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Abstract

In many real-world data, complex dependencies are present both among samples and among
features. The Kronecker sum or the Cartesian product of two graphs, each modeling
dependencies across features and across samples, has been used as an inverse covariance
matrix for a matrix-variate Gaussian distribution as an alternative to Kronecker-product
inverse covariance matrix due to its more intuitive sparse structure. However, the existing
methods for sparse Kronecker-sum inverse covariance estimation are limited in that they
do not scale to more than a few hundred features and samples and that unidentifiable
parameters pose challenges in estimation. In this paper, we introduce EiGLasso, a highly
scalable method for sparse Kronecker-sum inverse covariance estimation, based on Newton’s
method combined with eigendecomposition of the sample and feature graphs to exploit the
Kronecker-sum structure. EiGLasso further reduces computation time by approximating
the Hessian matrix, based on the eigendecomposition of the two graphs. EiGLasso achieves
quadratic convergence with the exact Hessian and linear convergence with the approximate
Hessian. We describe a simple new approach to estimating the unidentifiable parameters
that generalizes the existing methods. On simulated and real-world data, we demonstrate
that EiGLasso achieves two to three orders-of-magnitude speed-up, compared to the existing
methods.

Keywords: Kronecker sum, sparse inverse covariance estimation, Newton’s method,
convex optimization, L1 regularization.

1. Introduction

In many real-world datasets, complex dependencies are found among samples as well as
among features. For example, in tumor gene-expression data collected from cancer patients,
gene-expression levels are correlated both among genes in the same pathways and among
patients with the same or similar cancer subtypes (Dai et al., 2015). Other examples include
multivariate time-series data such as temporally correlated stock prices of companies in
the same sector (King, 1966) or a sequence of images in video data (Kalchbrenner et al.,
2017). Gaussian graphical models with L1-regularization have been widely used to learn a
sparse inverse covariance matrix that corresponds to a graph over features (Friedman et al.,
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2007; Hsieh et al., 2014, 2013), but they were limited in that they did not model correlation
among samples.

As an alternative, a matrix-variate Gaussian distribution has been introduced, where
the dependencies across samples and across features were modeled with two separate graphs
and were combined through either Kronecker-product or Kronecker-sum operators to form
an inverse covariance matrix. The Kronecker product of the two graphs led to a hard-to-
interpret dense graph and a non-convex log-likelihood of data (Leng and Tang, 2012; Yin
and Li, 2012; Tsiligkaridis and Hero, 2013; Zhou, 2014), but its bi-convexity provided a
fast flip-flop optimization method. In contrast, the Kronecker sum had the advantage of
producing a sparse inverse covariance matrix from the Cartesian product of the two graphs
and having a convex log-likelihood, but the existing optimization methods, such as BiGLasso
and TeraLasso, did not scale to large datasets (Kalaitzis et al., 2013; Greenewald et al.,
2019). BiGLasso used GLasso as a subroutine to estimate one of the two graphs while fixing
the other in each iteration (Kalaitzis et al., 2013). TeraLasso significantly improved the
scalability of BiGLasso with the gradient descent method (Greenewald et al., 2019), but
still did not scale to problems with more than a few hundred samples and features.

Another main challenge with the Kronecker sum arises from the unidentifiable parameters
in the diagonals of the matrices representing feature and sample graphs. BiGLasso did not
estimate these unidentifiable parameters. TeraLasso employed a reparameterization to make
the parameters identifiable and projected the parameter estimates to the reparameterized
space in each iteration during optimization. In other works, where the Kronecker-sum inverse
covariance matrix was used to model errors in covariates in regression models, the trace of
one of the two graphs was assumed to be known (Rudelson and Zhou, 2017; Park et al.,
2017; Zhang, 2020). With the Kronecker product, the parameters are unidentifiable as well,
but they can be identified with a simple method after the optimization is complete (Yin and
Li, 2012).

In this paper, to address these limitations, we introduce eigen graphical Lasso (EiGLasso)
for efficient estimation of the Kronecker-sum inverse covariance matrix while handling the
unidentifiable parameters. For efficient optimization, we extend the Newton’s method in
QUIC for sparse inverse covariance estimation (Hsieh et al., 2013, 2014). A naive application
of QUIC to our problem would fail from expensive computation time and high memory cost,
since the gradient and Hessian matrices in Kronecker-sum inverse covariance estimation are
far larger with an inflated structure than in single inverse covariance estimation. To reduce
time and memory cost, we use the eigendecomposition of the parameters to deflate the
inflated structures in the gradient and Hessian matrices. Based on this eigendecomposition,
we develop a strategy for approximating the Hessian to further improve the scalability.
In our experiments, we show that compared to the previous methods, EiGLasso with the
approximate Hessian achieves two to three orders-of-magnitude speed-up. In addition, we
prove that the unidentifiable parameters are uniquely determined given the ratio of the
traces of the two graph matrices. We show that the parameters can be optimized in the
original space rather than in the reparameterized space as in TeraLasso, and can be identified
once after convergence rather than in every iteration as in TeraLasso.

Our preliminary work on EiGLasso appeared in Yoon and Kim (2020). EiGLasso in our
preliminary work used the flip-flop optimization of two graph parameters with no theoretical
guarantee in convergence. In this paper, we optimize both of the graph parameters jointly
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in each iteration, as this allows us to study the properties of the exact and approximate
Hessian matrices and to analyze the convergence behavior of EiGLasso using these properties.
Specifically, we show that the exact Hessian is positive semi-definite but positive definite in
the Kronecker-sum space, since the Kronecker-sum space exists outside of the null space of
the Hessian, while the approximate Hessian is positive definite everywhere. We use these
properties to extend the theoretical results on the convergence of QUIC and show that
EiGLasso achieves quadratic convergence with the exact Hessian and linear convergence with
the approximate Hessian. We present more extensive experimental results to demonstrate
the performance of EiGLasso and to provide insights into its convergence behavior.

The rest of the paper is organized as follows. In Section 2, we review the previous
work on statistical methods with the Kronecker-sum operator. We introduce our EiGLasso
optimization in Section 3, study its convergence behavior in Section 4, present experimental
results in Section 5, and conclude with future work in Section 6.

2. Related Work

A Gaussian distribution of a matrix random variable Y ∈ Rq×p for q samples and p features
with a Kronecker-sum inverse covariance matrix (Kalaitzis et al., 2013) is given as

vec(Y ) ∼ N
(
vec(M),Ω−1

)
, (1)

where M ∈ Rq×p is the mean and vec(·) is an operator that stacks the columns of a matrix
into a vector. The pq×pq inverse covariance matrix Ω in Eq. (1) is defined as the Kronecker-
sum of two graphs, a p× p matrix Θ for dependencies across features and a q × q matrix Ψ
for dependencies across samples:

Ω = Θ⊕Ψ = Θ⊗ Iq + Ip ⊗Ψ,

where ⊗ is the Kronecker-product operator and Ia is an a× a identity matrix. A non-zero
value in the (i, j)th element [Θ]ij , [Ψ]ij , and [Ω]ij implies an edge between the ith and jth
nodes in the corresponding graph. The two graphs Θ and Ψ are constrained to form a
positive-definite Kronecker-sum space as follows:

KSp,q = {(Θ,Ψ)|Θ ∈ Sp,Ψ ∈ Sq,Ω = Θ⊕Ψ ∈ Spq++}, (2)

where Sa denotes the set of all a×a symmetric matrices and Sa++ the set of all a×a positive
definite matrices. Then, Ω models a graph over pq nodes, where each node is associated
with an observation for the given sample and feature pair. For the rest of this paper, we
assume zero mean vec(M) = 0, and focus on the inverse covariance matrix Ω.

Compared to the Kronecker product Θ⊗Ψ, one main advantage of the Kronecker sum
is that as the Cartesian product of the two graphs Θ and Ψ, it leads to a more intuitively
appealing sparse structure in the graph Ω (Figure 1(a); Figure 1 in Kalaitzis et al. (2013)).
In Ω with the Kronecker sum, the sample graph Ψ is used only within the same feature
(diagonal blocks in Ω in Figure 1(a)) and the feature graph Θ is used only within the same
sample (diagonals of off-diagonal blocks in Ω in Figure 1(a)), whereas the Kronecker-product
leads to a dense graph, where the sample graph Ψ and the feature graph Θ are used across
features and samples. Because of the sparse structure, the Kronecker-sum operator has been

3



Yoon and Kim

�

Ψ

(a) (b)

Figure 1: Illustration of the Kronecker-sum inverse covariance matrix and gradient compu-
tation in EiGLasso. (a) Θ and Ψ (left) and their Kronecker sum Ω = Θ ⊕Ψ (right). Θ
appears in the diagonals of off-diagonal blocks of Ω, and Ψ appears in the diagonal blocks
of Ω. (b) W = Ω−1 (left), and WΘ and WΨ (right) involved in the gradient computation.
Computing WΘ and WΨ amounts to collapsing W based on the Kronecker-sum structure
in Panel (a). The (i, j)th element of WΘ is obtained by summing over the diagonals of the
(i, j)th block (blue arrows), and WΨ is obtained by summing over the diagonal blocks of W
(yellow arrows).

adopted in various other statistical methods to represent sparse associations between two
sets of variables, such as dependencies between genes and mutations in colorectal cancer
(Haupt et al., 2021) and between microRNAs and diseases (Li et al., 2018). It also has been
embedded in neural networks to model both row and column dependencies in a matrix (Zhang
et al., 2018b; Gao et al., 2020).

Given data {Y 1, . . . , Y n}, where Y i ∈ Rq×p for i = 1, . . . , n for n independent obser-
vations, BiGLasso (Kalaitzis et al., 2013) and TeraLasso (Greenewald et al., 2019) obtained
a sparse estimate of Θ and Ψ by minimizing the L1-regularized negative log-likelihood of
data:

argmin
Θ,Ψ

f(Θ,Ψ) subject to Θ⊕Ψ � 0, (3)

where A � 0 means A is positive definite. The objective function f(Θ,Ψ) is

f(Θ,Ψ) = g(Θ,Ψ) + h(Θ,Ψ),

with the smooth log-likelihood function g(Θ,Ψ) = q tr(SΘ) + p tr(TΨ)− log |Θ⊕Ψ| and
non-smooth penalty h(Θ,Ψ) = qγΘ‖Θ‖1,off + pγΨ‖Ψ‖1,off, given the sample covariances
S = 1

nq

∑n
i=1 Y

iTY i and T = 1
np

∑n
i=1 Y

iY iT , the regularization parameters γΘ and γΨ,
and ‖ · ‖1,off for the L1-regularization of the off-diagonal elements of the matrix.

One of the main challenges of solving Eq. (3) arises from the unidentifiable diagonals of
Θ and Ψ given Ω. Although Greenewald et al. (2019) showed that the objective in Eq. (3)
has a unique global optimum with respect to Ω = Θ⊕Ψ, this does not imply the uniqueness
of the pair (Θ,Ψ) given Ω, since the set in Eq. (2) forms equivalence classes

S[Ω] = {(Θ,Ψ) ∈ KSp,q| (Θ− cIp)⊕ (Ψ + cIq) = Ω, c ∈ R}. (4)
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Thus, Θ and Ψ whose diagonals are modified by a constant c and −c lead to the same Ω.
While BiGLasso did not estimate the diagonals of Θ and Ψ, TeraLasso formed an identifiable
reparameterization Ω = Θ̄⊕ Ψ̄ + τIpq with τ = tr(Θ⊕Ψ)

pq , where Θ̄ and Ψ̄ are forced to have
zero traces as follows:

Θ̄ = Θ− tr(Θ)

p
Ip and Ψ̄ = Ψ− tr(Ψ)

q
Iq. (5)

Then, in each iteration of the gradient descent method, TeraLasso projected the gradient
to this reparameterized space and distributed τ to Θ and Ψ as Θ̄ ← Θ̄ + 1

2τI and
Ψ̄← Ψ̄+ 1

2τI. For efficient computation and projection of the gradient, TeraLasso employed
an eigendecomposition of Θ and Ψ: Θ = QΘΛΘQT

Θ with the eigenvector matrix QΘ and
the diagonal eigenvalue matrix ΛΘ, and similarly, Ψ = QΨΛΨQT

Ψ. TeraLasso exploited the
property that the eigendecomposition of the Kronecker sum of Θ and Ψ is

Θ⊕Ψ = (QΘ ⊗QΨ)(ΛΘ ⊕ΛΨ)(QΘ ⊗QΨ)T . (6)

Then, the inverse of Θ⊕Ψ can be obtained efficiently by inverting the diagonal eigenvalue
matrix ΛΘ ⊕ΛΨ:

W = (Θ⊕Ψ)−1 = (QΘ ⊗QΨ)(ΛΘ ⊕ΛΨ)−1(QΘ ⊗QΨ)T . (7)

While TeraLasso is significantly faster than BiGLasso, its scalability is limited to graphs
with a few hundred nodes.

3. EiGLasso

We introduce EiGLasso, an efficient method for estimating a sparse Kronecker-sum inverse
covariance matrix. We begin by describing a simple new scheme for identifying the unidenti-
fiable parameters in Section 3.1. We introduce EiGLasso, Newton’s method with the exact
Hessian in Section 3.2 and its modification with the approximate Hessian in Section 3.3. In
Section 3.4, we describe a simple strategy for determining the unidentifiable parameters in
EiGLasso. In Section 3.5, we discuss additional strategies for improving the computational
efficiency.

3.1 Identifying Parameters with Trace Ratio

Theorem 1 below provides a simple approach to identifying the diagonal elements of Θ and
Ψ, given Ω and the ratio of the traces of Θ and Ψ.

Theorem 1 Assume that the trace ratio of Ψ and Θ is given as ρ = tr(Ψ)
tr(Θ) . Then, a

Kronecker-sum matrix Ω = Θ⊕Ψ can be mapped to a unique pair of symmetric matrices
(Θ,Ψ) with the diagonals of Θ and Ψ identified as

diag(Θ) =
1

q

[
diag

(
q∑
i=1

(Ip ⊗ eq,i)
TΩ(Ip ⊗ eq,i)

)
− ρ

q + ρp
tr(Ω)I

]
,

diag(Ψ) =
1

p

diag

 p∑
j=1

(ep,j ⊗ Iq)
TΩ(ep,j ⊗ Iq)

− 1

q + ρp
tr(Ω)I

 , (8)
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where eq,i is a q × 1 one-hot vector with 1 in the ith entry and 0’s elsewhere.

Proof Given ρ = tr(Ψ)
tr(Θ) , Θ and Ψ are unique, since for any c ∈ R \ {0}, tr(Ψ)

tr(Θ) 6=
tr(Ψ+cIq)
tr(Θ−cIp) =

tr(Ψ)+cq
tr(Θ)−cp . From the definition of Kronecker sum, we notice

jq∑
i=(j−1)q+1

[Ω]ii = q[Θ]jj + tr(Ψ), (9)

and
tr(Ω) = q tr(Θ) + p tr(Ψ). (10)

From the trace ratio and Eq. (10), we have tr(Ψ) = ρ
q+ρp tr(Ω). Plugging this into Eq. (9),

we identify [Θ]jj as

[Θ]jj =
1

q

 jq∑
i=(j−1)q+1

[Ω]ii −
ρ

q + ρp
tr(Ω)

 .

The case for Ψ can be shown in a similar way.

Theorem 1 suggests that it is possible to identify the diagonals of Θ and Ψ by solving
Eq. (3) with the linear constraint tr(Ψ)

tr(Θ) = ρ:

argmin
Θ,Ψ

f(Θ,Ψ) subject to Θ⊕Ψ � 0, RT

[
vec(Θ)
vec(Ψ)

]
= 0, (11)

where the second constraint with R =

[
−ρ vec(Ip)

vec(Iq)

]
is equivalent to tr(Ψ)

tr(Θ) = ρ. To handle this

additional constraint explicitly, the substitution method or Newton’s method for equality-
constrained optimization problem could be used (Boyd and Vandenberghe, 2004). Instead,
in Sections 3.2 and 3.4, we show that in EiGLasso, because of the special problem structure,
it is sufficient to solve Eq. (3) with Newton’s method, ignoring the equality constraint, and
to adjust the diagonals of Θ and Ψ once after convergence to satisfy the constraint.

3.2 EiGLasso with Exact Hessian

We introduce EiGLasso for an efficient estimation of sparse Θ and Ψ that form a Kronecker-
sum inverse covariance matrix. We adopt the framework of QUIC (Hsieh et al., 2014),
Newton’s method for estimating sparse Gaussian graphical models. In each iteration, QUIC
found a Newton direction by minimizing the L1-regularized second-order approximation of
the objective, and updated the parameters given this Newton direction and the step size
found by backtracking line search (Bertsekas, 1995; Tseng and Yun, 2009). Using the same
strategy, EiGLasso finds Newton directions, DΘ for Θ and DΨ for Ψ, by minimizing the
following second-order approximation of the smooth part g(Θ,Ψ) of the objective in Eq.
(11) with the L1-regularization:

(DΘ, DΨ) = argmin
∆Θ,∆Ψ

ĝ(∆Θ,∆Ψ) + h(Θ + ∆Θ,Ψ + ∆Ψ) (12)
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Algorithm 1: Line Search

input : 0 < σ < 0.5, 0 < β < 1
output : step size α
Initialize α = 1
for i = 0, 1, . . . do

Check the following conditions:

1. (Θ + αDΘ)⊕ (Ψ + αDΨ) � 0,

2. f(Θ + αDΘ,Ψ + αDΨ) ≤ f(Θ,Ψ) + ασδ, where
δ = [vec(DΘ)T , vec(DΨ)T ] vec(G) + h(Θ +DΘ,Ψ +DΨ)− h(Θ,Ψ).

If satisfied, break. If not, α← αβ.

subject to RT

[
vec(∆Θ)
vec(∆Ψ)

]
= 0,

where

ĝ(∆Θ,∆Ψ) = vec(G)T
[
vec(∆Θ)
vec(∆Ψ)

]
+

1

2

[
vec(∆Θ)
vec(∆Ψ)

]T
H

[
vec(∆Θ)
vec(∆Ψ)

]
with the gradient G and Hessian H

vec(G) =

[
vec (GΘ)
vec (GΨ)

]
=

[
vec (∇Θg(Θ,Ψ))
vec (∇Ψg(Θ,Ψ))

]
, (13)

H =

[
HΘ HΘΨ

HT
ΘΨ HΨ

]
=

[
∇2

Θg(Θ,Ψ) ∇Θ∇Ψg(Θ,Ψ)
∇Θ∇Ψg(Θ,Ψ)T ∇2

Ψg(Θ,Ψ)

]
. (14)

As we will show in Section 3.4, the objective above can be optimized without being concerned
about the equality constraint. Hence, we optimize this objective with the coordinate descent
method as in QUIC, ignoring the equality constraint. Given the descent directions DΘ and
DΨ, we update the parameters as Θ← Θ + αDΘ and Ψ← Ψ + αDΨ, with the step size α
found by the line-search method in Algorithm 1.

Two key challenges arise in a direct application of QUIC to Kronecker-sum inverse
covariance estimation. First, as we detail in the next section, the gradient G and Hessian H
involve the computation of the pq× pq matrix W = (Θ⊕Ψ)−1, which is significantly larger
than a p× p matrix required for a single graph in QUIC. Second, the constraint on the trace
ratio in Eq. (12) needs to be considered to handle the unidentifiability of the diagonals of
Θ and Ψ during the optimization. In the rest of Section 3, we describe how we address
these challenges by leveraging the eigenstructure of the model, and provide the details of
the EiGLasso optimization outlined in Algorithm 2.

3.2.1 Efficient Computation of Gradient and Hessian via Eigendecomposition

In Lemma 2 below, we provide the form of the gradient G in Eq. (13) and the Hessian
H in Eq. (14). We show that G can be represented in a significantly more compact form
than what has been previously presented in Kalaitzis et al. (2013) and Greenewald et al.
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Algorithm 2: EiGLasso

input : Sample covariances S = 1
nq

∑n
i=1 Y

iTY i and T = 1
np

∑n
i=1 Y

iY iT ,
regularization parameters γΘ and γΨ, K for Hessian approximation,
line search parameters σ and 0 < β < 1, and trace ratio ρ = tr(Ψ)/ tr(Θ).

output : Parameters Θ,Ψ.
Initialize Θ0 ← Ip,Ψ

0 ← Iq.
for t = 0, 1, . . . do

Eigendecompose Θ and Ψ.
Compute G and H.
Determine active sets AΘ and AΨ.
Compute (Dt

Θ, D
t
Ψ) via coordinate descent over the active sets.

Compute a step-size αt using Algorithm 1.
Check convergence.

Adjust the diagonal elements of Θ and Ψ according to the trace ratio ρ.

(2019). We exploit this compact representation to further reduce the computation time via
eigendecomposition of Θ and Ψ in Theorem 3.

Lemma 2 Let W = (Θ⊕Ψ)−1. The components of gradient G in Eq. (13) are given as

GΘ = qS −WΘ, GΨ = pT −WΨ, (15)

where

WΘ =

q∑
i=1

(Ip ⊗ eq,i)
TW (Ip ⊗ eq,i), WΨ =

p∑
i=1

(ep,i ⊗ Iq)
TW (ep,i ⊗ Iq). (16)

The Hessian H in Eq. (14) is given as

H =

[
HΘ HΘΨ

HT
ΘΨ HΨ

]
=

[
P T
Θ(W ⊗W )PΘ P T

Θ(W ⊗W )PΨ

P T
Ψ(W ⊗W )PΘ P T

Ψ(W ⊗W )PΨ

]
= P T (W ⊗W )P , (17)

where P = [PΘ,PΨ] is a (p2q2)× (p2 + q2) matrix with PΘ =
∑q

i=1 Ip⊗ eq,i⊗ Ip⊗ eq,i and
PΨ =

∑p
j=1 ep,j ⊗ Iq ⊗ ep,j ⊗ Iq.

Proof Let Ep,ij = ep,ie
T
p,j be a p× p one-hot matrix with 1 in the (i, j)th element and zero

elsewhere. Then, for the gradient GΘ, we have

[GΘ]ij = q[S]ij − tr (W (Ep,ij ⊗ Iq))

= q[S]ij − tr
(
W (Ep,ij ⊗

∑
l

eq,le
T
q,l)
)

= q[S]ij − tr
(∑

l

W (Ip ⊗ eq,l)(Ep,ij ⊗ 1)(Ip ⊗ eq,l)
T
)

= q[S]ij − tr
(∑

l

(Ip ⊗ eq,l)
TW (Ip ⊗ eq,l)Ep,ij

)
.
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By using tr(AEp,ij) = Aij , we collect the elements [GΘ]ij to obtain Eqs. (15) and (16).
The case for GΨ can be shown similarly. Now, for the Hessian, we have

[HΘ]ip+j,lp+k = tr (W (Ep,ij ⊗ Iq)W (Ep,kl ⊗ Iq))

= tr

([∑
r

W (Ip ⊗ eq,r)Ep,ij(Ip ⊗ eq,r)
T

][∑
s

W (Ip ⊗ eq,s)Ep,kl(Ip ⊗ eq,s)
T

])

= tr

(∑
r,s

(Ip ⊗ eq,s)
TW (Ip ⊗ eq,r)Ep,ij(Ip ⊗ eq,r)

TW (Ip ⊗ eq,s)Ep,kl

)
,

by tr(ABCD) = vec(BT )T (AT⊗C) vec(D) for matrices A, B, C, and D, and vec(Ep,ij) =
ep2,jp+i,

= eTp2,ip+j

(∑
r,s

(Ip ⊗ eq,r)
TW (Ip ⊗ eq,s)⊗ (Ip ⊗ eq,r)

TW (Ip ⊗ eq,s)

)
ep2,lp+k

= eTp2,ip+j

(∑
r,s

(Ip ⊗ eq,r ⊗ Ip ⊗ eq,r)
T (W ⊗W )(Ip ⊗ eq,s ⊗ Ip ⊗ eq,s)

)
ep2,lp+k.

We collect the elements into a matrix

HΘ =

( q∑
r=1

Ip ⊗ eq,r ⊗ Ip ⊗ eq,r

)T
(W ⊗W )

( q∑
s=1

Ip ⊗ eq,s ⊗ Ip ⊗ eq,s

)
.

The cases for HΨ and HΘΨ can be shown in a similar way.

According to Lemma 2, the gradient G is obtained by collapsing W as in Eq. (16) and
the Hessian H is obtained by collapsing W ⊗W as in Eq. (17). This collapse of the gradient
is illustrated in Figure 1(b). While the Kronecker sum inflates Θ and Ψ into Ω (Figure
1(a)), this inflated structure gets deflated, when computing WΘ and WΨ in the gradients
from W = Ω−1 (Figure 1(b)). This deflation can be viewed as applying the mask 1p ⊕ 1q,
where 1a is an a×a matrix of ones, to W to obtain Wmasked such that [Wmasked]ij = [W ]ij
if [1p ⊕ 1q]ij 6= 0, otherwise [Wmasked]ij = 0, and replacing W in Eq. (16) with Wmasked.
In other words, only the non-zero elements of Wmasked contribute towards WΘ (blue in
Figure 1(b)) and WΨ (yellow in Figure 1(b)). The collapse of W ⊗W in Eq. (17) to obtain
the Hessian can be viewed as the same type of deflation applied twice to W ⊗W (details in
Appendix A).

Lemma 2 reveals the challenge in computing G and H in a direct application of QUIC
to the Kronecker-sum model: G involves computing the large pq × pq matrix W and H
involves computing the even larger p2q2 × p2q2 matrix W ⊗W . In Theorem 3 below, we
show that G and H can be obtained via eigendecomposition of Θ and Ψ without explicitly
constructing W and W ⊗W .

Theorem 3 Given the eigendecomposition Θ = QΘΛΘQT
Θ and Ψ = QΨΛΨQT

Ψ with the
kth smallest eigenvalue λΘ,k and λΨ,k in the (k, k)th element of ΛΘ and ΛΨ, the gradient
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in Eq. (15) is given as

GΘ = qS −QΘ

(
q∑

k=1

ΞΘ,k

)
QT

Θ, GΨ = pT −QΨ

(
p∑
l=1

ΞΨ,l

)
QT

Ψ, (18)

where

ΞΘ,k = (ΛΘ + λΨ,kIp)
−1 , ΞΨ,l = (ΛΨ + λΘ,lIq)

−1 .

For the Hessian, we have

H =

[
HΘ HΘΨ

HT
ΘΨ HΨ

]
=

[
QΘ ⊗QΘ 0

0 QΨ ⊗QΨ

] [
ΛHΘ

Υ
ΥT ΛHΨ

] [
QΘ ⊗QΘ 0

0 QΨ ⊗QΨ

]T
, (19)

where

ΛHΘ
=

q∑
k=1

ΞΘ,k ⊗ΞΘ,k, ΛHΨ
=

p∑
l=1

ΞΨ,l ⊗ΞΨ,l, (20)

Υ = Ĩp2,p

λ
2
W ,11 · · · λ2

W ,1q
...

. . .
...

λ2
W ,p1 · · · λ2

W ,pq

 Ĩq,q2 .

Ĩp2,p and Ĩq,q2 above are stretched identity matrices, Ĩp2,p =
[
Ep,11 Ep,22 · · · Ep,pp

]T
and

Ĩq,q2 =
[
Eq,11 Eq,22 · · · Eq,qq

]
, where Ep,ij is a p× p one-hot matrix with 1 in the (i, j)th

element and zero elsewhere, and λW ,lk = (λΘ,l + λΨ,k)
−1.

Proof We prove for GΘ, HΘ, and HΘΨ, because the case for GΨ and HΨ can be proved
similarly. Let qΘ,i and qΨ,i be the ith eigenvectors of Θ and Ψ, given as the ith columns of
QΘ and QΨ. Then, we can re-write Eq. (7) as

W =

p∑
l=1

q∑
k=1

λW ,lk(qΘ,l ⊗ qΨ,k)(qΘ,l ⊗ qΨ,k)
T . (21)

For GΘ, we substitute W in WΘ in Eq. (16) with Eq. (21):

GΘ = qS −
q∑
i=1

(Ip ⊗ eq,i)
T

(
p∑
l=1

q∑
k=1

λW ,lk(qΘ,l ⊗ qΨ,k)(qΘ,l ⊗ qΨ,k)
T

)
(Ip ⊗ eq,i)

= qS −
q∑
i=1

p∑
l=1

q∑
k=1

λW ,lk([qΨ,k]iqΘ,l)([qΨ,k]iqΘ,l)
T since (I ⊗ eq,i)

T (a⊗ b) = bia

= qS −
p∑
l=1

q∑
k=1

λW ,lkqΘ,lq
T
Θ,l since QΨ is orthonormal

= qS −
q∑

k=1

QΘ(ΛΘ + λΨ,kIp)
−1QT

Θ.

10
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This is equivalent to GΘ in Eq. (18), since the summation can be performed over ΞΘ,k,
instead of over QΘΞΘ,kQ

T
Θ.

To show for HΘ, we again substitute W in Eq. (17) with Eq. (21).

HΘ =

q∑
i=1

q∑
j=1

( p∑
l=1

q∑
k=1

λW ,lk([qΨ,k]iqΘ,l)([qΨ,k]jqΘ,l)
T

⊗
p∑
r=1

q∑
s=1

λW ,rs([qΨ,s]iqΘ,r)([qΨ,s]jqΘ,r)
T

)

=

q∑
k=1

( p∑
l=1

λW ,lkqΘ,lq
T
Θ,l ⊗

p∑
r=1

λW ,rkqΘ,rq
T
Θ,r

)

=

q∑
k=1

(
QΘ(ΛΘ + λΨ,kIp)

−1QT
Θ

)
⊗
(
QΘ(ΛΘ + λΨ,kIp)

−1QT
Θ

)

= (QΘ ⊗QΘ)

( q∑
k=1

(ΛΘ + λΨ,kIp)
−1 ⊗ (ΛΘ + λΨ,kIp)

−1

)
(QΘ ⊗QΘ)T .

For HΘΨ, we substitute W in Eq. (17) with Eq. (21).

HΘΨ =

q∑
i=1

p∑
j=1

( p∑
l=1

q∑
k=1

λW ,lk([qΨ,k]iqΘ,l)([qΘ,l]jqΨ,k)
T

⊗
p∑
r=1

q∑
s=1

λW ,rs([qΨ,s]iqΘ,r)([qΘ,r]jqΨ,s)
T

)

=

p∑
l=1

q∑
k=1

λ2
W ,lk(qΘ,lq

T
Ψ,k ⊗ qΘ,lq

T
Ψ,k)

=

p∑
l=1

(qΘ,l ⊗ qΘ,l)

q∑
k=1

λ2
W ,lk(qΨ,k ⊗ qΨ,k)

T

=


qTΘ,1 ⊗ qTΘ,1
qTΘ,2 ⊗ qTΘ,2

...
qTΘ,p ⊗ qTΘ,p


T λ

2
W ,11 · · · λ2

W ,1q
...

. . .
...

λ2
W ,p1 · · · λ2

W ,pq



qTΨ,1 ⊗ qTΨ,1
qTΨ,2 ⊗ qTΨ,2

...
qTΨ,q ⊗ qTΨ,q



= (QΘ ⊗QΘ)Ĩp2,p

λ
2
W ,11 · · · λ2

W ,1q
...

. . .
...

λ2
W ,p1 · · · λ2

W ,pq

 Ĩq,q2(QΨ ⊗QΨ)T .

Theorem 3 provides a significantly more efficient way of computing G and H , compared to
Lemma 2. Since G and H can be written entirely in terms of the eigenvectors and eigenvalues
of Θ and Ψ, the operations that involve W = (Θ ⊕Ψ)−1 are replaced with the cheaper

11
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operation of eigendecomposition with time O(p3 + q3) and space O(p2 + q2). TeraLasso also
used the eigendecomposition of Θ and Ψ in each iteration of the optimization. However,
TeraLasso has done this for an efficient projection of the gradient to the reparameterized
space, whereas EiGLasso performs the eigendecomposition for an efficient computation of G
and H in the original parameter space.

It follows from Theorem 3 that (Θ,Ψ)’s in the same equivalence class in Eq. (4) differ
only in their eigenvalues, but not in eigenvectors. The equivalence class in Eq. (4) can be
written equivalently as

S[Ω] = {(Θ,Ψ) ∈ KSp,q| (ΛΘ − cIp)⊕ (ΛΨ + cIq) = ΛΩ, c ∈ R}, (22)

since Θ− cIp = QΘΛΘQT
Θ− cQΘQT

Θ = QΘ(ΛΘ− cIp)QT
Θ and similarly for Ψ. We exploit

this feature to handle the unidentifiable parameters during estimation in Section 3.4 and to
analyze the convergence in Section 4.

In the theorem below, we prove several properties of H. These properties will be used
as a key to extending the theoretical results on the convergence of QUIC to EiGLasso in
Section 4.

Theorem 4 The Hessian H in EiGLasso has the following properties:

• It is positive semi-definite with the null space null(H) = {[vec(Xp)
T , vec(Xq)

T ]T |Xp⊕
Xq = 0,Xp ∈ Rp×p,Xp ∈ Rq×q}.

• On the Kronecker-sum space in Eq. (2), H is positive definite. The minimum
eigenvalue λH,min0 outside of the null space and the maximum eigenvalue λH,max are
bounded as

λH,min0≥min{p, q}(λΘ,p + λΨ,q)
−2, λH,max≤(p+ q)(λΘ,1 + λΨ,1)−2.

Proof To prove the first property, from Lemma 2, we notice that since W is positive
definite, the null space of H is given by Xp and Xq that satisfy

P

[
vec(Xp)
vec(Xq)

]
= 0.

Since the left-hand side of the above can be written as

P

[
vec(Xp)
vec(Xq)

]
=

q∑
i=1

vec
(
(Ip ⊗ eq,i)Xp(Ip ⊗ eq,i)

T
)

+

p∑
j=1

vec
(
(ep,j ⊗ Iq)Xq(ep,j ⊗ Iq)

T
)

= vec (Xp ⊗ Iq) + vec (Ip ⊗Xq)

= vec (Xp ⊕Xq) ,

the null space of H is given by Xp and Xq that satisfy Xp ⊕Xq = 0.
To prove the second property, we notice that the null space of H is outside of the

constraint region Θ⊕Ψ � 0; thus, H is positive definite on the Kronecker-sum space in Eq.
(2). To find the eigenvalues of H, we first find the eigenvalues of

P TP =

[
P T
ΘPΘ P T

ΘPΨ

P T
ΨPΘ P T

ΨPΨ

]
=

[
qIp2 vec(Ip) vec(Iq)

T

vec(Iq) vec(Ip)
T pIq2

]
,

12
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by finding the solutions of the characteristic equation det(P TP − λI) = 0:

det(P TP − λIp2+q2) = det(qIp2 − λIp2) det

(
pIq2 − λIq2 −

p

q − λ
vec(Iq) vec(Iq)

T

)
= (q − λ)p

2
det

(
(p− λ)Iq2 −

p

q − λ
vec(Iq) vec(Iq)

T

)
= (q − λ)p

2−1(p− λ)q
2−1
(
(p− λ)(q − λ)− pq

)
from matrix determinant lemma

= (p− λ)q
2−1(q − λ)p

2−1λ
(
λ− (p+ q)

)
= 0.

Thus, the eigenvalues of P TP are 0, p, q, and (p+ q), each with the algebraic multiplicity 1,
q2 − 1, p2 − 1, and 1. From Eq. (17), for any unit vector u ∈ Rp2+q2 \ null(H),

λ2
W ,min(uTP TPu) ≤ uTP T (W ⊗W )Pu ≤ λ2

W ,max(uTP TPu),

where λW ,min = (λΘ,p + λΨ,q)
−1 and λW ,max = (λΘ,1 + λΨ,1)−1 are the minimum and

maximum eigenvalues of W . Combining this with the minimum eigenvalue min{p, q} and
the maximum eigenvalue (p+ q) of P TP outside of the null space of H results in

min{p, q}λ2
W ,min ≤ λ2

W ,min(uTP TPu) and λ2
W ,max(uTP TPu) ≤ (p+ q)λ2

W ,max,

which completes the proof.

3.3 EiGLasso with Approximate Hessian

EiGLasso pre-computes and stores G after eigendecomposing Θ and Ψ at the beginning
of the coordinate descent to solve Eq. (12). However, explicitly computing and storing
the (p2 + q2) × (p2 + q2) matrix H is still expensive for large p and q even with the
eigendecomposition. To further reduce the computation time and memory, we approximate
H based on its form in Theorem 3 as follows. We first drop HΘΨ while keeping only HΘ

and HΨ. Since pre-computing and storing the p2 × p2 matrix HΘ and the q2 × q2 matrix
HΨ is still expensive, we approximate HΘ and HΨ by approximating their eigenvalues
ΛHΘ

and ΛHΨ
in Eq. (19), while keeping the same eigenvectors QΘ ⊗QΘ and QΨ ⊗QΨ.

The resulting approximate Hessian Ĥ is

Ĥ =

[
ĤΘ 0

0 ĤΨ

]
=

[
QΘ ⊗QΘ 0

0 QΨ ⊗QΨ

] [
Λ̂HΘ

0

0 Λ̂HΨ

] [
QΘ ⊗QΘ 0

0 QΨ ⊗QΨ

]T
, (23)

where

Λ̂HΘ
=

K∑
k=1

ΞΘ,k ⊗ΞΘ,k + (q −K)ΞΘ,K ⊗ΞΘ,K ,

Λ̂HΨ
=

K∑
l=1

ΞΨ,l ⊗ΞΨ,l + (p−K)ΞΨ,K ⊗ΞΨ,K .

(24)

In Λ̂HΘ
, we keep only the components ΞΘ,k ⊗ ΞΘ,k’s of ΛHΘ

in Eq. (20) that contain
the K smallest eigenvalues λΨ,1, . . . , λΨ,K . These smallest eigenvalues have the largest
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contribution toward ĤΘ, since the eigenvalues of Ψ contribute to the eigenvalues of HΘ

through their inverses. We replace the remaining (q −K) components with ΞΘ,K ⊗ΞΘ,K ,
because dropping the (q −K) eigenvalue components in ΛHΘ

would amount to assuming
that Ψ has (q − K) eigenvalues of infinite magnitude. This approximation leads to the
following form

ĤΘ =
K∑
k=1

VΘ,k ⊗ VΘ,k + (q −K)VΘ,K ⊗ VΘ,K ,

ĤΨ =

K∑
k=1

VΨ,k ⊗ VΨ,k + (q −K)VΨ,K ⊗ VΨ,K ,

where VΘ,k = QΘΞΘ,kQ
T
Θ and VΨ,k = QΨΞΨ,kQ

T
Ψ. Then, during the coordinate descent

optimization, we pre-compute and store VΘ,k’s and VΨ,k’s for k = 1, . . . ,K, and compute
the Hessian entries from VΘ,k’s and VΨ,k’s as needed in each coordinate descent update
(details in Appendix B). We set HΘΨ = 0, because the same strategies used to approximate
ΛΘ and ΛΨ cannot be applied to approximate Υ in Eq. (20). Approximating HΘΨ by
replacing the (q −K) or (p−K) eigenvalue components with the Kth component does not
guarantee the resulting approximate Hessian to be positive definite, which is a condition
required to guarantee EiGLasso to converge as we show in Section 4. We assume the same
K for both ĤΘ and ĤΨ, though this can be relaxed. In our experiments in Section 5, we
demonstrate that often K = 1 suffices.

We provide a geometric interpretation of our approximation of HΘ with ĤΘ. Assuming
Eq. (12) without the L1-regularization, we have the descent direction −H−1

Θ vec(GΘ) with

the exact Hessian and −Ĥ−1
Θ vec(GΘ) with the approximate Hessian. Since HΘ and ĤΘ

share the same eigenvectors, in the coordinate system defined by these eigenvectors as bases,

the descent directions become −H−1/2
Θ vec(GΘ) = −Λ

− 1
2

HΘ
(QΘ ⊗QΘ)T vec(GΘ) with the

exact Hessian and −Ĥ−
1
2

Θ vec(GΘ) = −Λ̂
− 1

2
HΘ

(QΘ ⊗QΘ)T vec(GΘ) with the approximate
Hessian (Boyd and Vandenberghe, 2004). The latter is the former scaled in each element of

the matrix. Furthermore, since [Λ̂
− 1

2
HΘ

]ii ≤ [Λ
− 1

2
HΘ

]ii, in the coordinate system defined by the

eigenvectors of HΘ and ĤΘ as bases, each element of the descent direction with ĤΘ is a
convex combination of 0 and the corresponding element of the descent direction with HΘ.

The following theorem provides the properties of Ĥ, which will be used to analyze the
convergence of EiGLasso in Section 4.

Theorem 5 The approximate Hessian Ĥ is positive definite. Furthermore, its minimum
and maximum eigenvalues are

λĤ,min = min
{
λĤΘ,min, λĤΨ,min

}
, λĤ,max = max

{
λĤΘ,max, λĤΨ,max

}
,

where

λĤΘ,min =
K∑
i=1

(λΘ,p + λΨ,i)
−2 + (q −K)(λΘ,p + λΨ,K)−2

14
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λĤΘ,max =
K∑
i=1

(λΘ,1 + λΨ,i)
−2 + (q −K)(λΘ,1 + λΨ,K)−2

λĤΨ,min =
K∑
j=1

(λΘ,j + λΨ,q)
−2 + (p−K)(λΘ,K + λΨ,q)

−2

λĤΨ,max =
K∑
j=1

(λΘ,j + λΨ,1)−2 + (p−K)(λΘ,K + λΨ,1)−2.

Proof Since a block-diagonal matrix has the same set of eigenvalues as its diagonal blocks,
the eigenvalues of Ĥ are the same as the union of those of ĤΘ and ĤΨ in Eq. (24). The
eigenvalues of ĤΘ and ĤΨ in Eq. (24) are positive, because they are derived from the
eigenvalues of W that are positive. Thus, Ĥ is positive definite.

3.4 Estimation with the Unidentifiable Parameters

We describe a simple approach to estimating the unidentifiable diagonals of Θ and Ψ in
EiGLasso. We show that to solve the optimization problem with the constraint on a fixed
trace ratio in Eq. (11), it is sufficient to solve the unconstrained problem in Eq. (3) and to
adjust the diagonals once to enforce the given trace ratio after EiGLasso converges.

In Lemma 6 below, we show that given the current estimate of Θ and Ψ, the quadratic
approximation in Eq. (12) for determining descent directions is uniquely defined.

Lemma 6 Within the same equivalence class that contains the current estimate of (Θ,Ψ),
G, H, and Ĥ are uniquely defined. Thus, the second-order approximation in Eq. (12) is
uniquely defined.

Proof According to Eq. (22), the unidentifiability in the diagonal elements of Θ and Ψ
reduces to the unidentifiability in the eigenvalues of Θ and Ψ. In the gradient in Eq. (18)
and Hessians in Eqs. (19) and (23), the eigenvalues of Θ and Ψ always appear as a pair,
where the shift c cancels out as follows:(

(λΘ,l + c) + (λΨ,k − c)
)−1

= (λΘ,l + λΨ,k)
−1, ∀(l, k) ∈ {1, . . . , p} × {1, . . . , q}.

Thus, G, H, and Ĥ are unaffected by the shift c in the diagonals of Θ and Ψ.

Lemma 6 allows us to solve the problem in Eq. (12) to obtain the descent directions
(DΘ, DΨ), ignoring the constraint on the trace ratio. However, if (DΘ, DΨ) is a solution to
the problem in Eq. (12), then (DΘ − cI, DΨ + cI) for c ∈ R is also a solution, forming an
equivalence class

S[DΘ ⊕DΨ] = {(DΘ, DΨ)| (DΘ − cIp)⊕ (DΨ + cIq) = DΘ ⊕DΨ, c ∈ R}. (25)

Lemma 7 Within the equivalence class in Eq. (25), the line-search method in Algorithm 1
identifies a unique step size α.

15



Yoon and Kim

Proof We only need to show that [vec(DΘ)T , vec(DΨ)T ] vec(G), a term that appears
in the computation of δ in Algorithm 1, is invariant within the equivalence class in
Eq. (25), since DΘ and DΨ always appear as the Kronecker sum of the two in all
the other parts of the line search such that c and −c in Eq. (25) cancel out. We
have tr(GΘ) = tr(GΨ), which can be directly verified from Eqs. (15) and (16) in
Lemma 2 as tr(GΘ) =

∑n
i=1

1
n tr(Y iTY i) − tr(W ) = tr(GΨ). From this, we have

[vec(DΘ)T , vec(DΨ)T ] vec(G) = tr(DΘGΘ) + tr(DΨGΨ) = tr((DΘ − cI)GΘ) + tr((DΨ +
cI)GΨ) = tr(DΘ) + tr(DΨ), which proves [vec(DΘ)T , vec(DΨ)T ] vec(G) is unaffected by
the unidentifiable diagonals of DΘ and DΨ.

With Lemmas 6 and 7, we can minimize the EiGLasso objective in Eq. (11) by updating
Θ and Ψ with (DΘ, DΨ) and step size α and adjusting the diagonals of Θ and Ψ using
Theorem 1 after each update. The theorem below shows this procedure can be simplified
even further.

Theorem 8 In EiGLasso, given the trace ratio ρ = tr(Ψ)/ tr(Θ), it is sufficient to identify
the diagonals of Θ and Ψ only once after convergence. This leads to the identical estimate
obtained by identifying the diagonals of Θ and Ψ in every iteration to maintain the trace
ratio ρ. At convergence, the diagonal elements of (Θ,Ψ) are adjusted by the scalar factor

Θ← Θ− tr(Ψ)− ρ tr(Θ)

q + ρp
Ip. (26)

Proof Regardless of which member of the equivalence class S[DΘ ⊕DΨ] is used to update
the current estimate of (Θ,Ψ), we arrive at the same equivalence class S[Θ⊕Ψ] for the
estimate of (Θ,Ψ) after the update. From Lemma 6, given this equivalence class S[Θ⊕Ψ],
the problem in Eq. (12) in the next iteration is uniquely defined. Thus, regardless of whether
we adjust the diagonals to meet the constraint on the trace ratio, the sequence of equivalence
class S[Θ⊕Ψ] over iterations is the same, and it is not necessary to identify the diagonals
in each iteration of Newton’s method. The adjustment in Eq. (26) is found by applying
Theorem 1 to Θ⊕Ψ with the current estimate of Θ and Ψ.

When we set ρ = q
p , the one-time identification of diagonal parameters with Eq. (26) in

EiGLasso becomes identical to the identification of the parameters that TeraLasso (Gree-
newald et al., 2019) performs at the end of every iteration. At the end of each iteration,

TeraLasso evenly distributes τ = tr(Θ⊕Ψ)
pq between the reparameterized Θ and Ψ in Eq. (5)

and performs the update Θ← Θ− tr(Θ)
p Ip + τ

2Ip and similarly for Ψ. It is straightforward

to show that with ρ = q
p and from Eq. (10), Eq. (26) reduces to this update in TeraLasso.

Theorem 8 is analogous to the simple approach to handling the unidentifiability of the
parameters in Kronecker-product inverse covariance estimation (Yin and Li, 2012), where
Θ⊗Ψ = (cΘ)⊗ (1

cΨ) for any positive constant c. The parameters are identified by rescaling
Θ and Ψ as Θ← cΘ and Ψ← 1

cΨ with some constant c such that Θ11 is equal to 1 after
convergence, similar to the one-time identification in EiGLasso.

In practice, since our optimization algorithm is not affected by the choice of the trace
ratio ρ, one can set ρ to any desired quantity and set the diagonals of Θ and Ψ after the
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optimization is complete. A possible choice for ρ is the trace ratio of the inverse of the
empirical covariance matrices S and T , or the inverse of the trace ratio of S and T for
singular S and T .

3.5 Active Set and Automatic Detection of Block-diagonal Structure

In the graphical lasso, a simple strategy for reducing computation time has been introduced
that detects the block-diagonal structure in the inverse covariance parameter from the sample
covariance matrix prior to estimation (Witten et al., 2011; Mazumder and Hastie, 2012).
Then, only the parameters within the blocks corresponding to the connected components
in the graph need to be estimated. In Theorem 9 below, using Lemma 2 and Theorem
3, we show that a similar strategy can be applied to EiGLasso with both the exact and
approximate Hessian, to detect the block diagonal structures in Θ and Ψ from the sufficient
statistics S and T .

Theorem 9 The block-diagonal structure of Θ can be detected by thresholding S such that
[Θ]ij = 0 iff |[S]ij | ≤ γΘ. Similarly, the block-diagonal structure of Ψ can be detected by
thresholding T such that [Ψ]ij = 0 iff |[T ]ij | ≤ γΨ.

Proof Let ∂| · | denote the subgradient of the L1 norm of a matrix, i.e., [∂|A|]ij is 1 if
[A]ij > 0, −1 if [A]ij < 0, and [∂|A|]ij ∈ [−1, 1] if [A]ij = 0. Then, the Karush-Kuhn-Tucker
conditions (Boyd and Vandenberghe, 2004; Witten et al., 2011) for Θ in Eq. (3) is

WΘ − qS − qγΘ∂|Θ| = 0, (27)

where WΘ is given in Eq. (16). If Θ is block-diagonal, WΘ is also block-diagonal, since Θ
and WΘ have the same eigenvectors according to Lemma 2 and Theorem 3. This implies
that if [Θ]ij = 0 in the off-diagonal blocks, |[S]ij | ≤ γΘ in Eq. (27). The case for Ψ can be
proved similarly.

Hsieh et al. (2014) further showed that their active-set strategy in QUIC amounts to
detecting a block-diagonal structure in the first iteration, if the parameters are initialized
to a diagonal matrix. This strategy can be extended to EiGLasso with the approximate
Hessian. To reduce the computation time, as in QUIC, in each Newton iteration, EiGLasso
detects the active set of Θ and Ψ

AΘ = {(i, j) | [Θ]ij 6= 0 or |[GΘ]ij | > qγΘ}, AΨ = {(i, j) | [Ψ]ij 6= 0 or |[GΨ]ij | > pγΨ},

and update only the parameters in the active sets during the coordinate descent optimization,
while setting those in the fixed set to zero. When Θ and Ψ are initialized to diagonal
matrices, the approximate Hessian Ĥ in iteration 1 is diagonal, since the eigenvector matrices
QΘ and QΨ are diagonal. Then, the optimization problem in Eq. (12) decouples into a set
of optimization problems, each of which involves a single element of (DΘ, DΨ) and has a
closed-form solution for [DΘ]ij as

[DΘ]ij = −q

(
K∑
k=1

[VΘ,k]ii[VΘ,k]jj + (q −K)[VΘ,K ]ii[VΘ,K ]jj

)−1

S ([S]ij , γΘ) , ∀i 6= j.
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The soft-thresholding operator S(a, b) above is defined as S(a, b) = sign(a)(|a| − b)+, where
(c)+ = 0 if c < 0 and (c)+ = c if c > 0. This closed-form solution is [DΘ]ij = 0 if |[S]ij | < γΘ,
which is equivalent to the condition for detecting the block-diagonal structure in Θ from S
in Theorem 9. The case for Ψ can be shown similarly.

4. Convergence Analysis

We examine the properties of the line-search method in Algorithm 1 and analyze the global
and local convergence of EiGLasso. We use the properties of the exact and approximate
Hessian matrices that we proved in Section 3 to extend the previous results on the convergence
behavior of QUIC (Hsieh et al., 2014).

4.1 Line Search Properties

EiGLasso inherits some of the line-search properties shown for QUIC (Hsieh et al., 2014).
This is because our objective in Eq. (3) can be written in terms of Ω = Θ⊕Ψ in the form
that resembles the objective of QUIC

f(Ω) = tr(UΩ)− log |Ω|+ ‖Γ ◦Ω‖1,off,

where U = 1
n

∑n
i=1 vec(Y i)T vec(Y i), Γ = γΘ1p⊕γΨ1q, and ◦ is an element-wise multiplica-

tion operator. Then, the EiGLasso’s update Θ← Θ+αDΘ and Ψ← Ψ+αDΨ can be writ-
ten as Ω← Ω+αDΩ, where DΩ = DΘ⊕DΨ, since Ω+αDΩ = (Θ+αDΘ)⊕(Ψ+αDΨ). We
extend these results for Ω, to prove the results for individual Θ and Ψ, where (Θ,Ψ) ∈ KSp,q,
when unlike in QUIC the exact Hessian H is not positive definite everywhere (Theorem 4),
and when the approximate Hessian Ĥ is used.

We begin by showing that both H and Ĥ have bounded eigenvalues in the level set
U = {(Θ,Ψ) | Θ⊕Ψ ∈ Spq++, f(Θ,Ψ) ≤ f(Θ0,Ψ0)} and are Lipschitz-continuous. This
result will be used to prove the line-search properties and global and local convergence.

Lemma 10 In the level set U , H and Ĥ are Lipschitz-continuous and have bounded
eigenvalues:

min{p, q}λ̄−2Ip2+q2 �H � (p+ q)λ−2Ip2+q2 ,

min{p, q}λ̄−2Ip2+q2 �Ĥ � max{p, q}λ−2Ip2+q2 ,

for some constants λ, λ > 0 that depend on γΘ, γΨ, f(Θ0,Ψ0), and {Y 1, . . . ,Y n}.

Proof We bound the eigenvalues of Ω = Θ⊕Ψ, Θ, and Ψ, and use these bounds to bound
the eigenvalues of H and Ĥ . When the diagonals are not identified, it directly follows from
Lemma 2 in Hsieh et al. (2014) that all EiGLasso iterates of (Θ,Ψ) are contained in the set
with bounded eigenvalues of Θ⊕Ψ

C = {(Θ,Ψ) | λI � Θ⊕Ψ � λ̄I}. (28)

Next, given a fixed trace ratio ρ = tr(Ψ)
tr(Θ) , we bound the eigenvalues of Θ and Ψ. Since Eq.

(28) implies λI � ΛΘ ⊕ΛΨ � λ̄I, we apply Theorem 1 to ΛΩ = ΛΘ ⊕ΛΨ to identify ΛΘ
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and ΛΨ in the equivalence class in Eq. (22) given ρ, thus, identifying the diagonals of Θ
and Ψ. We bound each of the two terms in Eq. (8) for Θ as

qλI �
q∑
i=1

(Ip ⊗ eq,i)
TΛΩ(Ip ⊗ eq,i) � qλ̄I and

ρpq

q + ρp
λI � ρ

q + ρp
tr(ΛΩ)I � ρpq

q + ρp
λ̄I,

and combine these to obtain the eigenvalue bounds for Θ and similarly for Ψ

Cρ =

{
(Θ,Ψ) |

(
λ− ρp

q + ρp
λ̄
)
I � Θ �

(
λ̄− ρp

q + ρp
λ
)
I,(

λ− q

q + ρp
λ̄
)
I � Ψ �

(
λ̄− q

q + ρp
λ
)
I

}
. (29)

From Eq. (28) and Theorem 4, we obtain the bounds on the eigenvalues of H. From Eq.
(28) and Theorem 5, we obtain the bounds on the eigenvalues of Ĥ, since λĤΘ,min ≥ qλ̄

−2,

λĤΘ,max ≤ qλ−2, λĤΨ,min ≥ pλ̄−2, λĤΨ,max ≤ pλ−2. On the set in Eq. (29), since the
log-determinant is a continuous function of class C∞, and a continuous function on a compact
set is bounded, both H and Ĥ are locally Lipschitz-continuous.

Now, for EiGLasso with the exact and approximate Hessian matrices, we show that the
following three line-search properties hold: the line search method is guaranteed to terminate
for any symmetric matrices DΘ and DΨ, as the two line search conditions in Algorithm
1 are satisfied for some step size α (Lemma 11); the update with the Newton direction is
guaranteed to decrease the objective (Lemma 12); and EiGLasso with the exact Hessian
is guaranteed to enter pure-Newton phase where the step size α = 1 is always chosen. We
state and prove the first two properties. The proof of the last property follows directly from
the proof in Tseng and Yun (2009) and Hsieh et al. (2014).

Lemma 11 For any Θ and Ψ, where Θ ⊕Ψ � 0, and symmetric matrices DΘ and DΨ

for descent directions found with either the exact or approximate Hessian, there exists a step
size α̃ ∈ (0, 1] such that for all α < α̃ the two conditions in the line search in Algorithm 1
are satisfied.

Proof If α < λmin(Θ⊕Ψ)/‖DΘ ⊕DΨ‖2, the updated estimates Θ + αDΘ and Ψ + αDΨ

satisfy (Θ+αDΘ)⊕(Ψ+αDΨ) � 0, since (Θ+αDΘ)⊕(Ψ+αDΨ) = Θ⊕Ψ+α(DΘ⊕DΨ)
and we have Θ⊕Ψ � 0 and ‖α(DΘ ⊕DΨ)‖2 < λmin(Θ⊕Ψ). Thus, the first line-search
condition in Algorithm 1 is satisfied. From Lemma 1 in Tseng and Yun (2009) and Proposi-
tion 3 in Hsieh et al. (2014), it is straightforward to show the second condition in Algorithm
1 is satisfied.

Lemma 12 Let vec(D) = [vec(DΘ)T , vec(DΨ)T ]T for all symmetric DΘ and DΨ. With
the exact Hessian H, if not at the optimum, δ in Algorithm 1 is upper bounded,

δ ≤ − vec(D)TH vec(D) ≤ −λH,min0‖ vec(D)‖22 < 0, (30)
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where ‖ vec(D)‖22 = ‖DΘ‖2F + ‖DΨ‖2F , and λH,min0 is given in Theorem 4. With the

approximate Hessian Ĥ, δ is upper bounded everywhere

δ ≤ − vec(D)T Ĥ vec(D) ≤ −λĤ,min‖ vec(D)‖22 < 0, (31)

where λĤ,min is given in Theorem 5.

Proof For H , the first inequality in Eq. (30) can be shown by a straightforward application
of Lemma 1 and Theorem 1 in Tseng and Yun (2009) and Proposition 4 in Hsieh et al. (2014).
To prove the second and third inequalities, since H is not positive definite everywhere, we
need to show that vec(D) is outside of the null space of H described in Theorem 4, unless Ei-
GLasso is at the optimum, where D = 0. The null space of H , {vec(D)| vec(DΘ⊕DΨ) = 0},
is equivalent to {vec(D)|DΘ = cI, DΨ = −cI for c ∈ R}, which is the equivalence class of
the optimality condition D = 0. This proves the third inequality in Eq. (30) that holds
except when D = 0. For Ĥ , the first inequality in Eq. (31) can be again shown from Lemma
1 and Theorem 1 in Tseng and Yun (2009) and Proposition 4 in Hsieh et al. (2014). The
second and third inequalities hold since Ĥ is positive definite.

4.2 Convergence Analysis

To show the global convergence of EiGLasso, as in QUIC, we use a more general non-
smooth optimization framework, the block coordinate descent studied in Tseng and Yun
(2009). EiGLasso satisfies the following two conditions required to guarantee that the block
coordinate descent algorithm converges to the global optimum. First, the objective function
of EiGLasso has exact or approximate Hessian matrices that are positive definite with
bounded eigenvalues in the level set U : aI �H, Ĥ � bI for some positive constants a and
b, according to Theorems 4 and 5, and Lemma 10. Second, EiGLasso with the exact or
approximate Hessian chooses a subset of variables to be updated in each iteration according
to the Gauss-Seidel rule: with T = 2, at iteration t, EiGLasso updates one of the two subsets
of variables, J 2t = AtΘ t AtΨ and J 2t+1 = J \ AtΘ t AtΨ, where J = J 2t ∪ J 2t+1 is the
entire set of variables and AtΘ and AtΨ are active sets in Algorithm 2. Therefore, EiGLasso
is guaranteed to converge to the global optimum according to Tseng and Yun (2009).

Now we analyze the local convergence of EiGLasso. We adopt a similar strategy used in
QUIC (Hsieh et al., 2014): convergence analysis on a smooth function is applied near the
global optimum, where the L1-regularized non-smooth objective becomes locally smooth.
The following theorem uses the properties of the Hessian matrices from Section 3 to extend
the results for QUIC to EiGLasso.

Theorem 13 Near the optimum, where step size α = 1 is chosen, EiGLasso with the exact
Hessian H converges to the optimum quadratically. EiGLasso with the approximate Hessian
Ĥ converges to the optimum linearly.

Proof Since H is Lipschitz-continuous from Lemma 10, the proof for EiGLasso with
the exact Hessian follows from Lemma 2.5 and Theorem 3.1 of Dunn (1980). While the
convergence analysis in Dunn (1980) assumes that the Hessian is positive definite, the exact
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Hessian in EiGLasso is not positive definite everywhere. However, according to Theorem 4,
H is positive definite for all iterates (Θt,Ψt) ∈ KSpq++, since KSpq++ is outside of the null space
of H, so the analysis in Dunn (1980) can be applied to EiGLasso. The proof for EiGLasso
with Ĥ follows from the analysis of steepest descent with the quadratic norm (Boyd and
Vandenberghe, 2004), given the bounded eigenvalues of H in Lemma 10.

5. Experiments

We compare the performance of EiGLasso with that of TeraLasso (Greenewald et al., 2019)
on simulated data and on real-world data from genomics and finance. TeraLasso is the
state-of-the art method for Kronecker-sum inverse covariance estimation and has been shown
to be substantially more efficient than BiGLasso (Kalaitzis et al., 2013), so we did not include
BiGLasso in our experiments. We implemented EiGLasso in C++ with the sequential version
of Intel Math Kernel Library. We downloaded the authors’ implementation of TeraLasso
and modified it to perform more iterations during line search when the safe-step approach
suggested by the authors failed to find a step-size that satisfies the positive definite condition
on Θ⊕Ψ. All experiments were run on a single core of Intel(R) Xeon(R) CPU E5-2630 v3 @
2.40GHz. In all of our experiments, we selected the regularization parameters γ = γΘ = γΨ
for EiGLasso and used the selected γ for TeraLasso because EiGLasso is significantly faster
than TeraLasso and minimizes the same objective as TeraLasso. To assess convergence, we
used the criterion that the decrease in the objective function value f t at iteration t satisfies

the condition
∣∣∣f t−f t−1

f t

∣∣∣ < ε for three consecutive iterations.

5.1 Simulated Data

We compared EiGLasso and TeraLasso on data simulated from known Θ and Ψ. We used
the true Θ and Ψ of different sizes (p, q = 100, 200, 500, 1000, 2000, and 5000), assuming
two types of graph structures.

• Random graph: To set the ground-truth Θ, we first generated a sparse p × p
matrix A by assigning −1, 0, or 1 to each element with probabilities 1−κ

2 , κ, and
1−κ

2 , respectively. We chose κ such that the number of non-zero elements of Θ is
10p. To ensure Θ is positive definite, we set Θ to AAT after adding η + 10−4 with
η ∼ Unif(0, 0.1) to each diagonal element of AAT .

• Graph with clusters: We set Θ to a block-diagonal matrix such that each block
corresponds to a cluster. For graphs with p = 100 and 200, we assumed five blocks,
each with size p

5 ×
p
5 . For larger graphs with p = 500, 1000, 2000, and 5000, we

assumed 10 blocks, each with size p
10 ×

p
10 . Each block was generated as a random

graph described above, setting κ so that we have p non-zero elements in the block.

The ground-truth Ψ was set similarly. Given these parameters, we simulated matrix-variate
data from Gaussian distribution with zero mean and inverse covariance Θ⊕Ψ.

First, we evaluated TeraLasso and EiGLasso on simulated data with graph size p, q = 100.
The two methods were compared in terms of the computation time and the number of
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Figure 2: Comparison of the convergence of EiGLasso and TeraLasso on data simulated from
random graphs. In (a) and (b), objective values over iterations (top) and over time (bottom)
are shown for two datasets. All methods were run until they reached the objective that
EiGLasso with the exact Hessian reached with the convergence criterion ε = 10−3. The ‘•’,
‘×’, ‘+’, ‘�’, ‘©’ and ‘♦’ mark the points that satisfy ε = 10−3, 10−4, 10−5, 10−6, 10−7, and
10−8, respectively. In (c), precision-recall curves for EiGLasso at ε = 10−3 and TeraLasso at
different ε’s averaged over 10 datasets are shown. Graph size p, q = 100 was used.

iterations required to reach the same level of optimality, which we define as the objective
value that EiGLasso with the exact Hessian converged to with the convergence criterion
ε = 10−3. The regularization parameters were selected such that the number of non-zero
elements of the estimated parameters roughly matched that of the true parameters. EiGLasso
with approximate Hessian was run with different K’s ranging from K = 1 to K = 100.
Results are shown for four datasets, two from random graphs (Figures 2(a) and 2(b))
and two from graphs with clusters (Figures 3(a) and 3(b)). Regardless of the degree of
Hessian approximation, EiGLasso required significantly fewer iterations than TeraLasso,
since methods that use the second-order information in general converge in fewer iterations
than first-order methods. With the exact Hessian and approximate Hessian with large K,
EiGLasso took longer in each iteration than TeraLasso but overall required two to three
times less computation time than TeraLasso. As we reduced K, the time taken by EiGLasso
decreased substantially, and EiGLasso with K = 1 achieved two to three orders-of-magnitude
speed-up, compared to TeraLasso.

We compared TeraLasso and EiGLasso on the accuracy of the recovered non-zero elements
in Θ and Ψ, using 10 datasets simulated as above (Figures 2(c) and 3(c)). The precision-
recall curves averaged over the 10 simulated datasets were obtained for EiGLasso with
different K’s in the approximate Hessian and with the exact Hessian at ε = 10−3 and
for TeraLasso with different ε’s. EiGLasso with smaller K’s suffered slightly on accuracy,
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Figure 3: Comparison of the convergence of EiGLasso and TeraLasso on data simulated from
graphs with clusters. In (a) and (b), objective values over iterations (top) and over time
(bottom) are shown for two datasets. All methods were run until they reached the objective
that EiGLasso with the exact Hessian reached with the convergence criterion ε = 10−3.
The ‘•’, ‘×’, ‘+’, ‘�’, and ‘©’ mark the points that satisfy ε = 10−3, 10−4, 10−5, 10−6, and
10−7, respectively. In (c), precision-recall curves for EiGLasso at ε = 10−3 and TeraLasso at
different ε’s averaged over 10 datasets are shown. Graph size p, q = 100 was used.

compared to EiGLasso with larger K’s, indicating a trade-off between the accuracy and the
computation time across different K’s. However, even EiGLasso with small K’s provided
more accurate estimates than TeraLasso with more stringent convergence criteria, and the
EiGLasso estimates at ε = 10−3 for all K’s were significantly better than the TeraLasso
estimates at ε = 10−3 and 10−4. TeraLasso needed ε = 10−6 to achieve the accuracy similar
to that of EiGLasso at ε = 10−3.

Next, we compared the computation time of TeraLasso and EiGLasso on data simulated
from larger graphs (Table 1). For datasets with size p, q = 100, 200, 500, 1000, 2000, and
5000, we ran TeraLasso and EiGLasso with varying K’s and recorded time taken by each
method if it converged within 24 hours. We used ε = 10−3 as convergence criterion for
EiGLasso with all K’s, but ran TeraLasso until it reached the similar objective value that
EiGLasso reached with ε = 10−3, which typically required ε = 10−6, 10−7, or 10−8. Across
the different graph types and sizes, EiGLasso with different K’s almost always converged
faster than TeraLasso. In particular, EiGLasso with K = 1 and 2 was consistently two to
three orders-of-magnitude faster than TeraLasso. For example, EiGLasso with K = 1 took
three hours for graphs with p, q = 5000, while TeraLasso did not converge on the smaller
graphs with p, q = 500 in 24 hours.
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Graph p, q
EiGLasso

TeraLasso
K = 1 K = 2 K = 5 K = 10 K = 50 K = 100

Random
Graphs

100 1 4 6 40 729 1019 4194
200 7 164 551 3059 27049 70311 16765
500 29 155 2252 5994 31826
1000 515 11601 39568
2000 6361 28539
5000 10458 62685

Graphs
with

Clusters

100 2 21 28 629 6516 12443 21115
200 11 410 930 1042 11281 59813 67669
500 28 5231 9252 10549
1000 2169 12614 58168
2000 9310 41524
5000 10461 67608

Table 1: Comparison of computation time (in seconds) on simulated data.

We empirically evaluated the effects of Hessian approximation on the convergence
behavior of EiGLasso by using data simulated from a random graph of size p, q = 50. In ĤΘ

and ĤΨ of the approximate Hessian Ĥ , the components of the eigenvalues of HΘ and HΨ

are modified from the summands in Eq. (20) to the summands in Eq. (24). For EiGLasso
with K = 5, these summands in the eigenvalues before and after the modification are shown
for the minimum and maximum eigenvalues of HΘ at the 5th and last iterations in Figures
4(a) and 4(b). The full spectrums of the same HΘ and ĤΘ are shown in Figure 4(c). Next,
we examined the effects of such Hessian approximation on the convergence of EiGLasso
(Figures 4(d) and 4(e)). While EiGLasso with the exact Hessian converged quadratically,
with the approximate Hessian, the convergence slowed down with smaller K. However, even
with K = 1, the convergence was not significantly slower than EiGLasso with the exact
Hessian. Even if ‖Ĥ −H‖F did not approach zero over iterations (Figure 4(e)), EiGLasso
with the approximate Hessian quickly reached the same level of optimality as EiGLasso with
the exact Hessian (Figure 4(d)). We obtained similar results from a graph with clusters
(Figure 5).

To leverage the fast convergence with K = 1 during early iterations and with K > 1
during final iterations, we explored the approach of using EiGLasso with K = 1 to reach
near optimum and then switching to EiGLasso with larger K’s to reach the optimum. Using
the same simulated datasets in Figures 2(a) and 2(b) and in Figures 3(a) and 3(b), we
initialized EiGLasso with K ≥ 1 using the estimates from EiGLasso with K = 1 at ε = 10−3

and ran it until it reached the same objective value obtained by EiGLasso with K = 1
at ε = 10−6. With this initialization scheme, EiGLasso with smaller K’s required more
iterations but often less computation time (Figure 6). EiGLasso with relatively small K’s
such as K = 1, 2, 5, and 10 required less computation time than EiGLasso with larger K’s.
This suggests that EiGLasso with K = 1 is sufficiently fast during both initial and final
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Figure 4: Effects of Hessian approximation on the convergence of EiGLasso for data
simulated from a random graph. (a) The summands in λHΘ,min =

∑q
j=1(λΘ,p + λΨ,j)

−2

and λĤΘ,min =
∑K

j=1(λΘ,p + λΨ,j)
−2 + (q −K)(λΘ,p + λΨ,K)−2 for EiGLasso with K = 5.

(b) The summands in λHΘ,max and λĤΘ,max as in Panel (a). (c) The eigenvalues of HΘ and

ĤΘ, sorted with the eigenvalues of HΘ. In Panels (a)-(c), the results are shown at the 5th

iteration (top) and at the last iteration (bottom). (d) Error measured as

∥∥∥∥[vec(Θt −Θ∗)
vec(Ψt −Ψ∗)

]∥∥∥∥
2

over iterations. (e) ‖Ĥ −H‖F over iterations. Graph size p, q = 50 was used.

iterations and that the strategy of running EiGLasso with K = 1 during initial iterations and
with a small increase in K during final iterations gives EiGLasso the optimal performance.

5.2 Mouse Gene Expression Data from RNA-seq

We compared EiGLasso and TeraLasso using the gene expression levels obtained from RNA
sequencing of brain tissues for multiple related mice from the same pedigree (Gonzales
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Figure 5: Effects of Hessian approximation on the convergence of EiGLasso for data simulated
from a graph with clusters. (a) The summands in λHΘ,min =

∑q
j=1(λΘ,p + λΨ,j)

−2 and

λĤΘ,min =
∑K

j=1(λΘ,p + λΨ,j)
−2 + (q −K)(λΘ,p + λΨ,K)−2 for EiGLasso with K = 5. (b)

The summands in λHΘ,max and λĤΘ,max, as in Panel (a). (c) The eigenvalues of HΘ and

ĤΘ, sorted with the eigenvalues of HΘ. In Panels (a)-(c), the results are shown at the 5th

iteration (top) and at the last iteration (bottom). (d) Error measured as

∥∥∥∥[vec(Θt −Θ∗)
vec(Ψt −Ψ∗)

]∥∥∥∥
2

over iterations. (e) ‖Ĥ −H‖F over iterations. Graph size p, q = 50 was used.

et al., 2018). The brain tissue samples were collected from generations 50-56 of the LG/J ×
SM/J advanced intercross line of mice. RNA was extracted from three brain tissue types:
prefrontal cortex (PFC; 185 mice), striatum (STR; 169 mice), and hippocampus (HIP; 208
mice). Several genes from these tissues have been found relevant to psychiatric and metabolic
disorders (Gonzales et al., 2018).

We applied EiGLasso and TeraLasso to this data to estimate Θ for the relationship
among the mice and Ψ for the gene network. We selected 10, 000 genes from each tissue
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Figure 6: Convergence of EiGLasso near optimum on simulated data. In (a) and (b),
objectives over iterations (top) and over time (bottom) are shown for the same two datasets
from random graphs used in Figures 2(a) and 2(b). In (c) and (d), results are shown for the
same two datasets from graphs with clusters used in Figures 3(a) and 3(b). EiGLasso with
different K’s was initialized with the estimates from EiGLasso with K = 1 at ε = 10−3.

Tissue Genes (q) EiGLasso (sec) TeraLasso (sec)

PFC
(p = 185)

436 2 887
877 13 18194

5108 6141
10000 25360

STR
(p = 169)

447 9 6917
977 77 39645

5007 32977
10000 65797

HIP
(p = 208)

508 90 54454
879 708

5529 3106
10000 20104

Table 2: Comparison of the computation time of EiGLasso with K = 1 and TeraLasso on
mouse gene-expression data.

type by excluding genes with low expression variance across the mice. As TeraLasso did
not converge within 24 hours on this dataset with q = 10, 000, to compare the computation
time of EiGLasso and TeraLasso, we formed three smaller datasets for each tissue type
by performing hierarchical clustering and selecting clusters of genes. We selected the
regularization parameters from the range [0.1, 1.0] by using Bayesian Information Criterion
(BIC). EiGLasso was run with K = 1 and ε = 10−3. TeraLasso was run up to 24 hours, until
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Figure 7: Comparison of the convergence of EiGLasso and TeraLasso on mouse gene-
expression data. (a) PFC with q = 877 genes. (b) STR with q = 977 genes. (c) HIP with
q = 879 genes. In top two rows, the convergence over iterations and over time for EiGLasso
with K = 1 at ε = 10−3 and for TeraLasso converging to the same objective value is shown.
The ‘•’ and ‘©’ mark the points that satisfy ε = 10−3 and 10−7, respectively. In bottom
two rows, the convergence over iterations and over time for EiGLasso with different K’s
is shown, after initializing with the estimates from EiGLasso with K = 1 at ε = 10−3 and
running them until they reach the objective value that EiGLasso with K = 1 reached at
ε = 10−6.
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Figure 8: Convergence of EiGLasso on mouse gene-expression data for different regularization
parameters. For ten different values of the regularization parameter γ = γΘ = γΨ, the
objective values over iterations are shown for (a) PFC with q = 877 genes, (b) STR with
q = 977 genes, and (c) HIP with q = 879 genes.

it reached similar objective values to those from EiGLasso, which corresponded to ε = 10−7

or 10−8.

Across all datasets with different tissue types and with different sizes, EiGLasso was
significantly faster than TeraLasso (Table 2). On smaller datasets with less than 1,000 genes,
EiGLasso was two to three orders-of-magnitude faster than TeraLasso. On HIP tissue with
879 genes, within 24 hours, TeraLasso was not able to converge to the similar objective
value that EiGLasso reached, while EiGLasso converged in about 12 minutes. On the larger
datasets with more than 5,000 genes, TeraLasso was not able to reach the same objective as
EiGLasso with K = 1 within 24 hours. On the full dataset with 10,000 genes, EiGLasso took
six and seven hours for the HIP and PFC tissue types and 18 hours for the STR tissue type.

On the second smallest dataset from each tissue type in Table 2, we examined the
convergence of EiGLasso over iterations and over time (Figure 7). In all tissue types,
EiGLasso with K = 1 converged at least two orders-of-magnitude faster and required far
fewer iterations than TeraLasso (Figure 7, top two rows). TeraLasso needed more stringent
convergence criterion ε = 10−7 or 10−8 to reach the similar objective value that EiGLasso
reached with ε = 10−3. For EiGLasso, we considered switching from K = 1 to larger K’s
near optimum for faster convergence. Specifically, we initialized EiGLasso with different K’s
with the estimates from EiGLasso with K = 1 at ε = 10−3 and ran it until it reached the
same objective value obtained by EiGLasso with K = 1 at ε = 10−6 (Figure 7, bottom two
rows). With a larger K, the number of iterations decreased due to the faster convergence
rate, though this did not translate to reduced computation time due to the higher cost of
computing the approximate Hessian. In fact, EiGLasso with relatively small K’s required
the least computation time: K = 5 for PFC and STR, and K = 2 for HIP. Overall, we found
that EiGLasso with K = 1 or other small K’s was the most efficient, which is consistent
with what we observed in our simulation study. Finally, the number of iterations required by
EiGLasso was not affected significantly by different regularization parameters γ (Figure 8).

On the second largest dataset from each tissue type in Table 2, we examined the
networks over genes estimated by EiGLasso. The estimated gene network for each tissue
type was clustered by using the Markov clustering algorithm (Morris et al., 2011) available in
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Figure 9: Results on S&P 500 data. (a) Graph over S&P 500 companies estimated by
EiGLasso from the stock closing price data. Data from 306 companies over 2,517 days
were used. The off-diagonals of the estimated graph are shown. (b) Comparison of the
convergence of EiGLasso and TeraLasso on the data from 306 companies over 500 days. The
objective values over iterations (top) and time (bottom) are shown. The ‘•’ and ‘©’ mark
the points that satisfy the convergence criteria ε = 10−3 and 10−7, respectively. EiGLasso
with K = 1 was used.

Cytoscape (Shannon et al., 2003). We then ranked the clusters by their mean edge weights
and analyzed the top cluster from each tissue type with Gene Ontology (Ashburner et al.,
2000) and PANTHER (Thomas et al., 2003). In PFC, 6 out of 35 genes in the cluster were
enriched for axon ensheathment (p-value= 5.26× 10−8), and 24 other genes were known to
affect axon ensheathment via genetic pathways related to myelination and oligodendrocyte
(Dugas et al., 2006; Mattan et al., 2010; Edgar et al., 2013; McKenzie et al., 2017; Liu et al.,
2018; Zhang et al., 2018a; Siems et al., 2020; Szklarczyk et al., 2021; Zhang et al., 2021). In
STR, 20 out of 56 genes were enriched for cilium (p-value= 4.15× 10−16) and, out of the
20 genes, 13 genes for cilium organization (p-value= 2.68× 10−12) and 9 genes for cilium
movement (p-value= 8.74× 10−10). For HIP, the gene network was clustered after removing
edges with the magnitudes of weights below 0.01. In the top cluster for HIP, out of 83 genes,
43 genes were enriched for positive regulation of cellular process (p-value= 1.17 × 10−6),
four genes for canonical Wnt signaling pathway (p-value= 2.85× 10−4), and three genes for
positive regulation of JUN kinase activity (p-value= 1.36 × 10−3), which is known to be
related to memory (Blum et al., 1999; Bevilaqua et al., 2003; Fortress et al., 2013).
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5.3 Financial data

We applied EiGLasso and TeraLasso to the historical daily stock price data of the S&P
500 constituents to model the relationship among companies and dependencies across time
points. We obtained the daily stock closing prices for 306 companies that remained in the
index from 2/16/2010 to 2/13/2020 for 2,523 days. We excluded data for six days when
stocks for only a small subset of the constituents were traded. We normalized the data by

computing the proportion of price change on day t from the previous day as pricet−pricet−1

pricet−1 .

We ran EiGLasso with K = 1 and ε = 10−3 and ran TeraLasso until it reached the similar
objective as EiGLasso. We used BIC to select the optimal regularization parameter from 10
different values in the range of [0.01, 1.0].

EiGLasso with K = 1 took 46 hours, whereas TeraLasso did not converge within 48
hours. Clusters obtained by applying hierarchical clustering to the graph over 306 companies
matched the known sectors (Figure 9(a)). We compared the computation time of EiGLasso
with K = 1 and TeraLasso on a small subset over 500 days for the same 306 companies. On
this smaller dataset, EiGLasso took 148 seconds to converge and TeraLasso took 25,739
seconds, showing that EiGLasso was again two orders-of-magnitude faster than TeraLasso
(Figure 9(b)).

6. Conclusion

We introduced EiGLasso, an efficient algorithm for estimating an inverse covariance matrix
as the Kronecker sum of two matrices, each representing a graph over samples and a graph
over features. Extending the second-order optimization method used in QUIC for Gaussian
graphical models (Hsieh et al., 2014), EiGLasso employed the eigendecomposition of the two
matrices for individual graphs during optimization to avoid an expensive computation of large
gradient and Hessian matrices with an inflated structure. Based on this eigendecomposition,
EiGLasso approximated the Hessian to further reduce the computation time. We showed
the quadratic convergence with the exact Hessian and the linear convergence with the
approximate Hessian. In our experiments, EiGLasso achieved two to three orders-of-
magnitude speed-up over the previous state-of-the-art method, TeraLasso (Greenewald et al.,
2019).

In addition, we introduced a new approach for identifying and estimating the unidentifi-
able diagonal elements of the matrices for the feature and sample graphs. We showed that
given the ratio of the traces of the two matrices, the diagonal parameters can be identified
uniquely. EiGLasso performed the optimization without identifying these parameters, since
all quantities involved in the optimization are invariant to the trace ratio. We further
showed that it is sufficient to identify the parameters with the fixed trace ratio once after the
optimization is complete. Thus, EiGLasso used a significantly simpler strategy for estimating
the unidentifiable parameters than the previous methods.

There are several possible future directions. One natural extension of EiGLasso is
to adopt Big&QUIC (Hsieh et al., 2013), an extension of QUIC to remove the memory
requirement. Unlike QUIC, EiGLasso uses the eigendecomposition of the parameter matrices,
which in itself has the space complexity cubic in the graph sizes. Thus, further research
is needed to incorporate the eigendecomposition within the block-wise update used in
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Big&QUIC. Another future direction is to develop a Hessian approximation technique with
faster theoretical convergence. While we showed that EiGLasso with our approximate Hessian
converges linearly to the optimum, it may be possible to achieve superlinear convergence
with an approximate Hessian that approaches the exact Hessian over iterations.
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Appendix A. Hessian Computation

We show that the collapse of W ⊗W in Eq. (17) to obtain the Hessian can be viewed as
the same type of deflation for the gradient in Figure 1(b) applied twice to W ⊗W .

Let A denote a matrix of sizem1×m2. Then, the elements of the Kronecker product A⊗A
are given as [A⊗A](i−1)m1+k, (j−1)m2+l = [A]ij [A]kl for i, k = 1, . . . ,m1, and j, l = 1, . . . ,m2.

As a representation of A⊗A with different row/column indices, we consider vec(A) vec(A)T

whose elements are given as [vec(A) vec(A)T ](i−1)m1+j, (k−1)m1+l = [A]ij [A]kl. We set up an
operator

Pm1,m2(A⊗A) = vec(A) vec(A)T ,

which maps the elements of A⊗A to those of vec(A) vec(A)T . More generally, we define
an operator on

∑N
i=1 Ai ⊗Ai, where Ai ∈ Rm1×m2 ,

Pm1,m2(
N∑
i=1

Ai ⊗Ai) =

N∑
i=1

vec(Ai) vec(Ai)
T . (32)

Collapsing W ⊗W into HΘ amounts to applying the same type of collapse as in the gradient
(Figure 1(b)) twice on Pp2q2,p2q2(W ⊗W ) to obtain Pp,p(HΘ), Pq,q(HΨ), and Pp,q(HΘΨ).
To see this, we re-write HΘ as

HΘ = P T
Θ(W ⊗W )PΘ
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(a) (b) (c)

Figure 10: Illustration of the Hessian computation in EiGLasso. A two-stage collapse of
Ppq,pq(W ⊗W ) into Pp,p(HΘ), Pp,q(HΘΨ), and Pq,q(HΨ) is shown for the same Θ and Ψ
with p = 4 and q = 5 in Figure 1. (a) Ppq,pq(W ⊗W ) of size p2q2 × p2q2 with a pq × pq
matrix in each cell. Only the cells with non-zero elements in the Kronecker-sum-like mask
(1p⊕1q)⊗1pq = (1p⊗Iq +Ip⊗1q)⊗1pq contribute to the Hessian. The two components of
this mask, (1p ⊗ Iq)⊗ 1pq and (Ip ⊗ 1q)⊗ 1pq, are shown with blue and yellow, respectively.
(b) Two intermediate matrices after the first collapse, each with size p2q× p2q (top) and size
pq2×pq2 (bottom), with a pq×pq matrix in each block. Only the elements of these matrices
that correspond to non-zero elements in the Kronecker-sum-like mask 1p ⊗ (1p ⊕ 1q) (top)
and 1q ⊗ (1p ⊕ 1q) (bottom) contribute to the Hessian. This is equivalent to applying the
mask 1p ⊕ 1q to each block. (c) Pp,p(HΘ) of size p2 × p2 with a p× p matrix in each block
(top), Pp,q(HΘΨ) of size p2 × q2 with a p× q matrix in each block (middle), and Pq,q(HΨ)
of size q2 × q2, with a q × q matrix in each block (bottom). The two collapses from Panel
(a) to Panel (b) and from Panel (b) to Panel (c) are shown with arrows that indicate the
sum of the cells in the larger matrix into the cell in the smaller matrix.

=

q∑
i=1

q∑
j=1

((Ip ⊗ eq,i)⊗ (Ip ⊗ eq,i))
T (W ⊗W )((Ip ⊗ eq,j)⊗ (Ip ⊗ eq,j))
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=

q∑
i=1

q∑
j=1

[
(Ip ⊗ eq,i)

TW (Ip ⊗ eq,j)
]
⊗
[
(Ip ⊗ eq,i)

TW (Ip ⊗ eq,j)
]
.

Then, we apply the operator in Eq. (32) to HΘ:

Pp,p(HΘ) =

q∑
i=1

q∑
j=1

vec
(
(Ip ⊗ eq,i)

TW (Ip ⊗ eq,j)
)

vec
(
(Ip ⊗ eq,i)

TW (Ip ⊗ eq,j)
)T

=

q∑
i=1

q∑
j=1

(Ip ⊗ eq,j ⊗ Ip ⊗ eq,i)
T vec(W ) vec(W )T (Ip ⊗ eq,j ⊗ Ip ⊗ eq,i)

=

q∑
i=1

q∑
j=1

([
(Ip ⊗ eq,j ⊗ Ip ⊗ Iq)(Ip ⊗ 1⊗ Ip ⊗ eq,i)

]T
Ppq,pq(W ⊗W )

[
(Ip ⊗ eq,j ⊗ Ip ⊗ Iq)(Ip ⊗ 1⊗ Ip ⊗ eq,i)

])

=

q∑
i=1

(Ip ⊗ (Ip ⊗ eq,i))
T

[ q∑
j=1

((Ip ⊗ eq,j)⊗ Ipq)
T

Ppq,pq(W ⊗W )((Ip ⊗ eq,j)⊗ Ipq)

]
(Ip ⊗ (Ip ⊗ eq,i)).

=

q∑
i=1

(Ip ⊗ (Ip ⊗ eq,i))
TMΘ(Ip ⊗ (Ip ⊗ eq,i)), (33)

where MΘ =
∑q

j=1((Ip ⊗ eq,j)⊗ Ipq)
TPpq,pq(W ⊗W )((Ip ⊗ eq,j)⊗ Ipq). Similarly,

Pq,q(HΨ) =

p∑
i=1

(Iq ⊗ (ep,i ⊗ Iq))
TMΨ(Iq ⊗ (ep,i ⊗ Iq)), (34)

Pp,q(HΘΨ) =

q∑
i=1

(Ip ⊗ (Ip ⊗ eq,i))
TMΨ(Iq ⊗ (Ip ⊗ eq,i)), (35)

where MΨ =
∑p

j=1((ep,j ⊗ Iq) ⊗ Ipq)
TPpq,pq(W ⊗W )((ep,j ⊗ Iq) ⊗ Ipq). Eqs. (33)-(35)

show the two-stage collapse for Hessian computation: Ppq,pq(W ⊗W ) (Figure 10(a)) is
collapsed to MΘ and MΨ (Figure 10(b)), which are then collapsed to Pp,p(HΘ), Pp,q(HΘΨ),
and Pq,q(HΨ) (Figure 10(c)). The first collapse of Ppq,pq(W ⊗W ) to MΘ and MΨ is
equivalent to applying the same collapse for the gradient in Figure 1(b) at the level of
cells in Figure 10(a) each with size pq × pq. The second collapse from MΘ and MΨ to
Pp,p(HΘ), Pp,q(HΘΨ), and Pq,q(HΨ) is equivalent to applying the same collapse again on
each cell with size pq × pq of MΘ and MΨ in Figure 10(b) at the level of matrix elements.
Notice that not all elements of Ppq,pq(W ⊗W ) contribute to Pp,p(HΘ), Pp,q(HΘΨ), and
Pq,q(HΨ): Only the cells of Ppq,pq(W ⊗W ) corresponding to the non-zero elements of the
inflated Kronecker-sum mask (1p⊕1q)⊗1pq and the elements of MΘ and MΨ, each masked
with 1p ⊗ (1p ⊕ 1q) and 1q ⊗ (1p ⊕ 1q), are used to compute Pp,p(HΘ), Pp,q(HΘΨ), and
Pq,q(HΨ).
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Appendix B. Computing the Newton Direction

We provide details on the coordinate descent updates for DΘ. Updating DΨ can be done in
a similar manner.

B1. Exact Hessian

Solving Eq. (12) for [DΘ]ij with an assumption that all the other elements of DΘ are fixed
amounts to solving the following optimization problem:

argmin
µ

µ
(
q[S]ij − [WΘ]ij +

q∑
k=1

vTk,iDΘvk,j +

p∑
l=1

q∑
k=1

λ2
W ,lk[QΘ]il[QΘ]jlq

T
Ψ,kDΨqΨ,k

)
+
µ2

2

( q∑
k=1

[VΘ,k]
2
ij + [VΘ,k]ii[VΘ,k]jj

)
+ qγΘ |[Θ]ij + [DΘ]ij + µ| ,

where vk,i is the ith column of VΘ,k = QΘΞΘ,kQ
T
Θ. This problem has a closed-form solution

µ = −c+ S
(
c− b

a
,
qγΘ
a

)
,

where

a =

q∑
k=1

[VΘ,k]
2
ij + [VΘ,k]ii[VΘ,k]jj ,

b = q[S]ij − [WΘ]ij +

q∑
k=1

vTk,iDΘvk,j +

p∑
l=1

q∑
k=1

λ2
W ,lk[QΘ]il[QΘ]jlq

T
Ψ,kDΨqΨ,k,

c = [Θ]ij + [DΘ]ij ,

and S(z, r) = sign(z) max{|z| − r, 0} is the soft-thresholding function.

B2. Approximate Hessian

Similarly, solving Eq. (12) with Ĥ instead of H for [DΘ]ij while fixing all the other elements
of DΘ amounts to solving the following optimization problem:

argmin
µ

µ
(
q[S]ij − [WΘ]ij +

K∑
k=1

vTk,iDΘvk,j + (q −K)vTK,iDΘvK,j

)
+
µ2

2

( K∑
k=1

[VΘ,k]
2
ij + [VΘ,k]ii[VΘ,k]jj + (q −K)

(
[VΘ,K ]2ij + [VΘ,K ]ii[VΘ,K ]jj

))
+ qγΘ |[Θ]ij + [DΘ]ij + µ| ,

with a closed-form solution

µ = −c+ S
(
c− b

a
,
qγΘ
a

)
,
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where

a =
K∑
k=1

[VΘ,k]
2
ij + [VΘ,k]ii[VΘ,k]jj + (q −K)

(
[VΘ,K ]2ij + [VΘ,K ]ii[VΘ,K ]jj

)
,

b = q[S]ij − [WΘ]ij +

K∑
k=1

vTk,iDΘvk,j + (q −K)vTK,iDΘvK,j ,

c = [Θ]ij + [DΘ]ij .

Online Appendix

The EiGLasso software is available at https://github.com/SeyoungKimLab/EiGLasso.
The mouse gene-expression data are publicly available from Gonzales et al. (2018).
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