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Abstract

Supervised training of neural networks requires a large amount of manually annotated
data and the resulting networks tend to be sensitive to out-of-distribution (OOD) data.
Self- and semi-supervised training schemes reduce the amount of annotated data required
during the training process. However, OOD generalization remains a major challenge for
most methods. Strategies that promote smoother decision boundaries play an important
role in out-of-distribution generalization. For example, embedding propagation (EP) for
manifold smoothing has recently shown to considerably improve the OOD performance for
few-shot classification. EP achieves smoother class manifolds by building a graph from
sample embeddings and propagating information through the nodes in an unsupervised
manner. In this work, we extend the original EP paper providing additional evidence and
experiments showing that it attains smoother class embedding manifolds and improves
results in settings beyond few-shot classification. Concretely, we show that EP improves
the robustness of neural networks against multiple adversarial attacks as well as semi- and
self-supervised learning performance.

Keywords: regularization, semi-supervised learning, self-supervised learning, adversarial
robustness, few-shot classification

1. Introduction

Deep convolutional networks have achieved state-of-the-art performance in many machine
learning tasks, like image classification (Krizhevsky et al., 2012), object detection (Long
et al., 2015), and image segmentation (Ren et al., 2015). However, due to the huge number
of parameters of these models, a considerably large amount of training data is typically
required to prevent overfitting and achieve generalization. Despite having visual data easily
available in large quantities, the number of reliably and precisely annotated images is rela-
tively scarce and, in most cases, such annotations performed by humans are very expensive
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to obtain (Kuznetsova et al., 2020). In order to alleviate the lack of enough labelled data,
researchers have designed different machine learning frameworks that minimize the need
of annotations: transfer learning where the knowledge acquired by a deep learning model
trained on one task is used to retrain the model on another similar task (Yosinski et al.,
2014); few-shot learning (FSL) which uses prior knowledge in order to generalize to un-
seen samples from a minimal amount of annotated training data (Fei-Fei et al., 2006); and
other popular methodologies like semi-supervised learning (Chapelle and Zien, 2005) and
unsupervised learning (He et al., 2020) which leverage unlabeled data to improve a model’s
performance on a downstream task.

However, one of the key challenges still present in all of the aforementioned training
frameworks is their ability to generalize beyond the original training distribution, or out-
of-distribution (OOD) generalization. In other words, when the test distribution differs too
much from the training distribution, models tend to provide incorrect predictions with a
strikingly high confidence. This weakness of neural models is exploited by the so-called
adversarial attacks (Szegedy et al., 2013). Adversarial attacks generate perturbations on
the input image that are imperceptible to the human eye but make trained models with
near perfect performance yield to incorrect predictions with high confidence. Fortunately,
different strategies have been proposed to increase the robustness of deep models against
adversarial attacks, like promoting smoother decision boundaries with techniques such as
manifold mixup (Verma et al., 2019a). The idea behind this technique is to push the decision
boundaries far away from the data, and it has proven to work well against adversarial
perturbations while improving results in semi- and self-supervised settings (Chapelle and
Zien, 2005).

A recent work on few-shot learning proposes an embedding propagation (EP) tech-
nique (Rodŕıguez et al., 2020) for improving OOD generalization. EP computes a set of
interpolations from the network output features based on their similarity in a graph. This
graph is built taking into account pairwise similarities of the features using the radial basis
function (RBF). Thus, EP is non-parametric and it can be applied on top of any feature
extractor but also as part of a network, referred to EPNet in (Rodŕıguez et al., 2020). This
way, EP allows any neural network to generate a regularized manifold for both training and
testing. Since using interpolated embeddings result in smoother class embedding manifolds
and an increased robustness to noise, and these properties have been shown to be important
for generalization (Bartlett and Shawe-Taylor, 1999; Lee et al., 1995; Verma et al., 2019a)
and semi-supervised learning (Chapelle and Zien, 2005), the question is whether EP would
be also beneficial beyond the few-shot learning scenario, and how EP could be efficiently
applied in other learning frameworks.

This paper aims to answer the previous question by extending (Rodŕıguez et al., 2020)
showing that, in addition to few-shot learning, EP can be used to improve adversarial ro-
bustness and semi-supervised/self-supervised learning performances of classifiers. We also
present additional evidence showing how EP achieves smoother class embedding manifolds.
Therefore, the scope of this work differs from (Rodŕıguez et al., 2020) in that we do not aim
to achieve state-of-the-art few-shot learning performance but to improve our understanding
of EP. In summary, the contributions of this paper are: (i) we show that EP increases the
smoothness of the classification surface as measured with the Laplacian; (ii) EP increases
adversarial robustness; (iii) EP improves the performance of self- and semi-supervised learn-
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ing algorithms by acting as a natural hard negative mining method; and (iv) EP improves
few-shot learning classification performance.

2. Related Work

In this paper, we study the effect of EP as a manifold regularization method and extend its
use beyond few-shot learning to adversarial attacks, self- and semi-supervised learning. So
we next review the literature for each one of these fields.

Regularization is a major area of research in machine learning (Srivastava et al., 2014;
Wan et al., 2013). Whether it is directly enforcing constraints on networks weights (Ioffe
and Szegedy, 2015; Salimans and Kingma, 2016; Rodŕıguez et al., 2016), or regularizing the
embedding manifold (Belkin et al., 2006; Tokozume et al., 2018; Zhang et al., 2018), regu-
larization has been shown to aid models generalize. For example, TPN (Liu et al., 2019b)
introduces a meta-learning approach to label propagation by learning a graph construction
module that exploits the manifold structure in the data. EPNet (Rodŕıguez et al., 2020)
attempts to smooth the class embedding manifold by applying an embedding propagation
operation on extracted features. Similarly, manifold mixup (Verma et al., 2019a) leverages
interpolations of the hidden layers of the network as an additional training signal and it has
been shown to improve adversarial robustness and work well in a self-supervised setting.
Techniques similar to embedding propagation have also been applied as a message passing
algorithms in graph neural networks (Klicpera et al., 2018; Xhonneux et al., 2020), here we
recast it as a regularization technique.

Adversarial attacks were introduced by (Szegedy et al., 2013). The authors showed
that convolutional neural networks are extremely sensitive to small perturbations in the
input image. So visual perturbations imperceptible to the human eye are sufficient to cause
the model to incorrectly misclassify an example with very high confidence.

Adversarial attacks can be classified into three categories depending on the knowledge
of the attacker about the targeted model: white-box, gray-box and black-box. In a white
box setting the adversary has full knowledge of the target model, including its parameters
and architecture, so the attacker can easily craft adversarial examples by any means. In
a gray-box threat model, only the structure of the target model is known to the attacker.
Lastly, in a black-box threat model only the task of the target model is known (Papernot
et al., 2016a), thus the attacker has to resort to query-level access to the black-box model in
order to generate adversarial examples (Chakraborty et al., 2018). Since the introduction
of FGSM (Szegedy et al., 2013), many adversarial attacks have been proposed, such as
projected gradient descent (PGD) (Madry et al., 2017), Jacobian-based saliency map attack
(JSMA) (Papernot et al., 2016b) and Fast Adaptive Boundary attack (FAB) (Croce and
Hein, 2020).

Semi-supervised learning aims to leverage a set of unlabeled data in order to improve
the performance on a downstream task (Chapelle and Zien, 2005). (Berthelot et al., 2019)
categorize the different semi-supervised learning methods into three categories: consistency
regularization, entropy minimization, and traditional regularization, as detailed next.

Consistency regularization consists of performing extensive data augmentation (Cireşan
et al., 2010; Simard et al., 2003) to expand the decision boundaries of classifiers, so that they
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remain consistent on unlabeled data (Laine and Aila, 2016; Sajjadi et al., 2016; Tarvainen
and Valpola, 2017; Miyato et al., 2018).

Entropy minimization methods ensure that decision boundaries only pass through low-
density regions, which is a common assumption in semi-supervised learning (Chapelle and
Zien, 2005). This property is here enforced by minimizing the entropy of the model outputs
on unlabeled data (Grandvalet et al., 2005; Miyato et al., 2018; Berthelot et al., 2019). Like-
wise, pseudo-label methods can reduce the entropy by directly discretizing the predictions
of the model on unlabeled data (Lee, 2013).

Regularization techniques for semi-supervised learning constrain models to increase their
bias in order to improve their generalization on unlabeled data (Zhang et al., 2016). The
MixUp technique (Zhang et al., 2018) is a popular regularization method that has been
leveraged in multiple works to improve semi-supervised learning performance. In essence,
the prediction at an interpolation of unlabeled points is forced to be consistent with the
interpolation of the predictions at those points, thus moving the decision boundary to low-
density regions of the data distribution. This strategy has been applied for interpolation
consistency training (ICT) (Verma et al., 2019b) and manifold mixup (Verma et al., 2019a).
Similarly, the Mixmatch technique (Berthelot et al., 2019) uses MixUp to mix labeled and
unlabeled data to produce pseudo-labels.

Embedding propagation is also considered as a MixUp strategy, since it leverages em-
bedding interpolations based on a similarity graph, and intersects with the family of trans-
ductive semi-supervised learning methods (Vapnik, 1999). These methods consider the
relationship between instances in the test set to predict them as a whole, improving the
performance of classifiers in the low-data regime. Likewise, embedding propagation also
considers the relationships between instances by forming a graph from the query samples
in an episode.

Self-supervised learning methods train models on unlabeled data by minimizing a
contrastive learning loss or by learning to solve a pretext task. Current state-of-the-art
self-supervised learning methods such as MoCo (He et al., 2020; Chen et al., 2020c) and
SimCLR (Chen et al., 2020a,b), are based on contrastive learning: these methods use
contrastive losses to measure the similarities of sample pairs in representation space. Ap-
proaches based on pretext tasks propose to solve an artificially designed proxy task. The
underlying assumption is that by solving this proxy task, the model will acquire general
knowledge required to solve the downstream tasks. A wide range of pretext tasks have been
proposed, e.g., colorization (Zhang et al., 2016; Ye et al., 2019), recovering corrupted in-
put (denoising) (Vincent et al., 2008), forming pseudo-labels by transformations of a single
image (Dosovitskiy et al., 2014), patch ordering (Doersch et al., 2015; Noroozi and Favaro,
2016) or tracking (Wang and Gupta, 2015).

Recent works (Cao et al., 2020; Chuang et al., 2020; Iscen et al., 2018; Ho and Vasconce-
los, 2020; Wu et al., 2020; Xie et al., 2020) also investigate approaches around the selection
of negative examples in self-supervised learning. (Kalantidis et al., 2020) proposed using
the hardest existing negatives to synthesize additional hard negatives on the fly, i.e., di-
rectly in the feature space, by mixing two of the hardest negatives or by mixing the query
itself with one of the hardest negatives. Similarly, applying embedding propagation in a
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self-supervised setting, also creates hard negatives and positives on the fly as a byproduct
of the EP algorithm.

Few-shot learning denotes those methods that learn to solve a task from a very reduced
set of labelled data. For example, one-shot classification methods learn a classifier with just
one example per class. Most few-shot learning methods are included in two broad categories:
meta-learning and transfer-learning. Meta-learning aims to learn a representation that can
be robustly adapted to a new problem with few samples. For instance, authors in (Snell
et al., 2017; Vinyals et al., 2016; Sung et al., 2018; Oreshkin et al., 2018) embed input data
into a Hilbert space and perform distance-based classification. Another examples are those
optimization-based approaches (Ravi and Larochelle, 2016; Finn et al., 2017; Yoon et al.,
2019) which learn a good initialization that can be adapted to solve a specific problem in
few optimization steps.

On the other hand, transfer-learning (Chen et al., 2019; Mensink et al., 2012) aims to
learn generalisable representations from training data so that any new task can easily be
solved with a simple classifier. Many of these approaches build on top of a pre-trained feature
extractors (Rusu et al., 2018; Wang et al., 2019). For example, authors in (Mangla et al.,
2019) introduced self-supervision to learn more transferable representations. Also, graph-
based approaches (Hu et al., 2020b; Kim et al., 2019; Liu et al., 2019b) have been proposed
to leverage the relationships between the samples in each episode by forming a graph and
propagating information between nodes. In particular, Embedding Propagation (Rodŕıguez
et al., 2020) is a graph-based approach that uses a non-parametric operation (Zhou et al.,
2004) to propagate information between the nodes, achieving smoother decision boundaries
and better few-shot generalization. In this work we show that EP offers improvement
beyond few-shot learning and we extend it to other settings such as adversarial robustness
and self- and semi- supervised learning. Different from (Rodŕıguez et al., 2020), the goal of
this work is to delve deeper into the benefits of EP rather than achieving state-of-the-art
performance.

3. Proposed Method

In this paper we extend the embedding propagation method introduced by (Rodŕıguez et al.,
2020), whose basis is described in this section. Given a set of features Z ∈ R extracted from
some input X ∈ R by a feature extractor f : X → Z, EP maps those features to a set of
interpolated features. Finally, the output of EP is fed into a classifier to label the images.
(Rodŕıguez et al., 2020) found that EP smooths the classification surface by pushing the
boundaries away from the data, improving generalization (Bartlett and Shawe-Taylor, 1999;
Lee et al., 1995). The EP approach differs from label propagation (Zhou et al., 2004) and
TPN (Liu et al., 2019b) in that EP is completely unsupervised see Figure 1. Furthermore
TPN is a meta-learning approach, to label propagation, hence it requires learning a graph
construction module beforehand. Next we describe the EP algorithm in more detail.

In the image classification domain, embedding propagation takes a set of feature vectors
zi ∈ Rm, i ∈ 1..|Z|, obtained from applying a feature extractor (CNN) to the input images.
Then, it outputs a set of embeddings z̃i ∈ Rm through the following two steps. Firstly, for
each pair of features (i, j), the model computes the distance as d2

ij = ‖zi − zj‖22 and the
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Ground Truth

EP

Label Propagation

Classifier

Figure 1: Illustration of the embedding propagation method, in comparison with label
propagation (LP). The grey nodes represent unlabeled samples. Since EP is completely
unsupervised, it does not requires labels to reorganize the manifold and create a smooth
classification surface. In contrast, LP requires initial labels. Note how EP increases the
similarity between all pairs of points and forces samples that are close together to have
similar classification score. Best viewed in color.

adjacency matrix as Aij = exp
(
−d2

ij/σ
2
)

, where σ2 is a scaling factor and Aii = 0, ∀i, as

done in TPN (Liu et al., 2019b). The authors of the original paper chose σ2 = V ar
(
d2
ij

)
which was found to stabilize training.

Secondly, the Laplacian of the adjacency matrix is computed,

L = D−
1
2AD−

1
2 , Dii =

∑
j Aij . (1)

Finally, the propagator matrix P is obtained using the label propagation formula de-
scribed in (Zhou et al., 2004) as,

P = (I − αL)−1, (2)

where α ∈ R is a scaling factor, and I is the identity matrix. As a result, the embeddings
are obtained as follows,

z̃i =
∑
j

Pijzj . (3)

Notice that z̃i are now a weighted sum of their neighbors. Thus, we hypothesize that un-
desired noise in the feature vectors is reduced after being averaged out by the embedding
propagation operation. This operation is simple to implement and compatible with a wide
range of feature extractors and classifiers. Further, note that the computational complex-
ity of our approach is O(n2), which is similar to the complexity of the label propagation
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(b) Self-supervised setting

Embedding 
Propagation
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Batch Encode

(c) Few-shot pretraining phase
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Propagation
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(d) Few-shot episodic fine-tuning and evaluation

Figure 2: Overview of the EPNet training procedure across different tasks. (a) Non-
transductive (inductive) version of the embedding propagation algorithm. First, the proto-
types P are built during the last training epoch. Then, at test time, EP is applied on the
prototypes along with a single test sample. (b) Integration of the embedding propagation
algorithm in MoCo. During the pre-training phase EP is applied on the keys and queries
and the output is used in a secondary contrastive loss Lq(q′, k′). For few-shot learning (c,
d), the model is trained to learn general feature representations using a standard classi-
fication loss LC and an auxiliary rotation loss LR (left). Then, the model is fine-tuned
using episodic learning to learn to generalize to novel classes by minimizing the standard
classification loss LC and a label propagation loss LP (right).

algorithm (Zhou et al., 2004) as discussed in (Wang et al., 2013). Further, note that the
computational complexity of Eq. 2 is negligible for few-shot episodes Liu et al. (2019b)
since the size of the episode is smallIscen et al. (2019).

Smoothness measure We use the Laplace operator ∆ or Laplacian to measure the
smoothness of the decision surface around a set of embeddings before and after applying
the embedding propagation. The Laplacian is given by the sum of second partial derivatives
of a function with respect to each independent variable:

∆f(x, y) =

n∑
i=1

δ2f

δx2
i

+
δ2f

δy2
i

, (4)

where x and y represent the two dimensions in the Cartesian coordinate frame and
f is a classification function. Since we are only interested on the Laplacian around the
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decision boundary, we generate the minimal mesh that contains all the datapoints and use
the discrete laplace operator in the form of a convolution:

∆f(x, y) = D2
xy ∗ f, (5)

where ∗ is the convolution operator and D2
xy is the Laplacian convolution kernel (Jain

et al., 1995). For each point in the grid, the absolute value of the magnitude of the Laplacian
indicates a sharp change in the decision boundary. Thus, we approximate the total surface
smoothness as the the definite integral of the Laplacian on the 2d grid. Since the grid is
discrete, we compute smoothness S as the inverse of the summation over all the grid values:

S =
∑
y

∑
x

1

1 +
∣∣∆f(x, y)

∣∣ . (6)

4. Experiments

Next we present additional evidence of how EP smooths the classification surface and adapt
it to different settings: adversarial attacks, self- and semi-supervised learning and few-shot
learning. Although EP is applied at different stages of the machine learning pipeline for
each of the following experiments (see Figure 2), the EP algorithm will remain unchanged
across all experiments.

4.1 Datasets

miniImagenet (Ravi and Larochelle, 2016) consists of a subset of the Imagenet
dataset (Russakovsky et al., 2015) comprised of 100 classes with 600 images per class.
Classes are divided in three disjoint sets of 64 base classes, 16 for validation and 20 novel
classes.

tieredImagenet (Ren et al., 2018) is a more challenging subset of the Imagenet dataset
(Russakovsky et al., 2015) where class subsets are chosen from supersets of the wordnet
hierarchy. The top hierarchy has 34 super-classes, which are divided into 20 base (351
classes), 6 validation (97 classes) and 8 novel (160 classes) categories.

CIFAR10 (Krizhevsky et al., 2009) is comprised of 60,000 32 × 32 colour images
divided into 10 classes, with 6,000 images per class. There are 50,000 training images and
10,000 test images.

CIFAR100 (Krizhevsky et al., 2009) is just like the CIFAR10 dataset, except it has
100 classes containing 600 images each. There are 500 training images and 100 testing
images per class.

MNIST (LeCun and Cortes, 2010) is a dataset of 70,000 small 28 × 28 pixels gray-
scale images of handwritten single digits between 0 and 9 (10 classes). There are 60,000
examples in the training dataset and 10,000 in the test dataset.

Fashion-MNIST (Xiao et al., 2017) is a dataset of Zalando’s article images consisting
of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a
28× 28 grayscale image, associated with a label from 10 classes.
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(a) Without EP (b) With EP

0.10 0.33 0.55 0.78 1.00

0.
95

0.
96

0.
97

0.
99

1.
00

0.5

1.0

1.5

2.0

2.5

Sm
oo

th
ne

ss

(c) Manifold smoothness

Figure 3: (a, b) Comparison of the class embedding manifold without and with embedding
propagation on a toy classification dataset. Notice how without EP (a) the adversarial
examples (cyan) cross the decision boundary and are misclassified, the smoothness achieved
by applying EP (b) at test time on the same classifier prevents this misclassification. (c)
Effect of α and σ on the smoothness of the class embedding manifold. The higher the α and
the smaller the value of σ the smoother the manifold becomes, notice the lower diagonal of
the matrix. Smoothness is given by Equation 6

STL-10 (Coates et al., 2011) is a dataset of 96 × 96 color images, categorized into
10 classes, with 500 training images and 800 test images per class. The dataset also has
100,000 unlabeled images for unsupervised learning. Images were drawn from Imagenet
labeled examples.

4.2 Manifold smoothness

The embedding propagation algorithm is based on the closed-form solution of the label
propagation algorithm proposed by (Zhou et al., 2004). One of the main advantages of
label propagation is that the decision boundaries are smooth with respect to the structure
of the data (Zhou et al., 2004) and this is a desirable property for semi-supervised learning
algorithms (Chapelle and Zien, 2005) since it encourages points that are close together in
embedding space to share the same label. This is important to propagate label informa-
tion from labeled to unlabeled datapoints. We have included this explanation in Section
4.2. Here, we investigate if the decision boundaries remain smooth when propagation is
performed directly in embedding space (see Equation 3) instead of the output space.

Experimental setup According to (Learning, 2016) a smooth function is that in which
f(x) = f(x+ε) for small values of ε. In order to assess smoothness before and after applying
embedding propagation, we generate a 2D toy dataset of randomly sampled embeddings
with their corresponding labels. The dataset has two classes and 50 data points per class.
Samples from both classes are drawn from two different, opposing gaussians. We resorted
to a low-dimensional dataset since other real datasets such as miniImagenet would require
dimensionality reduction techniques for visualization, resulting in loss of information.
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Figure 4: Interpolation of embedding pairs for two random data points of the miniImagenet
dataset with different classes vs probability of belonging to the first of these two classes. The
right figure shows the class probability for Resnet-12 embeddings extracted from EPNet,
and the left figure (--Net) from the same network trained without embedding propagation.
The scalar α controls the weight of the first embedding in the linear interpolation.

Results Defining a term to empirically measure the smoothness of the classification sur-
face allows us to measure how the hyperparameters that control embedding propagation
(Sec 3) affect the smoothness of the class embedding manifold. In EP (Eq. 2), the hy-
perparameter α controls the amount of propagation performed in the graph and σ is the
radius of the RBF function used to calculate the similarity matrix. Therefore, the value of
α should be directly correlated with S (Eq. 6) and the value of σ inversely correlated with
S. Figure 3c shows that the former hypothesis holds, thus showing that α and σ control the
smoothness of the class embedding manifold. Furthermore, we show the smoothing effect of
EP on a toy classification dataset in Figure 3b (more details can be found in the Appendix).
The manifold hypothesis from semi-supervised learning theory holds that smoother deci-
sion boundaries aid generalization, as shown in (Verma et al., 2019a). Hence by applying
EP, encouraging smoother decision boundaries, we improve the classification of adversarial
examples.

Lastly, to further reinforce the smoothness hypothesis, we visualize embedding interpola-
tions with and without embedding propagation. We use EPNet to obtain image embeddings
and select a set of random pairs zi, zj that belong to different classes yi, yj . We then in-
terpolate between each pair as z̃ = α · zi + (1 − α)zj where α ∈ [0..1], and plot this value
against p(yi|z̃) in Figure 4. We also plot p(yi|ẑ) where embeddings were obtained using
EPNet without embedding propagation (--Net). We observe that EPNet has significantly
smoother probability transitions than --Net as the embedding z̃ changes from zi to zj .
In contrast, --Net yields sudden probability transitions. This suggests that embedding
propagation encourages smoother decision boundaries.

4.3 Adversarial robustness

Few-shot learning algorithms are tested outside of the original distribution given that few-
shot learning datasets use a disjoint set of test classes. Similarly, adversarial attacks try
to modify a sample to move it outside of the original training distribution in order to
cause unexpected behavior of the model. (Verma et al., 2019a) showed that smoother
decision boundaries improve adversarial robustness. Likewise, in the previous experiment,
we have shown that embedding propagation has a smoothing effect on the class embedding

10



A Closer Look at Embedding Propagationfor Manifold Smoothing

Table 1: Adversarial attacks results across four different datasets. Notice that manifold
mixup fails against iterative perturbations (PGD (Madry et al., 2017), FAB (Croce and
Hein, 2020)), while EP, despite only being applied at test time, increases adversarial ro-
bustness considerably. Furthermore, a combination of both regularization methods improves
results substantially across datasets for (Croce and Hein, 2020). We report the average of
five different runs. Vanilla refers to a setting where neither EP nor mixup is applied.

CIFAR10 CIFAR100 MNIST FashionMNIST

No perturbation

Vanilla 93.65 ±1.23 76.37 ±1.41 99.37 ±0.04 94.59 ±0.18

Mixup 93.49 ±0.65 72.72 ±1.89 99.21 ±0.12 94.78 ±0.22

EP 94.30 ±0.39 76.13 ±1.27 99.32 ±0.08 94.66 ±0.15

EP + Mixup 92.71 ±0.46 71.76 ±1.07 99.39 ±0.06 94.53 ±0.20

FGSM (Goodfellow et al., 2014)

Vanilla 17.24 ±1.09 6.59 ±0.23 61.77 ±20.37 45.07 ±1.73

Mixup 18.78 ±2.55 5.46 ±0.57 84.234 ±10.98 38.88 ±10.64

EP 31.24 ±0.67 9.59 ±0.47 84.44 ±7.40 61.74 ±4.65

EP + Mixup 20.89 ±2.69 6.38 ±0.64 81.34 ±10.68 57.92 ±7.74

PGD (Madry et al., 2017)

Vanilla 0.006 ±0.004 0.01 ±0.01 22.82 ±12.15 0.81 ±0.46

Mixup 0.03 ±0.01 0.02 ±0.01 29.09 ±14.20 2.45 ±0.45

EP 11.70 ±0.90 3.01 ±0.73 43.6 ±23.90 22.99 ±5.97

EP + Mixup 8.79 ±0.75 0.85 ±0.09 52.86 ±24.04 19.01 ±7.22

FAB (Croce and Hein, 2020)

Vanilla 0.58 ±0.07 0.09 ±0.02 0.03 ±0.01 0.09 ±0.02

Mixup 0.69 ±0.11 0.09 ±0.01 1.91 ±2.04 3.16 ±2.20

EP 5.64 ±0.33 5.85 ±0.21 14.20 ±6.28 10.07 ±0.94

EP + Mixup 9.95 ±0.98 8.24 ±1.35 61.99 ±20.41 35.12 ±3.16

manifold, similar to the effect caused by manifold mixup (Verma et al., 2019a). Therefore,
in this section we explore whether similar benefits are observed from applying embedding
propagation.

Experimental setup Adversarial attacks exploit the linear nature of neural networks
and their difficulty generalizing to OOD data. They imperceptibly modify an input sample
as to cause missclassification with high confidence. In this work we focus on white box
attacks, where the attacker has full access to the model gradients. Concretely, we evaluate
our method on: FGSM (Goodfellow et al., 2014), PDG (Madry et al., 2017) and FAB (Croce
and Hein, 2020) attacks.

In this setting, we only consider one test sample at a time in order to make embedding
propagation non-transductive and decouple its performance from the ordering of the batch.
However, EP requires multiple embeddings in order to build a graph (Eq. 1). To address
this issue, we compute class prototypes from the training dataset and use those prototypes
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Table 2: Self-Supervised results for STL-10 and CIFAR100 datasets where both Manifold
mixup and embedding propagation are applied in the same way during MoCo pre-training.
We report the average of five different runs.

STL-10 CIFAR100

MoCo 85.28 ±0.75 74.68 ±0.18

MoCo + Manifold Mixup 85.75 ±0.48 74.85 ±0.31

MoCo-EP 86.02 ±0.65 75.02 ±0.56

to form a graph for each test sample. Let Z ∈ Rk be the output of a feature extractor, C
the set of classes in our dataset and N the total of samples in our training set. Then the
prototypes matrix is defined as P ∈ Rk×C and it is computed as:

Pc =
1

Nc

N∑
i∈c

zi, ∀c ∈ C (7)

where Nc is the number of examples belonging to class c. Notice that obtaining the pro-
totype matrix P does not require any additional training, a forward pass on the training
dataset is all that is required. At test time, we apply EP on the concatenation of P with
the embedding of single data point zi, resulting in z̃i (Eq. 2). Then the classifier is applied
to z̃i . This process is illustrated in Figure 2a. Note that we only apply the embedding
propagation operation at test time, when the adversarial attacks are performed, since we
observed similar results when applying it both at train and at test time.

Results As seen in Table 1 EP increases adversarial robustness against strong iterative
perturbations, with an average improvement with respect to manifold mixup of 12.17%
against (Madry et al., 2017) and 7.85% against (Croce and Hein, 2020). Furthermore, we
show that EP and manifold mixup are not mutually exclusive, and they can be combined
to improve performance against FAB attacks (Croce and Hein, 2020) with an improvement
of up to 47%. It is worth noticing that manifold mixup, improves adversarial robustness
against single step attacks, but fails against iterative perturbations, despite being applied
during training. Conversely, EP improves robustness against both single and multiple step
attacks, while being applied at inference time only with no additional training required.

4.4 Self-supervised Learning

We experiment on the self-supervised and semi-supervised learning scenarios, where the
model has to learn from an unlabeled set of examples. Mixup (Zhang et al., 2018) has been
shown to improve results in these scenarios. Works such as (Verma et al., 2020; Kalantidis
et al., 2020) leverage embedding interpolations to create hard positives and hard negatives,
resulting in improved self-supervised learning performance.

Manifold mixup (Verma et al., 2019a) and EP (Rodŕıguez et al., 2020), also have a
smoothing effect on the classification surface. In this section, we explore how embedding
propagation compares to manifold mixup in a self-supervised scenario. Notice that this effect
is a natural byproduct of Equation 3 and thus the embedding propagation algorithm itself

12
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sigmasigma

Figure 5: Alignment and Uniformity values obtained for different values of α and σ on the
STL-10 (left) and CIFAR100 (right) datasets. The x and y axis correspond to −LUniform
and −Lalign of (Wang and Isola, 2020), respectively. Harder positives and negatives make
the embedding space more uniform and less aligned.

requires no modifications from its original implementation to be applied in self-supervised
learning.

Experimental setup We adapt the original MoCo (He et al., 2020) implementation to
integrate embedding propagation. The pre-training process is shown in Figure 2b. In this
setting we use EP to generate new embeddings and use them in an additional contrastive
loss. Consider an encoder that outputs an encoded query q and a momentum encoder that
outputs coded samples k that are keys of a dictionary. Letting only one key k+ to match
the query q, the contrastive loss function used in MoCo can be defined as

Lq(q, k) = −log exp(q · k+/τ)∑K
i=0 exp(q · ki/τ)

, (8)

where τ is a temperature hyper-parameter. We introduce an additional loss where the
embedding propagation is applied; EP (q ⊕ k) to obtain new queries q′ and keys k′. Thus,
the criteria to optimize becomes:

Lq = αLq(q, k) + (1− α)Lq(q′, k′) (9)

where α is a weighting hyper-parameter set to 0.6 (found through random search) for all
experiments. In contrast to label propagation (Zhou et al., 2004), embedding propagation
is completely unsupervised, which makes it possible to apply it during MoCo’s pre-training
phase. For comparison, we also provide results with manifold mixup (Verma et al., 2019a)
applied to q and k in the same way as EP. The main difference between the two methods
is that manifold mixup considers random pairs of samples while EP takes into account the
topology of the data. The hyperparameters manifold mixup’s Dirichlet distribution are the
best found through random search.

Results As seen in Table 2 embedding propagation increases the validation accuracy with
respect to a MoCo baseline by 0.74% in STL-10 and by 0.34% in CIFAR100. EP also outper-
forms manifold mixup in both datasets by 0.27% and 0.17%, respectively. We hypothesize
that the improvement is due to the creation of artificial hard negatives and positives by the
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embedding propagation operation during the training process. In fact, (Verma et al., 2020)
showed that mixup can be used in a self-supervised setting to synthesize hard positives.
Similarly, EP naturally synthesizes hard positives and negatives taking into account the
topology of the data.

Recently (Wang and Isola, 2020) proposed two losses or metrics for assessing the qual-
ity of contrastive learning representations. The first one (Lalign) measures the absolute
distance between representations with the same label, while the second one (LUniform)
measures how uniformly distributed are the representations in the hyper-sphere. In Figure
5, we show how the alignment decreases and the uniformity increases as the α and σ in
the EP operation increase. Indicating that EP helps the proxy task to obtain a better
representation of the embedding space as shown in (Kalantidis et al., 2020) by creating
hard-negatives and positives.

4.5 Few-Shot and Semi-supervised Learning

In this section we review the use of EP in the few-shot learning scenario. First we describe
the experimental setup, then we provide implementation details, and finally we report the
results. Note that we consider transductive few-shot as a form of semi-supervised learning.

Experimental setup We follow the common few-shot learning setup (Vinyals et al.,
2016; Ren et al., 2018) where three datasets are given: a base dataset (Db), a novel dataset
(Dn), and a validation dataset (Dv). The base dataset is composed of a large amount of
labeled images, the novel dataset is composed of labeled images from previously unseen
classes and it is used to evaluate the transfer learning capabilities of a model. Lastly, the
validation dataset Dv contains classes not present in either Db or Dn and is used to conduct
hyperparameter search.

Furthermore, we have access to episodes. Each episode consists of n classes sampled
uniformly without replacement from the set of all classes, a support set S (k examples per
class) and a query set Q (q examples per class). This is referred to as n-way k-shot learning.

Given an episode, inference is performed by sequentially performing embedding and label
propagation on features extracted from the input image. More formally, this is performed
as follows. Let Z̃ ∈ R(k+q)×m be the matrix of propagated embeddings obtained by jointly
applying Eq. 1-3 to the support and query sets. Let P

Z̃
be the corresponding propagator

matrix. Further, let YS ∈ Rk×n be a one-hot encoding of the labels. We compute the logits
for the query set (ŶQ) by performing label propagation as described in (Zhou et al., 2004).

For few-shot learning, we train the model in two phases. During the first phase we train
two linear classifiers parametrized by Wl and Wr, respectively. The first classifier is trained
to predict the class labels of examples in Db. It is optimized by minimizing the cross-entropy
loss,

Lc(xi, yi;Wl, θ) = − ln p(yi|z̃i,Wl), (10)

where yi ∈ Yb and the probabilities are obtained by applying softmax to the logits provided
by the neural network. For fair comparison with recent literature (Mangla et al., 2019;
Gidaris et al., 2019) we also add a self-supervision loss. Hence, the second classifier is
trained to predict image rotations, minimizing the following loss,
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Table 3: Comparison of test accuracy against state-of-the art methods for Few-shot classi-
fication using miniImagenet and tieredImagenet with the 1-shot and 5-shot settings. The
second column shows number of parameters per model in thousands (K). --Net is identical
to EPNet but without EP. We report the average of 600 episodes.

miniImagenet tieredImagenet
Params 1-shot 5-shot 1-shot 5-shot

CONV-4

Matching (Vinyals et al., 2016) 112K 43.56 ±0.84 55.31 ±0.73 - -
MAML (Liu et al., 2019b) 112K 48.70 ±1.84 63.11 ±0.92 51.67 ±1.81 70.30 ±0.08

ProtoNet (Snell et al., 2017) 112K 49.42 ±0.78 68.20 ±0.66 53.31 ±0.89 72.69 ±0.74

ReNet (Sung et al., 2018) 223K 50.44 ±0.82 65.32 ±0.70 54.48 ±0.92 71.32 ±0.78

GNN (Garcia and Bruna, 2017) 1619K 50.33 ±0.36 66.41 ±0.63 - -
TPN (Liu et al., 2019b) 171K 53.75 ±0.86 69.43 ±0.67 57.53 ±0.96 72.85 ±0.74

CC+rot (Gidaris et al., 2019) 112K 54.83 ±0.43 71.86 ±0.33 - -
SIB (Hu et al., 2020a) 112K 58.00 ±0.60 70.70 ±0.40 - -
EGNN (Kim et al., 2019) 5068K - 76.37 ±N/A - 80.15 ±N/A

--Net (ours) 112K 57.18 ±0.83 72.57 ±0.66 57.60 ±0.93 73.30 ±0.74

EPNet (ours) 112K 59.32 ±0.88 72.95 ±0.64 59.97 ±0.95 73.91 ±0.75

RESNET-12

ProtoNets++ (Xing et al., 2019) 7989K 56.52 ±0.45 74.28 ±0.20 58.47 ±0.64 78.41 ±0.41

TADAM (Oreshkin et al., 2018) 7989K 58.50 ±0.30 76.70 ±0.30 - -
MetaOpt-SVM (Lee et al., 2019) 12415K 62.64 ±0.61 78.60 ±0.46 65.99 ±0.72 81.56 ±0.53

TPN (Liu et al., 2019b) 8284K 59.46 ±N/A 75.65 ±N/A - -
Robust-20++ (Dvornik et al., 2019) 11174K 58.11 ±0.64 75.24 ±0.49 70.44 ±0.32 85.43 ±0.21

MTL (Sun et al., 2019) 8286K 61.20 ±1.80 75.50 ±0.80 - -
CAN (Hou et al., 2019) 8026K 67.19 ±0.55 80.64 ±0.35 73.21 ±0.58 84.93 ±0.38

BD-CSPN (Liu et al., 2019a) 7989K 65.94 ±N/A 79.23 ±N/A - -

--Net (ours) 7989K 65.66 ±0.85 81.28 ±0.62 72.60 ±0.91 85.69 ±0.65

EPNet (ours) 7989K 66.50 ±0.89 81.06 ±0.60 76.53 ±0.87 87.32 ±0.64

WRN-28-10

LEO (Rusu et al., 2018) 37582K 61.76 ±0.08 77.59 ±0.12 66.33 ±0.05 81.44 ±0.09

Robust-20++ (Dvornik et al., 2019) 37582K 62.80 ±0.62 80.85 ±0.43 - -
wDAE-GNN (Gidaris and Komodakis, 2019) 48855K 62.96 ±0.15 78.85 ±0.10 68.18 ±0.16 83.09 ±0.12

CC+rot (Gidaris et al., 2019) 37582K 62.93 ±0.45 79.87 ±0.33 70.53 ±0.51 84.98 ±0.36

Manifold mixup (Mangla et al., 2019) 37582K 64.93 ±0.48 83.18 ±0.72 - -
FEAT (Ye et al., 2020) 37582K 65.10 ±0.20 81.11 ±0.14 70.41 ±0.23 84.38 ±0.16

SimpleShot (Wang et al., 2019) 37582K 65.87 ±20 82.09 ±0.14 70.90 ±0.22 85.76 ±0.15

SIB (Hu et al., 2020a) 37582K 70.00 ±0.60 79.20 ±0.40 - -
BD-CSPN (Liu et al., 2019a) 37582K 70.31 ±0.93 81.89 ±0.60 78.74 ±0.95 86.92 ±0.63

LaplacianShot (Ziko et al., 2020) 37582K 74.86 ±0.19 84.13 ±0.14 80.18 ±0.21 87.56 ±0.15

TIM-GD(Boudiaf et al., 2020) 37582K 77.80 ±N/A 87.40 ±N/A 82.10 ±N/A 89.80 ±N/A

--Net (ours) 37582K 65.98 ±0.85 82.22 ±0.66 74.04 ±0.93 86.03 ±0.63

EPNet (ours) 37582K 70.74 ±0.85 84.34 ±0.53 78.50 ±0.91 88.36 ±0.57

Lr(xi, rj ;Wr, θ) = − ln p(rj |z̃i,Wr), (11)

where rj ∈ {0◦, 90◦, 180◦, 270◦}, and p(rj |z̃i,Wr) is the probability of the input being rotated
by rj as predicted by a softmax classifier with weights Wr.

Thus the criteria to optimize in this first phase becomes:

Lc(x, y;Wl, θ) + Lr(x, r;Wr, θ). (12)

In the second phase we use episodic training in order to generalize to novel classes. This
process is illustrated in Figure 2d. In this phase, the model uses two classifiers. The first
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one is based on label propagation, and it computes class probabilities by applying a softmax
to the query set logits ŶQ.

Lp(xi, yi; θ) = − ln p(yi|z̃i, Z̃, YS). (13)

The second classifier is used to predict the base classes as during the pre-training phase,
and thus, it is identical to the Wl-based classifier used in pre-training. It is included to
preserve a discriminative feature representation. Hence, the criteria to optimize becomes:

argmin
θ,Wl

 1
|Q|

∑
(xi,yi)∈Q

Lp(xi, yi; θ) + 1
|S∪Q|

∑
(xi,yi)∈S∪Q

1
2Lc(xi, yi;Wl, θ)

 . (14)

Implementation details For fair comparison with previous work, we used three common
feature extractors: (i) a 4-layer convnet (Vinyals et al., 2016; Snell et al., 2017) with 64
channels per layer, (ii) a 12-layer resnet (Oreshkin et al., 2018), and (iii) a wide residual
network (WRN-28-10) (Rusu et al., 2018; Zagoruyko and Komodakis, 2016). For mini and
tieredImagenet, images are resized to 84× 84. Results for Imagenet-FS and few-shot semi-
supervised learning can be found in (Rodŕıguez et al., 2020). We denote as EPNet the
model resulting of combining these feature extractors with the EP procedure.

We evaluate 2 variations of our method: (i) EPNet as described in Eq. 1-3; (ii) --Net,
which is identical to EPNet but without applying EP.

We also consider the few-shot semi-supervised learning scenario, where we have access
to an unlabeled set of images U . We use the unlabeled set as follows. First, we use the
same inference procedure as previously described to predict the labels ĉU for the unlabeled
set as pseudo-labels. Then, we augment the support set with U using their pseudo-labels
as the true labels. Finally, we apply the aforementioned inference procedure on the new
support set to predict the labels for the query set.

Results are shown in Table 3. We compare the performance of the same neural network
with and without EP (--Net and EPNet) against different few-shot classification methods
across different backbones. EGNN uses a graph neural net on top of conv-4, hence the large
amount of parameters. We observe that EP consistently improves the performance with
respect to the same backbone without EP (--Net). We observe that the improvement is
most significant in the one-shot scenarios, since EP leverages unlabeled queries to improve
the classification performance. Specifically, with the largest backbone (WRN-28-10), EP
improves up to 5% and 2% in 1-shot and 5-shot respectively in miniImagenet. Moreover,
note that EP becomes more effective on higher capacity backbones, with an average im-
provement of 4% across datasets with a WRN-28-10 backbone. We hypothesize that these
backbones provide more accurate embeddings that result in accurate graphs that attain
more consistent information propagation between nodes.

Table 4 shows results in the SSL setting where 100 additional unlabeled samples are
available (Ren et al., 2018; Liu et al., 2019b) (EPNetSSL). Notice that including unlabeled
samples increases the accuracy of EPNet for all settings, surpassing the state of the art by
a wide margin of up to 16% accuracy points for the 1-shot WRN-28-10. Similar to previ-
ous experiments, removing EP from EPNet (--Net) is detrimental for model performance,
supporting our hypotheses. Furthermore, in Figure 6, we show that the improvements of
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Table 4: Semi-Supervised Learning (SSL) results with 100 unlabeled samples. --Net is
identical to EPNet but without embedding propagation. *Re-implementation of (Yu et al.,
2020). We report the average of five different runs

miniImagenet tieredImagenet
Backbone 1-shot 5-shot 1-shot 5-shot

TPNSSL (Liu et al., 2019b) CONV-4 52.78 66.42 55.74 71.01
k-Meansmasked,soft (Ren et al., 2018) CONV-4 50.41 ±0.31 64.39 ±0.24 - -
--Net (ours) CONV-4 57.18 ±0.83 72.57 ±0.66 57.60 ±0.93 73.30 ±0.74

EPNet (ours) CONV-4 59.32 ±0.88 72.95 ±0.64 59.97 ±0.95 73.91 ±0.75

--NetSSL (ours) CONV-4 63.74 ±0.97 75.30 ±0.67 65.01 ±1.04 74.24 ±0.80

EPNetSSL (ours) CONV-4 65.13 ±0.97 75.42 ±0.64 66.63 ±1.04 75.70 ±0.74

LST (Li et al., 2019) RESNET-12 70.10 ±1.90 78.70 ±0.80 77.70 ±1.60 85.20 ±0.80

--Net (ours) RESNET-12 65.66 ±0.85 81.28 ±0.62 72.60 ±0.91 85.69 ±0.65

EPNet (ours) RESNET-12 66.50 ±0.89 81.06 ±0.60 76.53 ±0.87 87.32 ±0.64

--NetSSL (ours) RESNET-12 73.42 ±0.94 83.17 ±0.58 80.26 ±0.96 88.06 ±0.59

EPNetSSL (ours) RESNET-12 75.36 ±1.01 84.07 ±0.60 81.79 ±0.97 88.45 ±0.61

*k-Meansmasked,soft (Ren et al., 2018) WRN-28-10 52.78 ±0.27 66.42 ±0.21 - -
TransMatch (Yu et al., 2020) WRN-28-10 63.02 ±1.07 81.19 ±0.59 - -
--Net (ours) WRN-28-10 65.98 ±0.85 82.22 ±0.66 74.04 ±0.93 86.03 ±0.63

EPNet (ours) WRN-28-10 70.74 ±0.85 84.34 ±0.53 78.50 ±0.91 88.36 ±0.57

--NetSSL (ours) WRN-28-10 77.70 ±0.96 86.30 ±0.50 82.03 ±1.03 88.20 ±0.61

EPNetSSL (ours) WRN-28-10 79.22 ±0.92 88.05 ±0.51 83.69 ±0.99 89.34 ±0.59
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Figure 6: Performance of a small convolutional network (CONV-4) on the miniImagenet
dataset with and without Embedding Propagation. Notice how the improvement obtained
by EP is consistent for all query sizes, showing that EP remains effective in high-shot
classification settings.

EP remain consistent even in high shot settings. Additional results for few-shot SSL and
Imagenet-FS (Hariharan and Girshick, 2017) and ablations from (Rodŕıguez et al., 2020)
can be found in the Appendix.
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5. Conclusions

The embedding propagation (EP) procedure has been shown to improve few-shot learn-
ing performance. The main hypothesis is that EP smooths the class embedding manifold,
acting as a regularizer. In fact, smooth class embedding manifolds are a known requisite
for semi-supervised learning (Chapelle and Zien, 2005), and to improve adversarial robust-
ness (Verma et al., 2019a). In this work we provided additional quantitative and qualitative
insights showing that EP yields smoother classification surface as measured with the Lapla-
cian. In addition, we extended (Rodŕıguez et al., 2020) showing that besides few-shot
classification, EP also improves adversarial robustness and self/semi-supervised learning
performance.
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Metric learning without labels. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 7642–7651, 2018.

Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label propagation for
deep semi-supervised learning. In CVPR, pages 5070–5079, 2019.

Ramesh Jain, Rangachar Kasturi, and Brian G Schunck. Machine vision, volume 5.
McGraw-hill New York, 1995.

Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe Weinzaepfel, and Diane Lar-
lus. Hard negative mixing for contrastive learning. arXiv preprint arXiv:2010.01028,
2020.

20

https://openreview.net/forum?id=Hkg-xgrYvH
https://openreview.net/forum?id=Hkg-xgrYvH


A Closer Look at Embedding Propagationfor Manifold Smoothing

Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. Edge-labeling graph neural
network for few-shot learning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 11–20, 2019.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then
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Appendix A. Additional Results

In the semi-supervised setting we consider the scenario proposed by Garcia and Bruna (Gar-
cia and Bruna, 2017). In this scenario the model is trained to perform 5-shot 5-way classi-
fication but only 20% to 60% of the support set is labeled. As shown by (Lee, 2013), this
scenario is equivalent to entropy regularization, an effective method for semi-supervised
learning. Entropy regularization is particularly effective in cases where the decision bound-
ary lies in low-density regions. With embedding propagation we achieve a similar decision
boundary by smoothing the class embedding manifold. Following the same setting described
in (Garcia and Bruna, 2017; Kim et al., 2019), we trained our model in the 5-shot 5-way
scenario where the support samples are partially labeled. In Table 5, we report the test
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Table 5: SSL results for the 5-shot 5-way scenario with different amounts of unlabeled data.
The percentages refer to the amount of supports that are labeled in a set of 5 images per
class.

Params 20% 40% 60% 100%

GNN (Garcia and Bruna, 2017) 112K 52.45 58.76 - 66.41
EGNN (Kim et al., 2019) 5068K 63.62 64.32 66.37 76.37

--NetSSL (ours) 112K 58.52 ±0.97 64.46 ±0.79 67.81 ±0.74 57.18 ±0.83

EPNetSSL (ours) 112K 60.66 ±0.97 67.08 ±0.80 68.74 ±0.74 59.32 ±0.88

accuracy with conv-4 when labeling 20%, 40%, 60% and 100% of the support set. EPNet
obtains up to 2.7% improvement over previous state-of-the-art when 40% of the support
are labeled. Moreover, EPNet also outperforms EGNN (Kim et al., 2019) in the 40% and
60% scenarios, although EPNet has 45× less parameters. On the large-scale Imagenet-FS,
EP improves all benchmarks by approximately 2% accuracy, see Table 7. These results
demonstrate the scalability of our method and the orthogonality with other embedding
transformations such as denoising autoencoders (Gidaris and Komodakis, 2019). Table 6,
shows that EPNet outperforms models that use more parameters or higher resolution images
on the CUB-200-2011 dataset for the 1-shot and 5-shot benchmarks.

A.1 Ablation Studies

In this section we investigate the impact of the rotation loss (ROT), embedding fine-
tuning (EFT), label propagation (LP), and embedding propagation (EP) on the 1-shot
miniImagenet accuracy. As seen in Table 8, when label propagation is deactivated, we sub-
stitute it with a prototypical classifier. Interestingly, it can be seen that the improvement
is larger when using LP in combination with EP (Table 8; columns 2-4, and 10-12). This
finding is in accordance with the hypothesis that EP promotes smoother decision bound-
aries, and this is beneficial for transductive and SSL algorithms.We included a rotation loss
for fair comparison with other SotA (Gidaris et al., 2019; Mangla et al., 2019), however, we
see that the main improvement is due to the combination of EP with LP. We also find that
episodic fine-tuning successfully adapts our model to the episodic scenario (Table 8; line 2).

Table 6: Comparison with the state of the art on CUB-200-2011. ∗Robust− 20 + + uses an
18-layer residual network, and Accuracies obtained with 224× 224 images appear in gray.

backbone 1-shot 5-shot

∗Robust-20++ (Dvornik et al., 2019) RESNET-18 68.68 ±0.69 83.21 ±0.44

EPNet (ours) RESNET-12 82.85 ±0.81 91.32 ±0.41

Manifold mixup (Mangla et al., 2019) WRN-28-10 80.68 ±0.81 90.85 ±0.44

EPNet (ours) WRN-28-10 87.75 ±0.70 94.03 ±0.33
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Table 7: Top-5 test accuracy on Imagenet-FS.

Novel Classes All classes
Approach K=1 2 5 10 20 K=1 2 5 10 20

Batch SGM (Hariharan and Girshick, 2017) - - - - - 49.3 60.5 71.4 75.8 78.5
PMN (Wang et al., 2018) 45.8 57.8 69.0 74.3 77.4 57.6 64.7 71.9 75.2 77.5
LwoF (Gidaris and Komodakis, 2018) 46.2 57.5 69.2 74.8 78.1 58.2 65.2 72.7 76.5 78.7
CC+ Rot (Gidaris et al., 2019) 46.43 ±0.24 57.80 ±0.16 69.67 ±0.09 74.64 ±0.06 77.31 ±0.05 57.88 ±0.15 64.76 ±0.10 72.29 ±0.07 75.63 ±0.04 77.40 ±0.03

wDAE-GNN (Gidaris and Komodakis, 2019) 48.00 ±0.21 59.70 ±0.15 70.30 ±0.08 75.00 ±0.06 77.80 ±0.05 59.10 ±0.13 66.30 ±0.10 73.20 ±0.05 76.10 ±0.04 77.50 ±0.03

wDAE-GNN + EP (ours) 50.07 ±0.27 62.16 ±0.16 72.89 ±0.11 77.25 ±0.07 79.48 ±0.05 60.87 ±0.16 68.53 ±0.10 75.56 ±0.07 78.28 ±0.04 78.89 ±0.03

Table 8: Algorithm ablation with conv-4 on 1-shot miniImagenet. EFT: Episodic Fine-
tuning, ROT: Rotation loss, LP: Label Propagation, EP: Embedding Propagation

EXP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

EFT X X X X X X X X
ROT X X X X X X X X
LP X X X X X X X X
EP X X X X X X X X
ACC 49.57 52.83 53.40 55.75 50.83 53.63 53.38 55.55 54.29 56.38 56.93 58.35 54.92 56.46 57.35 58.85

Appendix B. Toy Experiment

The decision boundaries were for the toy experiment were obtained by training an MLP on
the toy data without the cyan points. Then, we illustrate how for a new set of points
(cyan) fall in the uncertain region with EP while they are classified as blue without EP. We
set the value of σ to 0.5 to exaggerate smoothness while we kept α to 0.1 (note that the
purpose of this figure is merely illustrative).

Appendix C. Adversarial Setting

In order to ensure reproducibility and since adversarial attacks hyperparameter choice
greatly influences the results this section details the setting used for the various adver-
sarial perturbations methods used throughout the paper.
In the case of PGD (Madry et al., 2017) and FAB (Croce and Hein, 2020) attacks, we use a
perturbation ε of 0.03 and for 40 and 100 steps respectively. For FGSM (Goodfellow et al.,
2014) we use a higher value of ε = 0.3 since it is not an iterative attack. All methods use
distance measure `∞ as a distance measure.
For the manifold mixup experiments we follow the setting proposed in (Verma et al., 2019a)
with a mixing coefficient α of 2. All of the attacks were conducted on a Resnet-18 archi-
tecture trained for 20 epochs using the AdamW algorithm (Loshchilov and Hutter, 2017)
with a learning rate of 0.01 and weight decay of 5× 10−4. This setting remains fixed across
datasets.
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