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Abstract

In this paper, we study the concentration property of stochastic gradient descent (SGD)
solutions. In existing concentration analyses, researchers impose restrictive requirements on
the gradient noise, such as boundedness or sub-Gaussianity. We consider a much richer class
of noise where only finitely-many moments are required, thus allowing heavy-tailed noises.
In particular, we obtain Nagaev type high-probability upper bounds for the estimation
errors of averaged stochastic gradient descent (ASGD) in a linear model. Specifically,
we prove that, after T steps of SGD, the ASGD estimate achieves an O(

√
log(1/δ)/T +

(δT q−1)−1/q) error rate with probability at least 1− δ, where q > 2 controls the tail of the
gradient noise. In comparison, one has the O(

√
log(1/δ)/T ) error rate for sub-Gaussian

noises. We also show that the Nagaev type upper bound is almost tight through an example,
where the exact asymptotic form of the tail probability can be derived. Our concentration
analysis indicates that, in the case of heavy-tailed noises, the polynomial dependence on
the failure probability δ is generally unavoidable for the error rate of SGD.

Keywords: Stochastic gradient descent, high probability analysis, heavy-tailed noise, Na-
gaev inequality.

1. Introduction

Algorithms based on stochastic approximation (SA), especially the stochastic gradient de-
scent (SGD) and its variants, are workhorses of modern statistical and machine learning
(Robbins and Monro, 1951; Lai, 2003; Bottou et al., 2018). For a convex optimization
problem minθ∈Rp F (θ), where F : Rd → R, SGD updates the estimate of the minimum
θ? based on the stochastic gradient ĝ(θ) at some θ, which is a noisy measurement of the
gradient/subgradient g(θ) = ∇F (θ). The algorithm is easy to implement and popular in
applications for its effectiveness, computational efficiency, and versatility.

Given the huge success in applications, it is important to understand the theoretical
properties of SA. There have been extensive studies on the theoretical properties since
1951, from early work on consistency to distributions/inference and from asymptotic to non-
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asymptotic investigations (Blum, 1954; Dvoretzky, 1956; Moulines and Bach, 2011; Rakhlin
et al., 2012; Bach and Moulines, 2013; Toulis and Airoldi, 2017; Anastasiou et al., 2019;
Chen et al., 2020; Zhu et al., 2021). However, there are still gaps between the theory of SA
and applications, especially with heavy-tailed stochastic gradient noises which commonly
arise in practice. This paper focuses on the concentration property of the SGD estimates.
We obtain a nearly sharp high-probability error bound for SGD estimates with heavy-tailed
noises in the linear model. We show that the tail behaviors of SGD estimates are quite
different in heavy-tailed noise cases and sub-Gaussian noise cases.

Most of the literature on the quality of SGD estimates focuses on the expected error rate.
Polyak and Juditsky (1992) and Ruppert (1988) introduced the averaged SGD (ASGD), a
simple modification where iterates are averaged, and established the asymptotic normality of
the obtained estimate. It is known that ASGD estimates achieve the optimal rateOP (1/

√
T )

due to the central limit theorem (CLT), after T steps of SGD, under certain regularity
conditions. Further analyses on the error rate show that the expected squared error of the
SGD estimate (with average if necessary) is O(1/T ) for strongly convex objective functions,
and O(1/

√
T ) for smooth convex and non-smooth Lipschitz objective functions (Nemirovski

et al., 2009; Rakhlin et al., 2012; Shamir and Zhang, 2013; Lacoste-Julien et al., 2012).
Besides the guarantees in expectation, practitioners usually want to ensure that the

output of a single trial of the algorithm is well behaved and may ask: how many iterations
are needed in a single trial of the algorithm to achieve the desired accuracy? In other words,
they would prefer high confidence guarantees, i.e., high-probability error bounds in the form
of

P(‖θ̂ − θ?‖22 ≥ ε) ≤ δ,
where ε > 0, δ ∈ (0, 1) can be arbitrarily small, and θ̂ is the estimate of θ?. These high-
probability guarantees are usually adopted in statistical learning theory (Valiant, 1984),
where a tight sample complexity bound is of great interest. Note that bounds in expectation
are generally too conservative to derive high-probability guarantees. Specifically, if one has
E‖θ̂T − θ?‖q2 = O(T−2/q) (Chung, 1954), by Markov’s inequality, one can only guarantee
with probability at least 1− δ,

‖θ̂T − θ?‖22 ≤ O(δ−2/qT−1).

Then, the resulting sample complexity

T (ε, δ) = O

(
δ−2/q

ε

)
(1)

can be very high for a small δ. Also, the confidence intervals obtained from the CLT
only hold asymptotically when the number of samples goes to infinity and cannot be used
to rigorously compute sample complexity when δ → 0. Thus, additional tail probability
results (non-asymptotic) are needed.

High-probability bounds on SGD are much less explored than the bounds in expectation.
Some known high-probability results under light-tailed noise assumptions include Rakhlin
et al. (2012), who showed that for the strongly convex setting and suffix averaging θ̂T , with
probability at least 1− δ,

‖θ̂T − θ?‖22 ≤ O (log(log(T )/δ)/T ) .
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Recently, Harvey et al. (2019a) improved the above bound to O (log(1/δ)/T ). Other similar
results can be found in Hazan and Kale (2014); Cardot et al. (2017); Jain et al. (2019); Har-
vey et al. (2019b); Feldman and Vondrak (2019); Mou et al. (2020). These high-probability
bounds depend logarithmically on 1/δ, and the resulting sample complexity is

T (ε, δ) = O

(
log(1/δ)

ε

)
,

substantially improving T (ε, δ) = O(δ−2/qε−1) in (1) when δ is small. Such bounds with
a dependence on log(1/δ) are often called sub-Gaussian bounds or with sub-Gaussian per-
formance. Harvey et al. (2019a) also remark that a dependence on log(1/δ) is necessary,
which indicates that SGD can not achieve a better performance than this one under sub-
Gaussianity.

The aforementioned high-probability results all rely on the light-tailed assumption on
the gradient noise z = ĝ − g, such as boundedness or sub-Gaussianity. However, such
assumptions can be violated in practice. The heavy-tailed phenomenon is not uncommon
in applications (Simsekli et al., 2019). It is also more likely to get a bad output in a single
trail of SGD due to the more frequent outliers with heavy-tailed stochastic gradients. Thus,
a high-probability guarantee is especially needed. Then a natural question is: Can SGD
achieve the sub-Gaussian performance with log(1/δ) tail behavior in the case of heavy-tailed
stochastic noises? This paper answers this question by delivering a nearly tight high-
probability bound in a linear model with heavy-tailed stochastic noises. In particular, with
probability at least 1− δ, for any δ ∈ (0, 1),

‖θ̄T − θ?‖22 ≤ O

(
log(1/δ)

T
+

(1/δ)2/q

T 2−2/q

)
,

where θ? is the true parameter and θ̄T is the ASGD estimate (q > 2 controls the tail of the
stochastic noise). As a result, the sample complexity bound, with tolerance error ε > 0 and
failure probability δ ∈ (0, 1), is

T (ε, δ) = O

 log(1/δ)

ε
+

(
δ−2/q

ε

)q/(2(q−1)) . (2)

It is better than the T (ε, δ) = O(δ−2/qε−1) in (1). Besides the advantage of the logarithmical
term, the polynomial term O((δ−2/qε−1)q/(2(q−1))) is sharper than O(δ−2/qε−1) since q > 2.
We also compare the logarithmical term and the polynomial term in (2) numerically. Figure
1 shows that, when δ is big, the logarithmical dependence dominates, and therefore the
sample complexity is the same as that in the sub-Gaussian case. While when δ is small,
which is more of interest in most cases, the polynomial dependence term dominates, showing
that the polynomial dependence on δ is unavoidable. Thus, one cannot achieve the sub-
Gaussian performance when the gradient noise exhibits heavy-tailed distribution.

There recently has been renewed interest in obtaining robust guarantees of SGD without
the light-tailed assumption. Robust modifications of SGD (or GD), such as gradient clipping
and using the geometric median of stochastic gradients, are studied to accommodate the
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Figure 1: Compare the two terms in sample complexity (2). Here X axis represents fail-
ure probability δ; the solid line denotes ε−1 log(1/δ), the dashed line denotes
(δ−2/qε−1)q/(2(q−1)). We choose ε = 0.01 and q = 2.5.

heavy-tailed noises (Nazin et al., 2019; Holland and Ikeda, 2019; Davis and Drusvyatskiy,
2020; Gorbunov et al., 2020). Our lower bound answers the question “whether that robust
modification of SGD is necessary”. This question is vital because using SGD is a very
common heuristic in modern learning tasks, and it is easier to implement and more widely
used than its modified versions.

Contribution. Our primary theoretical contribution is to develop sharp probability bounds
for SGD with heavy-tailed noises for linear models. To this end, we introduce the Nagaev
type inequality to the machine learning community where traditionally researchers generally
use exponential inequalities for sub-exponential or sub-Gaussian random variables and the
Markov inequality if only polynomial moments exist. In general, Nagaev type inequalities
are much sharper than Markov inequalities; however, they are not very well-known in the
machine learning community. The linear model analysis can provide useful insights into
general models in view of the connection between linear models and more complex models
such as neural networks (Chizat et al., 2019; Hastie et al., 2019). Also, the idea of decom-
posing the martingale differences and taking advantage of specific martingale structures in
SGD may be useful for analyzing the theoretical properties of SA, especially for studying
tail probabilities.

Organization. The remainder of this article is organized as follows. In Section 2, we
introduce the linear model setting and specify assumptions on the noise. In Section 3, we
present our main result, i.e., the Nagaev type high probability bound. We also provide
technical innovations in this section. Then in Section 4, we show that the obtained high-
probability bound is nearly sharp, and the polynomial dependence on δ cannot be avoided.
Section 5 provides proofs for main theorems. Discussions and future directions are contained
in Section 6.
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2. Preliminaries

In this section, we first introduce some notations. Then, we describe the linear model setting
and assumptions which will be used later.

2.1 Notations

For a vector v = (v1, . . . , vp)
>, we denote its Euclidean norm as ‖v‖2 = (v21 + . . . + v2p)

1/2.
The operator norm of a matrix A is defined as ‖A‖2 = max‖ν‖2=1 ‖Aν‖2. When A is
positive semi-definite, λmax(A) denotes the largest eigenvalue of A, λmin(A) denotes the
smallest eigenvalue of A, and tr(A) denotes its trace. We use Ip to denote a p× p identity
matrix. We use Sp−1 to denote the p-dimensional unit sphere. For two positive sequences
{an}n≥1 and {bn}n≥1, we write an . bn if an ≤ Cbn for some constant C > 0 that does
not depend on n. Moreover, we write an � bn if an . bn and bn . an. Throughout the
paper, we use C to denote generic constant whose value may change from line to line. For a
sequence of i.i.d. sample {ξi}i≥1 from some distribution Π, we define conditional expectation
En(·) = E(·|Fn), where Fn is σ-algebra generated by {ξi}i≤n.

2.2 Linear model setting

Assume that we observe data (Xi, yi) ∈ Rp × R, i ≥ 1, from the following linear regression
model:

yi = X>i θ
? + εi, i ≥ 1,

where θ? ∈ Rp is the unknown true parameter. The random draws (Xi, εi) across i = 1, 2, ...
are i.i.d. from PX × Pε. Here we assume that PX is a distribution on Rp such that
E(XiX

T
i ) = Σ, while Pε is a distribution on R such that E(εi) = 0 and Var(εi) = σ2. Note

that, we consider a much richer class of gradient noise beyond sub-Gaussian, where only
finitely-many moments are required allowing heavy-tailed noise. More detailed assumptions
are included in Section 2.3.

To solve the above linear regression problem, we consider the optimization problem

min
θ∈Rp

F (θ) = EX,y
1

2
(y −X>θ)2.

We apply the mini-batch SGD, which is a popular parallelization technique reducing the
communication costs (Li et al., 2014; Reddi et al., 2016; Jain et al., 2017). Mini-batching
is efficient in practice and brings convenience in later proofs. Initialized at θ0, the t-th
iteration with step size ηt is given by:

θt = θt−1 − ηtĝt(θt−1), t ≥ 1,

ĝt(θt−1) =
1

B

tB∑
i=(t−1)B+1

Xi

(
X>i θt−1 − yi

)
,

(3)

where B is the mini-batch size and step sizes ηt will be discussed in later analysis. In
this paper, we are interested in the the high-probability bound of the averaged iterate
θ̄T = T−1

∑T
t=1 θt with T iterations (n = TB samples) in total.
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For (Xi, yi)i≥1 in above linear regression model, let

At =
1

B

tB∑
i=(t−1)B+1

XiX
>
i and bt =

1

B

tB∑
i=(t−1)B+1

Xiyi.

We can rewrite the t-th iteration from the mini-batch SGD as:

θt = θt−1 − ηt(Atθt−1 − bt), t ≥ 1.

Note that E(At) = E(XX>) = Σ, and b = E(bt) = Σθ?. We can see that solving the linear
regression problem through mini-batch SGD (3) is equivalent to solving the linear system
of the form:

Σθ? = b,

through stochastic approximation (Mou et al., 2020).

2.3 Assumptions

Assumption 1 For distribution Pε, assume that for some constant q > 2,

µq = E|ε|q <∞.

Assumption 2 Assume that Mψ := max1≤`≤p
(
E|Xi`|2ψ

)1/2ψ
< ∞, for some constant

ψ > max{4, q}. Let λmin(Σ) > 0, assume that the mini-batch size satisfy

B ≥ 16(ψ − 1)M4
ψp

2/λmin(Σ)2.

Remark 1 In existing works, light-tailed assumptions of the gradient noises are required,
i.e., finite exponential moments (e.g. bounded, sub-Gaussian, sub-exponential). While in
our assumptions, the noise conditions are more general. We only require finite polynomial
moments in Assumption 1, in which case heavy-tailed noises are allowed. Assumption 2 is
a fairly mild condition on PX and the mini-batch size B. It ensures that(

E‖At − Σ‖ψ2
)1/ψ

≤ λmin(Σ)/2, (4)

which is shown in Lemma 12 and is a useful condition for controlling the correlation be-
tween SGD iterates in later proofs. On the other hand, if Xi is Gaussian, Corollary 2
in Koltchinskii and Lounici (2017) implies that a weaker assumption for (4) is, for come
constant Cψ,

B ≥ Cψr(Σ)K(Σ)2,

where r(Σ) = tr(Σ)/λmax(Σ) is the effective rank of Σ, and K(Σ) = λmax(Σ)/λmin(Σ) is
the condition number. It is worth mentioning that the linear system Σθ? = b becomes more
unstable when the condition number of Σ grows. Therefore, it is reasonable to require a
larger mini-batch size B when the condition number is larger. For more discussion about
concentration inequality and expectation inequality of the operator norm ‖At−Σ‖2, we refer
to Vershynin (2010); Koltchinskii and Lounici (2017); Tropp (2012) and the references
therein.
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3. Main Results

3.1 Nagaev type upper bound

The step size sequence (ηt)t≥1 controls the convergence of the SGD algorithm. In this
section, we focus on two commonly used step size regimes: polynomial decay step size
ηt = η0t

−α with α ∈ (0, 1) and constant step size with ηt = η0 for any t ≥ 1.

We analyze the tail probability of the error θ̄T − θ?, after T steps of SGD, in the linear
model setting. In what follows, we denote λ0 = λmin(Σ)/2, λ∗ = λmax(Σ),

Kq = sup
ν∈Sp−1

E|ν>Xt|q,

and

Υ$,α =

∫ ∞
1

exp

(
−$

∫ z

1
x−αdx

)
dz.

Theorem 2 (polynomial decay step size) Let Assumptions 1 and 2 hold. Assume that
η0 ≤ 1/λ∗ and

ψ >
2q − 4α

2− α
.

Then, for any ω ∈ Sp−1 and x > 0, we have

P
(
|ω>(θ̄T − θ?)| > x

)
≤ C0‖θ0 − θ?‖ψ2

(Tx)ψ
+

C1Wq

T q−1xq
+ C exp

(
−C2Tx

2

W2

)
, (5)

where Wq = µqKqλ−q0 B1−q, W2 = σ2λ∗λ−20 B−1, C0 = (2Υλ0η0,α)ψ, C, C1 and C2 are
constants depending only on q, ψ and α.

Remark 3 The first term on the RHS of (5) characterizes the effect of the initial point
θ0 on the tail probability of θ̄T − θ?. The influence of θ0 decays quickly, note that for any
x & T−1/2, we have

C0‖θ0 − θ?‖ψ2
(Tx)ψ

≤ C1Wq

T q−1xq
,

as long as ‖θ0 − θ?‖ψ2 . C1C
−1
0 WqT

1+(ψ−q)/2, which is a fairly mild condition on θ0 as
ψ > q. Consequently, in this case, Theorem 2 implies that

P
(
|ω>(θ̄T − θ?)| > x

)
≤ 2C1Wq

T q−1xq
+ C exp

(
−C2Tx

2

W2

)
,

which, together with P(‖θ̄T − θ?‖2 > x) ≤
∑p

j=1 P(|θ̄T,j − θ?j | > x/
√
p), imply that

P
(
‖θ̄T − θ?‖2 > x

)
≤ 2p1+q/2C1Wq

T q−1xq
+ pC exp

(
−C2Tx

2

pW2

)
. (6)
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Theorem 4 (Constant step size) Let Assumptions 1 and 2 hold. Assume that η0 ≤
1/λ∗ and

η0 &
(log T )(3ψ−4)/(ψ−4)

T 2(ψ−q)/(ψ−4) .

Then, for any vector ω ∈ Sp−1 and x > 0, we have

P
(
|ω>(θ̄T − θ?)| > x

)
≤ C0‖θ0 − θ?‖ψ2

(Tx)ψ
+

C1Wq

T q−1xq
+ C exp

(
−C2Tx

2

W2

)
,

where Wq = µqKqλ−q0 B1−q , W2 = σ2λ∗λ−20 B−1,C0 = (2/λ0η0)
ψ, C, C1 and C2 are con-

stants depending only on q and ψ.

Remark 5 Both inequalities with different step size regimes imply two types of bounds:
Gaussian type tail and polynomial type tail. When x is small, i.e., for small deviations,
the Gaussian type tail is the dominating term for the tail of the estimation error. While
for large x, the polynomial type tail dominates. A combination of these two types of tail
approximation calibrates the tail behavior of SGD solutions more accurately in the case of
heavy-tailed noises.

After elementary calculations, we can translate the tail probability results as following.
For any δ ∈ (0, 1), with probability at least 1− δ,

‖θ̄T − θ?‖2 ≤ O

(√
log(1/δ)

T
+

(1/δ)1/q

T 1−1/q

)
.

For large or moderate failure probability δ > δ∗,

‖θ̄T − θ?‖2 ≤ O

(√
log(1/δ)

T

)
,

where δ∗ is the solution of the equation
√
T−1 log(1/δ) = T−1+1/q(1/δ)1/q and has the

asymptotic form δ∗ � T 1−q/2(log T )−q/2. This high probability error rate matches existing
results considering sub-Gaussian/bounded gradient noises (Mou et al., 2020). While for
small failure probability δ < δ∗, which is more of interest in most applications, we have

‖θ̄T − θ?‖2 ≤ O

(
(1/δ)1/q

T 1−1/q

)
.

3.2 Technical overview and proof sketch for main results

Let ∆t = θt − θ? and Et = B−1
∑tB

i=(t−1)B+1Xiεi. At the t-th step, the gradient g and the
stochastic gradient ĝt can be written with Σ, At, Et,∆t notations as follows:

g(θt−1) = Σ∆t−1, ĝt(θt−1) = At∆t−1 − Et.
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Let zt(θt−1) = ĝt(θt−1) − g(θt−1) denote the gradient noise. Note that it is a martingale
difference sequence since Et−1(zt(θt−1)) = 0. The recursion of ∆t is usually represented
using martingales as follows

∆t = (Ip − ηtΣ)∆t−1 − ηtzt(θt−1), t ≥ 1. (7)

Then, the classic analysis uses properties of martingales, such as Freedman and Azuma
inequalities. The high-probability bounds obtained from those general martingale inequali-
ties are sharp only when finite exponential moments of the noise zt|Ft−1 exists. Therefore,
existing studies require the gradient noise zt (or equivalently At and bt in linear stochastic
approximation) to be sub-Gaussian or to be bounded. In our work, we extend the noise
condition to a more general case, where heavy-tailed noises are allowed. To obtain sharp
high-probability bounds for heavy-tailed noises, we study the detailed structure of the mar-
tingale differences and use inequalities which are nearly sharp under polynomial moment
conditions.

We can see that the martingale difference zt at θt−1 can be decomposed as

zt(θt−1) = (At − Σ)∆t−1 − Et, t ≥ 1,

which is the sum of two parts, one related to the noise from At and the other part Et. Note
that the dependence between {zt(θt−1)}t≥1 comes from the dependence between (θt)t≥1,
and (Et)t≥1 are independent. Then leveraging the structure of zt, we study the recursion
with a different representation:

∆t = (Ip − ηtAt)∆t−1 + ηtEt, t ≥ 1. (8)

Compared with the form in (7), although more considerations are needed for the correlation
term (Ip−ηtAt) as variability is introduced (we now have (Ip−ηtAt) instead of (Ip−ηtΣ)),
the remaining independent structure makes it possible to obtain a tight tail bound under
heavy-tailed noise assumptions.

In the following, we sketch the proof of our main results under the step size regime
ηt = η0t

−α with α ∈ (0, 1). Proof for the constant step size regime shares the same spirit
with minor modifications. We defer the complete proof to Section 5. From (8) we can see
that (∆t)t≥1 has a closed form expression

∆t =

t∏
`=1

(Ip − η`A`)∆0 +

t∑
m=1

t∏
`=m+1

(Ip − η`A`)ηmEm.

Let ST = T (θ̄T − θ) =
∑T

t=1 ∆t which is further decomposed as ST = S�T + S?T , where

S�T =

T∑
t=1

t∏
`=1

(Ip − η`A`)∆0 and S?T =

T∑
t=1

t∑
m=1

t∏
`=m+1

(Ip − η`A`)ηmEm.

To bound the target ω>ST /T for any ω ∈ Sp−1 in Section 3.1, we deal with S�T and S?T
separately.

9
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Lemma 6 Under Assumption 2, for any vector ω ∈ Sp−1 and x > 0, we have

P
(
|ω>S�T | > x

)
≤
‖θ0 − θ?‖ψ2 Υψ

λ0η0,α

xψ
.

Next, we observe that for any ω ∈ Sp−1,

ω>S?T =
1

B

T∑
m=1

mB∑
i=(m−1)B+1

ηmω
>HmXiεi, where Hm =

T∑
t=m

t∏
`=m+1

(Ip − η`A`),

which means ω>S?T is a sum of independent zero-mean random variables conditional on
FX,n = σ{X1, X2, . . . , Xn}. Hence, for x > 0, by Lemma 11 (Nagaev inequality),

P
(
|ω>S?T | > x|FX,n

)
≤
Cq,1DT,q

(Bx)q
+ 2 exp

(
−Cq,2B

2x2

Dn,2

)
,

where Cq,1 and Cq,2 are constants depending only on q and

DT,q = µq

T∑
m=1

ηqm

mB∑
i=(m−1)B+1

|ω>HmXi|q.

We bound the conditional variance DT,2 in Lemma 13, which is a main technical step, and
obtain the following results for S?T .

Lemma 7 Under the conditions of Theorem 2, we have

P
(
|ω>S?T | > x

)
≤ C1WqT

xq
+ C exp

(
−C2x

2

TW2

)
,

Consequently, Theorem 2 directly follows from Lemma 6 and Lemma 7.

4. Tightness of the Upper Bound

This section shows that the Nagaev type upper bound obtained in the above section is tight
through the example of the mean estimation model. Therefore, the polynomial term in
the upper bounds in Section 3.1 is unavoidable, and the sub-Gaussian performance with
log(1/δ) tail behavior cannot be achieved through SGD with heavy-tailed gradient noise.
In particular, we consider the model

yi = θ? + εi, i ≥ 1, (9)

where θ? ∈ R is the mean we want to estimate and {εi}i≥1 are i.i.d. generated from a
t-distribution with degree of freedom ν > 2. For initial value θ0, the t-th iterate θt from
SGD algorithm, with mini-batch size B = 1, takes the following form:

θt = θt−1 + ηt(yt − θt−1), t ≥ 1, (10)

where ηt is the step size at the t-th iteration.

10
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The gradient noise zt = εt is heavy-tailed. The mean estimation model (9) is a special
case of the linear regression model in Section 2. Assumptions 1 and 2 can be easily verified
since At = 1 with no randomness here. Then we can apply theorems in Section 3 and get
the upper bounds for the estimation error θ̄T − θ? when there are T iterations in total. We
focus on the polynomial decay step size regime, i.e., ηt = η0t

−α, with η0 = 0.1, α = 0.55 in
the rest of this section. We modify the upper bound (6) in Section 3.1 as follows.
Nagaev type upper bound: We have for all x > 0,

P
(
|θ̄T − θ?| > x

)
≤ C1

xqT q−1
+ exp

(
−C2Tx

2
)
, (11)

for some constant C1, C2. Then, with probability at least 1− δ,

|θ̄T − θ?| ≤ O

(
1

(δT q−1)1/q
+

√
log(1/δ)

T

)
.

Next, we will show that the Nagaev type upper bound for the estimation error θ̄T − θ?
is tight by taking advantage of the simple structure of the mean estimation model. First,
we introduce the following notation

Vi =
i∏

k=1

(1− ηk), i ≥ 1, V0 = 1;

V j
i =

Vj
Vi
, j ≥ i.

(12)

Then, θ̄T − θ? has the closed form as follows:

θ̄T − θ? =
1

T

T∑
i=1

Vi∆0 +
1

T

T∑
t=1

T∑
i=t

V i
t ηtεt,

where ∆0 is the initialization error θ0 − θ?. Since {εt}t≥1 is a sequence of i.i.d. random
errors, the estimation error above (deducted by the initialization error) can be view as the
weighted sum of T i.i.d. random variables with mean 0. We can then further analyze the
estimation error based on existing studies about deviations and tail probabilities of linear
processes.

4.1 Upper bound from Nagaev inequality

The Nagaev inequality (Nagaev, 1979) for tail probability is a useful result in probability
theory. It is known that the performance bounds obtained from Nagaev inequality are
nearly sharp under polynomial moment conditions.

Proposition 8 Consider the mean estimation model in (9) and the SGD iterates {θt}t=1,...,T

defined in (10). For any x > 0 and 2 < q < ν, we have

P
(∣∣θ̄T − θ?∣∣ ≥ C|∆0|

T
+ x

)
≤ (1 + 2/q)qE|ε|q

xqT q−1
+ 2 exp

(
−cqx2T

)
, (13)

where cq = 2e−q(q + 1)−2/E|ε|2, and C =
∑∞

i=1 Vi, Vi is defined in (12).

11
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While the Nagaev inequality gives more precise constants, the upper bound in (13) is of
the same order as that in (11). Thus, the tightness of Nagaev inequality implies that our
proposed Nagaev type upper bound is also tight.

4.2 Exact deviation

Furthermore, instead of an upper bound, we give the exact asymptotic tail probability of
the estimation error in the mean estimation model. Inspired by Peligrad et al. (2014), which
studied the exact moderate and large deviation of linear processes, we obtain Proposition
9.

Proposition 9 Consider the mean estimation model (9) and the SGD iterates {θt}t=1,...,T

defined in (10). Define

σ2T = E|ε|2
T∑
t=1

(
T∑
i=t

V i
t ηt/T

)2

.

For x ≥ σT ,

P
(∣∣∣∣θ̄T − θ? − γT∆0

T

∣∣∣∣ ≥ x) = (2 + o(1)) (1− Φ(x/σT ) +R(T, x)) , (14)

where γT =
∑T

i=1 Vi, Vi is defined in (12), and

R(T, x) =
T∑
t=1

P

(
εt ≥ Tx/

T∑
i=t

V i
t ηt

)
.

The right-hand-side (RHS) of (14) comprises two parts: Gaussian approximation 1 −
Φ(x/σT ) and tail approximation R(T, x). Note that σ2T � 1/T as discussed in Section
5.6 . Then the Gaussian approximation refines the term exp(−C2Tx

2) in (11). Also,

P (εt ≥ y) ∼ cν/yν , y →∞,

where cν = ν−3/2π−1/2Γ((ν+1)/2)/Γ(ν/2) according to the property of tν distribution, and∑∞
i=t V

i
t ηt = O(1) as discussed in Section 5.6. Then the tail approximation

R(T, x) � 1/(xνT ν−1),

matching the polynomial term in our proposed Nagaev type upper bound (11). Therefore,
we can see that the tail probability polynomial dependence on 1/δ is necessary in the tail
bound of SGD and sub-Gaussian tails cannot be achieved under heavy-tailed assumptions.

4.3 A numerical study

We conduct a numerical study of the accuracy of the exact tail probability in (14) for ν = 3.
The true tail probability of the estimation error (LHS of (14)) can be calculated through
the inversion formula. Let

ST = θ̄T − θ∗ −
1

T

T∑
i=1

Vi∆0 =
T∑
t=1

(
T∑
i=t

V i
t ηt/T

)
εt.

12
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Figure 2: Ratio of approximated and true tail probability. Here X axis represents deviation
x. Red curves represent Gaussian approximation:

(
1− Φ(x/

√
µT,2)

)
/P(ST ≥

x); blue curves represent tail approximation: R(T, x)/P(ST ≥ x) ; black curves
represent their sum:

(
1− Φ(x/

√
µT,2) +R(T, x)

)
/P(ST ≥ x).

Then the characteristic function of ST is

φST
(x) =

T∏
t=1

φ

((
T∑
i=t

V i
t ηt/T

)
x

)
,

where φ is the characteristic function of a t3-distribution. By the inversion formula,

P (ST ≤ x)− P (ST ≤ 0) =
1

2π

∫ ∞
−∞

e
√
−1yx − 1√
−1y

φST
(y)dy.

Since ST is symmetric, P (ST ≤ 0) = 1
2 . In our numerical study, we use the above formula to

compute the probability P(ST ≥ x). In figure 2, we report the ratios
(
1− Φ(x/

√
µT,2)

)
/P(ST ≥

x), R(T, x)/P(ST ≥ x) and
(
1− Φ(x/

√
µT,2) +R(T, x)

)
/P(ST ≥ x). We can see that the

Gaussian approximation is good for small deviations, while the tail approximation is better
when the deviation is moderate or large. The numerical study confirms that the polyno-
mial term in the upper bound (11) is necessary in the case of heavy-tailed gradient noise,
especially for moderate and large deviations.

5. Proofs

We first introduce some notations. For a random variable X and q > 0, we write ‖X‖q =
(E|X|q)1/q if E|X|q <∞. Moreover, for any random matrix A, we write ‖A‖q = (E‖A‖q2)1/q

13
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by convention. From this point on, abusing notation, depending on context we may write
‖ · ‖2 to denote the matrix norm introduced in Section 2.1, or may also write ‖ · ‖2 to denote
the random matrix norm discussed here.

5.1 Some useful lemmas

In Lemma 10, the case 1 < q ≤ 2 follows from Burkholder (1988) and the other case q > 2
is due to Rio (2009). Lemma 11 follows from Corollary 1.8 of Nagaev (1979).

Lemma 10 (Burkholder) Let q > 1 and q′ = min{q, 2}. Let (Dt)t∈Z be martingale
differences with E|Dt|q <∞ for every t ∈ Z. Write Mn =

∑n
t=1Dt. Then

‖Mn‖q
′
q ≤ Cq

′
q

n∑
t=1

‖Dt‖q
′
q , where Cq =

{
(q − 1)−1, 1 < q ≤ 2,√

q − 1, q > 2.

Lemma 11 (Nagaev) Let (et)t∈Z be independent zero-mean random variables with supt∈Z E|et|q <
∞ for some q > 2. Let Sn =

∑n
t=1 et and cq = 2e−q(q + 2)−2. Then, for x > 0, we have

P(|Sn| ≥ x) ≤ (1 + 2/q)q
∑n

t=1 E|ei|q

xq
+ 2 exp

(
− cqx

2∑n
t=1 E|ei|2

)
.

Lemma 12 (Moment bounds for sample covariance operators) Under Assumption 2,
we have (

E‖At − Σ‖ψ2
)1/ψ

≤ λ0.

Proof For simplicity, write

∆B,jk =
B∑
i=1

(XijXik − Σjk)

for 1 ≤ j, k ≤ p. By Lemma 10, it follows that

‖∆B,jk‖2ψ ≤ (ψ − 1)
B∑
i=1

‖XijXik − Σ‖2ψ ≤ 4B(ψ − 1)M4
ψ.

Consequently, under Assumption 2, we have

(
E‖At − Σ‖ψ2

)1/ψ
≤ 1

B

 p∑
j,k=1

‖∆B,jk‖2ψ

1/2

≤
2p(ψ − 1)1/2M2

ψ

B1/2
≤ λ0.

14
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5.2 Proof of Lemma 6

By Lemma 12, triangle inequality and the fact that η0 ≤ 1/‖Σ‖2, we have for each ` ≥ 1,

‖Ip − η`A`‖ψ ≤ ‖Ip − η`Σ‖ψ + η`‖A` − Σ‖ψ ≤ 1− 2λ0η` + λ0η` = 1− λ0η`.

Consequently, by the triangle inequality, it follows that

‖ω>S�T ‖ψ ≤ ‖θ0 − θ?‖2
T∑
t=1

t∏
`=1

(1− λ0η`) ≤ ‖θ0 − θ?‖2Υλ0η0,α. (15)

Then Lemma 6 is obtained through Markov’s inequality.

5.3 Proof of Lemma 7

We first introduce the following lemma, providing a concentration inequality for DT,2, where

DT,2 = Bσ2
T∑

m=1

η2mω
>HmAmH

>
mω =: Bσ2

T∑
m=1

η2mξm.

Lemma 13 (Main Technical Lemma) Under Assumption 2, for z > 0, we have

P(|DT,2 − E(DT,2)| > z) ≤
Cψ,αTL

ψ/4−1‖Σ‖ψ/22

λψ0 (z/B)ψ/2
+ C exp

{
−
C ′ψ,α(z/B)2λ40

T‖Σ‖22

}
,

where Cψ,α and C ′ψ,α are positive constants depending only on ψ and α, and

L � Tα

λ0η0
log

(
B‖Σ‖2T 1+α

λ20

)
. (16)

Proof For any k ≥ 1, define FA,k = σ{A1, A2, . . . , Ak} and the projection operator

PA,k(·) = E(·|FA,k)− E(·|FA,k−1).

Denote Hm = H(Am+1, Am+2, . . . , AT ). For any h ≥ 1, define

Hm,{m+h} = H(Am+1, Am+2, . . . , Am+h−1, A
?
m+h, Am+h+1, . . . , AT ).

where (A?t )t∈Z are i.i.d. random matrix with A?t
D
= At. Note that

Hm −Hm,{m+h} =

T∑
k=m+h

k∏
`=m+h+1

(Ip − η`A`)ηm+h(Am+h −A?m+h)

m+h−1∏
`=m+1

(Ip − η`A`).

Hence, by Assumption 2, we have ‖Am+h − Σ‖ψ ≤ λ0 and consequently

‖Hm−Hm,{m+h}‖ψ .
T∑

k=m+h

ηm+h‖Am+h − Σ‖ψ
k∏

`=m+1

(1− λ0η`)

≤ λ0ηm+h

∫ ∞
m+h

exp

(
−λ0η0

∫ z

m+1
x−αdx

)
dz.

15
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Therefore, together with the fact that ‖Am‖ψ ≤ ‖Am − Σ‖ψ + ‖Σ‖2 ≤ 2‖Σ‖2, we have

‖PA,m+h(ξm)‖ψ/2 ≤ 2‖Am‖ψ‖Hm −Hm,{m+h}‖ψ‖Hm‖ψ

. λ0‖Σ‖ηm+h‖Hm‖ψ
∫ ∞
m+h

exp

(
−λ0η0

∫ z

m+1
x−αdx

)
dz.

Define the L-approximation of DT,2 as

DT,2,L = Bσ2
T∑

m=1

η2mE(ξm|PA,m+L) = DT,2 −Bσ2
T∑

m=1

η2m

T−h∑
h=L+1

PA,m+h(ξm).

Note that E(DT,2) = E(DT,2,L). Hence, by Lemma 10 and (16),

‖DT,2−DT,2,L‖ψ/2 ≤ CψBσ2
T−1∑

h=L+1

{
T−h∑
m=1

η4m‖PA,m+h(ξm)‖2ψ/2

}1/2

≤
Cψ,αBσ

2‖Σ‖T 1+α

λ20L
α

exp

(
−λ0η0L

2αTα

)
≤ Cψ,αT−1/2.

Now we bound |DT,2,L−E(DT,2,L)|. By Lemma 11 and a similar argument as that of (17),

P(|DT,2,L − E(DT,2,L)| > z) ≤
Cψ,αTL

ψ/4−1‖Σ‖ψ/22

λψ0 (z/B)ψ/2
+ C exp

{
−
C ′ψ,α(z/B)2λ40

T‖Σ‖22

}
.

Consequently, Lemma 13 follows in view of

P(|DT,2 − E(DT,2)| > z) ≤ P(|DT,2 −DT,2,L| > z/2) + P(|DT,2,L − E(DT,2,L)| > z/2).

Remaining proof: As discussed in Section 3.2, it suffices to bound DT,q and DT,2. By
Assumption 2 and a similar argument as (15),

‖Hm‖q ≤ 1 +

∫ ∞
m+1

exp

(
−λ0η0

∫ z

m+1
x−αdx

)
dz,

which leads to

E(DT,q) = Bµq

T∑
m=1

ηqmE|ω>HmXi|q ≤ BµqKq
T∑

m=1

ηqm‖Hm‖qq ≤
Cq,αnµqKq

λq0
. (17)

Hence, by Lemma 13, we have

P
(
DT,2 > E(DT,2) +

x2

log x

)
≤
Cψ,αTL

ψ/4−1‖Σ‖ψ/22 Bψ/2

λψ0 (x2/ log x)ψ/2
+ C exp

{
−
C ′ψ,α(x2/ log x)2λ40

T‖Σ‖22B2

}
.
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As ψ > (2q − 4α)/(2− α), for any x &
√
T , we have

TLψ/4−1(log x)ψ/2

xψ
= o

(
T

xq

)
.

Consequently, as E(DT,2) ≤ Cq,αnW2, we have

P
(
|ω>S?T | > x

)
≤ C1TWq

xq
+ C exp

(
− C2x

2

TW2 + x2/ log x

)
≤ C1TWq

xq
+ C exp

(
−C2x

2

TW2

)
,

where C1 and C2 are positive constants depending only on q, α and ψ.

5.4 Proof of Theorems 2, 4

As discussed in Section 3.2, Theorem 2 directly follows from Lemma 6 and Lemma 7. The
proof of Theorem 4 is similar to that of Theorem 2 and thus omitted.

5.5 Proof of Proposition 8

Proof Let

µT,q =

T∑
t=1

(
T∑
i=t

V i
t ηt/T

)q
.

Note that

θ̄T − θ∗ −
1

T

T∑
i=1

Vi∆0 =
1

T

T∑
t=1

T∑
i=t

V i
t ηtεt.

Since {εt}t≥1 are i.i.d. , according to Corollary 1.8 in Nagaev (1979) we have

P

(∣∣∣∣∣θ̄T − θ∗ − 1

T

T∑
i=1

Vi∆0

∣∣∣∣∣ ≥ x
)
≤ (1 + 2/q)q

µT,qE|ε|q

xq
+ 2 exp

(
− cqx

2

µT,2E|ε|2

)
.

Then all we need to show is that µT,q � T 1−q for 2 ≤ q < ν, and
∑T

i=1 Vi = O(1). Since
there’s no randomness in µT,q and Vi, we can check the order through numerical computa-

tion; see figure 3. Also, according to Lemma A.2 in Zhu et al. (2021),
∑T

i=t V
i
t = O(tα) for

α ∈ (1/2, 1), which implies that µT,q = O(T 1−q).

5.6 Proof of Proposition 9

Proof Let

ST = θ̄T − θ∗ −
1

T

T∑
i=1

Vi∆0 =
1

T

T∑
t=1

T∑
i=t

V i
t ηtεt.

To apply Theorem 1 in Peligrad et al. (2014), we need to verify the basic assumption, the
uniform asymptotic negligibility of the variance of individual summands, that is

max
t

(
T∑
i=t

V i
t ηt

)2

/
T∑
t=1

(
T∑
i=t

V i
t ηt

)2

→ 0. (18)
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Figure 3: Left: Check the order of µT,2. The X axis represents log(t); the Y axis represents
log(µt,2). The slop of the log-log curve is about−1, which implies that µT,2 � T−1.
Right: Check the order of Vt. The X axis represents log(t); the Y axis represents
log(Vt). The slop of the log-log curve is much less than −1 when t is large, which
means Vt is summable and

∑T
i=1 Vi = O(1).

Since Lemma A.2 in Zhu et al. (2021) shows
∑T

i=t V
i
t � tα as T → ∞ and ηt = η0t

−α, the
above limit is of order T−1. ( Note that σ2T = E|ε|2µT,2 � T−1.) We can also verify (18)
from numerical computation; see Figure 4. Then, according to Theorem 1 in Peligrad et al.
(2014), we have

P (ST ≥ x) = (1 + o(1))

(
1− Φ(x/σT ) +

T∑
t=1

P

(
T∑
i=t

V i
t ηtεt/T ≥ x

))
,

which naturally yields (14).

6. Discussion and Future Directions

In this paper, we established nearly tight tail probabilities for SGD errors with heavy-
tailed noises in linear models. The resulting high probability error bounds and sample
complexity are quite different from those obtained in light-tailed noise cases. In particular,
with probability at least 1 − δ, we have ‖θ̄T − θ?‖22 ≤ O

(
T−1 log(1/δ) + (δT q−1)−2/q

)
,

where the polynomial dependence on the failure probability δ is generally unavoidable. For
future directions, it is interesting to extend our concentration analysis under heavy-tailed
noise assumptions to other examples of SA. Also, the robust modification of SGD can be a
promising topic to accommodate the heavy-tailed noises.
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Figure 4: Check the uniform asymptotic negligibility of the variance of individual sum-
mands. The X axis represents t; the Y axis represents the ratio of the largest
individual variance and variance of individual summands.
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Hervé Cardot, Peggy Cénac, Antoine Godichon-Baggioni, et al. Online estimation of the
geometric median in hilbert spaces: Nonasymptotic confidence balls. The Annals of
Statistics, 45(2):591–614, 2017.

19



Lou, Zhu and Wu

Xi Chen, Jason D. Lee, Xin T. Tong, and Yichen Zhang. Statistical inference for model
parameters in stochastic gradient descent. The Annals of Statistics, 48(1):251–273, 02
2020.
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