properties.

In the following we show that bounds on the multi-class predictive distribution can be
computed by discretising the integral over the latent space.

Proposition 10 Consider a predictive posterior distribution π(x) defined as in Equation
(3), an input box T ⊆ Rm, and define πmin,i(T ) and πmax,i(T ) as in Equation (6). Let
S = {Sl = [al, bl] | l ∈ {1, . . . ,M}} be a finite partition of the latent space F = Rm, with
[al, bl] = [al,1, bl,1]× . . .× [al,m, bl,m]. Then, for i ∈ {1, . . . ,m}:

πmin,i(T ) ≥
M∑
l=1

σi(
¯
ξl) min

x∈T

∫
Sl

N (ξ|µ̄(x), Σ̄(x))dξ

πmax,i(T ) ≤
M∑
l=1

σi(ξ̄
l) max

x∈T

∫
Sl

N (ξ|µ̄(x), Σ̄(x))dξ.

where

¯
ξl = [bl,1, . . . , bl,i−1, al,i, bl,i+1, . . . , bl,m]

ξ̄l = [al,1, . . . , al,i−1, bl,i, al,i+1, . . . , al,m].

Proof We prove the statement for the minimum; the arguments for the maximum are
analogous. By simple properties of integrals and definition of the minimum we have that:

πmin,i(T ) = min
x∈T

∫
Rm

σ(ξ)N (ξ|µ̄(x), Σ̄(x))dξ = min
x∈T

M∑
l=1

∫
Sl

σ(ξ)N (ξ|µ̄(x), Σ̄(x))dξ

≥
M∑
l=1

min
x∈T

∫
Sl

σ(ξ)N (ξ|µ̄(x), Σ̄(x))dξ.

Taking the partial derivatives of the softmax function with respect to coordinate k ∈
{1, . . . ,m} we have that:

∂σi(ξ)

∂ξk
=

{
σi(ξ)(1− σi(ξ)) if k = i

−σi(ξ)σk(ξ) if k 6= i

and hence we obtain that the i-th component of the softmax function is monotonically
increasing along the direction i and monotonically decreasing along all the other dimensions
k 6= i. Thus, its minimum in a generic axis-aligned hyper-rectangle [al,1, bl,1]×. . .×[al,m, bl,m]
will be found in the vertex defined as

¯
ξl = [bl,1, . . . , bl,i−1, al,i, bl,i+1, . . . , bl,m]. Therefore, we
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have that the chain of inequalities above can be lower-bounded by computing the softmax
on

¯
ξl and taking it outside of the integral computation, which yields:

M∑
l=1

σi(
¯
ξl) min

x∈T

∫
Sl

N (ξ|µ̄(x), Σ̄(x))dξ.

Summing up, Proposition 10 guarantees that, for all x ∈ T , πi(x) can be upper- and
lower-bounded by solving M optimisation problems over a multi-dimensional Gaussian in-
tegral. In Proposition 11 below, we show that upper and lower bounds for the integral of a
multi-dimensional Gaussian distribution, such as those appearing in Proposition 10, can be
obtained by optimising a marginalised product of uni-dimensional Gaussian integrals over
both the input and the latent space.

We first introduce the following notation. We denote with µ̄i:j(x) the subvector of µ̄(x)
containing only the components from i to j, with i ≤ j, and similarly we define Σ̄i:k,j:l(x) to
be the submatrix of Σ̄(x) containing rows from i to k and columns from j to l, with i ≤ k
and j ≤ l.

Proposition 11 Let S =
∏m
i=1[ai, bi] ⊆ Rm be an axis-aligned hyper-rectangle in the latent

space, and consider the posterior mean and variance functions µ̄(x) and Σ̄(x). For i ∈
{1, . . . ,m− 1} and fI ∈ Rm−i−1, define I = (i+ 1) : m and

µ̄fi (x) = µ̄i(x)− Σ̄i,I(x)Σ̄−1
I,I(x)(fI − µ̄I(x)) (28)

Σ̄f
i (x) = Σ̄i,i(x)− Σ̄i,I(x)Σ̄−1

I,I(x)Σ̄T
i,I(x). (29)

Let SI =
∏m
j=i+1[ai, bi], then we have that:

max
x∈T

∫
S
N (ξ|µ̄(x), Σ̄(x))dξ ≤

max
x∈T

∫ bm

am

N (ξ|µ̄m(x), Σ̄m,m(x))dξ
m−1∏
i=1

max
x∈T
f∈SI

∫ bi

ai

N (ξ|µ̄fi (x), Σ̄f
i (x))dξ (30)

min
x∈T

∫
S
N (ξ|µ̄(x), Σ̄(x))dξ ≥

min
x∈T

∫ bm

am

N (ξ|µ̄m(x), Σ̄m,m(x))dξ

m−1∏
i=1

min
x∈T
f∈SI

∫ bi

ai

N (ξ|µ̄fi (x), Σ̄f
i (x))dξ. (31)

Proof We consider the case of the minimum; the maximum follows similarly.
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Consider the latent posterior process f , whose mean and variance function we denote
with µ̄(x) and Σ̄(x). Then, we have

min
x∈T

∫
S
N (ξ|µ̄(x), Σ̄(x))dξ = min

x∈T
P (f(x) ∈ S) = min

x∈T
P (ai ≤ fi(x) ≤ bi, i = 1, . . . ,m) =

min
x∈T

P (am ≤ fm(x) ≤ bm)

m−1∏
i=1

P (ai ≤ fi(x) ≤ bi|fI(x) ∈ SI) ≥

(By Lemma 17 included in the Appendix A)

min
x∈T

P (am ≤ fm(x) ≤ bm)

m−1∏
i=1

min
fI∈SI

P (ai ≤ fi(x) ≤ bi|fI(x) = fI) ≥

min
x∈T

P (am ≤ fm(x) ≤ bm)
m−1∏
i=1

min
x∈T
fI∈SI

P (ai ≤ fi(x) ≤ bi|fI(x) = fI).

Notice that, for each i ∈ {1, . . . ,m− 1}, P (ai ≤ fi(x) ≤ bi|fI(x) = fI) is the integral of a
uni-dimensional Gaussian random variable conditioned on a jointly Gaussian random vari-
able. The statement of the proposition then follows by the application of the conditioning
equations for Gaussian distributions.

Proposition 11 reduces the computation of the multi-class bounds to a product of ex-
trema computations over univariate Gaussian distributions. To solve this, we first need to
compute lower and upper bounds for the conditional latent mean and the conditional latent
variance defined in Equations (28) and (29). Observe that Equations (28) and (29) can
be expressed as a rational function in the entries of the mean vector, variance matrix and
latent variable vector. We can thus propagate the upper and lower bound of each entry from
the mean vector and covariance matrix down through the rational function equations by
simple interval bound propagation techniques, which results in an upper and lower bound
on µ̄fi (x) and Σ̄f

i (x) for x ∈ T and f ∈ SI , which we denote with µL,fi,T , µU,fi,T , ΣL,f
i,T and

ΣU,f
i,T . This process can then be iterated backward from i = m to i = 1, up until all the

required bounds are computed. Unfortunately, because of the need to symbolically compute
a matrix inversion, the explicit formulas for the computation of µL,fi,T , µU,fi,T , ΣL,f

i,T and ΣU,f
i,T

in general are rather convoluted and long (though still in the form of a simple ratio between
polynomials).

Once those bounds are computed, we rely on the following lemma for the solution of
the optimisation problem over the Gaussian integrals.

Lemma 12 Consider SI , ai, bi, µ̄
f
i (x) and Σ̄f

i (x) defined as in Proposition 11, an input

box T ⊆ Rd, and µL,fi,T , µU,fi,T , ΣL,f
i,T and ΣU,f

i,T , lower and upper bounds on µ̄fi (x) and Σ̄f
i (x)

in T computed as discussed above. Define ζ := [x, f ] and its input region as Z = T × SI .
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Let i = {1, . . . ,m}, µci = ai+bi
2 and Σc

i (µ) = (µ−ai)2−(µ−bi)2

2 log
µ−ai
µ−bi

. Then it holds that:

max
ζ∈Z

∫ bi

ai

N (ξ|µ̄fi (x), Σ̄f
i (x))dξ ≤

∫ bi

ai

N (ξ|µ̄∗, Σ̄∗)dξ

=
1

2

(
erf

(
µ̄∗ − ai√

2Σ̄∗

)
− erf

(
µ̄∗ − bi√

2Σ̄∗

))
(32)

min
ζ∈Z

∫ bi

ai

N (ξ|µ̄fi (x), Σ̄f
i (x))dξ ≥

∫ bi

ai

N (ξ|
¯
µ∗,

¯
Σ∗)dξ

=
1

2

(
erf

(
¯
µ∗ − ai√

2
¯
Σ∗

)
− erf

(
¯
µ∗ − bi√

2
¯
Σ∗

))
, (33)

where we have:

µ̄∗ = arg min
µ∈[µL,fi,T ,µ

U,f
i,T ]

|µci − µ|, Σ̄∗ =

{
ΣL,f
i,T if µ̄∗ ∈ [ai, bi]

arg min
Σ∈[ΣL,fi,T ,Σ

U,f
i,T ]
|Σc
i (µ̄
∗)− Σ| otherwise

¯
µ∗ = arg max

µ∈[µL,fi,T ,µ
U,f
i,T ]

|µci − µ|, ¯
Σ∗ = arg min

Σ∈{ΣL,fi,T ,Σ
U,f
i,T }

[erf(bi|
¯
µ∗,Σ)− erf(ai|

¯
µ∗,Σ)].

By iterating the computation of Lemma 12 for each integral in Proposition 11, we obtain the
bounds on the predictive distribution. The discretised bound can also be used for two-class
classification, in cases where a likelihood function different from the probit and the logistic
sigmoid is desired.

5.3 Bounds for Regression

While computing adversarial robustness guarantees for classification models involves the
computation of upper and lower bounds on the GP posterior predictive distribution, the
analysis is much simpler for regression. As stated in Section 2 and formalised in Problem
2, for the canonical loss function the optimal decision corresponds to the posterior latent
mean function µ̄(x) of the posterior GP distribution, whose computation is given in Section
3. Guarantees over the decision can then be made simply by relying on upper and lower
bounds for the mean function, that is, µLi,T and µUi,T for every i = 1, . . . ,m, which makes
over-approximation of Definition 3 much faster and simpler in practice.

Proposition 13 Consider a box T ⊆ Rd of the input space, a test point x∗ ∈ T , an `p
metric || · || in the output space Rm and a δ > 0. Let µ̄ be the predictive posterior mean,
and µLi,T and µUi,T , for every i = 1, . . . ,m, its upper and lower bounds computed according
to Proposition 2. Define µ∗T as the vector of entries:

µ∗T,i =

{
µLi,T if |µ̄i(x∗)− µLi,T | ≥ |µ̄i(x∗)− µUi,T |
µUi,T if |µ̄i(x∗)− µLi,T | < |µ̄i(x∗)− µUi,T |.

Then:

sup
x∈T
||µ̄(x∗)− µ̄(x)|| ≤ ||µ̄(x∗)− µ∗T ||.
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Consequently, if:

||µ̄(x∗)− µ∗T || ≤ δ

then the GP is δ-robust in x∗ w.r.t. T and norm || · ||.

Proof By construction, we have that µ̄i(x) ∈ [µLi,T , µ
U
i,T ] for every x ∈ T . Hence, by

monotonicity of `p norms along the coordinate directions and by definition of µ̄(x), it
follows that supx∈T ||µ̄(x∗)− µ̄(x)|| ≤ ||µ̄(x∗)− µ∗T ||. Thus:

δ ≥ ||µ̄(x∗)− µ∗T || ≥ sup
x∈T
||µ̄(x∗)− µ̄(x)|| ≥ ||µ̄(x∗)− µ̄(x)||, for x ∈ T.

In particular, δ ≥ ||µ̄(x∗)− µ̄(x)||, which is equivalent to Definition 3.

6. Branch-and-Bound Algorithm

In this section we formulate a branch-and-bound algorithmic scheme that incorporates the
lower- and upper-bounding procedures for Gaussian process models introduced in Section
5 and prove its convergence up to any a-priori specified ε > 0. For simplicity of exposition,
we restrict the discussion to two-class classification, noting that the multi-class classifi-
cation and regression problems follow analoguously by substituting appropriate bounding
procedures. The main idea behind branch-and-bound optimisation is to alternate between
bounding the function we are interested in optimising in our input box T and splitting T
into smaller boxes, i.e., candidate search regions, on which we compute the bound in the
next iteration. This procedure creates a search tree, in which descending depth implies
smaller search regions. The intuition is that, as we explore the branch-and-bound search
tree depth-first, the search regions become smaller, so that the bounds get closer to the
true function, and we thus slowly converge to the actual optimum. By computing lower
and upper bounds on the quantity of interest, we are then able to prune our search tree for
regions in which optimal values cannot occur.

We now describe the proposed branch-and-bound scheme for the computation of lower
and upper bounds for πmin(T ) derived in Section 5.1, which is summarised in Algorithm 1.
After initialising πLmin(T ) and πUmin(T ) to trivial values and the exploration regions stack R
to the singleton {T}, the main optimisation loop is entered until convergence (lines 2–10).
Among the regions in the stack, we select the region R with the most promising lower
bound (line 3). After bounding posterior mean and variance in R (line 4), we refine its
lower bound using Proposition 8 for the probit likelihood and Proposition 9 for the logistic
sigmoid likelihood (line 5), as well as its upper bound through evaluation of points in R
(line 6). If further exploration of R is necessary for convergence (line 7), then the region
R is partitioned into two smaller regions R1 and R2, which are added to the regions stack
and inherit R’s bound values (line 8). We perform the split by randomly selecting an index
j ∈ {1, . . . , d} from the input dimensions, and by splitting R at the mid-point along the jth
dimension. Finally, the freshly computed bounds local to R ⊆ T are used to update the
global bounds for T (line 10). Namely, πLmin(T ) is updated to the smallest value among the
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Algorithm 1 Branch and bound for πmin(T )

Input: Input space subset T ; error tolerance ε > 0; latent mean/variance functions µ̄(·)
and Σ̄(·).
Output: Lower and upper bounds on πmin(T ) with πUmin(T )− πLmin(T ) ≤ ε

1: Initialisation: Stack of regions R← {T}; πLmin(T )← −∞; πUmin(T )← +∞
2: while πUmin(T )− πLmin(T ) > ε do
3: Select region R ∈ R with lowest bound πLmin(R) and delete it from stack
4: Find [µLR, µ

U
R] and [ΣL

R,Σ
U
R] applying Propositions 2, 5 and 6 over R

5: Compute πLmin(R) from [µLR, µ
U
R] and [ΣL

R,Σ
U
R] using Proposition 8 or 9 resp.

6: Find πUmin(R) by evaluating π(x) in a point in R
7: if πUmin(R)− πLmin(R) > ε then
8: Split R into two sub-regions R1, R2, add them to stack
9: Use πLmin(R), πUmin(R) as initial bounds for both sub-regions R1, R2

10: end if
11: Update πLmin(T ) and πUmin(T ) with current best bounds found
12: end while
13: return [πLmin(T ), πUmin(T )]

πLmin(R) values for R ∈ R, while πUmin(T ) is set to the lowest observed value yet explicitly
computed in line 6.

We remark that to derive a branch-and-bound scheme for multi-class classification (re-
spectively, regression) it suffices to replace line 5 in Algorithm 1 with the bounding methods
of Section 5.2 (respectively, Section 5.3).

Computation of Under-approximations As discussed in Section 3.3, in order to ob-
tain valid values for πUmin(T ) and πLmax(T ) it suffices to evaluate the GP posterior predictive
distribution in any point of T . However, the closer πUmin(T ) and πLmax(T ) are to πmin(T ) and
πmax(T ), respectively, the faster a branch-and bound-algorithm will converge. By solving
the optimisation problems associated to µLT , µ

U
T , ΣL

T and ΣU
T , we obtain four extrema points

in T on which the GP assumes the optimal values for the posterior mean and variance
bounds. As these points belong to T and provide extreme points for the latent function,
they are promising candidates for the evaluation of πUmin(T ) and πLmax(T ). We thus evaluate
the GP predictive posterior distribution on all four extremal points and select the one that
yields the best bound.

Convergence By construction it is clear that, if Algorithm 1 terminates, the resulting
values over- and under-approximate the true value πmin(T ) with a known error ε > 0. We
now show, by relying on the theory of convergence for branch-and-bound algorithms, that
the loop of lines 2 − 9 terminates in a finite number of iterations. In particular, to prove
convergence of a branch-and-bound scheme up to an error ε > 0 it suffices to show that the
two following conditions hold (Balakrishnan et al., 1991):

1. Consistency Condition: πLmin(R) ≤ πmin(R) ≤ πUmin(R) ∀R ⊆ T.

2. Uniform Convergence: ∀ε > 0 ∃ r > 0 s.t. ∀R ⊆ T with diam(R) ≤ r ⇒ |πUmin(R)−
πLmin(R)| ≤ ε.
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Intuitively, the first condition ensures that the computed bounds are consistent across all
the subsets of the initial input region T . This is clearly satisfied by construction, see Section
5.1. The second condition enforces that the lower and the upper bounds converge uniformly
to each other as we reduce the maximum diameter of the branch-and-bound search region to
zero. In the following theorem we show that the bound based on latent space discretisation
has the uniform convergence property and converges in finitely many steps. Consequently,
as the analytical bounds that we compute for the probit and the logistic function are
tighter than for discretisation, they will also converge. For simplicity of exposition, we
prove convergence for two-class classification, which also captures regression as a special
case; we provide details below for how the result can be generalised to the multi-class case.

Theorem 14 Let T be a box in the input space Rd. Consider a two-class classification GP
with posterior mean and variance given by µ̄(x) and Σ̄(x). Assume that µLR, µUR, ΣL

R, ΣU
R

are bounding functions for the posterior mean and variance such that:

µLR → min
x∈R

µ̄(x), µUR → max
x∈R

µ̄(x), ΣL
R → min

x∈R
Σ̄(x), ΣU

R → max
x∈R

Σ̄(x) (34)

whenever diam(R)→ 0. Then, for ε > 0, there exists a partition of the latent space S and
r̄ > 0 such that, for every R ⊆ T with diam(R) < r̄, it holds that

|πUmin(R)− πLmin(R)| ≤ ε. (35)

Proof Consider an ε > 0, and a generic axis-aligned hyper-rectangle R ⊆ T of diameter
diam(R) := r > 0 less than a fixed r̄ > 0. We want to find a value for r̄ for which the
condition in Equation (35) is surely met. We start by observing that πUmin(R) is defined by
computing the predictive posterior distribution on a fixed point of R. Let x̄ ∈ R be such a
point, and define µ̄ := µ̄(x̄) and Σ̄ := Σ̄(x̄), then we have that

πUmin(R) =

∫
σ(ξ)N (ξ|µ̄, Σ̄)dξ.

Now consider a generic M > 0; we define the discretisation of the latent space SM =
{[al, bl] | l = 1 . . . ,M} with the following equations:

a1 = −∞

bl = σ−1

(
σ(al) +

1

M

)
l = 1, . . . ,M

al+1 = bl l = 1, . . . ,M,

that is, we discretise the y-axis into M equally distanced intervals and map that discretisa-
tion back to the x-axis through the link function, σ−1. We then have that the left-hand-side
of Equation (35) can be written explicitly as∣∣∣∣∣∣∣∣

∫
σ(ξ)N (ξ|µ̄, Σ̄)dξ −

M∑
l=1

σ(al) min
µ∈[µLR,µ

U
R]

Σ∈[ΣLR,Σ
U
R]

∫ bl

al

N (ξ|µ,Σ)dξ

∣∣∣∣∣∣∣∣ . (36)
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Let µ∗,(l) and Σ∗,(l) be the solutions to the lth minimisation problems defined inside the
summation of the equation above, then we have∣∣∣∣∣

∫
σ(ξ)N (ξ|µ̄, Σ̄)dξ −

M∑
l=1

σ(al)

∫ bl

al

N (ξ|µ∗,(l),Σ∗,(l))dξ

∣∣∣∣∣
=

∣∣∣∣∣
M∑
l=1

(∫ bl

al

σ(ξ)N (ξ|µ̄, Σ̄)dξ − σ(al)

∫ bl

al

N (ξ|µ∗,(l),Σ∗,(l))dξ
)∣∣∣∣∣

≤

∣∣∣∣∣
M∑
l=1

((
σ(al) +

1

M

)∫ bl

al

N (ξ|µ̄, Σ̄)dξ − σ(al)

∫ bl

al

N (ξ|µ∗,(l),Σ∗,(l))dξ
)∣∣∣∣∣

≤

∣∣∣∣∣ 1

M

M∑
l=1

∫ bl

al

N (ξ|µ̄, Σ̄)dξ

∣∣∣∣∣+

∣∣∣∣∣
M∑
l=1

σ(al)

∫ bl

al

(
N (ξ|µ̄, Σ̄)−N (ξ|µ∗,(l),Σ∗,(l))

)
dξ

∣∣∣∣∣
≤ 1

M

∣∣∣∣∫
R
N (ξ|µ̄, Σ̄)dξ

∣∣∣∣+
M∑
l=1

σ(al)

∣∣∣∣∫ bl

al

(
N (ξ|µ̄, Σ̄)−N (ξ|µ∗,(l),Σ∗,(l))

)
dξ

∣∣∣∣
≤ 1

M
+

M∑
l=1

∣∣∣∣∫ bl

al

(
N (ξ|µ̄, Σ̄)−N (ξ|µ∗,(l),Σ∗,(l))

)
dξ

∣∣∣∣ . (37)

Now, thanks to the conditions in Equation (34), we have that as r → 0 both mean and
variance converge to the actual maximum and minimum values in R. By further observing
that µ̄ and Σ̄ are by construction always inside the (vanishing) interval [µLR, µ

U
R]× [ΣL

R,Σ
U
R],

then for continuity of the Gaussian pdf we have that for each l = 1, . . . ,M :

lim
r→0

∣∣∣∣∫ bl

al

(
N (ξ|µ̄, Σ̄)−N (ξ|µ∗,(l),Σ∗,(l))

)
dξ

∣∣∣∣ = 0

which means that the second term in Equation (37) can be made vanishingly small, in
particular less than ε

2 . By selecting M = d2
ε e the theorem statement holds.

We have proved in Propositions 4 and 7 that the bounds for the mean and variance of
Section 4 guarantee that the condition in Equation (34) holds. For multi-class classification
(case m > 2), Theorem 14 can be generalised by further noticing that the error introduced
by Proposition 11 also vanishes. For any ε > 0, to ensure that convergence holds for the
multi-class problem one has to select a number of discretisation boxes of the order of 1

εm .

6.1 Time Complexity

The method we have developed for the computation of adversarial robustness properties of
GPs relies on the bounding of the posterior GP statistics, integrated within a branch-and-
bound scheme for the iterative refinement of the bound.

Cost of Bounding Consider a kernel Σ with bounded kernel decomposition (ϕ,ψ, U),
and let K denote the time complexity for the evaluation of the bounding function U . This
is dependent on the particular function chosen, and in Appendix B we discuss its value for

29
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each kernel that we analyse. The time complexity for the computation of the mean bound
is O(mK), where m is the output dimension of the GP. The computation of an upper bound
on the posterior variance requires solving a convex quadratic problem, whose computational
complexity is cubic in the number of input variables (Nesterov and Nemirovskii, 1994), i.e.
O((d + 2N + Nd)3), where d is the input dimensionality of the GP and N is the number
of training points. Concerning the computation of the lower bound on the variance, we
have to solve 2N + 1 linear programming problems, where N is the size of the training
set. This again depends on the number of optimisation variables and can be done in
O((d + 2N + Nd)2.5 log(d + 2N + Nd)) (Cohen et al., 2021). We emphasise that, while
computing the mean is straightforward, bound computations for the variance are more
involved. As a result, adversarial robustness for multi-output regression can be obtained
much faster in practice than for multi-class classification. To demonstrate this, in Section
7 we investigate a multi-output regression problem with 14 output dimensions.

Cost of Refinement Once the bounds on the mean and variance have been computed,
refining them through branch-and-bound up to a desired threshold ε > 0 has a worst-case
cost exponential in the number of dimensions of T . Furthermore, for multi-class classifica-
tion, to guarantee convergence we have to discretise the region into a grid of size 1

εm , where
m > 2 is the number of classes. This adds to the overall time complexity, which in the
multi-class case is exponential also with respect to the number of classes.

7. Experimental Results

We employ our methods to experimentally analyse the robustness of GP models in adver-
sarial settings. We give results for four classification data sets: (i) Synthetic2D, generated
by shifting a two-dimensional standard-normal either along the first (class 1) or second di-
mension (class 2); (ii) the SPAM data set (Dua and Graff, 2017), a binary data set with the
split between the negative and positive classes respectively of 41% and 59%; (iii) a two-class
subset of the MNIST data set (LeCun, 1998) with classes 3 and 8 (i.e., MNIST38) and a
three-class subset with classes 3, 5 and 8 (i.e., MNIST358); (iv) a two-class subset of Fash-
ionMNIST (F-MNIST) (Xiao et al., 2017) with classes “t-shirt/top” and “shirt” (which we
refer to as F-MNIST-TS) and a three-class subset with classes “t-shirt/top”, “shirt” and
“pullover” (F-MNIST-TSP). Furthermore, we analyse the robustness of the Water Quality
data set (Džeroski et al., 2000) for multi-output regression.

Training We learn the GP models using a squared-exponential kernel and zero mean
prior and select the hyper-parameters by means of MLE (Rasmussen and Williams, 2006).
For the Synthetic2D data set we learn the GP over 1000 training samples and test it
over 200 test samples, obtaining an accuracy of ≈ 98%. For the SPAM data set we first
standardise the data to zero mean and unit variance. Then, we perform feature-reduction
by iteratively training an `1-penalised logistic regression classifier and discarding the least
relevant features, up until test set accuracy starts to diminish. This procedure leaves us
with 11 features out of the initial 57. We then train a two-class classification GP over the
resulting reduced feature vector. The GP thus computed achieves a test set accuracy of
around 93%.

30



Adversarial Robustness Guarantees for Gaussian Processes

For MNIST and F-MNIST we first sub-sample the images to 14 × 14 pixels,7 and use
similar learning settings as for the SPAM data set, with 1000 training samples randomly
picked from the two data sets. We achieve a test set accuracy of around 98% for MNIST38
and 90% for F-MNIST-TS. For the two multi-class problems we use the softmax likelihood
function and training setting similar to the two-class classification problems, obtaining a
test set accuracy of around 93% for MNIST358 and 85% for F-MNIST-TSP. Finally, we
standardise the Water Quality data set and use the full set of 16 input features to predict
the 14 regression outputs. To do so, we learn a multi-output regression GP over a 50%/50%
train/validation split of the full data set (1060 data points), obtaining a mean absolute error
of around 0.15.

We rely on the GPML Matlab toolbox for the training of two-class GPs (Rasmussen
and Nickisch, 2010) and on the GPStuff toolbox for the training of multi-class GPs, sparse
GP models and the multi-output regression model (Vanhatalo et al., 2013).

Parameter Selection for the Analysis We compute adversarial robustness in neigh-
bourhoods of the form T = [x∗−γ, x∗+γ] around a given point x∗ and for a range of γ > 0.
Unless otherwise stated, we run the branch-and-bound algorithm until convergence up to an
error threshold ε = 0.01. For MNIST38 and F-MNIST-TS we perform feature-level analysis
for scalability reasons, similarly to Ruan et al. (2018). Namely, we restrict our methods to
salient patches of each image only, as detected by SIFT (Lowe, 2004). We note that any
other image feature extraction method can be used instead.

In the remainder of this section, we discuss results concerning three types of analyses.
First (Section 7.1), on four samples selected from the classification data sets, we provide
empirical evidence illustrating the advantages of computing guarantees (as those provided
by our branch-and-bound method) versus evaluating model robustness using gradient-based
attacks for classification models. Next we consider the robustness of GPs learned by using
a selection of latent-variable methods (Section 7.2) and sparse approximation techniques
(Section 7.3), discussing the adversarial robustness properties of these state-of-the-art ap-
proximate inference methods. Finally, we show how the techniques developed here for
adversarial robustness can be applied to perform interpretability analysis of classification
GP models predictions (Section 7.4).

7.1 Local Adversarial Safety

We study local adversarial safety for four points selected from the classification data sets,
i.e. Synthethic2D, SPAM, MNIST38 and F-MNIST-TS data sets and summarise the results
in Figure 2. To this end, we set T ⊆ Rd to be a `∞ γ−ball around the chosen test
point and iteratively increase γ (x-axis in the second row plots), checking whether there are
adversarial examples in T . Namely, if the point is originally assigned to class 1 (respectively
class 2) we check whether the minimum classification probability in T is below the decision
boundary threshold, that is, if πmin(T ) < 0.5 (resp. πmax(T ) > 0.5). We compare the values
provided by our method (blue solid and dashed lines for class 2, green solid and dashed lines
for class 1) with GPFGS, a gradient-based method for attacking GP mean prediction by
Grosse et al. (2017) (pink curve in the plot), and Carlini & Wagner (CW) attack (Carlini

7. This reduces the number of hyper-parameters that need to be estimated by MLE and increases the
numerical stability of the GP, while achieving comparable accuracy.
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Figure 2: First row: Contour plot and test points for Synthetic2D; projected contour
plot and test points for 2 dimensions of SPAM (dimensions 2 and 8 as selected
by `1-penalised logistic regression); sample of 8 from MNIST38 along with 10
pixels selected by SIFT; sample of shirt from F-MNIST-TS along with the 10
pixels selected by SIFT. Second row: Safety analysis for the four selected test
points. Shown are the upper and lower bounds on max(T ) (solid and dashed blue
curves), min(T ) (solid and dashed green curves), the GPFGS adversarial attack
(pink curve), and the GPCW attack (violet curve).

and Wagner, 2017) for the `∞ norm (GPCW) (violet curve in the plot). Naturally, as γ
increases, the neighbourhood region T becomes larger, hence the confidence for the initial
class can decrease. Interestingly, while our method succeeds in finding adversarial examples
in all cases shown (i.e. both the lower and upper bound on the computed quantity cross
the decision boundary), both GPFGS and GPCW often underestimate the effect of the
worst-case perturbations, such as in Figure 2 (bottom left) for GPFGS and in Figure 2
(bottom, second figure from left) for GPCW. In particular, GPFGS, because of its local
nature, tends to underestimate the true robustness values for large values of γ. On the
other hand, GPCW, while more accurate for large values of γ, in some cases generates less
accurate attacks than GPCW for small values of γ, such as Figure 2 (bottom left). We stress
that our method provides converging bounds of the true robustness, and as a consequence
GPCW and GPFSM attacks are always contained within the bounds given by our method.

7.2 Local Adversarial Robustness

We now evaluate the empirical distribution of the adversarial robustness of the trained GP
models. To this end, we introduce a quantitative measure of robustness analogous to that
used by Ruan et al. (2018). More specifically, we consider the difference between the max-
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Figure 3: Boxplots for the distribution of robustness on the five data sets studied, comparing

Laplace and EP approximation for the classification models, for γ = 0.1.

imum and minimum prediction probability in the region T , δ = πUmax(T )− πLmin(T ), which
utilises the computed quantities. We evaluate the moments of the empirical distribution of
values of δ on 50 randomly selected test points for each of the four data sets considered. Note
that a smaller value of δ implies a more robust model. Furthermore, in the classification
cases, we analyse how the GP model robustness is affected by the training procedure used.
To achieve this, we compare the robustness obtained when using either the Laplace or the
Expectation Propagation (EP) (Rasmussen and Williams, 2006) posterior approximations
technique, and investigate the influence of the number of marginal likelihood evaluations
(epochs) performed during MLE hyper-parameter optimisation on robustness.

Results for this analysis are depicted in Figure 3, for 10, 40 and 100 hyper-parameter
optimisation epochs. As explained above, the analyses for the MNIST38 and F-MNIST-TS
samples are restricted to the most influential SIFT features only, and thus δ values for
them are smaller in magnitude than for the other two data sets (for which all the input
variables are simultaneously changed). Interestingly, this empirical analysis demonstrates
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that GPs trained with EP are consistently more robust than those trained using Laplace.
In fact, for both Synthetic2D and MNIST38, EP yields a model about 5 times more robust
than Laplace. For SPAM, the difference in robustness is the least pronounced. While
Laplace approximation works by local approximations, EP calibrates mean and variance
estimation by a global approach, which generally results in a more accurate approximation
(Rasmussen and Williams, 2006). These results quantify and confirm for GPs that the
posterior distribution is robust to adversarial attacks in the limit, as theorethically analysed
by Carbone et al. (2020) in the case of over-parameterised Bayesian neural networks, of
which GPs are a particular case (De Matthews et al., 2018). We observe that the values of
δ decrease as the number of training epochs increases, and thus robustness improves with
the increase in the number of training epochs. More training in Bayesian settings may
imply better calibration of the latent mean and variance function to the observed data.
Interestingly, we note that, also in the regression case, we observe the same trend as in
the classification experiments, with robustness of the GP increasing with the number of
hyper-parameter training epochs.

7.3 Robustness of Sparse Approximations

In Section 7.2 we have empirically observed that a more refined training procedure may lead
to more robust GP models. In standard GP settings it is infeasible to work with large-scale
data sets that approximate the exact data manifold, as inference scales with the cube of the
number of data (and storage with its square) (Bauer et al., 2016). For large-scale data sets,
sparse GPs (Bauer et al., 2016) are customarily used for approximating the GP posterior
distribution. While sparse GP approximations are usually evaluated in terms of mean and
uncertainty calibration, here we consider adversarial robustness of GP sparse approximation
techniques.

As inference equations for sparse approximation can be generally cast in the form of
Equations (1)–(2), our methodology can be applied directly, modulo the definition of the
matrix S, vector t and the vector of inducing points u (that is, the set of eventually synthetic
points on which training is performed). We rely on the EP latent method and compare the
results for FIC, DTC, and VAR sparse approximation methods (Quiñonero-Candela and
Rasmussen, 2005) on the MNIST38 and F-MNIST-TS data sets. We vary the number of
training points from 250 to 7500 and the number of inducing points (selected at random
from the training points) from 100 to 500. For each of the resulting GPs we analyse the
empirical distribution of δ-robustness on 50 randomly sampled test points with respect to
their most relevant features (as detected by SIFT) with γ = 0.15.

Results for this analysis are plotted in Figure 4, where boxplots are grouped according to
the number of training points, with each boxplot in each group representing an increase of
100 inducing points (starting from 100). The test set accuracy of each GP, as estimated over
1000 test samples, is plotted in the same figure on a separate y-axis (red dots). In agreement
with the literature on sparse GPs (Bauer et al., 2016), we observe that an increasing number
of training and/or inducing points generally leads to more accurate models. Among the
two data sets analysed here, this aspect is more pronounced on F-MNIST (≈ 6% increase),
which poses a more complex classification task than MNIST (≈ 2% increase), so that the
GP further benefits from more information from data.
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Figure 4: Empirical distribution of δ-robustness for γ = 0.15. First Row: FIC sparse
approximation. Second Row: DTC sparse approximation. Third Row: VAR
sparse approximation.
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The robustness trends instead depend on the approximation techniques used. For FIC
and VAR, we generally obtain that more training input points corresponds to an increase in
the model robustness (i.e., lower value of δ). More specifically, sparse GPs successfully take
into account the information from a larger pool of training samples in refining its posterior
estimation. Unfortunately, for the VAR models the EP computations become numerically
unstable after 2500 training samples and we have to increase the data jitter (which results in
a widening of the boxplot and reduced robustness). For DTC, instead, we observe that the
robustness slightly worsens in the case of MNIST and remains stable for F-MNIST. Finally,
we remark that the number of inducing points has little effect on the overall robustness
when compared to the number of training points used.

7.4 Interpretability Analysis

Adversarial robustness and model prediction interpretability are closely linked together
(Darwiche, 2020). To demonstrate this, we can utilise the bounds we compute on πmin(T )
and πmax(T ) to formulate an interpretability metric similar to that defined for linear classi-
fiers in (Ribeiro et al., 2016) and implemented in a black-box tool called LIME. In particular,
we consider a test point x∗ and the one-sided input box T iγ(x∗) = [x∗, x∗ + γei] (where ei
denotes the vector of 0s except for 1 at dimension i). We compute how much the maximum
and minimum values can change over the one-sided intervals in both directions:

∆i
γ(x∗) =

(
πmax(T iγ(x∗))− πmax(T i−γ(x∗))

)
+
(
πmin(T iγ(x∗))− πmin(T i−γ(x∗))

)
.

If increasing the value of dimension i makes the model favour assigning lower class proba-
bilities, we would expect this value to be negative and vice versa. Intuitively, this provides
a non-linear generalisation of numerical gradient estimation, which resembles exactly the
metric used by Ribeiro et al. (2016) as γ tends to 0 or if the model considered is linear.
Global estimation measures can be computed by estimating the expected value of ∆i

γ(x∗)
with x∗ sampled from a test set. However, since our method relies on the analytic form of
the inference equations of GPs (rather than being model-agnostic, which LIME is), we are
able to formally bound these quantities, which allows as to provide guarantees over inter-
pretability results. Next, we first graphically demonstrate why linear approximation can
be misleading for global interpretability analysis for the 2D-synthetic and SPAM data sets,
and then show how we can rely on formal quantification of interpretability to investigate
the adversarial vulnerability of a GP model around specific test points.

Global Interpretability Analysis for Synthethic2D and SPAM We perform global
interpretability analysis on GP models trained on the Synthetic2D and SPAM data sets,
estimating the expected value of ∆i

γ with 50 random test points. The results are shown in
Figure 5. For Synthetic2D (top row), LIME suggests that a higher probability of belonging
to class 1 (depicted as the direction of the arrow in the plot) corresponds to lower values
along dimension 1 and higher values along dimension 2. As can be seen in the corresponding
contour plot in Figure 2 (top left), the exact opposite is true, however. LIME, as it is built
on linearity approximations, fails to take into account the global behaviour of the GP.
When using a small value of γ our approach obtains similar results to LIME. However, with
γ = 2.0 the global relationship between input and output values is correctly captured. For
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Figure 5: Global interpretability, ∆i
γ , as analysed by LIME and our method. Left: Results

for the Synthetic2D data set. Right: Results for the SPAM data set.

SPAM, on the other hand (Figure 5, bottom), due to the linearity of the data set and the
GP, a local analysis correctly reflects the global picture.

Interpretability for MNIST358 and F-MNIST-TSP Predictions As shown in
(Darwiche, 2020), interpretability metrics can be used to synthesise adversarial examples,
because pixels and features that are deemed important for the prediction are also likely
to be highly vulnerable to adversarial perturbations. These results can be used to glimpse
further information about interpretability of the predictions by qualitatively examining the
obtained adversarial examples. To this end, given a test point x∗ and a point x taken from
a small neighbourhood around x∗, we define the adversarial gap, πgap(x), as the minimum
difference between the confidence in the true class and those of the remaining classes on x,
so that πgap(x) < 0 implies that x is an adversarial example for x∗. We analyse how πgap

changes as we change an increasing number of pixels, β, and compare the results obtained
with our method to those of LIME.

We plot the results on six images randomly selected from the MNIST358 and F-MNIST-
TSP data sets in Figure 6. The selected clean test images are reported in the first row of the
figure, and the interpretability values are reported as a heatmap in the second row directly
below the corresponding images. The colour gradient varies from red (positive impact,
pixel value increase resulting in increased class probability of shown digit) to blue (negative
impact, pixel value increase decreasing the class probability). The values of πgap obtained
with our method (blue line) are compared with those from LIME (red line) in the third row,
and in the fourth row we plot the minimal adversarial examples found with our method.

We observe that, for each image, and for each value of β, relying on the values estimated
by LIME leads to an over-estimation of model robustness, and in some cases (e.g., third
and fifth column) more than triple the number of pixel modifications is required to find an
adversarial example. We note that the adversarial examples that we obtained for MNIST
and F-MNIST are qualitatively different. For the MNIST image, our method modified
salient bits of the image. For digit 3, for example, the interpretability analysis retrieves a
contiguous blue patch on the left, which is deemed to be the most important part for the
prediction. When this is modified in adversarial fashion, the image obtained resembles an
8 in the upper part, and a 3 in the lower part, and is (understandably) classified as an 8
by the GP. Similarly, digit 5 is modified so that the lower part resembles an 8, whereas
in the image of the 8 a 3 shaped contour is highlighted in the adversarial example. For
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Figure 6: First row: 6 test images randomly selected from MNIST358 and F-MNIST-TSP.
Second row: Interpretability metric estimation using our method. Third row:
Comparison of adversarial gaps (y-axis) obtained for a given budget β (x-axis)
when using our method for interpretability estimation (blue line) and when using
LIME (red line). The dashed grey line represents the threshold below which
an adversarial is found. Fourth row: Minimal adversarial examples found by
utilising our interpretability metric.

the F-MNIST image, instead, our method detects pixels that are important for the GP
prediction but have little semantic meaning for a human, that is, where modifying pixels in
the border of the image suffices to find adversarial examples.

8. Conclusion

We presented a method for computing, for any compact region of the input space surround-
ing a test point, provable guarantees on the adversarial robustness of a GP model for all
points in that region, up to any desired precision ε > 0. To achieve this, we have developed
a branch-and-bound optimisation scheme that computes upper and lower bounds on the
minimum and maximum of the model prediction ranges, and proved that it converges in
finitely many steps up to an error tolerance ε > 0 selected a-priori.
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We have experimentally evaluated our method on four classification data sets and a
regression one, providing results for adversarial robustness, bounds over the predictive pos-
terior distribution and local/global interpretability analysis. Empirically, we have observed
that, in Bayesian prediction settings and with GPs, the adversarial robustness of the model
increases with the accuracy of the posterior distribution approximation, and with better
hyper-parameter calibration. This differs from what is generally observed in frequentist
approaches to learning, for example, in deep neural networks, where better accuracy was
empirically observed to imply worse adversarial robustness (Zhang et al., 2019; Su et al.,
2018). We have also observed that increasing the number of training samples might still be
beneficial for adversarial robustness even when using sparse approximations for GP training.

One limitation of the approach presented in this paper is its high, exponential time,
computational complexity. This unsurprising since the problem we are solving is non-
linear optimisation. To reduce the computational time requirement, we have formulated
analytical solutions for the main types of kernels used in practical applications. We have
also observed that sparse GPs, as well as improving training time, can significantly reduce
the time requirement of our methods, as bounding functions need to be computed only with
respect to the inducing points. We believe that the methods proposed in this paper are
therefore widely applicable in practice.
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Appendix A. Additional Lemmas and Proofs

In this section we provide statements of additional lemmas referred to in the main text of
the paper, as well as proofs of that were omitted for space reasons.

Lemma 15 Let gL(t) = aL + bLt and gU (t) = gU (t) = aU + bU t be an LBF and UBF to a
function g(t) ∀t ∈ T , i.e. gL(t) ≤ g(t) ≤ gU (t) ∀t ∈ T ⊆ R. Consider two real coefficients
α ∈ R and β ∈ R. Define

b̄L =

{
αbL ifα ≥ 0

αbU ifα < 0
āL =

{
αaL + β ifα ≥ 0

αaU + β ifα < 0
(38)

b̄U =

{
αbU ifα ≥ 0

αbL ifα < 0
āU =

{
αaU + β ifα ≥ 0

αaL + β ifα < 0.
(39)

Then:

ḡL(t) := āL + b̄Lt ≤ αg(t) + β ≤ āU + b̄U t =: ḡU (t).

That is, LBFs can be propagated through linear transformation by redefining the coefficients
through Equations (38)–(39).

Proof The proof is an immediate consequence of multiplying the inequalities gL(t) ≤
g(t) ≤ gU (t) with the coefficients α and β and re-writing the new inequality using the con-
stants defined in Equations (38)–(39).

Lemma 16 Consider the sigmoid function σ(x) = 1
1+e−x .Let z > 0, then we have:

σ′(µ− z)

{
> σ′(µ+ z) if µ > 0

< σ′(µ+ z) if µ < 0.

Proof Let µ > 0; the proof when µ < 0 is similar, because σ′ is an even function.

Case 1: µ− z ≥ 0. Since σ is strictly concave in [0,+∞), the derivative is a monotonic
crescent in the relevant region. Thus, σ′(µ− z) > σ′(µ+ z).

Case 2: µ − z < 0. Since σ′ is even we have σ′(µ − z) = σ′(z − µ). Now z − µ > 0,
similarly to Case 1 we have σ′(z − µ) < σ′(z + µ), which proves the lemma.

Lemma 17 Let X and Y be random variables with joint density function fX,Y . Consider
measurable sets A and B. Then, it holds that

P (X ∈ A|Y ∈ B) ≥ inf
y∈B

P (X ∈ A|Y = y).
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Proof

P (X ∈ A|Y ∈ B) =
P (X ∈ A, Y ∈ B)

P (Y ∈ B)
=

∫
B

∫
A fX,Y (x, y)dxdy∫
B fY (y)dy

=

∫
B

∫
A fX|Y (x|y)fY (y)dxdy∫

B fY (y)dy
≥
∫
B fY (y)dy infy∈B

∫
A fX|Y (x|y)dx∫

B fY (y)dy

= inf
y∈B

P (X ∈ A|Y = y).

A.1 Proof of Lemma 1

Proof We show how to compute āL and b̄L; the same arguments also apply to the com-
putation of āU and b̄U by simply considering −Σx,x̄.

Consider cL = −1 and cU = 1 coefficients associated to the input point x̄. Let ϕL =
U(cL) and ϕU = U(cU ), then by Assumption 3 of bounded kernel decomposition we have
that ϕ(x, x̄) ∈ [ϕL, ϕU ] for all x ∈ T . Consider now the function ψ restricted to the interval
[ϕL, ϕU ]. Then there are four cases to consider for ψ.

Case 1 If ψ happens to be concave in [ϕL, ϕU ], then, by definition of concave function, a
lower bound is given by the line that links the points (ϕL, ψ(ϕL)) and (ϕU , ψ(ϕU )), that is,
gL is simply the LBF with coefficients:

b̄L =
ψ(ϕL)− ψ(ϕU )

ϕL − ϕU

āL = ψ(ϕL)− b̄LϕL.

Case 2 If ψ happens to be a convex function, then, by definition of convex function and
by the differentiability of ψ, a valid lower bound is given by the tangent line in the middle
point ϕC = (ϕL + ϕU )/2 of the interval, that is, gL is the LBF with coefficients:

b̄L =
dψ(ϕC)

dϕ

āL = ψ(ϕL)− b̄LϕL.

Case 3 Assume now that ψ is concave in [ϕL, ϕF ], and convex in [ϕF , ϕU ] (the arguments
are very similar if we assume the first interval is that in which ψ is convex and the second
concave). In other words, there is only one flex point ϕF ∈ (ϕL, ϕU ). Let ā′L, b̄′L be
coefficients for linear lower approximation in [ϕL, ϕF ] and ā′′L, b̄′′L analogous coefficients in
[ϕF , ϕU ] (respectively computed as for Case 1 and Case 2 above), and call g′ and g′′ the
corresponding functions. Define gL to be the LBF function of coefficients āL and b̄L that
goes through the two points (ϕL,min(g′(ϕL), g′′(ϕL))) and (ϕU , g′′(ϕU )). We then have that
gL is a valid lower bound function for ψ in [ϕL, ϕU ]. In order to prove this we distinguish
between two cases:
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1. If min(g′(ϕL), g′′(ϕL)) = g′(ϕL), then we have that gL(ϕL) = g′(ϕL) ≤ g′′(ϕL), and
gL(ϕU ) = g′′(ϕU ). Hence, because of linearity, gL(ϕ) ≤ g′′(ϕ) in [ϕL, ϕU ], and in
particular in [ϕF , ϕU ] as well. This also implies that gL(ϕF ) ≤ g′′(ϕF ) ≤ g′(ϕF ). On
the other hand, gL(ϕL) = g′(ϕL), hence gL(ϕ) ≤ g′(ϕ) in [ϕL, ϕF ]. Combining these
two results and by construction of g′ and g′′ we have that gL(ϕ) ≤ ψ(ϕ) in [ϕL, ϕU ].

2. If min(g′(ϕL), g′′(ϕL)) = g′′(ϕL), then in this case we have gL = g′′, and just have
to show that g(ϕ) ≤ g′(ϕ) in [ϕL, ϕF ]. This immediately follows by noticing that
g′′(ϕF ) ≤ g′(ϕF ) and g′′(ϕL) ≤ g′(ϕL).

Case 4 In the general case, as we have a finite number of flex points, we can divide
[ϕL, ϕU ] in subintervals in which ψ is either convex or concave. We can then proceed iter-
atively from the two left-most intervals by repeatedly applying Case 3.

A.2 Proof of Lemma 3

Proof We prove the lemma for the LBF. An analogous argument can be made for the
UBF.

Letting ε > 0, we want to find an r̄ > 0 such that diam(R) < r̄ implies maxx∈R |gRL (x)−
Σx̄,x| < ε. Consider ϕRL and ϕRU , lower and upper bound values for ϕ in R. By taking r̄
small enough we can assume without loss of generality that ψ(ϕ) has at most one flex point
in [ϕRL , ϕ

R
U ]. We then have the following three cases.

CASE 1: if ψ(ϕ) is concave then gRL is defined as the line connecting the two extreme
points of the interval [ϕRL , ϕ

R
U ]. Since ψ(ϕ) is concave, we have that it obtains its minimum

in one of these two extrema, so that we have

min
x∈R

gRL (x) = min
x∈R

Σx̄,x.

By Assumption 2 of kernel decompositions (see Definition 4), it follows that ψ is Lipschitz
continuous on any compact interval, so that we have that

lim
r→0

∣∣∣∣min
x∈R

Σx̄,x −max
x∈R

Σx̄,x

∣∣∣∣ = 0,

where r = diam(R). Putting the two results together we have that the difference between
minx∈R g

R
L (x) and maxx∈R Σx̄,x vanishes whenever that r tends to zero, which proves the

statement.

CASE 2: if ψ(ϕ) is convex then gRL is the Taylor expansion of ψ(ϕ) around the mid-point
of the interval, truncated at the first-order. By continuity of ϕ we then obtain that shrinking
r shrinks also the width of the interval [ϕRL , ϕ

R
U ], which then, relying on the properties of

truncation error of Taylor expansions, proves the lemma statement.

CASE 3: in the case in which a flex point exists, gRL is defined to be the maximum
line that is below the two LBFs respectively defined over the convex and the concave part
of the interval. Since by Case 1 and Case 2 these converge, we also have that gRL converges.
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A.3 Proof of Lemma 12

Proof We provide the proof for the minimum; similar arguments also hold for the maxi-
mum.

By definition of µLT , µUT , ΣL
T , ΣU

T , we have that for every x ∈ T , µ̄(x) ∈ [µLT , µ
U
T ] and

Σ̄(x) ∈ [ΣL
T ,Σ

U
T ]. Thus:

min
x∈T

∫ b

a
N (ξ|µ̄(x), Σ̄(x))dξ ≥ min

µ∈[µLT ,µ
U
T ]

Σ∈[ΣLT ,Σ
U
T ]

∫ b

a
N (ξ|µ,Σ)dξ =

1

2
min

µ∈[µLT ,µ
U
T ]

Σ∈[ΣLT ,Σ
U
T ]

(
erf

(
µ− a√

2Σ

)
− erf

(
µ− b√

2Σ

))
=

1

2
min

µ∈[µLT ,µ
U
T ]

Σ∈[ΣLT ,Σ
U
T ]

Φ(µ,Σ),

where we have set Φ(µ,Σ) := erf
(
µ−a√

2Σ

)
− erf

(
µ−b√

2Σ

)
. By looking at the partial derivatives

we have that:

∂Φ(µ,Σ)

∂µ
=

√
2√
πΣ

(
e−

(µ−b)2
2Σ − e−

(µ−a)2

2Σ

)
≥ 0⇔ µ ≤ a+ b

2
= µc

and that if µ 6∈ [a, b]:

∂Φ(µ,Σ)

∂Σ
=

1√
2πΣ3

(
(µ− bi)e−

(µ−bi)
2

2Σ2 − (µ− ai)e−
(µ−ai)

2

2Σ2

)
≥ 0

⇔ Σ ≤ (µ− a)2 − (µ− b)2

2 log µ−a
µ−b

= Σc(µ)

as otherwise the last inequality has no solutions. As such, µc and Σc will correspond to
global maximum with respect to µ and Σ, respectively. As Φ is symmetric w.r.t. µc we have
that the minimum value w.r.t. to µ is always obtained for the point furthest away from µc,
that is, at

¯
µ∗ = arg maxµ∈[µLT ,µ

U
T ] |µc − µ|. The minimum value w.r.t. to Σ will hence be

either for ΣL
T or ΣU

T , that is
¯
Σ∗ = arg minΣ∈{ΣLT ,Σ

U
T }

Φ(
¯
µ∗,Σ).

Appendix B. Kernel Function Decomposition

In this section, we compute explicit kernel decompositions (ϕ,ψ, U) for several kernels of
practical relevance in applications. In particular, we give explicit formulas for the squared-
exponential, the rational quadratic, the Matérn (for half-integer values) and the periodic
kernels, along with how kernel decomposition can be propagated through addition and mul-
tiplication with kernels. We remark that the formula for addition and multiplication can be
used recursively so to obtaine bounded decomposition ofr variously composed kernels. Fur-
thermore, we show how to compute kernel decompositions for generalised spectral kernels,
both in the stationary and non-stationary case.

Throughout this section, we assume T = [xL, xU ], for some xL, xU ∈ Rd. For building
the bounding function U we use the notation x(i), i = 1, . . . , N for the set of input points,
and ci, i = 1, . . . , N , for their associated multiplying coefficients.
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B.1 Squared-Exponential Kernel

For the squared-exponential kernel, we build a bounded kernel decomposition by setting:

ψ(ϕ) = σ2 exp (−ϕ)

ϕ(x′, x′′) =
d∑
j=1

θj(x
′
j − x′′j )2.

It is straightforward to notice that Assumptions 1 and 2 of Definition 4 are met by this
decomposition. Concerning the definition of U , consider a set x(1), . . . , x(N) of N points
in the input space and associated real coefficients c1, . . . , cN . For a hyper-rectangle T =
[xL, xU ] we have that:

sup
x∈T

N∑
i=1

ciϕ(x, x(i)) = sup
x∈T

N∑
i=1

ci

d∑
j=1

θj(xj − x(i)
j )2 = sup

x∈T

d∑
j=1

θj

N∑
i=1

ci(xj − x(i)
j )2

= sup
x∈T

d∑
j=1

(
θj

N∑
i=1

cix
2
j − 2θj

N∑
i=1

cix
(i)xj + θj

N∑
i=1

cix
(i)2

)

=

d∑
j=1

sup
xj∈[xLj ,x

U
j ]

(
θj

N∑
i=1

cix
2
j − 2θj

N∑
i=1

cix
(i)xj + θj

N∑
i=1

cix
(i)2

)
.

The right-hand-side of the last equation simply involves the computation of the maximum
of a 1-d parabola over an interval of the real line, which can be done exactly and in constant
time by simple inspection of the derivative function and by evaluating the function at the
extrema of the interval. Call x̄j the only critical point of the jth parabola, and denote
with hj(xj) = αjx

2
j +βjxj + γj the parabola associated with the jth coordinate value, with

αj = θj
∑N

i=1 ci, βj = −2θj
∑N

i=1 cix
(i) and γj = θj

∑N
i=1 cix

(i)2, then we set

U(c) =

d∑
j=1

Uj(c), (40)

where:

Uj(c) =

{
max {hj(xLj ), hj(x

U
j ), hj(x̄j)} if x̄j ∈ [xLj , x

U
j ]

max {hj(xLj ), hj(x
U
j )} otherwise

.

Furthermore it follows that the time complexity for the computation of U in the squared-
exponential case is O(N + d).
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B.2 Rational Quadratic Kernel

An analogous argument to the above holds for the rational quadratic kernel, where we can
set

ψ(ϕ) = σ2
(

1 +
ϕ

2

)−α
ϕ(x′, x′′) =

d∑
j=1

θj(x
′
j − x′′j )2.

As the definition of ϕ is exactly the same as for the squared-exponential kernel, the bounding
function U can be defined as in Equation (40).

B.3 Matérn Kernel

For half-integer values, the explicit form of the Matérn Kernel allows us to find an analogous
kernel decomposition to the two discussed above:

ψ(ϕ) = σ2kp exp (−
√
k̂pϕ)

p∑
l=0

kl,p
p−l
√
k̂pϕ

ϕ(x′, x′′) =

d∑
j=1

θj(x
′
j − x′′j )2.

B.4 Periodic Kernel

For the periodic kernel we define

ψ(ϕ) = σ2 exp(−0.5ϕ)

ϕ(x′, x′′) =
d∑
j=1

θj sin(pj(x
′
j − x′′j ))2.

Assumptions 1 and 2 are trivially satisfied because of the smoothness of ψ and ϕ. For the
definition of the bounding function U we have that:

sup
x∈T

N∑
i=1

ciϕ(x, x(i)) = sup
x∈T

N∑
i=1

ci

d∑
j=1

θj sin(pj(xj − x(i)
j ))2 (41)

≤
N∑
i=1

d∑
j=1

sup
xj∈[xLj ,x

U
j ]

ciθj sin
(
pj(xj − x(i)

j )
)2
.

The supremum in the final equation can be obtained by simply inspecting the derivative of

ciθj sin
(
pj(xj − x(i)

j )
)2

and its function value at the extrema of each interval [xLj , x
U
j ]. Let

Uij(ci) be the value computed in such a way for each i and j, then we define:

U(c) =

d∑
j=1

N∑
i=1

Uij(ci). (42)
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Furthermore it follows that the time complexity for the computation of U in the squared-
exponential case is O(Nd).

B.5 Kernel Addition

Consider now the case in which the kernel function Σ is defined by linear composition of
two kernels Σ′ and Σ′′ such as:

Σx′,x′′ = k′Σ′x′,x′′ + k′′Σ′′x′,x′′ ∀x′, x′′ ∈ Rd, (43)

for some given k′ and k′′ ≥ 0. Then, we have that kernel decomposition for Σ′ and Σ′′ can
be simply propagated through the sum. To see that, let (ϕ′, ψ′, U ′) and (ϕ′′, ψ′′, U ′′) be the
two kernel decomposition. Then, by simply summing up the LBFs and UBFs for Σ′ and
Σ′′, Lemma 1 can be generalised to this case as follows.

Proposition 18 Let g′L, g′U , g′′L and g′′U be lower and upper bounding function for Σ′x,x̄ and
Σ′′x,x̄, for all x ∈ T , as computed in Lemma 1. Then

gL(x) = k′g′L(x) + k′′g′′L(x)

gU (x) = k′g′U (x) + k′′g′′U (x)

are respectively lower and upper bounding functions on Σx,x̄.

As a consequence of the above proposition, it immediately follows that the infimum of the
posterior mean function over the compact set T can be safely lower-bounded for the kernel
Σ by setting:

µLT = k′µ′LT + k′′µ′′LT ,

where µ′LT and µ′′LT are computed by applying Proposition 2 to the kernels Σ′ and Σ′′.
Similarly, Propositions 5 and 6 can be generalised by considering two sets of slack variables,
one associated to ϕ′ and one to ϕ′′, and relying directly on the lower- and upper-bounding
functions defined in Proposition 18.

B.6 Kernel Multiplication

When two kernels are combined through multiplication, we have that Σx′,x′′ = Σ′x′,x′′Σ
′′
x′,x′′ .

This case can be reduced to the addition by considering the following McCormick’s inequal-
ities (McCormick, 1976):

Σx′,x′′ = Σ′x′,x′′Σ
′′
x′,x′′ ≥ Σ′LΣ′′x′,x′′ + Σ′x′,x′′Σ

′′
L − Σ′LΣ′′L (44)

Σx′,x′′ = Σ′x′,x′′Σ
′′
x′,x′′ ≤ Σ′UΣ′′x′,x′′ + Σ′x′,x′′Σ

′′
L − Σ′UΣ′′L, (45)

where Σ′L, Σ′U , Σ′′L and Σ′′U are lower and upper bound values for Σ′ and Σ′′ in T , respectively.
Then we can proceed by using the kernel summation of Equation (44) when computing lower
bounding function on the kernel, and Equation (45) when computing the upper bounding
function, and by using the techniques discussed in the section just above.
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B.7 Generalised Spectral Kernel

We show how to find kernel decompositions compatible with our optimisation framework
for generalised spectral kernels (Samo and Roberts, 2015). We note that these are dense
in the space of kernel functions, so that they can be used to derive any kernel up to an
arbitrary small error tolerance.

Stationary Kernel For the stationary case, we have:

Σx′,x′′ =
K∑
k=1

σ2h((x′ − x′′)� θ(k)) cos(wTk (x′ − x′′)), (46)

where θ(k) ≥ 0, and h is any given positive definite function; in particular, we choose

h((x′ − x′′) � θ(k)) = exp
(
−
∑m

j=1 θ
(k)
j (x′ − x′′)2

)
. We now show how a bounded kernel

decomposition (ϕ,ψ, U) can be derived for this kernel.
We first observe that the kernel is obtained by summing over K different kernel com-

ponents. According to the results for kernel addition described in Appendix B.5, it suffices
to find a bounded kernel decomposition for each summand of Equation (46), i.e., for

k(x′, x′′) = σ2 exp

− m∑
j=1

θj(x
′ − x′′)2

 cos(wT (x′ − x′′)).

In turn, by setting k1(x′, x′′) = σ2 exp
(
−
∑d

j=1 θj(x
′ − x′′)2

)
and k2(x′, x′′) = cos(wT (x′ −

x′′)), we have that k(x′, x′′) = k1(x′, x′′)k2(x′, x′′), and thus a kernel decomposition can be
found by using the formulas for kernel multiplication derived in Appendix B.6 to k1(x′, x′′)
and k2(x′, x′′).

Observe that k1(x′, x′′) has the same shape as the squared-exponential kernel, for which
kernel decomposition was derived in Appendix B.1. For k2(x′, x′′), we set

ϕ(x′, x′′) =

d∑
j=1

wj(x
′
j − x′′j ) (47)

ψ(ϕ) = cos(ϕ). (48)

We note that Assumptions 1 and 2 of Definition 4 are satisfied by this decomposition. For
the definition of a bounding function U , i.e., Assumption 3, we have

sup
x∈T

N∑
i=1

ciϕ(x, x(i)) = sup
x∈T

N∑
i=1

ci

d∑
j=1

wj(xj − x(i)
j ) = sup

x∈T

d∑
j=1

N∑
i=1

ciwj(xj − x(i)
j ) =

sup
x∈T

d∑
j=1

(
N∑
i=1

ci

)
wjxj −

d∑
j=1

N∑
i=1

wjx
(i)
j =

d∑
j=1

sup
x∈T

w̄jxj − β,

where w̄j =
(∑N

i=1 ci

)
wj and β =

∑d
j=1

∑N
i=1wjx

(i)
j . As the above is a linear form, we

have that the supremum of w̄jxj occurs in the point x∗j = xUj if w̄j ≥ 0 and in x∗j = xLj
otherwise. Thus, we have that Uk2(c) =

∑d
j=1 w̄jx

∗
j − β is a valid upper-bound function for

the sub-kernel k2.
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Non-Stationary Kernel In the non-stationary case, we have:

Σx′,x′′ =
K∑
k=1

σ2
kk̄
(
x′ � θ(k), x′′ � θ(k)

)
Ψk(x

′)TΨk(x
′′),

where θ(k) ≥ 0, k̄ is a positive semi-definite, continuous and integrable function and

Ψk(x) =
[
cos
(
xTw

(k)
1

)
+ cos

(
xTw

(k)
2

)
, sin

(
xTw

(k)
1

)
+ sin

(
xTw

(k)
2

)]
.

In particular we choose

k̄
(
x′ � θ, x′′ � θ

)
= k(x′ � θ)k(x′′ � θ) = ex

′�θex
′′�θ = e

∑
j θj(x

′
j+x

′′
j ).

Proceeding similarly to the case of stationary kernels, we can analyse each summand and
factor in isolation. The final decomposition can then be obtained by using the addition and
multiplication formulas for kernel decompositions derived in Appendix B.5 and B.6.

For k̄ (x′, x′′), we select

ϕ(x′, x′′) =
∑
j

θj(x
′
j + x′′j )

ψ(ϕ) = eϕ.

Since ϕ has exactly the same shape as for that in Equation (47), a similar argument can be
used for finding the upper-bound function.

It remains only to find a decomposition for Ψk(x
′)TΨk(x

′′). In particular, we have

Ψ(x′)TΨ(x′′) =
[
cos(x′Tw1) + cos(x′Tw2)

] [
cos(x′′Tw1) + cos(x′′Tw2)

]
+
[
sin(x′Tw1) + sin(x′Tw2)

] [
sin(x′′Tw1) + sin(x′′Tw2)

]
= cos(x′Tw1) cos(x′′Tw1) + cos(x′Tw1) cos(x′′Tw2)

+ cos(x′Tw2) cos(x′′Tw1) + cos(x′Tw2) cos(x′′Tw2)

+ sin(x′Tw1) sin(x′′Tw1) + sin(x′Tw1) sin(x′′Tw2)

+ sin(x′Tw2) sin(x′′Tw1) + sin(x′Tw2) sin(x′′Tw2)

Again, we can focus on the single factor from the equation above, and rely on the addi-
tion and multiplication formulas to obtain the overall result. We consider the first factor,
cos(x′Tw1) cos(x′′Tw1), and select:

ϕ(x′, x′′) = cos(x′Tw1) cos(x′′Tw1)

ψ(ϕ) = ϕ.

For the computation of the upper-bound function, we have the following:

sup
x

∑
i

ci cos(x(i),Tw1) cos(xTw1) ≤
∑
i

sup
x
ci cos(x(i),Tw1) cos(xTw1) =

∑
i

sup
x
γi cos(xTw1),

where we define γi = ci cos(x(i),Tw1). It is thus straightforward to find the maximum of the
right-hand-side equation by inspecting the derivatives of the cosine function.
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Figure 7: Convergence of upper and lower bounds to the maximum and minimum estimated
via grid search for the Synthetic2D data set for varying values of γ. Each column
corresponds to the converging computation of the branch-and-bound algorithm
for up to a maximum specified number of iterations, namely (from left to right):
10, 100 and 10000. Top row: Lower bound (solid line) and estimated minimum
(dashed line) for a GP trained on the Synthethic2D data set on a test point from
class 2. Bottom row: Upper bound (solid line) and estimated maximum (dashed
line) for a GP trained on the Synthethic2D data set on a test point from class 1.
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Figure 8: Boxplots of the empirical distribution for the gap (πgap) between the bound and
the optimum value estimated for 50 test points selected at random from the Syn-
thetic2D test data set plotted against the number of branch-and-bound iterations.

B.8 Convergence of Kernel Bounding functions

As stated in the proof of Theorem 14, the finite-time convergence of our branch-and-bound
methodology relies on the convergence discussed in Propositions 4 and 7, which in turn
rests on the convergence of the kernel bounding function U to the actual supremum as the
diameter of the input region T shrinks to zero.

The convergence of U itself naturally depends on the explicit form derived for each
specific kernel type. For the kernels that we have discussed above the following observations
hold, from which convergence can be shown to follow.

For the squared-exponential kernel, the rational quadratic kernel, the Matèrn kernel
and for the kernel addition, the bound U we provide is the exact analytical solution of the
supremum computations. As a consequence, the bounds trivially converge as the compact
region T decreases in size.

Regarding the periodic kernel, in Section B.4 we have shown how to compute a bounding
function U that is an over-approximation of the supremum. The over-approximation arises
because, in the equations for the supremum computation, we pass the supremum under
the sign of summation (Equation 41). However, it is easy to see that, for every finite
set of continuous functions gi(x) : Rm → R, i = 1, . . . , N , if we set r = diam(T ) then
supx∈T

∑N
i=1 gi(x) is equal to

∑N
i=1 supx∈T gi(x) in the limit of r → 0, while T remains

compact. Therefore, the bound U in Equation (42) converges to the actual supremum as
T shrinks, and hence the branch-and-bound computation on the periodic kernel converges
too.

For the multiplication of kernels, McCormick inequalities are known to converge to the
actual multiplication when the region of variability of the multiplication variables decreases
(McCormick, 1976), and thus convergence of the bound U in the case of multiplication of
kernels ultimately depends on the convergence of the upper and lower bounding Σ′L,Σ

′
U ,Σ

′′
L

and Σ′′U that we compute. These, in turn again, depend on the specific forms of the sub-
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kernels. If the kernels used are squared-exponential, rational quadratic, Matèrn kernel,
periodic kernel or their addition, then convergence follows by the above argument.

Finally, for the generalised spectral kernels, in the stationary case we have that for
kernels derived as a summation or multiplication of kernels, for which we compute the
exact form of U , convergence follows as above. For the non-stationary case, we have to
compute supx

∑
i ci cos(x(i),Tw1) cos(xTw1), for which we again give an upper bound by

swapping the summation and the supremum signs, as we did in the case of the periodic
kernel. Hence, convergence of the function U as T reduces in size follows by a similar
argument.

Appendix C. Empirical Convergence Analysis

We empirically investigate the convergence of our branch-and-bound methodology on two
points selected from the Synthetic2D test data set. In particular, as an exact computation
of πmin(T ) and πmax(T ) is not possible, we compare the bounds with an empirical approx-
imation obtained by discretising each γ-ball using 10000 grid points, and computing the
minimum and maximum over the grid by brute force search. We refer to the minimum and
maximum thus estimated, respectively, as π̂min and π̂max.

We report the results of this analysis in Figure 7 for two specular points selected from
the test set, namely [−0.4, 0.4] (top row) and [0.4,−0.4] (bottom row). We vary γ from 0
to 1 and report the results for three different values of the maximum number of branch-
and-bound iterations (from left to right: 10, 100 and 10000). First, we empirically confirm
that the bounds are entirely safe, since the lower bound is always below π̂min and the upper
bound is always above π̂max. It is interesting to note that there is a non-trivial relationship
between the value of γ and the tightness of the bounds. When γ is equal to 0.4 the point
that optimises the adversarial classification probability happens to be one of the vertices
of the initial search space (i.e., the point [0, 0]), to which the branch-and-bound algorithm
immediately converges. Convergence is slower when the optimal points lie further away
from the vertices of the initial search space. However, after 10000 iterations the two curves
overlap almost perfectly. In Figure 8, we show the boxplots of the empirical distribution
for the gap (πgap) between the bound and the optimum value estimated for 50 test points
selected at random. After 250 iterations the gap between our bound and the brute force
empirical estimation is already, on average, almost zero.
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